Patterns of exposure to SARS-CoV-2 carriers manifest multiscale association between urban landscape morphology and human activity
1.Kaneda, T. PRB’s 2016 World Population Data Sheet. http://www.prb.org/Publications/Datasheets/2016/2016-world-population-data-sheet.aspx (2016).2.Bedford, J. et al. A new twenty-first century science for effective epidemic response. Nature 575(7781), 130–136 (2019).CAS
Article
ADS
Google Scholar
3.Neiderud, C.-J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 5(1), 27060 (2015).PubMed
Google Scholar
4.Dye, C. Health and urban living. Science 319(5864), 766–769 (2008).CAS
Article
ADS
Google Scholar
5.Fang, C. & Yu, D. Urban agglomeration: An evolving concept of an emerging phenomenon. Landsc. Urban Plan. 162, 126–136 (2017).Article
Google Scholar
6.Lee, V. J. et al. Epidemic preparedness in urban settings: New challenges and opportunities. Lancet. Infect. Dis 20(5), 527–529 (2020).CAS
Article
Google Scholar
7.Mollalo, A., Vahedi, B. & Rivera, K. M. GIS-based spatial modeling of COVID-19 incidence rate in the continental United States. Sci. Tot. Environ. 728, 138884 (2020).CAS
Article
Google Scholar
8.Small, C., MacDonald, A. J., & Sousa, D. Spatial network connectivity of population and development in the USA; Implications for disease transmission. Preprint at https://arxiv.org/abs/2004.14237v1 (2020).9.Wang, Z. et al. Quantifying uncertainties in nighttime light retrievals from Suomi-NPP and NOAA-20 VIIRS day/night band data. Remote Sens. Environ. 263, 112557 (2021).Article
ADS
Google Scholar
10.Liu, Q. et al. Spatiotemporal patterns of COVID-19 impact on human activities and environment in Mainland China using nighttime light and air quality data. Remote Sens. 12(10), 1576 (2020).Article
ADS
Google Scholar
11.Elvidge, C., Ghosh, T., Hsu, F.-C., Zhizhin, M. & Bazilian, M. The Dimming of lights in China during the COVID-19 pandemic. Remote Sens. 12(17), 2851 (2020).Article
ADS
Google Scholar
12.Venter, Z.S., Barton, D.N., Gundersen, V., Figari, H., & Nowell, M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Preprint at https://doi.org/10.31235/osf.io/kbdum (2020).13.Chauhan, A. & Singh, R. P. Decline in PM2.5 concentrations over major cities around the world associated with COVID-19. Environ. Res. 187, 109634 (2020).CAS
Article
Google Scholar
14.Kasturi, D. K., Kamarul Zaman, N. A. F., Kaskaoutis, D. G. & Latif, M. T. COVID-19’s impact on the atmospheric environment in the Southeast Asia region. Sci. Tot. Environ. 736, 139658 (2020).Article
Google Scholar
15.Forman, R.T.T. Land Mosaics: The Ecology of Landscapes and Regions. (Cambridge University Press, 1995)16.Turner, M. G., Gardner, R. H. & O’Neill, R. V. Landscape Ecology in Theory and Practice (Springer, 2001).
Google Scholar
17.Wiens, J. A., Schooley, R. L. & Weeks, R. D. Patchy landscapes and animal movements: Do beetles percolate?. Oikos 78(2), 257–264 (1997).Article
Google Scholar
18.Dolman, P. M., Hinsley, S. A., Bellamy, P. E. & Watts, K. Woodland birds in patchy landscapes: the evidence base for strategic networks. Ibis 149, 146–160 (2007).Article
Google Scholar
19.Laiolo, P. & Tella, J. L. Landscape bioacoustics allow detection of the effects of habitat patchiness on population structure. Ecology 87(5), 1203–1214 (2006).Article
Google Scholar
20.Jia, Y., Tang, L., Xu, M. & Yang, X. Landscape pattern indices for evaluating urban spatial morphology—A case study of Chinese cities. Ecol. Ind. 99, 27–37 (2019).Article
Google Scholar
21.Bosch, M. & Chenal, J. Spatiotemporal patterns of urbanization in three Swiss urban agglomerations: Insights from landscape metrics, growth modes and fractal analysis. Preprint https://doi.org/10.1101/645549 (2019).Article
Google Scholar
22.Wang, H., Huang, Y., Wang, D. & Chen, H. Effects of urban built-up patches on native plants in subtropical landscapes with ecological thresholds—A case study of Chongqing city. Ecol. Indic. 108, 105751 (2020).Article
Google Scholar
23.McGarigal, K., & Cushman, S.A. The gradient concept of landscape structure. in Issues and Perspectives in Landscape Ecology (eds. Wiens, J., & Moss, M.) 112–119 (Cambridge University Press, 2005).24.Cushman, S. A., Gutzweiler, K., Evans, J., McGarigal, K. The gradient paradigm: a conceptual and analytical framework for landscape ecology. in Spatial Complexity, Informatics, and Wildlife Conservation (eds. Cushman, S. A. & Huettmann, F.) 83–108. (Springer, 2010).25.McGarigal, K., Tagil, S. & Cushman, S. A. Surface metrics: An alternative to patch metrics for the quantification of landscape structure. Landsc. Ecol. 24(3), 433–450 (2009).Article
Google Scholar
26.Fan, C., Myint, S. W., Rey, S. J. & Li, W. Time series evaluation of landscape dynamics using annual Landsat imagery and spatial statistical modeling: Evidence from the Phoenix metropolitan region. Int. J. Appl. Earth Obs. Geoinf. 58, 12–25 (2017).Article
ADS
Google Scholar
27.Kowe, P., Mutanga, O., Odindi, J. & Dube, T. A quantitative framework for analysing long term spatial clustering and vegetation fragmentation in an urban landscape using multi-temporal landsat data. Int. J. Appl. Earth Obs. Geoinf. 88, 102057 (2020).Article
Google Scholar
28.Wang, J., Kuffer, M. & Pfeffer, K. The role of spatial heterogeneity in detecting urban slums. Comput. Environ. Urban Syst. 73, 95–107 (2019).Article
Google Scholar
29.Wu, D. Q. et al. Multi-scale identification of urban landscape structure based on two-dimensional wavelet analysis: The case of metropolitan Beijing, China. Ecol. Complex. 43, 100832 (2020).Article
Google Scholar
30.Rocchini, D. et al. Fourier transforms for detecting multitemporal landscape fragmentation by remote sensing. Int. J. Remote Sens. 34(24), 8907–8916 (2013).Article
Google Scholar
31.QGIS Development Team. QGIS Version 3.16.10. Geographic Information System. Open-Source Geospatial Foundation Project. https://www.qgis.org/en/site/ (2019).32.Bennett, M. M. & Smith, L. C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 192, 176–197 (2017).Article
ADS
Google Scholar
33.Zhuo, L. et al. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int. J. Remote Sens. 30(4), 1003–1018 (2009).Article
Google Scholar
34.Zhang, Q. & Seto, K. C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 115(9), 2320–2329 (2011).CAS
Article
ADS
Google Scholar
35.Yang, B. et al. A spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery. Int. J. Geogr. Inf. Sci. 34(9), 1740–1764 (2020).Article
Google Scholar
36.Chen, X. Nighttime lights and population migration: Revisiting classic demographic perspectives with an analysis of recent European data. Remote Sens. 12(1), 169 (2020).Article
Google Scholar
37.Li, X., Li, D., Xu, H. & Wu, C. Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria’s major human settlement during Syrian Civil War. Int. J. Remote Sens. 38(21), 5934–5951 (2017).Article
Google Scholar
38.Duan, X., Hu, Q., Zhao, P., Wang, S. & Ai, M. An approach of identifying and extracting urban commercial areas using the nighttime lights satellite imagery. Remote Sens. 12(6), 1029 (2020).Article
ADS
Google Scholar
39.Krikigianni, E., Tsiakos, C. & Chalkias, C. Estimating the relationship between touristic activities and night light emissions. Eur. J. Remote Sens. 52(sup1), 233–246 (2019).Article
Google Scholar
40.Israeli Ministry of Health. Online Geodatabase on COVID-19 Exposures (In Hebrew). https://imoh.maps.arcgis.com/apps/webappviewer/index.html?id=20ded58639ff4d47a2e2e36af464c36e&locale=he&/41.Sharav, N. et al. Gush Dan Metro. The Economic, Social and Urban Impacts of the Gush Dan Metro Network Executive Report. Ministry of Finance, Ministry of Transport and Road Safety, National Economic Council Prime Minister’s Office, NATA, Ayalon Highways, July 2020. (in Hebrew). https://www.gov.il/BlobFolder/reports/metro_goshdan_jul_2020/he/Metro_Executive_Summary_14_july_2020.pdf42.MathWorks 2019. MATLAB ver. 2019b Computer Program. https://www.mathworks.com/. (The MathWorks Inc., 2019). 43.Moellering, H. & Tobler, W. Geographical variances. Geogr. Anal. 4(1), 34–50 (1972).Article
Google Scholar
44.Wu, J., Jelinski, D., Luck, M. & Tueller, P. T. Multiscale analysis of landscape heterogeneity: Scale variance and pattern metrics. Ann. GIS 6(1), 6–19 (2000).Article
Google Scholar
45.Shen, W., Darrel Jenerette, G., Wu, J. & Gardner, R. H. Evaluating empirical scaling relations of pattern metrics with simulated landscapes. Ecography 27(4), 459–469 (2004).Article
Google Scholar
46.Wu, J. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 19(2), 125–138 (2004).Article
Google Scholar
47.Mahadevan, A. & Campbell, J. W. Biogeochemical patchiness at the sea surface. Geophys. Res. Lett. 29(19), 32-1-32–4 (2002).Article
ADS
Google Scholar
48.Yamamoto, D. Scales of regional income disparities in the USA, 1955 2003. J. Econ. Geogr. 8(1), 79–103 (2007).Article
Google Scholar
49.USGS Earth Explorer. https://earthexplorer.usgs.gov.50.Román, M. O. et al. NASA’s black marble nighttime lights product suite. Remote Sens. Environ. 210, 113–143 (2018).Article
ADS
Google Scholar
51.Google Earth Engine Data Catalog, Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines. https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_MONTHLY_V1_VCMCFG. More
