More stories

  • in

    Impact of intensifying nitrogen limitation on ocean net primary production is fingerprinted by nitrogen isotopes

    Modelling approachWe used the PISCES-v2 biogeochemical model, attached to the Nucleus for European Modelling of the Ocean version 4.0 (NEMO-v4) general ocean circulation model29. PISCES-v2 includes five nutrients pools (nitrate, ammonium, phosphate, silicic acid and dissolved iron), dissolved oxygen, the full carbon system and accounts for two phytoplankton (nanophytoplankton and diatoms) and two zooplankton types (microzooplankton and mesozooplankton). Bioavailable nitrogen in our simulations is considered to be the combination of nitrate and ammonium. Its nitrogen cycle includes nitrogen fixation, nitrification, burial, denitrification in both the water column and sediments, and coupled nitrification–denitrification. Nitrogen isotopes were integrated within PISCES-v2 for the purposes of this study, using nine new tracers (Supplementary Note 1). Horizontal model resolution varied between ~0.5° at the equator and poles, and 2° in the subtropics, whereas vertical resolution varied between 10 and 500 m thickness over 31 levels.We conducted simulations under both preindustrial control and climate change scenarios. The preindustrial control scenario from 1801 to 2100 maintained preindustrial greenhouse gas concentrations and only included internal modes of variability. The climate change simulation from 1851 to 2100 included natural variability, prescribed changes in land use, as well as historical changes in concentrations of greenhouse gases and aerosols until 2005, after which future concentrations associated with RCP8.5 were imposed30. The biogeochemical model (PISCES-v2) was run offline from the physical model (NEMO-v4) using monthly transports and other physical conditions generated by the low resolution version of the IPSL-CM5A ESM57.Experiments were initialized from biogeochemical fields created from an extensive spin-up of 5000 years under repeat physical forcing, followed by a 300-year simulation under the preindustrial control scenario. The preindustrial control simulation used in analysis was therefore the final 300 years of a 5600-year spin-up involving two repeat simulations of the preindustrial control scenario. We utilized a global compilation of δ15NNO320 supplemented with recent data to assess the isotopic routines in the model and conducted a thorough model-data skill assessment at replicating observed patterns in space (Supplementary Note 2 and Supplementary Figs. 1–3).Anthropogenic nitrogen depositionThe effect of increasing aeolian deposition of nitrogen was assessed in our simulations. Preindustrial nitrogen deposition was prescribed as the preindustrial estimate at 1850, whereas the historical to future deposition was created by linear interpolation between preindustrial (1850) and modern/future fields (2000, 2030, 2050 and 2100). These fields were provided by Hauglustaine et al.8. However, the rapid rise between 1950 and 2000 was maintained, such that 60% of the increase between the preindustrial and modern fields occurred after 1950 (Supplementary Fig. 4).The historical rise in anthropogenic nitrogen deposition was assessed by including it in additional simulations under both preindustrial control and climate change scenarios. Four initial experiments were therefore conducted: preindustrial control; preindustrial control plus anthropogenic nitrogen deposition; climate change; and climate change plus anthropogenic nitrogen deposition.Global model experimentsWe undertook four initial simulations to quantify the impacts of anthropogenic climate change and nitrogen deposition: a preindustrial control simulation from 1801 to 2100; a full anthropogenic scenario from 1851 to 2100; a climate change-only scenario without the increase in anthropogenic nitrogen deposition from 1851 to 2100; and a nitrogen deposition scenario without anthropogenic climate change from 1851 to 2100. Anthropogenic effects to nitrogen cycling were quantified by comparing mean conditions over the final 20 years of the twenty-first century (2081–2100) with mean conditions over the final 20 years of the preindustrial control simulation, whereas effects on nitrogen isotopes were quantified by comparing mean conditions over the final 20 years of the twenty-first century (2081–2100) with mean conditions over the historical period (1986–2005) from the same simulation.To understand the direct and indirect effects of climate change, we undertook two additional idealized simulations. First, we imposed temperature changes on biogeochemical rates, while maintaining ocean circulation associated with the preindustrial control scenario, to assess the direct effects of warming on biogeochemical processes. Second, we imposed the preindustrial control temperature field on biogeochemical processes, while altering the circulation in line with the climate change scenario, to assess the indirect effects of climate change (i.e., how changing circulation alters substrate supply to biogeochemical reactions). Each experiment was run from 1851 to 2100 and without the anthropogenic increase in atmospheric nitrogen deposition, parallel with the full climate change simulation.Agreement between the climate change simulation without anthropogenic nitrogen deposition was quantified using a pixel-by-pixel correlation analysis using Spearman’s rank correlation based on the non-parametric nature of the two-dimensional fields used for comparison. Fields were euphotic zone nitrate, twilight zone δ15NNO3, euphotic zone δ15NPOM, and vertically integrated NPP, zooplankton grazing, nitrogen fixation, water column denitrification and sedimentary denitrification.Depth zonesWe assessed changes in biogeochemical variables related to nitrogen cycling in two depth zones defined by light. The euphotic zone was defined by depths between the surface and 0.1% of incident irradiance as recommended by Buesseler et al.42. The twilight zone was also defined using light, as advocated by Kaartvedt et al.58. Depths between 0.1% and 0.0001% of incident irradiance defined the twilight zone. These definitions typically returned euphotic zone thicknesses of 137 ± 23 m (mean ± SD), and twilight zone thicknesses of 233 ± 37 m. The boundary between these depth zones were deepest in oligotrophic tropical and subtropical waters, and were shallowest in equatorial and temperate waters (Supplementary Fig. 7).Time of emergenceToE calculations determined when anthropogenic, anomalous trends emerged from the noise of background variability. ToE was calculated at each grid cell within both the euphotic and twilight zones (depth-averaged) and using annually averaged fields of ocean tracers. We therefore ignored temporal trends and variability at seasonal and sub-seasonal scales. Raw time series were first detrended and normalized using the linear slope and mean of the preindustrial control experiment, such that the preindustrial control time series varied about zero, while anomalous trends in experiments with climate change and/or nitrogen deposition deviated from zero. These detrended and normalized time series were smoothed using a boxcar (flat) moving average with a window of 11 years to filter decadal variability (Supplementary Fig. 12). Differences with the preindustrial control experiment were then computed.To determine whether the differences with the preindustrial control experiment were anomalous, we calculated a measure of noise from the raw, inter-annual time series of the preindustrial control experiment (1801–2100). A signal emerged from the noise if it exceeded 2 SDs, a threshold that represents with 95% confidence that a value was anomalous and is therefore a conservative envelope to distinguish normality from anomaly16.Furthermore, we required that anomalous values must consistently exceed the noise of the preindustrial control experiment until the end of the simulation (2100) to be registered as having emerged. Temporary emergences were therefore rejected, making our ToE estimates more conservative. A graphical representation of this process is shown in Supplementary Fig. 12.Isolating biogeochemical 15NO3 fluxesWe analysed the biogeochemical fluxes of 15NO3 and NO3 into and out of each model grid cell within the twilight zone, to determine whether the trends in δ15NNO3 were related to biogeochemical or physical changes. Fluxes of 15NO3 and NO3 included a net source from nitrification (NO3nitr) and net sinks due to new production (NO3new) and denitrification (NO3den). Although nitrification did not directly alter the 15N : 14N ratio in our simulations, the release of 15NO3 and NO3 by nitrification conveyed an isotopic signature determined by prior fractionation processes that produce ammonium (NH4). These processes include remineralization of particulate and dissolved organic matter, excretion by zooplankton and nitrogen fixation. The isotopic signatures of these processes were thus included implicitly in NO3nitr. For each grid cell, we calculated the biogeochemical tendency to alter δ15NNO3 based on the ratio of inputs minus outputs:$${Delta} {delta }^{15}{{{{{{rm{N}}}}}}}_{{{{{{rm{NO3}}}}}}}=left(frac{{,{!}^{15}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{nitr}}}}}}}-{,{!}^{15}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{new}}}}}}}-{,{!}^{15}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{den}}}}}}}}{{,{!}^{14}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{nitr}}}}}}}-{,{!}^{14}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{new}}}}}}}-{,{!}^{14}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{den}}}}}}}}-1right)cdot 1000$$
    (1)
    This calculation excluded any upstream biological changes and circulation changes that might have altered δ15NNO3.0D water parcel modelWe simulated the nitrogen isotope dynamics in a recently upwelled water parcel during transit to the subtropics by building a 0D model. The model simulates state variables of dissolved inorganic nitrogen (DIN), particulate organic nitrogen (PON) and exported particulate nitrogen (ExpN), as well as their heavy isotopes (DI15N, PO15N and Exp15N) in units of mmol N m−3 over 100 days given initial conditions and constants listed in Supplementary Table 1.$$frac{Delta {{{{{rm{DIN}}}}}}}{Delta t}=-{{{{{mathrm{N}}}}}}_{{{{{{rm{uptake}}}}}}}+{{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}$$
    (2)
    $$frac{Delta {{{{{rm{PON}}}}}}}{Delta t}={{{{{mathrm{N}}}}}}_{{{{{{rm{uptake}}}}}}}-{{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}-{{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (3)
    $$frac{Delta {{{{{rm{ExpN}}}}}}}{Delta t}={{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (4)
    $$frac{Delta {{{{{rm{DI1}}}}}}{}^{15}{{{{{rm{N}}}}}}}{Delta t}=-{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{uptake}}}}}}}+{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{recycled}}}}}}}$$
    (5)
    $$frac{Delta {{{{{rm{PO}}}}}}{}^{15}{{{{{rm{N}}}}}}}{Delta t}={}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{uptake}}}}}}}-{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{recycled}}}}}}}-{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (6)
    $$frac{Delta {{{{mathrm{Exp}}}}}{}^{15}{{{{{rm{N}}}}}}}{Delta t}={}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (7)
    First, the model calculates maximum potential growth rate of phytoplankton (μmax) in units of day−1 (Eq. 8) using temperature and then finds nitrogen uptake (Nuptake, Eq. 10) using PON and limitation terms for nitrogen (Nlim, Eq. 9), light (Llim, Supplementary Table 1) and iron (Felim, Supplementary Table 1).$${mu }_{{{max }}}=0.6,{{{{{rm{da}}}}}}{y}^{-1}cdot {e}^{Tcdot {T}_{{{{{{rm{growth}}}}}}}}$$
    (8)
    $${{{{{mathrm{N}}}}}}_{{{{{mathrm{lim}}}}}}=frac{{{{{{rm{DIN}}}}}}}{{{{{{rm{DIN}}}}}}+{{{{{mathrm{K}}}}}}_{{{{{{rm{DIN}}}}}}}}$$
    (9)
    $${{{{{mathrm{N}}}}}}_{{{{{mathrm{uptake}}}}}}={mu }_{max }cdot {{{{{mathrm{L}}}}}}_{{{{{mathrm{lim}}}}}}cdot ,min ({{{{{mathrm{Fe}}}}}}_{{{{{mathrm{lim}}}}}},{{{{{mathrm{N}}}}}}_{{{{{mathrm{lim}}}}}})cdot {{{{{mathrm{PON}}}}}}$$
    (10)
    At a constant temperature of 18 °C, μmax is equal to ~1.9 day−1. Limitation terms for light and iron are set as constant and are used to prevent unrealistically high nitrogen uptake when nitrogen is high, such as occurs immediately following upwelling in the high-nutrient low-chlorophyll regions of the tropics. Fractionation by phytoplankton is calculated assuming an open system21, in this case where nitrogen can be lost through export of organic matter. To calculate the fractionation associated with uptake (15Nuptake, Eq. 11), we multiply the total nitrogen uptake (Nuptake, Eq. 10) by the heavy to light isotope ratio (({r}_{{{{{{rm{DIN}}}}}}}^{15}), Eq. 12) and the fractionation factor (εphy, Supplementary Table 1), which is converted from units of per mil (‰) to a fraction relative to one. This fractionation factor (εphy) is constant at 5‰ but is decreased towards 0‰ by the nitrogen limitation term (Nlim, Eq. 9), such that when nitrogen is limiting to growth, the fractionation during uptake decreases (last term on the right-hand side approaches 1).$${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{uptake}}}}}}},=,{{{{{mathrm{N}}}}}}_{{{{{{rm{uptake}}}}}}}cdot {r}_{{{{{{rm{DIN}}}}}}}^{15}cdot left(1-frac{{{{{mathrm{N}}}}}_{{{{{mathrm{lim}}}}}}cdot {varepsilon }_{{{{{{rm{phy}}}}}}}}{1000}right)$$
    (11)
    $${r}_{{{{{{rm{DIN}}}}}}}^{15},=,frac{{{{mathrm{DI}}}}^{15}{{{{{{rm{N}}}}}}}}{{{{{{rm{DIN}}}}}}}$$
    (12)
    At each timestep, a fraction of the PON pool becomes detritus (Eq. 15) and this detritus is instantaneously recycled back to DIN or exported to ExpN and removed from the water parcel. The amount of detritus produced per timestep is calculated as the sum of linear respiration (Eq. 13) and quadratic mortality (Eq. 14) terms, where Presp (units of day−1), Kresp (units of mmol N m−3) and Pmort (units of (mmol N m−3)−1 day−1) are constants (Supplementary Table 1).$${{{{{rm{Respiration}}}}}},=,{{{{{mathrm{P}}}}}}_{{{{{{rm{resp}}}}}}}cdot {{{{{rm{PON}}}}}}cdot frac{{{{{{rm{PON}}}}}}}{{{{{{rm{PON}}}}}}+{{{{{mathrm{K}}}}}}_{{{{{{rm{resp}}}}}}}}$$
    (13)
    $${{{{{rm{Mortality}}}}}},=,{{{{{mathrm{P}}}}}}_{{{{{{rm{mort}}}}}}}cdot {{{{{rm{PON}}}}}}^{2}$$
    (14)
    $${{{{{rm{Detritus}}}}}},=,{{{{{rm{Respiration}}}}}},+,{{{{{rm{Mortality}}}}}}$$
    (15)
    Once we know the fraction of PON that becomes detritus at any given timestep, we must solve for the fraction of that detritus that becomes DIN through recycling (Eq. 17), and that which becomes ExpN through export (Eq. 18). The fraction of detritus that is recycled back into DIN is temperature dependent (Eq. 16), with higher temperatures increasing rates of recycling above a minimum fraction set by frecmin (Supplementary Table 1). The relationship with temperature is exponential, similar to phytoplankton maximum growth (μmax), but the degree of increase associated with warming is scaled down by a constant factor equal to Trec (Supplementary Table 1). The fraction that is exported to ExpN is the remainder (Eq. 18).$${f}_{{{{{{rm{recycled}}}}}}}={f}_{{{{{{rm{recmin}}}}}}}+{T}_{{{{{{rm{rec}}}}}}}cdot {e}^{Tcdot {T}_{{{{{{rm{growth}}}}}}}}$$
    (16)
    $${{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}={{{{{rm{Detritus}}}}}}cdot {f}_{{{{{{rm{recycled}}}}}}}$$
    (17)
    $${{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}={{{{{rm{Detritus}}}}}}cdot (1-{f}_{{{{{{rm{recycled}}}}}}})$$
    (18)
    The major fluxes of Nuptake, Nrecycled and Nexported are now solved for. All that remains is to calculate the isotopic signatures of the recycling (Eq. 19) and export (Eq. 20) fluxes. These, similar to 15Nuptake (Eq. 11), are solved by multiplying against a standard ratio of heavy to light isotope (({r}_{{{{{{rm{PON}}}}}}}^{15}), Eq. 21).$${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{recycled}}}}}}}={{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}cdot {r}_{{{{{{rm{PON}}}}}}}^{15}$$
    (19)
    $${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{exported}}}}}}}={{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}cdot {r}_{{{{{{rm{PON}}}}}}}^{15}$$
    (20)
    $${r}_{{{{{{rm{PON}}}}}}}^{15}=frac{{{{{{rm{PO}}}}}}{}^{15}{{{{{rm{N}}}}}}}{{{{{{rm{PON}}}}}}}$$
    (21)
    Finally, we calculate the δ15N values of the major pools in the model (DIN, PON and ExpN) as output (Eqs. 22–24). We assume in this model that the major pools of DIN, PON and ExpN represent the total amount of the light isotope (14N), whereas the DI15N, PO15N and Exp15N pools represent the relative enrichment in 15N compared to a standard ratio. For simplicity, we make the standard ratio equal to 1. Therefore, taking the ratio of the DI15N to DIN pools and subtracting one returns the isotopic signature. Multiplying this by 1000 converts this signature to per mil units (‰).$${delta }^{15}{{{{{{rm{N}}}}}}}_{{{{{{rm{DIN}}}}}}}=left(frac{{{{{{rm{DI}}}}}}{}^{15}{{{{{rm{N}}}}}}}{{{{{{rm{DIN}}}}}}}-1right)cdot 1000$$
    (22)
    $${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{PON}}}}}}}=left(frac{{{{{{{rm{PO}}}}}}}^{15}N}{{{{{{rm{PON}}}}}}}-1right)cdot 1000$$
    (23)
    $${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{ExpN}}}}}}}=left(frac{{{{{mathrm{Exp}}}}}{}^{15}{{{{{rm{N}}}}}}}{{{{{{rm{ExpN}}}}}}}-1right)cdot 1000$$
    (24) More

  • in

    Protected areas are not effective for the conservation of freshwater insects in Brazil

    1.Brooks, T. M. et al. Global biodiversity conservation priorities. Science (80-. ). 313, 58–61 (2006).2.Camacho-Sandoval, J. & Duque, H. Indicators for biodiversity assessment in Costa Rica. Agric. Ecosyst. Environ. 87, 141–150 (2001).Article 

    Google Scholar 
    3.Diniz-Filho, J. A. F. et al. Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera: Acridoidea: Romaleidae). Insect Conserv. Divers. https://doi.org/10.1111/j.1752-4598.2010.00090.x (2010).Article 

    Google Scholar 
    4.Morse-Jones, S. et al. Stated preferences for tropical wildlife conservation amongst distant beneficiaries: Charisma, endemism, scope and substitution effects. Ecol. Econ. 78, (2012).5.Verissimo, D., MacMillan, D. C. & Smith, R. J. Toward a systematic approach for identifying conservation flagships. Conserv. Lett. vol. 4 (2011).6.Nóbrega, C. C. & De Marco, P. Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers. Distrib. 17, 491–505 (2011).Article 

    Google Scholar 
    7.SNUC, (Sistema Nacional de Unidades de Conservação da Natureza). Lei no 9.985, de 18 de julho de 2000. Mma/Sbf (2000) doi:https://doi.org/10.1017/CBO9781107415324.004.8.Abell, R., Allan, J. D. & Lehner, B. Unlocking the potential of protected areas for freshwaters. Biol. Conserv. 134, 48–63 (2007).Article 

    Google Scholar 
    9.Monteiro, C. da S., Esposito, M. C. & Juen, L. Are the adult odonate species found in a protected area different from those present in the surrounding zone? A case study from eastern Amazonia. J. Insect Conserv. 20, 643–652 (2016).10.Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).CAS 
    Article 

    Google Scholar 
    11.Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).Article 

    Google Scholar 
    12.Bini, L. M., Diniz-Filho, J. A. F., Rangel, T. F. L. V. B., Bastos, R. P. & Pinto, M. P. Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Divers. Distrib. https://doi.org/10.1111/j.1366-9516.2006.00286.x (2006).Article 

    Google Scholar 
    13.Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. https://doi.org/10.1016/S0006-3207(01)00208-7 (2002).Article 

    Google Scholar 
    14.Silva, D. C., Vieira, T. B., da Silva, J. M. & de Cassia Faria, K. Biogeography and priority areas for the conservation of bats in the Brazilian Cerrado. Biodivers. Conserv. 27, 815–828 (2018).15.Salkeld, D. J., Padgett, K. A. & Jones, J. H. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecol. Lett. 16, 679–686 (2013).Article 

    Google Scholar 
    16.Juen, L. & de Marco, P. Dragonfly endemism in the Brazilian Amazon: competing hypotheses for biogeographical patterns. Biodivers. Conserv. https://doi.org/10.1007/s10531-012-0377-0 (2012).Article 

    Google Scholar 
    17.Mendes, S. L. et al. Protected Areas for the Northern Muriqui, Brachyteles hypoxanthus (Primates, Atelidae). Neotrop. Primates 13, (2005).18.Serra, B. D. V., De Marco Júnior, P., Nóbrega, C. C. & Campos, L. A. D. O. Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 (Hymenoptera, apidae): conserving isolated populations in mountain habitats. Nat. a Conserv. 10, 199–206 (2012).19.Mendes, P. & De Marco, P. Bat species vulnerability in Cerrado: integrating climatic suitability with sensitivity to land-use changes. Environ. Conserv. 45, 67–74 (2018).Article 

    Google Scholar 
    20.Brasil, L. S. et al. A niche‐based gap analysis for the conservation of odonate species in the Brazilian Amazon. Aquat. Conserv. Mar. Freshw. Ecosyst. aqc.3599 (2021) doi:https://doi.org/10.1002/aqc.3599.21.da Silva, J. G., Vieira, T. B. & Mews, H. A. Fine-scale effect of environmental variation and distance from watercourses on pteridophyte assemblage structure in the western Amazon. Folia Geobot. https://doi.org/10.1007/s12224-021-09390-y (2021).Article 

    Google Scholar 
    22.Doughty, C. R. Freshwater biomonitoring and benthic macroinvertebrates, edited by D. M. Rosenberg and V. H. Resh, Chapman and Hall, New York, 1993. ix + 488pp. ISBN 0412 02251 6. Aquat. Conserv. Mar. Freshw. Ecosyst. 4, 92–92 (1994).23.Harper, D. M., Rosenberg, D. A. & Resh, V. H. Freshwater biomonitoring and benthic macroinvertebrates. J. Appl. Ecol. 31, 790 (1994).Article 

    Google Scholar 
    24.Cunha, E. J. & Juen, L. Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. J. Insect Conserv. 21, 111–119 (2017).Article 

    Google Scholar 
    25.Schuh, R. T. & Slater, J. A. True bugs of the World (Hemiptera: Heteroptera). Classification and Natural History. (Cornell University Press, 1995).26.Giehl, N. F. da S., Dias-Silva, K., Juen, L., Batista, J. D. & Cabette, H. S. R. Taxonomic and Numerical Resolutions of Nepomorpha (Insecta: Heteroptera) in Cerrado Streams. PLoS One 9, e103623 (2014).27.Dias-Silva, K., Cabette, H. S. R., Juen, L. & Jr, P. D. M. The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Zool. 27, 918–930 (2010).28.Panizzi, A. R. & Grazia, J. True Bugs (Heteroptera) of the Neotropics. True Bugs (Heteroptera) of the Neotropics vol. 2 (Springer Netherlands, 2015).29.Polhemus, J. T. & Polhemus, D. A. Global diversity of true bugs (Heteroptera; Insecta) in freshwater. Hydrobiologia https://doi.org/10.1007/s10750-007-9033-1 (2008).Article 

    Google Scholar 
    30.Nieser, N. & Melo, A. L. Os Heterópteros Aquáticos de Minas Gerais. (UFMG, Belo Horizonte, 1997).31.Cunha, E. J., de Assis Montag, L. F. & Juen, L. Oil palm crops effects on environmental integrity of Amazonian streams and Heteropteran (Hemiptera) species diversity. Ecol. Indic. 52, 422–429 (2015).32.Cordeiro, I. & Moreira, F. New distributional data on aquatic and semiaquatic bugs (Hemiptera: Heteroptera: Gerromorpha & Nepomorpha) from South America. Biodivers. Data J. 3, e4913 (2015).33.Rodrigues, A. S. L. & Brooks, T. M. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737 (2007).Article 

    Google Scholar 
    34.Andelman, S. J. & Fagan, W. F. Umbrellas and flagships: Efficient conservation surrogates or expensive mistakes?. Proc. Natl. Acad. Sci. 97, 5954–5959 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article 

    Google Scholar 
    36.Abellan, P., Sanchez-Fernandez, D., Velasco, J. & Millan, A. Conservation of freshwater biodiversity: a comparison of different area selection methods. Biodivers. Conserv. 14, 3457–3474 (2005).Article 

    Google Scholar 
    37.Fearnside, P. M. Conservation policy in brazilian amazonia: understanding the dilemmas. World Dev. 31, 757–779 (2003).Article 

    Google Scholar 
    38.dos Santos, A. J., Vieira, T. B. & Faria, K. de C. Effects of vegetation structure on the diversity of bats in remnants of Brazilian Cerrado savanna. Basic Appl. Ecol. 17, 720–730 (2016).39.Groves, C. R. et al. Planning for biodiversity conservation: putting conservation science into practice. Bioscience https://doi.org/10.1641/0006-3568(2002)052[0499:pfbcpc]2.0.co;2 (2002).Article 

    Google Scholar 
    40.Fearnside, P. M. & Ferraz, J. A conservation gap analysis of Brazil’s Amazonian vegetation. Conserv. Biol. 9, 1134–1147 (1995).Article 

    Google Scholar 
    41.Fearnside, P. M. Introduction: strategies for social and environmental conservation in conservation units. In The Amazon Várzea 233–238 (Springer Netherlands, 2011). doi:https://doi.org/10.1007/978-94-007-0146-5_16.42.Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).Article 

    Google Scholar 
    43.Marini, M. Â. & Garcia, F. I. Bird conservation in Brazil. Conserv. Biol. https://doi.org/10.1111/j.1523-1739.2005.00706.x (2005).Article 

    Google Scholar 
    44.Young, B. E. et al. Population declines and priorities for amphibian conservation in Latin America. Conserv. Biol. 15, 1213–1223 (2001).Article 

    Google Scholar 
    45.Dias-Silva, K., Moreira, F. F. F., Giehl, N. F. D. S., Nóbrega, C. C. & Cabette, H. S. R. Gerromorpha (Hemiptera: Heteroptera) of eastern Mato Grosso State, Brazil: checklist, new records, and species distribution modeling. Zootaxa https://doi.org/10.11646/zootaxa.3736.3.1 (2013).Article 
    PubMed 

    Google Scholar 
    46.Ferraz, K. M. P. M. de B., Ferraz, S. F. de B., Paula, R. C. de, Beisiegel, B. & Breitenmoser, C. Species Distribution Modeling for Conservation Purposes. Nat. Conserv. 10, 214–220 (2012).47.Marco-Júnior, P. & Siqueira, M. F. Como determinar a distribuição potencial de espécies sob uma abordagem conservacionista? Megadiversidade (2009).48.Hijmans, R. J. et al. DIVA-GIS, version 5.2. A geographic information system for the analysis of biodiversity data. Manual. . vol. 1 (International Potato Center, 2005).49.Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R. Numerical Ecology with R (Springer New York, 2011). doi:https://doi.org/10.1007/978-1-4419-7976-6.50.Serra, B. D. V., De Marco, P. J., Nóbrega, C. C. & Campos, L. A. D. O. Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 ( Hymenoptera, Apidae ): Conserving Isolated Populations in Mountain Habitats. Nat. e Conserv. 10, 199–206 (2012).Article 

    Google Scholar 
    51.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    52.Swets, J. Measuring the accuracy of diagnostic systems. Science (80-. ). 240, 1285–1293 (1988).53.Girardello, M., Griggio, M., Whittingham, M. J. & Rushton, S. P. Identifying important areas for butterfly conservation in Italy. Anim. Conserv. https://doi.org/10.1111/j.1469-1795.2008.00216.x (2009).Article 

    Google Scholar 
    54.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    55.Vieira, T. B., Mendes, P. & Oprea, M. Priority areas for bat conservation in the state of Espírito Santo, southeastern Brazil. Neotrop. Biol. Conserv. 7, 88–96 (2012).Article 

    Google Scholar 
    56.Delgado-Jaramillo, M., Aguiar, L. M. S., Machado, R. B. & Bernard, E. Assessing the distribution of a species-rich group in a continental-sized megadiverse country: Bats in Brazil. Divers. Distrib. 26, 632–643 (2020).Article 

    Google Scholar 
    57.Destro, G. F. G., de Fernandes, V., de Andrade, A. F. A., De Marco, P. & Terribile, L. C. Back home? Uncertainties for returning seized animals to the source-areas under climate change. Glob. Chang. Biol. 25, 3242–3253 (2019).ADS 
    Article 

    Google Scholar 
    58.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.). (2006) doi:https://doi.org/10.1111/j.2006.0906-7590.04596.x.59.Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2006).60.de Andrade, A. F. A., Velazco, S. J. E. & De Marco, P. Niche mismatches can impair our ability to predict potential invasions. Biol. Invasions 21, 3135–3150 (2019).Article 

    Google Scholar 
    61.Velazco, S. J. E., Villalobos, F., Galvão, F. & De Marco Júnior, P. A dark scenario for Cerrado plant species: Effects of future climate, land use and protected areas ineffectiveness. Divers. Distrib. 25, 660–673 (2019).62.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. https://doi.org/10.1111/j.1466-8238.2009.00490.x (2010).Article 

    Google Scholar 
    63.Moilanen, A. et al. Prioritizing multiple-use landscapes for conservation : methods for large multi-species planning problems. Proc. R. Soc. 272, 1885–1891 (2005).
    Google Scholar 
    64.Moilanen, A. et al. Zonation spatial conservation planning framework and software v. 3.1, User manual. (2012).65.Moilanen, A. Landscape zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biol. Conserv. 134, 571–579 (2007).Article 

    Google Scholar 
    66.Carvalho, A. R. de. Método de Monte Carlo e Aplicações. Repositório Inst. da Univ. Fed. Flum. 84 (2017).67.Feinleib, M. & Zar, J. H. Biostatistical analysis. J. Am. Stat. Assoc. https://doi.org/10.2307/2285423 (1975).Article 

    Google Scholar  More

  • in

    Worker-dependent gut symbiosis in an ant

    1.Lundberg JO, Weitzberg E, Cole JA, Benjamin N. Nitrate, bacteria and human health. Nat Rev Microbiol. 2004;2:593–602.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol. 2015;60:17–34.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Bourtzis K, Miller T (eds). Insect symbiosis. (CRC Press, Boca Raton, 2003)5.West SA, Fisher RM, Gardner A, Kiers ET. Major evolutionary transitions in individuality. Proc Natl Acad Sci USA. 2015;112:10112–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Hughes DP, Pierce NE, Boomsma JJ. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol. 2008;23:672–7.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Currie CR. A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol. 2001;55:357–80.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, et al. The Ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol. 2002;47:733–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Heil M, McKey D. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst. 2003;34:425–53.Article 

    Google Scholar 
    10.Schröder D, Deppisch H, Obermayer M, Krohne G, Stackebrandt E, Hôlldobler B, et al. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Mol Microbiol. 1996;21:479–89.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Zientz E, Dandekar T, Gross R. Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev. 2004;68:745–70.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Currie CR, Summerbell RC, Scott JA, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature. 1999;423:461–461.Article 
    CAS 

    Google Scholar 
    13.Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci USA. 2009;106:21236–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA. The evolution of host-symbiont dependence. Nat Commun. 2017;8:15973 https://doi.org/10.1038/ncomms15973CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Hölldobler B, Wilson EO (eds). The ants. (Harvard University Press, Springer-Verlag, 1990).16.Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA. 2011;108:19288–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Zhukova M, Sapountzis P, Schiøtt M, Boomsma JJ. Diversity and transmission of gut bacteria in Atta and Acromyrmex leaf-cutting ants during development. Front Microbiol. 2017;8:1–14. https://doi.org/10.3389/fmicb.2017.01942Article 

    Google Scholar 
    18.Segers FH, Kaltenpoth M, Foitzik S. Abdominal microbial communities in ants depend on colony membership rather than caste and are linked to colony productivity. Ecol Evol. 2009;9:13450–67.Article 

    Google Scholar 
    19.Kapheim KM, Rao VD, Yeoman CJ, Wilson BA, White BA, Goldenfeld N, et al. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS ONE. 2015;10:e0123911 https://doi.org/10.1371/journal.pone.0123911CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Tarpy DR, Mattila HR, Newton ILG. Development of the honey bee gut microbiome throughout the queen-rearing process. Appl Environ Microbiol. 2015;81:3182–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, et al. Complementary symbiont contributions to plant decomposition in a fungus‐farming termite. Proc Natl Acad Sci USA. 2014;111:14500–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Russell JA, Sanders JG, Moreau CS. Hotspots for symbiosis: Function, evolution, and specificity of ant-microbe associations from trunk to tips of the ant phylogeny (Hymenoptera: Formicidae). Myrmecol News. 2017;24:43–69.
    Google Scholar 
    23.Bourke AFG. Colony size, social complexity and reproductive conflict in social insects. J Evol Biol. 1999;12:245–57.Article 

    Google Scholar 
    24.Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE. Phylogeny of the ants: diversification in the age of angiosperms. Science. 2006;312:101–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Peeters C, Crewe R. Insemination controls the reproductive division of labour in a ponerine ant. Naturwissenschaften. 1984;71:l50–51.Article 

    Google Scholar 
    26.Kikuchi T, Nakagawa T, Tsuji K. Changes in relative importance of multiple social regulatory forces with colony size in the ant Diacamma sp. from Japan. Anim Behav. 2008;76:2069–77.Article 

    Google Scholar 
    27.Fukumoto Y, Abe T, Taki A. A novel form of colony organization in the ‘queenless’ ant Diacamma rugosum. Physiol Ecol Jpn. 1989;26:55–61.
    Google Scholar 
    28.Nakata K. Age polyethism, idiosyncrasy and behavioural flexibility in the queenless ponerine ant, Diacamma sp. J Ethol. 1995;13:113–23.Article 

    Google Scholar 
    29.Nakata K. Does behavioral flexibility compensate or constrain colony productivity? Relationship among age structure, labor allocation, and production of workers in ant colonies. J Ins Behav. 1996;9:557–69.Article 

    Google Scholar 
    30.Shimoji H, Kasutani N, Ogawa S, Hojo MK. Worker propensity affects flexible task reversion in an ant. Behav Ecol Sociobiol. 2020;74:92.Article 

    Google Scholar 
    31.Peeters C, Tsuji K. Reproductive conflict among ant workers in Diacamma sp. from Japan: dominance and oviposition in the absence of the gamergate. Ins Soc. 1993;40:119–36.Article 

    Google Scholar 
    32.Shimoji H, Fujiki Y, Yamaoka R, Tsuji K. Egg discrimination by workers in Diacamma sp. from Japan. Ins Soc. 2012;59:201–6.Article 

    Google Scholar 
    33.Okada Y, Watanabe Y, Tin MMY, Tsuji K, Mikheyev AS. Social dominance alters nutrition-related gene expression immediately: transcriptomic evidence from a monomorphic queenless ant. Mol Ecol. 2017;26:2922–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Fujioka H, Abe MS, Fuchikawa T, Tsuji K, Shimada M, Okada Y. Ant circadian activity associated with brood care type. Biol Lett. 2017;13:13–16.Article 

    Google Scholar 
    35.Itoh H, Navarro R, Takeshita K, Tago K, Hayatsu M, Hori T, et al. Bacterial population succession and adaptation affected by insecticide application and soil spraying history. Front Microbiol. 2014;5:457 https://doi.org/10.3389/fmicb.2014.00457Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Itoh H, Aita M, Nagayama A, Meng XY, Kamagata Y, Navarro R, et al. Evidence of environmental and vertical transmission of Burkholderia symbionts in the oriental chinch bug Cavelerius saccharivorus (Heteroptera: Blissidae). Appl Environ Microbiol. 2014;80:5974–83.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve bayesian classifier for rapid assignment of rRNA Sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Kawano K, Ushijima N, Kihara M, Itoh H. Patiriisocius marinistellae gen. nov., sp. nov., isolated from the starfish Patiria pectinifera, and reclassification of Ulvibacter marinus as a member of the genus Patiriisocius comb. nov. Int J Syst Evol Microbiol. 2020;70:4119–29.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Kikuchi Y, Hosokawa T, Fukatsu T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol. 2007;73:4308–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 2015;43:W7–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2020;37:291–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Matsuura Y, Kikuchi Y, Meng XY, Koga R, Fukatsu T. Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Appl Environ Microbiol. 2012;78:4149–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Koga R, Tsuchida T, Fukatsu T. Quenching autofluorescence of insect tissues for in situ detection of endosymbionts. Appl Entomol Zool. 2009;44:281–91.CAS 
    Article 

    Google Scholar 
    48.Funaro CF, Kronauer DJ, Moreau CS, Goldman-Huertas B, Pierce NE, Russell JA. Army ants harbor a host-specific clade of Entomoplasmatales bacteria. Appl Environ Microbiol. 2011;77:346–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Łukasik P, Newton JA, Sanders JG, Hu Y, Moreau CS, Kronauer D, et al. The structured diversity of specialized gut symbionts of the New World army ants. Mol Ecol. 2017;26:3808–25.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Scott JJ, Budsberg KJ, Suen G, Wixon DL, Balser TC, Currie CR. Microbial community structure of leaf-cutter ant fungus gardens and refuse dumps. PloS ONE. 2010;5:e9922 https://doi.org/10.1371/journal.pone.0009922CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Yang H, Schmitt-Wagner D, Stingl U, Brune A. Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol. 2005;7:916–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.King JH, Mahadi NM, Bong CF, Ong KH, Hassan O. Bacterial microbiome of Coptotermes curvignathus (Isoptera: Rhinotermitidae) reflects the coevolution of species and dietary pattern. Insect Sci. 2014;21:584–96.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Koto A, Nobu MK, Miyazaki R. Deep sequencing uncovers caste-associated diversity of symbionts in the social ant Camponotus japonicus. mBio. 2020;11:e00408–20. https://doi.org/10.1128/mBio.00408-20CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Lombardo MP. Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behav Ecol Sociobiol. 2008;62:479–97.Article 

    Google Scholar 
    55.Engel P, Moran NA. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Moreau CS. Symbioses among ants and microbes. Curr Opin Ins Sci. 2020;39:1–5.Article 

    Google Scholar 
    57.Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, et al. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol. 2005;71:6590–9. 2005CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Lanan MC, Rodrigues PAP, Agellon A, Jansma P, Wheeler DE. A bacterial filter protects and structures the gut microbiome of an insect. ISME J. 2016;10:1866–76.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Blochmann F. Über das Vorkommen bakterienähnlicher Gebilde in den Geweben und Eiern verschiedener Insekten. Zbl Bakt. 1882;11:234–40.
    Google Scholar 
    60.Kupper M, Stigloher C, Feldhaar H, Gross R. Distribution of the obligate endosymbiont Blochmannia floridanus and expression analysis of putative immune genes in ovaries of the carpenter ant Camponotus floridanus. Arthropod Struct Dev. 2016;45:475–87.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Rafiqi AM, Rajakumar A, Abouheif E. Origin and elaboration of a major evolutionary transition in individuality. Nature. 2020;585:239–44.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    62.Wilkinson DM. Horizontally acquired mutualisms, an unsolved problem in ecology? Oikos. 2001;92:377–84.Article 

    Google Scholar 
    63.Benson DR, Silvester WB. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev. 1993;57:293–319.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Shang Y, Feng P, Wang C. Fungi that infect insects: altering host behavior and beyond. PLoS Pathogen. 2015;11:e1005037 https://doi.org/10.1371/journal.ppat.1005037CAS 
    Article 

    Google Scholar 
    65.Hughes DP, Araújo JP, Loreto RG, Quevillon L, de Bekker C, Evans HC. From so Simple a Beginning: The Evolution of Behavioral Manipulation by Fungi. Adv Genet. 2016;94:437–69.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Araújo JPM, Hughes DP. Diversity of entomopathogenic fungi: which groups conquered the insect body? Adv Genet. 2016;94:1–39.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Cremer S, Armitage SAO, Schmid-Hempel P. Social immunity. Curr Biol. 2007;17:R693–R702.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Mersch DP, Crespi A, Keller L. Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science. 2013;340:1090–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Hart AG, Anderson C, Ratnieks FLW. Task partitioning in leafcutting ants. acta ethol. 2002;5:1–11.Article 

    Google Scholar 
    70.Okada Y, Miyazaki S, Miyakawa H, Ishikawa A, Tsuji K, Miura T. Ovarian development and insulin-signaling pathways during reproductive differentiation in the queenless ponerine ant Diacamma sp. J Ins Physiol. 2010;56:288–95.CAS 
    Article 

    Google Scholar 
    71.Miyazaki S, Shimoji H, Suzuki R, Chinushi I, Takayanagi H, Yaguchi H, et al. Expressions of conventional vitellogenin and vitellogenin-like A in worker brains are associated with a nursing task in a ponerine ant. Ins Mol Biol. 2021;30:113–21.CAS 
    Article 

    Google Scholar 
    72.Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Hu Y, Sanders JG, Łukasik P, D’Amelio CL, Millar JS, Vann DR, et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat Commun. 2018;9:964 https://doi.org/10.1038/s41467-018-03357-yCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Kikuta N, Tsuji K. Queen and worker policing in the monogynous and monandrous ant, Diacamma sp. Behav Ecol Sociobiol. 1999;46:180–9.Article 

    Google Scholar 
    75.Okada Y, Sasaki K, Miyazaki S, Shimoji H, Tsuji K, Miura T. Social dominance and reproductive differentiation mediated by dopaminergic signaling in a queenless ant. J Exp Biol. 2015;218:1091–8.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Shimoji H, Kikuchi T, Ohnishi H, Kikuta N, Tsuji K. Social enforcement depending on the stage of colony growth in an ant. Proce R Soc B. 2018;285:20172548.Article 

    Google Scholar  More

  • in

    In vitro metabolic capacity of carbohydrate degradation by intestinal microbiota of adults and pre-frail elderly

    Study setupSix adults and six elderly, who were included in a previously conducted in vivo GOS intervention study [11], donated their faecal material for the current study (Fig. S1) at their first visit or at least 4 weeks after the intervention period. Each participant defecated into a stool collector (Excretas Medical BV, Enschede, the Netherlands). Directly after defecation, faecal material was divided into two portions. A small portion (~0.5 g) was frozen immediately. The remaining faeces was anoxically cryo-conserved and used as inoculum for the in vitro incubations. The viability of different microbial groups in the anoxically cryo-conserved faecal material was determined with propidium monoazide (PMA) dye. The in vitro incubations lasted for 24 h with samples collected in duplicate to compare microbiota composition, carbohydrate degradation and metabolite production between age groups (adults vs elderly). The degrading capacity for two typical bifidogenic carbohydrates, i.e., GOS and 2′-FL, was determined for the microbiota of all six adults and six elderly and compared to a non-carbohydrate control. To further extend these experiments, we also studied the degradation of other typical bifidogenic carbohydrates, i.e. FOS, inulin, and IMMP, using the faecal inocula of three adults and three elderly for which sufficient material was still available.ParticipantsThe six adults (20–30 yrs) and six elderly participants (70–85 yrs) of the intervention study [11] were randomly contacted and participated in the current study, who differed significantly in age, but not in sex, BMI, alcohol consumption, smoking, medication use or dietary fibre intake (Table 1). None of the participants took acid inhibitors (e.g., proton pump inhibitors), nor antibiotics 90 days prior to the study, nor did any of the participants have a chronic disorder or major surgery, as these factors potentially could have limited participation, completion of the study, or interfered with the study outcomes. Detailed description of the inclusion and exclusion criteria has been provided previously [11]. Subject codes as shown in the results were randomly assigned in the data analysis phase and cannot be traced back to individual subjects without the specific randomization key. The study was approved by the medical Ethics Committee of the Maastricht University Medical Center+ and registered in the US National Library of Medicine (http://www.clinicaltrials.gov) with the registration number NCT03077529 [11].Table 1 Characteristics of adults (n = 6) and elderly (n = 6) included in this study.Full size tableDietary intakeParticipants in the current study completed the dietary records on 3 consecutive days, after instructed to record their food, beverage and dietary supplement intake based on standard household units. Their nutrient intake was analyzed using the online dietary assessment tool of The Netherlands Nutrition Centre (www.voedingcentrum.nl).CarbohydratesFive different carbohydrates, i.e., GOS, 2′-FL, FOS, inulin and IMMP were used as sole carbon sources in this study. GOS and the human milk oligosaccharide 2′-FL (Fucα1-2Galβ1-4Glc) were kindly provided by Friesland Campina (Amersfoort, The Netherlands). In order to mimic the actual portion of GOS utilized by intestinal microbiota, purified GOS with  0.05) to explain the observed difference, using the prc function in the vegan package [30]. As for the metabolite data, redundancy analysis (RDA) in combination with Monte Carlo permutation was performed to assess to what extent explanatory variables, i.e., incubation time, subject- and carbohydrate-specificity, could explain the overall variation in metabolite data, using the rda function in the vegan package [30]. To assess the effect of age group (adult vs elderly) on the degradation of carbohydrates/concentration of metabolites during incubation, we analyzed the data using two-way mixed ANOVA, with one between-subjects factor (age group) and one within-subjects factor (incubation time), using the anova_test function in the rstatix package [31]. False discovery rate (FDR) correction according to the Benjamini–Hochberg procedure was applied for multiple testing when applicable. A corrected P value < 0.05 was considered to indicate significant difference. More

  • in

    Approaching mercury distribution in burial environment using PLS-R modelling

    1.Evers, D. The effects of methylmercury on wildlife: A comprehensive review and approach for interpretation. In Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 181–194 (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-809665-9.09985-7.Chapter 

    Google Scholar 
    2.Morel, F. M. M., Kraepiel, A. M. L. & Amyot, M. The chemical cycle and bioaccumulation of mercury. Ann. Rev. Ecol. Syst. 29, 543–566 (1998).Article 

    Google Scholar 
    3.Pushie, M. J., Pickering, I. J., Korbas, M., Hackett, M. J. & George, G. N. Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem. Rev. 114, 8499–8541 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.WHO. Exposure to Mercury: a Major Public Health Concern. (2007).5.Berlin, M., Zalups, R. K. & Fowler, B. A. Chapter 46—Mercury. In Handbook on the Toxicology of Metals (Fourth Edition) (eds Nordberg, G. F. et al.) 1013–1075 (Academic Press, Cambridge, 2015). https://doi.org/10.1016/B978-0-444-59453-2.00046-9.Chapter 

    Google Scholar 
    6.Clarkson, T. W. The Toxicology of mercury. Crit. Rev. Clin. Lab. Sci. 34, 369–403 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Abass, K. et al. Quantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humans. Environ. Int. 114, 1–11 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Liu, G., Cai, Y., O’Driscoll, N., Feng, X. & Jiang, G. Overview of mercury in the environment. In Environmental Chemistry and Toxicology of Mercury (eds Liu, G. et al.) 1–12 (Wiley, 2011). https://doi.org/10.1002/9781118146644.ch1.Chapter 

    Google Scholar 
    9.García, F., Ortega, A., Domingo, J. L. & Corbella, J. Accumulation of metals in autopsy tissues of subjects living in Tarragona county, Spain. J. Environ. Sci. Health Part A 36, 1767–1786 (2001).Article 

    Google Scholar 
    10.Clarkson, T. W. & Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36, 609–662 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Holmes, P., James, K. A. F. & Levy, L. S. Is low-level environmental mercury exposure of concern to human health?. Sci. Total Environ. 408, 171–182 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Pasetto, R., Martin-Olmedo, P., Martuzzi, M. & Iavarone, I. Exploring available options in characterising the health impact of industrially contaminated sites. Ann. Ist Super Sanita 52, 476–482 (2016).PubMed 

    Google Scholar 
    13.Álvarez-Fernández, N., Martínez Cortizas, A. & López-Costas, O. Atmospheric mercury pollution deciphered through archaeological bones. J. Archaeol. Sci. 119, 105159 (2020).Article 
    CAS 

    Google Scholar 
    14.Cooke, C. A., Martínez-Cortizas, A., Bindler, R. & Sexauer Gustin, M. Environmental archives of atmospheric Hg deposition—A review. Sci. Total Environ. 709, 134800 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Leblanc, M., Morales, J. A., Borrego, J. & Elbaz-Poulichet, F. 4,500-year-old mining pollution in southwestern Spain: Long-term implications for modern mining pollution. Econ. Geol. 95, 655–662 (2000).CAS 

    Google Scholar 
    16.Cooke, C. A., Balcom, P. H., Biester, H. & Wolfe, A. P. Over three millennia of mercury pollution in the Peruvian Andes. PNAS 106, 8830–8834 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Hunt Ortiz, M. A., Consuegra, S., Díaz del Río, P., Hurtado Pérez, V. & Montero Ruiz, I. Neolithic and Chalcolithic –VI to III millennia BC– use of cinnabar (HgS) in the Iberian Peninsula: analytical identification and lead isotope data for an early mineral exploitation of the Almadén (Ciudad Real, Spain) mining district. (2011).18.Martı́nez-Cortizas, A., Pontevedra-Pombal, X., Garcı́a-Rodeja, E., Nóvoa-Muñoz, J. C. & Shotyk, W. Mercury in a Spanish peat bog: Archive of climate change and atmospheric metal deposition. Science 284, 939–942 (1999).19.Martínez Cortizas, A., Peiteado Varela, E., Bindler, R., Biester, H. & Cheburkin, A. Reconstructing historical Pb and Hg pollution in NW Spain using multiple cores from the Chao de Lamoso bog (Xistral Mountains). Geochimica et Cosmochimica Acta 82, 68–78 (2012).20.López-Costas, O. et al. Human bones tell the story of atmospheric mercury and lead exposure at the edge of Roman World. Sci. Total Environ. 710, 136319 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    21.Hedges, R. E. M. Bone diagenesis: an overview of processes. Archaeometry 44, 319–328 (2002).CAS 
    Article 

    Google Scholar 
    22.Yamada, M. et al. Accumulation of mercury in excavated bones of two natives in Japan. Sci. Total Environ. 162, 253–256 (1995).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Emslie, S. D. et al. Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Sci. Rep. 5, 14679 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Alexandrovskaya, E. & Alexandrovskiy, A. Radiocarbon data and anthropochemistry of ancient Moscow. Geochronometria 24, 87–95 (2005).
    Google Scholar 
    25.Ávila, A., Mansilla, J., Bosch, P. & Pijoan, C. Cinnabar in mesoamerica: poisoning or mortuary ritual?. J. Archaeol. Sci. 49, 48–56 (2014).Article 
    CAS 

    Google Scholar 
    26.Bocca, B. et al. Metals in bones of the middle-aged inhabitants of Sardinia island (Italy) to assess nutrition and environmental exposure. Environ. Sci. Pollut. Res. 25, 8404–8414 (2018).CAS 
    Article 

    Google Scholar 
    27.Cervini-Silva, J., Muñoz, M. de L., Palacios, E., Ufer, K. & Kaufhold, S. Natural incorporation of mercury in bone. J. Trace Elements Med. Biol. 67, 126797 (2021).28.Cervini-Silva, J., Muñoz, M. de L., Palacios, E., Jimenez-Lopez, J. C. & Romano-Pacheco, A. Ageing and preservation of HgS-enriched ancient human remains deposited in confinement. J. Archaeol. Sci.: Rep. 18, 562–567 (2018).29.Cervini-Silva, J. et al. Cinnabar-preserved bone structures from primary osteogenesis and fungal signatures in ancient human remains. Geomicrobiol. J. 30, 566–577 (2013).CAS 
    Article 

    Google Scholar 
    30.Emslie, S. D. et al. Mercury in archaeological human bone: biogenic or diagenetic?. J. Archaeol. Sci. 108, 104969 (2019).CAS 
    Article 

    Google Scholar 
    31.Kepa, M. et al. Analysis of mercury levels in historical bone material from syphilitic subjects–pilot studies (short report). Anthropol. Anz. 69, 367–377 (2012).PubMed 
    Article 

    Google Scholar 
    32.Ochoa-Lugo, M. et al. The effect of depositional conditions on mineral transformation, chemical composition, and preservation of organic material in archaeological Hg-enriched bone remains. J. Archaeol. Sci.: Rep. 15, 213–218 (2017).
    Google Scholar 
    33.Panova, T. D., Dmitriev, AYu., Borzakov, S. B. & Hramco, C. Analysis of arsenic and mercury content in human remains of the 16th and 17th centuries from Moscow Kremlin necropolises by neutron activation analysis at the IREN facility and the IBR-2 reactor FLNP JINR. Phys. Part. Nuclei Lett. 15, 127–134 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Rasmussen, K. L. et al. Investigations of the relics and altar materials relating to the apostles St James and St Philip at the Basilica dei Santi XII Apostoli in Rome. Herit. Sci. 9, 14 (2021).CAS 
    Article 

    Google Scholar 
    35.Rasmussen, K. L. et al. Comparison of trace element chemistry in human bones interred in two private chapels attached to Franciscan friaries in Italy and Denmark: An investigation of social stratification in two medieval and post-medieval societies. Heritage Sci. 8, 65 (2020).CAS 
    Article 

    Google Scholar 
    36.Rasmussen, K. L. et al. On the distribution of trace element concentrations in multiple bone elements in 10 Danish medieval and post-medieval individuals. Am. J. Phys. Anthropol. 162, 90–102 (2017).Article 

    Google Scholar 
    37.Rasmussen, K. L., Skytte, L., Jensen, A. J. & Boldsen, J. L. Comparison of mercury and lead levels in the bones of rural and urban populations in Southern Denmark and Northern Germany during the Middle Ages. J. Archaeol. Sci.: Rep. 3, 358–370 (2015).
    Google Scholar 
    38.Rasmussen, K. L. et al. Was he murdered or was he not?—Part I: Analyses of mercury in the remains of Tycho Brahe. Archaeometry 55, 1187–1195 (2013).CAS 
    Article 

    Google Scholar 
    39.Rasmussen, K. L. et al. The distribution of mercury and other trace elements in the bones of two human individuals from medieval Denmark—The chemical life history hypothesis. Herit. Sci. 1, 10 (2013).Article 
    CAS 

    Google Scholar 
    40.Torino, M. et al. Convento di San Francesco a Folloni: The function of a Medieval Franciscan Friary seen through the burials. Herit. Sci. 3, 27 (2015).Article 
    CAS 

    Google Scholar 
    41.Walser, J. W., Kristjánsdóttir, S., Gowland, R. & Desnica, N. Volcanoes, medicine, and monasticism: Investigating mercury exposure in medieval Iceland. Int. J. Osteoarchaeol. 29, 48–61 (2019).Article 

    Google Scholar 
    42.Rasmussen, K. L. et al. Mercury levels in Danish Medieval human bones. J. Archaeol. Sci. 35, 2295–2306 (2008).Article 

    Google Scholar 
    43.Armesto, A. G. et al. Total mercury distribution among soil aggregate size fractions in a temperate forest podzol. Span. J. Soil Sci. 8(1), 57–73 (2018).
    Google Scholar 
    44.do Valle, C. M., Santana, G. P., Augusti, R., Egreja Filho, F. B. & Windmöller, C. C. Speciation and quantification of mercury in Oxisol, Ultisol, and Spodosol from Amazon (Manaus, Brazil). Chemosphere 58, 779–792 (2005).45.Fiorentino, J. C., Enzweiler, J. & Angélica, R. S. Geochemistry of mercury along a soil profile compared to other elements and to the parental rock: Evidence of external input. Water Air Soil Pollut. 221, 63–75 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Roulet, M. et al. The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós River Valley, Pará state, Brazil1The present investigation is part of an ongoing study, the CARUSO project (IDRC-UFPa-UQAM), initiated to determine the sources, fate, and health effects of MeHg in the Lower Tapajós area.1. Sci. Total Environ. 223, 1–24 (1998).47.Qin, F. et al. Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River. J. Geochem. Expl. 138, 33–49 (2014).CAS 
    Article 

    Google Scholar 
    48.Acosta, J. A., Martínez-Martínez, S., Faz, A. & Arocena, J. Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma 161, 30–42 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Janaway, R. C., Percival, S. L. & Wilson, A. S. Decomposition of Human Remains. In Microbiology and Aging: Clinical Manifestations (ed. Percival, S. L.) 313–334 (Humana Press, London, 2009). https://doi.org/10.1007/978-1-59745-327-1_14.Chapter 

    Google Scholar 
    50.Obrist, D., Johnson, D. W. & Lindberg, S. E. Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen. Biogeosciences 6, 765–777 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Schuster, E. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes—A review of the literature. Water Air Soil Pollut. 56, 667–680 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Taboada, T., Cortizas, A. M., García, C. & García-Rodeja, E. Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain. Geoderma 131, 218–236 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Babuśka-Roczniak, M. et al. Occurrence of mercury in the knee joint tissues. Pol. Ann. Med. 28, 39–44 (2021).
    Google Scholar 
    54.Domingo, J. L., García, F., Nadal, M. & Schuhmacher, M. Autopsy tissues as biological monitors of human exposure to environmental pollutants. A case study: Concentrations of metals and PCDD/Fs in subjects living near a hazardous waste incinerator. Environ. Res. 154, 269–274 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.López-Costas, O., Lantes-Suárez, Ó. & Martínez Cortizas, A. Chemical compositional changes in archaeological human bones due to diagenesis: Type of bone vs soil environment. J. Archaeol. Sci. 67, 43–51 (2016).56.Taboada, T., Martínez Cortizas, A., García, C. & García-Rodeja, E. Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain. Sci. Total Environ. 356, 192–206 (2006).57.Windmöller, C. C., Durão, W. A., de Oliveira, A. & do Valle, C. M. The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): Implications for the mercury cycle. Ecotoxicol. Environ. Saf. 112, 201–211 (2015).58.Blanco Freijeiro, A., Fusté Ara, M. & García Alén, A. La necrópolis galaico-romana de La Lanzada (Noalla, Pontevedra) II. Cuadernos de estudios gallegos 22, 5–23 (1967).59.Blanco Freijeiro, A., Fusté Ara, M. & García Alén, A. La necrópolis galaico-romana de La Lanzada (Noalla, Pontevedra). Cuadernos de estudios gallegos 16, 141–158 (1961).60.Kaal, J., López-Costas, O. & Martínez Cortizas, A. Diagenetic effects on pyrolysis fingerprints of extracted collagen in archaeological human bones from NW Spain, as determined by pyrolysis-GC-MS. J. Archaeol. Sci. 65, 1–10 (2016).61.López Costas, O. Antropología de los restos óseos humanos de Galicia: estudio de la población romana y medieval gallega. (Universidad de Granada, 2012).62.López-Costas, O. Taphonomy and burial context of the Roman/post-Roman funerary areas (2nd to 6th centuries AD) of A Lanzada, NW Spain. Estudos do Quaternário/Quaternary Studies 55–67 (2015) https://doi.org/10.30893/eq.v0i12.111.63.López-Costas, O. & Müldner, G. Fringes of the empire: Diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am. J. Phys. Anthropol. 161, 141–154 (2016).PubMed 
    Article 

    Google Scholar 
    64.García López, Z., López Costas, O. & Martínez Cortizas, A. Análisis de sedimentos asociados a restos humanos de la Necrópolis de A Lanzada y Adro Vello (Pontevedra). (2019).65.Rodríguez Martínez, R. M. Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra). Fase II. (2017).66.Brickley, M. & McKinley, J. I. Determination of sex from archaeological skeletal material and assessment of parturition. in Guidelines to the Standards for Recording Human Remains. 23–25 (BABAO, Dept. of Archaeology, University of Southampton. Institute of Field Archaeologist, University of Reading, 2004).67.López Costas, O. et al. Informe final: Estudio de esqueletos humanos y de secuencias edafo-sedimentárias del yacimiento de A Lanzada. En: Rodríguez Martínez, R.M., 2017. Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra). Fase II. (2017).68.Cheburkin, A. K. & Shotyk, W. Determination of trace elements in aqueous solutions using the EMMA miniprobe XRF analyzer. X-Ray Spectrom. 28, 379–383 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    69.Cheburkin, A. K. & Shotyk, W. High-sensitivity XRF analyzer (OLIVIA) using a multi-crystal pyrographite assembly to reduce the continuous background. X-Ray Spectrom. 28, 145–148 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemometrics Intell. Lab. Syst. 58, 109–130 (2001).CAS 
    Article 

    Google Scholar 
    71.Martín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Model-based replacement of rounded zeros in compositional data: Classical and robust approaches. Comput. Stat. Data Anal. 56, 2688–2704 (2012).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    72.Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. & Barceló-Vidal, C. Isometric logratio transformations for compositional data analysis. Mathe. Geol. 35, 279–300 (2003).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    73.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).74.Filzmoser, P., Hron, K. & Templ, M. Applied Compositional Data Analysis. With Worked Examples (Springer, 2018).MATH 
    Book 

    Google Scholar 
    75.Garrett, R. G. rgr: Applied Geochemistry EDA. (2018).76.Bertrand, F. & Maumy-Bertrand, M. Partial Least Squares Regression for Generalized Linear Models. (2019).77.Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. (2020).78.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    79.Punta A Lanzada, O Grove (Galicia, Spain) 42°25′44.61″N 8°52′29.31″W elev 16 m eye alt 585m. Google Earth. Jully 18, 2020. March 20, 2021. https://bit.ly/3FwpZrE.80.A Lanzada site (Galicia, Spain) 42°25′44.64″N 8°52″29.42″W elev 16m eye alt 549m. Google Earth. Jully 18, 2020. October 12, 2021. https://bit.ly/3BBqxKy. More

  • in

    The effects of low pH on the taste and amino acid composition of tiger shrimp

    1.Pachauri, R. K. et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).2.International Geosphere Biosphere Programme (IGBP). Ocean acidification summary for policymakers (2013).3.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 
    Article 

    Google Scholar 
    4.Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 1–7. https://doi.org/10.1038/s41559-017-0084 (2017).CAS 
    Article 

    Google Scholar 
    5.Dupont, S., Hall, E., Calosi, P. & Lundve, B. First evidence of altered sensory quality in a shellfish exposed to decreased pH relevant to ocean acidification. J. Shellfish Res. 33, 857–861 (2014).Article 

    Google Scholar 
    6.Lemasson, A. J. et al. Sensory qualities of oysters unaltered by a short exposure to combined elevated pCO2 and temperature. Front. Mar. Sci. 4, 352. https://doi.org/10.3389/fmars.2017.00352 (2017).Article 

    Google Scholar 
    7.San Martin, V. A. et al. Linking social preferences and ocean acidification impacts in mussel aquaculture. Sci. Rep. 9, 1–9 (2019).ADS 

    Google Scholar 
    8.Shahidi, F. & Cadwallader, K. R. Flavor and lipid chemistry of seafoods: an overview (1997).9.Nelson, G. et al. An amino acid taste receptor. Nature 416, 199–202 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Guillen, J. et al. Global seafood consumption footprint. Ambio 48(2), 111–122 (2019).Article 

    Google Scholar 
    11.FAO. The state of world fisheries and aquaculture. Contributing to food security and nutrition for all. FAO, Rome (2016).12.FAO. The state of world fisheries and aquaculture—sustainability in action (2020).13.Gerland, P. et al. World population stabilization unlikely this century. Science 346(6206), 234–237 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Minh, N. P., Nhi, T. T. Y., Hiep, P. T. H., Nhan, D. T. & Anh, S. T. Quality characteristics of dried salted black tiger shrimp (Penaeus monodon) affected by different pre-treatment and drying variables. J. Pharm. Sci. Res. 11, 1377–1381 (2019).CAS 

    Google Scholar 
    15.FAO. The state of food and agriculture (1980).16.Solms, J. Taste of amino acids, peptides, and proteins. J. Agric. Food Chem. 17(4), 686–688 (1969).CAS 
    Article 

    Google Scholar 
    17.Jiro, K., Akira, S. & Akimitsu, K. The contribution of peptides and amino acids to the taste of foodstuffs. J. Agric. Food Chem. 17(4), 689–695 (1969).Article 

    Google Scholar 
    18.Schiffman, S. S., Sennewald, K. & Gagnon, J. Comparison of taste qualities and thresholds of D-and L-amino acids. Physiol. Behav. 27(1), 51–59 (1981).CAS 
    Article 

    Google Scholar 
    19.Kawai, M., Sekine-Hayakawa, Y., Okiyama, A. & Ninomiya, Y. Gustatory sensation of L- and D-amino acids in humans. Amino Acids 43, 2349–2358 (2012).CAS 
    Article 

    Google Scholar 
    20.Dissanayake, A., Clough, R., Spicer, J. I. & Jones, M. B. Effects of hypercapnia on acid–base balance and osmo-/iono-regulation in prawns (Decapoda: Palaemonidae). Aquat. Biol. 11, 27–36 (2010).Article 

    Google Scholar 
    21.Ries, J., Choen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Liu, Y. W., Sutton, J. N., Ries, J. B. & Eagle, R. A. Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. Sci. Adv. 6, eaax1314 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Corteel, M. et al. Moult cycle of laboratory-raised Penaeus (Litopenaeus) vannamei and P. monodon. Aquac. Int. 20, 13–18 (2011).Article 

    Google Scholar 
    24.Taylor, J. R., Gilleard, J. M., Allen, M. C. & Deheyn, D. D. Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica. Sci. Rep. 5, 10608 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    25.McLean, E. L., Katenka, N. V. & Seibel, B. A. Decreased growth and increased shell disease in early benthic phase Homarus americanus in response to elevated CO2. Mar. Ecol. Prog. Ser. 596, 113–126 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Chen, S. M. & Chen, J. C. Effect of low pH on the acid-base balance, osmolality and ion concentrations of giant freshwater prawn Macrobrachium rosenbergii. J. Fish. Soc. Taiwan 30, 227–239 (2003).
    Google Scholar 
    27.Kurihara, H., Matsui, M., Furukawa, H., Hayashi, M. & Ishimatsu, A. Long-term effects of predicted future seawater CO2 conditions on the survival and growth of the marine shrimp Palaemon pacificus. J. Exp. Mar. Biol. Ecol. 367, 41–46 (2008).CAS 
    Article 

    Google Scholar 
    28.Findlay, H. S., Kendall, M. A., Spicer, J. I. & Widdicombe, S. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar. Ecol. Prog. Ser. 389, 193–202 (2009).ADS 
    Article 

    Google Scholar 
    29.Cameron, J. N. & Iwama, G. K. Compensation of progressive hypercapnia in channel catfish and blue crabs. J. Exp. Biol. 133, 183–197 (1987).Article 

    Google Scholar 
    30.Pane, E. F. & Barry, J. P. Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar. Ecol. Prog. Ser. 334, 1–9 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Lowder, K. B., Allen, M. C., Day, J. M. D., Deheyn, D. D. & Taylor, J. R. A. Assessment of ocean acidification and warming on the growth, calcification, and biophotonics of a California grass shrimp. ICES J. Mar. Sci. 74, 1150–1158 (2017).Article 

    Google Scholar 
    32.Pörtner, H. O., Langenbunh, M. & Reipschläger, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr. 60, 705–718 (2004).Article 

    Google Scholar 
    33.Dissanayake, A. & Ishimatsu, A. Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeide). ICES J. Mar. Sci. 68, 1147–1154 (2011).Article 

    Google Scholar 
    34.Pan, L. Q., Zhang, L. J. & Liu, H. Y. Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae. Aquaculture 273, 711–720 (2007).CAS 
    Article 

    Google Scholar 
    35.Rathburn, C. K. et al. Transcriptomic responses of juvenile Pacific whiteleg shrimp, Litopenaeus vannamei, to hypoxia and hypercapnic hypoxia. Physiol. Genomics 45, 794–807 (2013).CAS 
    Article 

    Google Scholar 
    36.Yu, Q. R. et al. Growth and health responses to a long-term pH stress in Pacific white shrimp Litopenaeus vannamei. Aquacul. Rep. 16, 100280 (2020).Article 

    Google Scholar 
    37.Chen, J. C., Chen, C. T. & Cheng, S. Y. Nitrogen excretion and changes of hemocyanin, protein and free amino acid levels in the hemolymph of Penaeus monodon exposed to different concentrations of ambient ammonia-N at different salinity levels. Mar. Ecol. Prog. Ser. 110, 85–94 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Dayal, J. S., Ambasankar, K., Rajendran, R., Rajaram, V. & Muralidhar, M. Effect of abiotic salinity stress on haemolymph metabolic profiles in cultured tiger shrimp Penaeus monodon. Int. J. Bio-resour. Stress Manag. 4, 339–343 (2013).
    Google Scholar 
    39.Ardo, Y. Flavour formation by amino acid catabolism. Biotechnol. Adv. 24, 238–242 (2006).CAS 
    Article 

    Google Scholar 
    40.Engström-Öst, J. et al. Eco-physiological responses of copepods and pteropods to ocean warming and acidification. Sci. Rep. 9, 4748 (2019).ADS 
    Article 

    Google Scholar 
    41.Liao, H. et al. Impact of ocean acidification on the energy metabolism and antioxidant responses of the Yesso scallop (Patinopecten yessoensis). Front. Physiol. 27, 1967 (2019).Article 

    Google Scholar 
    42.Richard, L. et al. The effect of choline and cystine on the utilisation of methionine for protein accretion, remethylation and trans-sulfuration in juvenile shrimp Penaeus monodon. Br. J. Nutr. 28, 825–835 (2011).Article 

    Google Scholar 
    43.Peng, B., Huang, R. & Zhou, X. oxidation resistance of the sulfur amino acids: methionine and cysteine. Biomed. Res. Int. 2017, 9584932 (2017).
    Google Scholar 
    44.DeVries, M. S. et al. Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions. Sci. Rep. 6, 38637 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Dupont, S. & Thorndyke, M. C. Impact of CO2-driven ocean acidification on invertebrates early life-history—What we know, what we need to know and what we can do. Biogeosci. Discuss. 6, 3109–3131 (2009).ADS 
    Article 

    Google Scholar 
    46.Weerathunga, V. V. et al. Impacts of pH on the fitness and immune system of pacific white shrimp. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.748837 (2021).Article 

    Google Scholar 
    47.Fuller, P. L. et al. Invasion of Asian tiger shrimp, Penaeus monodon Fabricius, 1798, in the western north Atlantic and Gulf of Mexico. Aquat. Invasions 9, 59–70 (2014).Article 

    Google Scholar 
    48.Lewis, E. & Wallace, D. Program developed for CO2 system calculations (Environmental System Science Data Infrastructure for a Virtual Ecosystem, 1998).49.Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A Oceanogr. Res. Pap. 34, 1733–1743 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    50.AOAC. Method 991.42 & 993.19. Official methods of analysis (16th ed.). Washington, DC: Association of Official Analytical Chemists (1995).51.Motoh, H. Biology and ecology of Penaeus monodon. Iloilo City, Philippines. Aquaculture Department, Southeast Asian Fisheries Development Center (1985).52.Mayor, D. J., Matthews, C., Cook, K., Zuur, A. F. & Hay, S. CO2-induced acidification affects hatching success in Calanus finmarchicus. Mar. Ecol. Prog. Ser. 350, 91–97 (2007). More

  • in

    Raptor breeding sites indicate high plant biodiversity in urban ecosystems

    1.Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed 
    Article 

    Google Scholar 
    2.Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 281, 20133330 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Nielsen, A. B., Van Den Bosch, M., Maruthaveeran, S. & Van Den Bosch, C. K. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosyst. 17, 305–327 (2014).Article 

    Google Scholar 
    4.Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    5.Luck, G. W., Davidson, P., Boxall, D. & Smallbone, L. Relations between urban bird and plant communities and human well-being and connection to nature. Conserv. Biol. 25, 816–826 (2011).PubMed 
    Article 

    Google Scholar 
    6.Soga, M. & Gaston, K. J. Extinction of experience: the loss of human–nature interactions. Front. Ecol. Environ. 14, 94–101 (2016).Article 

    Google Scholar 
    7.Dean, J., van Dooren, K. & Weinstein, P. Does biodiversity improve mental health in urban settings?. Med. Hypotheses 76, 877–880 (2011).PubMed 
    Article 

    Google Scholar 
    8.Knight, A. T. et al. Knowing but not doing: Selecting priority conservation areas and the research-implementation gap. Conserv. Biol. 22, 610–617 (2008).PubMed 
    Article 

    Google Scholar 
    9.Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Caro, T. M. Conservation by Proxy: Indicator, Umbrella, Keystone, Flagship and Other Surrogate Species (Island Press, 2010).
    Google Scholar 
    11.Sergio, F., Newton, I. & Marchesi, L. Top predators and biodiversity. Nature 236, 192 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Burgas, D., Byholm, P. & Parkkima, T. Raptors as surrogates of biodiversity along a landscape gradient. J. Appl. Ecol. 51, 786–794 (2014).Article 

    Google Scholar 
    13.Sergio, F., Newton, I., Marchesi, L. & Pedrini, P. Ecologically justified charisma: Preservation of top predators delivers biodiversity conservation. J. Appl. Ecol. 43, 1049–1055 (2006).Article 

    Google Scholar 
    14.Sergio, F. et al. Top predators as conservation tools: Ecological rationale, assumptions, and efficacy. Annu. Rev. Ecol. Evol. Syst. 39, 1–19 (2008).Article 

    Google Scholar 
    15.Sergio, F. Raptor monitoring: Challenges and benefits. Bird Study 65, S3–S3 (2018).Article 

    Google Scholar 
    16.Millsap, B. A., Cooper, M. E. & Holroyd, G. Legal considerations. In Raptor Research and Management Techniques (eds Bird, D. M. & Bildstein, K. L.) 365–382 (Hancock House Publishers, 2007).
    Google Scholar 
    17.Maciorowski, G., Jankowiak, Ł, Sparks, T. H., Polakowski, M. & Tryjanowski, P. Biodiversity hotspots at a small scale: The importance of eagles’ nests to many other animals. Ecology 102, e03220 (2021).PubMed 
    Article 

    Google Scholar 
    18.Natsukawa, H. Raptor breeding sites as a surrogate for conserving high avian taxonomic richness and functional diversity in urban ecosystems. Ecol. Indic. 119, 106874 (2020).Article 

    Google Scholar 
    19.Natsukawa, H. Raptor breeding sites indicate high taxonomic and functional diversities of wintering birds in urban ecosystems. Urban For. Urban Green. 60, 127066 (2021).Article 

    Google Scholar 
    20.Sergio, F., Newton, I. & Marchesi, L. Top predators and biodiversity: Much debate, few data. J. Appl. Ecol. 45, 992–999 (2008).Article 

    Google Scholar 
    21.Estrada, C. G. & Rodríguez-Estrella, R. In the search of good biodiversity surrogates: Are raptors poor indicators in the Baja California Peninsula desert?. Anim. Conserv. 19, 360–368 (2016).Article 

    Google Scholar 
    22.Kenward, R. E. The Goshawk (T&A D Poyser, 2006).
    Google Scholar 
    23.Manning, A. D., Fischer, J. & Lindenmayer, D. B. Scattered trees are keystone structures–implications for conservation. Biol. Conserv. 132, 311–321 (2006).Article 

    Google Scholar 
    24.Ozanne, C. M. P. et al. Biodiversity meets the atmosphere: A global review of forest canopies. Science 301, 183–186 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Yan, Z. et al. Impervious surface area is a key predictor for urban plant diversity in a city undergone rapid urbanization. Sci. Total Environ. 650, 335–342 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Atauri, J. A., De Pablo, C. L., De Agar, P. M., Schmitz, M. F. & Pineda, F. D. Effects of management on understory diversity in the forest ecosystems of Northern Spain. Environ. Manag. 34, 819–828 (2004).Article 

    Google Scholar 
    27.Martín-Queller, E., Gil-Tena, A. & Saura, S. Species richness of woody plants in the landscapes of Central Spain: The role of management disturbances, environment and non-stationarity. J. Veg. Sci. 22, 238–250 (2011).Article 

    Google Scholar 
    28.Rodriguez, S. A., Kennedy, P. L. & Parker, T. H. Timber harvest and tree size near nests explains variation in nest site occupancy but not productivity in northern goshawks (Accipiter gentilis). For. Ecol. Manage. 374, 220–229 (2016).Article 

    Google Scholar 
    29.Rosich, J. et al. Northern Goshawk breeding sites indicate the presence of mature forest in Mediterranean pinewoods. For. Ecol. Manag. 479, 118602 (2021).Article 

    Google Scholar 
    30.Natsukawa, H., Ichinose, T. & Higuchi, H. Factors affecting breeding-site selection of Northern Goshawks at two spatial scales in urbanized areas. J. Raptor Res. 51, 417–428 (2017).Article 

    Google Scholar 
    31.Natsukawa, H. et al. Forest cover and open land drive the distribution and dynamics of the breeding sites for urban-dwelling Northern Goshawks. Urban For. Urban Green. 53, 126732 (2020).Article 

    Google Scholar 
    32.Boal, C. W. & Dykstra, C. R. Urban Raptors: Ecology and Conservation of Birds of Prey in Cities (Island Press, 2018).Book 

    Google Scholar 
    33.Burgas, D., Ovaskainen, O., Blanchet, F. G. & Byholm, P. The ghost of the hawk: Top predator shaping bird communities in space and time. Front. Ecol. Evol. 9, 638039 (2021).Article 

    Google Scholar 
    34.Byholm, P., Gunko, R., Burgas, D. & Karell, P. Losing your home: Temporal changes in forest landscape structure due to timber harvest accelerate Northern goshawk (Accipiter gentilis) nest stand losses. Ornis Fenn. 97, 1–11 (2020).
    Google Scholar 
    35.Ozaki, K. et al. A mechanistic approach to evaluation of umbrella species as conservation surrogates. Conserv. Biol. 20, 1507–1515 (2006).PubMed 
    Article 

    Google Scholar 
    36.Santangeli, A. et al. Voluntary non-monetary approaches for implementing conservation. Biol. Conserv. 197, 209–214 (2016).Article 

    Google Scholar 
    37.Kamal, S., Grodzińska-Jurczak, M. & Brown, G. Conservation on private land: A review of global strategies with a proposed classification system. J. Environ. Plan. Manage. 58, 576–597 (2015).Article 

    Google Scholar 
    38.Iwai, Y. Forestry and the Forest Industry in Japan (UBC Press, 2002).
    Google Scholar 
    39.Sirakaya, A., Cliquet, A. & Harris, J. Ecosystem services in cities: Towards the international legal protection of ecosystem services in urban environments. Ecosyst. Serv. 29, 205–212 (2018).Article 

    Google Scholar 
    40.Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).Article 

    Google Scholar 
    41.Kumar, N., Jhala, Y. V., Qureshi, Q., Gosler, A. G. & Sergio, F. Human-attacks by an urban raptor are tied to human subsidies and religious practices. Sci. Rep. 9, 1–10 (2019).
    Google Scholar 
    42.Mak, B., Francis, R.A. & Chadwick, M.A. Living in the concrete jungle: A review and socio-ecological perspective of urban raptor habitat quality in Europe. Urban Ecosyst. 21 (2021).43.Demographia. Demographia World Urban Areas, 16th annual edition. Available: http://www.demographia.com/db-worldua.pdf. Date of access February 20, 2021 (2020).44.Yang, J., Yan, P., He, R. & Song, X. Exploring land-use legacy effects on taxonomic and functional diversity of woody plants in a rapidly urbanizing landscape. Landsc. Urban Plan. 162, 92–103 (2017).Article 

    Google Scholar 
    45.Spellerberg, I. F. & Fedor, P. J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’Index. Glob. Ecol. Biogeog. 12, 177–179 (2003).Article 

    Google Scholar 
    46.McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    47.R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).48.Oksanen, J. et al. Vegan: Community ecology package. R package version 2, 5–5 (2019).
    Google Scholar 
    49.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).50.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    51.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    52.Betts, M. G., Diamond, A. W., Forbes, G. J., Villard, M. A. & Gunn, J. S. The importance of spatial autocorrelation, extent and resolution in predicting forest bird occurrence. Ecol. Model. 191, 197–224 (2006).Article 

    Google Scholar 
    53.Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    54.Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30, 609–628 (2007).Article 

    Google Scholar 
    55.Harrell, F. E. rms: Regression Modeling Strategies. R package version 6.0–1 (2020).56.Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, 1–36 (2015).
    Google Scholar  More

  • in

    Determinizing the contributions of human activities and climate change on greening in the Beijing–Tianjin–Hebei Region, China

    1.Arora, V. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev. Geophys. https://doi.org/10.1029/2001RG000103 (2002).Article 

    Google Scholar 
    2.Lamchin, M., Park, T., Lee, J. & Lee, W. Monitoring of vegetation dynamics in the Mongolia using MODIS NDVIs and their relationship to rainfall by Natural Zone. J. Indian Soc. Remote 43, 325–337 (2014).Article 

    Google Scholar 
    3.Zhang, Y., Liu, L. Y., Liu, Y., Zhang, M. & An, C. B. Response of altitudinal vegetation belts of the Tianshan Mountains in northwestern China to climate change during 1989–2015. Sci. Rep. https://doi.org/10.1038/s41598-021-84399-z (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Piao, S. L., Wang, X. H., Park, T. & Chen, C. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 
    ADS 

    Google Scholar 
    5.Zhu, Z. C., Piao, S. L., Myneni, R. B. & Huang, M. T. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    6.Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article 

    Google Scholar 
    7.Fang, H. Y., Li, Q. Y. & Cai, Q. G. A study on the vegetation recovery and crop pattern adjustment on the Loess Plateau of China. Afr. J. Microbiol. Res. 5, 1414–1419 (2011).Article 

    Google Scholar 
    8.Jiang, C., Zhang, H. Y., Tang, Z. P. & Labzovskii, L. Evaluating the coupling effects of climate variability and vegetation restoration on ecosystems of the Loess Plateau, China. Land Use Policy 69, 134–148 (2017).Article 

    Google Scholar 
    9.Zhang, H. Y., Fan, J. W., Cao, W., Zhong, H. P. & Harris, W. Changes in multiple ecosystem services between 2000 and 2013 and their driving factors in the Grazing Withdrawal Program, China. Ecol. Eng. 116, 67–79 (2018).Article 

    Google Scholar 
    10.Liu, Y. X., Lü, Y. H., Fu, B. J., Harris, P. & Wu, L. H. Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Sci. Total Environ. 650, 1029–1040 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Wang, J. F., Zhang, T. L. & Fu, B. J. A measure of spatial stratified heterogeneity. Ecol. Indic. 67, 250–256 (2016).Article 

    Google Scholar 
    12.Jiang, Y. T., Sun, Y. J., Zhang, L. P. & Wang, X. L. Influence factor analysis of soil heavy metal Cd based on the GeoDetector. Stoch. Environ. Res. Risk Assess. 34, 921–930 (2020).Article 

    Google Scholar 
    13.Su, Y., Li, T. X., Cheng, S. K. & Wang, X. Spatial distribution exploration and driving factor identification for soil salinisation based on geodetector models in coastal area. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2020.105961 (2020).Article 

    Google Scholar 
    14.Yan, S. J., Wang, H. & Jiao, K. W. Spatiotemporal dynamic of NDVI in the Beijing–Tianjin–Hebei region based on MODIS data and quantitative attribution. J. Geo-inf. Sci. 21, 767–780 (2019).
    Google Scholar 
    15.Evans, J. & Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 57, 535–554 (2007).Article 

    Google Scholar 
    16.Wessels, K. J. et al. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 68, 271–297 (2007).Article 
    ADS 

    Google Scholar 
    17.Teng, M. J. et al. The impacts of climate changes and human activities on net primary productivity vary across an ecotone zone in Northwest China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.136691 (2020).Article 
    PubMed 

    Google Scholar 
    18.Shi, S. Y. et al. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142419 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Peng, J., Jiang, H., Liu, Q. H., Green, S. & Quine, T. Human activity vs. climate change, distinguishing dominant drivers on LAI dynamics in karst region of southwest China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144297 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Xu, D. Y., Li, C. L., Song, X. & Ren, H. Y. The dynamics of desertification in the farming-pastoral region of North China over the past 10 years and their relationship to climate change and human activity. CATENA 123, 11–22 (2014).Article 

    Google Scholar 
    21.Sun, Y. L., Yang, Y. L., Zhang, L. & Wang, Z. L. The relative roles of climate variations and human activities in vegetation change in North China. Phys. Chem. Earth 87–88, 67–78 (2015).Article 
    ADS 

    Google Scholar 
    22.Liu, B., Sun, Y. L., Wang, Z. L. & Zhao, T. B. Analysis of the vegetation cover change and the relative role of its influencing factors in North China. J. Nat. Res. 30, 12–23 (2015).
    Google Scholar 
    23.Huang, L., Zheng, Y. H. & Xiao, T. Regional differentiation of ecological conservation and its zonal suitability at the county level in China. J. Geogr. Sci. 28, 46–58 (2018).Article 

    Google Scholar 
    24.Pan, M., Chen, T. W., Huang, L. & Cao, W. Spatial and temporal variations in ecosystem services and its driving factors analysis in Jing-Jin-Ji region. Acta Ecol. Sin. 40, 5151–5167 (2020).
    Google Scholar 
    25.Zhou, Q., Zhao, X. & Wu, D. H. Impact of urbanization and climate on vegetation coverage in the Beijing–Tianjin–Hebei Region of China. Remote Sens. https://doi.org/10.3390/rs11202452 (2019).Article 

    Google Scholar 
    26.Pantazi, M., Vasilescu, A. M., Mihai, A. & Gurau, D. Statistical-mathematical processing of anthropometric foot parameters and establishing simple and multiple correlations. Part 1, statistical analysis of foot size parameters. J. Leather Footwear 17, 199–208 (2017).Article 

    Google Scholar 
    27.Krishnan, S. R., Magimai-Doss, M. & Seelamantula, C. S. A Savitzky-Golay filtering perspective of dynamic feature computation. IEEE Signal Proc. Lett. 20, 281–284 (2013).Article 
    ADS 

    Google Scholar 
    28.Li, Z., Zhang, Y., Zhu, Q. K., He, Y. M. & Yao, W. J. Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau. Geomorphology 228, 462–469 (2015).Article 
    ADS 

    Google Scholar 
    29.Chen, J., Ban, Y. F. & Li, S. N. China, Open access to Earth land-cover map. Nature 514, 434–434 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    30.Alijani, B., Mahmoudi, P. & Chogan, A. J. A study of annual and seasonal precipitation trends in Iran using a nonparametric method (Sen’s slope estimator). For. Ecol. Manag. 121, 137–146 (2012).
    Google Scholar 
    31.Rahman, A. U. & Dawood, M. Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s Slope approach. Clim. Dynam. 48, 783–797 (2017).Article 
    ADS 

    Google Scholar 
    32.Lin, X. S., Tang, J., Li, Z. Y. & Li, H. Y. Vegetation greenness modelling in response to interannual precipitation and temperature changes between 2001 and 2012 in Liao River Basin in Jilin Province, China. Springerplus https://doi.org/10.1186/s40064-016-2737-9 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Lawrance, A. J. Partial and multiple correlation for time series. Am. Stat. 33, 127–130 (1979).MATH 

    Google Scholar 
    34.Wetzels, R. & Wagenmakers, E. J. A default Bayesian hypothesis test for correlations and partial correlations. Psychon. B Rev. 19, 1057–1064 (2012).Article 

    Google Scholar 
    35.Anghelache, C., Anghel, M. G., Prodan, L., Sacala, C. & Popovici, M. Multiple linear regression model used in economic analyses. Roman. Stat. Rev. Suppl. 62, 120–127 (2014).
    Google Scholar 
    36.Miao, L. J., Liu, Q., Fraser, R., He, B. & Cui, X. F. Shifts in vegetation growth in response to multiple factors on the Mongolian Plateau from 1982 to 2011. Phys. Chem. Earth 87–88, 50–59 (2015).Article 
    ADS 

    Google Scholar 
    37.Tang, Y. Z., Shao, Q. Q., Liu, J. Y. & Zhang, H. Y. Did ecological restoration hit its mark? Monitoring and assessing ecological changes in the Grain for Green Program Region using multi-source satellite images. Remote Sens. https://doi.org/10.3390/rs11030358 (2019).Article 

    Google Scholar 
    38.Cai, D. W. et al. Contributions of ecological programs to vegetation restoration in arid and semiarid China. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abbde9 (2020).Article 

    Google Scholar 
    39.Yao, N., Huang, C. H., Yang, J., Bosch, C. & Jia, Z. Combined effects of impervious surface change and large-scale afforestation on the surface urban heat island intensity of Beijing, China based on remote sensing analysis. Remote Sens. https://doi.org/10.3390/rs12233906 (2020).Article 

    Google Scholar 
    40.Wu, Z. T., Wu, J. J., He, B., Liu, J. H. & Wang, Q. F. Drought offset ecological restoration program-induced increase in vegetation activity in the Beijing–Tianjin Sand Source Region, China. Environ. Sci. Technol. 48, 12108–12117 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    41.Yang, X. C. et al. Remote sensing monitoring of grassland vegetation growth in the Beijing–Tianjin sandstorm source project area from 2000 to 2010. Ecol. Indic. 51, 244–251 (2015).Article 

    Google Scholar 
    42.Li, X. S., Wang, H. Y., Zhou, S. F., Sun, B. & Gao, Z. H. Did ecological engineering projects have a significant effect on large-scale vegetation restoration in Beijing–Tianjin Sand Source Region, China? A remote sensing approach. Chin. Geogr. Sci. 26, 216–228 (2016).Article 

    Google Scholar 
    43.Hu, S. et al. Detecting and attributing vegetation changes in Taihang Mountain, China. J. Mt. Sci. 16, 337–350 (2019).Article 

    Google Scholar 
    44.Li, D. et al. Identification of the roles of climate factors, engineering construction, and agricultural practices in vegetation dynamics in the Lhasa River Basin, Tibetan Plateau. Remote Sens. https://doi.org/10.3390/rs12111883 (2020).Article 

    Google Scholar 
    45.Sun, H. Y. et al. Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain. Agr. Water Manag. 97, 1139–1145 (2010).Article 

    Google Scholar 
    46.Tao, Y., Li, F., Crittenden, J. C., Lu, Z. M. & Sun, X. Environmental impacts of China’s urbanization from 2000 to 2010 and management implications. Environ. Manag. 57, 498–507 (2016).Article 
    ADS 

    Google Scholar 
    47.Jia, G. J., Epstein, H. E. & Balser, A. Spatial heterogeneity of tundra vegetation response to recent temperature changes. Glob. Change Biol. 12, 42–55 (2010).Article 
    ADS 

    Google Scholar 
    48.Wen, Y. Y., Liu, X. P., Xin, Q. C. & Wu, J. Cumulative effects of climatic factors on terrestrial vegetation growth. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2018JG004751 (2019).Article 

    Google Scholar 
    49.Zhao, A. Z., Yu, Q. Y., Feng, L. L., Zhang, A. P. & Pei, T. Evaluating the cumulative and time-lag effects of drought on grassland vegetation, A case study in the Chinese Loess Plateau. J. Environ. Manag. https://doi.org/10.1016/j.jenvman.2020.110214 (2020).Article 

    Google Scholar  More