1.Lundberg JO, Weitzberg E, Cole JA, Benjamin N. Nitrate, bacteria and human health. Nat Rev Microbiol. 2004;2:593–602.CAS
PubMed
Article
PubMed Central
Google Scholar
2.Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.CAS
PubMed
Article
PubMed Central
Google Scholar
3.Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol. 2015;60:17–34.CAS
PubMed
Article
PubMed Central
Google Scholar
4.Bourtzis K, Miller T (eds). Insect symbiosis. (CRC Press, Boca Raton, 2003)5.West SA, Fisher RM, Gardner A, Kiers ET. Major evolutionary transitions in individuality. Proc Natl Acad Sci USA. 2015;112:10112–9.CAS
PubMed
PubMed Central
Article
Google Scholar
6.Hughes DP, Pierce NE, Boomsma JJ. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol. 2008;23:672–7.PubMed
Article
PubMed Central
Google Scholar
7.Currie CR. A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol. 2001;55:357–80.CAS
PubMed
Article
PubMed Central
Google Scholar
8.Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, et al. The Ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol. 2002;47:733–71.CAS
PubMed
Article
PubMed Central
Google Scholar
9.Heil M, McKey D. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst. 2003;34:425–53.Article
Google Scholar
10.Schröder D, Deppisch H, Obermayer M, Krohne G, Stackebrandt E, Hôlldobler B, et al. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Mol Microbiol. 1996;21:479–89.PubMed
Article
PubMed Central
Google Scholar
11.Zientz E, Dandekar T, Gross R. Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev. 2004;68:745–70.CAS
PubMed
PubMed Central
Article
Google Scholar
12.Currie CR, Summerbell RC, Scott JA, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature. 1999;423:461–461.Article
CAS
Google Scholar
13.Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci USA. 2009;106:21236–41.CAS
PubMed
PubMed Central
Article
Google Scholar
14.Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA. The evolution of host-symbiont dependence. Nat Commun. 2017;8:15973 https://doi.org/10.1038/ncomms15973CAS
Article
PubMed
PubMed Central
Google Scholar
15.Hölldobler B, Wilson EO (eds). The ants. (Harvard University Press, Springer-Verlag, 1990).16.Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA. 2011;108:19288–92.CAS
PubMed
PubMed Central
Article
Google Scholar
17.Zhukova M, Sapountzis P, Schiøtt M, Boomsma JJ. Diversity and transmission of gut bacteria in Atta and Acromyrmex leaf-cutting ants during development. Front Microbiol. 2017;8:1–14. https://doi.org/10.3389/fmicb.2017.01942Article
Google Scholar
18.Segers FH, Kaltenpoth M, Foitzik S. Abdominal microbial communities in ants depend on colony membership rather than caste and are linked to colony productivity. Ecol Evol. 2009;9:13450–67.Article
Google Scholar
19.Kapheim KM, Rao VD, Yeoman CJ, Wilson BA, White BA, Goldenfeld N, et al. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS ONE. 2015;10:e0123911 https://doi.org/10.1371/journal.pone.0123911CAS
Article
PubMed
PubMed Central
Google Scholar
20.Tarpy DR, Mattila HR, Newton ILG. Development of the honey bee gut microbiome throughout the queen-rearing process. Appl Environ Microbiol. 2015;81:3182–91.CAS
PubMed
PubMed Central
Article
Google Scholar
21.Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, et al. Complementary symbiont contributions to plant decomposition in a fungus‐farming termite. Proc Natl Acad Sci USA. 2014;111:14500–5.CAS
PubMed
PubMed Central
Article
Google Scholar
22.Russell JA, Sanders JG, Moreau CS. Hotspots for symbiosis: Function, evolution, and specificity of ant-microbe associations from trunk to tips of the ant phylogeny (Hymenoptera: Formicidae). Myrmecol News. 2017;24:43–69.
Google Scholar
23.Bourke AFG. Colony size, social complexity and reproductive conflict in social insects. J Evol Biol. 1999;12:245–57.Article
Google Scholar
24.Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE. Phylogeny of the ants: diversification in the age of angiosperms. Science. 2006;312:101–4.CAS
PubMed
Article
PubMed Central
Google Scholar
25.Peeters C, Crewe R. Insemination controls the reproductive division of labour in a ponerine ant. Naturwissenschaften. 1984;71:l50–51.Article
Google Scholar
26.Kikuchi T, Nakagawa T, Tsuji K. Changes in relative importance of multiple social regulatory forces with colony size in the ant Diacamma sp. from Japan. Anim Behav. 2008;76:2069–77.Article
Google Scholar
27.Fukumoto Y, Abe T, Taki A. A novel form of colony organization in the ‘queenless’ ant Diacamma rugosum. Physiol Ecol Jpn. 1989;26:55–61.
Google Scholar
28.Nakata K. Age polyethism, idiosyncrasy and behavioural flexibility in the queenless ponerine ant, Diacamma sp. J Ethol. 1995;13:113–23.Article
Google Scholar
29.Nakata K. Does behavioral flexibility compensate or constrain colony productivity? Relationship among age structure, labor allocation, and production of workers in ant colonies. J Ins Behav. 1996;9:557–69.Article
Google Scholar
30.Shimoji H, Kasutani N, Ogawa S, Hojo MK. Worker propensity affects flexible task reversion in an ant. Behav Ecol Sociobiol. 2020;74:92.Article
Google Scholar
31.Peeters C, Tsuji K. Reproductive conflict among ant workers in Diacamma sp. from Japan: dominance and oviposition in the absence of the gamergate. Ins Soc. 1993;40:119–36.Article
Google Scholar
32.Shimoji H, Fujiki Y, Yamaoka R, Tsuji K. Egg discrimination by workers in Diacamma sp. from Japan. Ins Soc. 2012;59:201–6.Article
Google Scholar
33.Okada Y, Watanabe Y, Tin MMY, Tsuji K, Mikheyev AS. Social dominance alters nutrition-related gene expression immediately: transcriptomic evidence from a monomorphic queenless ant. Mol Ecol. 2017;26:2922–38.CAS
PubMed
Article
Google Scholar
34.Fujioka H, Abe MS, Fuchikawa T, Tsuji K, Shimada M, Okada Y. Ant circadian activity associated with brood care type. Biol Lett. 2017;13:13–16.Article
Google Scholar
35.Itoh H, Navarro R, Takeshita K, Tago K, Hayatsu M, Hori T, et al. Bacterial population succession and adaptation affected by insecticide application and soil spraying history. Front Microbiol. 2014;5:457 https://doi.org/10.3389/fmicb.2014.00457Article
PubMed
PubMed Central
Google Scholar
36.Itoh H, Aita M, Nagayama A, Meng XY, Kamagata Y, Navarro R, et al. Evidence of environmental and vertical transmission of Burkholderia symbionts in the oriental chinch bug Cavelerius saccharivorus (Heteroptera: Blissidae). Appl Environ Microbiol. 2014;80:5974–83.PubMed
PubMed Central
Article
CAS
Google Scholar
37.Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve bayesian classifier for rapid assignment of rRNA Sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS
PubMed
PubMed Central
Article
Google Scholar
38.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS
PubMed
PubMed Central
Article
Google Scholar
39.Kawano K, Ushijima N, Kihara M, Itoh H. Patiriisocius marinistellae gen. nov., sp. nov., isolated from the starfish Patiria pectinifera, and reclassification of Ulvibacter marinus as a member of the genus Patiriisocius comb. nov. Int J Syst Evol Microbiol. 2020;70:4119–29.CAS
PubMed
Article
PubMed Central
Google Scholar
40.Kikuchi Y, Hosokawa T, Fukatsu T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol. 2007;73:4308–16.CAS
PubMed
PubMed Central
Article
Google Scholar
41.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS
PubMed
PubMed Central
Article
Google Scholar
42.Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 2015;43:W7–14.CAS
PubMed
PubMed Central
Article
Google Scholar
43.Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.PubMed
PubMed Central
Article
Google Scholar
44.Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5.CAS
PubMed
PubMed Central
Article
Google Scholar
45.Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2020;37:291–4.CAS
PubMed
Article
PubMed Central
Google Scholar
46.Matsuura Y, Kikuchi Y, Meng XY, Koga R, Fukatsu T. Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Appl Environ Microbiol. 2012;78:4149–56.CAS
PubMed
PubMed Central
Article
Google Scholar
47.Koga R, Tsuchida T, Fukatsu T. Quenching autofluorescence of insect tissues for in situ detection of endosymbionts. Appl Entomol Zool. 2009;44:281–91.CAS
Article
Google Scholar
48.Funaro CF, Kronauer DJ, Moreau CS, Goldman-Huertas B, Pierce NE, Russell JA. Army ants harbor a host-specific clade of Entomoplasmatales bacteria. Appl Environ Microbiol. 2011;77:346–50.CAS
PubMed
Article
PubMed Central
Google Scholar
49.Łukasik P, Newton JA, Sanders JG, Hu Y, Moreau CS, Kronauer D, et al. The structured diversity of specialized gut symbionts of the New World army ants. Mol Ecol. 2017;26:3808–25.PubMed
Article
PubMed Central
Google Scholar
50.Scott JJ, Budsberg KJ, Suen G, Wixon DL, Balser TC, Currie CR. Microbial community structure of leaf-cutter ant fungus gardens and refuse dumps. PloS ONE. 2010;5:e9922 https://doi.org/10.1371/journal.pone.0009922CAS
Article
PubMed
PubMed Central
Google Scholar
51.Yang H, Schmitt-Wagner D, Stingl U, Brune A. Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol. 2005;7:916–32.CAS
PubMed
Article
PubMed Central
Google Scholar
52.King JH, Mahadi NM, Bong CF, Ong KH, Hassan O. Bacterial microbiome of Coptotermes curvignathus (Isoptera: Rhinotermitidae) reflects the coevolution of species and dietary pattern. Insect Sci. 2014;21:584–96.CAS
PubMed
Article
PubMed Central
Google Scholar
53.Koto A, Nobu MK, Miyazaki R. Deep sequencing uncovers caste-associated diversity of symbionts in the social ant Camponotus japonicus. mBio. 2020;11:e00408–20. https://doi.org/10.1128/mBio.00408-20CAS
Article
PubMed
PubMed Central
Google Scholar
54.Lombardo MP. Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behav Ecol Sociobiol. 2008;62:479–97.Article
Google Scholar
55.Engel P, Moran NA. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735.CAS
PubMed
Article
PubMed Central
Google Scholar
56.Moreau CS. Symbioses among ants and microbes. Curr Opin Ins Sci. 2020;39:1–5.Article
Google Scholar
57.Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, et al. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol. 2005;71:6590–9. 2005CAS
PubMed
PubMed Central
Article
Google Scholar
58.Lanan MC, Rodrigues PAP, Agellon A, Jansma P, Wheeler DE. A bacterial filter protects and structures the gut microbiome of an insect. ISME J. 2016;10:1866–76.CAS
PubMed
PubMed Central
Article
Google Scholar
59.Blochmann F. Über das Vorkommen bakterienähnlicher Gebilde in den Geweben und Eiern verschiedener Insekten. Zbl Bakt. 1882;11:234–40.
Google Scholar
60.Kupper M, Stigloher C, Feldhaar H, Gross R. Distribution of the obligate endosymbiont Blochmannia floridanus and expression analysis of putative immune genes in ovaries of the carpenter ant Camponotus floridanus. Arthropod Struct Dev. 2016;45:475–87.PubMed
Article
PubMed Central
Google Scholar
61.Rafiqi AM, Rajakumar A, Abouheif E. Origin and elaboration of a major evolutionary transition in individuality. Nature. 2020;585:239–44.PubMed
Article
CAS
PubMed Central
Google Scholar
62.Wilkinson DM. Horizontally acquired mutualisms, an unsolved problem in ecology? Oikos. 2001;92:377–84.Article
Google Scholar
63.Benson DR, Silvester WB. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev. 1993;57:293–319.CAS
PubMed
PubMed Central
Article
Google Scholar
64.Shang Y, Feng P, Wang C. Fungi that infect insects: altering host behavior and beyond. PLoS Pathogen. 2015;11:e1005037 https://doi.org/10.1371/journal.ppat.1005037CAS
Article
Google Scholar
65.Hughes DP, Araújo JP, Loreto RG, Quevillon L, de Bekker C, Evans HC. From so Simple a Beginning: The Evolution of Behavioral Manipulation by Fungi. Adv Genet. 2016;94:437–69.CAS
PubMed
Article
PubMed Central
Google Scholar
66.Araújo JPM, Hughes DP. Diversity of entomopathogenic fungi: which groups conquered the insect body? Adv Genet. 2016;94:1–39.PubMed
Article
PubMed Central
Google Scholar
67.Cremer S, Armitage SAO, Schmid-Hempel P. Social immunity. Curr Biol. 2007;17:R693–R702.CAS
PubMed
Article
PubMed Central
Google Scholar
68.Mersch DP, Crespi A, Keller L. Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science. 2013;340:1090–3.CAS
PubMed
Article
PubMed Central
Google Scholar
69.Hart AG, Anderson C, Ratnieks FLW. Task partitioning in leafcutting ants. acta ethol. 2002;5:1–11.Article
Google Scholar
70.Okada Y, Miyazaki S, Miyakawa H, Ishikawa A, Tsuji K, Miura T. Ovarian development and insulin-signaling pathways during reproductive differentiation in the queenless ponerine ant Diacamma sp. J Ins Physiol. 2010;56:288–95.CAS
Article
Google Scholar
71.Miyazaki S, Shimoji H, Suzuki R, Chinushi I, Takayanagi H, Yaguchi H, et al. Expressions of conventional vitellogenin and vitellogenin-like A in worker brains are associated with a nursing task in a ponerine ant. Ins Mol Biol. 2021;30:113–21.CAS
Article
Google Scholar
72.Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.CAS
PubMed
Article
PubMed Central
Google Scholar
73.Hu Y, Sanders JG, Łukasik P, D’Amelio CL, Millar JS, Vann DR, et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat Commun. 2018;9:964 https://doi.org/10.1038/s41467-018-03357-yCAS
Article
PubMed
PubMed Central
Google Scholar
74.Kikuta N, Tsuji K. Queen and worker policing in the monogynous and monandrous ant, Diacamma sp. Behav Ecol Sociobiol. 1999;46:180–9.Article
Google Scholar
75.Okada Y, Sasaki K, Miyazaki S, Shimoji H, Tsuji K, Miura T. Social dominance and reproductive differentiation mediated by dopaminergic signaling in a queenless ant. J Exp Biol. 2015;218:1091–8.PubMed
Article
PubMed Central
Google Scholar
76.Shimoji H, Kikuchi T, Ohnishi H, Kikuta N, Tsuji K. Social enforcement depending on the stage of colony growth in an ant. Proce R Soc B. 2018;285:20172548.Article
Google Scholar More