1.Stephenson, C., Handmer, J. & Robyn, B. Estimating the economic, social and environmental impacts of wildfires in Australia. Environ. Hazards 12, 93–111. https://doi.org/10.1080/17477891.2012.703490 (2013).Article
Google Scholar
2.Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. Lond. Ser. Biol. Sci 371(1696), 20150345. https://doi.org/10.1098/rstb.2015.0345 (2016).Article
Google Scholar
3.Dusaeva, GKh., Kalmykova, O. G. & Dusaeva, N. V. Fire influence on dynamics of above-ground phytomass in steppe plant communities in the Burtinskaya Steppe (Orenburg State Nature Reserve, Russia). Nat. Conserv. Res. 4(Suppl. 1), 78–92. https://doi.org/10.24189/ncr.2019.050 (2019).Article
Google Scholar
4.Koltz, A. M. et al. Global change and the importance of fire for the ecology and evolution of insects. Curr. Opin. Insect Sci. 29, 110–116. https://doi.org/10.1016/j.cois.2018.07.015 (2018).Article
PubMed
Google Scholar
5.Malevsky-Malevich, S. P., Molkentin, E. K., Nadyozhina, E. D. & Shklyarevich, O. B. An assessment of potential change in wildfire activity in the Russian boreal forest zone induced by climate warming during the twenty-first century. Clim. Change 86, 463–474 (2008).ADS
Article
Google Scholar
6.Anisimov, O. A. & Sherstiukov, A. B. Evaluating the effect of environmental factors on permafrost in Russia. Earth’s Cryosphere 20(2), 90–99 (2016) (in Russian).
Google Scholar
7.Aleinikov, A. A. The fire history in pine forests of the plain area in the Pechora-Ilych Nature Biosphere Reserve (Russia) before 1942: Possible anthropogenic causes and long-term effects. Nat. Conserv. Res. 4(Suppl. 1), 21–34. https://doi.org/10.24189/ncr.2019.033 (2019).Article
Google Scholar
8.Rozhkov, Yu. F. & Kondakova, MYu. Assessment of the post-fire forest restoration dynamics in the Olekminsky State Nature Reserve (Russia) according to data of Landsat satellite images. Nat. Conserv. Res. 4(Suppl. 1), 1–10. https://doi.org/10.2418/ncr.2019.014 (2019) (in Russian).Article
Google Scholar
9.Shvetsov, E. G. & Ponomarev, E. I. Postfire effects in Siberian larch stands on multispectral satellite data. Contemp. Probl. Ecol. 13(1), 104–112 (2020).Article
Google Scholar
10.Shvetsov, E. G., Kukavskaya, E. A. & Buryak, L. V. Satellite monitoring of the state of forest vegetation after fire impacts in the Zabaikal Region. Contemp. Probl. Ecol. 9(6), 702–710 (2016).Article
Google Scholar
11Kazeev, KSh. et al. Post-fire changes in the biological properties of the brown soils in the Utrish State Nature Reserve (Russia). Nat. Conserv. Res. 4(Suppl. 1), 93–104. https://doi.org/10.24189/ncr.2019.055 (2019).Article
Google Scholar
12Kopoteva, T. A. & Kuptsova, V. A. Effects of pyrogenic factor on wetlands of Petrovskaya Pad’ (Jewish Autonomous Region, Russia). Nat. Conserv. Res. 4(Suppl. 1), 35–44. https://doi.org/10.24189/ncr.2019.034 (2019).Article
Google Scholar
13.Lebedinskii, A. A., Noskova, O. S. & Dmitriev, A. I. Post-fire recovery of terrestrial vertebrates in the Kerzhensky State Nature Biosphere Reserve (Central Volga Region, Russia). Nat. Conserv. Res. 4(Suppl. 1), 45–56. https://doi.org/10.24189/ncr.2019.049 (2019).Article
Google Scholar
14.Shinkarenko, S. S., Ivanov, N. M. & Berdengalieva, A. N. Spatio-temporal dynamics of burnt areas in federal Protected Areas in the south-east of European Russia. Nat. Conserv. Res. 6(3), 23–44. https://doi.org/10.24189/ncr.2021.035 (2021).Article
Google Scholar
15.Hoffmann, B. D. Responses of ant communities to experimental fire regimes on rangelands in the Victoria River District of the Northern Territory. Aust. Ecol. 28, 182–195 (2003).Article
Google Scholar
16.Murphy, S. M., Richards, L. A. & Wimp, G. M. Editorial: Arthropod interactions and responses to disturbance in a changing world. Front. Ecol. Evol. 8, 93. https://doi.org/10.3389/fevo.2020.00093 (2020).Article
Google Scholar
17.Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849. https://doi.org/10.1890/10-0097.1 (2010).Article
PubMed
Google Scholar
18.Gandhi, K. J. K., Spence, J. R., Langor, D. W. & Morgantini, L. E. Fire residuals as habitat reserves for epigaeic beetles (Coleoptera: Carabidae and Staphylinidae). Oikos 120, 26–37 (2011).Article
Google Scholar
19.Buckingham, S., Murphy, N. & Gibb, H. Effects of fire severity on the composition and functional traits of litter-dwelling macroinvertebrates in a temperate forest. For. Ecol. Manag. 434, 279–288. https://doi.org/10.1016/j.foreco.2018.12.030 (2019).Article
Google Scholar
20.Niklasson, M. & Granström, A. Numbers and sizes of fires, long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81, 1484–1499. https://doi.org/10.1890/0012-9658(2000)081[1484:NASOFL]2.0.CO;2 (2000).Article
Google Scholar
21.Wikars, L.-O. Immediate effects offire-severity on soil invertebrates in cut and uncut pine forests. For. Ecol. Manag. 141, 189–200 (2001).Article
Google Scholar
22.Egorov, L. V., Podshivalina, V. N. & Kurulenko, D. Yu. Postpyrogenic changes in the fauna of arthropods-herpetobionts on the territory of the Prisursky State Nature Reserve. Long-term processes in natural complexes of reserves in Russia. Velikie Luki, 245–249. (in Russian) (2012).23.Gongalsky, K. B. & Persson, T. Recovery of soil macrofauna after wildfires in boreal forests. Soil Biol. Biochem. 57, 182–191. https://doi.org/10.1016/j.soilbio.2012.07.005 (2013).CAS
Article
Google Scholar
24Ruchin, A. B., Alekseev, S. K. & Khapugin, A. A. Post-fire fauna of carabid beetles (Coleoptera, Carabidae) in forests of the Mordovia State Nature Reserve (Russia). Nat. Conserv. Res. 4(Suppl. 1), 11–20. https://doi.org/10.24189/ncr.2019.009 (2019).Article
Google Scholar
25.Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 143(1), 1–10. https://doi.org/10.1007/s00442-004-1788-8 (2005).ADS
Article
PubMed
Google Scholar
26.Buddlea, C. M., Langorb, D. W., Pohlb, G. R. & Spencec, J. R. Arthropod responses to harvesting and wildfire: Implications for emulation of natural disturbance in forest management. Biol. Cons. 128, 346–357. https://doi.org/10.1016/j.biocon.2005.10.002 (2006).Article
Google Scholar
27.Gongalsky, K. B., Wikars, L.-O. & Persson, T. Ground beetle (Coleoptera: Carabidae) responses to a forest wildfire in northern Europe. Russ. Entomol. J. 17(3), 273–282 (2008).
Google Scholar
28.Gongalsky, K. B. The spatial distribution of large soil invertebrates on burned areas in xerophilous ecosystems of the Black Sea coast of the Caucasus. Arid. Ecosyst. 17(4), 260–266. https://doi.org/10.1134/S2079096111040068 (2011).Article
Google Scholar
29.Muona, J. & Rutanen, I. The short-term impact offire on the beetle fauna in boreal coniferous forest. Ann. Zool. Fenn. 31, 109–121 (1994).
Google Scholar
30.Boulanger, Y. & Sirois, L. Postfire succession of saproxylic arthropods, with emphasis on Coleoptera, in the north boreal forest of Quebec. Environ. Entomol. 36(1), 128–141. https://doi.org/10.1603/0046-225X-36.1.128 (2007).Article
PubMed
PubMed Central
Google Scholar
31.Azeria, E. T., Ibarzabal, J. & Hébert, C. Effects of habitat characteristics and interspecific interactions on co-occurrence patterns of saproxylic beetles breeding in tree boles after forest fire: Null model analyses. Oecologia 168, 1123–1135. https://doi.org/10.1007/s00442-011-2180-0 (2012).ADS
Article
PubMed
PubMed Central
Google Scholar
32.Atchison, R. A., Hulcr, J. & Lucky, A. Managed fire frequency significantly influences the litter arthropod community in longleaf pine Flatwoods. Environ. Entomol. 47, 575–585. https://doi.org/10.1093/ee/nvy038 (2018).Article
PubMed
PubMed Central
Google Scholar
33.Ulyshen, M. D., Lucky, A. & Work, T. T. Effects of prescribed fire and social insects on saproxylic beetles in a subtropical forest. Sci. Rep. 10, 9630. https://doi.org/10.1038/s41598-020-66752-w (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
34.Delettre, Y. R. Fire disturbance of a chironomid (Diptera) community on Heathlands. J. Appl. Ecol. 31(3), 560–570 (1994).Article
Google Scholar
35.Swengel, A. B. & Swengel, S. R. Benefit of permanent non-fire refugia for Lepidoptera conservation in fire-managed sites. J. Insect Conserv. 11, 263–279. https://doi.org/10.1007/s10841-006-9042-9 (2007).Article
Google Scholar
36.Sánchez, M. Á. C., Asís, J. D., Gayubo, S. F., Tormos, J. & González, J. A. The effects of wildfire on Spheciformes wasp community structure: The importance of local habitat conditions. J. Insect Conserv. 15(4), 487–503. https://doi.org/10.1007/s10841-010-9322-2 (2010).Article
Google Scholar
37.Elia, M., Lafortezza, R., Tarasco, E., Colangelo, G. & Sanesia, G. The spatial and temporal effects of fire on insect abundance in Mediterranean forest ecosystems. For. Ecol. Manag. 263, 262–267. https://doi.org/10.1016/j.foreco.2011.09.034 (2012).Article
Google Scholar
38.Bogusch, P., Blažej, L., Trýzna, M. & Heneberg, P. Forgotten role of fires in Central European forests: Critical importance of early post-fire successional stages for bees and wasps (Hymenoptera: Aculeata). Eur. J. Forest Res. 134(1), 153–166. https://doi.org/10.1007/s10342-014-0840-4 (2015).Article
Google Scholar
39.Durska, E. Effects of fire on scuttle flies (Diptera: Phoridae) in a pine forest in Poland. Entomologica Fennica. 26, 181–193 (2015).Article
Google Scholar
40.Pons, P. Delayed effects of fire and logging on cicada nymph abundance. J. Insect Conserv. 19, 601–606. https://doi.org/10.1007/s10841-015-9781-6 (2015).Article
Google Scholar
41.Lazarina, M. et al. The effect of fire history in shaping diversity patterns of flower-visiting insects in post-fire Mediterranean pine forests. Biodivers. Conserv. 26, 115–131. https://doi.org/10.1007/s10531-016-1228-1 (2017).Article
Google Scholar
42Ruchin, A. B. & Khapugin, A. A. Red data book invertebrates in a protected area of European Russia. Acta Zoologica Academiae Scientiarum Hungaricae. 65(4), 349–370. https://doi.org/10.17109/AZH.65.4.349.2019 (2019).Article
Google Scholar
43.Khapugin, A. A. & Silaeva, T. B. The arrangement of threatened plants in Mordovia: The role of biodiversity research centers. Écoscience. 27(3), 157–164. https://doi.org/10.1080/11956860.2020.1753293 (2020).Article
Google Scholar
44.Tereshkin, I. S. & Tereshkina, L. V. Vegetation of the Mordovia Reserve. Successive series of the successions. Proc. Mordovia State Nat. Reserve. 7, 186–287 (2006) (In Russian).
Google Scholar
45.Bayanov, N. G. Climate changes of the northwest of Mordovia during the period of existence of the Mordovia Reserve according to the meteorological observations in Temnikov. Proc. Mordovia State Nat. Reserve. 14, 212–219 (2015) (In Russian).
Google Scholar
46.Sieber, A. et al. Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sens. Environ. 133, 38–51. https://doi.org/10.1016/j.rse.2013.01.021 (2013).ADS
Article
Google Scholar
47.Novenko, E. Y. et al. Vegetation dynamics and fire history at the southern boundary of the forest vegetation zone in European Russia during the middle and late Holocene. Holocene 28(2), 308–322. https://doi.org/10.1177/0959683617721331 (2018).ADS
Article
Google Scholar
48.Kharitonova, A. O. & Kharitonova, T. I. The effect of landscape pattern on the 2010 wildfire spread in the Mordovia State Nature Reserve, Russia. Nat. Conserv. Res. 6(2), 29–41. https://doi.org/10.24189/ncr.2021.022 (2021).Article
Google Scholar
49.Khapugin, A. A., Vargot, E. V. & Chugunov, G. G. Vegetation recovery in fire-damaged forests: A case study at the southern boundary of the taiga zone. For. Stud. 64, 39–50. https://doi.org/10.1515/fsmu-2016-0003 (2016).Article
Google Scholar
50.Egorov, L. V., Ruchin, A. B., Semenov, V. B., Semionenkov, O. I. & Semishin, G. B. Checklist of the Coleoptera of Mordovia State Nature Reserve, Russia. ZooKeys. 962, 13–122. https://doi.org/10.3897/zookeys.962.54477 (2020).Article
PubMed
PubMed Central
Google Scholar
51.Bousquet, Y. Litteratura Coleopterologica (1758–1900): A guide to selected books related to the taxonomy of Coleoptera with publication dates and notes. ZooKeys. 583, 1–776. https://doi.org/10.3897/zookeys.583.7084 (2016).Article
Google Scholar
52Ruchin, A. B., Egorov, L. V., Khapugin, A. A., Vikhrev, N. E. & Esin, M. N. The use of simple crown traps for the insects collection. Nat. Conserv. Res. 5(1), 87–108. https://doi.org/10.24189/ncr.2020.008 (2020).Article
Google Scholar
53.Ryan, K. C. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica. 36, 13–39 (2002).Article
Google Scholar
54.Turner, M. G., Hargrove, W. W., Gardner, R. H. & Romme, W. H. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J. Veg. Sci. 5, 731–742. https://doi.org/10.2307/3235886 (1994).Article
Google Scholar
55.BC Wildfire Service. 2020. Wildfire Rank. In: Province of British Columbia. Accessed from: https://www2.gov.bc.ca/gov/content/safety/wildfire-status/about-bcws/wildfire-response/fire-characteristics/rank.56.Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).
Google Scholar
57Shannon, C. E. A mathematical theory of communication. Bell Syst. Techn. J. 27, 379–423 (1948).MathSciNet
MATH
Article
Google Scholar
58.Magurran, A. E. Ecological Diversity and Its Measurement 179 (Chapman & Hall, 1996).
Google Scholar
59.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics soft-ware package for education and data analysis. Palaeontol. Electron. 4(1), 9 (2001).
Google Scholar
60Makarkin, V. N. & Ruchin, A. B. New data on Neuroptera and Raphidioptera of Mordovia (Russia). Kavkazskij Entomologiceskij Bulleten. 15(1), 147–157. https://doi.org/10.23885/181433262019151-147157 (2019) (in Russian).Article
Google Scholar
61.Czechowska, W. A comparative analysis of the structure of Neuropteroidea communities of tree canopies in linden-oak-hornbeam forests, light oak forests, mixed coniferous forests and pine forests. Fragm. Faun. 40, 127–168 (1997).Article
Google Scholar
62.Volkovich, T. A. Green lacewings (Neuroptera, Chrysopidae) of the «Forest on the Vorskla River» Nature Reserve (Belgorod Province): Fauna and ecology. Entomol. Rev. 81, 884–894 (2001).
Google Scholar
63.Duelli, P., Obrist, M. K. & Flückiger, P. F. Forest edges are biodiversity hotspots: Also for Neuroptera. Acta Zoologica Hungarica. 48(Suppl. 2), 75–87 (2002).
Google Scholar
64Ruchin, A. B. & Makarkin, N. V. Neuroptera and raphidioptera in the mordovia state nature reserve. Nat. Conserv. Res. 2(2), 38–46. https://doi.org/10.24189/ncr.2017.001 (2017) (in Russian).Article
Google Scholar
65.Aspöck, H. & Aspöck, U. Raphidioptera: Kamelhalsfliegen. Ein Überblick zum Einstieg. Entomologica Austriaca. 16, 53–72 (2009).
Google Scholar
66.Aspöck, H., Aspöck, U. & Rausch, H. Raphidiopteren-Larven als Bodenbewohner (Insecta, Neuropteroidea) (Mit Beschreibungen der Larven von Ornatoraphidia, Parvoraphidia und Superboraphidia). Zeitschrift für Angewandte Zoologie. 62, 361–375 (1975).
Google Scholar
67.Aspöck, H., Aspöck, U. & Hölzel, H. Die Neuropteren Europas. Eine zusammenfassende Darstellung der Systematik, Ökologie und Chorologie der Neuropteroidea (Megaloptera, Raphidioptera, Planipennia) Europas. Vols 1 & 2, Goecke and Evers, Krefeld, pp. 495–455 (1980).68.Kurochkin, A. S. Fauna and bionomy of sap beetles (Coleoptera, Nitidulidae) and kateretid beetles (Coleoptera, Kateretidae) of Krasnosamarskoe forestry farm (Samara Region, Russia): Vestnik of Samara University. Nat. Sci. Ser. 8(58), 120–128 (2007) (in Russian).
Google Scholar
69.Oude, J. E. Naamlijst van de glanskevers van Nederland en het omliggende gebied (Coleoptera: Nitidulidae and Brachypteridae). Nederlandse Faunistische Mededelinge. 8, 11–32 (1999).
Google Scholar
70.Alekseev, V. I. & Nikitsky, N. B. Rare and new for the fauna of the Baltic States beetles (Coleoptera) from the Kaliningrad Region. Acta Zoologica Lituanica. 18(4), 254–259 (2008).Article
Google Scholar
71.Lasoń, A. & Holly, M. Glischrochilus grandis Tournier, 1872: New species of beetle for the Polish fauna and new data on the occurrence of genus Glischrochilus Reitter, 1873 (Cole-optera: Nitidulidae: Cryptarchinae). Acta entomologica silesiana. 23, 1–4 (2015).
Google Scholar
72.Nikitsky, N. B., Osipov, I. N., Chemeris, M. V., Semenov, V. B. & Gusakov, A. A. The beetles of the Prioksko-Terrasny Biosphere Reserve: Xylobiontes, mycetobiontes and Scarabaeidae. Arch. Zool. Museum Moscow State Univ. XXXVI, 1–197 (1996) (in Russian).
Google Scholar
73.Tauzin, P. Ethologie et chorologie de Protaetia (Liocola) lugubris Herbst, 1786 sur le territoire français (Coleoptera, Cetoniidae, Cetoniinae, Cetoniini). Cetoniimania. 3(1+2), 4–38 (2006).
Google Scholar
74.Oleksa, A., Chybicki, I. J., Gawronski, R., Svensson, G. P. & Burczyk, J. Isolation by distance in saproxylic beetles may increase with niche specialization. J. Insects Conserv. 17, 219–233. https://doi.org/10.1007/s10841-012-9499-7 (2013).Article
Google Scholar
75.Urban, P. & Schulze, W. Ein aktueller Nachweis des Marmorierten Rosenkäfers Protaetia marmorata (Fabricius, 1792) in der Senne (Nordrhein-Westfalen) (Mitteilungen zur Insektenfauna Westfalens XXII). Mitteilungen der Arbeitsgemeinschaft westfälischer Entomologen. 33(1), 15–19 (2017).
Google Scholar
76Ruchin, A. B., Egorov, L. V. & Khapugin, A. A. Seasonal activity of Coleoptera attracted by fermental crown traps in forest ecosystems of Central Russia. Ecol. Questions. 32(1), 37–53. https://doi.org/10.12775/EQ.2021.004 (2021).Article
Google Scholar
77.Oleksa, A., Ulrich, W. & Gawronski, R. Occurrence of the marbled rose-chafer (Protaetia lugubris Herbst, Coleoptera, Cetoniidae) in rural avenues in northern Poland. J. Insects Conserv. 10, 241–247. https://doi.org/10.1007/s10841-005-4830-1 (2006).Article
Google Scholar
78.Nikitsky, N. B. & Vlasov, D. V. Family Scarabaeidae Latreille, 1802. In: Nikitsky N.B. The beetles (Insecta, Coleoptera) of the Moscow oblast. Part. 1. Direct MEDIA. pp. 643–679 (2016) (in Russian).79.Ruchin, A. B., Egorov, L. V., Sazhnev, A. S., Polumordvinov, O. A. & Ishin, R. N. Present distribution of Protaetia fieberi (Kraatz, 1880) (Insecta, Coleoptera, Scarabaeidae) in the European part of Russia. Biharean Biologist. 13(1), 12–16 (2019).
Google Scholar
80.Tauzin, P. Chorologie et éco-éthologie de Protaetia (Potosia) fieberi Kraatz 1880 en France (Coleoptera, Cetoniinae, Cetoniini). Cetoniimania. 3(4), 115–146 (2007).
Google Scholar
81Bílý, S. & Mehl, O. Longhorn Beetles (Coleoptera, Cerambycidae) of Fennoscandia and Denmark 200 (Brill, 1989).
Google Scholar
82.Gutowski, J. M., Ługowoj, J. & Maciejewski, K. H. Leptura thoracica Creutzer, 1799 (Coleoptera: Cerambycidae) in Poland. Wiad. Entomol. 13(3), 157–165 (1994) (in Polish).
Google Scholar
83.Sama, G. Atlas of the Cerambycidae of Europe and the Mediterranean Area. Vol. 1. Northern, Western, Central and Eastern Europe British Isles and Continental Europe from France (excl. Corsica) to Scandinavia and Urals. Kabourek, Zlín, p. 173 (2002).84.Karpiński, L., Szczepański, W. T., Boldgiv, B. & Walczak, M. New data on the longhorn beetles of Mongolia with particular emphasis on the genus Eodorcadion Breuning, 1947 (Coleoptera, Cerambycidae). ZooKeys. 739, 107–150. https://doi.org/10.3897/zookeys.739.23675 (2018).Article
Google Scholar
85.Danilevsky, M. L., Ruchin, A. B. & Egorov, L. V. Mass collection of two rare longicorn-species (Coleoptera, Cerambycidae) in Central Russia. Humanity space. 8(9), 1179–1183 (2019).
Google Scholar
86Ruchin, A. B. & Egorov, L. V. Fauna of longicorn beetles (Coleoptera: Cerambycidae) of Mordovia. Russ. Entomol. J. 27(2), 161–177. https://doi.org/10.15298/rusentj.27.2.07 (2018).Article
Google Scholar
87.Ruchin, A. B., Egorov, L. V. & Khapugin, A. A. Usage of fermental traps for studying the species diversity of Coleoptera. Insects. 12, 407. https://doi.org/10.3390/insects12050407 (2021).Article
PubMed
PubMed Central
Google Scholar
88.Cherepanov, A. I. The Longhorn Beetles of Northern Asia (Prioninae, Disteniinae, Lepturinae, Aseminae) 472 (Nauka Publ, 1979).
Google Scholar
89Starzyk, J. R. & Partyka, M. Study on the morphology, biology and distribution of Obrium cantharinum (L.) (Col., Cerambycidae). J. Appl. Entomol. 116(1–5), 333–344. https://doi.org/10.1111/j.1439-0418.1993.tb01205.x (1993).Article
Google Scholar
90.Lindhe, A., Jeppsson, T. & Ehnstrom, B. Longhorn beetles in Sweden changes in distribution and abundance over the last two hundred years. Entomologisk Tidskrift. 131(4), 241–508 (2010).
Google Scholar
91.Egorov, L. V. & Sysoletina, L. G. On the anthophilic longhorn beetles of the Chuvash ASSR. Terrestrial and aquatic ecosystems, pp. 92–104 (1986) (in Russian).92.Moretti, M. & Barbalat, S. The effects of wildfires on wood-eating beetles in deciduous forests on the southern slope of the Swiss Alps. For. Ecol. Manag. 187(1), 85–103. https://doi.org/10.1016/S0378-1127(03)00314-1 (2004).Article
Google Scholar
93.Brodie, B. S. et al. Non-lethal monitoring of longicorn beetle communities using generic pheromone lures and occupancy models. Ecol. Ind. 101, 330–340. https://doi.org/10.1016/j.ecolind.2019.01.038 (2019).CAS
Article
Google Scholar
94.Grundel, R., Pavlovic, N. B. & Sulzman, C. L. Habitat use by the endangered Karner blue butterfly in oak woodlands: The influence of canopy cover. Biol. Cons. 85, 47–53 (1998).Article
Google Scholar
95.Huntzinger, M. Effects of fire management practices on butterfly diversity in the forested western United States. Biol. Cons. 113(1), 1–12. https://doi.org/10.1016/S0006-3207(02)00356-7 (2003).Article
Google Scholar
96Elia, M., Lafortezza, R., Tarasco, E., Colangelo, G. & Sanesi, G. Influenza degli incendi boschivi sulla biodiversità dell’entomofauna: Un caso di studio in Puglia. Forest 8, 13–21 (2011).Article
Google Scholar
97.Vogel, J. A., Koford, R. R. & Debinski, D. M. Direct and indirect responses of tallgrass prairie butterflies to prescribed burning. J. Insect Conserv. 14, 663–677. https://doi.org/10.1007/s10841-010-9295-1 (2010).Article
Google Scholar
98.Swengel, A. B. Effects of fire and hay management on abundance of prairie butterflies. Biol. Cons. 76, 73–85 (1996).Article
Google Scholar
99Ruchin, A. & Antropov, A. Wasp fauna (Hymenoptera: Bethylidae, Chrysididae, Dryinidae, Tiphiidae, Mutllidae, Scoliidae, Pompilidae, Vespidae, Sphecidae, Crabronidae & Trigonalyidae) of Mordovia State Nature Reserve and its surroundings in Russia. J. Threatened Taxa. 11(2), 13195–13250. https://doi.org/10.11609/jot.4216.11.2.13195-13250 (2019).Article
Google Scholar
100.Dvořák, L. Social wasps (Hymenoptera: Vespidae) trapped with beer in European forest ecosystems. Acta Mus. Morav. Sci. Biol. (Brno) 92, 181–204 (2007).
Google Scholar
101Sorvari, J. Social wasp (Hymenoptera: Vespidae) beer trapping in Finland 2008–2012: A German surprise. Entomologica Fennica. 24(3), 156–164. https://doi.org/10.33338/ef.8983 (2013).ADS
Article
Google Scholar
102Pesson, P. & Louveaux, J. Pollinisation et productions végétales 663 (INRA, 1984).
Google Scholar
103.Richter, M. R. Social wasp (Hymenoptera: Vespidae) foraging behavior. Annu. Rev. Entomol. 45(1), 121–150. https://doi.org/10.1146/annurev.ento.45.1.121 (2000).CAS
Article
PubMed
Google Scholar
104.Kasper, M. L., Reeson, A. F., Mackay, D. A. & Austin, A. D. Environmental factors influencing daily foraging activity of Vespula germanica (Hymenoptera, Vespidae) in Mediterranean Australia. Insectes Soc. 55, 288–295. https://doi.org/10.1007/s00040-008-1004-7 (2008).Article
Google Scholar
105Clemente, M. A. et al. Impacts of fire in social wasps community in an area of regenerating brazilian savanna. Sociobiology 66(4), 582–591. https://doi.org/10.13102/sociobiology.v66i4.3590 (2019).Article
Google Scholar
106.Raveret-Richter, M. Social wasp (Hymenoptera: Vespidae) foraging behavior. Annu. Rev. Entomol. 45, 121–150. https://doi.org/10.1146/annurev.ento.45.1.121 (2000).Article
Google Scholar
107.Jeanne, R. L. The adaptiveness of social wasp nest architecture. Q. Rev. Biol. 50, 267–287 (1975).Article
Google Scholar
108Wenzel, J. W. Evolution of nest architecture. In The Social Biology of Wasps (eds Ross, K. G. & Matthews, R. W.) 480–519 (Cornell University Press, 1991).
Google Scholar
109Dvořák, L., Dvořáková, K., Oboňa, J. & Ruchin, A. B. Selected Diptera families caught with beer traps in the Republic of Mordovia (Russia). Nat. Conserv. Res. 5(4), 65–77. https://doi.org/10.24189/ncr.2020.057 (2020).Article
Google Scholar
110Krivosheina, N. P. Family Anisopodidae. In Manual of Palaearctic Diptera (eds Papp, L. & Darvas, B.) 239–248 (Science Herald, 1997).
Google Scholar
111.Rotheray, G. E. Development sites, feeding modes and early stages of seven European Palloptera species (Diptera, Pallopteridae). Zootaxa 3900(1), 50–76 (2014).PubMed
Article
Google Scholar
112Ruchin, A. B., Carr, J. F., Dvořák, L., Esin, M. N. & Khapugin, A. A. Pseudotephritis millepunctata (Hennig, 1939) (Diptera Ulidiidae): New species in European fauna. REDIA. 103, 25–27. https://doi.org/10.19263/REDIA-103.20.05 (2020).Article
Google Scholar
113Krivosheina, N. P. & Krivosheina, M. G. Saproxylic Diptera (Insecta) of the Lazovsky State Nature Reserve (Russia). Nat. Conserv. Res. 4(3), 78–92. https://doi.org/10.24189/ncr.2019.052 (2019) (in Russian).Article
Google Scholar
114.Bächli, G. & Rocha Pité, M. T. Family Drosophilidae. P. 186–220. In: Catalogue of Palaearctic Diptera. Vol. 10. Clusiidae–Chloropidae. Akadémiai Kiadó, Budapest (1984).115.Gornostaev, N. G. A review of drosophilid flies (Diptera, Drosophilidae) of Middle Asia and Kazakhstan. Entomologicheskoe Obozrenie. 74(1), 214–223 (1995).
Google Scholar
116.Gornostaev, N. G. Addition to the fauna of drosophilid flies (Diptera, Drosophilidae) of Russia. Russ. Entomol. J. 6(1–2), 113–118 (1997).
Google Scholar
117.Gornostaev, N. G. Ecological classification of drosophilid flies (Diptera, Drosophilidae). Entomologicheskoe Obozrenie. 75(3), 698–705 (1996).
Google Scholar
118.Máca, J. Revision of Palaearctic species of Amiota subg. Phortica (Diptera, Drosophilidae). Acta ent. bohemoslov. 74, 115–130 (1977).
Google Scholar
119.Bächli, G. & Thunes, K. Leucophenga quinquemaculata Strobl (Diptera, Drosophilidae) from Norway. Fauna Norvegica. 39(2), 81–84 (1992).
Google Scholar
120.Jonsell, M., Nordlander, G. & Jonsson, M. Colonization patterns of insects breeding in wood-decaying fungi. J. Insect Conserv. 3, 145–161 (1999).Article
Google Scholar
121.Edwards, F. W. Amiota alboguttata Wahlb. in Dorset (Diptera, Drosophilidae). Entomologist. 69, 218 (1936).
Google Scholar
122.Kovalev, V. G. Faunistic and ecological material on flies of the genus Lonchaea (Diptera, Lonchaeidae) from Tuva. Entomologicheskoe Obozrenie. 55, 934–945 (1976).
Google Scholar
123.MacGowan, I. & Rotheray, G. E. British Lonchaeidae. Diptera, Cyclorrhapha, Acalyptratae. Handbooks for the Identification of British Insects, 10 (15). Royal Entomological Society, London (2008).124.Godfrey, A. Lonchaea carpathica Kovalev (Diptera, Lonchaeidae) new to Britain and other Diptera from Cherkley Wood, Leatherhead. Surrey. Dipterists Digest (Second Series) 24, 153–155 (2017) ([in Russian]).
Google Scholar
125.MacGowan, I., Vikhrev, N. E., Krivosheina, M. G., Ruchin, A. B. & Esin, M. N. New records of Diptera from the Republic of Mordovia. Russ. Far Eastern Entomol. 423, 9–20. https://doi.org/10.25221/fee.423.3 (2021).Article
Google Scholar
126.Gaponov, S. P. & Panteleeva, NYu. New data of saprobiont larval feeding habits of Brachycera (Diptera) in the Middle Podonye: III: Superfamilies Muscoidea and Oestroidea. Proc. Voronezh State Univ Ser. Chem. Biol. Pharm. 1, 49–56 (2017) (in Russian).
Google Scholar
127Vikhrev, N. E. & Erofeeva, E. A. Review of the Phaonia pallida group (Diptera: Muscidae). Russ. Entomol. J. 27, 315–322. https://doi.org/10.15298/rusentj.27.3.14 (2018).Article
Google Scholar
128.Gisondi, S., Rognes, K., Badano, D., Pape, T. & Cerretti, P. The world Polleniidae (Diptera, Oestroidea): Key to genera and checklist of species. ZooKeys. 971, 105–155. https://doi.org/10.3897/zookeys.971.51283 (2020).Article
PubMed
PubMed Central
Google Scholar
129.Duelli, P., Obrist, M. K. & Wermelinger, B. Windthrow induces changes of faunistic biodiversity in alpine spruce forests. For. Snow Landsc. Res. 77(1/2), 117–131 (2002).
Google Scholar
130.Moretti, M., Duelli, P. & Obrist, M. K. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia 149(2), 312–327. https://doi.org/10.1007/s00442-006-0450-z (2006).ADS
Article
PubMed
Google Scholar
131.Campbell, J. W. et al. Response of beetles (Coleoptera) to repeated applications of prescribed fire and other fuel reduction techniques in the southern Appalachian Mountains. For. Ecol. Manag. 429, 294–299. https://doi.org/10.1016/j.foreco.2018.07.022 (2018).Article
Google Scholar
132Chen, Z. Z. et al. Response of Chrysoperla nipponensis (Okamoto) (Neuroptera: Chrysopidae) Under Long and Short Photoperiods. J. Insect Sci. 17(2), 1–9. https://doi.org/10.1093/jisesa/iex005 (2017).CAS
Article
Google Scholar
133.Swengel, A. B. A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodivers. Conserv. 10, 1141–1169. https://doi.org/10.1023/A:1016683807033 (2001).Article
Google Scholar
134Gongalsky, K. B. Perfugia as a mechanism for the recovery of soil fauna after ecosystem disturbances. Russ. J. Ecosyst. Ecol. 2(4), 1. https://doi.org/10.21685/2500-0578-2017-4-3 (2017).Article
Google Scholar
135.Hjältén, J. et al. Forest restoration by burning and gap cutting of voluntary set-asides yield distinct immediate effects on saproxylic beetles. Biodivers. Conserv. 26, 1623–1640. https://doi.org/10.1007/s10531-017-1321-0 (2017).Article
Google Scholar
136.Gutowski, J. M. et al. Post-fire beetle succession in a biodiversity hotspot: Białowieża Primeval Forest. For. Ecol. Manag. 461, 117893. https://doi.org/10.1016/j.foreco.2020.117893 (2020).Article
Google Scholar More