More stories

  • in

    Microevolutionary dynamics show tropical valleys are deeper for montane birds of the Atlantic Forest

    1.Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Pyron, R. A., Alexander Pyron, R. & Wiens, J. J. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc. R. Soc. B Biol. Sci. 280, 20131622 (2013).Article 

    Google Scholar 
    3.Pyron, R. A. Temperate extinction in squamate reptiles and the roots of latitudinal diversity gradients. Glob. Ecol. Biogeogr. 23, 1126–1134 (2014).Article 

    Google Scholar 
    4.Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).Article 

    Google Scholar 
    6.Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. Biol. Sci. 278, 1823–1830 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    7.Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    8.Cadena, C. D. et al. Latitude, elevational climatic zonation and speciation in New World vertebrates. Proc. R. Soc. B Biol. Sci. 279, 194–201 (2012).Article 

    Google Scholar 
    9.Eo, S. H., Wares, J. P. & Carroll, J. P. Population divergence in plant species reflects latitudinal biodiversity gradients. Biol. Lett. 4, 382–384 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Polato, N. R. et al. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc. Natl Acad. Sci. USA 115, 12471–12476 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.McCain, C. M. Vertebrate range sizes indicate that mountains may be ‘higher’ in the tropics. Ecol. Lett. 12, 550–560 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Chan, W.-P. et al. Seasonal and daily climate variation have opposite effects on species elevational range size. Science 351, 1437–1439 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Shah, A. A. et al. Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Funct. Ecol. 31, 2118–2127 (2018).14.Kozak, K. H. & Wiens, J. J. Climatic zonation drives latitudinal variation in speciation mechanisms. Proc. Biol. Sci. 274, 2995–3003 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    15.Smith, B. T., Seeholzer, G. F., Harvey, M. G., Cuervo, A. M. & Brumfield, R. T. A latitudinal phylogeographic diversity gradient in birds. PLoS Biol. 15, e2001073 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Hewitt, G. The genetic legacy of the quaternary ice ages. Nature 405, 907–913 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Smith, B. T., Bryson, R. W. Jr, Houston, D. D. & Klicka, J. An asymmetry in niche conservatism contributes to the latitudinal species diversity gradient in New World vertebrates. Ecol. Lett. 15, 1318–1325 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Bull, R. A. S. et al. Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol. Ecol. 20, 1092–1107 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Peterman, W. E. ResistanceGA: an R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol. Evol. 9, 1638–1647 (2018).Article 

    Google Scholar 
    20.Burney, C. W. & Brumfield, R. T. Ecology predicts levels of genetic differentiation in neotropical birds. Am. Nat. 174, 358–368 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Kipp, F. A. Der Handflügel-Index als flugbiologisches Maß. Vogelwarte 20, 77–86 (1959).
    Google Scholar 
    22.Stotz, D. F., Fitzpatrick, J. W., Parker, T. A., III & Moskovits, D. K. Neotropical Birds: Ecology and Conservation (Univ. Chicago Press, 1996).23.Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Bradburd, G. S., Coop, G. M. & Ralph, P. L. Inferring continuous and discrete population genetic structure across space. Genetics 210, 33–52 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Batalha-Filho, H., Cabanne, G. S. & Miyaki, C. Y. Phylogeography of an Atlantic forest passerine reveals demographic stability through the last glacial maximum. Mol. Phylogenet. Evol. 65, 892–902 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Raposo do Amaral, F. et al. Rugged relief and climate promote isolation and divergence between two neotropical cold-associated birds. Evolution 75, 2371–2387 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Dunbar, M. B. & Brigham, R. M. Thermoregulatory variation among populations of bats along a latitudinal gradient. J. Comp. Physiol. B 180, 885–893 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Gaitán-Espitia, J. D. et al. Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient. J. Exp. Biol. 217, 4379–4386 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    30.Molina-Montenegro, M. A. & Naya, D. E. Latitudinal patterns in phenotypic plasticity and fitness-related traits: assessing the climatic variability hypothesis (CVH) with an invasive plant species. PLoS ONE 7, e47620 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Louthan, A. M., Doak, D. F. & Angert, A. L. Where and when do species interactions set range limits? Trends Ecol. Evol. 30, 780–792 (2015).PubMed 
    Article 

    Google Scholar 
    32.Macedo, G., Silva, M., do Amaral, F. R. & Maldonado-Coelho, M. Symmetrical discrimination despite weak song differentiation in 2 suboscine bird sister species. Behav. Ecol. 30, 1205–1215 (2019).Article 

    Google Scholar 
    33.Dhondt, A. A. Interspecific Competition in Birds (OUP, 2012).34.Freeman, B. G. Competitive interactions upon secondary contact drive elevational divergence in tropical birds. Am. Nat. 186, 470–479 (2015).PubMed 
    Article 

    Google Scholar 
    35.Zuloaga, J. & Kerr, J. T. Over the top: do thermal barriers along elevation gradients limit biotic similarity? Ecography 40, 478–486 (2017).Article 

    Google Scholar 
    36.Botero, C. A., Dor, R., McCain, C. M. & Safran, R. J. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Mol. Ecol. 23, 259–268 (2014).PubMed 
    Article 

    Google Scholar 
    37.Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Harvey, M. G. et al. The evolution of a tropical biodiversity hotspot. Science 370, 1343–1348 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Thom, G. et al. Climatic dynamics and topography control genetic variation in Atlantic Forest montane birds. Mol. Phylogenet. Evol. 148, 106812 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Rabosky, D. L. & Glor, R. E. Equilibrium speciation dynamics in a model adaptive radiation of island lizards. Proc. Natl Acad. Sci. USA 107, 22178–22183 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Weir, J. T. & Price, T. D. Limits to speciation inferred from times to secondary sympatry and ages of hybridizing species along a latitudinal gradient. Am. Nat. 177, 462–469 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Harvey, M. G. et al. Positive association between population genetic differentiation and speciation rates in New World birds. Proc. Natl Acad. Sci. USA 114, 6328–6333 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Eaton, D. A. R. & Overcast, I. ipyrad: interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592–2594 (2016).44.Harvey, M. G., Smith, B. T., Glenn, T. C., Faircloth, B. C. & Brumfield, R. T. Sequence capture versus restriction site associated DNA sequencing for shallow systematics. Syst. Biol. 65, 910–924 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Cumer, T. et al. Double-digest RAD-sequencing: do pre- and post-sequencing protocol parameters impact biological results? Mol. Genet. Genomics 296, 457–471 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Jombart, T. & Ahmed, I. adegenet 1.3–1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Gehara, M. et al. Estimating synchronous demographic changes across populations using hABC and its application for a herpetological community from northeastern Brazil. Mol. Ecol. 26, 4756–4771 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).Article 

    Google Scholar 
    51.Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).Article 

    Google Scholar 
    52.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).53.Clarke, R. T., Rothery, P. & Raybould, A. F. Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. J. Agric. Biol. Environ. Stat. 7, 361 (2002).Article 

    Google Scholar 
    54.Pavlidis, P., Laurent, S. & Stephan, W. msABC: a modification of Hudson’s ms to facilitate multi-locus ABC analysis. Mol. Ecol. Resour. 10, 723–727 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Csilléry, K., François, O. & Blum, M. G. B. abc: an R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 3, 475–479 (2012).Article 

    Google Scholar 
    56.Orme, D. et al. The caper package: comparative analysis of phylogenetics and evolution in R. R. Package Version 5, 1–36 (2013).
    Google Scholar 
    57.Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Blomberg, S. P., Garland, T. Jr & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Pavoine, S. adiv: An r package to analyse biodiversity in ecology. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13430 (2020).Article 

    Google Scholar  More

  • in

    Local adaptations of Mediterranean sheep and goats through an integrative approach

    1.Vigne, J.-D. Early domestication and farming: What should we know or do for a better understanding?. Anthropozoologica 50(2), 123–150. https://doi.org/10.5252/az2015n2a5 (2015).Article 

    Google Scholar 
    2.Zeder, M. A. Animal domestication in the Zagros: An update and directions for future research. MOM Édit. 49(1), 243–277 (2008).
    Google Scholar 
    3.Sponenberg, D. P. & Bixby, D. E. Managing Breeds for a Secure Future: Strategies for Breeders and Breed Associations (ALBC, 2007).
    Google Scholar 
    4.Taberlet, P. et al. Are cattle, sheep, and goats endangered species?. Mol. Ecol. 17(1), 275–284. https://doi.org/10.1111/j.1365-294X.2007.03475.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Berihulay, H., Abied, A., He, X., Jiang, L. & Ma, Y. Adaptation mechanisms of small ruminants to environmental heat stress. Anim. Open Access J. MDPI 9(3), 75. https://doi.org/10.3390/ani9030075 (2019).Article 

    Google Scholar 
    6.Leroy, G., Baumung, R., Boettcher, P., Scherf, B. & Hoffmann, I. Review: Sustainability of crossbreeding in developing countries; definitely not like crossing a meadow…. Animal 10(2), 262–273. https://doi.org/10.1017/S175173111500213X (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Edea, Z., Dadi, H., Dessie, T. & Kim, K.-S. Genomic signatures of high-altitude adaptation in Ethiopian sheep populations. Genes Genomics 41(8), 973–981. https://doi.org/10.1007/s13258-019-00820-y (2019).Article 
    PubMed 

    Google Scholar 
    8.Wei, C. et al. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci. Rep. 6(1), 26770. https://doi.org/10.1038/srep26770 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Yang, J. et al. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol. Biol. Evol. 33(10), 2576–2592. https://doi.org/10.1093/molbev/msw129 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Kim, E. S. et al. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity 116(3), 255–264. https://doi.org/10.1038/hdy.2015.94 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Ciani, E. et al. On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population-genetic analysis tools. Genet. Sel. Evol. GSE 52, 1–14. https://doi.org/10.1186/s12711-020-00545-7 (2020).Article 

    Google Scholar 
    12.Colli, L. et al. Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes. Genet. Sel. Evol. GSE 50, 1–20. https://doi.org/10.1186/s12711-018-0422-x (2018).Article 

    Google Scholar 
    13.Kijas, J. W. et al. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS ONE 4(3), e4668. https://doi.org/10.1371/journal.pone.0004668 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Brisebarre, A. Races ovines, systèmes d’élevage et représentations des éleveurs. in Développement rural, environnement et enjeux territoriaux. Regards croisés Oriental marocain et Sud-Est tunisien (dir. Bonte, P., Elloumi, M., Guillaume, H. & Mahdi, M.) 63–78 (Cérès Ed., 2009).15.Hall, S. J. G. Livestock biodiversity as interface between people, landscapes and nature. People Nat. 1(3), 284–290. https://doi.org/10.1002/pan3.23 (2019).Article 

    Google Scholar 
    16.Caballero, R. et al. Grazing Systems and Biodiversity in Mediterranean Areas: Spain, Italy and Greece (Pastos, 2011).
    Google Scholar 
    17.Collantes, F. The demise of European Mountain Pastoralism: Spain 1500–2000. Nomadic People 13(2), 124–145 (2009).Article 

    Google Scholar 
    18.Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: An R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 17(1), 67–77. https://doi.org/10.1111/1755-0998.12592 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30(7), 1687–1699. https://doi.org/10.1093/molbev/mst063 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.FAO. The State of the World’s Animal Genetic Resources for Food and Agriculture, edited by B. Rischkowsky & D. Pilling. Rome. (2007).21.François, O. Running Structure-Like Population Genetic Analyses with R. R Tutorials in Population Genetics 1–9 (U. Grenoble-Alpes, 2016).
    Google Scholar 
    22.Dalongeville, A., Benestan, L., Mouillot, D., Lobreaux, S. & Manel, S. Combining six genome scan methods to detect candidate genes to salinity in the Mediterranean striped red mullet (Mullus surmuletus). BMC Genomics 19, 1–13. https://doi.org/10.1186/s12864-018-4579-z (2018).CAS 
    Article 

    Google Scholar 
    23.De Kort, H., Vandepitte, K., Mergeay, J., Mijnsbrugge, K. V. & Honnay, O. The population genomic signature of environmental selection in the widespread insect-pollinated tree species Frangula alnus at different geographical scales. Heredity 115(5), 415–425. https://doi.org/10.1038/hdy.2015.41 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Capblancq, T., Luu, K., Blum, M. G. B. & Bazin, E. Evaluation of redundancy analysis to identify signatures of local adaptation. Mol. Ecol. Resour. 18(6), 1223–1233. https://doi.org/10.1111/1755-0998.12906 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Bertolini, F. et al. Signatures of selection and environmental adaptation across the goat genome post-domestication. Genet. Sel. Evol. 50(1), 57. https://doi.org/10.1186/s12711-018-0421-y (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Fariello, M.-I. et al. Selection signatures in worldwide sheep populations. PLoS ONE 9(8), e103813. https://doi.org/10.1371/journal.pone.0103813 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Manunza, A. et al. Population structure of eleven Spanish ovine breeds and detection of selective sweeps with BayeScan and hapFLK. Sci. Rep. 6(1), 1–10. https://doi.org/10.1038/srep27296 (2016).CAS 
    Article 

    Google Scholar 
    28.Oget, C., Servin, B. & Palhière, I. Genetic diversity analysis of French goat populations reveals selective sweeps involved in their differentiation. Anim. Genet. 50(1), 54–63. https://doi.org/10.1111/age.12752 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Rochus, C. M. et al. Revealing the selection history of adaptive loci using genome-wide scans for selection: An example from domestic sheep. BMC Genomics 19(1), 71. https://doi.org/10.1186/s12864-018-4447-x (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Ruiz-Larrañaga, O. et al. Genomic selection signatures in sheep from the Western Pyrenees. Genet. Sel. Evol. GSE 50, 1–12. https://doi.org/10.1186/s12711-018-0378-x (2018).CAS 
    Article 

    Google Scholar 
    31.Wang, Q., Wang, D., Yan, G., Sun, L. & Tang, C. TRPC6 is required for hypoxia-induced basal intracellular calcium concentration elevation, and for the proliferation and migration of rat distal pulmonary venous smooth muscle cells. Mol. Med. Rep. 13(2), 1577–1585. https://doi.org/10.3892/mmr.2015.4750 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Wang, X. et al. Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Sci. Rep. 6, 38932. https://doi.org/10.1038/srep38932 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Graae, B. et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121, 3–19. https://doi.org/10.1111/j.1600-0706.2011.19694.x (2011).Article 

    Google Scholar 
    34.Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24(17), 4348–4370. https://doi.org/10.1111/mec.13322 (2015).Article 
    PubMed 

    Google Scholar 
    35.Qi, X. et al. The transcriptomic landscape of yaks reveals molecular pathways for high altitude adaptation. Genome Biol. Evol. 11(1), 72–85. https://doi.org/10.1093/gbe/evy264 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Yang, F., Wang, Q., Wang, M., He, K. & Pan, Y. Associations between gene polymorphisms in two crucial metabolic pathways and growth traits in pigs. Chin. Sci. Bull. 57(21), 2733–2740. https://doi.org/10.1007/s11434-012-5328-3 (2012).CAS 
    Article 

    Google Scholar 
    37.Schmidt, H. et al. Hypoxia tolerance, longevity and cancer-resistance in the mole rat Spalax—A liver transcriptomics approach. Sci. Rep. https://doi.org/10.1038/s41598-017-13905-z (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Tian, R. et al. Adaptive evolution of energy metabolism-related genes in hypoxia-tolerant mammals. Front. Genet. 8, 205. https://doi.org/10.3389/fgene.2017.00205 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Cheng, A. H. et al. SOX2-dependent transcription in clock neurons promotes the robustness of the central circadian pacemaker. Cell Rep. 26(12), 3191-3202.e8. https://doi.org/10.1016/j.celrep.2019.02.068 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Bai, L. et al. Hypoxic and cold adaptation insights from the Himalayan Marmot Genome. IScience 11, 519–530. https://doi.org/10.1016/j.isci.2018.11.034 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Stronen, A. V., Pertoldi, C., Iacolina, L., Kadarmideen, H. N. & Kristensen, T. N. Genomic analyses suggest adaptive differentiation of northern European native cattle breeds. Evol. Appl. https://doi.org/10.1111/eva.12783 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Lan, D. et al. Genetic diversity, molecular phylogeny, and selection evidence of Jinchuan Yak revealed by whole-genome resequencing. G3 (Bethesda, Md.) 8(3), 945–952. https://doi.org/10.1534/g3.118.300572 (2018).CAS 
    Article 

    Google Scholar 
    43.Chen, J. et al. Deletion of TRPC6 attenuates NMDA receptor-mediated Ca2+ entry and Ca2+-induced neurotoxicity following cerebral ischemia and oxygen-glucose deprivation. Front. Neurosci. 11, 138. https://doi.org/10.3389/fnins.2017.00138 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Munsch, T., Freichel, M., Flockerzi, V. & Pape, H.-C. Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proc. Natl. Acad. Sci. U. S. A. 100(26), 16065–16070. https://doi.org/10.1073/pnas.2535311100 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Duan, J. et al. Structure of the mouse TRPC4 ion channel. Nat. Commun. 9, 1–10. https://doi.org/10.1101/282715 (2018).CAS 
    Article 

    Google Scholar 
    46.Malczyk, M. et al. The role of transient receptor potential channel 6 channels in the pulmonary vasculature. Front. Immunol. 8, 707. https://doi.org/10.3389/fimmu.2017.00707 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Li, S. et al. Crucial role of TRPC6 in maintaining the stability of HIF-1α in glioma cells under hypoxia. J. Cell Sci. 128(17), 3317–3329. https://doi.org/10.1242/jcs.173161 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Xu, L. et al. Chronic hypoxia increases TRPC6 expression and basal intracellular Ca2+ concentration in rat distal pulmonary venous smooth muscle. PLoS ONE 9(11), e112007. https://doi.org/10.1371/journal.pone.0112007 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Deng, L. et al. Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders. Natl. Sci. Rev. 6(6), 1201–1222. https://doi.org/10.1093/nsr/nwz108 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Howard, J. T. et al. Beef cattle body temperature during climatic stress: A genome-wide association study. Int. J. Biometeorol. 58, 1665–1672. https://doi.org/10.1007/s00484-013-0773-5 (2013).Article 
    PubMed 

    Google Scholar 
    51.Kijas, J. W. et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 10(2), e1001258. https://doi.org/10.1371/journal.pbio.1001258 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Wei, C. et al. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genomics 16(1), 1–12. https://doi.org/10.1186/s12864-015-1384-9 (2015).Article 

    Google Scholar 
    53.Chen, M. et al. Genome-wide detection of selection signatures in Chinese indigenous Laiwu pigs revealed candidate genes regulating fat deposition in muscle. BMC Genet. 19, 1–9. https://doi.org/10.1186/s12863-018-0622-y (2018).CAS 
    Article 

    Google Scholar 
    54.Chen, C. et al. Copy number variation in the MSRB3 gene enlarges porcine ear size through a mechanism involving miR-584-5p. Genet. Sel. Evol. GSE 50, 1–18. https://doi.org/10.1186/s12711-018-0442-6 (2018).CAS 
    Article 

    Google Scholar 
    55.Webster, M. T. et al. Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds. BMC Genomics 16, 474. https://doi.org/10.1186/s12864-015-1702-2 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Mastrangelo, S. et al. Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PLoS ONE 14(6), e0209632. https://doi.org/10.1371/journal.pone.0209632 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Xi, Y. et al. HMGA2 promotes adipogenesis by activating C/EBPβ-mediated expression of PPARγ. Biochem. Biophys. Res. Commun. 472(4), 617–623. https://doi.org/10.1016/j.bbrc.2016.03.015 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Gou, X. et al. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Res. 24(8), 1308–1315. https://doi.org/10.1101/gr.171876.113 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Yuan, Z. et al. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim. Genet. 48(1), 55–66. https://doi.org/10.1111/age.12477 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Zhu, C. et al. GWAS and Post-GWAS to Identification of Genes Associated with Sheep Tail Fat Deposition. Retrieved from https://www.preprints.org/manuscript/201906.0093/v1 (2019).61.Allais-Bonnet, A. et al. Novel insights into the bovine polled phenotype and horn ontogenesis in Bovidae. PLoS ONE 8(5), e63512. https://doi.org/10.1371/journal.pone.0063512 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Johnston, S. E. et al. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol. Ecol. 20(12), 2555–2566. https://doi.org/10.1111/j.1365-294X.2011.05076.x (2011).Article 
    PubMed 

    Google Scholar 
    63.Oksenberg, N., Stevison, L., Wall, J. D. & Ahituv, N. Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLoS Genet. 9(1), e1003221. https://doi.org/10.1371/journal.pgen.1003221 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Hayashi, S. & Takeichi, M. Emerging roles of protocadherins: From self-avoidance to enhancement of motility. J. Cell Sci. 128(8), 1455–1464. https://doi.org/10.1242/jcs.166306 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Seong, E., Yuan, L. & Arikkath, J. Cadherins and catenins in dendrite and synapse morphogenesis. Cell Adhes. Migr. 9(3), 202–213. https://doi.org/10.4161/19336918.2014.994919 (2015).CAS 
    Article 

    Google Scholar 
    66.Shin, D.-H. et al. Deleted copy number variation of Hanwoo and Holstein using next generation sequencing at the population level. BMC Genomics 15(1), 240. https://doi.org/10.1186/1471-2164-15-240 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Zeng, X. Angus Cattle at High Altitude: Pulmonary Arterial Pressure, Estimated Breeding Value and Genome-Wide Association Study (PhD thesis). (Colorado State University, 2017).68.Benjelloun, B. Diversité des génomes et adaptation locale des petits ruminants d’un pays méditerranéen : le Maroc (PhD thesis) (Université Grenoble Alpes, France, 2015).69.Onzima, R. B. et al. Genome-wide characterization of selection signatures and runs of homozygosity in Ugandan Goat Breeds. Front. Genet. 9, 318. https://doi.org/10.3389/fgene.2018.00318 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Farzana, F. et al. Neurobeachin regulates glutamate- and GABA-receptor targeting to synapses via distinct pathways. Mol. Neurobiol. 53(4), 2112–2123. https://doi.org/10.1007/s12035-015-9164-8 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Nair, R. et al. Neurobeachin regulates neurotransmitter receptor trafficking to synapses. J. Cell Biol. 200(1), 61–80. https://doi.org/10.1083/jcb.201207113 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Alberto, F. J. et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 9, 1–9. https://doi.org/10.1038/s41467-018-03206-y (2018).CAS 
    Article 

    Google Scholar 
    73.Iranmehr, A. et al. Novel insight into the genetic basis of high-altitude pulmonary hypertension in Kyrgyz highlanders. Eur. J. Hum. Genet. EJHG 27(1), 150–159. https://doi.org/10.1038/s41431-018-0270-8 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    74.Newman, J. H. et al. High-altitude pulmonary hypertension in cattle (Brisket disease): Candidate genes and gene expression profiling of peripheral blood mononuclear cells. Pulmon. Circ. 1(4), 462–469. https://doi.org/10.4103/2045-8932.93545 (2011).CAS 
    Article 

    Google Scholar 
    75.Yang, X., Kong, Q., Zhao, C., Cai, Z., & Wang, M. New pathogenic variant of BMPR2 in pulmonary arterial hypertension. Cardiology in the Young, 29(4), 462–466. https://doi.org/10.1017/S1047951119000015 (2019).76.Anderson, L. et al. Bmp2 and Bmp4 exert opposing effects in hypoxic pulmonary hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298(3), R833–R842. https://doi.org/10.1152/ajpregu.00534.2009 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Ciani, E. et al. Genome-wide analysis of Italian sheep diversity reveals a strong geographic pattern and cryptic relationships between breeds. Anim. Genet. 45(2), 256–266. https://doi.org/10.1111/age.12106 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    78.ESRI. ArcGIS Desktop: Release 10 (Environmental Systems Research Institute, 2011).
    Google Scholar 
    79.Ruiz, M. & Ruiz, J. P. Ecological history of transhumance in Spain. Biol. Conserv. 37, 73–86 (1986).Article 

    Google Scholar 
    80.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    81.Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled seamless SRTM dataV4, International Centre for Tropical Agriculture (CIAT). Available from https://srtm.csi.cgiar.org (2008).82.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018). https://www.R-project.org.83.Brenning, A. Statistical geocomputing combining R and SAGA: The example of landslide susceptibility analysis with generalized additive models. In Hamburger Beitraege zur Physischen Geographie und Landschaftsoekologie (eds Böhner, J. et al.) 23–32 (SAGA, 2008).
    Google Scholar 
    84.Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd edn (Springer, 2013). http://www.asdar-book.org/.85.Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5(2), 9–13. https://CRAN.R-project.org/doc/Rnews/ (2005).86.Keitt, T. H., Bivand, R., Pebesma, E. & Rowlingson, B. rgdal: Bindings for the geospatial data abstraction library. Copy at http://www.tinyurl.com/h8w8n29 (2010).87.Le, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01 (2008).Article 

    Google Scholar 
    88.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559–575. https://doi.org/10.1086/519795 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6(8), 925–929. https://doi.org/10.1111/2041-210X.12382 (2015).Article 

    Google Scholar 
    91.Cattell, R. B. The Scree plot test for the number of factors. Multivar. Behav. Res. 1, 140–161 (1966).
    Google Scholar 
    92.Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U. S. A. 100, 9440–9445. https://doi.org/10.1073/pnas.1530509100 (2003).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    93.Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    94.Ablondi, M., Viklund, Å., Lindgren, G., Eriksson, S. & Mikko, S. Signatures of selection in the genome of Swedish warmblood horses selected for sport performance. BMC Genomics 20(1), 717. https://doi.org/10.1186/s12864-019-6079-1 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Avila, F., Mickelson, J. R., Schaefer, R. J. & McCue, M. E. Genome-wide signatures of selection reveal genes associated with performance in American Quarter Horse subpopulations. Front. Genet. 9, 249. https://doi.org/10.3389/fgene.2018.00249 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Chen, M. et al. Identification of selective sweeps reveals divergent selection between Chinese Holstein and Simmental cattle populations. Genet. Sel. Evol. 48(1), 76. https://doi.org/10.1186/s12711-016-0254-5 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Cheruiyot, E. K. et al. Signatures of selection in admixed dairy cattle in Tanzania. Front. Genet. 9, 607. https://doi.org/10.3389/fgene.2018.00607 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.López, M. E. et al. Multiple selection signatures in farmed Atlantic Salmon adapted to different environments across hemispheres. Front. Genet. 10, 901. https://doi.org/10.3389/fgene.2019.00901 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19(9), 1655–1664. https://doi.org/10.1101/gr.094052.109 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    100.Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 12, 246 (2011).Article 

    Google Scholar 
    101.Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & Francois, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).Article 

    Google Scholar 
    102.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15(5), 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    Article 

    Google Scholar  More

  • in

    Scientists say Australian plan to cull up to 10,000 wild horses doesn’t go far enough

    NEWS
    01 November 2021

    Scientists say Australian plan to cull up to 10,000 wild horses doesn’t go far enough

    A fast-growing population of feral horses in an alpine national park needs to be substantially reduced in number, researchers argue.

    Bianca Nogrady

    0

    Bianca Nogrady

    Bianca Nogrady is a freelance science journalist based in Sydney, Australia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Brumbies roam a wintry landscape near Yarangobilly in Australia’s Kosciuszko National Park.Credit: Perry Duffin/EPA-EFE/Shutterstock

    Up to 10,000 feral horses might be killed or removed from Australia’s largest alpine national park under a draft plan to control the rapidly growing population of non-native animals. Scientists have welcomed the idea of removing them, but are alarmed that the plan still allows for thousands to remain, threatening endangered species and habitats.The proposed cull, in Kosciuszko National Park, New South Wales (NSW), contrasts with a ban on lethal control measures in the United States, where large populations of wild horses known as mustangs also cause problems.
    Australian scientists call for ‘feral horse’ culls in alpine national park
    The draft plan, released last month, recommends reducing the park’s population of wild horses, known in Australia as brumbies, from an estimated 14,000 to about 3,000 through a combination of mostly ground-based shooting, as well as rounding up and rehoming.But the Australian Academy of Science argues that the number of horses should be rapidly reduced below 3,000. In an open letter with 69 signatories including scientists and institutions sent to the NSW environment minister on Friday, they note that “alpine wetlands continue to degrade even with very small numbers of feral horses. Kosciusko cannot begin to recover from drought, extensive bushfires and overgrazing if, as currently proposed, 3,000 feral horses remain.”Capitulating to lobby groupsResearchers say the draft plan capitulates to a small but vocal group that has lobbied the government to protect horses because of the animals’ heritage value. The plan would allow the remaining brumbies to roam over one-third of the park. That would include threatened alpine sphagnum bogs and the habitats of endangered and vulnerable species such as a fish called the stocky galaxias (Galaxias tantangara), the alpine tree frog (Litoria verreauxii alpina) and the broad-toothed rat (Mastacomys fuscus).Australia has no native mammals with hard hooves, and so horses do more damage to delicate vegetation and soils than soft-footed species, such as kangaroos and wallabies, as well as creating problems through over-grazing.
    Ancient DNA points to origins of modern domestic horses
    David Watson, an ecologist at Charles Sturt University in Albury–Wodonga — which straddles NSW and the neighbouring state of Victoria — says the NSW government “couldn’t have picked a worse place” to allow feral horses to roam. He makes the point that Australia’s alpine environment covers just 1% of the continent and has many endemic and threatened species that are found nowhere else.“These areas are just too fragile to have large herbivores trampling around in them,” adds Don Driscoll, an ecologist at Deakin University in Melbourne.Management of feral horses has been a long-running issue in Australia’s mountainous alpine region, which extends across three states. The Australian Capital Territory, which shares a border with Kosciuszko National Park, has a zero-tolerance approach to feral horses and uses methods including aerial shooting.Victoria also shares an alpine border with New South Wales, but its latest management plan, released on 1 November, recommends using culling and other measures to remove all feral horses in the most delicate alpine environments, and the steady reduction of numbers elsewhere.Brumbies and mustangsThe NSW state government had previously tried to control the brumbies by rehoming them on private land, but was never able to find a place for more than a few hundred horses a year, rehoming only about 1,000 since 2002. Jamie Pittock, an environmental scientist at the Australian National University in Canberra, says that the government’s acknowledgement that the exponentially growing population cannot be managed with rehoming alone is at least “a step forward”.But Watson says that 3,000 horses would breed rapidly enough that 1,000 would still need to be removed or killed every few years, meaning that even a small population will create a continuing headache in terms of damage to the park and removal requirements.
    Ancient horses went dark to hide in forests
    A spokesperson for the NSW National Parks and Wildlife Service said the proposed target of 3,000 horses would maintain the “environmental values of the park” and that removing horses from two thirds of the park would provide “effective protection” for threatened species. They did not respond to Nature’s specific questions about scientists’ criticisms of the draft plan.The United States is grappling with similar issues with mustangs in national parks, says ecosystem scientist John Derek Scasta at the University of Wyoming in Laramie. “The goal is to get within an agreed-upon number of horses that are sustainable,” he says, but not everybody agrees on what that number is.Because legislation bans culling, the US Bureau of Land Management instead relies on rounding up, sterilization, rehoming or paying to keep the horses on either private or federal holdings. But Scasta says rising numbers, and the costs of looking after them, might mean the United States has to face its own reckoning with wild horses in the not-too-distant future.

    doi: https://doi.org/10.1038/d41586-021-02977-7

    Related Articles

    Australian scientists call for ‘feral horse’ culls in alpine national park

    Ancient DNA points to origins of modern domestic horses

    Ancient horses went dark to hide in forests

    Subjects

    Government

    Policy

    Environmental sciences

    Conservation biology

    Latest on:

    Government

    Scientists’ fears of racial bias surge amid US crackdown on China ties
    News 29 OCT 21

    Why hundreds of scientists are weighing in on a high-stakes US abortion case
    News 26 OCT 21

    Brazil’s scientists face 90% budget cut
    Correspondence 25 OCT 21

    Policy

    UK research funding to grow slower than hoped
    News 28 OCT 21

    The advocacy frontier
    Outlook 27 OCT 21

    The fluoride wars rage on
    Outlook 27 OCT 21

    Environmental sciences

    Machine learning enables global solar-panel detection
    News & Views 27 OCT 21

    Air quality: WHO guidelines could deepen inequities
    Correspondence 26 OCT 21

    Marine urban sprawl is gobbling up Earth’s coastlines
    Research Highlight 26 OCT 21

    Jobs

    Epidemiologist / Postdoc

    German Cancer Research Center in the Helmholtz Association (DKFZ)
    Heidelberg, Germany

    PhD Student in Liquid Biopsy

    German Cancer Research Center in the Helmholtz Association (DKFZ)
    Germany

    PhD (f/m/d) Data-driven Continuum Modelling of Infected Cell Dynamics on the Tissue Scale / Master’s degree in physics, computer science, bioinformatics, computational biology, data science, machine learning or relevant discipline / …

    Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
    Görlitz, Germany

    PhD (f/m/d) Generative Machine Learning of Time-Lapse Virological Imaging Data / Master’s degree in Computer science, Bioinformatics, Computational biology, Data science, Machine learning or relevant discipline / Engage with our …

    Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
    Görlitz, Germany More

  • in

    Venatorbacter cucullus gen. nov sp. nov a novel bacterial predator

    1.Pérez, J., Moraleda-Muñoz, A., Marcos-Torres, F. J. & Muñoz-Dorado, J. Bacterial predation: 75 years and counting!. Environ. Microbiol. 18, 766–779 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Linares-Otoya, L. et al. Diversity and antimicrobial potential of predatory bacteria from the Peruvian coastline. Mar. Drugs. 15, E308. https://doi.org/10.3390/md15100308 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Pasternak, Z. et al. By their genes ye shall know them: Genomic signatures of predatory bacteria. ISME J. 7, 756–769 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Sockett, R. E. Predatory lifestyle of Bdellovibrio bacteriovorus. Ann. Rev. Microbiol. 63, 523–539 (2009).CAS 
    Article 

    Google Scholar 
    5.Korp, J., Vela Gurovic, M. S. & Nett, M. Antibiotics from predatory bacteria. Beilstein J. Org. Chem. 12, 594–607 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Johnke, J., Fraune, S., Bosch, T. C. G., Hentschel, U. & Schulenburg, H. Bdellovibrio and like organisms are predictors of microbiome diversity in distinct host groups. Microb. Ecol. 79, 252–257 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Vila, J., Moreno-Morales, J. & Ballesté-Delpierre, C. Current landscape in the discovery of novel antibacterial agents. Clin. Microbiol. Infect. https://doi.org/10.1016/j.cmi.2019.09.015 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Hobley, L. et al. Dual predation by bacteriophage and Bdellovibrio bacteriovorus can eradicate Escherichia coli prey in situations where single predation cannot. J. Bacteriol. 202, e00629-19. https://doi.org/10.1128/JB.00629-19 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.El-Shibiny, A., Connerton, P. L. & Connerton, I. F. Enumeration and diversity of campylobacters and bacteriophages isolated during the rearing cycles of free-range and organic chickens. Appl. Environ. Microbiol. 71, 1259–1266 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Wilkinson, D. A. et al. Updating the genomic taxonomy and epidemiology of Campylobacter hyointestinalis. Sci. Rep. 8, 2393. https://doi.org/10.1038/s41598-018-20889-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Lee, M. D. GToTree: A user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 10, e1002195 (2011).MathSciNet 
    Article 
    CAS 

    Google Scholar 
    13.Edgar, R. C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (2004).Article 
    CAS 

    Google Scholar 
    14.Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. TrimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Hyatt, D., LoCascio, P. F., Hauser, L. J. & Uberbacher, E. C. Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics 28, 2223–2230 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Shen, W. & Xiong, J. TaxonKit: A cross-platform and efficient NCBI taxonomy toolkit. bioRxiv. (Accessed 1 June 2021); https://www.biorxiv.org/content/10.1101/513523v1 (2019).
    17.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Tange, O. GNU Parallel. (Accessed 1 June 2021); https://zenodo.org/record/1146014#.YOHaiJhKiUk (2018).19.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Czech, L. et al. Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: Genetics, phylogenomics, biochemistry, and structural Analysis. Genes (Basel). 9, E177. https://doi.org/10.3390/genes9040177 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Gregson, B. H., Metodieva, G., Metodiev, M. V., Golyshin, P. N. & McKew, B. A. Differential protein expression during growth on medium versus long-chain alkanes in the obligate marine hydrocarbon-degrading bacterium Thalassolituus oleivorans MIL-1. Front. Microbiol. 9, 3130 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Pasternak, Z., Ben Sasson, T., Cohen, Y., Segev, E. & Jurkevitch, E. A new comparative-genomics approach for defining phenotype-specific indicators reveals specific genetic markers in predatory bacteria. PLoS One. 10, e0142933. https://doi.org/10.1371/journal.pone.0142933 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Yakimov, M. M. et al. Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int. J. Syst. Evol. Microbiol. 54, 141–148 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Wang, Y., Yu, M., Liu, Y., Yang, X. & Zhang, X. H. Bacterioplanoides pacificum gen. nov., sp. nov., isolated from seawater of South Pacific Gyre. Int. J. Syst. Evol. Microbiol. 66, 5010–5015 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Bowditch, R. D., Baumann, L. & Baumann, P. Description of Oceanospirillum kriegii sp. nov. and O. jannaschii sp. nov. and assignment of two species of Alteromonas to this genus as O. commune comb. nov. and O. vagum comb. nov. Curr. Microbiol. 10, 221–229 (1984).CAS 
    Article 

    Google Scholar 
    26.Dong, C., Chen, X., Xie, Y., Lai, Q. & Shao, Z. Complete genome sequence of Thalassolituus oleivorans R6-15, an obligate hydrocarbonoclastic marine bacterium from the Arctic Ocean. Stand Genom. Sci. 9, 893–901 (2014).Article 

    Google Scholar 
    27.Choi, A. & Cho, J.-C. Thalassolituus marinus sp. nov., a hydrocarbon utilizing marine bacterium. Int. J. Syst. Evol. Microbiol. 63, 2234–2238 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Alain, K., Harder, J., Widdel, F. & Zengler, K. Anaerobic utilization of toluene by marine alpha- and gammaproteobacteria reducing nitrate. Microbiology 158, 2946–2957 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Liu, J., Wu, W., Chen, C., Sun, F. & Chen, Y. Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems. Appl. Microbiol. Biotechnol. 91, 1659–1675 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Yakimov, M. M., Timmis, K. N. & Golyshin, P. N. Obligate oil-degrading marine bacteria. Curr. Opin. Biotechnol. 18, 257–266 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.McKew, B. A. et al. Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ. Microbiol. 9, 1562–1571 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Satomi, M., Kimura, B., Hamada, T., Harayama, S. & Fujii, T. Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. no. Int. J. Syst. Evol. Microbiol. 52, 739–747 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Qin, Q. L. et al. A proposed genus boundary for the prokaryotes based on genomic insights. J. Bacteriol. 196, 2210–2215 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Nicholson, A. C. et al. Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int. J. Syst. Evol. Microbiol. 70, 4432–4450 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Barco, R. A. et al. A genus definition for Bacteria and Archaea based on a standard genome relatedness index. MBio 11, e02475-192020. https://doi.org/10.1128/mBio.02475-19 (2020).Article 

    Google Scholar 
    37.Andersson, J. O. & Andersson, S. G. Insights into the evolutionary process of genome degradation. Curr. Opin. Genet. Dev. 9, 664–671 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Wall, D. & Kaiser, D. Type IV pili and cell motility. Mol. Microbiol. 32, 1–10 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Jenal, U. & Malone, J. Mechanisms of cyclic-di-GMP signaling in bacteria. Ann. Rev. Genet. 40, 385–407 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Dow, J. M., Fouhy, Y., Lucey, J. F. & Ryan, R. P. The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Mol. Plant Microbe Interact. 19, 1378–1384 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Hobley, L. et al. Discrete cyclic di-GMP-dependent control of bacterial predation versus axenic growth in Bdellovibrio bacteriovorus. PLoS Pathog. 8, e1002493. https://doi.org/10.1371/journal.ppat.1002493 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Seccareccia, I., Kovács, Á. T., Gallegos-Monterrosa, R. & Nett, M. Unraveling the predator-prey relationship of Cupriavidus necator and Bacillus subtilis. Microbiol. Res. 192, 231–238 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Mu, D. S. et al. Bradymonabacteria, a novel bacterial predator group with versatile survival strategies in saline environments. Microbiome 8, 1262020 (2020).Article 

    Google Scholar 
    44.Zepeda, V. K. et al. Terasakiispira papahanaumokuakeensis gen. nov., sp. nov., a gammaproteobacterium from Pearl and Hermes Atoll, Northwestern Hawaiian Islands. Int. J. Syst. Evol. Microbiol. 65, 3609–3617 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Terasaki, Y. Transfer of five species and two subspecies of Spirillum to other genera (Aquaspirillum and Oceanospirillum), with emended descriptions of the species and subspecies. Int. J. Syst. Evol. Microbiol. 29, 130–144 (1979).
    Google Scholar 
    46.Baker, D. A. & Park, R. W. Changes in morphology and cell wall structure that occur during growth of Vibrio sp. NCTC4716 in batch culture. J. Gen. Microbiol. 86, 12–28 (1975).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Ng, L. K., Sherburne, R., Taylor, D. E. & Stiles, M. E. Morphological forms and viability of Campylobacter species studied by electron microscopy. J. Bacteriol. 164, 338–343 (1985).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Reshetnyak, V. I. & Reshetnyak, T. M. Significance of dormant forms of Helicobacter pylori in ulcerogenesis. World J. Gastroenterol. 23, 4867–4878 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Loc Carrillo, C. et al. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl. Environ. Microbiol. 71, 6554–6563 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Clinical and Laboratory Standards Institute. Methods for determining bactericidal activity of antimicrobial agents; approved guideline M26-A. Clin. Lab. Stand. Inst. 19, 7 (1999).
    Google Scholar 
    51.Legat, A., Gruber, C., Zangger, K., Wanner, G. & Stan-Lotter, H. Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl. Microbiol. Biotechnol. 87, 1119–1127 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Rodriguez-R, L. M. & Konstantinidis, K. T. Bypassing cultivation to identify bacterial species. Microbe 9, 111–118 (2014).
    Google Scholar 
    56.Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    High variability in SSU rDNA gene copy number among planktonic foraminifera revealed by single-cell qPCR

    1.Pyron M. Characterizing communities. Nat Educ Knowl. 2010;3:39.
    Google Scholar 
    2.Hatton IA, Heneghan RF, Bar-On YM, Galbraith ED The global ocean size-spectrum from bacteria to whales. bioRxiv 2021; 2021.04.03.438320.3.Karsenti E, Acinas SG, Bork P, Bowler C, De Vargas C, Raes J, et al. A holistic approach to marine Eco-systems biology. PLoS Biol. 2011;9:e1001177.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. How many species are there on Earth and in the ocean? PLoS Biol. 2011;9:e1001127.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1–12.Article 
    CAS 

    Google Scholar 
    6.Lejzerowicz F, Gooday AJ, Barrenechea Angeles I, Cordier, T, Morard, R, Apothéloz-Perret-Gentil L, et al. Eukaryotic biodiversity and spatial patterns in the Clarion-Clipperton zone and other abyssal regions: insights from sediment DNA and RNA metabarcoding. Front Mar Sci. 2021;8:1–23.Article 

    Google Scholar 
    7.Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol. 2017;1:1–8.Article 

    Google Scholar 
    8.Pawlowski J, Kelly-Quinn M, Altermatt F, Apothéloz-Perret-Gentil L, Beja P, Boggero A, et al. The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Sci Total Environ. 2018;637–638:1295–310.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    9.Ruppert KM, Kline RJ, Rahman MS. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv. 2019;17:e00547.Article 

    Google Scholar 
    10.Zinger L, Bonin A, Alsos IG, Bálint M, Bik H, Boyer F, et al. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol Ecol. 2019;28:1857–62.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Lamb PD, Hunter E, Pinnegar JK, Creer S, Davies RG, Taylor MI. How quantitative is metabarcoding: A meta-analytical approach. Mol Ecol. 2019;28:420–30.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.del Campo J, Kolisko M, Boscaro V, Santoferrara LF, Nenarokov S, Massana R, et al. EukRef: Phylogenetic curation of ribosomal RNA to enhance understanding of eukaryotic diversity and distribution. PLoS Biol. 2018;16:e2005849.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–D604.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    14.Godhe A, Asplund ME, Härnström K, Saravanan V, Tyagi A, Karunasagar I. Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Appl Environ Microbiol. 2008;74:7174–82.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Gong J, Dong J, Liu X, Massana R. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist. 2013;164:369–79.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    16.Rodríguez-Martínez R, Labrenz M, del Campo J, Forn I, Jürgens K, Massana R. Distribution of the uncultured protist MAST-4 in the Indian Ocean, Drake Passage and Mediterranean Sea assessed by real-time quantitative PCR. Environ Microbiol. 2009;11:397–408.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    17.Zhu F, Massana R, Not F, Marie D, Vaulot D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol. 2005;52:79–92.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    18.Wang Y, Jiang Y, Liu Y, Li Y, Katz LA, Gao F, et al. Comparative studies on the polymorphism and copy number variation of mtSSU rDNA in ciliates (Protista, ciliophora): Implications for phylogenetic, environmental, and ecological research. Microorganisms. 2020;8:316.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Dunthorn M, Stoeck T, Clamp J, Warren A, Mahé F. Ciliates and the rare biosphere: A review. J Eukaryot Microbiol. 2014;61:404–9.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Gong W, Marchetti A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front Mar Sci. 2019;6:1–5.Article 

    Google Scholar 
    21.Kucera M. Chapter six planktonic foraminifera as tracers of past oceanic environments. Dev Mar Geol. 2007;1:213–62.
    Google Scholar 
    22.Morard R, Escarguel G, Weiner AK, André A, Douady CJ, Wade CM, et al. Nomenclature for the nameless: a proposal for an integrative molecular taxonomy of cryptic diversity exemplified by planktonic foraminifera. Syst Biol. 2016;65:925–40.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Darling KF, Wade CM. The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar Micropaleontol. 2008;67:216–38.Article 

    Google Scholar 
    24.André A, Quillévéré F, Morard R, Ujiié Y, Escarguel G, de Vargas C, et al. SSU rDNA divergence in planktonic foraminifera: molecular taxonomy and biogeographic implications. PLoS ONE. 2014;9:e104641.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Morard R, Garet-Delmas MJ, Mahé F, Romac S, Poulain J, Kucera M, et al. Surface ocean metabarcoding confirms limited diversity in planktonic foraminifera but reveals unknown hyper-abundant lineages. Sci Rep. 2018;8:1–10. 2539Article 
    CAS 

    Google Scholar 
    26.Morard R, Vollmar NM, Greco M, Kucera M. Unassigned diversity of planktonic foraminifera from environmental sequencing revealed as known but neglected species. PLoS One. 2019;14:e0213936.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Lecroq B, Lejzerowicz F, Bachar D, Christen R, Esling P, Baerlocher L, et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc Natl Acad Sci U S A. 2011;108:13177–82.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Lejzerowicz F, Esling P, Pawlowski J. Patchiness of deep-sea benthic Foraminifera across the Southern Ocean: Insights from high-throughput DNA sequencing. Deep Sea Res Part II Top Stud Oceanogr. 2014;108:17–26.Article 
    CAS 

    Google Scholar 
    29.Shi J, Lei Y, Li Q, Lyu M, Li T. Molecular diversity and spatial distribution of benthic foraminifera of the seamounts and adjacent abyssal plains in the tropical Western Pacific Ocean. Mar Micropaleontol. 2020;156:101850.Article 

    Google Scholar 
    30.Li Q, Lei Y, Morard R, Li T, Wang B. Diversity hotspot and unique community structure of foraminifera in the world’s deepest marine blue hole—Sansha Yongle Blue Hole. Sci Rep. 2020;10:10257.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Cordier T, Barrenechea I, Lejzerowicz F, Reo E, Pawlowski J. Benthic foraminiferal DNA metabarcodes significantly vary along a gradient from abyssal to hadal depths and between each side of the Kuril-Kamchatka trench. Prog Oceanogr. 2019;178:102175.Article 

    Google Scholar 
    32.Weber AA-T, Pawlowski J. Can Abundance of Protists Be Inferred from Sequence Data: A Case Study of Foraminifera. PLoS One. 2013;8:e56739.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Jonkers L, Meilland J, Rillo MC, de Garidel-Thoron T, Kitchener JA, Kucera M. Linking zooplankton time series to the fossil record. ICES J Mar Sci. 2021:1–8.34.Weiner AKM, Morard R, Weinkauf MFG, Darling KF, André A, Quillévéré F, et al. Methodology for single-cell genetic analysis of planktonic foraminifera for studies of protist diversity and evolution. Front Mar Sci. 2016;3:1–15.Article 

    Google Scholar 
    35.Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HR. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn. 2005;5:209–19.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    36.Barrenechea Angeles I, Lejzerowicz F, Cordier T, Scheplitz J, Kucera M, Ariztegui D, et al. Planktonic foraminifera eDNA signature deposited on the seafloor remains preserved after burial in marine sediments. Sci Rep. 2020;10:1–12.Article 
    CAS 

    Google Scholar 
    37.Morard R, Darling KF, Mahé F, Audic S, Ujiié Y, Weiner AK, et al. PFR2: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution. Mol Ecol Resour. 2015;15:1472–85.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    38.R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/.39.Wickham H ggplot2: Elegant graphics for data analysis. 2009. Springer-Verlag, New York.40.Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4:1686.Article 

    Google Scholar 
    41.Debode F, Marien A, Janssen É, Bragard C, Berben G. The influence of amplicon length on real-time PCR results. Biotechnol Agron Soc Environ. 2017;21:3–11.CAS 

    Google Scholar 
    42.Bé AWH, Lott L. Shell growth and structure of planktonic foraminifera. Science. 1964;145:2–3.Article 

    Google Scholar 
    43.Caromel AGM, Schmidt DN, Fletcher I, Rayfield EJ Morphological change during the ontogeny of the planktic foraminifera. J Micropalaeontology. 2015; 2014–017.44.Darling KF, Kucera M, Kroon D, Wade CM. A resolution for the coiling direction paradox in Neogloboquadrina pachyderma. Paleoceanography. 2006;21:PA2011–n/a.Article 

    Google Scholar 
    45.Parfrey LW, Lahr DJG, Katz LA. The dynamic nature of eukaryotic genomes. Mol Biol Evol. 2008;25:787–94.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    46.Parfrey LW, Katz LA. Dynamic genomes of eukaryotes and the maintenance of genomic integrity. Microbe. 2010;5:156–63.
    Google Scholar 
    47.Parfrey LW, Katz LA. Genome dynamics are influenced by food source in Allogromia laticollaris strain CSH (Foraminifera). Genome Biol Evol. 2010;2:678–85.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA. Phytoplankton in a changing world: Cell size and elemental stoichiometry. J Plankton Res. 2010;32:119–37.Article 
    CAS 

    Google Scholar 
    49.Goldstein ST. Gametogenesis and the antiquity of reproductive pattern in the Foraminiferida. J Foraminifer Res. 1997;27:319–28.Article 

    Google Scholar 
    50.Davis CV, Livsey CM, Palmer HM, Hull PM, Thomas E, Hill TM, et al. Extensive morphological variability in asexually produced planktic foraminifera. Sci Adv. 2020;6:1–8.Article 
    CAS 

    Google Scholar 
    51.Takagi H, Kurasawa A, Kimoto K. Observation of asexual reproduction with symbiont transmission in planktonic foraminifera. J Plankton Res. 2020;42:403–10.Article 
    CAS 

    Google Scholar 
    52.Lessa D, Morard R, Jonkers L, Venancio IM, Reuter R, Baumeister A, et al. Distribution of planktonic foraminifera in the subtropical South Atlantic: Depth hierarchy of controlling factors. Biogeosciences. 2020;17:4313–42.Article 
    CAS 

    Google Scholar 
    53.Kucera M, Michael S, Raphaël M, Lukas J, Christiane S, Philipp M, et al. Scales of Population Dynamics, Ecology and Diversity of Planktonic Foraminifera and their Relationship to Particle Flux in the Eastern Tropical Atlantic: Cruise No. M140, 11.8.2017-5.9.2017, Mindelo (Cabo Verde)-Las Palmas (Spain) – FORAMFLUX. 2019. Bonn.54.Schiebel R. Planktic foraminiferal sedimentation and the marine calcite budget. Global Biogeochem Cycles. 2002;16:3-1–3–21.Article 
    CAS 

    Google Scholar 
    55.Meilland J, Schiebel R, Lo Monaco C, Sanchez S, Howa H. Abundances and test weights of living planktic foraminifers across the Southwest Indian Ocean: implications for carbon fluxes. Deep Sea Res Part I Oceanogr Res Pap. 2018;131:27–40.Article 
    CAS 

    Google Scholar 
    56.Pierella Karlusich JJ, Pelletier E, Lombard F, Carsique M, Dvorak E, Colin S, et al. Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. Nat Commun. 2021;12:4160.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Contrasting environmental drivers of genetic and phenotypic divergence in an Andean poison frog (Epipedobates anthonyi)

    Adamack AT, Gruber B (2014) PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol Evol 5:384–387Article 

    Google Scholar 
    Allendorf FW (2017) Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol 26:420–430CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Van Asch B, Pinheiro R, Pereira R, Alves C, Pereira V, Pereira F et al. (2010) A framework for the development of STR genotyping in domestic animal species: characterization and population study of 12 canine X‐chromosome loci. Electrophoresis 31:303–308PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Bates D, Maechler M, Bolker B, Walker S, Bojesen RH, Singmann H et al. (2014) Package Lme4: Linear mixed-effects models using Eigen andS4. R package version 1.1-10Blaszczynski JS (1997) Landform characterization with Geographic Information Systems. Photogramm Eng Remote Sens 63:183–191
    Google Scholar 
    Bolnick DI, Fitzpatrick BM (2007) Sympatric Speciation: Models and Empirical Evidence. Annu Rev Ecol Evol Syst 38:459–487Article 

    Google Scholar 
    Cadena CD, Kozak KH, Gomez JP, Parra JL, McCain CM, Bowie RC et al. (2012) Latitude, elevational climatic zonation and speciation in New World vertebrates. Proc R Soc Lond B Biol Sci 279:194–201
    Google Scholar 
    Caro LM, Caycedo‐Rosales PC, Bowie RCK, Slabbekoorn H, Cadena CD (2013) Ecological speciation along an elevational gradient in a tropical passerine bird? J Evol Biol 26:357–374CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. J Agric Biol Environ Stat 7:361–372Article 

    Google Scholar 
    Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295CAS 
    PubMed 
    Article 

    Google Scholar 
    Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499PubMed 
    Article 

    Google Scholar 
    Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re‐implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214CAS 
    PubMed 
    Article 

    Google Scholar 
    Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G et al. (2012) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46Article 

    Google Scholar 
    Dreher CE, Cummings ME, Pröhl H (2015) An analysis of predator selection to affect aposematic coloration in a poison frog species. PloS One 10:e0130571PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dugas MB, Halbrook SR, Killius AM, Sol JF, Richards‐Zawacki CL (2015) Colour and escape behaviour in polymorphic populations of an aposematic poison frog. Ethology 121:813–822Article 

    Google Scholar 
    Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361Article 

    Google Scholar 
    Ebersbach J, Posso-Terranova A, Bogdanowicz S, Gómez‐Díaz M, García‐González MX, Bolívar‐García W et al. (2020) Complex patterns of differentiation and gene flow underly the divergence of aposematic phenotypes in Oophaga poison frogs. Mol Ecol 29:1944–1956CAS 
    PubMed 
    Article 

    Google Scholar 
    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Farr TG, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. Eos 81:583–585Article 

    Google Scholar 
    Funk WC, Murphy MA (2010) Testing evolutionary hypotheses for phenotypic divergence using landscape genetics. Mol Ecol 19:427–430PubMed 
    Article 

    Google Scholar 
    Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Funk WC, Murphy MA, Hoke KL, Muths E, Amburgey SM, Lemmon EM et al. (2016) Elevational speciation in action? Restricted gene flow associated with adaptive divergence across an altitudinal gradient. J Evol Biol 29:241–252CAS 
    PubMed 
    Article 

    Google Scholar 
    Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW (2005) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496CAS 
    PubMed 
    Article 

    Google Scholar 
    Galeano SP, Harms KE (2016) Coloration in the polymorphic frog Oophaga pumilio associates with level of aggressiveness in intraspecific and interspecific behavioral interactions. Behav Ecol Sociobiol 70:83–97Article 

    Google Scholar 
    García-Rodríguez A, Guarnizo CE, Crawford AJ, Garda AA, Costa GC (2021) Idiosyncratic responses to drivers of genetic differentiation in the complex landscapes of Isthmian Central America. Heredity 126:251–265PubMed 
    Article 

    Google Scholar 
    Gessler PE, Moore ID, McKenzie NJ, Ryan PJ (1995) Soil-landscape modeling and spatial prediction of soil attributes. Int J Geogr Inf Sci 9:421–432Article 

    Google Scholar 
    Graham CH, Ron SR, Santos JC, Schneider CJ, Moritz C (2004) Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58:1781–1793PubMed 
    Article 

    Google Scholar 
    Guarnizo CE, Cannatella DC (2013) Genetic divergence within frog species is greater in topographically more complex regions. J Zool Syst Evol Res 51:333–340Article 

    Google Scholar 
    Guarnizo CE, Amézquita A, Bermingham E (2009) The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Mol Phylogenet Evol 50:84–92CAS 
    PubMed 
    Article 

    Google Scholar 
    Hansen MC, Townshend JRG, DeFries RS, Carroll M (2005) Estimation of tree cover using MODIS data at global, continental and regional/local scales. Int J Remote Sens 26:4359–4380Article 

    Google Scholar 
    Harvey MG, Aleixo A, Ribas CC, Brumfield RT (2017) Habitat association predicts genetic diversity and population divergence in Amazonian birds. Am Nat 190:631–648PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surface for global land areas. Int J Climatol 25:1965–1978Article 

    Google Scholar 
    Hoffman AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485Article 
    CAS 

    Google Scholar 
    Holleley CE, Geerts PG (2009) Multiplex Manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46:511–517CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213Article 

    Google Scholar 
    Hutter CR, Lambert SM, Wiens JJ (2017) Rapid diversification and time explain amphibian richness at different scales in the Tropical Andes, Earth’s most biodiverse hotspot. Am Nat 190:828–843PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kalinowski ST (2005) hp‐rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189CAS 
    Article 

    Google Scholar 
    Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241Article 

    Google Scholar 
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Keller I, Seehausen O (2012) Thermal adaptation and ecological speciation. Mol Ecol 21:782–799CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Keller I, Alexander JM, Holderegger R, Edwards PJ (2013) Widespread phenotypic and genetic divergence along altitudinal gradients in animals. J Evol Biol 26:2527–2543CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Leinonen T, Cano JM, Mäkinen H, Merilä J (2006) Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. J Evol Biol 19:1803–1812CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Lowe WH, McPeek MA, Likens GE, Cosentino BJ (2012) Decoupling of genetic and phenotypic divergence in a headwater landscape. Mol Ecol 21:2399–2409PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Lynch JD, Duellman WE (1997) Frogs of the genus Eleutherodactylus (Leptodactylidae) in western Ecuador: systematics, ecology and biogeography. University of Kansas, Natural History Museum. Special Publication No. 23. University of Kansas Printing Service, Lawrence, KansasMaan ME, Cummings ME (2009) Sexual dimorphism and directional sexual selection on aposematic signals in a poison frog. Proc Natl Acad Sci USA 106:19072–19077CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Márquez R, Linderoth TP, Mejía-Vargas D, Nielsen R, Amézquita A, Kronforst MR (2020) Divergence, gene flow and the origin of leapfrog geographic distributions: The history of color pattern variation in Phyllobates poison-dart frogs. Mol Ecol 29:3702–3719PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mayr E (1963) Animal Species and Evolution. Harvard University Press, Cambridge, MABook 

    Google Scholar 
    McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load index. J Veg Sci 13:603–606Article 

    Google Scholar 
    McKay JK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evol 17:285–291Article 

    Google Scholar 
    McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology and conservation. Ecology 10:2712–2724Article 

    Google Scholar 
    Moore ID, Gessler PE, Nielsen GA, Petersen GA (1993) Terrain attributes: estimation methods and scale effects. In: Jakeman AJ, Beck MB, McAleer M (eds) Modeling Change in Environmental Systems. Wiley, London, p 189–214
    Google Scholar 
    Morrison C, Hero JM (2003) Geographic variation in life‐history characteristics of amphibians: a review. J Anim Ecol 72:270–279Article 

    Google Scholar 
    Muir AP, Biek R, Thomas R, Mable BK (2014) Local adaptation with high gene flow: temperature parameters drive adaptation to altitude in the common frog (Rana temporaria). Mol Ecol 23:561–574CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Naimi B, Hamm NA, Groen TA, Skidmore AK, Toxopeus AG (2014) Where is positional uncertainty a problem for species distribution modelling. Ecography 37:191–203Article 

    Google Scholar 
    Nali RC, Becker CG, Zamudio KR, Prado CP (2020) Topography, more than land cover, explains genetic diversity in a Neotropical savanna tree frog. Divers Distrib 26:1798–1812Article 

    Google Scholar 
    Noonan BP, Comeault AA (2009) The role of predator selection on polymorphic aposematic poison frogs. Biol Lett 5:51–54PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Nosil P (2008) Speciation with gene flow could be common. Mol Ecol 17:2103–2106PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538Article 
    CAS 

    Google Scholar 
    Orr MR, Smith TB (1998) Ecology and speciation. Trends Ecol Evol 13:502–506CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Páez-Vacas MI, Oleas NH (2019) Isolation and characterization of 12 microsatellite loci in Epipedobates anthonyi (Amphibia: Anura: Dendrobatidae) for population genetic analysis. Mol Biol Rep. 46:3519–3522PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Pilliod DS, Peterson CR, Ritson PI (2002) Seasonal migration of Columbia spotted frogs (Rana luteiventris) among complementary resources in a high mountain basin. CAN J ZOOL 80:1849–1862Article 

    Google Scholar 
    Pinho C, Hey J (2010) Divergence with gene flow: models and data. Annu Rev Ecol Evol Systs 41:215–230Article 

    Google Scholar 
    Pintanel P, Tejedo M, Ron SR, Llorente GA, Merino‐Viteri A (2019) Elevational and microclimatic drivers of thermal tolerance in Andean Pristimantis frogs. J Biogeogr 46:1664–1675Article 

    Google Scholar 
    Polato NR, Gill BA, Shah AA, Gray MM, Casner KL, Barthelet A et al. (2018) Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc Natl Acad Sci USA 115:12471–12476CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Posso-Terranova A, Andrés JA (2016) Complex niche divergence underlies lineage diversification in Oophaga poison frogs. J Biogeogr 43:2002–2015Article 

    Google Scholar 
    Prates I, Paz A, Brown JL, Carnaval AC (2019) Links between prey assemblages and poison frog toxins: a landscape ecology approach to assess how biotic interactions affect species phenotypes. Ecol Evol 9:14317–14329PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Räsänen K, Hendry AP (2008) Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecol Lett 11:624–636PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 83:248–249Article 

    Google Scholar 
    Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Richards‐Zawacki CL (2009) Effects of slope and riparian habitat connectivity on gene flow in an endangered Panamanian frog, Atelopus varius. Divers Distrib 15:796–806Article 

    Google Scholar 
    Richter-Boix A, Quintela M, Kierczak M, Franch M, Laurila A (2013) Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands. Mol Ecol 22:1322–1340CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Robertson JM, Murphy MA, Pearl CA, Adams MJ, Páez‐Vacas MI, Haig SM, Funk WC (2018) Regional variation in drivers of connectivity for two frog species (Rana pretiosa and R. luteiventris) from the US Pacific Northwest. Mol Ecol 27:3242–3256Article 

    Google Scholar 
    Rojas D, Lima AP, Momigliano P, Simões PI, Dudaniec RY, De Avila-Pires TCS et al. (2020) The evolution of polymorphism in the warning coloration of the Amazonian poison frog Adelphobates galactonotus. Heredity 124:439–456CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Roland AB, Santos JC, Carriker BC, Caty SN, Tapia EE, Coloma LA et al. (2017) Radiation of the polymorphic Little Devil poison frog (Oophaga sylvatica) in Ecuador. Ecol Evol 7:9750–9762PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Row JR, Knick ST, Oyler‐McCance SJ, Lougheed SC, Fedy BC (2017) Developing approaches for linear mixed modeling in landscape genetics through landscape directed dispersal simulations. Ecol Evol 7:3751–3761PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352Article 

    Google Scholar 
    Santos JC, Cannatella DC (2011) Phenotypic integration emerges from aposematism and scale in poison frogs. Proc Natl Acad Sci USA 108:6175–6180CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820CAS 
    PubMed 
    Article 

    Google Scholar 
    Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741CAS 
    PubMed 
    Article 

    Google Scholar 
    Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234CAS 
    PubMed 
    Article 

    Google Scholar 
    Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P (2011) Magic traits in speciation: ‘magic’ but not rare? Trends Ecol Evol 26:389–397PubMed 
    Article 

    Google Scholar 
    Sexton JP, Hangartner SB, Hoffmann AA (2014) Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68:1–15CAS 
    PubMed 
    Article 

    Google Scholar 
    Shafer AB, Wolf JBW, Alves PC, Bergström L, Bruford MW, Brännström I et al. (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30:78–87PubMed 
    Article 

    Google Scholar 
    Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792CAS 
    PubMed 
    Article 

    Google Scholar 
    Stevens M, Hopkins E, Hinde W, Adcock A, Connolly Y, Troscianko T et al. (2007) Field experiments on the effectiveness of ‘eyespots’ as predator deterrents. Anim Behav 74:1215–1227Article 

    Google Scholar 
    Storfer A, Patton A, Fraik AK (2018) Navigating the interface between landscape genetics and landscape genomics. Front Genet 9:68PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Van Strien MJ, Keller D, Holderegger R (2012) A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol Ecol 21:4010–4023Article 

    Google Scholar 
    Summers K, Symula R, Clough M, Cronin T (1999) Visual mate choice in poison frogs. Proc R Soc Lond B Biol Sci 266:2141–2145CAS 
    Article 

    Google Scholar 
    Tarvin RD, Powell EA, Santos JC, Ron SR, Cannatella DC (2017) The birth of aposematism: High phenotypic divergence and low genetic diversity in a young clade of poison frogs. Mol Phylogenet Evol 109:283–295PubMed 
    Article 

    Google Scholar 
    Thomé MTC, Carstens BC, Rodrigues MT, Galetti Jr PM, Alexandrino J, Haddad CF (2021) A role of asynchrony of seasons in explaining genetic differentiation in a Neotropical toad. Heredity 2021:1–10
    Google Scholar 
    Twomey E, Vestergaard JS, Venegas PJ, Summers K (2016) Mimetic Divergence and the Speciation Continuum in the Mimic Poison Frog Ranitomeya imitator. Am Nat 187:205–224PubMed 
    Article 

    Google Scholar 
    Wang IJ, Summers K (2010) Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison‐dart frog. Mol Ecol 19:447–458PubMed 
    Article 

    Google Scholar 
    Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611Article 

    Google Scholar 
    Willink B, García‐Rodríguez A, Bolaños F, Pröhl H (2014) The interplay between multiple predators and prey colour divergence. Biol J Linn Soc Lond 113:580–589Article 

    Google Scholar 
    Womack MC, Bell RC (2020) Two‐hundred million years of anuran body‐size evolution in relation to geography, ecology and life history. J Evol Biol 33:1–16Article 

    Google Scholar 
    Wright S (1943) Isolation by distance. Genetics 28:114–138CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zamudio KR, Bell RC, Mason NA (2016) Phenotypes in phylogeography: Species’ traits, environmental variation, and vertebrate diversification. Proc Natl Acad Sci USA 113:8041–8048CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Post-fire insect fauna explored by crown fermental traps in forests of the European Russia

    1.Stephenson, C., Handmer, J. & Robyn, B. Estimating the economic, social and environmental impacts of wildfires in Australia. Environ. Hazards 12, 93–111. https://doi.org/10.1080/17477891.2012.703490 (2013).Article 

    Google Scholar 
    2.Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. Lond. Ser. Biol. Sci 371(1696), 20150345. https://doi.org/10.1098/rstb.2015.0345 (2016).Article 

    Google Scholar 
    3.Dusaeva, GKh., Kalmykova, O. G. & Dusaeva, N. V. Fire influence on dynamics of above-ground phytomass in steppe plant communities in the Burtinskaya Steppe (Orenburg State Nature Reserve, Russia). Nat. Conserv. Res. 4(Suppl. 1), 78–92. https://doi.org/10.24189/ncr.2019.050 (2019).Article 

    Google Scholar 
    4.Koltz, A. M. et al. Global change and the importance of fire for the ecology and evolution of insects. Curr. Opin. Insect Sci. 29, 110–116. https://doi.org/10.1016/j.cois.2018.07.015 (2018).Article 
    PubMed 

    Google Scholar 
    5.Malevsky-Malevich, S. P., Molkentin, E. K., Nadyozhina, E. D. & Shklyarevich, O. B. An assessment of potential change in wildfire activity in the Russian boreal forest zone induced by climate warming during the twenty-first century. Clim. Change 86, 463–474 (2008).ADS 
    Article 

    Google Scholar 
    6.Anisimov, O. A. & Sherstiukov, A. B. Evaluating the effect of environmental factors on permafrost in Russia. Earth’s Cryosphere 20(2), 90–99 (2016) (in Russian).
    Google Scholar 
    7.Aleinikov, A. A. The fire history in pine forests of the plain area in the Pechora-Ilych Nature Biosphere Reserve (Russia) before 1942: Possible anthropogenic causes and long-term effects. Nat. Conserv. Res. 4(Suppl. 1), 21–34. https://doi.org/10.24189/ncr.2019.033 (2019).Article 

    Google Scholar 
    8.Rozhkov, Yu. F. & Kondakova, MYu. Assessment of the post-fire forest restoration dynamics in the Olekminsky State Nature Reserve (Russia) according to data of Landsat satellite images. Nat. Conserv. Res. 4(Suppl. 1), 1–10. https://doi.org/10.2418/ncr.2019.014 (2019) (in Russian).Article 

    Google Scholar 
    9.Shvetsov, E. G. & Ponomarev, E. I. Postfire effects in Siberian larch stands on multispectral satellite data. Contemp. Probl. Ecol. 13(1), 104–112 (2020).Article 

    Google Scholar 
    10.Shvetsov, E. G., Kukavskaya, E. A. & Buryak, L. V. Satellite monitoring of the state of forest vegetation after fire impacts in the Zabaikal Region. Contemp. Probl. Ecol. 9(6), 702–710 (2016).Article 

    Google Scholar 
    11Kazeev, KSh. et al. Post-fire changes in the biological properties of the brown soils in the Utrish State Nature Reserve (Russia). Nat. Conserv. Res. 4(Suppl. 1), 93–104. https://doi.org/10.24189/ncr.2019.055 (2019).Article 

    Google Scholar 
    12Kopoteva, T. A. & Kuptsova, V. A. Effects of pyrogenic factor on wetlands of Petrovskaya Pad’ (Jewish Autonomous Region, Russia). Nat. Conserv. Res. 4(Suppl. 1), 35–44. https://doi.org/10.24189/ncr.2019.034 (2019).Article 

    Google Scholar 
    13.Lebedinskii, A. A., Noskova, O. S. & Dmitriev, A. I. Post-fire recovery of terrestrial vertebrates in the Kerzhensky State Nature Biosphere Reserve (Central Volga Region, Russia). Nat. Conserv. Res. 4(Suppl. 1), 45–56. https://doi.org/10.24189/ncr.2019.049 (2019).Article 

    Google Scholar 
    14.Shinkarenko, S. S., Ivanov, N. M. & Berdengalieva, A. N. Spatio-temporal dynamics of burnt areas in federal Protected Areas in the south-east of European Russia. Nat. Conserv. Res. 6(3), 23–44. https://doi.org/10.24189/ncr.2021.035 (2021).Article 

    Google Scholar 
    15.Hoffmann, B. D. Responses of ant communities to experimental fire regimes on rangelands in the Victoria River District of the Northern Territory. Aust. Ecol. 28, 182–195 (2003).Article 

    Google Scholar 
    16.Murphy, S. M., Richards, L. A. & Wimp, G. M. Editorial: Arthropod interactions and responses to disturbance in a changing world. Front. Ecol. Evol. 8, 93. https://doi.org/10.3389/fevo.2020.00093 (2020).Article 

    Google Scholar 
    17.Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849. https://doi.org/10.1890/10-0097.1 (2010).Article 
    PubMed 

    Google Scholar 
    18.Gandhi, K. J. K., Spence, J. R., Langor, D. W. & Morgantini, L. E. Fire residuals as habitat reserves for epigaeic beetles (Coleoptera: Carabidae and Staphylinidae). Oikos 120, 26–37 (2011).Article 

    Google Scholar 
    19.Buckingham, S., Murphy, N. & Gibb, H. Effects of fire severity on the composition and functional traits of litter-dwelling macroinvertebrates in a temperate forest. For. Ecol. Manag. 434, 279–288. https://doi.org/10.1016/j.foreco.2018.12.030 (2019).Article 

    Google Scholar 
    20.Niklasson, M. & Granström, A. Numbers and sizes of fires, long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81, 1484–1499. https://doi.org/10.1890/0012-9658(2000)081[1484:NASOFL]2.0.CO;2 (2000).Article 

    Google Scholar 
    21.Wikars, L.-O. Immediate effects offire-severity on soil invertebrates in cut and uncut pine forests. For. Ecol. Manag. 141, 189–200 (2001).Article 

    Google Scholar 
    22.Egorov, L. V., Podshivalina, V. N. & Kurulenko, D. Yu. Postpyrogenic changes in the fauna of arthropods-herpetobionts on the territory of the Prisursky State Nature Reserve. Long-term processes in natural complexes of reserves in Russia. Velikie Luki, 245–249. (in Russian) (2012).23.Gongalsky, K. B. & Persson, T. Recovery of soil macrofauna after wildfires in boreal forests. Soil Biol. Biochem. 57, 182–191. https://doi.org/10.1016/j.soilbio.2012.07.005 (2013).CAS 
    Article 

    Google Scholar 
    24Ruchin, A. B., Alekseev, S. K. & Khapugin, A. A. Post-fire fauna of carabid beetles (Coleoptera, Carabidae) in forests of the Mordovia State Nature Reserve (Russia). Nat. Conserv. Res. 4(Suppl. 1), 11–20. https://doi.org/10.24189/ncr.2019.009 (2019).Article 

    Google Scholar 
    25.Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 143(1), 1–10. https://doi.org/10.1007/s00442-004-1788-8 (2005).ADS 
    Article 
    PubMed 

    Google Scholar 
    26.Buddlea, C. M., Langorb, D. W., Pohlb, G. R. & Spencec, J. R. Arthropod responses to harvesting and wildfire: Implications for emulation of natural disturbance in forest management. Biol. Cons. 128, 346–357. https://doi.org/10.1016/j.biocon.2005.10.002 (2006).Article 

    Google Scholar 
    27.Gongalsky, K. B., Wikars, L.-O. & Persson, T. Ground beetle (Coleoptera: Carabidae) responses to a forest wildfire in northern Europe. Russ. Entomol. J. 17(3), 273–282 (2008).
    Google Scholar 
    28.Gongalsky, K. B. The spatial distribution of large soil invertebrates on burned areas in xerophilous ecosystems of the Black Sea coast of the Caucasus. Arid. Ecosyst. 17(4), 260–266. https://doi.org/10.1134/S2079096111040068 (2011).Article 

    Google Scholar 
    29.Muona, J. & Rutanen, I. The short-term impact offire on the beetle fauna in boreal coniferous forest. Ann. Zool. Fenn. 31, 109–121 (1994).
    Google Scholar 
    30.Boulanger, Y. & Sirois, L. Postfire succession of saproxylic arthropods, with emphasis on Coleoptera, in the north boreal forest of Quebec. Environ. Entomol. 36(1), 128–141. https://doi.org/10.1603/0046-225X-36.1.128 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Azeria, E. T., Ibarzabal, J. & Hébert, C. Effects of habitat characteristics and interspecific interactions on co-occurrence patterns of saproxylic beetles breeding in tree boles after forest fire: Null model analyses. Oecologia 168, 1123–1135. https://doi.org/10.1007/s00442-011-2180-0 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Atchison, R. A., Hulcr, J. & Lucky, A. Managed fire frequency significantly influences the litter arthropod community in longleaf pine Flatwoods. Environ. Entomol. 47, 575–585. https://doi.org/10.1093/ee/nvy038 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Ulyshen, M. D., Lucky, A. & Work, T. T. Effects of prescribed fire and social insects on saproxylic beetles in a subtropical forest. Sci. Rep. 10, 9630. https://doi.org/10.1038/s41598-020-66752-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Delettre, Y. R. Fire disturbance of a chironomid (Diptera) community on Heathlands. J. Appl. Ecol. 31(3), 560–570 (1994).Article 

    Google Scholar 
    35.Swengel, A. B. & Swengel, S. R. Benefit of permanent non-fire refugia for Lepidoptera conservation in fire-managed sites. J. Insect Conserv. 11, 263–279. https://doi.org/10.1007/s10841-006-9042-9 (2007).Article 

    Google Scholar 
    36.Sánchez, M. Á. C., Asís, J. D., Gayubo, S. F., Tormos, J. & González, J. A. The effects of wildfire on Spheciformes wasp community structure: The importance of local habitat conditions. J. Insect Conserv. 15(4), 487–503. https://doi.org/10.1007/s10841-010-9322-2 (2010).Article 

    Google Scholar 
    37.Elia, M., Lafortezza, R., Tarasco, E., Colangelo, G. & Sanesia, G. The spatial and temporal effects of fire on insect abundance in Mediterranean forest ecosystems. For. Ecol. Manag. 263, 262–267. https://doi.org/10.1016/j.foreco.2011.09.034 (2012).Article 

    Google Scholar 
    38.Bogusch, P., Blažej, L., Trýzna, M. & Heneberg, P. Forgotten role of fires in Central European forests: Critical importance of early post-fire successional stages for bees and wasps (Hymenoptera: Aculeata). Eur. J. Forest Res. 134(1), 153–166. https://doi.org/10.1007/s10342-014-0840-4 (2015).Article 

    Google Scholar 
    39.Durska, E. Effects of fire on scuttle flies (Diptera: Phoridae) in a pine forest in Poland. Entomologica Fennica. 26, 181–193 (2015).Article 

    Google Scholar 
    40.Pons, P. Delayed effects of fire and logging on cicada nymph abundance. J. Insect Conserv. 19, 601–606. https://doi.org/10.1007/s10841-015-9781-6 (2015).Article 

    Google Scholar 
    41.Lazarina, M. et al. The effect of fire history in shaping diversity patterns of flower-visiting insects in post-fire Mediterranean pine forests. Biodivers. Conserv. 26, 115–131. https://doi.org/10.1007/s10531-016-1228-1 (2017).Article 

    Google Scholar 
    42Ruchin, A. B. & Khapugin, A. A. Red data book invertebrates in a protected area of European Russia. Acta Zoologica Academiae Scientiarum Hungaricae. 65(4), 349–370. https://doi.org/10.17109/AZH.65.4.349.2019 (2019).Article 

    Google Scholar 
    43.Khapugin, A. A. & Silaeva, T. B. The arrangement of threatened plants in Mordovia: The role of biodiversity research centers. Écoscience. 27(3), 157–164. https://doi.org/10.1080/11956860.2020.1753293 (2020).Article 

    Google Scholar 
    44.Tereshkin, I. S. & Tereshkina, L. V. Vegetation of the Mordovia Reserve. Successive series of the successions. Proc. Mordovia State Nat. Reserve. 7, 186–287 (2006) (In Russian).
    Google Scholar 
    45.Bayanov, N. G. Climate changes of the northwest of Mordovia during the period of existence of the Mordovia Reserve according to the meteorological observations in Temnikov. Proc. Mordovia State Nat. Reserve. 14, 212–219 (2015) (In Russian).
    Google Scholar 
    46.Sieber, A. et al. Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sens. Environ. 133, 38–51. https://doi.org/10.1016/j.rse.2013.01.021 (2013).ADS 
    Article 

    Google Scholar 
    47.Novenko, E. Y. et al. Vegetation dynamics and fire history at the southern boundary of the forest vegetation zone in European Russia during the middle and late Holocene. Holocene 28(2), 308–322. https://doi.org/10.1177/0959683617721331 (2018).ADS 
    Article 

    Google Scholar 
    48.Kharitonova, A. O. & Kharitonova, T. I. The effect of landscape pattern on the 2010 wildfire spread in the Mordovia State Nature Reserve, Russia. Nat. Conserv. Res. 6(2), 29–41. https://doi.org/10.24189/ncr.2021.022 (2021).Article 

    Google Scholar 
    49.Khapugin, A. A., Vargot, E. V. & Chugunov, G. G. Vegetation recovery in fire-damaged forests: A case study at the southern boundary of the taiga zone. For. Stud. 64, 39–50. https://doi.org/10.1515/fsmu-2016-0003 (2016).Article 

    Google Scholar 
    50.Egorov, L. V., Ruchin, A. B., Semenov, V. B., Semionenkov, O. I. & Semishin, G. B. Checklist of the Coleoptera of Mordovia State Nature Reserve, Russia. ZooKeys. 962, 13–122. https://doi.org/10.3897/zookeys.962.54477 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Bousquet, Y. Litteratura Coleopterologica (1758–1900): A guide to selected books related to the taxonomy of Coleoptera with publication dates and notes. ZooKeys. 583, 1–776. https://doi.org/10.3897/zookeys.583.7084 (2016).Article 

    Google Scholar 
    52Ruchin, A. B., Egorov, L. V., Khapugin, A. A., Vikhrev, N. E. & Esin, M. N. The use of simple crown traps for the insects collection. Nat. Conserv. Res. 5(1), 87–108. https://doi.org/10.24189/ncr.2020.008 (2020).Article 

    Google Scholar 
    53.Ryan, K. C. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica. 36, 13–39 (2002).Article 

    Google Scholar 
    54.Turner, M. G., Hargrove, W. W., Gardner, R. H. & Romme, W. H. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J. Veg. Sci. 5, 731–742. https://doi.org/10.2307/3235886 (1994).Article 

    Google Scholar 
    55.BC Wildfire Service. 2020. Wildfire Rank. In: Province of British Columbia. Accessed from: https://www2.gov.bc.ca/gov/content/safety/wildfire-status/about-bcws/wildfire-response/fire-characteristics/rank.56.Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).
    Google Scholar 
    57Shannon, C. E. A mathematical theory of communication. Bell Syst. Techn. J. 27, 379–423 (1948).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    58.Magurran, A. E. Ecological Diversity and Its Measurement 179 (Chapman & Hall, 1996).
    Google Scholar 
    59.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics soft-ware package for education and data analysis. Palaeontol. Electron. 4(1), 9 (2001).
    Google Scholar 
    60Makarkin, V. N. & Ruchin, A. B. New data on Neuroptera and Raphidioptera of Mordovia (Russia). Kavkazskij Entomologiceskij Bulleten. 15(1), 147–157. https://doi.org/10.23885/181433262019151-147157 (2019) (in Russian).Article 

    Google Scholar 
    61.Czechowska, W. A comparative analysis of the structure of Neuropteroidea communities of tree canopies in linden-oak-hornbeam forests, light oak forests, mixed coniferous forests and pine forests. Fragm. Faun. 40, 127–168 (1997).Article 

    Google Scholar 
    62.Volkovich, T. A. Green lacewings (Neuroptera, Chrysopidae) of the «Forest on the Vorskla River» Nature Reserve (Belgorod Province): Fauna and ecology. Entomol. Rev. 81, 884–894 (2001).
    Google Scholar 
    63.Duelli, P., Obrist, M. K. & Flückiger, P. F. Forest edges are biodiversity hotspots: Also for Neuroptera. Acta Zoologica Hungarica. 48(Suppl. 2), 75–87 (2002).
    Google Scholar 
    64Ruchin, A. B. & Makarkin, N. V. Neuroptera and raphidioptera in the mordovia state nature reserve. Nat. Conserv. Res. 2(2), 38–46. https://doi.org/10.24189/ncr.2017.001 (2017) (in Russian).Article 

    Google Scholar 
    65.Aspöck, H. & Aspöck, U. Raphidioptera: Kamelhalsfliegen. Ein Überblick zum Einstieg. Entomologica Austriaca. 16, 53–72 (2009).
    Google Scholar 
    66.Aspöck, H., Aspöck, U. & Rausch, H. Raphidiopteren-Larven als Bodenbewohner (Insecta, Neuropteroidea) (Mit Beschreibungen der Larven von Ornatoraphidia, Parvoraphidia und Superboraphidia). Zeitschrift für Angewandte Zoologie. 62, 361–375 (1975).
    Google Scholar 
    67.Aspöck, H., Aspöck, U. & Hölzel, H. Die Neuropteren Europas. Eine zusammenfassende Darstellung der Systematik, Ökologie und Chorologie der Neuropteroidea (Megaloptera, Raphidioptera, Planipennia) Europas. Vols 1 & 2, Goecke and Evers, Krefeld, pp. 495–455 (1980).68.Kurochkin, A. S. Fauna and bionomy of sap beetles (Coleoptera, Nitidulidae) and kateretid beetles (Coleoptera, Kateretidae) of Krasnosamarskoe forestry farm (Samara Region, Russia): Vestnik of Samara University. Nat. Sci. Ser. 8(58), 120–128 (2007) (in Russian).
    Google Scholar 
    69.Oude, J. E. Naamlijst van de glanskevers van Nederland en het omliggende gebied (Coleoptera: Nitidulidae and Brachypteridae). Nederlandse Faunistische Mededelinge. 8, 11–32 (1999).
    Google Scholar 
    70.Alekseev, V. I. & Nikitsky, N. B. Rare and new for the fauna of the Baltic States beetles (Coleoptera) from the Kaliningrad Region. Acta Zoologica Lituanica. 18(4), 254–259 (2008).Article 

    Google Scholar 
    71.Lasoń, A. & Holly, M. Glischrochilus grandis Tournier, 1872: New species of beetle for the Polish fauna and new data on the occurrence of genus Glischrochilus Reitter, 1873 (Cole-optera: Nitidulidae: Cryptarchinae). Acta entomologica silesiana. 23, 1–4 (2015).
    Google Scholar 
    72.Nikitsky, N. B., Osipov, I. N., Chemeris, M. V., Semenov, V. B. & Gusakov, A. A. The beetles of the Prioksko-Terrasny Biosphere Reserve: Xylobiontes, mycetobiontes and Scarabaeidae. Arch. Zool. Museum Moscow State Univ. XXXVI, 1–197 (1996) (in Russian).
    Google Scholar 
    73.Tauzin, P. Ethologie et chorologie de Protaetia (Liocola) lugubris Herbst, 1786 sur le territoire français (Coleoptera, Cetoniidae, Cetoniinae, Cetoniini). Cetoniimania. 3(1+2), 4–38 (2006).
    Google Scholar 
    74.Oleksa, A., Chybicki, I. J., Gawronski, R., Svensson, G. P. & Burczyk, J. Isolation by distance in saproxylic beetles may increase with niche specialization. J. Insects Conserv. 17, 219–233. https://doi.org/10.1007/s10841-012-9499-7 (2013).Article 

    Google Scholar 
    75.Urban, P. & Schulze, W. Ein aktueller Nachweis des Marmorierten Rosenkäfers Protaetia marmorata (Fabricius, 1792) in der Senne (Nordrhein-Westfalen) (Mitteilungen zur Insektenfauna Westfalens XXII). Mitteilungen der Arbeitsgemeinschaft westfälischer Entomologen. 33(1), 15–19 (2017).
    Google Scholar 
    76Ruchin, A. B., Egorov, L. V. & Khapugin, A. A. Seasonal activity of Coleoptera attracted by fermental crown traps in forest ecosystems of Central Russia. Ecol. Questions. 32(1), 37–53. https://doi.org/10.12775/EQ.2021.004 (2021).Article 

    Google Scholar 
    77.Oleksa, A., Ulrich, W. & Gawronski, R. Occurrence of the marbled rose-chafer (Protaetia lugubris Herbst, Coleoptera, Cetoniidae) in rural avenues in northern Poland. J. Insects Conserv. 10, 241–247. https://doi.org/10.1007/s10841-005-4830-1 (2006).Article 

    Google Scholar 
    78.Nikitsky, N. B. & Vlasov, D. V. Family Scarabaeidae Latreille, 1802. In: Nikitsky N.B. The beetles (Insecta, Coleoptera) of the Moscow oblast. Part. 1. Direct MEDIA. pp. 643–679 (2016) (in Russian).79.Ruchin, A. B., Egorov, L. V., Sazhnev, A. S., Polumordvinov, O. A. & Ishin, R. N. Present distribution of Protaetia fieberi (Kraatz, 1880) (Insecta, Coleoptera, Scarabaeidae) in the European part of Russia. Biharean Biologist. 13(1), 12–16 (2019).
    Google Scholar 
    80.Tauzin, P. Chorologie et éco-éthologie de Protaetia (Potosia) fieberi Kraatz 1880 en France (Coleoptera, Cetoniinae, Cetoniini). Cetoniimania. 3(4), 115–146 (2007).
    Google Scholar 
    81Bílý, S. & Mehl, O. Longhorn Beetles (Coleoptera, Cerambycidae) of Fennoscandia and Denmark 200 (Brill, 1989).
    Google Scholar 
    82.Gutowski, J. M., Ługowoj, J. & Maciejewski, K. H. Leptura thoracica Creutzer, 1799 (Coleoptera: Cerambycidae) in Poland. Wiad. Entomol. 13(3), 157–165 (1994) (in Polish).
    Google Scholar 
    83.Sama, G. Atlas of the Cerambycidae of Europe and the Mediterranean Area. Vol. 1. Northern, Western, Central and Eastern Europe British Isles and Continental Europe from France (excl. Corsica) to Scandinavia and Urals. Kabourek, Zlín, p. 173 (2002).84.Karpiński, L., Szczepański, W. T., Boldgiv, B. & Walczak, M. New data on the longhorn beetles of Mongolia with particular emphasis on the genus Eodorcadion Breuning, 1947 (Coleoptera, Cerambycidae). ZooKeys. 739, 107–150. https://doi.org/10.3897/zookeys.739.23675 (2018).Article 

    Google Scholar 
    85.Danilevsky, M. L., Ruchin, A. B. & Egorov, L. V. Mass collection of two rare longicorn-species (Coleoptera, Cerambycidae) in Central Russia. Humanity space. 8(9), 1179–1183 (2019).
    Google Scholar 
    86Ruchin, A. B. & Egorov, L. V. Fauna of longicorn beetles (Coleoptera: Cerambycidae) of Mordovia. Russ. Entomol. J. 27(2), 161–177. https://doi.org/10.15298/rusentj.27.2.07 (2018).Article 

    Google Scholar 
    87.Ruchin, A. B., Egorov, L. V. & Khapugin, A. A. Usage of fermental traps for studying the species diversity of Coleoptera. Insects. 12, 407. https://doi.org/10.3390/insects12050407 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Cherepanov, A. I. The Longhorn Beetles of Northern Asia (Prioninae, Disteniinae, Lepturinae, Aseminae) 472 (Nauka Publ, 1979).
    Google Scholar 
    89Starzyk, J. R. & Partyka, M. Study on the morphology, biology and distribution of Obrium cantharinum (L.) (Col., Cerambycidae). J. Appl. Entomol. 116(1–5), 333–344. https://doi.org/10.1111/j.1439-0418.1993.tb01205.x (1993).Article 

    Google Scholar 
    90.Lindhe, A., Jeppsson, T. & Ehnstrom, B. Longhorn beetles in Sweden changes in distribution and abundance over the last two hundred years. Entomologisk Tidskrift. 131(4), 241–508 (2010).
    Google Scholar 
    91.Egorov, L. V. & Sysoletina, L. G. On the anthophilic longhorn beetles of the Chuvash ASSR. Terrestrial and aquatic ecosystems, pp. 92–104 (1986) (in Russian).92.Moretti, M. & Barbalat, S. The effects of wildfires on wood-eating beetles in deciduous forests on the southern slope of the Swiss Alps. For. Ecol. Manag. 187(1), 85–103. https://doi.org/10.1016/S0378-1127(03)00314-1 (2004).Article 

    Google Scholar 
    93.Brodie, B. S. et al. Non-lethal monitoring of longicorn beetle communities using generic pheromone lures and occupancy models. Ecol. Ind. 101, 330–340. https://doi.org/10.1016/j.ecolind.2019.01.038 (2019).CAS 
    Article 

    Google Scholar 
    94.Grundel, R., Pavlovic, N. B. & Sulzman, C. L. Habitat use by the endangered Karner blue butterfly in oak woodlands: The influence of canopy cover. Biol. Cons. 85, 47–53 (1998).Article 

    Google Scholar 
    95.Huntzinger, M. Effects of fire management practices on butterfly diversity in the forested western United States. Biol. Cons. 113(1), 1–12. https://doi.org/10.1016/S0006-3207(02)00356-7 (2003).Article 

    Google Scholar 
    96Elia, M., Lafortezza, R., Tarasco, E., Colangelo, G. & Sanesi, G. Influenza degli incendi boschivi sulla biodiversità dell’entomofauna: Un caso di studio in Puglia. Forest 8, 13–21 (2011).Article 

    Google Scholar 
    97.Vogel, J. A., Koford, R. R. & Debinski, D. M. Direct and indirect responses of tallgrass prairie butterflies to prescribed burning. J. Insect Conserv. 14, 663–677. https://doi.org/10.1007/s10841-010-9295-1 (2010).Article 

    Google Scholar 
    98.Swengel, A. B. Effects of fire and hay management on abundance of prairie butterflies. Biol. Cons. 76, 73–85 (1996).Article 

    Google Scholar 
    99Ruchin, A. & Antropov, A. Wasp fauna (Hymenoptera: Bethylidae, Chrysididae, Dryinidae, Tiphiidae, Mutllidae, Scoliidae, Pompilidae, Vespidae, Sphecidae, Crabronidae & Trigonalyidae) of Mordovia State Nature Reserve and its surroundings in Russia. J. Threatened Taxa. 11(2), 13195–13250. https://doi.org/10.11609/jot.4216.11.2.13195-13250 (2019).Article 

    Google Scholar 
    100.Dvořák, L. Social wasps (Hymenoptera: Vespidae) trapped with beer in European forest ecosystems. Acta Mus. Morav. Sci. Biol. (Brno) 92, 181–204 (2007).
    Google Scholar 
    101Sorvari, J. Social wasp (Hymenoptera: Vespidae) beer trapping in Finland 2008–2012: A German surprise. Entomologica Fennica. 24(3), 156–164. https://doi.org/10.33338/ef.8983 (2013).ADS 
    Article 

    Google Scholar 
    102Pesson, P. & Louveaux, J. Pollinisation et productions végétales 663 (INRA, 1984).
    Google Scholar 
    103.Richter, M. R. Social wasp (Hymenoptera: Vespidae) foraging behavior. Annu. Rev. Entomol. 45(1), 121–150. https://doi.org/10.1146/annurev.ento.45.1.121 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    104.Kasper, M. L., Reeson, A. F., Mackay, D. A. & Austin, A. D. Environmental factors influencing daily foraging activity of Vespula germanica (Hymenoptera, Vespidae) in Mediterranean Australia. Insectes Soc. 55, 288–295. https://doi.org/10.1007/s00040-008-1004-7 (2008).Article 

    Google Scholar 
    105Clemente, M. A. et al. Impacts of fire in social wasps community in an area of regenerating brazilian savanna. Sociobiology 66(4), 582–591. https://doi.org/10.13102/sociobiology.v66i4.3590 (2019).Article 

    Google Scholar 
    106.Raveret-Richter, M. Social wasp (Hymenoptera: Vespidae) foraging behavior. Annu. Rev. Entomol. 45, 121–150. https://doi.org/10.1146/annurev.ento.45.1.121 (2000).Article 

    Google Scholar 
    107.Jeanne, R. L. The adaptiveness of social wasp nest architecture. Q. Rev. Biol. 50, 267–287 (1975).Article 

    Google Scholar 
    108Wenzel, J. W. Evolution of nest architecture. In The Social Biology of Wasps (eds Ross, K. G. & Matthews, R. W.) 480–519 (Cornell University Press, 1991).
    Google Scholar 
    109Dvořák, L., Dvořáková, K., Oboňa, J. & Ruchin, A. B. Selected Diptera families caught with beer traps in the Republic of Mordovia (Russia). Nat. Conserv. Res. 5(4), 65–77. https://doi.org/10.24189/ncr.2020.057 (2020).Article 

    Google Scholar 
    110Krivosheina, N. P. Family Anisopodidae. In Manual of Palaearctic Diptera (eds Papp, L. & Darvas, B.) 239–248 (Science Herald, 1997).
    Google Scholar 
    111.Rotheray, G. E. Development sites, feeding modes and early stages of seven European Palloptera species (Diptera, Pallopteridae). Zootaxa 3900(1), 50–76 (2014).PubMed 
    Article 

    Google Scholar 
    112Ruchin, A. B., Carr, J. F., Dvořák, L., Esin, M. N. & Khapugin, A. A. Pseudotephritis millepunctata (Hennig, 1939) (Diptera Ulidiidae): New species in European fauna. REDIA. 103, 25–27. https://doi.org/10.19263/REDIA-103.20.05 (2020).Article 

    Google Scholar 
    113Krivosheina, N. P. & Krivosheina, M. G. Saproxylic Diptera (Insecta) of the Lazovsky State Nature Reserve (Russia). Nat. Conserv. Res. 4(3), 78–92. https://doi.org/10.24189/ncr.2019.052 (2019) (in Russian).Article 

    Google Scholar 
    114.Bächli, G. & Rocha Pité, M. T. Family Drosophilidae. P. 186–220. In: Catalogue of Palaearctic Diptera. Vol. 10. Clusiidae–Chloropidae. Akadémiai Kiadó, Budapest (1984).115.Gornostaev, N. G. A review of drosophilid flies (Diptera, Drosophilidae) of Middle Asia and Kazakhstan. Entomologicheskoe Obozrenie. 74(1), 214–223 (1995).
    Google Scholar 
    116.Gornostaev, N. G. Addition to the fauna of drosophilid flies (Diptera, Drosophilidae) of Russia. Russ. Entomol. J. 6(1–2), 113–118 (1997).
    Google Scholar 
    117.Gornostaev, N. G. Ecological classification of drosophilid flies (Diptera, Drosophilidae). Entomologicheskoe Obozrenie. 75(3), 698–705 (1996).
    Google Scholar 
    118.Máca, J. Revision of Palaearctic species of Amiota subg. Phortica (Diptera, Drosophilidae). Acta ent. bohemoslov. 74, 115–130 (1977).
    Google Scholar 
    119.Bächli, G. & Thunes, K. Leucophenga quinquemaculata Strobl (Diptera, Drosophilidae) from Norway. Fauna Norvegica. 39(2), 81–84 (1992).
    Google Scholar 
    120.Jonsell, M., Nordlander, G. & Jonsson, M. Colonization patterns of insects breeding in wood-decaying fungi. J. Insect Conserv. 3, 145–161 (1999).Article 

    Google Scholar 
    121.Edwards, F. W. Amiota alboguttata Wahlb. in Dorset (Diptera, Drosophilidae). Entomologist. 69, 218 (1936).
    Google Scholar 
    122.Kovalev, V. G. Faunistic and ecological material on flies of the genus Lonchaea (Diptera, Lonchaeidae) from Tuva. Entomologicheskoe Obozrenie. 55, 934–945 (1976).
    Google Scholar 
    123.MacGowan, I. & Rotheray, G. E. British Lonchaeidae. Diptera, Cyclorrhapha, Acalyptratae. Handbooks for the Identification of British Insects, 10 (15). Royal Entomological Society, London (2008).124.Godfrey, A. Lonchaea carpathica Kovalev (Diptera, Lonchaeidae) new to Britain and other Diptera from Cherkley Wood, Leatherhead. Surrey. Dipterists Digest (Second Series) 24, 153–155 (2017) ([in Russian]).
    Google Scholar 
    125.MacGowan, I., Vikhrev, N. E., Krivosheina, M. G., Ruchin, A. B. & Esin, M. N. New records of Diptera from the Republic of Mordovia. Russ. Far Eastern Entomol. 423, 9–20. https://doi.org/10.25221/fee.423.3 (2021).Article 

    Google Scholar 
    126.Gaponov, S. P. & Panteleeva, NYu. New data of saprobiont larval feeding habits of Brachycera (Diptera) in the Middle Podonye: III: Superfamilies Muscoidea and Oestroidea. Proc. Voronezh State Univ Ser. Chem. Biol. Pharm. 1, 49–56 (2017) (in Russian).
    Google Scholar 
    127Vikhrev, N. E. & Erofeeva, E. A. Review of the Phaonia pallida group (Diptera: Muscidae). Russ. Entomol. J. 27, 315–322. https://doi.org/10.15298/rusentj.27.3.14 (2018).Article 

    Google Scholar 
    128.Gisondi, S., Rognes, K., Badano, D., Pape, T. & Cerretti, P. The world Polleniidae (Diptera, Oestroidea): Key to genera and checklist of species. ZooKeys. 971, 105–155. https://doi.org/10.3897/zookeys.971.51283 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    129.Duelli, P., Obrist, M. K. & Wermelinger, B. Windthrow induces changes of faunistic biodiversity in alpine spruce forests. For. Snow Landsc. Res. 77(1/2), 117–131 (2002).
    Google Scholar 
    130.Moretti, M., Duelli, P. & Obrist, M. K. Biodiversity and resilience of arthropod communities after fire disturbance in temperate forests. Oecologia 149(2), 312–327. https://doi.org/10.1007/s00442-006-0450-z (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    131.Campbell, J. W. et al. Response of beetles (Coleoptera) to repeated applications of prescribed fire and other fuel reduction techniques in the southern Appalachian Mountains. For. Ecol. Manag. 429, 294–299. https://doi.org/10.1016/j.foreco.2018.07.022 (2018).Article 

    Google Scholar 
    132Chen, Z. Z. et al. Response of Chrysoperla nipponensis (Okamoto) (Neuroptera: Chrysopidae) Under Long and Short Photoperiods. J. Insect Sci. 17(2), 1–9. https://doi.org/10.1093/jisesa/iex005 (2017).CAS 
    Article 

    Google Scholar 
    133.Swengel, A. B. A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodivers. Conserv. 10, 1141–1169. https://doi.org/10.1023/A:1016683807033 (2001).Article 

    Google Scholar 
    134Gongalsky, K. B. Perfugia as a mechanism for the recovery of soil fauna after ecosystem disturbances. Russ. J. Ecosyst. Ecol. 2(4), 1. https://doi.org/10.21685/2500-0578-2017-4-3 (2017).Article 

    Google Scholar 
    135.Hjältén, J. et al. Forest restoration by burning and gap cutting of voluntary set-asides yield distinct immediate effects on saproxylic beetles. Biodivers. Conserv. 26, 1623–1640. https://doi.org/10.1007/s10531-017-1321-0 (2017).Article 

    Google Scholar 
    136.Gutowski, J. M. et al. Post-fire beetle succession in a biodiversity hotspot: Białowieża Primeval Forest. For. Ecol. Manag. 461, 117893. https://doi.org/10.1016/j.foreco.2020.117893 (2020).Article 

    Google Scholar  More

  • in

    Bioaccumulation and detoxification of trivalent arsenic by Achromobacter xylosoxidans BHW-15 and electrochemical detection of its transformation efficiency

    1.Chen, J., Sun, S., Li, C. Z., Zhu, Y. G. & Rosen, B. P. Biosensor for organoarsenical herbicides and growth promoters. Environ. Sci. Technol. 48, 1141 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Ghosh, N. & Singh, R. Groundwater Arsenic Contamination in India: Vulnerability and Scope for Remedy (National Institute of Hydrology, 2009).
    Google Scholar 
    3.Luong, J. H. T., Lam, E. & Male, K. B. Recent advances in electrochemical detection of arsenic in drinking and ground waters. Anal. Methods 6, 6157 (2014).CAS 
    Article 

    Google Scholar 
    4.Naujokas, M. F. et al. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environ. Health Perspect. 121, 295 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Ahmad, S. A., Khan, M. H. & Haque, M. Arsenic contamination in groundwater in Bangladesh: Implications and challenges for healthcare policy. Risk Manage. Healthcare Policy 11, 251 (2018).Article 

    Google Scholar 
    6.Sultana, M. et al. Investigation of arsenotrophic microbiome in arsenic-affected Bangladesh groundwater. Groundwater 55, 736 (2017).CAS 
    Article 

    Google Scholar 
    7.Shakoor, M. B. et al. Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Crit. Rev. Environ. Sci. Technol. 46, 467 (2016).CAS 
    Article 

    Google Scholar 
    8.Natasha, et al. Arsenic environmental contamination status in South Asia. Arsenic Drink. Water Food. https://doi.org/10.1007/978-981-13-8587-2_2 (2020).Article 

    Google Scholar 
    9.Choudhury, M. I. M. et al. Cutaneous malignancy due to arsenicosis in Bangladesh: 12-year study in tertiary level hospital. Biomed. Res. Int. 2018, 4678362 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Arsenic—Banglapedia. https://en.banglapedia.org/index.php/Arsenic. (Accessed 28 June 2021)11.Arsenic Contamination in Water: No proper study done in years|The Daily Star. https://www.thedailystar.net/backpage/news/arsenic-contamination-water-no-proper-study-done-years-2064585. (Accessed 19 June 2021)12.Martinez, V. D., Vucic, E. A., Becker-Santos, D. D., Gil, L. & Lam, W. L. Arsenic exposure and the induction of human cancers. J. Toxicol. 2011, 431287 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Argos, M. et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): A prospective cohort study. Lancet 376, 252 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Mujawar, S. Y., Shamim, K., Vaigankar, D. C. & Dubey, S. K. Arsenite biotransformation and bioaccumulation by Klebsiella pneumoniae strain SSSW7 possessing arsenite oxidase (aioA) gene. Biometals 32, 65 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Masscheleyn, P. H., Delaune, R. D. & Patrick, W. H. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 25, 1414 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Jain, C. K. & Ali, I. Arsenic: Occurrence, toxicity and speciation techniques. Water Res. 34, 4304 (2000).CAS 
    Article 

    Google Scholar 
    17.Garelick, H., Dybowska, A., Valsami-Jones, E. & Priest, N. D. Remediation technologies for arsenic contaminated drinking waters. J. Soils Sediments 5, 182 (2005).CAS 
    Article 

    Google Scholar 
    18.Kruger, M. C., Bertin, P. N., Heipieper, H. J. & Arsène-Ploetze, F. Bacterial metabolism of environmental arsenic—Mechanisms and biotechnological applications. Appl. Microbiol. Biotechnol. 97, 3827 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Rahman, A. et al. Isolation and characterization of a Lysinibacillus strain B1-CDA showing potential for bioremediation of arsenics from contaminated water. J. Environ. Sci. Health A 49, 1349 (2014).CAS 
    Article 

    Google Scholar 
    20.Halttunen, T., Finell, M. & Salminen, S. Arsenic removal by native and chemically modified lactic acid bacteria. Int. J. Food Microbiol. 120, 173 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Mondal, P., Majumder, C. B. & Mohanty, B. Growth of three bacteria in arsenic solution and their application for arsenic removal from wastewater. J. Basic Microbiol. 48, 521 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Banerjee, S., Datta, S., Chattyopadhyay, D. & Sarkar, P. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J. Environ. Sci. Health A 46, 1736 (2011).CAS 
    Article 

    Google Scholar 
    23.Bahar, M. M., Megharaj, M. & Naidu, R. Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation 23, 803 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Lozano, L. C. & Dussán, J. Metal tolerance and larvicidal activity of Lysinibacillus sphaericus. World J. Microbiol. Biotechnol. 29, 1383 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Corsini, A. et al. Characterization of As(III) oxidizing Achromobacter sp. strain N2: Effects on arsenic toxicity and translocation in rice. Ann. Microbiol. 68, 295 (2018).CAS 
    Article 

    Google Scholar 
    26.Istiaq, A. et al. Adaptation of metal and antibiotic resistant traits in novel β-Proteobacterium Achromobacter xylosoxidans BHW-15. PeerJ 2019, e6537 (2019).Article 
    CAS 

    Google Scholar 
    27.Hamamura, N. et al. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia. Environ. Microbiol. Rep. 6, 476 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Ehrlich, H. L., Newman, D. K. & Kappler, A. Geomicrobiology (CRC Press, 2008).Book 

    Google Scholar 
    29.Bahar, M. M., Megharaj, M. & Naidu, R. Bioremediation of arsenic-contaminated water: Recent advances and future prospects. Water Air Soil Pollut. 224, 1–20 (2013).CAS 
    Article 

    Google Scholar 
    30.Hamamura, N. et al. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ. Microbiol. 11, 421 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Hamamura, N. Distribution of aerobic arsenite oxidase genes within the aquificales. In Tokyo: TERRAPUB, 47–55 (2010).32.Andreoni, V. et al. Arsenite oxidation in Ancylobacter dichloromethanicus As3-1b strain: Detection of genes involved in arsenite oxidation and CO2 fixation. Curr. Microbiol. 65, 212 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Lett, M. C., Muller, D., Lièvremont, D., Silver, S. & Santini, J. Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. J. Bacteriol. 194, 207 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Zargar, K. et al. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ. Microbiol. 14, 1635 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Engel, A. S., Johnson, L. R. & Porter, M. L. Arsenite oxidase gene diversity among Chloroflexi and Proteobacteria from El Tatio Geyser field, Chile. FEMS Microbiol. Ecol. 83, 745 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Drewniak, L. & Sklodowska, A. Arsenic-transforming microbes and their role in biomining processes. Environ. Sci. Pollut. Res. 20, 7728 (2013).CAS 
    Article 

    Google Scholar 
    37.Jiang, Z. et al. Diversity and abundance of the arsenite oxidase gene aioA in geothermal areas of Tengchong, Yunnan, China. Extremophiles 18, 161 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Wu, G. et al. Distribution of arsenite-oxidizing bacteria and its correlation with temperature in hot springs of the Tibetan-Yunnan geothermal zone in western China. Geomicrobiol. J. 32, 482 (2015).CAS 
    Article 

    Google Scholar 
    39.Hernandez-Maldonado, J. et al. The genetic basis of anoxygenic photosynthetic arsenite oxidation. Environ. Microbiol. 19, 130 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Rahman, M. M., Hussain, M. M. & Asiri, A. M. A novel approach towards hydrazine sensor development using SrO·CNT nanocomposites. RSC Adv. 6, 65338 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Rahman, M. M., Hussain, M. M. & Asiri, A. M. Fabrication of 3-methoxyphenol sensor based on Fe3O4 decorated carbon nanotube nanocomposites for environmental safety: Real sample analyses. PLoS ONE 12, e0177817 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Hussain, M. M., Rahman, M. M. & Asiri, A. M. Ultrasensitive and selective 4-aminophenol chemical sensor development based on nickel oxide nanoparticles decorated carbon nanotube nanocomposites for green environment. J. Environ. Sci. (China) 53, 27 (2017).CAS 
    Article 

    Google Scholar 
    43.Pous, N. et al. Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater. J. Hazard. Mater. 283, 617 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Watanabe, T., Kojima, H. & Fukui, M. Complete genomes of freshwater sulfur oxidizers Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H: Genetic insights into the sulfur oxidation pathway of betaproteobacteria. Syst. Appl. Microbiol. 37, 387 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Mandal, B. Arsenic round the world: A review. Talanta 58, 201 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Mukhopadhyay, R., Rosen, B. P., Phung, L. T. & Silver, S. Microbial arsenic: From geocycles to genes and enzymes. FEMS Microbiol. Rev. 26, 311 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Oremland, R. S. et al. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl. Environ. Microbiol. 68, 4795 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Purakayastha, T. J. Detoxification of Heavy Metals (Springer, 2011).
    Google Scholar 
    49.Silver, S. & Phung, L. T. Bacterial heavy metal resistance: New surprises. Annu. Rev. Microbiol. 50, 753 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Agarwal, M., Rathore, R. S. & Chauhan, A. A rapid and high throughput MIC determination method to screen uranium resistant microorganisms. Methods Protoc. 3(1), 21. https://doi.org/10.3390/mps3010021 (2020).CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    51.Johnson, D. B., Okibe, N. & Roberto, F. F. Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: Physiological and phylogenetic characteristics. Arch. Microbiol. 180, 60 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Cai, L., Liu, G., Rensing, C. & Wang, G. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol. 9, 1–11 (2009).Article 
    CAS 

    Google Scholar 
    53.Achour, A. R., Bauda, P. & Billard, P. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res. Microbiol. 158, 128 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Cervantes, C., Ji, G., Ramirez, J. & Silver, S. Resistance to arsenic compounds in microorganisms. FEMS Microbiol. Rev. 15, 355 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Majumder, A., Ghosh, S., Saha, N., Kole, S. C. & Sarkar, S. Arsenic accumulating bacteria isolated from soil for possible application in bioremediation. J. Environ. Biol. 34, 841 (2013).PubMed 

    Google Scholar 
    56.Takeuchi, M. et al. Arsenic resistance and removal by marine and non-marine bacteria. J. Biotechnol. 127, 434 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Velásquez, L. & Dussan, J. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J. Hazard. Mater. 167, 713 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    58.Pandey, N. & Bhatt, R. Arsenic resistance and accumulation by two bacteria isolated from a natural arsenic contaminated site. J. Basic Microbiol. 55, 1275 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Zolgharnein, H., Karami, K., Assadi, M. M. & Sohrab, A. D. Molecular characterization and phylogenetic analyses of heavy metal removal bacteria from the Persian gulf. Biotechnology 9, 1–8 (2010).CAS 

    Google Scholar 
    60.Valenzuela, C. et al. Arsenite oxidation by Pseudomonas arsenicoxydans immobilized on zeolite and its potential biotechnological application. Bull. Environ. Contam. Toxicol. 94, 667 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Li, X. et al. Genome sequence of the highly efficient arsenite-oxidizing bacterium Achromobacter arsenitoxydans SY8. J. Bacteriol. 194, 1243 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Fan, H. et al. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J. Appl. Microbiol. 105, 529 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Liu, G. et al. A periplasmic arsenite-binding protein involved in regulating arsenite oxidation. Environ. Microbiol. 14, 1624 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Yan, G. et al. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr. Genet. 65, 329 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Wang, G., Huang, Y. & Li, J. Bacteria live on arsenic analysis of microbial arsenic metabolism—A review. Acta Microbiol. Sin. 51, 154 (2011).CAS 

    Google Scholar 
    66.Rosen, B. P. Biochemistry of arsenic detoxification. FEBS Lett. 529, 86 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Jahid, I. K., Lee, N. Y., Kim, A. & Ha, S. D. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in aeromonas hydrophila. J. Food Prot. 76, 239 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Hassan, Z. et al. Ample arsenite bio-oxidation activity in Bangladesh drinking water wells: A bonanza for bioremediation? Microorganisms 7, 246 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    69.Dhar, R. K., Zheng, Y., Rubenstone, J. & Van Geen, A. A rapid colorimetric method for measuring arsenic concentrations in groundwater. Anal. Chim. Acta 526, 203 (2004).CAS 
    Article 

    Google Scholar 
    70.Cummings, D. E., Caccavo, F., Fendorf, S. & Rosenzweig, R. F. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ. Sci. Technol. 33, 723 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Geetanjali, P. & Bhosale, S. P. B. Isolation and characterization of arsenate reducing bacteria from the waste water of an electroplating industry. Int. J. Curr. Microbiol. Appl. Sci. 3, 444–452 (2014).
    Google Scholar 
    72.Sanyal, S. K. et al. Diversity of arsenite oxidase gene and arsenotrophic bacteria in arsenic affected Bangladesh soils. AMB Express 6, 1–11 (2016).CAS 
    Article 

    Google Scholar 
    73.Kumar, S., Stecher, G., Tamura, K. & Dudley, J. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Khan, M. Z. H., Liu, X., Tang, Y. & Liu, X. Ultra-sensitive electrochemical detection of oxidative stress biomarker 8-hydroxy-2′-deoxyguanosine with poly (L-arginine)/graphene wrapped Au nanoparticles modified electrode. Biosens. Bioelectron. 117, 508 (2018).CAS 
    PubMed 
    Article 

    Google Scholar  More