More stories

  • in

    Functional forest restoration

    1.Becoming #GenerationRestoration: Ecosystem Restoration for People, Nature and Climate (United Nations Environment Programme, 2021).2.Bongers, F. J. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01564-3 (2021).Article 

    Google Scholar 
    3.Reich, P. B. et al. Science 336, 589–592 (2012).CAS 
    Article 

    Google Scholar 
    4.Guerrero-Ramírez, N. R. et al. Nat. Ecol. Evol. 1, 1639–1642 (2017).Article 

    Google Scholar 
    5.Fargione, J. et al. Proc. R. Soc. B 274, 871–876 (2007).Article 

    Google Scholar 
    6.Montagnini, F. & Piotto, D. In Silviculture in the Tropics (eds Günter, S. et al.) 501–511 (Springer-Verlag, 2011).7.Aerts, R. & Honnay, O. BMC Ecol. 11, 29 (2011).Article 

    Google Scholar 
    8.Messier, C. et al. Conserv. Lett. https://doi.org/gk82nr (2021).9.Sacco, A. D. et al. Global Change Biol. 27, 1328–1348 (2021).Article 

    Google Scholar 
    10.Coleman, E. A. et al. Nat. Sustain. https://doi.org/gzhx (2021).11.Forrester, D. I. For. Ecol. Manage. 312, 282–292 (2014).Article 

    Google Scholar 
    12.Eisenhauer, N., Reich, P. B. & Scheu, S. Basic Appl. Ecol. 13, 571–578 (2012).Article 

    Google Scholar 
    13.Zemp, D. C. et al. Agric. Ecosyst. Environ. 283, 106564 (2019).Article 

    Google Scholar 
    14.Laughlin, D. C. et al. Nat. Ecol. Evol. 5, 1123–1134 (2021).Article 

    Google Scholar 
    15.Rodrigues, R. R. et al. Práticas de restauração nos diferentes biomas brasileiros. in BPBES/IIS: Relatório Temático sobre Restauração de Paisagens e Ecossistemas (eds. Crouzeilles, R. et al.) (Editora Cubo, 2019). More

  • in

    Sea ice presence is linked to higher carbon export and vertical microbial connectivity in the Eurasian Arctic Ocean

    1.Serreze, M. C. & Meier, W. N. The Arctic’s sea ice cover: trends, variability, predictability, and comparisons to the Antarctic. Ann. N. Y. Acad. Sci. 1436, 36–53 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Pörtner, H. et al. IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Intergov. Panel Clim. Chang. 1–765 (2019).3.Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environ. Res. Lett. 13, 105005 (2018).Article 

    Google Scholar 
    4.Wassmann, P. & Reigstad, M. Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24, 220–231 (2011).Article 

    Google Scholar 
    5.Nöthig, E.-M. et al. Summertime plankton ecology in Fram Strait—a compilation of long- and short-term observations. Polar Res. 34, 23349 (2015).Article 
    CAS 

    Google Scholar 
    6.Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Neukermans, G., Oziel, L. & Babin, M. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic. Glob. Chang. Biol. 24, 2545–2553 (2018).PubMed 
    Article 

    Google Scholar 
    8.Wiedmann, I. et al. What feeds the Benthos in the Arctic Basins? Assembling a carbon budget for the deep Arctic Ocean. Front. Mar. Sci. 7, 544386 (2020).9.Randelhoff, A. & Sundfjord, A. Short commentary on marine productivity at Arctic shelf breaks: upwelling, advection and vertical mixing. Ocean Sci. 14, 293–300 (2018).Article 

    Google Scholar 
    10.Lewis, K. M., van Dijken, G. L. & Arrigo, K. R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Sci. (80-.). 369, 198–202 (2020).Article 
    CAS 

    Google Scholar 
    11.Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70 (2015).Article 

    Google Scholar 
    12.Leu, E. et al. Arctic spring awakening—steering principles behind the phenology of vernal ice algal blooms. Prog. Oceanogr. 139, 151–170 (2015).Article 

    Google Scholar 
    13.Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408–1408 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    14.Lalande, C. et al. Variability in under-ice export fluxes of biogenic matter in the Arctic Ocean. Glob. Biogeochem. Cycles 28, 571–583 (2014).Article 
    CAS 

    Google Scholar 
    15.Fernández-Méndez, M. et al. Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012. Biogeosciences 12, 3525–3549 (2015).Article 

    Google Scholar 
    16.Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 339, 1430–1432 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    17.Assmy, P. et al. Floating ice-algal aggregates below melting Arctic sea ice. PLoS ONE 8, e76599 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Perrette, M., Yool, A., Quartly, G. D. & Popova, E. E. Near-ubiquity of ice-edge blooms in the Arctic. Biogeosciences 8, 515–524 (2011).Article 

    Google Scholar 
    19.Underwood, G. J. C. et al. Organic matter from Arctic sea-ice loss alters bacterial community structure and function. Nat. Clim. Chang. 9, 170–176 (2019).Article 

    Google Scholar 
    20.Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Henson, S., Le Moigne, F. & Giering, S. Drivers of carbon export efficiency in the global ocean. Glob. Biogeochem. Cycles 33, 891–903 (2019).Article 
    CAS 

    Google Scholar 
    22.Ruiz‐González, C. et al. Major imprint of surface plankton on deep ocean prokaryotic structure and activity. Mol. Ecol. 29, 1820–1838 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    23.Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl Acad. Sci. USA 115, E6799–E6807 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Preston, C. M., Durkin, C. A. & Yamahara, K. M. DNA metabarcoding reveals organisms contributing to particulate matter flux to abyssal depths in the North East Pacific ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 173, 104708 (2020).Article 
    CAS 

    Google Scholar 
    25.Poff, K. E., Leu, A. O., Eppley, J. M., Karl, D. M. & DeLong, E. F. Microbial dynamics of elevated carbon flux in the open ocean’s abyss. Proc. Natl Acad. Sci. USA 118, 1–11 (2021).Article 
    CAS 

    Google Scholar 
    26.Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    27.Thiele, S., Fuchs, B. M., Amann, R. & Iversen, M. H. Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow. Appl. Environ. Microbiol. 81, 1463–1471 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Rapp, J. Z., Fernández-Méndez, M., Bienhold, C. & Boetius, A. Effects of ice-algal aggregate export on the connectivity of bacterial communities in the central Arctic Ocean. Front. Microbiol. 9, 1035 (2018).29.Smedsrud, L. H., Halvorsen, M. H., Stroeve, J. C., Zhang, R. & Kloster, K. Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. Cryosphere 11, 65–79 (2017).Article 

    Google Scholar 
    30.Krumpen, T. et al. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Sci. Rep. 9, 5459 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Lalande, C. et al. Lateral supply and downward export of particulate matter from upper waters to the seafloor in the deep eastern Fram Strait. Deep Sea Res. Part I Oceanogr. Res. Pap. 114, 78–89 (2016).Article 

    Google Scholar 
    32.Wekerle, C., Krumpen, T., Dinter, T., Iversen, M. & Salter, I. Origin and properties of sediment trap catchment areas in Fram Strait: results from Lagrangian modelling and remote sensing. Front. Mar. Sci. 5, 4071– 26 (2018).33.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol, 7, 1451–1456 (2016).Article 

    Google Scholar 
    35.Wilson, B. et al. Changes in marine prokaryote composition with season and depth over an Arctic polar year. Front. Mar. Sci. 4, 1–17 (2017).
    Google Scholar 
    36.Leu, E., Søreide, J. E., Hessen, D. O., Falk-Petersen, S. & Berge, J. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: Timing, quantity, and quality. Prog. Oceanogr. 90, 18–32 (2011).Article 

    Google Scholar 
    37.Becagli, S. et al. Relationships linking primary production, sea ice melting, and biogenic aerosol in the Arctic. Atmos. Environ. 136, 1–15 (2016).Article 
    CAS 

    Google Scholar 
    38.Lalande, C., Bauerfeind, E., Nöthig, E. & Beszczynska-Möller, A. Impact of a warm anomaly on export fluxes of biogenic matter in the eastern Fram Strait. Prog. Oceanogr. 109, 70–77 (2013).Article 

    Google Scholar 
    39.Olli, K. et al. Food web functions and interactions during spring and summer in the Arctic water inflow region: investigated through inverse modeling. Front. Mar. Sci. 6, https://doi.org/10.3389/fmars.2019.00244 (2019).40.Bauerfeind, E. et al. Particle sedimentation patterns in the eastern Fram Strait during 2000 – 2005: Results from the Arctic long-term observatory HAUSGARTEN. Deep Sea Res. Part I 56, 1471–1487 (2009).Article 
    CAS 

    Google Scholar 
    41.Soltwedel, T. et al. Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary observations at the arctic marine LTER site HAUSGARTEN. Ecol. Indic. 1–14, https://doi.org/10.1016/j.ecolind.2015.10.001 (2015).42.Randelhoff, A. et al. Arctic mid-winter phytoplankton growth revealed by autonomous profilers. Sci. Adv. 6, eabc2678 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Tedesco, L., Vichi, M. & Scoccimarro, E. Sea-ice algal phenology in a warmer Arctic. Sci. Adv. 5, eaav4830 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Lannuzel, D. et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat. Clim. Chang. 10, 983–992 (2020).Article 

    Google Scholar 
    45.Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. A: Oceanogr. Res. Pap. 34, 267–285 (1987).Article 
    CAS 

    Google Scholar 
    46.Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic. Ocean. Science 356, 285–291 (2017).PubMed 
    CAS 

    Google Scholar 
    47.Wang, Q. et al. The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model. Geosci. Model Dev. 7, 663–693 (2014).Article 
    CAS 

    Google Scholar 
    48.Wekerle, C. et al. Eddy-resolving simulation of the Atlantic water circulation in the Fram Strait with focus on the seasonal cycle. J. Geophys. Res. Ocean. 122, 8385–8405 (2017).Article 

    Google Scholar 
    49.Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates – potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085 (2013).Article 

    Google Scholar 
    50.Briggs, N., Dall’Olmo, G. & Claustre, H. Major role of particle fragmentation in regulating biological sequestration of CO 2 by the oceans. Science 367, 791–793 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    51.Fadeev, E. et al. Microbial communities in the East and West Fram Strait during sea ice melting season. Front. Mar. Sci. 5, 429 (2018).52.Buchan, A., LeCleir, G. R., Gulvik, C. A., González, J. M. & Gonzalez, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    53.Bergauer, K. et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc. Natl Acad. Sci. 115, E400–E408 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    54.Zhao, Z., Baltar, F. & Herndl, G. J. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci. Adv. 6, 1–11 (2020).CAS 

    Google Scholar 
    55.Hatzenpichler, R. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl. Environ. Microbiol. 78, 7501–7510 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Brown, C. M., Mathai, P. P., Loesekann, T., Staley, C. & Sadowsky, M. J. Influence of library composition on sourcetracker predictions for community-based microbial source tracking. Environ. Sci. Technol. 53, 60–68 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    57.Słomka, J., Alcolombri, U., Secchi, E., Stocker, R. & Fernandez, V. I. Encounter rates between bacteria and small sinking particles. N. J. Phys. 22, 043016 (2020).Article 

    Google Scholar 
    58.Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale succesions on model marine particles. Nat. Commun. 7, 1–7 (2016).Article 
    CAS 

    Google Scholar 
    59.Ploug, H., Iversen, M. H. & Fischer, G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria. Limnol. Oceanogr. 53, 1878–1886 (2008).Article 

    Google Scholar 
    60.Kiørboe, T., Tang, K., Grossart, H. & Ploug, H. Dynamics of microbial communities on marine snow aggregates: colonization, growth, detachment, and grazing mortality of attached bacteria. Appl. Environ. Microbiol. 69, 3036–3047 (2003).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Proctor, L. M. & Fuhrman, J. A. Roles of viral infection in organic particle flux. Mar. Ecol. Prog. Ser. 69, 133–142 (1991).Article 

    Google Scholar 
    62.Tamburini, C. et al. Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets. Deep Sea Res. Part II: Top. Stud. Oceanogr. 56, 1533–1546 (2009).Article 
    CAS 

    Google Scholar 
    63.Grossart, H. P. & Gust, G. Hydrostatic pressure affects physiology and community structure of marine bacteria during settling to 4000 m: An experimental approach. Mar. Ecol. Prog. Ser. 390, 97–104 (2009).Article 

    Google Scholar 
    64.Bochdansky, A. B., Clouse, M. A. & Herndl, G. J. Dragon kings of the deep sea: marine particles deviate markedly from the common number-size spectrum. Sci. Rep. 6, 4–10 (2016).Article 
    CAS 

    Google Scholar 
    65.Zinger, L., Boetius, A. & Ramette, A. Bacterial taxa-area and distance-decay relationships in marine environments. Mol. Ecol. 23, 954–964 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Hoffmann, K. et al. Diversity and metabolism of Woeseiales bacteria, global members of marine sediment communities. ISME J. 14, 1042–1056 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Spreen, G., Kaleschke, L. & Heygster, G. Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res. 113, C02S03 (2008).
    Google Scholar 
    68.Cavalieri, D. J., Parkinson, C. L., Gloersen, P. & Zwally, H. J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. (1996). https://doi.org/10.5067/8GQ8LZQVL0VL69.Edler, L. Recommendations on Methods for Marine Biological Studies in the Baltic Sea. Phytoplankton and Chlorophyll. (Baltic Marine Biologists BMB, Sweden) (1979).70.Ploug, H. & Jørgensen, B. B. A net-jet flow system for mass transfer and micro electrode studies in sinking aggregates. Mar. Ecol. Prog. Ser. 176, 279 (1999).Article 
    CAS 

    Google Scholar 
    71.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    72.Fadeev, E. et al. Comparison of two 16S rRNA Primers (V3–V4 and V4–V5) for studies of Arctic microbial communities. Front. Microbiol. 12, 1–11 (2021).Article 

    Google Scholar 
    73.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10 (2011).Article 

    Google Scholar 
    74.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).75.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Gómez-Rubio, V. ggplot2—elegant graphics for data analysis (2nd edition). J. Statistical Softw. 77, (2017).77.McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    78.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    79.Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 8, 761–763 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    80.Silvester, N. et al. The European Nucleotide Archive in 2017. Nucleic Acids Res. 46, D36–D40 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    81.Diepenbroek, M. et al. in Informatik 2014 (eds. Plödereder, E., Grunske, L., Schneider, E. & Ull, D.) 1711–1721 (Gesellschaft für Informatik e.V., 2014).82.Wekerle, C. Backward particle trajectories used to estimate the pathways of settling aggregates measured at stations N, HG and EG in Fram Strait. (2021). Available at: https://doi.org/10.1594/PANGAEA.928251.83.Fadeev, E. edfadeev/Export_and_vert_conn_FRAM: Published workflow. (2021). Available at: https://zenodo.org/record/5515441. More

  • in

    A whale of an appetite revealed by analysis of prey consumption

    NEWS AND VIEWS
    03 November 2021

    A whale of an appetite revealed by analysis of prey consumption

    Reaching a deeper understanding of the ocean ecosystems that maintain whales might aid conservation efforts. Measurements of the animals’ krill intake indicate that previous figures were substantial underestimates.

    Victor Smetacek

    0

    Victor Smetacek

    Victor Smetacek is at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Baleen whales are the largest known animals that have ever lived. They feed on centimetre-sized prey by filtering seawater through plates of frayed, bristle-like combs, termed baleen, that are fixed to their upper jaws. Previous estimates of the food requirements of whale populations indicate the animals’ enormous food demand1. In the Southern Ocean near Antarctica, before the whaling era, the krill biomass consumed by whales alone is estimated to have been 190 million tonnes annually1, an amount substantially greater than the entire annual world fish catch in modern times2. Intense fishing by humans has decimated ocean fish stocks in a few decades. By contrast, whale feeding seems to be sustainable, as evidenced by hallmarks of the animals’ evolution, such as their long lifespan and high degree of specialization geared to the consumption of just one prey — krill.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 599, 33-34 (2021)
    doi: https://doi.org/10.1038/d41586-021-02951-3

    References1.Laws, R. M. Phil. Trans. R. Soc. B 279, 81–96 (1977).Article 

    Google Scholar 
    2.Pauly, D. & Zeller, D. Nature Commun. 7, 10244 (2016).PubMed 
    Article 

    Google Scholar 
    3.Savoca, M. S. et al. Nature 599, 85–90 (2021).Article 

    Google Scholar 
    4.Goldbogen, J. A. et al. Science 366, 1367–1372 (2019)PubMed 
    Article 

    Google Scholar 
    5.Williams, T. M. Science 366, 1316–1317 (2019).PubMed 
    Article 

    Google Scholar 
    6.Smetacek, V. in Impacts of Global Warming on Polar Ecosystems (ed. Duarte, C. M.) 45–81 (Fund. BBVA, 2008).
    Google Scholar 
    7.Nicol, S. et al. Fish Fish. 11, 203–209 (2010).Article 

    Google Scholar 
    8.Smetacek, V. Protist 169, 791–802 (2018).PubMed 
    Article 

    Google Scholar 
    9.González, H. E. Polar Biol. 12, 81–91 (1992).Article 

    Google Scholar 
    10.Holm-Hansen, O. & Huntley, M. J. Crustac. Biol. 4 (5), 156–173 (1984).
    Google Scholar 
    11.Hart, T. J. Discov. Rep. 21, 261–356 (1942).
    Google Scholar 
    12.Hardy, A. Great Waters: A Voyage of Natural History to Study Whales, Plankton and the Waters of the Southern Ocean (Harper & Row, 1967).
    Google Scholar 
    13.Bar-On, Y. M., Phillips, R. & Milo, R. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).PubMed 
    Article 

    Google Scholar 
    Download references

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Read the paper: Baleen whale prey consumption based on high-resolution foraging measurements

    The giant diatom dump

    Why are whales big?

    See all News & Views

    Subjects

    Ecology

    Ocean sciences

    Latest on:

    Ecology

    Baleen whale prey consumption based on high-resolution foraging measurements
    Article 03 NOV 21

    A seagrass harbours a nitrogen-fixing bacterial partner
    News & Views 03 NOV 21

    Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium
    Article 03 NOV 21

    Ocean sciences

    Pliocene decoupling of equatorial Pacific temperature and pH gradients
    Article 20 OCT 21

    Mercury stable isotopes constrain atmospheric sources to the ocean
    Article 29 SEP 21

    Coral conservation strikes a balance
    Nature Index 24 SEP 21

    Jobs

    Global Scholar Recruitment Campaign

    City University of Hong Kong (CityU)
    Hong Kong, China

    Postdoctoral Training Fellow – Papagiannopoulos Laboratory

    Francis Crick Institute
    London, United Kingdom

    Postdoc – X-ray cross-correlation analysis

    German Electron Synchrotron (DESY)
    Hamburg, Germany

    Postdoc – Coherent X-ray Diffraction Imaging

    German Electron Synchrotron (DESY)
    Hamburg, Germany More

  • in

    A seagrass harbours a nitrogen-fixing bacterial partner

    NEWS AND VIEWS
    03 November 2021

    A seagrass harbours a nitrogen-fixing bacterial partner

    How underwater seagrasses obtain the nitrogen they need has been unclear. Evidence has now emerged of a partnership with a bacterium that might be analogous to the system used by many land plants to gain nitrogen.

    Douglas G. Capone

     ORCID: http://orcid.org/0000-0002-3968-736X

    0

    Douglas G. Capone

    Douglas G. Capone is in the Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Seagrass meadows are a prominent feature of many shallow coastal areas of the temperate through to the tropical ocean. Seagrasses provide a crucial habitat for invertebrates and juvenile fish, stabilize sediments and buffer the shoreline against erosion1. Moreover, they contribute directly and positively to the ‘blue economy’ of the oceans through their long-term storage of carbon2. Lush and highly productive seagrass beds often thrive in nutrient-deficient waters, and attempts to solve the enigma of how they accomplish this feat have driven considerable research over the years. Writing in Nature, Mohr et al.3 provide crucial evidence indicating that the success of a seagrass called Posidonia oceanica (Fig. 1), which proliferates throughout the warm waters of the Mediterranean Sea (and elsewhere), might be attributed to the development of a highly integrated partnership with a bacterium. This system is reminiscent of those found in some terrestrial plants.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-02956-y

    References1.Larkum, A. W. D., Orth, R. J. & Duarte, C. M. (eds) Seagrasses: Biology, Ecology and Conservation (Springer, 2006).
    Google Scholar 
    2.Lovelock, C. E. & Duarte, C. M. Biol. Lett. 15, 20180781 (2019).PubMed 
    Article 

    Google Scholar 
    3.Mohr, W. et al. Nature https://doi.org/10.1038/s41586-021-04063-4 (2021).Article 

    Google Scholar 
    4.Thies, J. E. in Principles and Applications of Soil Microbiology 3rd edn (eds Gentry, T. J., Fuhrmann, J. J.& Zuberer, D. A.) 455–487 (Elsevier, 2021).
    Google Scholar 
    5.Zuberer, D. A. in Principles and Applications of Soil Microbiology 3rd edn (eds Gentry, T. J., Fuhrmann, J. J.& Zuberer, D. A.) 423–453 (Elsevier, 2021).
    Google Scholar 
    6.Larkum, A. W. D., Waycott, M. & Conran, J. G. in Seagrasses of Australia: Structure, Ecology and Conservation (eds Larkum, A. W. D., Kendrick, G. A. & Ralph, P. J.) 3–29 (Springer, 2018).
    Google Scholar 
    7.Welsh, D. T. Ecol. Lett. 3, 58–71 (2000).Article 

    Google Scholar 
    8.Cramer, M. J., Haghshenas, N., Bagwell, C. E., Matsui, G. Y. & Lovell, C. R. Int. J. Syst. Evol. Microbiol. 61, 1053–1060 (2011).PubMed 
    Article 

    Google Scholar 
    9.Clúa, J., Roda, C., Zanetti, M. E. & Blanco, F. A. Genes 9, 125 (2018).Article 

    Google Scholar 
    10.Evans, S. M., Griffin, K. J., Blick, R. A. J., Poore, A. G. B. & Vergés, A. PLoS ONE 13, e0190370 (2018).PubMed 
    Article 

    Google Scholar 
    Download references

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Read the paper: Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium

    From sea to sea

    Consistent patterns of nitrogen fixation identified in the ocean

    See all News & Views

    Subjects

    Microbiology

    Plant sciences

    Ecology

    Latest on:

    Microbiology

    African scientists race to test COVID drugs — but face major hurdles
    News Feature 03 NOV 21

    Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium
    Article 03 NOV 21

    Why scientists worldwide are watching UK COVID infections
    News Explainer 02 NOV 21

    Plant sciences

    Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression
    Article 03 NOV 21

    From the archive
    News & Views 02 NOV 21

    Cell surface and intracellular auxin signalling for H+ fluxes in root growth
    Article 27 OCT 21

    Ecology

    Baleen whale prey consumption based on high-resolution foraging measurements
    Article 03 NOV 21

    A whale of an appetite revealed by analysis of prey consumption
    News & Views 03 NOV 21

    Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium
    Article 03 NOV 21

    Jobs

    Global Scholar Recruitment Campaign

    City University of Hong Kong (CityU)
    Hong Kong, China

    Postdoctoral Training Fellow – Papagiannopoulos Laboratory

    Francis Crick Institute
    London, United Kingdom

    Postdoc – X-ray cross-correlation analysis

    German Electron Synchrotron (DESY)
    Hamburg, Germany

    Postdoc – Coherent X-ray Diffraction Imaging

    German Electron Synchrotron (DESY)
    Hamburg, Germany More

  • in

    Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium

    Etymology‘Candidatus Celerinatantimonas neptuna’ (nep.tu’na L. fem. n.), pertaining to Neptunus (L. masc. n. Neptune), the Roman god of the seas and the Neptune grass, Posidonia oceanica.SamplingA P. oceanica meadow at 8 m water depth and nearby sandy sediments in Fetovaia Bay, Elba, Italy13 were sampled between June 2014 and September 2019; individual sampling months and years are indicated in the sections below and/or in the figures and tables. In May 2017, a P. oceanica meadow at the island of Pianosa, Italy was also sampled. All of the samples were obtained via SCUBA diving.Complete plants of P. oceanica were carefully separated from the meadow by hand and stored in seawater-filled containers until arrival at the shore-based laboratory. Sediment for use in the laboratory-based aquaria was scooped into containers from nearby sandy patches. Seawater was pumped through a hose (placed at about 0.5 m above the P. oceanica meadow) into several 50 l barrels onboard the boat and was later used in the laboratory for the aquarium and the incubation experiments.The sediment within the seagrass meadow was sampled with stainless steel core tubes (length, 50 cm), which were drilled into the sediment by divers, and the cores were briefly stored at 22 °C (ambient temperature, September 2019) in a seawater-filled barrel until further processing at the shore-based laboratory.Porewater nutrient samples were obtained using stainless steel lances41 at intervals of around 10 cm. Water column nutrient samples were obtained from above the seagrass meadow at the start or end of sampling. Nutrient samples were collected in 15 ml or 50 ml centrifuge tubes and were stored in a cooler box until further processing.Nutrient measurementsWater column nutrients were measured during several sampling campaigns as indicated in Extended Data Table 1a. Ammonium (NH4+) concentrations were measured fluorometrically42 in the nearby shore-based laboratory, and the remaining water was frozen (−20 °C) for later analyses of nitrate (NO3−), nitrite (NO2−), phosphate (PO43−) and silicate (SiO44−) using an autoanalyser (QuAAtro, Seal Analytical). Porewater samples were obtained in June 2019 and were processed the same as the water column nutrient samples with the exception that ammonium was not measured on site but at the home laboratory at the same time as the other nutrients. Dissolved inorganic nitrogen (ammonium plus NOx−) concentrations in the porewater were averaged for the upper 20 cm (Extended Data Table 1b).Net primary production measurements using the EC methodNet carbon dioxide (CO2) fluxes were calculated on the basis of oxygen (O2) fluxes determined using the aquatic eddy covariance (EC) method. In this non-invasive approach, turbulence-induced transport is resolved using high-frequency current meters combined with fast O2 microsensors. Under the assumption of stationarity, the instantaneous turbulent flux contributions are calculated by correlating vertical current fluctuations to oxygen fluctuations. Our EC system was equipped with an acoustic Doppler velocimeter (ADV, Nortek) and ultra-fast responding optode microsensors with a tip diameter of 430 µm (t90  More

  • in

    Baleen whale prey consumption based on high-resolution foraging measurements

    1.Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 868–873 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Roman, J. & McCarthy, J. J. The whale pump: marine mammals enhance primary productivity in a coastal basin. PLoS ONE 5, e13255 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Barlow, J., Kahru, M. & Mitchell, B. G. Cetacean biomass, prey consumption, and primary production requirements in the California Current ecosystem. Mar. Ecol. Prog. Ser. 371, 285–295 (2008).ADS 
    Article 

    Google Scholar 
    5.Fortune, S. M. E., Trites, A. W., Mayo, C. A., Rosen, D. A. S. & Hamilton, P. K. Energetic requirements of North Atlantic right whales and the implications for species recovery. Mar. Ecol. Prog. Ser. 478, 253–272 (2013).ADS 
    Article 

    Google Scholar 
    6.Trites, A. W., Christensen, V. & Pauly, D. Competition between fisheries and marine mammals for prey and primary production in the Pacific Ocean. J. Northwest Atl. Fish. Sci. 22, 173–187 (1997).Article 

    Google Scholar 
    7.Lavery, T. J. et al. Whales sustain fisheries: blue whales stimulate primary production in the Southern Ocean. Mar. Mammal Sci. 30, 888–904 (2014).CAS 
    Article 

    Google Scholar 
    8.Croll, D. A., Kudela, R. & Tershy, B. R. in Whales, Whaling, and Ocean Ecosystems (eds. Estes, J. A. et al.) 202–214 (Univ. California Press, 2006).9.Smith, L. A., Link, J. S., Cadrin, S. X. & Palka, D. L. Consumption by marine mammals on the Northeast U.S. continental shelf. Ecol. Appl. 25, 373–389 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep. Res. Part I Oceanogr. Res. Pap. 56, 727–740 (2009).ADS 
    Article 

    Google Scholar 
    11.Pauly, D. & Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7, 10244 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal Impacts on Structure and Function of Ocean Ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).Article 

    Google Scholar 
    13.Smetacek, V. in Impacts of Global Warming on Polar Ecosystems (ed. Duarte, C. M.) 46–80 (Fundacion BBVA, 2008).14.Wing, S. et al. Seabirds and marine mammals redistribute bioavailable iron in the Southern Ocean. Mar. Ecol. Prog. Ser. 510, 1–13 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    15.Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish Fish. 11, 203–209 (2010).Article 

    Google Scholar 
    16.Ripple, W. J., Wolf, C., Newsome, T. M., Hoffmann, M. & Wirsing, A. J. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl Acad. Sci. USA 114, 10678–10683 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    18.Goldbogen, J. A. et al. How baleen whales feed: the biomechanics of engulfment and filtration. Ann. Rev. Mar. Sci. 9, 367–386 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Kleiber, M. The Fire of Life: An Introduction to Animal Energetics (Krieger, 1975).20.Nagy, K. A. Field metabolic rate and body size. J. Exp. Biol. 208, 1621–1625 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Roman, J. et al. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12, 377–385 (2014).Article 

    Google Scholar 
    22.Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Lee, C. I. L., Pakhomov, E., Atkinson, A. & Siegel, V. Long-term relationships between the marine environment, krill and salps in the Southern Ocean. J. Mar. Biol. 2010, 410129 (2010).Article 

    Google Scholar 
    24.Kahane-Rapport, S. R. & Goldbogen, J. A. Allometric scaling of morphology and engulfment capacity in rorqual whales. J. Morphol. 279, 1256–1268 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Goldbogen, J. A. et al. Why whales are big but not bigger: physiological drivers and ecological limits in the age of ocean giants. Science 366, 1367–1372 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Nickels, C. F., Sala, L. M. & Ohman, M. D. The morphology of euphausiid mandibles used to assess selective predation by blue whales in the southern sector of the California Current System. J. Crustac. Biol. 38, 563–573 (2018).Article 

    Google Scholar 
    27.Croll, D. A., Kudela, R. & Tershy, B. R. in Whales, Whaling, and Ocean Ecosystems (eds. Estes, J. A. et al.) 202–214 (Univ. California Press, 2006).28.Fleming, A. H., Clark, C. T., Calambokidis, J. & Barlow, J. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Chang. Biol. 22, 1214–1224 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Katija, K. Biogenic inputs to ocean mixing. J. Exp. Biol. 215, 1040–1049 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Katija, K., Sherlock, R. E., Sherman, A. D. & Robison, B. H. New technology reveals the role of giant larvaceans in oceanic carbon cycling. Sci. Adv. 3, e1602374 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Riisgård, H. U. On measurement of filtration rates in bivalves — the stony road to reliable data: review and interpretation. Mar. Ecol. Prog. Ser. 211, 275–291 (2001).ADS 
    Article 

    Google Scholar 
    32.Drenner, R. W., Mummert, J. R. & O’Brien, W. J. Filter-feeding rates of gizzard shad. Trans. Am. Fish. Soc. 111, 210–215 (1982).Article 

    Google Scholar 
    33.Rocha, R. C. Jr, Clapham, P. J. & Ivashchenko, Y. V. Emptying the oceans: a summary of industrial whaling catches in the 20th century. Mar. Fish. Rev. 76, 37–48 (2014).Article 

    Google Scholar 
    34.Christensen, L. B. Marine mammal populations: reconstructing historical abundances at the global scale. Fish. Cent. Res. Reports 14, 167 (2006).
    Google Scholar 
    35.Laws, R. M. Seals and whales of the Southern Ocean. Philos. Trans. R. Soc. B Biol. Sci. 279, 81–96 (1977).ADS 

    Google Scholar 
    36.Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Trathan, P. N., Ratcliffe, N. & Masden, E. A. Ecological drivers of change at South Georgia: the krill surplus, or climate variability. Ecography 35, 983–993 (2012).Article 

    Google Scholar 
    38.Dunn, M. J. et al. Population size and decadal trends of three penguin species nesting at Signy Island, South Orkney Islands. PLoS ONE 11, e0164025 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Ratnarajah, L. et al. A preliminary model of iron fertilisation by baleen whales and Antarctic krill in the Southern Ocean: sensitivity of primary productivity estimates to parameter uncertainty. Ecol. Modell. 320, 203–212 (2016).Article 

    Google Scholar 
    41.Willis, J. Whales maintained a high abundance of krill; both are ecosystem engineers in the Southern Ocean. Mar. Ecol. Prog. Ser. 513, 51–69 (2014).ADS 
    Article 

    Google Scholar 
    42.Gerber, L. R., Morissette, L., Kaschner, K. & Pauly, D. Should whales be culled to increase fishery yield? Science 323, 880–881 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Ruzicka, J. J., Steele, J. H., Ballerini, T., Gaichas, S. K. & Ainley, D. G. Dividing up the pie: whales, fish, and humans as competitors. Prog. Oceanogr. 116, 207–219 (2013).ADS 
    Article 

    Google Scholar 
    44.Arrigo, K. R., van Dijken, G. L. & Bushinsky, S. Primary production in the Southern Ocean, 1997-2006. J. Geophys. Res. Ocean. 113, C08004 (2008).ADS 
    Article 
    CAS 

    Google Scholar 
    45.Geremia, C. et al. Migrating bison engineer the green wave. Proc. Natl Acad. Sci. USA 116, 25707–25713 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl Acad. Sci. USA 116, 5582–5587 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Bar-on, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Pallin, L. J. et al. High pregnancy rates in humpback whales (Megaptera novaeangliae) around the Western Antarctic Peninsula, evidence of a rapidly growing population. R. Soc. Open Sci. 5, 180017 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Aksnes, D. L. & Ohman, M. D. Multi-decadal shoaling of the euphotic zone in the southern sector of the California Current System. Limnol. Oceanogr. 54, 1272–1281 (2009).ADS 
    Article 

    Google Scholar 
    50.Krough, A. The physiology of the blue whale. Nature 133, 635–637 (1934).ADS 
    Article 

    Google Scholar 
    51.Lockyer, C. in Mammals in the Seas: Large Cetaceans (eds. Clarke, J. G., Goodman, J. & Soave, G. A.) 379–487 (FAO, 1981).52.Tamura, T. & Ohsumi, S. Regional assessments of prey consumption by marine cetaceans in the world. International Whaling Comission Scientific Report (2000); https://doi.org/10.1079/9780851996332.014353.Leaper, R. & Lavigne, D. How much do large whales eat? J. Cetacean Res. Manag. 9, 179–188 (2007).
    Google Scholar 
    54.Klumov, S. K. Food and helminth fauna of whalebone whales (Mystacoceti) in the main whaling regions of the world ocean. Tr. Instituta Okeanol. 71, 94–194 (1963).
    Google Scholar 
    55.Sigurjónsson, J. & Víkingsson, G. A. Estimation of food consumption by cetaceans in Icelandic and adjacent waters. J. Northw. Atl. Fish. Sci 22, 271–287 (1997).Article 

    Google Scholar 
    56.Tamura, T. & Konishi, K. Food habit and prey consumption of Antarctic minke whale Balaenoptera bonaerensis in JARPA research area. Inst. Cetacean Res. Rep. SC/D06/J18 (2006).57.Kenney, R. D., Scott, G. P., Thompson, T. J. & Winn, H. E. Estimates of prey consumption and trophic impacts of cetaceans in the USA northeast continental shelf ecosystem. J. Northwest Atl. Fish. Sci. 22, 155–171 (1997).Article 

    Google Scholar 
    58.Innes, B. Y. S., Lavigne, D. M., Earle, W. M. & Kovacs, K. M. Feeding rates of seals and whales. J. Anim. Ecol. 56, 115–130 (1987).Article 

    Google Scholar 
    59.Tamura, T. & Konishi, K. Prey composition and consumption rate by Antarctic minke whales based on JARPA and JARPAII data. Inst. Cetacean Res. Rep. SC/F14/J15 (2014).60.Tamura, T. Preliminary analyses on prey consumption by fin whales based on JARPAII data. Inst. Cetacean Res. Rep. SC/F14/J16 (2014).61.Tamura, T., Konishi, K. & Isoda, T. Updated estimation of prey consumption by common minke, Bryde’s and sei whales in the western North Pacific. Inst. Cetacean Res. Rep. SC/F16/JR15 (2016).62.Lockyer, C. All creatures great and smaller: a study in cetacean life history energetics. J. Mar. Biol. Assoc. UK 87, 1035–1045 (2007).Article 

    Google Scholar 
    63.Víkingsson, G. A. Feeding of fin whales (Balaenoptera physalus) off Iceland – diurnal and seasonal variation and possible rates. J. Northwest Atl. Fish. Sci. 22, 77–89 (1997).Article 

    Google Scholar 
    64.Ichii, T. & Kato, H. Food and daily food consumption of southern minke whales in the Antarctic (Balaenoptera acutorostrata). Polar Biol. 11, 479–487 (1991).Article 

    Google Scholar 
    65.Tamura, T. & Konishi, K. Feeding habits and prey consumption of Antarctic minke whale (Balaenoptera bonaerensis) in the Southern Ocean. J. Northwest Atl. Fish. Sci. 42, 13–25 (2009).Article 

    Google Scholar 
    66.Lockyer, C. Body fat condition in northeast Atlantic fin whales, Balaenoptera physalus, and its relationship with reproduction and food resource. Can. J. Fish. Aquat. Sci. 43, 142–147 (1986).Article 

    Google Scholar 
    67.Goldbogen, J. A. et al. Using digital tags with integrated video and inertial sensors to study moving morphology and associated function in large aquatic vertebrates. Anat. Rec. 300, 1935–1941 (2017).CAS 
    Article 

    Google Scholar 
    68.Sumich, J. L. Swimming velocities, breathing patterns, and estimated costs of locomotion in migrating gray whales, Eschrichtius robustus. Can. J. Zool. 61, 647–652 (1983).Article 

    Google Scholar 
    69.Pauly, D., Trites, A. W., Capuli, E. & Christensen, V. Diet composition and trophic levels of marine mammals. ICES J. Mar. Sci. 55, 467–481 (1998).Article 

    Google Scholar 
    70.White, C. R. & Kearney, M. R. Metabolic scaling in animals: methods, empirical results, and theoretical explanations. Compr. Physiol. 4, 231–256 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Schmitz, O. J. & Lavigne, D. M. Intrinsic rate of increase, body size, and specific metabolic rate in marine mammals. Oecologia 62, 305–309 (1984).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Nagy, K. A., Girard, I. A. & Brown, T. K. Energetics of free-ranging mammals, reptiles, and birds. Annu. Rev. Nutr. 19, 247–277 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Rivero, J.-L. L. Locomotor muscle fibre heterogeneity and metabolism in the fastest large-bodied rorqual: the fin whale (Balaenoptera physalus). J. Exp. Biol. 221, jeb177758 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Friedlaender, A. S. et al. The advantages of diving deep: Fin whales quadruple their energy intake when targeting deep krill patches. Funct. Ecol. 34, 497–506 (2019).Article 

    Google Scholar 
    75.Calambokidis, J. et al. Differential vulnerability to ship strikes between day and night for blue, fin, and humpback whales based on dive and movement data from medium duration archival tags. Front. Mar. Sci. 6, 543 (2019).Article 

    Google Scholar 
    76.Cade, D. E., Friedlaender, A. S., Calambokidis, J. & Goldbogen, J. A. Kinematic diversity in rorqual whale feeding mechanisms. Curr. Biol. 26, 2617–2624 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Gough, W. T. et al. Scaling of swimming performance in baleen whales. J. Exp. Biol. 222, jeb204172 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Parks, S. E., Warren, J. D., Stamieszkin, K., Mayo, C. A. & Wiley, D. Dangerous dining: Surface foraging of North Atlantic right whales increases risk of vessel collisions. Biol. Lett. 8, 57–60 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Nowacek, D. P. et al. Buoyant balaenids: the ups and downs of buoyancy in right whales. Proc. R. Soc. B Biol. Sci. 268, 1811–1816 (2001).CAS 
    Article 

    Google Scholar 
    80.Johnson, M. P. & Tyack, P. L. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J. Ocean. Eng. 28, 3–12 (2003).ADS 
    Article 

    Google Scholar 
    81.Cade, D. E., Barr, K. R., Calambokidis, J., Friedlaender, A. S. & Goldbogen, J. A. Determining forward speed from accelerometer jiggle in aquatic environments. J. Exp. Biol. 221, 170449 (2018).
    Google Scholar 
    82.Goldbogen, J. A. et al. Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. Bioscience 63, 90–100 (2013).Article 

    Google Scholar 
    83.Hazen, E. L., Friedlaender, A. S. & Goldbogen, J. A. Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Sci. Adv. 1, e1500469 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Cade, D. E. et al. Predator-scale spatial analysis of intra-patch prey distribution reveals the energetic drivers of rorqual whale super group formation. Fucntional Ecol. 35, 894–908 (2021).Article 

    Google Scholar 
    85.Nowacek, D. P. et al. Super-aggregations of krill and humpback whales in Wilhelmina bay, Antarctic Peninsula. PLoS ONE 6, 2–6 (2011).Article 
    CAS 

    Google Scholar 
    86.Goldbogen, J. A. et al. Prey density and distribution drive the three-dimensional foraging strategies of the largest filter feeder. Funct. Ecol. 29, 951–961 (2015).Article 

    Google Scholar 
    87.Cade, D. E., Carey, N., Domenici, P., Potvin, J. & Goldbogen, J. A. Predator-informed looming stimulus experiments reveal how large filter feeding whales capture highly maneuverable forage fish. Proc. Natl Acad. Sci. USA 117, 472–478 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Goldbogen, J. A. et al. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. J. Exp. Biol. 214, 131–146 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Hamner, W. M. Aspects of schooling in Euphausia superba. J. Crustac. Biol. 4, 67–74 (1984).Article 

    Google Scholar 
    90.Potvin, J., Goldbogen, J. A. & Shadwick, R. E. Passive versus active engulfment: verdict from trajectory simulations of lunge-feeding fin whales Balaenoptera physalus. J. R. Soc. Interface 6, 1005–1025 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Potvin, J., Goldbogen, J. A. & Shadwick, R. E. Scaling of lunge feeding in rorqual whales: an integrated model of engulfment duration. J. Theor. Biol. 267, 437–453 (2010).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    92.Goldbogen, J. A. et al. Underwater acrobatics by the world’s largest predator: 360° rolling manoeuvres by lunge-feeding blue whales. Biol. Lett. 9, 20120986 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Rodriguez-Romero, J., Palacios-Salgado, D. S., Lopez-Martinez, J., Vazquez, S. H. & Velazquez-Abunader, J. I. The length – weight relationship parameters of demersal fish species off the western coast of Baja California Sur, Mexico. J. Appl. Ichthology 25, 114–116 (2009).Article 

    Google Scholar 
    94.Pitcher, T. J. & Partridge, B. L. Fish school density and volume. Mar. Biol. 394, 383–394 (1979).Article 

    Google Scholar 
    95.Laidre, K. L., Heide-Jørgensen, M. P. & Nielsen, T. G. Role of the bowhead whale as a predator in West Greenland. Mar. Ecol. Prog. Ser. 346, 285–297 (2007).ADS 
    Article 

    Google Scholar 
    96.Simon, M., Johnson, M., Tyack, P. & Madsen, P. T. Behaviour and kinematics of continuous ram filtration in bowhead whales (Balaena mysticetus). Proc. R. Soc. B Biol. Sci. 276, 3819–3828 (2009).Article 

    Google Scholar 
    97.Baumgartner, M. F. & Mate, B. R. Summertime foraging ecology of North Atlantic right whales. Mar. Ecol. Prog. Ser. 264, 123–135 (2003).ADS 
    Article 

    Google Scholar 
    98.van der Hoop, J. M. et al. Foraging rates of ram‐filtering North Atlantic right whales. Funct. Ecol. 33, 1290–1306 (2019).Article 

    Google Scholar 
    99.Burnett, J. D. et al. Estimating morphometric attributes of baleen whales with photogrammetry from small UASs: a case study with blue and gray whales. Mar. Mammal Sci. 35, 108–139 (2019).Article 

    Google Scholar 
    100.Torres, W. I. & Bierlich, K. C. MorphoMetriX: a photogrammetric measurement GUI for morphometric analysis of megafauna. J. Open Source Softw. 5, 1825 (2020).ADS 
    Article 

    Google Scholar 
    101.Johnston, D. W. Unoccupied aircraft systems in marine science and conservation. Ann. Rev. Mar. Sci. 11, 439–463 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Durban, J. W. et al. Photogrammetry of blue whales with an unmanned hexacopter. Mar. Mammal Sci. 32, 1510–1515 (2016).Article 

    Google Scholar 
    103.Kelley, D. & Richards, C. oce: Analysis of Oceanographic Data R Package v. 1.1 (2019).104.Dubreuil, J. & Petitgas, P. Energy density of anchovy Engraulis encrasicolus in the Bay of Biscay. J. Fish Biol. 74, 521–534 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Chenowith, E. M. Bioenergetic and Economic Impacts of Humpback Whale Depredation at Salmon Hatchery Release Sites. PhD thesis, Univ. Alaska (2018).106.Werth, A. J. Models of hydrodynamic flow in the bowhead whale filter feeding apparatus. J. Exp. Biol. 207, 3569–3580 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Werth, A. in Feeding: Form, Function, and Evolution in Tetrapod Vertebrates (ed. Schwenk, K.) 487–526 (Academic, 2000).108.Mckinstry, C. A. E., Westgate, A. J. & Koopman, H. N. Annual variation in the nutritional value of stage V Calanus finmarchicus: implications for right whales and other copepod predators. Endang. Species Res. 20, 195–204 (2013).Article 

    Google Scholar 
    109.Folkow, L. P., Haug, T., Nilssen, K. T. & Nordy, E. S. Estimated food consumption of minke whales Balaenoptera acutorostrata in Northeast Atlantic waters in 1992-1995. NAMMCO Sci. Publ. 2, 65–80 (2000).Article 

    Google Scholar 
    110.Brodie, P. F. Cetacean energetics, an overview of intraspecific size variation. Ecology 56, 152–161 (1975).ADS 
    Article 

    Google Scholar 
    111.Hill, S. L. et al. Is current management of the antarctic krill fishery in the atlantic sector of the southern ocean precautionary? CCAMLR Sci. 23, 31–51 (2016).
    Google Scholar 
    112.Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    113.Ratnarajah, L., Bowie, A. R., Lannuzel, D., Meiners, K. M. & Nicol, S. The biogeochemical role of baleen whales and krill in Southern Ocean nutrient cycling. PLoS ONE 9, e114067 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    114.Rose, C., Parker, A., Jefferson, B. & Cartmell, E. The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit. Rev. Environ. Sci. Technol. 45, 1827–1879 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.Candela, E., Camacho, M. V. & Perdomo, J. Iron absorption by humans and swine from Fe (III)-EDTA. Further studies. J. Nutr. 114, 2204–2211 (1984).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Ratnarajah, L. et al. A preliminary model of iron fertilisation by baleen whales and Antarctic krill in the Southern Ocean: sensitivity of primary productivity estimates to parameter uncertainty. Ecol. Modell. 320, 203–212 (2016).Article 

    Google Scholar 
    117.Twining, B. S., Baines, S. B. & Fisher, N. S. Element stoichiometries of individual plankton cells collected during the Southern Ocean Iron Experiment (SOFeX). Limnol. Oceanogr. 49, 2115–2128 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    118.Strzepek, R. F., Maldonado, M. T., Hunter, K. A., Frew, R. D. & Boyd, P. W. Adaptive strategies by Southern Ocean phytoplankton to lessen iron limitation: uptake of organically complexed iron and reduced cellular iron requirements. Limnol. Oceanogr. 56, 1983–2002 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    119.Quigg, A. et al. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425, 291–294 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    120.Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn (Springer, 2016).121.Lockyer, C. Body weights of some species of large whales. ICES J. Mar. Sci. 36, 259–273 (1976).Article 

    Google Scholar 
    122.Blix, A. S. & Folkow, L. P. Daily energy expenditure in free living minke whales (Balaenoptera acutorostrata). Acta Physiol. Scand. 153, 61–66 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    123.Nordoy, E. S., Folkow, L. P., Martensson, P. & Blix, A. S. Food requirements of Northeast Atlantic minke whales. Dev. Mar. Biol. 4, 307–317 (1995).Article 

    Google Scholar 
    124.Murase, H., Tamura, T., Matsuoka, K. & Hakamada, T. First attempt of estimation of feeding impact on krill standing stock by three baleen whale species (Antarctic minke, humpback and fin whales) in Areas IV and V using JARPA dat. Inst. Cetacean Res. Rep. SC/D06/J22 (2006).125.Southall, B. L. et al. Behavioral responses of individual blue whales (Balaenoptera musculus) to mid-frequency military sonar. J. Exp. Biol. 222, jeb190637 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    126.Goldbogen, J. A. et al. Blue whales respond to simulated mid-frequency military sonar. Proc. R. Soc. B 280, 20130657 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    127.Stimpert, A. K. et al. Sound production and associated behavior of tagged fin whales (Balaenoptera physalus) in the Southern California Bight. Anim. Biotelemetry 3, 1–12 (2015).Article 

    Google Scholar 
    128.Goldbogen, J. A. et al. Foraging behavior of humpback whales: kinematic and respiratory patterns suggest a high cost for a lunge. J. Exp. Biol. 211, 3712–3719 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    129.Wiley, D. et al. Underwater components of humpback whale bubble-net feeding behaviour. Behaviour 148, 575–602 (2011).Article 

    Google Scholar 
    130.Friedlaender, A. S., Tyson, R. B., Stimpert, A. K., Read, A. J. & Nowacek, D. P. Extreme diel variation in the feeding behavior of humpback whales along the western Antarctic Peninsula during autumn. Mar. Ecol. Prog. Ser. 494, 281–289 (2013).ADS 
    Article 

    Google Scholar 
    131.Kahane-Rapport, S. R. et al. Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale. J. Exp. Biol. 223, jeb224196 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    132.Friedlaender, A. S. et al. Feeding rates and under-ice foraging strategies of the smallest lunge filter feeder, the Antarctic minke whale (Balaenoptera bonaerensis). J. Exp. Biol. 217, 2851–2854 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    133.Domenici, P., Batty, R. S. & Similä, T. Spacing of wild schooling herring while encircled by killer whales. J. Fish Biol. 57, 831–836 (2000).Article 

    Google Scholar 
    134.Tamura, T. et al. Some examinations of uncertainties in the prey consumption estimates of common minke, sei and Bryde’s whales in the western North Pacific. (2009).135.Innes, S., Lavigne, D. M., Earle, W. M. & Kovacs, K. M. Estimating feeding rates of marine mammals from heart mass to body mass ratios. Mar. Mammal Sci. 2, 227–229 (1986).Article 

    Google Scholar 
    136.Armstrong, A. J. & Siegfried, W. R. Consumption of Antarctic krill by minke whales (Balaenoptera acutorostrata). Antarct. Sci. 3(1)13-18. 1991. 3, 13–18 (1991).
    Google Scholar 
    137.Reilly, S. et al. Biomass and energy transfer to baleen whales in the South Atlantic sector of the Southern Ocean. Deep. Res. Part II Top. Stud. Oceanogr. 51, 1397–1409 (2004).ADS 
    Article 

    Google Scholar 
    138.Read, A. J. & Brownstein, C. R. Considering other consumers: Fisheries, predators, and Atlantic herring in the Gulf of Maine. Conserv. Ecol. 7 (2003).139.Nagy, K. Food requirements of wild animals: predictive equations for free-living mammals, reptiles, and birds. Nutr. Abstr. Rev. Ser. B 71, 21R–31R (2001).
    Google Scholar 
    140.Stevick, P. T. et al. Trophic relationships and oceanography on and around a small offshore bank. Mar. Ecol. Prog. Ser. 363, 15–28 (2008).ADS 
    Article 

    Google Scholar  More

  • in

    Predicting spring migration of two European amphibian species with plant phenology using citizen science data

    1.Hayes, T. B., Falso, P., Gallipeau, S. & Stice, M. The cause of global amphibian declines: A developmental endocrinologist’s perspective. J. Exp. Biol. 213, 921–933. https://doi.org/10.1242/jeb.040865 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.IPBES. The IPBES Regional Assessment Report on Biodiversity and Ecosystem Services for Europe and Central Asia (eds Rounsevell, M. et al.) (IPBES, 2018).
    Google Scholar 
    3.Eigenbrod, F., Hecnar, S. J. & Fahrig, L. Accessible habitat: An improved measure of the effects of habitat loss and roads on wildlife populations. Landsc. Ecol. 23, 159–168. https://doi.org/10.1007/s10980-007-9174-7 (2008).Article 

    Google Scholar 
    4.Cushman, S. A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 128, 231–240. https://doi.org/10.1016/j.biocon.2005.09.031 (2006).Article 

    Google Scholar 
    5.Pittman, S. E., Osbourn, M. S. & Semlitsch, R. D. Movement ecology of amphibians: A missing component for understanding population declines. Biol. Conserv. 169, 44–53. https://doi.org/10.1016/j.biocon.2013.10.020 (2014).Article 

    Google Scholar 
    6.Heigl, F., Horvath, K., Laaha, G. & Zaller, J. G. Amphibian and reptile road-kills on tertiary roads in relation to landscape structure: Using a citizen science approach with open-access land cover data. BMC Ecol. 17, 1–11. https://doi.org/10.1186/s12898-017-0134-z (2017).Article 

    Google Scholar 
    7.Heigl, F. & Zaller, J. G. Using a citizen science approach in higher education: A case study reporting roadkills in Austria. Hum. Comput. https://doi.org/10.15346/hc.v1i2.7 (2014).Article 

    Google Scholar 
    8.Kyek, M., Kaufmann, P. H. & Lindner, R. Differing long term trends for two common amphibian species (Bufo bufo and Rana temporaria) in alpine landscapes of Salzburg, Austria. PLoS ONE 12, e0187148. https://doi.org/10.1371/journal.pone.0187148 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Klepsch, R. et al. Amphibienschutz an Straßen. Leitbilder zu temporären und permanenten Schutzeinrichtungen. ÖGH-Aktuell, Mitteilungen der Österreichischen Gesellschaft für Herpetologie (2011).10.Kropfberger, J. Naturschützer als Amphibientaxi. Amphibienschutzprojekte des naturschutzbund Oberösterreich. natur&land 103, 12–13 (2017).
    Google Scholar 
    11.Gross, M. Amphibienschutz an Niederösterreichs Straßen. natur&land 103, 16–18 (2017).
    Google Scholar 
    12.Kordges, T. & Weddeling, K. Immer früher? Langzeitmonitoring (1979–2013) zum Laichbeginn des Grasfrosches (Rana temporaria) im Felderbachtal in Hattingen (NRW). Zeitschrift für Feldherpetologie 24, 211–222 (2015).
    Google Scholar 
    13.Arnfield, H., Grant, R., Monk, C. & Uller, T. Factors influencing the timing of spring migration in common toads (Bufo bufo). J. Zool. 288, 112–118. https://doi.org/10.1111/j.1469-7998.2012.00933.x (2012).Article 

    Google Scholar 
    14.Timm, B. C., McGarigal, K. & Compton, B. W. Timing of large movement events of pond-breeding amphibians in Western Massachusetts USA. Biol. Conserv. 136, 442–454. https://doi.org/10.1016/j.biocon.2006.12.015 (2007).Article 

    Google Scholar 
    15.Dervo, B. K., Bærum, K. M., Skurdal, J. & Museth, J. Effects of temperature and precipitation on breeding migrations of amphibian species in southeastern Norway. Scientifica 2016, 3174316. https://doi.org/10.1155/2016/3174316 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Loman, J. Breeding phenology in Rana temporaria. Local variation is due to pond temperature and population size. Ecol. Evolut. 6, 6202–6209. https://doi.org/10.1002/ece3.2356 (2016).Article 

    Google Scholar 
    17.Hofrichter, R. Amphibien: Evolution, Anatomie, Physiologie, Ökologie und Verbreitung, Verhalten, Bedrohung und Gefährdung (Naturbuch-Verl., 1998).
    Google Scholar 
    18.Hartel, T., Sas, I., Pernetta, A. P. & Geltsch, I. C. The reproductive dynamic of temperate amphibians: A review. North-Western J. Zool. 3, 127–145 (2007).
    Google Scholar 
    19.Becker, C. G., Fonseca, C. R., Haddad, C. F. B., Batista, R. F. & Prado, P. I. Habitat split and the global decline of amphibians. Science 318, 1775–1777. https://doi.org/10.1126/science.1149374 (2007).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    20.Reading, C. J. The effect of winter temperatures on the timing of breeding activity in the common toad Bufo bufo. Oecologia 117, 469–475. https://doi.org/10.1007/s004420050682 (1998).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    21.Tryjanowski, P., Rybacki, M. & Sparks, T. Changes in the first spawning dates of common frogs and common toads in western Poland in 1978–2002. Ann. Zool. Fennici 10, 459–464 (2003).
    Google Scholar 
    22.Mazgajska, J. & Mazgajski, T. D. Two amphibian species in the urban environment: Changes in the occurrence, spawning phenology and adult condition of common and green toads. Eur. Zool. J. 87, 170–179. https://doi.org/10.1080/24750263.2020.1744743 (2020).Article 

    Google Scholar 
    23.Scott, W. A., Pithart, D. & Adamson, J. K. Long-term United Kingdom trends in the breeding phenology of the common frog, Rana temporaria. hpet 42, 89–96. https://doi.org/10.1670/07-022.1 (2008).Article 

    Google Scholar 
    24.Ficetola, G. F. & Maiorano, L. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia 181, 683–693. https://doi.org/10.1007/s00442-016-3610-9 (2016).Article 
    PubMed 
    ADS 

    Google Scholar 
    25.Delpierre, N. et al. Temperate and boreal forest tree phenology: From organ-scale processes to terrestrial ecosystem models. Ann. For. Sci. 73, 5–25. https://doi.org/10.1007/s13595-015-0477-6 (2016).Article 

    Google Scholar 
    26.Basler, D. & Körner, C. Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agric. For. Meteorol. 165, 73–81. https://doi.org/10.1016/j.agrformet.2012.06.001 (2012).Article 
    ADS 

    Google Scholar 
    27.Vitasse, Y. & Basler, D. What role for photoperiod in the bud burst phenology of European beech. Eur. J. For. Res. 132, 1–8. https://doi.org/10.1007/s10342-012-0661-2 (2013).Article 

    Google Scholar 
    28.Piao, S. et al. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25, 1922–1940. https://doi.org/10.1111/gcb.14619 (2019).Article 
    ADS 

    Google Scholar 
    29.ZAMG. PhenoWatch—ZAMG Phänologie. http://www.phenowatch.at/ (2020).30.Naturschutzbund Österreich. naturbeobachtung.at: der Treffpunkt für Naturbeobachtung in Österreich (2020).31.Citizen Science Working Group. Project roadkill. https://roadkill.at/ (2020).32.Naturhistorisches Museum Wien. Naturhistorisches Museum Wien—Herpetofaunistische Datenbank. https://www.nhm-wien.ac.at/forschung/1_zoologie_wirbeltiere/herpetologische_sammlung/datenbank (2021).33.Münch, D. Populationsentwicklung und klimatisch veränderte Frühjahrsaktivität von Erdkröte, Teichmolch, Bergmolch nd Kammolch an der Höfkerstraße (am NSG Hallerey in Dortmund 1981–1997). Dortmunder Beitr. Landeskde. Naturwiss. Mitt 32, 98–106 (1998).
    Google Scholar 
    34.Chmielewski, F.-M. & Rötzer, T. Response of tree phenology to climate change across Europe. Agric. For. Meteorol. 108, 101–112. https://doi.org/10.1016/S0168-1923(01)00233-7 (2001).Article 
    ADS 

    Google Scholar 
    35.Menzel, A. Phenology: Its importance to the global change community. Clim. Change 54, 379–385 (2002).Article 

    Google Scholar 
    36.Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob Ecol. Biogeogr. 15, 498–504. https://doi.org/10.1111/j.1466-822X.2006.00247.x (2006).Article 

    Google Scholar 
    37.Crimmins, M. A. & Crimmins, T. M. Does an early spring indicate an early summer? Relationships between intraseasonal growing degree day thresholds. J. Geophys. Res. Biogeosci. 124, 2628–2641. https://doi.org/10.1029/2019JG005297 (2019).Article 

    Google Scholar 
    38.Zentralanstalt für Meteorologie und Geodynamik. Beobachtungsanleitung für die Phänologie (2013).39.Meier, U. (ed.) Growth stages of mono- and dicotyledonous plants. BBCH monograph = Entwicklungsstadien mono- und dikotyler Pflanzen (Blackwell-Wiss.-Verl., 1997).
    Google Scholar 
    40.Phillimore, A. B., Hadfield, J. D., Jones, O. R. & Smithers, R. J. Differences in spawning date between populations of common frog reveal local adaptation. Proc. Natl. Acad. Sci. 107, 8292–8297. https://doi.org/10.1073/pnas.0913792107 (2010).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    41.Auer, I. et al. HISTALP—Historical instrumental climatological surface time series of the Greater Alpine Region. Int. J. Climatol. 27, 17–46. https://doi.org/10.1002/joc.1377 (2007).Article 

    Google Scholar 
    42.Hiebl, J. et al. A high-resolution 1961–1990 monthly temperature climatology for the greater Alpine region. metz 18, 507–530. https://doi.org/10.1127/0941-2948/2009/0403 (2009).Article 

    Google Scholar 
    43.BMVIT—Bundesministerium für Verkehr, Innovation und Technologie. Gesamtverkehrsplan für Österreich. https://www.bmk.gv.at/dam/jcr:dfd82842-234b-41c7-a267-0dc7ac76eb6b/gvp_gesamt.pdf (2012).44.European Environment Agency. Landscape fragmentation pressure and trends in Europe. https://www.eea.europa.eu/data-and-maps/indicators/mobility-and-urbanisation-pressure-on-ecosystems-2/assessment (2020).45.Grillmayer, R., Banko, G., Leitner, H. & Leissing, D. Wie zerschnitten ist unsere Landschaft? natur&land, 30–31 (2015).46.Weißmair, W. Monitoring ausgewählter Amphibienwanderstrecken—Endbericht 2010 Amt der Oö (Landesregierung, Abteilung Naturschutz, 2011).
    Google Scholar 
    47.Dick, G. & Sackl, P. Angaben zur Laichwanderung von Erdkröte, Bufo b. bufo (LINNAEUS; 1758), und Grasfrosch, Rana t. temporaria LINNAEUS, 1758, einiger Populationen im Waldviertel (Niederösterreich) sowie zu praktischen Schutzmaßnahmen. Herpetozoa 1, 13–22 (1988).
    Google Scholar 
    48.Wolf, M. J., Smole-Wiener, A. K. & Kleewein, A. Lebensraum- und Populationsanalyse am Beispiel der Amphibienwanderstrecke 37 Wernberg, Kärnten. Carinthia II 125, 741 (2015).
    Google Scholar 
    49.Kapeller, H. Amphibienschutz im Sellraintal. natur&land 103, 15 (2017).
    Google Scholar 
    50.Templ, B. et al. Pan European phenological database (PEP725): A single point of access for European data. Int. J. Biometeorol. 62, 1109–1113. https://doi.org/10.1007/s00484-018-1512-8 (2018).Article 
    PubMed 
    ADS 

    Google Scholar 
    51.Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612. https://doi.org/10.1111/gcb.15000 (2020).Article 
    ADS 

    Google Scholar 
    52.Lanner, J., Huchler, K., Pachinger, B., Sedivy, C. & Meimberg, H. Dispersal patterns of an introduced wild bee, Megachile sculpturalis Smith, 1853 (Hymenoptera: Megachilidae) in European alpine countries. PLoS ONE 15, e0236042. https://doi.org/10.1371/journal.pone.0236042 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Schweiger, S., Grillitsch, H., Hill, J. & Mayer, W. Die Mauereidechse, Podarcis muralis (Laurenti, 1768) in Österreich: Phylogeographie, Verbreitung, Lebensräume und Schutz. In Verbreitung, Biologie und Schutz der Mauereidechse Podarcis muralis (Laurenti, 1768) (eds Laufer, H. & Schulte, U.) 44–55 (Deutsche Gesellschaft für Herpetologie und Terrarienkunde (DGHT) e.V, 2015).
    Google Scholar 
    54.Maletzky, A. & Schweiger, S. Zur Situation der Erdkröte, Bufo bufo in Österreich—Verbreitung, Phänologie, Gefährdung und Schutz. In Verbreitung, Biologie und Schutz der Erdkröte Bufo bufo (LINNAEUS, 1758) mit besonderer Berücksichtigung des Amphibienschutzes an Straßen (eds Maletzky, A. et al.) 58–66 (Deutsche Gesellschaft für Herpetologie und Terrarienkunde, 2016).
    Google Scholar 
    55.Cabela, A., Grillitsch, H. & Tiedemann, F. Atlas zur Verbreitung und Ökologie der Amphibien und Reptilien in Österreich. Auswertung der herpetofaunistischen Datenbank der herpetologischen Sammlung des Naturhistorischen Museums in Wien (Naturhistorisches Museum, 2001).
    Google Scholar 
    56.Brunken, G. Amphibienwanderungen. Zwischen Land und Wasser. Merkblatt NVN/BSH 1–4 (2004).57.Hiebl, J., Reisenhofer, S., Auer, I., Böhm, R. & Schöner, W. Multi-methodical realisation of Austrian climate maps for 1971–2000. Adv. Sci. Res. 6, 19–26. https://doi.org/10.5194/asr-6-19-2011 (2011).Article 

    Google Scholar 
    58.RStudio. RStudio—Take control of your R code. https://rstudio.com/products/rstudio/ (2020). More

  • in

    Changes in microbial community and enzyme activity in soil under continuous pepper cropping in response to Trichoderma hamatum MHT1134 application

    Field control effect of strain MHT1134 on Fusarium wilt of pepperBefore the investigation of strain MHT1134 control effect, pepper plants with the same wilt symptoms were collected from CC9, TR1 and TR2 fields. The same wilt symptom is that the lower leaves of the plant turn yellow or fall off, and the whole seedling plant wilt and die in the later stage. The pepper root neck can be seen with obvious water-stained brown disease spots. When the root and stem are cut open, the vascular bundle turns brown and has a trend of upward stretching (Fig. 1A–C). We isolated a strain in the root, which colony color is purple (Fig. 1E,F), On the sixth day after inoculating healthy pepper with the spore suspension, the plants showed lower leaf shedding and plant wilting (Fig. 1D). And the pathogen was isolated in the root with the same colony characteristics and micromorphology. The main classification features are as follows: the conidiophores are colorless, with bottle-shaped spore-producing cells at the top (Fig. 1G). There are two kinds of conidias. The small conidia are monocytic, oval or kidney shaped, colorless and are 5–12 × 2–3.5 μm in size. Large conidia are multicellular, sickle-shaped, slightly curved, with slightly pointed cells at both ends, colorless and are 19.6–39.4 × 3.5–5.0 μm in size (Fig. 1H). The morphological characteristics of the strain were consistent with Fusarium oxysporum. The strain DNA was extracted and ITS sequence was amplified by PCR to obtain a DNA fragment with a length of about 500 bp. The sequencing results were compared with the gene sequences in Genbank, and the highest homology was found in Fusarium, and the sequence homology with Fusarium oxysporum reached 100%. The pathogen of pepper wilt was Fusarium oxysporum by means of morphological and molecular identification.Figure 1Typical symptoms and identification of pathogen strains of pepper Fusarium wilt in experimental sites. (A) At the late stage of Fusarium wilt, the whole plant withered and died; (B) the lateral root and taproot of the pepper turn brown and rot; (C) discoloration of vascular bundle in pepper stem after cutting; (D) after the isolated F. oxysporum was inoculated on the pepper, which showed the initial symptoms of wilt disease; (E) positive characteristics of F. oxysporum colony; (F) negative characteristics of colony; (G) sporulation peduncle in bottle shape; (H) large and small conidia.Full size imageCompared with CC9 treatment without biocontrol fungi MHT1134, the disease rate and disease index of pepper Fusarium wilt in TR1 and TR2 treatment were decreased. In TR1, the disease rate and disease index of pepper wilt decreased by 8.44% and 3.76%, respectively. In TR2, the disease rate and disease index of pepper wilt decreased by 57.69% and 63.02%, respectively. However, in the TR2 plots over 2018 and 2019, the disease rate and disease index decreased to 7.13% and 3.03%, which were 64.26% and 70.20%, respectively, less than in the CC9 plots. The control effect of MHT11341 on pepper wilt was 63.03% and 70.21% after one and two years of continuous cropping field, respectively (Table 1). The results indicated that the continuous application of a biocontrol strain further consolidated and improved the control effect.Table 1 Control effects of strain MHT1134 on Fusarium wilt in continuous pepper cropping fields.Full size tableEffects of strain MHT1134 on the physical and chemical properties of pepper rhizosphere soilSoil samples from different planting years showed differences in their physical and chemical properties. In particular, the contents of available phosphorus, available potassium and organic matter were significantly different between the soil planted for the first year and the soil continuously planted for 9 years (available phosphorus: F = 4.38 p = 0.03; available potassium: F = 2.94 p = 0.009; organic matter: F = 5.45 p = 0.02). With the increase in planting years, the organic matter and alkali-hydrolysable nitrogen contents in the soil showed decreasing trends. The organic matter content in the CC9 soil samples was 23.64% less than in the CC1 soil samples, and the alkali-hydrolysable nitrogen content was 45.2% less. The available phosphorus and available potassium levels did not show regular change trends, but the available potassium content in the CC9 soil was lower than in the CC1 soil.Compared with the CC9 soil samples, the alkali-hydrolysed nitrogen, organic matter, available phosphorus and available potassium contents in TR1 soil samples increased by 46.82%, 6.26%, 5.09% and 47.06%, respectively. The available potassium content increased most obviously, followed by alkali-hydrolysable nitrogen. The alkali-hydrolysable nitrogen, organic matter and available phosphorus contents decreased slightly in TR2, but were still higher than those in the CC9 soil samples. In addition, the available potassium content continued to increase by 20% after the application of biocontrol bacterium MHT1134 in the second year (Table 2).Table 2 Effects of MHT1134 on physical and chemical properties of the pepper rhizosphere soil.Full size tableEffects of strain MHT1134 on enzymatic activities in pepper rhizosphere soilBy comparing the activities of six kinds of enzymes in the five groups of soil samples, we found that all the activities, except for that of acid phosphatase, in the CC9 soil were lower than those in the CC1 soil. In TR1 and TR2, the activities of the six enzymes in the soil increased. The urease, dehydrogenase, acid phosphatase, catalase, invertase and acid protease activities increased by 9.04%, 4.42%, 29.02%, 9.35%, 17.83% and 6.83% in TR1, respectively, and by 18.60%, 20.26%, 22.86%, 18.87%, 16.59% and 14.30% in TR2, respectively (Fig. 2A–F). The results indicated that MHT1134 applications could improve the enzyme activities in the soil to different degrees. Moreover, the urease, dehydrogenase, catalase and acid protease activities in soil significantly increased after the continuous application of MHT1134.Figure 2Differences in the enzyme activities in the continuously cropped pepper rhizosphere soil after the application of strain MHT1134. Activity levels of (A) urease; (B) dehydrogenase; (C) acid phosphatase; (D) catalase; (E) invertase; and (F) acid protease. CC1, CC5 and CC9, represent the plots where pepper had been continuously planted for 1, 5 and 9 years, respectively, and TR1 and TR2 represent CC9 plots in which the MHT1134 biocontrol fermentation broth had been applied 1 and 2 years in advance, respectively.Full size imageMicrobial diversity and richnessThe sample dilution curve tended to be flat, and the fungal and bacterial diversity index table (Table 3) shows that the library coverage levels were greater than 99% and 98%, respectively. Together, they indicate that the OTU coverage of the soil samples is basically saturated; therefore, the OTUs reflect the species and structures of the fungal and bacterial communities in the samples. High-throughput sequencing results showed that 765,747 16S rRNA sequences and 1,012,237 ITS sequences were obtained from 15 samples of pepper rhizosphere soil subjected to five treatments. After data quality control, there were 35,362–72,498 bacterial 16S rRNA sequences and 54,007–74,562 fungal ITS sequences. In addition, using the 97% standard, the bacterial and fungal OTU numbers were 17,444–47,775 and 50,876–71,236, respectively.Table 3 Alpha-diversity indexes of fungi and bacteria in different continuous pepper cropping soils.Full size tableAlpha-diversity analysis of fungi and bacteriaThe changes in fungal and bacteria diversity are shown in Table 3. According to the Shannon index analysis, the species richness of fungi in CC1 was the highest (2.88). As the planting years increased, the Shannon index decreased gradually (2.71 in CC5 and 2.69 in CC9). Although ACE and Chao indexes, representing the species abundance of the community, did not show obvious increasing trends, in CC9, the values of the two indexes were significantly higher than in CC1, which indicated that as the planting years increased, the diversity of fungi in the pepper soil decreased, while the species abundance increased. As shown in Table 3, in TR1, the Simpson index, representing species dominance, and the Sobs index, representing species richness, increased significantly, and the Shannon index also increased. In TR2, the Shannon index increased significantly, while the values of other indexes decreased slightly. We hypothesised that after the first year of application, the strain MHT1134 colonised in large numbers, resulting in it being the dominant community species. After continuous application, the soil ecology had adjusted, and the diversity of soil fungi continued to increase. In general, the application of the biocontrol fungal MHT1134 increased the diversity of fungi in the pepper rhizosphere soil and decreased the dominance of some species.The changes in bacterial diversity and abundance in the pepper rhizosphere soil after different periods of continuous cropping are shown by the decreases in the Shannon and Sobs indexes decreased as the planting years increased, indicating that bacterial diversity and bacterial community richness decreased. Although ACE and Chao indexes representing the species abundance of the community did not show regular decreasing trends, in CC9, the values of the two indexes were significantly lower than in CC1, indicating that as the planting years increased, the diversity and richness of bacteria in the pepper soil decreased. Strain MHT1134 had no significant effect on the alpha-diversity index of soil bacteria in TR1, but Simpson, ACE and Chao indexes increased in TR2.Effects of MHT1134 on the microbial community structure in pepper rhizosphere soilAll the bacteria were classified into 352 genera and 23 phyla according to their 16S rRNA sequences, and all the fungi were classified into 6 phyla and 194 genera according to their ITS sequences. The top five phyla in terms of bacterial abundance were Actinobacteria, Acidobacteria, Chloroflexi, Gemmatimonadetes and Nitrospirae. The top six phyla in terms of fungal abundance were Ascomycota, Zygomycota, Basidiomycota, Glomeromycota, Chytridiomycota and Rozellomycota.Effects of MHT1134 on fungal community structure in pepper rhizosphere soilThe effects of the biocontrol treatment on fungal phyla are shown in Fig. 3A. After treatment with MHT1134, the relative abundance of Ascomycota decreased significantly from 77.9 to 70.99%. The abundance of Basidiomycota increased significantly after the treatment, whereas it decreased with the continuous cropping time before the MHT1134 application. However, Zygomycota increased in abundance with the continuous cropping time. The abundance of strain MHT1134 increased significantly and then decreased by 1 year after treatment.Figure 3Fungal clustering accumulation map in pepper rhizosphere soil at the phylum (A) and genus (B) levels. CC1, CC5 and CC9, represent the plots where pepper had been continuously planted for 1, 5 and 9 years, respectively, and TR1 and TR2 represent CC9 plots in which the MHT1134 biocontrol fermentation broth had been applied 1 and 2 years in advance, respectively.Full size imageBy analysing the relative abundance of fungi of different genera in the soil, it was found that the fungi of several genera showed similar change trends in different soil treatments. The relative abundances of Fusarium, Gibberella and the alkali-resistant fungus Pseudallescheria in the soil increased along with continuous cultivation years (CC1  TR2). In addition, the trend was found for Trichoderma, Chaetomium and Mortierella, which declined as the planting years increased, but their relative abundance levels significantly increased in TR1 and significantly increased again in TR2 (Fig. 3B).Using Fusarium as the control, we analysed the variation trends of microorganisms in CC9, TR1 and TR2 soil samples. As shown in Fig. 4, the levels of three genera were positively correlated with the Fusarium change trend, Gibellulopsis, Giberella and Pseudallescheria, while three genera, Trichoderma, Chaetomium and Mortierella, were negatively correlated with Fusarium. Thus, the abundance levels of fungi in Gibellulopsis, Gibberella and Pseudallescheria were reduced after the MHT1134 application. Some species of Gibellulopsis are the pathogenic fungi that cause Verticillium wilt, and some species of Gibberella are the pathogenic fungi that cause gibberellic diseases. The abundance levels of Trichoderma, Chaetomium and Mortierella significantly increased after the application of strain MHT1134.Figure 4The relative abundances of the first 15 genera after the MHT1134 application. *0.01  CC5  > CC9), whereas the abundance of Actinobacteria in the soil increased significantly after the application of MHT1134 fermentation broth (CC9  More