More stories

  • in

    First thorough assessment of de novo oocyte recruitment in a teleost serial spawner, the Northeast Atlantic mackerel (Scomber scombrus) case

    Oocyte size frequency distributionThe OSFD, based on wholemount analysis (formalin-preserved diameter measurements), did not show any hiatus between the assumingly largest PVOs and the smallest VO (Supplementary, Fig. S1). The corresponding mean threshold value, determined statistically by the Gamma/Gaussian method (see technical details below), was 192 µm (95% CI: 187–196 µm) (Supplementary, Fig. S1). Based on histology, this value was, however, at ~ 230 µm, i.e. the formalin-preserved oocyte diameter of PVO4c (Supplementary, Figs. S2B, S3, Table S1).Spawning progressAddressing firstly “the population (wholemount) data set” of 1561 individuals (Table S2), the relative frequency of early-spawning (ORC1), mid-spawning (ORC2), and late-spawning (ORC3) females changed significantly as the spawning season progressed, although with dissimilarity between 2018 and 2019 (Supplementary, Fig. S4). Overall, a significant difference was found among the ORCs frequencies between the two field-sampling years (two-way ANOVA; p = 0.003). In June 2018, over 60% of the females caught were very late spawners or spent (ORC4), this relative frequency increased to almost 90% in July 2018 (Supplementary, Fig. S4A). For 2019, the ORC4 in June was about 50% (Supplementary, Fig. S4B). Combining these 2018 and 2019 data sets, the subsequent comparison showed that July 2018 clearly differed in terms of ORC (a posteriori Tukey test; Supplementary, Fig. S5). More females in mid-spawning were recorded in May and June 2019 compared to the same months in 2018, though this noted difference was statistically insignificant (Supplementary, Fig. S5). Altogether, these outlined variations in ORC (Fig. 1) may be related to survey coverage, i.e. in 2018 these samples were collected in Nordic waters, while in 2019 exclusively within the main spawning area (Fig. 2).Figure 1Wholemount counts of previtellogenic (PVO) versus developing oocytes (VO and FOM) used within the ultrametric method to categorize the “stage of spawning” represented by the oocyte ratio category (ORC). The resulting ORC category (ORC1-4) is showed above each panel. VOs includes cortical alveoli oocytes.Full size imageFigure 2Map with location and number of all mackerel female samples collected from May 2018 to June 2019. The map was created using R v4.0.4 (https://www.r-project.org/) (see details at “Material and methods” section).Full size imagePopulation-level ORC and biometrics appeared linked, the latter represented either by total length (TL)-based gonadosomatic index (GSITL) or relative condition (Kn) (Fig. 3). The 2018 results showed that Kn was higher (p  More

  • in

    Direct evidence for the role of microbial community composition in the formation of soil organic matter composition and persistence

    Soil-derived microbial communities were subject to diversity removal by treatments with dilution (D0  > D1  > D2), filtering (bacteria predominantly “Bonly”), and heat (spore forming “SF”), and incubated under different moisture and temperature in order to generate distinct microbial communities in a model soil matrix [6]. In a sibling study aiming to disentangle the biotic and abiotic drivers of carbon use efficiency, we observed that the microbial community characteristics, e.g. bacterial community structure, bacterial diversity, fungi presence, and enzymatic activity influenced microbial community carbon use efficiency [6]. Here, we analyzed the formed SOM after four months of growth on cellobiose, using a method commonly used to quantify thermal stability and gradual stabilization of SOM [10]. The hydrocarbon compounds released at each temperature for each sample during the pyrolytic phase of Rock-Eval® was used to calculate the Bray–Curtis-based chemical dissimilarity of the soil samples as a proxy for soil C composition, and the and the Rock-Eval® thermal stability index (R-index) was calculated as a proxy for C persistence, as previously [10]. Bacterial or fungal diversity did not drive SOM composition. However, the resultant NMDS and analysis of similarity (ANOSIM) (R = 0.198, P  D2); selection of spore-forming microorganisms (SF); fungal exclusion (“Bonly”); inoculated into a model soil and grown on cellobiose as sole carbon source for 120 days under two temperatures (15 oC and 25 oC) and two moistures (30% and 60% WHC) in a full factorial design. Non-metric multidimensional scaling of Bray–Curtis distance from the pyrolyzed fraction of SOM based on Rock-Eval® analysis. Red contour lines represent the SOM thermal-stability R-index with higher numbers indicating more thermal-stable SOM. Significant explanatory variables (P  More

  • in

    Evidence of spatial genetic structure in a snow leopard population from Gansu, China

    Alexander JS, Zhang C, Shi K, Riordan P (2016) A granular view of a snow leopard population using camera traps in Central China. Biol Conserv 197:27–31
    Google Scholar 
    Aryal A, Brunton D, Ji W, Karmacharya D, McCarthy T, Bencini R et al. (2014) Multipronged strategy including genetic analysis for assessing conservation options for the snow leopard in the central Himalaya. J Mammal 95:871–881
    Google Scholar 
    Atzeni L, Cushman SA, Bai D, Wang J, Chen P, Shi K et al. (2020) Meta-replication, sampling bias, and multi-scale model selection: a case study on snow leopard (Panthera uncia) in western China. Ecol Evol 10:7686–7712PubMed 
    PubMed Central 

    Google Scholar 
    Bai D-F, Chen P-J, Atzeni L, Cering L, Li Q, Shi K (2018) Assessment of habitat suitability of the snow leopard (Panthera uncia) in Qomolangma National Nature Reserve based on MaxEnt modeling. Zool Res 39:373–386PubMed 
    PubMed Central 

    Google Scholar 
    Balkenhol N, Cushman SA, Storfer AT, Waits LP, eds (2016) Landscape genetics: concepts, methods, applications, 1st ed. John Wiley and Sons Ltd. Oxford, UKBauman D, Vleminckx J, Hardy OJ, Drouet T (2018c) Testing and interpreting the shared space-environment fraction in variation partitioning analyses of ecological data. Oikos 128:274–285
    Google Scholar 
    Bauman D, Drouet T, Dray S, Vleminckx J (2018b) Disentangling good from bad practices in the selection of spatial or phylogenetic eigenvectors. Ecography 41:1638–1649
    Google Scholar 
    Bauman D, Drouet T, Fortin M, Dray S (2018a) Optimizing the choice of a spatial weighting matrix in eigenvector-based methods. Ecology 99:2159–2166PubMed 

    Google Scholar 
    Benone NL, Soares BE, Lobato CMC, Seabra LB, Bauman D, Montag LF de A (2020) How modified landscapes filter rare species and modulate the regional pool of ecological traits? HydrobiologiaBlair C, Weigel DE, Lazik M, Keeley AT, Walker FM, Landguth E et al. (2012) A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol Ecol Resour 12:822–833PubMed 

    Google Scholar 
    Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology 89:2623–2632PubMed 

    Google Scholar 
    Bothwell HM, Cushman SA, Woolbright SA, Hersch-Green EI, Evans LM, Whitham TG et al. (2017) Conserving threatened riparian ecosystems in the American West: Precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia). Mol Ecol 26:5114–5132PubMed 

    Google Scholar 
    Breyne P, Mergeay J, Casaer J (2014) Roe deer population structure in a highly fragmented landscape. Eur J Wildl Res 60:909–917
    Google Scholar 
    Bruggeman DJ, Wiegand T, Fernández N (2010) The relative effects of habitat loss and fragmentation on population genetic variation in the red-cockaded woodpecker (Picoides borealis). Mol Ecol 19:3679–3691PubMed 

    Google Scholar 
    Burgess SM, Garrick RC (2020) Regional replication of landscape genetics analyses of the Mississippi slimy salamander, Plethodon mississippi. Landsc Ecol 35:337–351
    Google Scholar 
    Castillo JA, Epps CW, Davis AR, Cushman SA (2014) Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 23:843–856PubMed 

    Google Scholar 
    Chambers SM (1995) Spatial structure, genetic variation, and the neighborhood adjustment to effective population size. Conserv Biol 9:1312–1315PubMed 

    Google Scholar 
    Charlesworth B (2009) Effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195–205CAS 
    PubMed 

    Google Scholar 
    Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Heredity 100:106–113CAS 

    Google Scholar 
    Cushman SA, Landguth EL (2010) Scale dependent inference in landscape genetics. Landsc Ecol 25:967–979
    Google Scholar 
    Cushman SA, Shirk A, Landguth EL (2012) Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landsc Ecol 27:369–380
    Google Scholar 
    Cushman SA, Shirk AJ, Landguth EL (2013) Landscape genetics and limiting factors. Conserv Genet 14:263–274
    Google Scholar 
    Cushman SA, McRae BH, McGarigal K (2015) Basics of landscape ecology: an introduction to landscapes and population processes for landscape geneticists. In: Balkhenol N, Cushman S, Storfer A, Waits L (Eds) Landscape genetics: concepts, methods, applications. Wiley, Ofxord, UK, p 11–34
    Google Scholar 
    Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Naturalist 168:486–499
    Google Scholar 
    Dalongeville A, Andrello M, Mouillot D, Lobreaux S, Fortin M, Lasram F et al. (2018) Geographic isolation and larval dispersal shape seascape genetic patterns differently according to spatial scale. Evol Appl 11:1437–1447CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dharmarajan G, Beasley JC, Fike JA, Rhodes OE (2014) Effects of landscape, demographic and behavioral factors on kin structure: testing ecological predictions in a mesopredator with high dispersal capability. Anim Conserv 17:225–234
    Google Scholar 
    Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214CAS 
    PubMed 

    Google Scholar 
    Dray S, Dufour A (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Soft 22:1–20
    Google Scholar 
    Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196:483–493
    Google Scholar 
    Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, et al. (2020) adespatial: multivariate multiscale spatial analysis. R package version 0.3-8. https://CRAN.R-project.org/package=adespatialEvans JS (2020) spatialEco. R package version 1.3-1, https://github.com/jeffreyevans/spatialEcoForester BR, Jones MR, Joost S, Landguth EL, Lasky JR (2016) Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol Ecol 25:104–120CAS 
    PubMed 

    Google Scholar 
    François O, Durand E (2010) Spatially explicit Bayesian clustering models in population genetics. Mol Ecol Resour 10:773–784PubMed 

    Google Scholar 
    Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508
    Google Scholar 
    Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140
    Google Scholar 
    Galpern P, Peres-Neto PR, Polfus J, Manseau M (2014) MEMGENE: Spatial pattern detection in genetic distance data. Methods Ecol Evolution 5:1116–1120
    Google Scholar 
    Galpern P, Manseau M, Hettinga P, Smith K, Wilson P (2012) Allelematch: an R package for identifying unique multilocus genotypes where genotyping error and missing data may be present. Mol Ecol Resour 12:771–778PubMed 

    Google Scholar 
    Guerrero J, Byrne AW, Lavery J, Presho E, Kelly G, Courcier EA et al. (2018) The population and landscape genetics of the European badger (Meles meles) in Ireland. Ecol Evol 8:10233–10246PubMed 
    PubMed Central 

    Google Scholar 
    Guillot G, Leblois R, Coulon A, Frantz AC (2009) Statistical methods in spatial genetics. Mol Ecol 18:4734–4756PubMed 

    Google Scholar 
    Hearn AJ, Cushman SA, Goossens B, Ross J, Macdonald EA, Hunter LTB et al. (2019) Predicting connectivity, population size and genetic diversity of Sunda clouded leopards across Sabah, Borneo. Landsc Ecol 34:275–290
    Google Scholar 
    Hein C, Moniem HEA, Wagner HH (2021) Can we compare effect size of spatial genetic structure between studies and species using moran eigenvector maps? Frontiers. Ecol Evol 9:612718
    Google Scholar 
    Jackson DA (1993) Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:2204–2214
    Google Scholar 
    Jackson ND, Fahrig L (2016) Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landsc Ecol 31:951–968
    Google Scholar 
    Janecka J, Jackson R, Yuquang Z et al. (2008) Population monitoring of snow leopards using noninvasive collection of scat samples: a pilot study. Anim Conserv 11:401–411
    Google Scholar 
    Janecka JE, Janecka JE, Yu-Guang Z, Di-Qiang L, Munkhtsog B, Bayaraa M et al. (2017) Range-wide snow leopard phylogeography supports three subspecies. J Hered 108:597–607PubMed 

    Google Scholar 
    Johansson Ö, Rauset G, Samelius G, McCarthy T, Andrén H, Tumursukh L et al. (2016) Land sharing is essential for snow leopard conservation. Biol Conserv 203:1–7
    Google Scholar 
    Johansson Ö, Koehler G, Rauset G, Samelius G, Andrén H, Mishra C et al. (2018) Sex-specific seasonal variation in puma and snow leopard home range utilization. Ecosphere 9(8):e02371. https://doi.org/10.1002/ecs2.2371.Article 

    Google Scholar 
    Johansson Ö, Ausilio G, Low M, Lkhagvajav P, Weckworth B, Sharma K (2021) The timing of breeding and independence for snow leopard females and their cubs. Mamm Biol 101:173–180
    Google Scholar 
    Jombart T (2008b) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CAS 
    PubMed 

    Google Scholar 
    Jombart T, Pontier D, Dufour AB (2009) Genetic markers in the playground of multivariate analysis. Heredity 102:330–341CAS 
    PubMed 

    Google Scholar 
    Jombart T, Devillard S, Dufour A-B, Pontier D (2008a) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:hdy200834
    Google Scholar 
    Jombart T (2017) An introduction to adegenet 2.1.0. https://github.com/thibautjombart/adegenet/wiki/TutorialsKarmacharya DB, Thapa K, Shrestha R, Dhakal M, Janecka JE (2011) Noninvasive genetic population survey of snow leopards (Panthera uncia) in Kangchenjunga conservation area, Shey Phoksundo National Park and surrounding buffer zones of Nepal. BMC Research Notes 4:516PubMed 
    PubMed Central 

    Google Scholar 
    Kaszta Ż, Cushman SA, Hearn AJ, Burnham D, Macdonald EA, Goossens B et al. (2019) Integrating Sunda clouded leopard (Neofelis diardi) conservation into development and restoration planning in Sabah (Borneo). Biol Conserv 235:63–76
    Google Scholar 
    Kaszta Ż, Cushman SA, Htun S, Naing H, Burnham D, Macdonald DW (2020) Simulating the impact of Belt and Road initiative and other major developments in Myanmar on an ambassador felid, the clouded leopard, Neofelis nebulosa. Landsc Ecol 35:727–746
    Google Scholar 
    Kindt R, Coe R (2005) Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF), Nairobi (Kenya). http://www.worldagroforestry.org/output/tree-diversity-analysisKorablev MP, Poyarkov AD, Karnaukhov AS, Zvychaynaya EYU, Kuksin AN, Malykh SV et al. (1776) Large-scale and fine-grain population structure and genetic diversity of snow leopards (Panthera uncia Schreber, 1776) from the northern and western parts of the range with an emphasis on the Russian population. Conserv Genet 22:397–410
    Google Scholar 
    Kuhn A, Bauman D, Darras H, Aron S (2017) Sex-biased dispersal creates spatial genetic structure in a parthenogenetic ant with a dependent-lineage reproductive system. Heredity 119:207–213CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Landguth E, Cushman S, Schwz M, Mckelvey K, Mury M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191CAS 
    PubMed 

    Google Scholar 
    Landguth EL, Cushman SA (2010) cdpop: A spatially explicit cost distance population genetics program. Mol Ecol Resour 10:156–161CAS 
    PubMed 

    Google Scholar 
    Landguth EL, Fedy BC, Oyler-Mccance SJ, Garey AL, Emel SL, Mumma M et al. (2012) Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Mol Ecol Resour 12:276–284
    Google Scholar 
    Legendre P, Oksanen J, ter Braak CJF (2011) Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol 2:269–277
    Google Scholar 
    Legendre P, Fortin M-J, Borcard D (2015) Should the Mantel test be used in spatial analysis? Methods Ecol Evol 6:1239–1247
    Google Scholar 
    Li J, Weckworth BV, McCarthy TM, Liang X, Liu Y, Xing R et al. (2020) Defining priorities for global snow leopard conservation landscapes. Biol Conserv 241:108387
    Google Scholar 
    Macdonald EA, Cushman SA, Landguth EL, Hearn AJ, Malhi Y, Macdonald DW (2018) Simulating impacts of rapid forest loss on population size, connectivity and genetic diversity of Sunda clouded leopards (Neofelis diardi) in Borneo. Plos One 13:e0196974PubMed 
    PubMed Central 

    Google Scholar 
    Manel S, Poncet BN, Legendre P, Gugerli F, Holderegger R (2010) Common factors drive adaptive genetic variation at different spatial scales in Arabis alpina. Mol Ecol 19:3824–35PubMed 

    Google Scholar 
    Mateo-Sánchez MC, Balkenhol N, Cushman S, Pérez T, Domínguez A, Saura S (2015) A comparative framework to infer landscape effects on population genetic structure: are habitat suitability models effective in explaining gene flow? Landscape Ecol 30:1405–1420
    Google Scholar 
    McCarthy TM, Fuller TK, Munkhtsog B (2005) Movements and activities of snow leopards in Southwestern Mongolia. Biol Conserv 124:527–537
    Google Scholar 
    McCarthy T, Mallon D, Jackson R, Zahler P, McCarthy K (2017) Panthera uncia. The IUCN red list of threatened species 2017: e.T22732A50664030. https://doi.org/10.2305/IUCN.UK.2017-2.RLTS.T22732A50664030.en. Accessed 29 June 2019Miquel C, Bellemain E, Poillot C, Bessiere J, Durand A, Taberlet P (2006) Quality indexes to assess the reliability of genotypes in studies using noninvasive sampling and multiple-tube approach. Mol Ecol Notes 6:985–988
    Google Scholar 
    Neel MC, McKelvey K, Ryman N, Lloyd MW, Bull RS, Allendorf FW et al. (2013) Estimation of effective population size in continuously distributed populations: there goes the neighborhood. Heredity 111:189–199CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. (2019) vegan: community ecology package. R package version 2.5-6. https://CRAN.R-project.org/package=vegancitatOyler-McCance SJ, Fedy BC, Landguth EL (2013) Sample design effects in landscape genetics. Conserv Genet 14:275–285
    Google Scholar 
    Paradis E (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26:419–420CAS 
    PubMed 

    Google Scholar 
    Patterson N, Price AL, Reich D (2006) Population structure and eigenanalysis. Plos Genet 2:e190PubMed 
    PubMed Central 

    Google Scholar 
    Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295
    Google Scholar 
    Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag 2:559–572
    Google Scholar 
    Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625PubMed 

    Google Scholar 
    Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259
    Google Scholar 
    Riordan P, Cushman SA, Mallon D, Shi K, Hughes J (2016) Predicting global population connectivity and targeting conservation action for snow leopard across its range. Ecography 39:419–426
    Google Scholar 
    Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMed 

    Google Scholar 
    Ruiz-Gonzalez A, Cushman SA, Madeira MJ, Randi E, Gómez-Moliner BJ (2015) Isolation by distance, resistance and/or clusters? Lessons learned from a forest-dwelling carnivore inhabiting a heterogeneous landscape. Mol Ecol 24:5110–5129PubMed 

    Google Scholar 
    Savary P, Foltête J, Moal H, Vuidel G, Garnier S (2021) Analysing landscape effects on dispersal networks and gene flow with genetic graphs. Mol Ecol Resour 21:1167–1185PubMed 

    Google Scholar 
    Schwartz MK, McKelvey KS (2008) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441
    Google Scholar 
    Shirk AJ, Cushman SA (2011) sGD: software for estimating spatially explicit indices of genetic diversity. Mol Ecol Resour 11:922–934CAS 
    PubMed 

    Google Scholar 
    Shirk AJ, Cushman SA (2014) Spatially-explicit estimation of Wright’s neighborhood size in continuous populations. Front Ecol Evolution 2:62
    Google Scholar 
    Shirk AJ, Landguth EL, Cushman SA (2020) The effect of gene flow from unsampled demes in landscape genetic analysis. Mol Ecol Resour 21:394–403PubMed 

    Google Scholar 
    Shirk AJ, Wallin DO, Cushman SA, Rice CG, Warheit KI (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619CAS 
    PubMed 

    Google Scholar 
    Shirk AJ, Landguth EL, Cushman SA (2017a) A comparison of regression methods for model selection in individual-based landscape genetic analysis. Mol Ecol Resour 18:55–67Shirk AJ, Landguth EL, Cushman SA (2017b) A comparison of individual-based genetic distance metrics for landscape genetics. Mol Ecol Resour 17:1308–1317Short-Bull RA, Cushman S, Mace R, Chilton T, Kendall K, Landguth E et al. (2011) Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol Ecol 20:1092–1107
    Google Scholar 
    Shrestha B, Kindlmann P (2020) Implications of landscape genetics and connectivity of snow leopard in the Nepalese Himalayas for its conservation. Sci Rep 10:19853CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stekhoven DJ (2013) missForest: nonparametric missing value imputation using random forest. R package version 1.4Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514PubMed 

    Google Scholar 
    Wagner HH, Fortin M-J (2012) A conceptual framework for the spatial analysis of landscape genetic data. Conserv Genet 14:253–261
    Google Scholar 
    Wagner HH, Fortin MJ (2016) Basics of spatial data analysis: linking landscape and genetic data for landscape genetic studies. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP, eds. Landscape genetics: concepts, methods, applications, 1st ed. John Wiley and Sons Ltd. Oxford, UK. pp. 77–98Wahlund S (1928) Composition of populations and correlation appearances viewed in relation to the studies of inheritance. Hereditas 11:65–106
    Google Scholar 
    Wan HY, Cushman SA, Ganey JL (2019) Improving habitat and connectivity model predictions with multi-scale resource selection functions from two geographic areas. Landsc Ecol 34:503–519
    Google Scholar 
    Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landsc Ecol 25:1601–1612
    Google Scholar 
    Weckworth B (2021) Snow leopard (Panthera uncia) genetics: the knowledge gaps, needs, and implications for conservation. J Indian I Sci 101:279–290
    Google Scholar 
    Wollenberg AL, van den (1977) Redundancy analysis. An alternative for canonical correlation analysis. Psychometrika 42:207–219
    Google Scholar 
    Wright S (1943) Isolation by distance. Genetics 28:114–138CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31:39–59CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu S, Qinye Y, Du Z (2003) Delineation of eco-geographic regional system of China. J Geogr Sci 13:309
    Google Scholar 
    Zeller KA, Jennings MK, Vickers TW, Ernest HB, Cushman SA, Boyce WM (2018) Are all data types and connectivity models created equal? Validating common connectivity approaches with dispersal data. Divers Distrib 24:868–879
    Google Scholar 
    Zhang Y, Hacker C, Zhang Y, Xue Y, Wu L, Dai Y et al. (2019) An analysis of genetic structure of snow leopard populations in Sanjiang-Yuan and Qilianshan National Parks. Acta Theriologica Sin 39:442–449
    Google Scholar  More

  • in

    Root-associated fungal community reflects host spatial co-occurrence patterns in a subtropical forest

    1.Bever JD, Mangan SA, Alexander HM. Maintenance of plant species diversity by pathogens. Annu Rev Ecol Evol Syst. 2015;46:305–25.
    Google Scholar 
    2.Peay KG. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu Rev Ecol Evol Syst. 2016;47:143–64.
    Google Scholar 
    3.Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science. 2020;367:eaba1223.CAS 
    PubMed 

    Google Scholar 
    4.Bever JD, Dickie IA, Facelli E, Facelli JM, Klironomos J, Moora M, et al. Rooting theories of plant community ecology in microbial interactions. Trends Ecol Evol. 2010;25:468–78.PubMed 
    PubMed Central 

    Google Scholar 
    5.Bever JD, Platt TG, Morton ER. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu Rev Microbiol. 2012;66:265–83.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Ke PJ, Miki T. Incorporating the soil environment and microbial community into plant competition theory. Front Microbiol. 2015;6:1066.PubMed 
    PubMed Central 

    Google Scholar 
    7.Mangan SA, Schnitzer SA, Herre EA, Mack KM, Valencia MC, Sanchez EI, et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature. 2010;466:752–5.CAS 
    PubMed 

    Google Scholar 
    8.Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science. 2017;355:181–4.CAS 
    PubMed 

    Google Scholar 
    9.Teste FP, Kardol P, Turner BL, Wardle DA, Zemunik G, Renton M, et al. Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science. 2017;355:173–6.CAS 
    PubMed 

    Google Scholar 
    10.Semchenko M, Leff JW, Lozano YM, Saar S, Davison J, Wilkinson A, et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci Adv. 2018;4:eaau4578.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Chen L, Swenson NG, Ji N, Mi X, Ren H, Guo L, et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science. 2019;366:124–8.CAS 
    PubMed 

    Google Scholar 
    12.LaManna JA, Walton ML, Turner BL, Myers JA. Negative density dependence is stronger in resource-rich environments and diversifies communities when stronger for common but not rare species. Ecol Lett. 2016;19:657–67.PubMed 

    Google Scholar 
    13.Eppinga MB, Baudena M, Johnson DJ, Jiang J, Mack KM, Strand AE, et al. Frequency-dependent feedback constrains plant community coexistence. Nat Ecol Evol. 2018;2:1403–7.PubMed 

    Google Scholar 
    14.Brundrett MC. Coevolution of roots and mycorrhizas of land plants. New Phytol. 2002;154:275–304.PubMed 

    Google Scholar 
    15.van der Linde S, Suz LM, Orme CDL, Cox F, Andreae H, Asi E, et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature. 2018;558:243–8.PubMed 

    Google Scholar 
    16.Schroeder JW, Martin JT, Angulo DF, Razo IAD, Barbosa JM, Perea R, et al. Host plant phylogeny and abundance predict root‐associated fungal community composition and diversity of mutualists and pathogens. J Ecol. 2019;107:1557–66.
    Google Scholar 
    17.Jiang J, Karen CA, Mara B, Maarten BE, James AE, James DB. Pathogens and mutualists as joint drivers of host species coexistence and turnover: implications for plant competition and succession. Am Nat. 2020;195:591–602.
    Google Scholar 
    18.Schroeder JW, Dobson A, Mangan SA, Petticord DF, Herre EA. Mutualist and pathogen traits interact to affect plant community structure in a spatially explicit model. Nat Commun. 2020;11:2204.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Gilbert GS, Webb CO. Phylogenetic signal in plant pathogen‐host range. Proc Natl Acad Sci USA. 2007;104:4979–83.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Liu X, Liang M, Etienne RS, Wang Y, Staehelin C, Yu S. Experimental evidence for a phylogenetic Janzen‐Connell effect in a subtropical forest. Ecol Lett. 2012;15:111–8.PubMed 

    Google Scholar 
    21.Liang M, Liu X, Etienne RS, Huang F, Wang Y, Yu S. Arbuscular mycorrhizal fungi counteract the Janzen‐Connell effect of soil pathogens. Ecology. 2015;96:562–74.PubMed 

    Google Scholar 
    22.Benítez MS, Hersh MH, Vilgalys R, Clark JS. Pathogen regulation of plant diversity via effective specialization. Trends Ecol Evol. 2013;28:705–11.PubMed 

    Google Scholar 
    23.Klironomos J, Zobel M, Tibbett M. Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytol. 2011;189:366–70.PubMed 

    Google Scholar 
    24.van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Eco Lett. 2008;11:296–310.
    Google Scholar 
    25.Wiegand T, Moloney KA. Rings, circles, and null‐models for point pattern analysis in ecology. Oikos. 2004;104:209–29.
    Google Scholar 
    26.Perry GL, Miller BP, Enright NJ. A comparison of methods for the statistical analysis of spatial point patterns in plant ecology. Plant Ecol. 2006;187:59–82.
    Google Scholar 
    27.Law R, Illian J, Burslem DF, Gratzer G, Gunatilleke CV, Gunatilleke IA. Ecological information from spatial patterns of plants: insights from point process theory. J Ecol. 2009;97:616–28.
    Google Scholar 
    28.Liang M, Liu X, Parker IM, Johnson D, Zheng Y, Luo S, et al. Soil microbes drive phylogenetic diversity-productivity relationships in a subtropical forest. Sci Adv. 2019;5:eaax5088.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Chen Y, Jia P, Cadotte MW, Wang P, Liu X, Qi Y, et al. Rare and phylogenetically distinct plant species exhibit less diverse root-associated pathogen communities. J Ecol. 2019;107:1226–37.
    Google Scholar 
    30.Peters HA. Neighbour‐regulated mortality: the influence of positive and negative density dependence on tree populations in species‐rich tropical forests. Ecol Lett. 2003;6:757–65.
    Google Scholar 
    31.Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, et al. Random forests for classification in ecology. Ecology. 2007;88:2783–92.PubMed 

    Google Scholar 
    32.Kattge J, Diaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, et al. TRY – a global database of plant traits. Glob Chang Biol. 2011;17:2905–35.PubMed Central 

    Google Scholar 
    33.Davey ML, Heegaard E, Halvorsen R, Ohlson M, Kauserud H. Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytol. 2012;195:844–56.CAS 
    PubMed 

    Google Scholar 
    34.Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
    Google Scholar 
    35.Leff JW, Bardgett RD, Wilkinson A, Jackson BG, Pritchard WJ, Jonathan R, et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 2018;12:1794–805.PubMed 
    PubMed Central 

    Google Scholar 
    36.Wang Z, Jiang Y, Deane DC, He F, Shu W, Liu Y. Effects of host phylogeny, habitat and spatial proximity on host specificity and diversity of pathogenic and mycorrhizal fungi in a subtropical forest. New Phytol. 2019;223:462–74.PubMed 

    Google Scholar 
    37.Zhao Z, Li X, Liu MF, Merckx VS, Saunders RM, Zhang D. Specificity of assemblage, not fungal partner species, explains mycorrhizal partnerships of mycoheterotrophic Burmannia plants. ISME J. 2021;15:1614–27.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Peay KG, Baraloto C, Fine PV. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 2013;7:1852–61.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Barberán A, McGuire KL, Wolf JA, Jones FA, Wright SJ, Turner BL, et al. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest. Ecol Lett. 2015;18:1397–405.PubMed 

    Google Scholar 
    40.LaManna JA, Belote RT, Burkle LA, Catano CP, Myers JA. Negative density dependence mediates biodiversity-productivity relationships across scales. Nat Ecol Evol. 2017;1:1107–15.PubMed 

    Google Scholar 
    41.Peh KS, Lewis SL, Lloyd J. Mechanisms of monodominance in diverse tropical tree‐dominated systems. J Ecol. 2011;99:891–8.
    Google Scholar 
    42.Johnson DJ, Clay K, Phillips RP. Mycorrhizal associations and the spatial structure of an old-growth forest community. Oecologia. 2018;186:195–204.PubMed 

    Google Scholar 
    43.Waud M, Busschaert P, Lievens B, Jacquemyn H. Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecol. 2016;20:155–65.
    Google Scholar 
    44.Põlme S, Bahram M, Jacquemyn H, Kennedy P, Kohout P, Moora M, et al. Host preference and network properties in biotrophic plant–fungal associations. New Phytol. 2018;217:1230–9.PubMed 

    Google Scholar 
    45.Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev. 2012;26:39–60.
    Google Scholar 
    46.Bever JD, Westover KM, Antonovics J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol. 1997;85:561–73.
    Google Scholar 
    47.Bardgett RD, Wardle DA. Aboveground-belowground linkages: biotic interactions, ecosystem processes, and global change. New York: Oxford University Press; 2010.48.Kandlikar GS, Johnson CA, Yan X, Kraft NJ, Levine JM. Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecol Lett. 2019;22:1178–91.PubMed 

    Google Scholar 
    49.Swenson NG, Iida Y, Howe R, Wolf A, Umaña MN, Petprakob K, et al. Tree co-occurrence and transcriptomic response to drought. Nat Commun. 2017;8:1996.PubMed 
    PubMed Central 

    Google Scholar 
    50.Řezáčová V, Gryndler M, Bukovská P, Šmilauer P, Jansa J. Molecular community analysis of arbuscular mycorrhizal fungi—contributions of PCR primer and host plant selectivity to the detected community profiles. Pedobiologia. 2016;59:179–87.
    Google Scholar 
    51.Hart MM, Reader RJ, Klironomos JN. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol. 2003;18:418–23.
    Google Scholar 
    52.Taylor DL, Walters WA, Lennon NJ, Bochicchio J, Krohn A, Caporaso JG, et al. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Appl Environ Microbiol. 2016;82:7217–26.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Lekberg Y, Vasar M, Bullington LS, Sepp SK, Antunes PM, Bunn R, et al. More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers? New Phytol. 2018;220:971–6.PubMed 

    Google Scholar 
    54.Egan CP, Rummel A, Kokkoris V, Klironomos J, Lekberg Y, Hart MM. Using mock communities of arbuscular mycorrhizal fungi to evaluate fidelity associated with Illumina sequencing. Fungal Ecol. 2018;33:52–64.
    Google Scholar  More

  • in

    Viral community analysis in a marine oxygen minimum zone indicates increased potential for viral manipulation of microbial physiological state

    1.Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.CAS 
    PubMed 

    Google Scholar 
    2.Suttle CA. Viruses in the sea. Nature. 2005;437:356–61.CAS 
    PubMed 

    Google Scholar 
    3.Breitbart M. Marine viruses: truth or dare. Ann Rev Mar Sci. 2012;4:425–48.PubMed 

    Google Scholar 
    4.Brum JR, Sullivan MB. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol. 2015;13:147–59.5.Breitbart M, Thompson L, Suttle C, Sullivan M. Exploring the vast diversity of marine viruses. Oceanography. 2007;20:135–9.
    Google Scholar 
    6.Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. Photosynth Res. 2015;126:71–97.7.Sharon I, Tzahor S, Williamson S, Shmoish M, Man-Aharonovich D, Rusch DB, et al. Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J. 2007;1:492–501.CAS 
    PubMed 

    Google Scholar 
    8.Roux S, Hawley AK, Torres Beltran M, Scofield M, Schwientek P, Stepanauskas R, et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. Elife. 2014;3:e03125.9.Trubl G, Jang H Bin, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems. 2018;3:e00076–18.10.Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature. 2016;537:689–93.CAS 
    PubMed 

    Google Scholar 
    11.Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ Pacific Ocean Virome. ISME J. 2015;9:472–84.CAS 
    PubMed 

    Google Scholar 
    12.Gazitúa MC, Vik DR, Roux S, Gregory AC, Bolduc B, Widner B, et al. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. ISME J. 2021;15:981–98.PubMed 

    Google Scholar 
    13.Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Ocean plankton. Patterns and ecological drivers of ocean viral communities. Science. 2015;348:1261498.PubMed 

    Google Scholar 
    14.Cassman N, Prieto-Davó A, Walsh K, Silva GGZ, Angly F, Akhter S, et al. Oxygen minimum zones harbour novel viral communities with low diversity. Environ Microbiol. 2012;14:3043–65.CAS 
    PubMed 

    Google Scholar 
    15.Vik D, Gazitúa MC, Sun CL, Zayed AA, Aldunate M, Mulholland MR, et al. Genome-resolved viral ecology in a marine oxygen minimum zone. Environ Microbiol. 2021;23:2858–74.16.Mara P, Vik D, Pachiadaki MG, Suter EA, Poulos B, Taylor GT, et al. Viral elements and their potential influence on microbial processes along the permanently stratified Cariaco Basin redoxcline. ISME J. 2020;14:3079–92.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Tiano L, Garcia-Robledo E, Dalsgaard T, Devol AH, Ward BB, Ulloa O, et al. Oxygen distribution and aerobic respiration in the north and south eastern tropical Pacific oxygen minimum zones. Deep Res Part I Oceanogr Res Pap. 2014;94:173–83.CAS 

    Google Scholar 
    18.Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades. Nature. 2017;542:335–9.CAS 
    PubMed 

    Google Scholar 
    19.Paulmier A, Ruiz-Pino D. Oxygen minimum zones (OMZs) in the modern ocean. Prog Oceanogr. 2009;80:113–28.
    Google Scholar 
    20.Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol. 2012;10:381–94.CAS 
    PubMed 

    Google Scholar 
    21.Bertagnolli AD, Stewart FJ. Microbial niches in marine oxygen minimum zones. Nat Rev Microbiol. 2018;1:723–9.22.Codispoti LA, Friedrich GE, Packard TT, Glover HE, Kelly PJ, Spinrad RW, et al. High nitrite levels off northern Peru: a signal of instability in the marine denitrification rate. Science. 1986;233:1200 LP–1202.
    Google Scholar 
    23.Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, et al. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science. 2010;330:1375–8.CAS 
    PubMed 

    Google Scholar 
    24.Hurwitz BL, Westveld AH, Brum JR, Sullivan MB. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc Natl Acad Sci USA. 2014;111:10714 LP–10719.
    Google Scholar 
    25.Garcia-Robledo E, Padilla CC, Aldunate M, Stewart FJ, Ulloa O, Paulmier A, et al. Cryptic oxygen cycling in anoxic marine zones. Proc Natl Acad Sci USA. 2017;114:8319–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Lavin P, González B, Santibáñez JF, Scanlan DJ, Ulloa O. Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environ Microbiol Rep. 2010;2:728–38.CAS 
    PubMed 

    Google Scholar 
    27.Ulloa O, Canfield DE, DeLong EF, Letelier RM, Stewart FJ. Microbial oceanography of anoxic oxygen minimum zones. Proc Natl Acad Sci USA. 2012;109:15996–6003.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Bettarel Y, Sime-Ngando T, Amblard C, Dolan J. Viral activity in two contrasting lake ecosystems. Appl Environ Microbiol. 2004;70:2941–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Weinbauer MG, Brettar I, Höfle MG. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters. Limnol Oceanogr. 2003;48:1457–65.
    Google Scholar 
    30.Heldal M, Bratbak G. Production and decay of viruses in aquatic environments. Mar Ecol Prog Ser. 1991;72:205–12.
    Google Scholar 
    31.Proctor LM, Fuhrman JA. Viral mortality of marine bacteria and cyanobacteria. Nature. 1990;343:60–62.
    Google Scholar 
    32.Brum JR, Morris J, Décima M, Stukel M. Mortality in the oceans: causes and consequences. In Eco-DAS IX Symposium Proceedings. Association for the Sciences of Limnology and Oceanography; 2014.33.Colombet J, Sime-Ngando T. Seasonal depth-related gradients in virioplankton: lytic activity and comparison with protistan grazing potential in Lake Pavin (France). Micro Ecol. 2012;64:67–78.
    Google Scholar 
    34.Colombet J, Sime-Ngando T, Cauchie HM, Fonty G, Hoffmann L, Demeure G. Depth-related gradients of viral activity in Lake Pavin. Appl Environ Microbiol. 2006;72:4440–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Brum J, Steward G, Jiang S, Jellison R. Spatial and temporal variability of prokaryotes, viruses, and viral infections of prokaryotes in an alkaline, hypersaline lake. Aquat Micro Ecol. 2005;41:247–60.
    Google Scholar 
    36.Brum JR, Schenck RO, Sullivan MB. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses. ISME J. 2013;7:1738–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Kauffman KM, Hussain FA, Yang J, Arevalo P, Brown JM, Chang WK, et al. A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. Nature. 2018;554:118–22.CAS 
    PubMed 

    Google Scholar 
    38.Székely AJ, Breitbart M. Single-stranded DNA phages: from early molecular biology tools to recent revolutions in environmental microbiology. FEMS Microbiol Lett. 2016;363:27.
    Google Scholar 
    39.Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: Mining viral signal from microbial genomic data. PeerJ. 2015;2015:e985.
    Google Scholar 
    40.Hurwitz BL, Sullivan MB. The Pacific Ocean Virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS One. 2013;8:e57355.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Aldunate M, Henríquez-Castillo C, Ji Q, Lueders-Dumont J, Mulholland MR, Ward BB, et al. Nitrogen assimilation in picocyanobacteria inhabiting the oxygen-deficient waters of the eastern tropical North and South Pacific. Limnol Oceanogr. 2020;65:437–53.CAS 

    Google Scholar 
    42.Solonenko SA, Ignacio-Espinoza JC, Alberti A, Cruaud C, Hallam S, Konstantinidis K, et al. Sequencing platform and library preparation choices impact viral metagenomes. BMC Genom. 2013;14:320.CAS 

    Google Scholar 
    43.Duhaime MB, Deng L, Poulos BT, Sullivan MB. Towards quantitative metagenomics of wild viruses and other ultra-low concentration DNA samples: a rigorous assessment and optimization of the linker amplification method. Environ Microbiol. 2012;14:2526–37.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Ganesh S, Bristow LA, Larsen M, Sarode N, Thamdrup B, Stewart FJ. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J. 2015;9:2682–96.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Allen LZ, Allen EE, Badger JH, McCrow JP, Paulsen IT, Elbourne LD, et al. Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic. ISME J. 2012;6:1403–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Hurwitz BL, U’Ren JM. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol. 2016;31:161–8.47.Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 

    Google Scholar 
    48.Ignacio-Espinoza JC, Sullivan MB. Phylogenomics of T4 cyanophages: lateral gene transfer in the ‘core’ and origins of host genes. Environ Microbiol. 2012;14:2113–26.CAS 
    PubMed 

    Google Scholar 
    49.Crummett LT, Puxty RJ, Weihe C, Marston MF, Martiny JBH. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology. 2016;499:219–29.CAS 
    PubMed 

    Google Scholar 
    50.Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 2006;4:e234.PubMed 
    PubMed Central 

    Google Scholar 
    51.Bragg JG, Chisholm SW. Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene. PLoS One. 2008;3:e3550.PubMed 
    PubMed Central 

    Google Scholar 
    52.Puxty RJ, Evans DJ, Millard AD, Scanlan DJ. Energy limitation of cyanophage development: implications for marine carbon cycling. ISME J. 2018;12:1273–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.White AE, Foster RA, Benitez-Nelson CR, Masqué P, Verdeny E, Popp BN, et al. Nitrogen fixation in the Gulf of California and the Eastern Tropical North Pacific. Prog Oceanogr. 2013;109:1–17.
    Google Scholar 
    54.Jayakumar A, Chang BX, Widner B, Bernhardt P, Mulholland MR, Ward BB. Biological nitrogen fixation in the oxygen-minimum region of the eastern tropical North Pacific ocean. ISME J. 2017;11:2356–67.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Fuchsman CA, Devol AH, Saunders JK, McKay C, Rocap G. Niche partitioning of the N cycling microbial community of an offshore oxygen deficient zone. Front Microbiol. 2017;8:2384.PubMed 
    PubMed Central 

    Google Scholar 
    56.Zhang Y, Pohlmann EL, Halbleib CM, Ludden PW, Roberts GP. Effect of P(II) and its homolog GlnK on reversible ADP-ribosylation of dinitrogenase reductase by heterologous expression of the Rhodospirillum rubrum dinitrogenase reductase ADP-ribosyl transferase-dinitrogenase reductase-activating glycohydrolase regula. J Bacteriol. 2001;183:1610–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Tong W-H. Distinct iron-sulfur cluster assembly complexes exist in the cytosol and mitochondria of human cells. EMBO J. 2000;19:5692–5700.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Py B, Barras F. Building Feg-S proteins: bacterial strategies. Nat Rev Microbiol. 2010;8:436–46.59.Eichhorn E, van der Ploeg JR, Kertesz MA, Leisinger T. Characterization of alpha-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J Biol Chem. 1997;272:23031–6.CAS 
    PubMed 

    Google Scholar 
    60.Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation. Curr Opin Microbiol. 2005;8:253–9.61.Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science. 2014;344:757 LP–760.
    Google Scholar 
    62.Callbeck CM, Lavik G, Ferdelman TG, Fuchs B, Gruber-Vodicka HR, Hach PF, et al. Oxygen minimum zone cryptic sulfur cycling sustained by offshore transport of key sulfur oxidizing bacteria. Nat Commun. 2018;9:1729.PubMed 
    PubMed Central 

    Google Scholar 
    63.Carolan MT, Smith JM, Beman JM. Transcriptomic evidence for microbial sulfur cycling in the eastern tropical North Pacific oxygen minimum zone. Front Microbiol. 2015;6:334.PubMed 
    PubMed Central 

    Google Scholar 
    64.Ganesh S, Bertagnolli AD, Bristow LA, Padilla CC, Blackwood N, Aldunate M, et al. Single cell genomic and transcriptomic evidence for the use of alternative nitrogen substrates by anammox bacteria. ISME J. 2018;1:2706–22.65.Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20.PubMed 
    PubMed Central 

    Google Scholar 
    66.Lill R, Dutkiewicz R, Elsässer HP, Hausmann A, Netz DJA, Pierik AJ, et al. Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes. Biochim Biophys Acta Mol Cell Res. 2006;1763:652–67.67.Fontecave M. Iron-sulfur clusters: ever-expanding roles. Nat Chem Biol. 2006;2:171–4.CAS 
    PubMed 

    Google Scholar 
    68.Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta Bioenerg. 2013;1827:455–69.CAS 

    Google Scholar 
    69.Xu XM, Møller SG. Iron-sulfur clusters: Biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal. 2011;15:271–307.PubMed 

    Google Scholar 
    70.Miller HK, Auerbuch V. Bacterial iron-sulfur cluster sensors in mammalian pathogens. Metallomics. 2015;7:943–56.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Sharon I, Battchikova N, Aro E-M, Giglione C, Meinnel T, Glaser F, et al. Comparative metagenomics of microbial traits within oceanic viral communities. ISME J. 2011;5:1178–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Loiseau L, Ollagnier-de-Choudens S, Nachin L, Fontecave M, Barras F. Biogenesis of Fe-S cluster by the bacterial suf system. SufS and SufE form a new type of cysteine desulfurase. J Biol Chem. 2003;278:38352–9.CAS 
    PubMed 

    Google Scholar 
    73.Outten FW, Wood MJ, Muñoz FM, Storz G. The SufE protein and the SufBCD complex enhance SufS cysteine desulfurase activity as part of a sulfur transfer pathway for Fe-S cluster assembly in Escherichia coli. J Biol Chem. 2003;278:45713–9.CAS 
    PubMed 

    Google Scholar 
    74.Ayala-Castro C, Saini A, Outten FW. Fe-S cluster assembly pathways in bacteria. Microbiol Mol Biol Rev. 2008;72:110–25.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Shepard EM, Boyd ES, Broderick JB, Peters JW. Biosynthesis of complex iron-sulfur enzymes. Curr Opin Chem Biol. 2011;15:319–27.76.Lill R. Function and biogenesis of iron–sulphur proteins. Nature. 2009;460:831–8.CAS 
    PubMed 

    Google Scholar 
    77.Seidler A, Jaschkowitz K, Wollenberg M. Incorporation of iron-sulphur clusters in membrane-bound proteins. Biochem Soc Trans. 2001;29:418–21.CAS 
    PubMed 

    Google Scholar 
    78.Buchanan BB, Schürmann P, Wolosiuk RA, Jacquot J-P. The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. Photosynth Res. 2002;73:215–22.CAS 
    PubMed 

    Google Scholar 
    79.Dubnau D, Losick R. Bistability in bacteria. Mol Microbiol. 2006;61:564–72.CAS 
    PubMed 

    Google Scholar 
    80.Resnekov O, Driks A, Losick R. Identification and characterization of sporulation gene spoVS from Bacillus subtilis. J Bacteriol. 1995;177:5628–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Sonenshein AL. Bacteriophages: how bacterial spores capture and protect phage DNA. Curr Biol. 2006;16:R14–R16.82.Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 2005;3:0790–806.CAS 

    Google Scholar 
    83.Fortier L-C, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013;4:354–65.PubMed 
    PubMed Central 

    Google Scholar 
    84.Mobberley J, Nathan Authement R, Segall AM, Edwards RA, Slepecky RA, Paul JH. Lysogeny and sporulation in Bacillus isolates from the Gulf of Mexico. Appl Environ Microbiol. 2010;76:829–42.CAS 
    PubMed 

    Google Scholar 
    85.Brüssow H, Canchaya C, Hardt W-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004;68:560–602.PubMed 
    PubMed Central 

    Google Scholar 
    86.Meinhart A, Alonso JC, Strater N, Saenger W. Crystal structure of the plasmid maintenance system /: functional mechanism of toxin and inactivation by 2 2 complex formation. Proc Natl Acad Sci. 2003;100:1661–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Schuster CF, Bertram R. Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett. 2013;340:73–85.88.Kawano M. Divergently overlapping cis -encoded antisense RNA regulating toxin-antitoxin systems from E. coli. RNA Biol. 2012;9:1520–7.CAS 
    PubMed 

    Google Scholar 
    89.Smith MA, Bidochka MJ. Bacterial fitness and plasmid-loss: the importance of culture conditions and plasmid size. Can J Microbiol. 1998;44:351–5.CAS 
    PubMed 

    Google Scholar 
    90.Summers DK. The kinetics of plasmid loss. Trends Biotechnol. 1991;9: 273–8.91.Persad AK, Williams ML, LeJeune JT. Rapid loss of a green fluorescent plasmid in Escherichia coli O157:H7. AIMS Microbiol. 2017;3:872–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Modi SR, Lee HH, Spina CS, Collins JJ. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature. 2013;499:219–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Hargreaves KR, Kropinski AM, Clokie MR. Bacteriophage behavioral ecology. Bacteriophage. 2014;4:e29866.PubMed 
    PubMed Central 

    Google Scholar 
    94.Naught LE, Gilbert S, Imhoff R, Snook C, Beamer L, Tipton P. Allosterism and cooperativity in Pseudomonas aeruginosa GDP-mannose dehydrogenase. Biochemistry. 2002;41:9637–45.CAS 
    PubMed 

    Google Scholar 
    95.Dong C, Flecks S, Unversucht S, Haupt C, van Pee K-H, Naismith JH. Tryptophan 7-halogenase (PrnA) structure suggests a mechanism for regioselective chlorination. Science. 2005;309:2216–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Fouces R, Mellado E, Diez B, Barredo JL. The tylosin biosynthetic cluster from Streptomyces fradiae: genetic organization of the left region. Microbiology. 1999;145:855–68.CAS 
    PubMed 

    Google Scholar 
    97.Heacock-Kang Y, Zarzycki-Siek J, Sun Z, Poonsuk K, Bluhm AP, Cabanas D, et al. Novel dual regulators of Pseudomonas aeruginosa essential for productive biofilms and virulence. Mol Microbiol. 2018;109:401–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Kurtov D, Kinghorn JR, Unkles SE. The Aspergillus nidulans panB gene encodes ketopantoate hydroxymethyltransferase, required for biosynthesis of pantothenate and Coenzyme A. Mol Gen Genet. 1999;262:115–20.CAS 
    PubMed 

    Google Scholar 
    99.Huisjes R, Card DJ. Methods for assessment of pantothenic acid (Vitamin B5). In: Harrington D, editor. Laboratory assessment of vitamin status. London, UK; San Diego, CA, USA; Cambridge, MA, USA; Oxford, UK : Elsevier Inc.; 2019. p. 265–299. https://doi.org/10.1038/s41396-021-01143-1.100.Leonardi R, Jackowski S. Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus. 2007;2:2.101.Begley TP, Kinsland C, Strauss E. The biosynthesis of coenzyme a in bacteria. Vitam Horm. 2001;61:157–71.CAS 
    PubMed 

    Google Scholar 
    102.Cameron B, Guilhot C, Blanche F, Cauchois L, Rouyez MC, Rigault S, et al. Genetic and sequence analyses of a Pseudomonas denitrificans DNA fragment containing two cob genes. J Bacteriol. 1991;173:6058–65.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Doxey AC, Kurtz DA, Lynch MD, Sauder LA, Neufeld JD. Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. ISME J. 2015;9:461–71.CAS 
    PubMed 

    Google Scholar 
    104.Heal KR, Qin W, Amin SA, Devol AH, Moffett JW, Armbrust EV, et al. Accumulation of NO2-cobalamin in nutrient-stressed ammonia-oxidizing archaea and in the oxygen deficient zone of the eastern tropical North Pacific. Environ Microbiol Rep. 2018;10:453–7.CAS 
    PubMed 

    Google Scholar 
    105.Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CC, et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ. 2017;5:e3428.PubMed 
    PubMed Central 

    Google Scholar 
    106.Streisinger G, Emrich J, Stahl MM. Chromosome structure in phage T4, III. Terminal redundancy and length determination. Proc Natl Acad Sci USA. 1967;57:292–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Mahmoudabadi G, Milo R, Phillips R. Energetic cost of building a virus. Proc Natl Acad Sci USA. 2017;114:E4324–E4333.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Brum J. 5m intervals of CTD profiles from R/V New Horizon cruise NH1315 in the Eastern Tropical North Pacific (ETNP) during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-08-31 (2020). https://doi.org/10.26008/1912/bco-dmo.822818.1.109.Noble RT, Fuhrman JA. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat Micro Ecol. 1998;14:113–8.
    Google Scholar 
    110.Brum J. Estimated abundances of viruses and bacteria determined in samples collected in the Eastern Tropical North Pacific (ETNP) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-02 (2020). https://doi.org/10.26008/1912/bco-dmo.823094.1.111.Binder B. Reconsidering the relationship between vitally induced bacterial mortality and frequency of infected cells. Aquat Micro Ecol. 1999;18:207–15.
    Google Scholar 
    112.Brum J. Estimated frequency of lytic viral infection from samples collected in the Eastern Tropical North Pacific oxygen minimum zone region (ETNP OMZ) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-01 (2020). https://doi.org/10.26008/1912/bco-dmo.822914.1.113.Abramoff MD, Magalhaes PJ, Ram SJ. Image processing with ImageJ. Biophotonics Int 2004;11:36–42.114.Brum J. Morphotypes, capsid widths, and tail lengths of viruses from samples collected in the Eastern Tropical North Pacific oxygen minimum zone region (ETNP OMZ) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-02 (2020). https://doi.org/10.26008/1912/bco-dmo.823131.1.115.John SG, Mendez CB, Deng L, Poulos B, Kauffman AKM, Kern S, et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ Microbiol Rep. 2011;3:195–202.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    116.Duhaime MB, Sullivan MB. Ocean viruses: Rigorously evaluating the metagenomic sample-to-sequence pipeline. Virology. 2012;434:181–6.CAS 
    PubMed 

    Google Scholar 
    117.Brum J. Accession numbers of viral metagenomes from samples collected in the Eastern Tropical North Pacific oxygen minimum zone region (ETNP OMZ) on R/V New Horizon cruise NH1315 during June 2013. Biological and Chemical Oceanography Data Management Office (BCO-DMO). (Version 1) Version Date 2020-09-04 (2020) https://doi.org/10.26008/1912/bco-dmo.823295.1.118.Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.CAS 
    PubMed 

    Google Scholar 
    119.Delcher AL, Salzberg SL, Phillippy AM. Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinforma. 2003; Chapter 10: Unit 10.3.120.Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D230.121.Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:1002195.
    Google Scholar 
    122.Team RCR. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.123.Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag, New York: 2016.124.Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB et al. vegan: Community Ecology Package. R package version 2.5-2. 2013 http://RForge.R-project.org/projects/vegan/.125.Wilkinson L. venneuler: Venn and Euler diagrams. R package version 1.1-0. 2011 https://CRAN.Rproject.org/package=venneuler.126.Harrell FE, With contributions from Charles Dupont and many others. Hmisc: Harrell Miscellaneous. R package version 4.3-0. 2019 https://CRAN.R-project.org/package=Hmisc.127.Wei T, Simko V. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84). 2017. Available from https://github.com/taiyun/corrplot.128.Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang H Bin, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.129.Sturges HA. The choice of a class interval. J Am Stat Assoc. 1926;21:65–66.130.Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–2.CAS 
    PubMed 

    Google Scholar  More

  • in

    The rumen microbiome inhibits methane formation through dietary choline supplementation

    1.Cubasch, U. et al. Climate Change 2013: the physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Vol 1 (eds Stocker, T. F. et al.) 119–158 (Cambridge University Press, 2013).
    Google Scholar 
    2.Jackson, R. B. et al. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab9ed2 (2020).Article 

    Google Scholar 
    3.Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623. https://doi.org/10.5194/essd-12-1561-2020 (2020).ADS 
    Article 

    Google Scholar 
    4.Hobson, P. N. & Stewart, C. S. The rumen Microbial Ecosystem (Blackie Academic & Professional, 1997).Book 

    Google Scholar 
    5.Henderson, G. et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567. https://doi.org/10.1038/srep14567 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Li, Y. et al. The complete genome sequence of the methanogenic archaeon ISO4-H5 provides insights into the methylotrophic lifestyle of a ruminal representative of the Methanomassiliicoccales. Stand. Genom. Sci. 11, 59. https://doi.org/10.1186/s40793-016-0183-5 (2016).Article 

    Google Scholar 
    7.Lang, K. et al. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl. Environ. Microbiol. 81, 1338–1352. https://doi.org/10.1128/AEM.03389-14 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Hoehler, T., Losey, N. A., Gunsalus, R. P. & McInerney, M. J. In Biogenesis of Hydrocarbons (eds Stams, A. & Sousa, D.) 1–26 (Springer, 2018).
    Google Scholar 
    9.Neill, A. R., Grime, D. W. & Dawson, R. M. C. Conversion of choline methyl groups through trimethylamine into methane in the rumen. Biochem. J. 170, 529–535. https://doi.org/10.1042/bj1700529 (1978).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Erdman, R. A. & Sharma, B. K. Effect of dietary rumen-protected choline in lactating dairy cows. J. Dairy Sci. 74, 1641–1647. https://doi.org/10.3168/jds.S0022-0302(91)78326-4 (1991).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Sharma, B. K. & Erdman, R. A. Effects of dietary and abomasally infused choline on milk production responses of lactating dairy cows. J. Nutr. 119, 248–254. https://doi.org/10.1093/jn/119.2.248 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Soliva, C. & Hess, H. In Measuring Methane Production from Ruminants: Measuring Methane Emission of Ruminants by In Vitro and In Vivo Techniques (eds Makkar, H. P. & Vercoe, P. E.) 15–31 (Springer, 2007).Chapter 

    Google Scholar 
    13.Craciun, S. & Balskus, E. P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. PNAS 109, 21307–21312. https://doi.org/10.1073/pnas.1215689109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Jameson, E. et al. Anaerobic choline metabolism in microcompartments promotes growth and swarming of Proteus mirabilis. Environ. Microbiol. 18, 2886–2898. https://doi.org/10.1111/1462-2920.13059 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Herring, T. I., Harris, T. N., Chowdhury, C., Mohanty, S. K. & Bobik, T. A. A bacterial microcompartment is used for choline fermentation by Escherichia coli 536. J. Bacteriol. 200, e00764-e817. https://doi.org/10.1128/JB.00764-17 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.EFSA. Scientific Opinion on safety and efficacy of choline chloride as a feed additive for all animal species. EFSA J. 9, 2353 (2011).
    Google Scholar 
    17.Lewis, D. J. Ammonia toxicity in the ruminant. J. Agric. Sci. 55, 111–117 (1960).CAS 
    Article 

    Google Scholar 
    18.Hogan, J. P. Absorption of ammonia through rumen of sheep. Aust. J. Biol. Sci. 14, 448–450. https://doi.org/10.1071/Bi9610448 (1961).CAS 
    Article 

    Google Scholar 
    19.Sprott, G. D. & Patel, G. B. Ammonia toxicity in pure cultures of methanogenic bacteria. Syst. Appl. Microbiol. 7, 358–363 (1986).CAS 
    Article 

    Google Scholar 
    20.Lewis, D. Ammonia toxicity in the ruminant. J. Agric. Sci. 55(1), 111–117 (1960).CAS 
    Article 

    Google Scholar 
    21.Ungerfeld, E. M., Rust, S. R. & Burnett, R. Increases in microbial nitrogen production and efficiency in vitro with three inhibitors of ruminal methanogenesis. Can. J. Microbiol. 53, 496–503. https://doi.org/10.1139/W07-008 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Lundgren, B. R., Sarwar, Z., Pinto, A., Ganley, J. G. & Nomura, C. T. Ethanolamine catabolism in Pseudomonas aeruginosa PAO1 is regulated by the enhancer-binding protein EatR (PA4021) and the alternative sigma factor RpoN. J. Bacteriol. 198, 2318–2329. https://doi.org/10.1128/JB.00357-16 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Rychlik, J. L., LaVera, R. & Russell, J. B. Amino acid deamination by ruminal Megasphaera elsdenii strains. Curr. Microbiol. 45, 340–345. https://doi.org/10.1007/s00284-002-3743-4 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Park, K. & Lee, H. Effects of nitrogen gas flushing in comparison with argon on rumen fermentation characteristics in in vitro studies. J. Anim. Sci. Technol. 62, 52–57. https://doi.org/10.5187/jast.2020.62.1.52 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Hobson, P. N., Summers, R., Postgate, J. R. & Ware, D. A. Nitrogen fixation in the rumen of a living sheep. J. Gen. Microbiol. 77, 225–226. https://doi.org/10.1099/00221287-77-1-225 (1973).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Harada, N., Nishiyama, M. & Matsumoto, S. Inhibition of methanogens increases photo-dependent nitrogenase activities in anoxic paddy soil amended with rice straw. FEMS Microbiol. Ecol. 35, 231–238. https://doi.org/10.1111/j.1574-6941.2001.tb00808.x (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Haaker, H. & Klugkist, J. The bioenergetics of electron transport to nitrogenase. J FEMS Microbiol. Lett. 46, 57–71 (1987).CAS 
    Article 

    Google Scholar 
    28.Edgren, T. & Nordlund, S. The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J. Bacteriol. 186, 2052–2060 (2004).CAS 
    Article 

    Google Scholar 
    29.Igai, K. et al. Nitrogen fixation and nifH diversity in human gut microbiota. Sci. Rep. 6, 31942. https://doi.org/10.1038/srep31942 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Ungerfeld, E. M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Front. Microbiol. 6, 37. https://doi.org/10.3389/fmicb.2015.00037 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Leahy, S. C. et al. The complete genome sequence of Methanobrevibacter sp. AbM4. Stand. Genom. Sci. 8, 215–227. https://doi.org/10.4056/sigs.3977691 (2013).CAS 
    Article 

    Google Scholar 
    32.Hoedt, E. C. et al. Differences down-under: Alcohol-fueled methanogenesis by archaea present in Australian macropodids. ISME J. 10, 2376–2388. https://doi.org/10.1038/ismej.2016.41 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Ungerfeld, E. M. & Kohn, R. A. In Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress (eds Sejrsen, K. et al.) 55–85 (Wageningen Academic Publishers, 2006).
    Google Scholar 
    34.van Zijderveld, S. M. et al. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93, 5856–5866. https://doi.org/10.3168/jds.2010-3281 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Lan, W. & Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 654, 1270–1283. https://doi.org/10.1016/j.scitotenv.2018.11.180 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Loubinoux, J., Bronowicki, J. P., Pereira, I. A., Mougenel, J. L. & Faou, A. E. Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol. Ecol. 40, 107–112. https://doi.org/10.1111/j.1574-6941.2002.tb00942.x (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Gould, D. H., Cummings, B. A. & Hamar, D. W. In vivo indicators of pathologic ruminal sulphide production in steers with diet-induced polioencephalomalacia. J. Vet. Diagn. Invest. 9, 72–76. https://doi.org/10.1177/104063879700900113 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Anderson, R. C., Rasmussen, M. A., Jensen, N. S. & Allison, M. J. Denitrobacterium detoxificans gen. nov., sp. nov., a ruminal bacterium that respires on nitrocompounds. Int. J. Syst. Evol. Microbiol. 50(Pt 2), 633–638. https://doi.org/10.1099/00207713-50-2-633 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Anderson, R. C. et al. Ruminal fermentation of anti-methanogenic nitrate- and nitro-containing forages in vitro. Front. Vet. Sci. 3, 62. https://doi.org/10.3389/fvets.2016.00062 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Zhang, Z. W. et al. Nitrocompounds as potential methanogenic inhibitors in ruminant animals: A review. Anim. Feed Sci. Tech. 236, 107–114. https://doi.org/10.1016/j.anifeedsci.2017.12.010 (2018).CAS 
    Article 

    Google Scholar 
    41.Marounek, M., Fliegrova, K. & Bartos, S. Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii. Appl. Environ. Microbiol. 55, 1570–1573. https://doi.org/10.1128/AEM.55.6.1570-1573.1989 (1989).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Hackmann, T. J., Ngugi, D. K., Firkins, J. L. & Tao, J. Genomes of rumen bacteria encode atypical pathways for fermenting hexoses to short-chain fatty acids. Environ. Microbiol. 19, 4670–4683. https://doi.org/10.1111/1462-2920.13929 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Janssen, P. H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160, 1–22. https://doi.org/10.1016/j.anifeedsci.2010.07.002 (2010).CAS 
    Article 

    Google Scholar 
    44.Greening, C. et al. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME J. 13, 2617–2632. https://doi.org/10.1038/s41396-019-0464-2 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Gilmour, M., Flint, H. J. & Mitchell, W. J. Multiple lactate dehydrogenase activities of the rumen bacterium Selenomonas ruminantium. Microbiol. 140(Pt 8), 2077–2084. https://doi.org/10.1099/13500872-140-8-2077 (1994).CAS 
    Article 

    Google Scholar 
    46.Chowdhury, N. P., Kahnt, J. & Buckel, W. Reduction of ferredoxin or oxygen by flavin-based electron bifurcation in Megasphaera elsdenii. FEBS J. 282, 3149–3160. https://doi.org/10.1111/febs.13308 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Weghoff, M. C., Bertsch, J. & Muller, V. A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ. Microbiol. 17, 670–677. https://doi.org/10.1111/1462-2920.12493 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Hernandez, J., Benedito, J. L., Abuelo, A. & Castillo, C. Ruminal acidosis in feedlot: from aetiology to prevention. Sci. World J. 2014, 702572. https://doi.org/10.1155/2014/702572 (2014).Article 

    Google Scholar 
    49.Vuotto, C., Barbanti, F., Mastrantonio, P. & Donelli, G. Lactobacillus brevis CD2 inhibits Prevotella melaninogenica biofilm. Oral Dis. 20, 668–674. https://doi.org/10.1111/odi.12186 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.van Lingen, H. J. et al. Thermodynamic driving force of hydrogen on rumen microbial metabolism: A theoretical investigation. PLoS One 11, e0161362. https://doi.org/10.1371/journal.pone.0161362 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Ungerfeld, E. M., Aedo, M. F., Martinez, E. D. & Saldivia, M. Inhibiting methanogenesis in rumen batch cultures did not increase the recovery of metabolic hydrogen in microbial amino acids. Microorganisms 7, 155. https://doi.org/10.3390/microorganisms7050115 (2019).CAS 
    Article 

    Google Scholar 
    52.Ng, F. et al. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms. Environ. Microbiol. 18, 3010–3021. https://doi.org/10.1111/1462-2920.13155 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Soliva, C. R., Amelchanka, S. L., Duval, S. M. & Kreuzer, M. Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec). Brit. J. Nutr. 106, 114–122. https://doi.org/10.1017/S0007114510005684 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Terranova, M. et al. Increasing the proportion of hazel leaves in the diet of dairy cows reduced methane yield and excretion of nitrogen in volatile form, but not milk yield. Anim. Feed Sci. Technol. 276, 114796. https://doi.org/10.1016/j.anifeedsci.2020.114790 (2021).CAS 
    Article 

    Google Scholar 
    55.Ehrlich, G. G., Goerlitz, D. F., Bourell, J. H., Eisen, G. V. & Godsy, E. M. Liquid chromatographic procedure for fermentation product analysis in the identification of anaerobic bacteria. Appl. Environ. Microbiol. 42, 878–885 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Bica, R. et al. Nuclear magnetic resonance to detect rumen metabolites associated with enteric methane emissions from beef cattle. Sci. Rep. 10, 5578. https://doi.org/10.1038/s41598-020-62485-y (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Henderson, G. et al. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS One 8, e74787. https://doi.org/10.1371/journal.pone.0074787 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Kittelmann, S. et al. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8, e47879. https://doi.org/10.1371/journal.pone.0047879 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Comm. 10, 1014. https://doi.org/10.1038/s41467-019-08844-4 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Paoli, L. et al. Uncharted biosynthetic potential of the ocean microbiome. bioRxiv https://doi.org/10.1101/2021.03.24.436479 (2021).Article 

    Google Scholar 
    61.Bushnell, B. BBMap: A fast, accurate, splice-aware aligner. in 9th Annual Genomics of Energy & Environment Meeting. (Lawrence Berkeley National Lab (LBNL), Berkeley, CA, USA). https://www.osti.gov/servlets/purl/1241166 (2014).62.Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 27, 824–834. https://doi.org/10.1101/gr.213959.116 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Kang, D. D. et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359. https://doi.org/10.7717/peerj.7359 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055. https://doi.org/10.1101/gr.186072.114 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Seshadri, R. et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 36, 359–367. https://doi.org/10.1038/nbt.4110 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Stewart, R. D. et al. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 37, 953–961. https://doi.org/10.1038/s41587-019-0202-3 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119. https://doi.org/10.1186/1471-2105-11-119 (2010).CAS 
    Article 

    Google Scholar 
    69.Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acid Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60. https://doi.org/10.1038/nmeth.3176 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    72.Li, L., Stoeckert, C. J. Jr. & Roos, D. S. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189. https://doi.org/10.1101/gr.1224503 (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Allen, B., Drake, M., Harris, N. & Sullivan, T. Using KBase to assemble and annotate prokaryotic genomes. Curr. Protoc. Microbiol. 46, 1E 13 11-11E 13 18. https://doi.org/10.1002/cpmc.37 (2017).Article 

    Google Scholar 
    74.RStudio Team. R Studio: Integrated development environment for R. Version 1.4.1106 (2021).75.Oksanen, J. et al. The vegan package. Community Ecol. Pack. 10, 631–637 (2007).
    Google Scholar 
    76.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Insecticide resistance by a host-symbiont reciprocal detoxification

    Insects and bacteriaBean bugs were reared in petri dishes (90 mm in diameter and 20-mm high) at 25 °C under a long-day regimen (16-h light, 8-h dark) and fed with soybean seeds and distilled water containing 0.05% ascorbic acid (DWA). Burkholderia symbiont strain SFA119, a MEP-degrading strain conferring MEP resistant in the bean bug, and its GFP-(green fluorescent protein) labeled derivative, strain SJ586, were used in this study. The symbiont was cultured at 30 °C on YG medium (0.5% yeast extract, 0.4% glucose, and 0.1% NaCl). The GFP-labeled strain was constructed by the Tn7 mini-transposon system, as previously described31.Genome sequencingDNA was extracted from cultured cells of strain SFA1 by the phenol–chloroform extraction as previously described32. The DNA library for Illumina short reads (the mean insert size: 500 bp) was constructed by using the Covaris S2 ultrasonicator (Covaris) and the KAPA HyperPrep Kit (Kapa Biosystems). For the library construction for Nanopore long reads, Native Barcoding Expansion (EXP-NBD104, Oxford Nanopore Technologies) and the Ligation Sequencing Kit (SQK-LSK109, Oxford Nanopore Technologies) were used. The genome sequencing was performed with NextSeq using the 2 × 151-bp protocol (Illumina) and GridION using an R9.4.1 flow cell (Oxford Nanopore Technologies). The Illumina short reads were processed by using Sickle Ver 1.33 (available at https://github.com/najoshi/sickle) for removing the low-quality and shorter reads. After processing the Nanopore long-reads with Porechop Ver 0.2.3 (available at https://github.com/rrwick/Porechop) and Filtlong Ver 0.2.0 (available at https://github.com/rrwick/Filtlong), error correction was performed by using Canu Ver 1.833. These processed short- and long reads were assembled by using Unicycler Ver 0.4.734, resulting in the eight circular replicons (Supplementary Fig. 1). The assembled genome was annotated by DFAST Ver 1.1.035. After the homology searches of the protein sequences by blastp 2.5.0 + 36 against the COG database (PMID: 25428365), circular replicons were visualized with circos v 0.69-837. The chromosomes and plasmids were assigned according to the genome of Caballeronia (Burkholderia) cordobensis strain YI2338.Phylogenetic analysisNucleotide sequences of 16 S rRNA gene of representative Burkholderia spp. and outgroup species were aligned by using SINA v1.2.1139. Protein sequences of MEP-degrading genes (mpd, pnpB, and mhqA) and a plasmid-transfer gene (traH) on plasmid 2 were subjected to the blastp search against the nr database (downloaded in Jul. 2019) and top ~30 hit sequences were retrieved for each gene. Multiple sequencing alignments of each gene were constructed with L-INS-I of mafft v7.40740. Gap-including and ambiguous sites in the alignments were then removed. Unrooted maximum-likelihood (ML) phylogenetic trees were reconstructed with RAxML v8.2.341 using the GTR + Γ model (for 16 S rRNA gene) or the LG + Γ model42 (for other genes). The bootstrap values of 1000 replicates for all internal branches were calculated with a rapid bootstrapping algorithm43.Preparation of SFA1 cultures for RNA-seqBurkholderia symbiont SFA1 was precultured in minimal medium (20 mM phosphate buffer [pH 7.0], 0.01% yeast, 0.1% (NH4)2SO4, 0.02% NaCl, 0.01% MgSO4⋅7H2O, 0.005% CaCl2⋅2H2O, 0.00025% FeSO4⋅7H2O, and 0.00033% EDTA⋅2Na) containing 1.0 mM of MEP on a gyratory shaker (210 rpm) at 30 °C overnight, and subcultured in newly prepared MEP-containing minimal medium under the same conditions for 5 h. As a control, SFA1 was precultured in minimal medium containing 0.1% citrate overnight, and then the overnighter was subcultured in a newly prepared citrate-containing minimal medium under the same conditions for 10 h. The culture was mixed with an equal amount of RNAprotect Bacteria Regent (Qiagen, Valencia, CA, USA), then centrifuged to harvest the cells for the RNA-seq analysis.Preparation of midgut symbiont cells for RNA-seqThe oral administration of the symbiont strain SFA1 was performed as described19,44. The symbiont was inoculated to 2nd instar nymphs, and three days after molting to the 3rd instar, nymphs were transdermally administered with 1 µl of 0.2 µM or 20 µM of MEP (dissolved in acetone). One- or three days after the treatment, insects were dissected and the crypt-bearing symbiotic gut region was subjected to the RNA extraction and RNA-seq analysis. As a control, untreated insects were analyzed.RNA-seq analysisTotal RNA was extracted from triplicate samples from cultures by the hot-phenol method as previously described45 or from the midgut symbiont cells by using RNAiso Plus (Takara Bi, Kusatsu, Shiga, Japan) and the RNeasy mini kit (Qiagen). The extracted total RNA was purified by phenol–chloroform extraction and digestion by DNase (RQ1 RNase-Free DNase, Promega, Fitchburg, WI, USA) and repurified by using a RNeasy Mini Kit. The mRNA in the samples was further enriched by the RiboMinus Transcriptome Isolation Kit bacteria (Thermo Fisher Scientific, Waltham, MA, USA) and the RiboMinus Eukaryote Kit for RNA-Seq (Thermo Fisher Scientific), and purified by using an AMPure XP kit (Beckman Coulter, Brea, CA, USA). The cDNA libraries were constructed from approximately 100 ng of rRNA-depleted RNA samples by the use of a NextUltraRNA library prep kit (New England Biolabs, Ipswich, MA, USA). Size selection of cDNA (200–300 bp) and determination of the size distribution and concentration of the purified cDNA samples were performed as described previously46. In total, 21 cDNA libraries were constructed and sequenced by MiSeq (Illumina, Inc., San Diego, CA, USA). To ensure high sequence quality, the remaining sequencing adapters and the reads with a cutoff Phred score of 15 (for leading and tailing sequences, Phred score of >20) and a length of less than 80 bp in the obtained RNA-seq data were removed by the program Trimmomatic v0.30 using Illumina TruSeq3 adapter sequences for the clipping47. The remaining paired reads were analyzed by FastQC version 0.11.9 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) for quality control, and Bowtie2 ver. 2.2.248 for mapping on the symbiont genome (DDBJ/EMBL/GenBank accession: AP022305–AP022312). After the conversion of the output BAM files to BED files using the bamtobed program in BEDTools ver. 2.14.349, gene expression levels were calculated in TPM (transcripts per kilobase million) values by using in-house scripts46.Gene deletion and complementationMEP-degrading genes (mpd, pnpA1, and pnpA2) were deleted by the homologous-recombination-based deletion method using pK18mobsacB or pUC18, as previously described50,51. Primers used for the mutagenesis are listed in Supplementary Table 1. For mpd gene deletion, pK18mobsacB was used to construct a markerless mutant. For single deletion of pnpA1 and pnpA2 genes, pUC18 was used to substitute each gene locus with a kanamycin-resistance gene cassette. The double deletion of pnpA1 and pnpA2 genes was performed by substituting pnpA2 gene locus with a tetracycline-resistance gene cassette in the pnpA1-deletion mutant. Gene complementation of mpd was also performed by homologous recombination using plasmid pUC18 with primers listed in Supplementary Table 1. To investigate growth profiles of the wild-type SFA1, the gene-deletion mutants (Δmpd, ΔpnpA1, ΔpnpA2, and ΔpnpA1/ΔpnpA2), and the mph-complement mutant (Δmpd/mpd+) in the MEP-containing minimal medium, the strains were precultured in minimal medium containing 1.0 mM MEP on a gyratory shaker (210 rpm) at 30 °C overnight, and then cultured in newly prepared MEP-containing minimal medium under the same condition. The growth of cultures was estimated by OD600 measurements. To confirm the basic growth abilities of the mutants, these bacterial strains were pre- and subcultured in minimal medium containing 0.1% glucose under the same conditions. These symbiont strains and mutants were inoculated to the bean bug as described above.Quantitative PCRSymbiont titers in the midgut crypts were evaluated by quantitative PCR (qPCR) of bacterial dnaA gene copies. The qPCR was performed by using a KAPA SYBR Fast qPCR Master Mix (Kapa Biosystems) and the LightCycler 96 System (Roche Applied Science) with the following primers: BSdnaA–F (5′-AGC GCG AGA TCA GAC GGT CGT CGA T-3′) and BSdnaA–R (5′-TCC GGC AAG TCG CGC ACG CA-3′).MEP treatment of insectsMEP treatment of R. pedestris was performed as previously described19. Soybean seeds were dipped in 0.2 mM MEP for 5 s and dried at room temperature. In each clean plastic container, 15 individuals of 3rd-instar nymphs were reared on three seeds of the MEP-treated soybean and DWA at 25 °C under the long-day regime, and the number of dead insects was counted 24 h after the treatments. The survival rate of the insects was analyzed under Fisher’s exact test by use of the program R ver. 3.6.3 (available at https://www.R-project.org/). Multiple comparisons were corrected by the Bonferroni method.Bactericidal activities of MEP and its degradation product 3M4NTo measure bactericidal activities of MEP and 3M4N on cultured cells of SFA1, 104 cells of log-phase growing bacteria were mixed with a defined concentration of MEP or 3M4N, and spotted on a YG agar plate. To measure the bactericidal activity against midgut crypt-colonizing cells, the symbiotic organs infected with SFA1 were dissected from 3rd-instar insects, homogenized in PBS, and purified by a 5-µm-size pore Syringe filter to harvest colonizing symbiont cells50. MEP or 3M4N was added to approximately 104 cells of the harvested cells and spotted on a YG agar plate. Bactericidal activities of the chemical compounds were then checked in 24 h after incubation at 30 °C.HPLC detection of in vitro and in vivo MEP-degrading activities of the symbiontTo determine in vitro MEP-degradation activity, cultured cells of SFA1 were prepared as above, and 106 cells were incubated at 25 °C in 200 µl of MEP solution (2 mM MEP in Tris-Hcl [pH 8.5] with 0.1% Triton X-100) in a 1.5-ml microtube. To determine in vivo MEP-degradation activity, the midgut of a 5th-instar insect infected with SFA1 was dissected, the posterior and anterior parts of the crypt-bearing symbiotic region were closed with 0.2-mm polyethylene fishline (Supplementary Fig. 6a), and incubated at 25 °C in 200 µl of the MEP solution. For the in vivo determination, 250 mM of trehalose, known as a major sugar source of insects’ hemolymph52, was added to the MEP solution to keep the tissue fresh. After incubation for different times, the reaction was stopped by adding 400 µl of methanol. After centrifugation, supernatants were subjected to high-performance liquid chromatography (HPLC) analyses to detect MEP and 3M4N, as previously reported21, and precipitated cells and tissues were subjected to DNA extraction and qPCR to estimate symbiont-cell numbers of each reaction.LC–ESI–MS detection of 3M4N in feces from 3M4N-fed insectsAn insect-rearing system for feeding 3M4N and collecting feces is shown in Supplementary Fig. 7. Insects were fed with DW or DW containing 10 mM 3M4N in a plastic container, in which the solution supplier was covered by 0.5-mm mesh, so that insects were able to drink the solution by probing with their proboscis, but did not directly touch the solution by their legs or body. Twenty insects were reared per container and their feces were accumulated on the bottom of the container for five days. The collected feces (DW- or 3M4N-treated) were suspended in 1 ml of MilliQ water, and the water-soluble fractions were extracted by thorough vortexing. Solids and insoluble fractions were removed from the suspension by centrifugation and subsequent filtration using a cellulose-acetate membrane (Φ, 0.20 μm, ADVANTEC, Tokyo, Japan). The resultant fraction was diluted 10-fold by MilliQ water and analyzed by liquid chromatography–electrospray-ionization mass spectrometry (LC–ESI–MS) according to a previous report53,54,55. HPLC was performed using the Nexera X2 system (Shimadzu, Kyoto, Japan) composed of LC-30AD pump, SPD-M30A photodiode-array detector, and SIL-30AC autosampler. Develosil HB ODS-UG column (ID 2.0 mm × L 75 mm, Nomura Chemical Co., Ltd, Aichi, Japan) was employed with a flow rate of 0.2 mL/min. The following gradient system was used for analysis of metabolites: MilliQ water (solvent A) and methanol (solvent B), 90% A and 10% B at 0–5 min, linear gradient from 90% A and 10% B to 20% A and 80% B at 5–15 min, 20% A and 80% B at 15–20 min, and 90% A and 10% B at 20–25 min. Retention time of 3M4N standard reagent was 14.2 min. Electrospray-ionization mass spectrometry (ESI–MS) in positive and negative ion modes was simultaneously performed using amaZon SL (Bruker, Billerica, MA, USA). 3M4N (MW = 153.14) standard showed a clear peak in negative mode at m/z of 151.53.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Whale-cams reveal how much they really eat

    Nature Video
    05 November 2021

    Whale-cams reveal how much they really eat

    Baleen whales consume twice as much krill as previously estimated.

    Sara Reardon

    0

    Sara Reardon

    Sara Reardon is a freelance writer in Bozeman, Montana.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Tagging whales with cameras and sensors has allowed researchers to calculate how much food these huge creatures are consuming. It’s the most accurate estimate yet and reveals an even more significant impact of whales on ocean ecosystems than was previously known.Read the paper here.

    doi: https://doi.org/10.1038/d41586-021-03026-z

    Related Articles

    Vikings were living in North America exactly a thousand years ago

    Strange patterns could be the world’s oldest animal fossil

    Divers are replanting reefs one coral at a time

    How cuttlefish wear their thoughts on their skin

    Swimming shrimp: Causing a stir

    Subjects

    Zoology

    Ecology

    Environmental sciences

    Latest on:

    Zoology

    Sponge cells hint at origins of nervous system
    News 05 NOV 21

    Baby bats try out their ‘sonar’ just after birth
    Research Highlight 27 OCT 21

    Ivory hunting drives evolution of tuskless elephants
    News 21 OCT 21

    Ecology

    Whales’ gigantic appetites, climate fears — the week in infographics
    News 05 NOV 21

    COP26 climate pledges: What scientists think so far
    News 05 NOV 21

    Baleen whale prey consumption based on high-resolution foraging measurements
    Article 03 NOV 21

    Environmental sciences

    Carbon implications of marginal oils from market-derived demand shocks
    Article 03 NOV 21

    For NGOs, article-processing charges sap conservation funds
    Correspondence 02 NOV 21

    Embrace open-source sensors for local climate studies
    Correspondence 02 NOV 21

    Jobs

    Postdoctoral Training Fellow

    Francis Crick Institute
    London, United Kingdom

    Head of GeMS

    Francis Crick Institute
    London, United Kingdom

    Postdoctoral scientist (m/f/div) to work on the comparative genomics of gutless marine oligochaetes

    Max Planck Institute for Marine Microbiology
    Bremen, Germany

    Postdoctoral Positions (m/f/div) in Protist Virology

    Max Planck Institute for Medical Research (MPIMF)
    Heidelberg, Germany More