More stories

  • in

    Strange invaders increase disturbance and promote generalists in an evolving food web

    Model: network structureCommunities are simulated using a modified version of the evolutionary food web models developed in Allhoff et al. (2015) and Allhoff & Drossel (2016), which build on previous models25,26 to show that biodiversity can be maintained in multitrophic networks despite ongoing species turnover when feeding traits are allowed to evolve independent of body mass. The model includes consumptive and competitive interactions, where interaction strengths are determined by the traits of consumer species and their resources. All species possess three traits, a body mass or size ((m)) (used interchangeably), which places them on a body size trait axis, a feeding center ((f)) and feeding range ((s)), which determine the shape and placement of their feeding curve along the axis (Fig. 1a). While the (s) parameter specifically represents one standard deviation of a species’ feeding curve, we refer to (s) throughout as simply the feeding range. The feeding curve represents the hypothetical, fundamental feeding niche of species and shows the potential strength of a consumer’s attack rate for a given resource located along the body size trait axis. Because interactions are determined through these Gaussian curves, our networks are technically fully connected. However, when resources are far from consumer’s feeding centers, interaction strengths become asymptotically small, having a negligible effect on dynamics. Additionally, a basal resource drives energy flow in the food web (Fig. 1a). A summary of all model parameters and variables is provided in Table 2.Model: population dynamicsDynamics are governed by a bioenergetics consumer-resource model, where parameters are scaled to the body mass of species, following previous developments in Yodzis & Innes (1992) and Brose et al. (2006). The rate of change of consumer biomass (({B}_{i})) is given by:$$frac{{dB_{i} }}{dt} = mathop sum limits_{j = resources} e_{j} g_{ij} B_{i} B_{j} – mathop sum limits_{j = consumers} g_{ji} B_{i} B_{j} – mathop sum limits_{j = competitors} c_{ij} B_{i} B_{j} – x_{i} B_{i}$$
    (1)
    where ({e}_{j}) represents the efficiency of biomass conversion of resource (j) by consumers, ({g}_{ij}) is the mass-specific consumption rate of resource (i) by consumer (j), ({c}_{ij}) is the interference competition between consumer (i) and (j), and ({x}_{i}) is the mass-specific biomass loss from respiration and mortality for consumer (i). The rate of change in basal resource biomass (({B}_{0})) is described by:$$frac{{dB_{0} }}{dt} = n_{0} – mathop sum limits_{j = consumers} g_{j0} B_{j} B_{0} – lB_{0}$$
    (2)
    where ({n}_{0}) represents the constant influx of resource biomass and (l) the outflow rate. The time scale of the whole system is therefore defined by setting the constant resource influx rate ({n}_{0}=1), meaning that all other rates in the system, and consequently also consumer lifespans, must be interpreted in relation to ({n}_{0}). The basal resource is given a constant body mass trait value of ({m}_{0}=1) which does not evolve. The mass-specific consumption rate is given by:$${g}_{ij} = frac{1}{{m}_{i}} frac{{a}_{ij}}{1+{sum }_{k=prey}{h}_{i}{a}_{ik}{B}_{k}}$$
    (3)
    where,$${a}_{ij}= {m}_{i}^{0.75}cdot {N}_{ij}={m}_{i}^{0.75}cdot frac{1}{{s}_{i}sqrt{2pi }}cdot mathrm{exp}left[-frac{{left({log}_{10}left({f}_{i}right)-{log}_{10}({m}_{j})right)}^{2}}{2{s}_{i}^{ 2}}right]$$
    (4)
    describes the mass-specific attack rate of consumer (i) on resource (j), given the feeding kernel (({N}_{ij})) of consumer (i). Gaussian feeding kernels are calculated from consumer (i)’s feeding range (({s}_{i})), feeding center (({f}_{i})), and resource j’s body mass (({m}_{i})), such that resources which occur close to consumer feeding center on the body size trait axis result in the highest attack rates (Fig. 1a). The mass-specific handling time for consumers is given by ({h}_{i}=0.4cdot {m}_{i}^{-0.25}). Interference competition between consumer (i) and (j) is described by:$${c}_{ij}= {c}_{0}cdot frac{{I}_{ij}}{{I}_{ii}} text{ for }ine j$$
    (5)
    where,$${I}_{ij}= int {N}_{ik}cdot {N}_{jk}dleft({log}_{10}{(m}_{k})right)$$
    (6)
    describes the overlap in resources (k) between two competing consumers (i) and (j), such that consumers with similar feeding traits will have greater overlap between their feeding kernels resulting in higher competition coefficients.Model: community assembly & network evolutionCommunity assembly of food webs occurs through a combination of ecological and evolutionary dynamics (Fig. 1b). All ecological dynamics are described by the consumer-resource model above, where species with viable biomass densities persist in communities and species whose biomass falls below a fixed extinction threshold ((varepsilon = {10}^{-8})) are removed from the network. New species are introduced probabilistically into the network at fixed intervals through either mutation events ((p)) or as invaders ((1-p)), where (p) can be manipulated to increase the frequency of either mutation or invasion events. The traits of new mutant species are drawn probabilistically from a Gaussian distribution set around the traits of a selected extant parent species in the network. Invader species traits are generated in a similar fashion but using a Gaussian distribution with a greater standard deviation. The standard deviation of this trait range is set with the invader strangeness parameter (z), which can be manipulated to increase the range of potential traits for invader species. Thus, a larger (z) value increases the probability that new invader species will appear “strange” compared to other species already in the community. For mutant species, (z) is always set to 0.1.Parents of mutants are chosen probabilistically, where species with greater individual density (species biomass/body mass) are more likely to generate new mutant species. The parents of invader species are chosen randomly, with equal probability given to all extant species in the community. Both mutants and invaders are introduced into the system at the extinction threshold biomass ((varepsilon ={10}^{-8})). For mutants the initial biomass is removed from the biomass of the parent species’ populations, while for invaders this biomass is added into the system without affecting the parent species’ biomass pool; however, this difference did not significantly impact our results.Communities are initialized with a single ancestor species (starting biomass (varepsilon ={10}^{-8})) and the basal resource (starting biomass (=frac{{n}_{0}}{l}=2.0)) (Fig. 1b). The ancestor species is given a body mass of (m=100), feeding center of (f=1), and feeding range of (s=0.4). Upon initialization, the system is a run with only the ancestor species consuming the basal resource until a new species is introduced at 100 time steps. Thereafter, new species are introduced every 100 time steps, with ecological dynamics occurring between each species introduction. Additionally, species biomass is assessed at each 100 time step interval and non-viable species populations that fall below the biomass extinction threshold are removed. This process is repeated cyclically over the course of simulations (Fig. 1b), with many new species being generated and many removed due to extinction. The persistence of individual species is thus determined by their individual traits and overall resource availability given the composition of the rest of the community. With this dynamical approach to simulating evolving food webs, similar models have been shown to generate viable communities with both multi-trophic diversity and constant species turnover27,28, making this framework useful for testing the evolutionary impacts of species invasion and disturbance on community composition.Simulation experimentsSimulations were conducted in C, where numerical integration of differential equations was performed using the Runge–Kutta–Fehlberg algorithm from the GNU Scientific library29. Simulations were run for 25 million time steps, with 250,000 novel species introductions (mutants or invaders) for each simulation. To test if invasion would increase disturbance and variability in communities and drive the evolution of more generalized species, we conducted simulations where invaders were introduced with an increased probability of having trait values that were divergent from parent species. We controlled this by manipulating the invader strangeness parameter ((z)) across a range from (z=0.1) (invader and mutant trait values are equivalent) to (z=5.0). Invasion frequency ((p)) was fixed at 0.2 for all simulations, making mutation events more likely to occur than invasion.We hypothesized that introducing invaders with traits that are very different from parent species and from the community should result in greater disturbance in food webs because these species would be more likely to occupy novel niche space along the body size trait axis, which could result in the overexploitation of resources either through superior feeding strategies or by allowing invaders to avoid consumption by other consumers. Together, this should increase the probability of disrupted consumer-resource dynamics and secondary species extinction occurring with the introduction of strange invaders, both resulting in increased variability of biomass in the community. As a result, this increased variation should favor the survival of more generalist species in the community if they can buffer variability by consuming a greater range of resources.This is tested against the assumption that specialist consumers are more efficient than generalist consumers (generalist trade-off hypothesis2,12), which is built into our model given the formulation of the attack rate parameter ((a)), where specialist species achieve higher optimal peaks in attack rates, given their smaller feeding ranges ((s)). Thus, under conditions of low variability, our model results in communities being composed of mostly very specialized species, with narrow feeding ranges. To counter this trend toward extreme specialization, we set a floor for minimum feeding range values for all species of (s=0.3). Given these tendencies, we expected the persistence (lifespan) of more specialist species to be greatest under conditions of low variability (low invader strangeness) and that the relative persistence of more generalist species compared to specialists should increase with disturbance due to increasingly strange invaders.To test the robustness of these predictions, we replicated the (z) parameter sweep 100 times using random initial seed sets, resulting in 5000 simulations total, which collectively generated over 1.25e+09 unique species across all simulations. Data from these simulations was extracted at three different time intervals. We assessed species traits and lifespan data for all species generated in simulations at every 100 time steps, excluding data from the first 50,000 time steps to avoid including transient dynamics. Community level data, including community biomass and basal resource biomass were extracted at every 50,000 time steps (excluding time 0 from analysis). Species turnover data was extracted at every 10,000 time steps. In the infrequent event that simulations did not complete (community level extinction or crashed runs) we reran simulations with different random seed sets but identical parameter values.Data & statistical analysisDo resource and community variation increase with invader strangeness?To assess whether the addition of increasingly strange invaders into food web communities resulted in increased variation we analyzed several metrics of community and resource variability. We calculated the standard deviation (SD) of the basal resource biomass across time for each simulation and pooled these data for all simulation replicates across the invader strangeness parameter sweep. To assess variation at the community level, we used a similar approach to calculate variability in community biomass. For this metric, we summed the population biomasses of all species in the community for each given time interval output (excluding species introduced at that time step) and calculated the SD of these values across time for each individual simulation.Finally, to further assess community variability and to determine if increasing invader strangeness drives increased extinction in communities, we calculated species turnover for each time output. Species turnover was measured as the percentage change in the composition of species in communities between each time output (10,000 time steps). We then calculated mean species turnover over time for each simulation replicate and pooled all data together. To account for the non-linearity observed in our variation data (see “Results”) we conducted generalized additive models (GAM) to determine if increasing invader strangeness resulted in a significant increase in variability. GAMs were fit using a gamma error distribution with a log link function to account for continuous data constrained to positive values.Does the degree of generalism in communities increase with invader strangeness?To determine if the degree of generalism and the proportion of generalist species in food webs increased as invader strangeness increased, we calculated the mean and median feeding range ((s)) (Table 1) of species which occurred in communities for each simulation. We included all species that were generated and that survived for at least 100 time-steps in simulations, to remove the many non-viable species which immediately go extinct. Additionally, we included only mutant species for this metric to avoid the influence of the traits of invaders species, which we directly manipulated through the invader strangeness parameter. We reasoned this would provide a more independent metric of feeding range trends in communities. Mean and median feeding range were calculated for all simulation replicates and the impact of invader strangeness was assessed with GAMs (gamma error distribution with a log link function) to account for non-linear data (see “Results”).Additionally, we calculated a measure of the realized feeding range of consumers (distinct from the fixed fundamental feeding range ((s)) (Table 1)) to determine if more species were functioning as feeding generalists in communities. For this metric, we calculated the attack rate of each consumer on all other species in the community (including the basal resource and the focal consumer) for each time output (every 50,000 time steps from our community data, excluding species introduced at that time step). We then calculated the proportion of the attack rate on each species compared to the focal species’ maximum possible attack rate (an ideal prey at the exact center of the consumer’s feeding kernel). We then excluded all values below a threshold of 0.1 and from this calculated the proportion of species consumed out of the total number of species in the community. This metric correlated positively with the fundamental feeding range ((s)) of consumer species (Supplementary Fig. S3) and we refer to it throughout as the realized feeding range (Table 1) of consumer species. For our statistical analysis, we calculated the mean realized feeding range of species per simulation across invader strangeness ((z)) and ran a GLM with a quasibinomial error distribution and logit link function to account for proportional data.Does the persistence of generalist species increase with invader strangeness?To determine the persistence of species in our simulations we assessed the lifespan of individual species in simulated communities across time. For a given species, lifespan was measured as the number of time steps it persisted in a simulation after its initial introduction. We used this data to determine the relationship between species persistence and feeding range traits in two ways. First, we assessed the lifespan of all species in individual simulations continuously given the feeding range trait values across species. From this, a regression coefficient was calculated from the log10-scaled data, using a GLM with a gamma error distribution (log link), to determine the trend or “lifespan slope” for each simulation under different levels of invader strangeness (Fig. 4b). These lifespan slope values were then assessed for all simulation replicates across the full range of the invader strangeness parameter. Because more specialized species have higher maximal attack rates and are typically more efficient in our model, we expected that the lifespans of specialist species would be longer than more generalized species and that lifespan slopes should be negative under conditions of low variation. Given this, we expected to observe a positive trend in lifespan slope values across the invader strangeness parameter sweep if disturbance was increased in simulations as (z) became higher. We tested for this positive trend in the lifespan slope data by conducting a GAM (Gaussian distribution and the identity link function) to manage the observed non-linear trend in our data (see “Results”).For the second approach, we aimed to determine the relative persistence of species by binning “generalist” and “specialist” species based on feeding range traits and comparing species lifespans between these groups. For this analysis we split species into bins, where specialist species included all species with feeding range (sle) 0.32 and generalists as all species with feeding range values (sge) 0.39 (species with intermediate feeding range values were excluded from the analysis). We performed a robustness check of bin cutoffs but found no qualitative or statically significant differences in our results for a range of bin cutoff values. To assess how the relative persistence of generalists compared to specialists was influenced by invader strangeness, we then calculated the mean life span of all species falling into either of these categories per simulation and determined how these values were influenced by (z) for all simulation replicates. To assess whether mean lifespan was different between each of these groups across the invader strangeness sweep, we conducted a GLM with species type (generalist or specialist) and invader strangeness ((z)) as fixed effect terms and tested for the statistical significance of their interaction on mean species lifespan. The GLM was run using a Poisson distribution to account for discrete lifespan count data with a log link function. All GLMs and GAMs were performed in R using the “glm” and “mgcv” functions30, respectively, and all non-linear parameters in GAMs were fit using generalized cross validation (GCV). More

  • in

    Rebound in China’s coastal wetlands following conservation and restoration

    1.Ma, Z. J. et al. Rethinking China’s new great wall. Science 346, 912–914 (2014).CAS 
    Article 

    Google Scholar 
    2.Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).Article 
    CAS 

    Google Scholar 
    3.Wang, X. et al. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 238, 110987 (2020).Article 

    Google Scholar 
    4.Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2, 488–491 (2009).CAS 
    Article 

    Google Scholar 
    5.Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P. & Fuller, R. A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front. Ecol. Environ. 12, 267–272 (2014).Article 

    Google Scholar 
    6.Gedan, K. B., Silliman, B. R. & Bertness, M. D. Centuries of human-driven change in salt marsh ecosystems. Ann. Rev. Mar. Sci. 1, 117–141 (2009).Article 

    Google Scholar 
    7.Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).CAS 
    Article 

    Google Scholar 
    8.Cui, B., He, Q., Gu, B., Bai, J. & Liu, X. China’s coastal wetlands: understanding environmental changes and human impacts for management and conservation. Wetlands 36, 1–9 (2016).Article 

    Google Scholar 
    9.Gong, P. et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 64, 370–373 (2019).Article 

    Google Scholar 
    10.Han, Q., Niu, Z., Wu, M. & Wang, J. Remote-sensing monitoring and analysis of China intertidal zone changes based on tidal correction. Sci. Bull. 64, 456–473 (2019).
    Google Scholar 
    11.Mao, D. et al. National wetland mapping in China: a new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote Sens. 164, 11–25 (2020).Article 

    Google Scholar 
    12.Wang, X. et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 163, 312–326 (2020).Article 

    Google Scholar 
    13.Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, e11764 (2017).Article 

    Google Scholar 
    14.Giri, C. et al. Status and distribution of mangrove forests of the world using Earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).Article 

    Google Scholar 
    15.Chen, Y. et al. Effects of reclamation and natural changes on coastal wetlands bordering China’s Yellow Sea from 1984 to 2015. Land Degrad. Dev. 30, 1533–1544 (2019).Article 

    Google Scholar 
    16.Hu, Y. et al. Mapping coastal salt marshes in China using time series of Sentinel-1 SAR. ISPRS J. Photogramm. Remote Sens. 173, 122–134 (2021).Article 

    Google Scholar 
    17.Zhang, X. et al. Quantifying expansion and removal of Spartina alterniflora on Chongming Island, China, using time series Landsat images during 1995–2018. Remote Sens. Environ. 247, 111916 (2020).18.Chen, B. Q. et al. A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 131, 104–120 (2017).Article 

    Google Scholar 
    19.Hu, L., Li, W. & Xu, B. Monitoring mangrove forest change in China from 1990 to 2015 using Landsat-derived spectral-temporal variability metrics. Int. J. Appl. Earth Obs. Geoinf. 73, 88–98 (2018).Article 

    Google Scholar 
    20.Jia, M., Wang, Z., Zhang, Y., Mao, D. & Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 73, 535–545 (2018).Article 

    Google Scholar 
    21.Jia, M. et al. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 255, 112285 (2021).Article 

    Google Scholar 
    22.Ma, T., Li, X., Bai, J. & Cui, B. Tracking three decades of land use and land cover transformation trajectories in China’s large river deltas. Land Degrad. Dev. 30, 799–810 (2019).Article 

    Google Scholar 
    23.Wang, K. Evolution of Yellow River delta coastline based on remote sensing from 1976 to 2014, China. Chin. Geogr. Sci. 29, 181–191 (2019).Article 

    Google Scholar 
    24.Zhao, Y. F. et al. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Sci. Total Environ. 607, 920–932 (2017).Article 
    CAS 

    Google Scholar 
    25.Yim, J. et al. Analysis of forty years long changes in coastal land use and land cover of the Yellow Sea: the gains or losses in ecosystem services. Environ. Pollut. 241, 74–84 (2018).CAS 
    Article 

    Google Scholar 
    26.Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).
    Google Scholar 
    27.Chen, Y. et al. Land claim and loss of tidal flats in the Yangtze Estuary. Sci. Rep. 6, 24018 (2016).CAS 
    Article 

    Google Scholar 
    28.Yang, M. et al. Spatio-temporal characterization of a reclamation settlement in the Shanghai coastal area with time series analyses of X-, C-, and L-band SAR datasets. Remote Sens. 10, 329 (2018).29.Han, X., Pan, J. & Devlin, A. T. Remote sensing study of wetlands in the Pearl River Delta during 1995–2015 with the support vector machine method. Front. Earth Sci. 12, 521–531 (2018).Article 

    Google Scholar 
    30.Liu, L., Xu, W., Yue, Q., Teng, X. & Hu, H. Problems and countermeasures of coastline protection and utilization in China. Ocean Coast. Manag. 153, 124–130 (2018).Article 

    Google Scholar 
    31.Yunxuan, Z. et al. Degradation of coastal wetland ecosystem in China: drivers, impacts, and strategies. Bull. Chin. Acad. Sci. 31, 1157–1166 (2016).
    Google Scholar 
    32.Jiang, T. T., Pan, J. F., Pu, X. M., Wang, B. & Pan, J. J. Current status of coastal wetlands in China: degradation, restoration, and future management. Estuar. Coast. Shelf Sci. 164, 265–275 (2015).Article 

    Google Scholar 
    33.Sun, Z. et al. China’s coastal wetlands: conservation history, implementation efforts, existing issues and strategies for future improvement. Environ. Int. 79, 25–41 (2015).Article 

    Google Scholar 
    34.Ren, C. et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. Geoinf. 82, 101902 (2019).35.Gu, J. et al. Losses of salt marsh in China: trends, threats and management. Estuar. Coast. Shelf Sci. 214, 98–109 (2018).Article 

    Google Scholar 
    36.Wang, W., Liu, H., Li, Y. & Su, J. Development and management of land reclamation in China. Ocean Coast. Manag. 102, 415–425 (2014).Article 

    Google Scholar 
    37.Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    38.Barbier, E. B. A global strategy for protecting vulnerable coastal populations. Science 345, 1250–1251 (2014).CAS 
    Article 

    Google Scholar 
    39.He, Q. et al. Economic development and coastal ecosystem change in China. Sci. Rep. 4, 5995 (2014).40.Zhou, C. et al. Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone. Sci. China Life Sci. 46, 475–486 (2016).
    Google Scholar 
    41.Zhang, Q. et al. Propagule types and environmental stresses matter in saltmarsh plant restoration. Ecol. Eng. 143, 105693 (2020).Article 

    Google Scholar 
    42.Cui, B., Yang, Q., Yang, Z. & Zhang, K. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecol. Eng. 35, 1090–1103 (2009).Article 

    Google Scholar 
    43.Pan, X. Research on Xi Jinping’s thought of ecological civilization and environment sustainable development. IOP Conf. Ser. Earth Environ. Sci. 153, 062067 (2018).44.Hansen, M. H., Li, H. & Svarverud, R. Ecological civilization: interpreting the Chinese past, projecting the global future. Glob. Environ. Change. 53, 195–203 (2018).Article 

    Google Scholar 
    45.Moreno-Mateos, D., Power, M. E., Comín, F. A. & Yockteng, R. Structural and functional loss in restored wetland ecosystems. PLoS Biol. 10, e1001247 (2012).CAS 
    Article 

    Google Scholar 
    46.He, Q. Conservation: ‘No net loss’ of wetland quantity and quality. Curr. Biol. 29, R1070–R1072 (2019).CAS 
    Article 

    Google Scholar 
    47.Gong, P., Li, X. & Zhang, W. 40-year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 64, 756–763 (2019).Article 

    Google Scholar 
    48.Wang, X. et al. Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nat. Commun. 11, 3471 (2020).49.Zou, Z. H. et al. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl Acad. Sci. USA 115, 3810–3815 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Approaching mercury distribution in burial environment using PLS-R modelling

    1.Evers, D. The effects of methylmercury on wildlife: A comprehensive review and approach for interpretation. In Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 181–194 (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-809665-9.09985-7.Chapter 

    Google Scholar 
    2.Morel, F. M. M., Kraepiel, A. M. L. & Amyot, M. The chemical cycle and bioaccumulation of mercury. Ann. Rev. Ecol. Syst. 29, 543–566 (1998).Article 

    Google Scholar 
    3.Pushie, M. J., Pickering, I. J., Korbas, M., Hackett, M. J. & George, G. N. Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem. Rev. 114, 8499–8541 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.WHO. Exposure to Mercury: a Major Public Health Concern. (2007).5.Berlin, M., Zalups, R. K. & Fowler, B. A. Chapter 46—Mercury. In Handbook on the Toxicology of Metals (Fourth Edition) (eds Nordberg, G. F. et al.) 1013–1075 (Academic Press, Cambridge, 2015). https://doi.org/10.1016/B978-0-444-59453-2.00046-9.Chapter 

    Google Scholar 
    6.Clarkson, T. W. The Toxicology of mercury. Crit. Rev. Clin. Lab. Sci. 34, 369–403 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Abass, K. et al. Quantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humans. Environ. Int. 114, 1–11 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Liu, G., Cai, Y., O’Driscoll, N., Feng, X. & Jiang, G. Overview of mercury in the environment. In Environmental Chemistry and Toxicology of Mercury (eds Liu, G. et al.) 1–12 (Wiley, 2011). https://doi.org/10.1002/9781118146644.ch1.Chapter 

    Google Scholar 
    9.García, F., Ortega, A., Domingo, J. L. & Corbella, J. Accumulation of metals in autopsy tissues of subjects living in Tarragona county, Spain. J. Environ. Sci. Health Part A 36, 1767–1786 (2001).Article 

    Google Scholar 
    10.Clarkson, T. W. & Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36, 609–662 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Holmes, P., James, K. A. F. & Levy, L. S. Is low-level environmental mercury exposure of concern to human health?. Sci. Total Environ. 408, 171–182 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Pasetto, R., Martin-Olmedo, P., Martuzzi, M. & Iavarone, I. Exploring available options in characterising the health impact of industrially contaminated sites. Ann. Ist Super Sanita 52, 476–482 (2016).PubMed 

    Google Scholar 
    13.Álvarez-Fernández, N., Martínez Cortizas, A. & López-Costas, O. Atmospheric mercury pollution deciphered through archaeological bones. J. Archaeol. Sci. 119, 105159 (2020).Article 
    CAS 

    Google Scholar 
    14.Cooke, C. A., Martínez-Cortizas, A., Bindler, R. & Sexauer Gustin, M. Environmental archives of atmospheric Hg deposition—A review. Sci. Total Environ. 709, 134800 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Leblanc, M., Morales, J. A., Borrego, J. & Elbaz-Poulichet, F. 4,500-year-old mining pollution in southwestern Spain: Long-term implications for modern mining pollution. Econ. Geol. 95, 655–662 (2000).CAS 

    Google Scholar 
    16.Cooke, C. A., Balcom, P. H., Biester, H. & Wolfe, A. P. Over three millennia of mercury pollution in the Peruvian Andes. PNAS 106, 8830–8834 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Hunt Ortiz, M. A., Consuegra, S., Díaz del Río, P., Hurtado Pérez, V. & Montero Ruiz, I. Neolithic and Chalcolithic –VI to III millennia BC– use of cinnabar (HgS) in the Iberian Peninsula: analytical identification and lead isotope data for an early mineral exploitation of the Almadén (Ciudad Real, Spain) mining district. (2011).18.Martı́nez-Cortizas, A., Pontevedra-Pombal, X., Garcı́a-Rodeja, E., Nóvoa-Muñoz, J. C. & Shotyk, W. Mercury in a Spanish peat bog: Archive of climate change and atmospheric metal deposition. Science 284, 939–942 (1999).19.Martínez Cortizas, A., Peiteado Varela, E., Bindler, R., Biester, H. & Cheburkin, A. Reconstructing historical Pb and Hg pollution in NW Spain using multiple cores from the Chao de Lamoso bog (Xistral Mountains). Geochimica et Cosmochimica Acta 82, 68–78 (2012).20.López-Costas, O. et al. Human bones tell the story of atmospheric mercury and lead exposure at the edge of Roman World. Sci. Total Environ. 710, 136319 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    21.Hedges, R. E. M. Bone diagenesis: an overview of processes. Archaeometry 44, 319–328 (2002).CAS 
    Article 

    Google Scholar 
    22.Yamada, M. et al. Accumulation of mercury in excavated bones of two natives in Japan. Sci. Total Environ. 162, 253–256 (1995).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Emslie, S. D. et al. Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Sci. Rep. 5, 14679 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Alexandrovskaya, E. & Alexandrovskiy, A. Radiocarbon data and anthropochemistry of ancient Moscow. Geochronometria 24, 87–95 (2005).
    Google Scholar 
    25.Ávila, A., Mansilla, J., Bosch, P. & Pijoan, C. Cinnabar in mesoamerica: poisoning or mortuary ritual?. J. Archaeol. Sci. 49, 48–56 (2014).Article 
    CAS 

    Google Scholar 
    26.Bocca, B. et al. Metals in bones of the middle-aged inhabitants of Sardinia island (Italy) to assess nutrition and environmental exposure. Environ. Sci. Pollut. Res. 25, 8404–8414 (2018).CAS 
    Article 

    Google Scholar 
    27.Cervini-Silva, J., Muñoz, M. de L., Palacios, E., Ufer, K. & Kaufhold, S. Natural incorporation of mercury in bone. J. Trace Elements Med. Biol. 67, 126797 (2021).28.Cervini-Silva, J., Muñoz, M. de L., Palacios, E., Jimenez-Lopez, J. C. & Romano-Pacheco, A. Ageing and preservation of HgS-enriched ancient human remains deposited in confinement. J. Archaeol. Sci.: Rep. 18, 562–567 (2018).29.Cervini-Silva, J. et al. Cinnabar-preserved bone structures from primary osteogenesis and fungal signatures in ancient human remains. Geomicrobiol. J. 30, 566–577 (2013).CAS 
    Article 

    Google Scholar 
    30.Emslie, S. D. et al. Mercury in archaeological human bone: biogenic or diagenetic?. J. Archaeol. Sci. 108, 104969 (2019).CAS 
    Article 

    Google Scholar 
    31.Kepa, M. et al. Analysis of mercury levels in historical bone material from syphilitic subjects–pilot studies (short report). Anthropol. Anz. 69, 367–377 (2012).PubMed 
    Article 

    Google Scholar 
    32.Ochoa-Lugo, M. et al. The effect of depositional conditions on mineral transformation, chemical composition, and preservation of organic material in archaeological Hg-enriched bone remains. J. Archaeol. Sci.: Rep. 15, 213–218 (2017).
    Google Scholar 
    33.Panova, T. D., Dmitriev, AYu., Borzakov, S. B. & Hramco, C. Analysis of arsenic and mercury content in human remains of the 16th and 17th centuries from Moscow Kremlin necropolises by neutron activation analysis at the IREN facility and the IBR-2 reactor FLNP JINR. Phys. Part. Nuclei Lett. 15, 127–134 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Rasmussen, K. L. et al. Investigations of the relics and altar materials relating to the apostles St James and St Philip at the Basilica dei Santi XII Apostoli in Rome. Herit. Sci. 9, 14 (2021).CAS 
    Article 

    Google Scholar 
    35.Rasmussen, K. L. et al. Comparison of trace element chemistry in human bones interred in two private chapels attached to Franciscan friaries in Italy and Denmark: An investigation of social stratification in two medieval and post-medieval societies. Heritage Sci. 8, 65 (2020).CAS 
    Article 

    Google Scholar 
    36.Rasmussen, K. L. et al. On the distribution of trace element concentrations in multiple bone elements in 10 Danish medieval and post-medieval individuals. Am. J. Phys. Anthropol. 162, 90–102 (2017).Article 

    Google Scholar 
    37.Rasmussen, K. L., Skytte, L., Jensen, A. J. & Boldsen, J. L. Comparison of mercury and lead levels in the bones of rural and urban populations in Southern Denmark and Northern Germany during the Middle Ages. J. Archaeol. Sci.: Rep. 3, 358–370 (2015).
    Google Scholar 
    38.Rasmussen, K. L. et al. Was he murdered or was he not?—Part I: Analyses of mercury in the remains of Tycho Brahe. Archaeometry 55, 1187–1195 (2013).CAS 
    Article 

    Google Scholar 
    39.Rasmussen, K. L. et al. The distribution of mercury and other trace elements in the bones of two human individuals from medieval Denmark—The chemical life history hypothesis. Herit. Sci. 1, 10 (2013).Article 
    CAS 

    Google Scholar 
    40.Torino, M. et al. Convento di San Francesco a Folloni: The function of a Medieval Franciscan Friary seen through the burials. Herit. Sci. 3, 27 (2015).Article 
    CAS 

    Google Scholar 
    41.Walser, J. W., Kristjánsdóttir, S., Gowland, R. & Desnica, N. Volcanoes, medicine, and monasticism: Investigating mercury exposure in medieval Iceland. Int. J. Osteoarchaeol. 29, 48–61 (2019).Article 

    Google Scholar 
    42.Rasmussen, K. L. et al. Mercury levels in Danish Medieval human bones. J. Archaeol. Sci. 35, 2295–2306 (2008).Article 

    Google Scholar 
    43.Armesto, A. G. et al. Total mercury distribution among soil aggregate size fractions in a temperate forest podzol. Span. J. Soil Sci. 8(1), 57–73 (2018).
    Google Scholar 
    44.do Valle, C. M., Santana, G. P., Augusti, R., Egreja Filho, F. B. & Windmöller, C. C. Speciation and quantification of mercury in Oxisol, Ultisol, and Spodosol from Amazon (Manaus, Brazil). Chemosphere 58, 779–792 (2005).45.Fiorentino, J. C., Enzweiler, J. & Angélica, R. S. Geochemistry of mercury along a soil profile compared to other elements and to the parental rock: Evidence of external input. Water Air Soil Pollut. 221, 63–75 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Roulet, M. et al. The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós River Valley, Pará state, Brazil1The present investigation is part of an ongoing study, the CARUSO project (IDRC-UFPa-UQAM), initiated to determine the sources, fate, and health effects of MeHg in the Lower Tapajós area.1. Sci. Total Environ. 223, 1–24 (1998).47.Qin, F. et al. Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River. J. Geochem. Expl. 138, 33–49 (2014).CAS 
    Article 

    Google Scholar 
    48.Acosta, J. A., Martínez-Martínez, S., Faz, A. & Arocena, J. Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma 161, 30–42 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Janaway, R. C., Percival, S. L. & Wilson, A. S. Decomposition of Human Remains. In Microbiology and Aging: Clinical Manifestations (ed. Percival, S. L.) 313–334 (Humana Press, London, 2009). https://doi.org/10.1007/978-1-59745-327-1_14.Chapter 

    Google Scholar 
    50.Obrist, D., Johnson, D. W. & Lindberg, S. E. Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen. Biogeosciences 6, 765–777 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Schuster, E. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes—A review of the literature. Water Air Soil Pollut. 56, 667–680 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Taboada, T., Cortizas, A. M., García, C. & García-Rodeja, E. Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain. Geoderma 131, 218–236 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Babuśka-Roczniak, M. et al. Occurrence of mercury in the knee joint tissues. Pol. Ann. Med. 28, 39–44 (2021).
    Google Scholar 
    54.Domingo, J. L., García, F., Nadal, M. & Schuhmacher, M. Autopsy tissues as biological monitors of human exposure to environmental pollutants. A case study: Concentrations of metals and PCDD/Fs in subjects living near a hazardous waste incinerator. Environ. Res. 154, 269–274 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.López-Costas, O., Lantes-Suárez, Ó. & Martínez Cortizas, A. Chemical compositional changes in archaeological human bones due to diagenesis: Type of bone vs soil environment. J. Archaeol. Sci. 67, 43–51 (2016).56.Taboada, T., Martínez Cortizas, A., García, C. & García-Rodeja, E. Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain. Sci. Total Environ. 356, 192–206 (2006).57.Windmöller, C. C., Durão, W. A., de Oliveira, A. & do Valle, C. M. The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): Implications for the mercury cycle. Ecotoxicol. Environ. Saf. 112, 201–211 (2015).58.Blanco Freijeiro, A., Fusté Ara, M. & García Alén, A. La necrópolis galaico-romana de La Lanzada (Noalla, Pontevedra) II. Cuadernos de estudios gallegos 22, 5–23 (1967).59.Blanco Freijeiro, A., Fusté Ara, M. & García Alén, A. La necrópolis galaico-romana de La Lanzada (Noalla, Pontevedra). Cuadernos de estudios gallegos 16, 141–158 (1961).60.Kaal, J., López-Costas, O. & Martínez Cortizas, A. Diagenetic effects on pyrolysis fingerprints of extracted collagen in archaeological human bones from NW Spain, as determined by pyrolysis-GC-MS. J. Archaeol. Sci. 65, 1–10 (2016).61.López Costas, O. Antropología de los restos óseos humanos de Galicia: estudio de la población romana y medieval gallega. (Universidad de Granada, 2012).62.López-Costas, O. Taphonomy and burial context of the Roman/post-Roman funerary areas (2nd to 6th centuries AD) of A Lanzada, NW Spain. Estudos do Quaternário/Quaternary Studies 55–67 (2015) https://doi.org/10.30893/eq.v0i12.111.63.López-Costas, O. & Müldner, G. Fringes of the empire: Diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am. J. Phys. Anthropol. 161, 141–154 (2016).PubMed 
    Article 

    Google Scholar 
    64.García López, Z., López Costas, O. & Martínez Cortizas, A. Análisis de sedimentos asociados a restos humanos de la Necrópolis de A Lanzada y Adro Vello (Pontevedra). (2019).65.Rodríguez Martínez, R. M. Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra). Fase II. (2017).66.Brickley, M. & McKinley, J. I. Determination of sex from archaeological skeletal material and assessment of parturition. in Guidelines to the Standards for Recording Human Remains. 23–25 (BABAO, Dept. of Archaeology, University of Southampton. Institute of Field Archaeologist, University of Reading, 2004).67.López Costas, O. et al. Informe final: Estudio de esqueletos humanos y de secuencias edafo-sedimentárias del yacimiento de A Lanzada. En: Rodríguez Martínez, R.M., 2017. Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra). Fase II. (2017).68.Cheburkin, A. K. & Shotyk, W. Determination of trace elements in aqueous solutions using the EMMA miniprobe XRF analyzer. X-Ray Spectrom. 28, 379–383 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    69.Cheburkin, A. K. & Shotyk, W. High-sensitivity XRF analyzer (OLIVIA) using a multi-crystal pyrographite assembly to reduce the continuous background. X-Ray Spectrom. 28, 145–148 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemometrics Intell. Lab. Syst. 58, 109–130 (2001).CAS 
    Article 

    Google Scholar 
    71.Martín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Model-based replacement of rounded zeros in compositional data: Classical and robust approaches. Comput. Stat. Data Anal. 56, 2688–2704 (2012).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    72.Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. & Barceló-Vidal, C. Isometric logratio transformations for compositional data analysis. Mathe. Geol. 35, 279–300 (2003).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    73.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).74.Filzmoser, P., Hron, K. & Templ, M. Applied Compositional Data Analysis. With Worked Examples (Springer, 2018).MATH 
    Book 

    Google Scholar 
    75.Garrett, R. G. rgr: Applied Geochemistry EDA. (2018).76.Bertrand, F. & Maumy-Bertrand, M. Partial Least Squares Regression for Generalized Linear Models. (2019).77.Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. (2020).78.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    79.Punta A Lanzada, O Grove (Galicia, Spain) 42°25′44.61″N 8°52′29.31″W elev 16 m eye alt 585m. Google Earth. Jully 18, 2020. March 20, 2021. https://bit.ly/3FwpZrE.80.A Lanzada site (Galicia, Spain) 42°25′44.64″N 8°52″29.42″W elev 16m eye alt 549m. Google Earth. Jully 18, 2020. October 12, 2021. https://bit.ly/3BBqxKy. More

  • in

    The effects of low pH on the taste and amino acid composition of tiger shrimp

    1.Pachauri, R. K. et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).2.International Geosphere Biosphere Programme (IGBP). Ocean acidification summary for policymakers (2013).3.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 
    Article 

    Google Scholar 
    4.Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 1–7. https://doi.org/10.1038/s41559-017-0084 (2017).CAS 
    Article 

    Google Scholar 
    5.Dupont, S., Hall, E., Calosi, P. & Lundve, B. First evidence of altered sensory quality in a shellfish exposed to decreased pH relevant to ocean acidification. J. Shellfish Res. 33, 857–861 (2014).Article 

    Google Scholar 
    6.Lemasson, A. J. et al. Sensory qualities of oysters unaltered by a short exposure to combined elevated pCO2 and temperature. Front. Mar. Sci. 4, 352. https://doi.org/10.3389/fmars.2017.00352 (2017).Article 

    Google Scholar 
    7.San Martin, V. A. et al. Linking social preferences and ocean acidification impacts in mussel aquaculture. Sci. Rep. 9, 1–9 (2019).ADS 

    Google Scholar 
    8.Shahidi, F. & Cadwallader, K. R. Flavor and lipid chemistry of seafoods: an overview (1997).9.Nelson, G. et al. An amino acid taste receptor. Nature 416, 199–202 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Guillen, J. et al. Global seafood consumption footprint. Ambio 48(2), 111–122 (2019).Article 

    Google Scholar 
    11.FAO. The state of world fisheries and aquaculture. Contributing to food security and nutrition for all. FAO, Rome (2016).12.FAO. The state of world fisheries and aquaculture—sustainability in action (2020).13.Gerland, P. et al. World population stabilization unlikely this century. Science 346(6206), 234–237 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Minh, N. P., Nhi, T. T. Y., Hiep, P. T. H., Nhan, D. T. & Anh, S. T. Quality characteristics of dried salted black tiger shrimp (Penaeus monodon) affected by different pre-treatment and drying variables. J. Pharm. Sci. Res. 11, 1377–1381 (2019).CAS 

    Google Scholar 
    15.FAO. The state of food and agriculture (1980).16.Solms, J. Taste of amino acids, peptides, and proteins. J. Agric. Food Chem. 17(4), 686–688 (1969).CAS 
    Article 

    Google Scholar 
    17.Jiro, K., Akira, S. & Akimitsu, K. The contribution of peptides and amino acids to the taste of foodstuffs. J. Agric. Food Chem. 17(4), 689–695 (1969).Article 

    Google Scholar 
    18.Schiffman, S. S., Sennewald, K. & Gagnon, J. Comparison of taste qualities and thresholds of D-and L-amino acids. Physiol. Behav. 27(1), 51–59 (1981).CAS 
    Article 

    Google Scholar 
    19.Kawai, M., Sekine-Hayakawa, Y., Okiyama, A. & Ninomiya, Y. Gustatory sensation of L- and D-amino acids in humans. Amino Acids 43, 2349–2358 (2012).CAS 
    Article 

    Google Scholar 
    20.Dissanayake, A., Clough, R., Spicer, J. I. & Jones, M. B. Effects of hypercapnia on acid–base balance and osmo-/iono-regulation in prawns (Decapoda: Palaemonidae). Aquat. Biol. 11, 27–36 (2010).Article 

    Google Scholar 
    21.Ries, J., Choen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Liu, Y. W., Sutton, J. N., Ries, J. B. & Eagle, R. A. Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. Sci. Adv. 6, eaax1314 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Corteel, M. et al. Moult cycle of laboratory-raised Penaeus (Litopenaeus) vannamei and P. monodon. Aquac. Int. 20, 13–18 (2011).Article 

    Google Scholar 
    24.Taylor, J. R., Gilleard, J. M., Allen, M. C. & Deheyn, D. D. Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica. Sci. Rep. 5, 10608 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    25.McLean, E. L., Katenka, N. V. & Seibel, B. A. Decreased growth and increased shell disease in early benthic phase Homarus americanus in response to elevated CO2. Mar. Ecol. Prog. Ser. 596, 113–126 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Chen, S. M. & Chen, J. C. Effect of low pH on the acid-base balance, osmolality and ion concentrations of giant freshwater prawn Macrobrachium rosenbergii. J. Fish. Soc. Taiwan 30, 227–239 (2003).
    Google Scholar 
    27.Kurihara, H., Matsui, M., Furukawa, H., Hayashi, M. & Ishimatsu, A. Long-term effects of predicted future seawater CO2 conditions on the survival and growth of the marine shrimp Palaemon pacificus. J. Exp. Mar. Biol. Ecol. 367, 41–46 (2008).CAS 
    Article 

    Google Scholar 
    28.Findlay, H. S., Kendall, M. A., Spicer, J. I. & Widdicombe, S. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar. Ecol. Prog. Ser. 389, 193–202 (2009).ADS 
    Article 

    Google Scholar 
    29.Cameron, J. N. & Iwama, G. K. Compensation of progressive hypercapnia in channel catfish and blue crabs. J. Exp. Biol. 133, 183–197 (1987).Article 

    Google Scholar 
    30.Pane, E. F. & Barry, J. P. Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar. Ecol. Prog. Ser. 334, 1–9 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Lowder, K. B., Allen, M. C., Day, J. M. D., Deheyn, D. D. & Taylor, J. R. A. Assessment of ocean acidification and warming on the growth, calcification, and biophotonics of a California grass shrimp. ICES J. Mar. Sci. 74, 1150–1158 (2017).Article 

    Google Scholar 
    32.Pörtner, H. O., Langenbunh, M. & Reipschläger, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr. 60, 705–718 (2004).Article 

    Google Scholar 
    33.Dissanayake, A. & Ishimatsu, A. Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeide). ICES J. Mar. Sci. 68, 1147–1154 (2011).Article 

    Google Scholar 
    34.Pan, L. Q., Zhang, L. J. & Liu, H. Y. Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae. Aquaculture 273, 711–720 (2007).CAS 
    Article 

    Google Scholar 
    35.Rathburn, C. K. et al. Transcriptomic responses of juvenile Pacific whiteleg shrimp, Litopenaeus vannamei, to hypoxia and hypercapnic hypoxia. Physiol. Genomics 45, 794–807 (2013).CAS 
    Article 

    Google Scholar 
    36.Yu, Q. R. et al. Growth and health responses to a long-term pH stress in Pacific white shrimp Litopenaeus vannamei. Aquacul. Rep. 16, 100280 (2020).Article 

    Google Scholar 
    37.Chen, J. C., Chen, C. T. & Cheng, S. Y. Nitrogen excretion and changes of hemocyanin, protein and free amino acid levels in the hemolymph of Penaeus monodon exposed to different concentrations of ambient ammonia-N at different salinity levels. Mar. Ecol. Prog. Ser. 110, 85–94 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Dayal, J. S., Ambasankar, K., Rajendran, R., Rajaram, V. & Muralidhar, M. Effect of abiotic salinity stress on haemolymph metabolic profiles in cultured tiger shrimp Penaeus monodon. Int. J. Bio-resour. Stress Manag. 4, 339–343 (2013).
    Google Scholar 
    39.Ardo, Y. Flavour formation by amino acid catabolism. Biotechnol. Adv. 24, 238–242 (2006).CAS 
    Article 

    Google Scholar 
    40.Engström-Öst, J. et al. Eco-physiological responses of copepods and pteropods to ocean warming and acidification. Sci. Rep. 9, 4748 (2019).ADS 
    Article 

    Google Scholar 
    41.Liao, H. et al. Impact of ocean acidification on the energy metabolism and antioxidant responses of the Yesso scallop (Patinopecten yessoensis). Front. Physiol. 27, 1967 (2019).Article 

    Google Scholar 
    42.Richard, L. et al. The effect of choline and cystine on the utilisation of methionine for protein accretion, remethylation and trans-sulfuration in juvenile shrimp Penaeus monodon. Br. J. Nutr. 28, 825–835 (2011).Article 

    Google Scholar 
    43.Peng, B., Huang, R. & Zhou, X. oxidation resistance of the sulfur amino acids: methionine and cysteine. Biomed. Res. Int. 2017, 9584932 (2017).
    Google Scholar 
    44.DeVries, M. S. et al. Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions. Sci. Rep. 6, 38637 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Dupont, S. & Thorndyke, M. C. Impact of CO2-driven ocean acidification on invertebrates early life-history—What we know, what we need to know and what we can do. Biogeosci. Discuss. 6, 3109–3131 (2009).ADS 
    Article 

    Google Scholar 
    46.Weerathunga, V. V. et al. Impacts of pH on the fitness and immune system of pacific white shrimp. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.748837 (2021).Article 

    Google Scholar 
    47.Fuller, P. L. et al. Invasion of Asian tiger shrimp, Penaeus monodon Fabricius, 1798, in the western north Atlantic and Gulf of Mexico. Aquat. Invasions 9, 59–70 (2014).Article 

    Google Scholar 
    48.Lewis, E. & Wallace, D. Program developed for CO2 system calculations (Environmental System Science Data Infrastructure for a Virtual Ecosystem, 1998).49.Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A Oceanogr. Res. Pap. 34, 1733–1743 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    50.AOAC. Method 991.42 & 993.19. Official methods of analysis (16th ed.). Washington, DC: Association of Official Analytical Chemists (1995).51.Motoh, H. Biology and ecology of Penaeus monodon. Iloilo City, Philippines. Aquaculture Department, Southeast Asian Fisheries Development Center (1985).52.Mayor, D. J., Matthews, C., Cook, K., Zuur, A. F. & Hay, S. CO2-induced acidification affects hatching success in Calanus finmarchicus. Mar. Ecol. Prog. Ser. 350, 91–97 (2007). More

  • in

    Raptor breeding sites indicate high plant biodiversity in urban ecosystems

    1.Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed 
    Article 

    Google Scholar 
    2.Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 281, 20133330 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Nielsen, A. B., Van Den Bosch, M., Maruthaveeran, S. & Van Den Bosch, C. K. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosyst. 17, 305–327 (2014).Article 

    Google Scholar 
    4.Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    5.Luck, G. W., Davidson, P., Boxall, D. & Smallbone, L. Relations between urban bird and plant communities and human well-being and connection to nature. Conserv. Biol. 25, 816–826 (2011).PubMed 
    Article 

    Google Scholar 
    6.Soga, M. & Gaston, K. J. Extinction of experience: the loss of human–nature interactions. Front. Ecol. Environ. 14, 94–101 (2016).Article 

    Google Scholar 
    7.Dean, J., van Dooren, K. & Weinstein, P. Does biodiversity improve mental health in urban settings?. Med. Hypotheses 76, 877–880 (2011).PubMed 
    Article 

    Google Scholar 
    8.Knight, A. T. et al. Knowing but not doing: Selecting priority conservation areas and the research-implementation gap. Conserv. Biol. 22, 610–617 (2008).PubMed 
    Article 

    Google Scholar 
    9.Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Caro, T. M. Conservation by Proxy: Indicator, Umbrella, Keystone, Flagship and Other Surrogate Species (Island Press, 2010).
    Google Scholar 
    11.Sergio, F., Newton, I. & Marchesi, L. Top predators and biodiversity. Nature 236, 192 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Burgas, D., Byholm, P. & Parkkima, T. Raptors as surrogates of biodiversity along a landscape gradient. J. Appl. Ecol. 51, 786–794 (2014).Article 

    Google Scholar 
    13.Sergio, F., Newton, I., Marchesi, L. & Pedrini, P. Ecologically justified charisma: Preservation of top predators delivers biodiversity conservation. J. Appl. Ecol. 43, 1049–1055 (2006).Article 

    Google Scholar 
    14.Sergio, F. et al. Top predators as conservation tools: Ecological rationale, assumptions, and efficacy. Annu. Rev. Ecol. Evol. Syst. 39, 1–19 (2008).Article 

    Google Scholar 
    15.Sergio, F. Raptor monitoring: Challenges and benefits. Bird Study 65, S3–S3 (2018).Article 

    Google Scholar 
    16.Millsap, B. A., Cooper, M. E. & Holroyd, G. Legal considerations. In Raptor Research and Management Techniques (eds Bird, D. M. & Bildstein, K. L.) 365–382 (Hancock House Publishers, 2007).
    Google Scholar 
    17.Maciorowski, G., Jankowiak, Ł, Sparks, T. H., Polakowski, M. & Tryjanowski, P. Biodiversity hotspots at a small scale: The importance of eagles’ nests to many other animals. Ecology 102, e03220 (2021).PubMed 
    Article 

    Google Scholar 
    18.Natsukawa, H. Raptor breeding sites as a surrogate for conserving high avian taxonomic richness and functional diversity in urban ecosystems. Ecol. Indic. 119, 106874 (2020).Article 

    Google Scholar 
    19.Natsukawa, H. Raptor breeding sites indicate high taxonomic and functional diversities of wintering birds in urban ecosystems. Urban For. Urban Green. 60, 127066 (2021).Article 

    Google Scholar 
    20.Sergio, F., Newton, I. & Marchesi, L. Top predators and biodiversity: Much debate, few data. J. Appl. Ecol. 45, 992–999 (2008).Article 

    Google Scholar 
    21.Estrada, C. G. & Rodríguez-Estrella, R. In the search of good biodiversity surrogates: Are raptors poor indicators in the Baja California Peninsula desert?. Anim. Conserv. 19, 360–368 (2016).Article 

    Google Scholar 
    22.Kenward, R. E. The Goshawk (T&A D Poyser, 2006).
    Google Scholar 
    23.Manning, A. D., Fischer, J. & Lindenmayer, D. B. Scattered trees are keystone structures–implications for conservation. Biol. Conserv. 132, 311–321 (2006).Article 

    Google Scholar 
    24.Ozanne, C. M. P. et al. Biodiversity meets the atmosphere: A global review of forest canopies. Science 301, 183–186 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Yan, Z. et al. Impervious surface area is a key predictor for urban plant diversity in a city undergone rapid urbanization. Sci. Total Environ. 650, 335–342 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Atauri, J. A., De Pablo, C. L., De Agar, P. M., Schmitz, M. F. & Pineda, F. D. Effects of management on understory diversity in the forest ecosystems of Northern Spain. Environ. Manag. 34, 819–828 (2004).Article 

    Google Scholar 
    27.Martín-Queller, E., Gil-Tena, A. & Saura, S. Species richness of woody plants in the landscapes of Central Spain: The role of management disturbances, environment and non-stationarity. J. Veg. Sci. 22, 238–250 (2011).Article 

    Google Scholar 
    28.Rodriguez, S. A., Kennedy, P. L. & Parker, T. H. Timber harvest and tree size near nests explains variation in nest site occupancy but not productivity in northern goshawks (Accipiter gentilis). For. Ecol. Manage. 374, 220–229 (2016).Article 

    Google Scholar 
    29.Rosich, J. et al. Northern Goshawk breeding sites indicate the presence of mature forest in Mediterranean pinewoods. For. Ecol. Manag. 479, 118602 (2021).Article 

    Google Scholar 
    30.Natsukawa, H., Ichinose, T. & Higuchi, H. Factors affecting breeding-site selection of Northern Goshawks at two spatial scales in urbanized areas. J. Raptor Res. 51, 417–428 (2017).Article 

    Google Scholar 
    31.Natsukawa, H. et al. Forest cover and open land drive the distribution and dynamics of the breeding sites for urban-dwelling Northern Goshawks. Urban For. Urban Green. 53, 126732 (2020).Article 

    Google Scholar 
    32.Boal, C. W. & Dykstra, C. R. Urban Raptors: Ecology and Conservation of Birds of Prey in Cities (Island Press, 2018).Book 

    Google Scholar 
    33.Burgas, D., Ovaskainen, O., Blanchet, F. G. & Byholm, P. The ghost of the hawk: Top predator shaping bird communities in space and time. Front. Ecol. Evol. 9, 638039 (2021).Article 

    Google Scholar 
    34.Byholm, P., Gunko, R., Burgas, D. & Karell, P. Losing your home: Temporal changes in forest landscape structure due to timber harvest accelerate Northern goshawk (Accipiter gentilis) nest stand losses. Ornis Fenn. 97, 1–11 (2020).
    Google Scholar 
    35.Ozaki, K. et al. A mechanistic approach to evaluation of umbrella species as conservation surrogates. Conserv. Biol. 20, 1507–1515 (2006).PubMed 
    Article 

    Google Scholar 
    36.Santangeli, A. et al. Voluntary non-monetary approaches for implementing conservation. Biol. Conserv. 197, 209–214 (2016).Article 

    Google Scholar 
    37.Kamal, S., Grodzińska-Jurczak, M. & Brown, G. Conservation on private land: A review of global strategies with a proposed classification system. J. Environ. Plan. Manage. 58, 576–597 (2015).Article 

    Google Scholar 
    38.Iwai, Y. Forestry and the Forest Industry in Japan (UBC Press, 2002).
    Google Scholar 
    39.Sirakaya, A., Cliquet, A. & Harris, J. Ecosystem services in cities: Towards the international legal protection of ecosystem services in urban environments. Ecosyst. Serv. 29, 205–212 (2018).Article 

    Google Scholar 
    40.Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).Article 

    Google Scholar 
    41.Kumar, N., Jhala, Y. V., Qureshi, Q., Gosler, A. G. & Sergio, F. Human-attacks by an urban raptor are tied to human subsidies and religious practices. Sci. Rep. 9, 1–10 (2019).
    Google Scholar 
    42.Mak, B., Francis, R.A. & Chadwick, M.A. Living in the concrete jungle: A review and socio-ecological perspective of urban raptor habitat quality in Europe. Urban Ecosyst. 21 (2021).43.Demographia. Demographia World Urban Areas, 16th annual edition. Available: http://www.demographia.com/db-worldua.pdf. Date of access February 20, 2021 (2020).44.Yang, J., Yan, P., He, R. & Song, X. Exploring land-use legacy effects on taxonomic and functional diversity of woody plants in a rapidly urbanizing landscape. Landsc. Urban Plan. 162, 92–103 (2017).Article 

    Google Scholar 
    45.Spellerberg, I. F. & Fedor, P. J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’Index. Glob. Ecol. Biogeog. 12, 177–179 (2003).Article 

    Google Scholar 
    46.McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    47.R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).48.Oksanen, J. et al. Vegan: Community ecology package. R package version 2, 5–5 (2019).
    Google Scholar 
    49.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).50.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    51.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    52.Betts, M. G., Diamond, A. W., Forbes, G. J., Villard, M. A. & Gunn, J. S. The importance of spatial autocorrelation, extent and resolution in predicting forest bird occurrence. Ecol. Model. 191, 197–224 (2006).Article 

    Google Scholar 
    53.Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    54.Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30, 609–628 (2007).Article 

    Google Scholar 
    55.Harrell, F. E. rms: Regression Modeling Strategies. R package version 6.0–1 (2020).56.Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, 1–36 (2015).
    Google Scholar  More

  • in

    Determinizing the contributions of human activities and climate change on greening in the Beijing–Tianjin–Hebei Region, China

    1.Arora, V. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev. Geophys. https://doi.org/10.1029/2001RG000103 (2002).Article 

    Google Scholar 
    2.Lamchin, M., Park, T., Lee, J. & Lee, W. Monitoring of vegetation dynamics in the Mongolia using MODIS NDVIs and their relationship to rainfall by Natural Zone. J. Indian Soc. Remote 43, 325–337 (2014).Article 

    Google Scholar 
    3.Zhang, Y., Liu, L. Y., Liu, Y., Zhang, M. & An, C. B. Response of altitudinal vegetation belts of the Tianshan Mountains in northwestern China to climate change during 1989–2015. Sci. Rep. https://doi.org/10.1038/s41598-021-84399-z (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Piao, S. L., Wang, X. H., Park, T. & Chen, C. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 
    ADS 

    Google Scholar 
    5.Zhu, Z. C., Piao, S. L., Myneni, R. B. & Huang, M. T. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    6.Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article 

    Google Scholar 
    7.Fang, H. Y., Li, Q. Y. & Cai, Q. G. A study on the vegetation recovery and crop pattern adjustment on the Loess Plateau of China. Afr. J. Microbiol. Res. 5, 1414–1419 (2011).Article 

    Google Scholar 
    8.Jiang, C., Zhang, H. Y., Tang, Z. P. & Labzovskii, L. Evaluating the coupling effects of climate variability and vegetation restoration on ecosystems of the Loess Plateau, China. Land Use Policy 69, 134–148 (2017).Article 

    Google Scholar 
    9.Zhang, H. Y., Fan, J. W., Cao, W., Zhong, H. P. & Harris, W. Changes in multiple ecosystem services between 2000 and 2013 and their driving factors in the Grazing Withdrawal Program, China. Ecol. Eng. 116, 67–79 (2018).Article 

    Google Scholar 
    10.Liu, Y. X., Lü, Y. H., Fu, B. J., Harris, P. & Wu, L. H. Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Sci. Total Environ. 650, 1029–1040 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Wang, J. F., Zhang, T. L. & Fu, B. J. A measure of spatial stratified heterogeneity. Ecol. Indic. 67, 250–256 (2016).Article 

    Google Scholar 
    12.Jiang, Y. T., Sun, Y. J., Zhang, L. P. & Wang, X. L. Influence factor analysis of soil heavy metal Cd based on the GeoDetector. Stoch. Environ. Res. Risk Assess. 34, 921–930 (2020).Article 

    Google Scholar 
    13.Su, Y., Li, T. X., Cheng, S. K. & Wang, X. Spatial distribution exploration and driving factor identification for soil salinisation based on geodetector models in coastal area. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2020.105961 (2020).Article 

    Google Scholar 
    14.Yan, S. J., Wang, H. & Jiao, K. W. Spatiotemporal dynamic of NDVI in the Beijing–Tianjin–Hebei region based on MODIS data and quantitative attribution. J. Geo-inf. Sci. 21, 767–780 (2019).
    Google Scholar 
    15.Evans, J. & Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 57, 535–554 (2007).Article 

    Google Scholar 
    16.Wessels, K. J. et al. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 68, 271–297 (2007).Article 
    ADS 

    Google Scholar 
    17.Teng, M. J. et al. The impacts of climate changes and human activities on net primary productivity vary across an ecotone zone in Northwest China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.136691 (2020).Article 
    PubMed 

    Google Scholar 
    18.Shi, S. Y. et al. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142419 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Peng, J., Jiang, H., Liu, Q. H., Green, S. & Quine, T. Human activity vs. climate change, distinguishing dominant drivers on LAI dynamics in karst region of southwest China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144297 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Xu, D. Y., Li, C. L., Song, X. & Ren, H. Y. The dynamics of desertification in the farming-pastoral region of North China over the past 10 years and their relationship to climate change and human activity. CATENA 123, 11–22 (2014).Article 

    Google Scholar 
    21.Sun, Y. L., Yang, Y. L., Zhang, L. & Wang, Z. L. The relative roles of climate variations and human activities in vegetation change in North China. Phys. Chem. Earth 87–88, 67–78 (2015).Article 
    ADS 

    Google Scholar 
    22.Liu, B., Sun, Y. L., Wang, Z. L. & Zhao, T. B. Analysis of the vegetation cover change and the relative role of its influencing factors in North China. J. Nat. Res. 30, 12–23 (2015).
    Google Scholar 
    23.Huang, L., Zheng, Y. H. & Xiao, T. Regional differentiation of ecological conservation and its zonal suitability at the county level in China. J. Geogr. Sci. 28, 46–58 (2018).Article 

    Google Scholar 
    24.Pan, M., Chen, T. W., Huang, L. & Cao, W. Spatial and temporal variations in ecosystem services and its driving factors analysis in Jing-Jin-Ji region. Acta Ecol. Sin. 40, 5151–5167 (2020).
    Google Scholar 
    25.Zhou, Q., Zhao, X. & Wu, D. H. Impact of urbanization and climate on vegetation coverage in the Beijing–Tianjin–Hebei Region of China. Remote Sens. https://doi.org/10.3390/rs11202452 (2019).Article 

    Google Scholar 
    26.Pantazi, M., Vasilescu, A. M., Mihai, A. & Gurau, D. Statistical-mathematical processing of anthropometric foot parameters and establishing simple and multiple correlations. Part 1, statistical analysis of foot size parameters. J. Leather Footwear 17, 199–208 (2017).Article 

    Google Scholar 
    27.Krishnan, S. R., Magimai-Doss, M. & Seelamantula, C. S. A Savitzky-Golay filtering perspective of dynamic feature computation. IEEE Signal Proc. Lett. 20, 281–284 (2013).Article 
    ADS 

    Google Scholar 
    28.Li, Z., Zhang, Y., Zhu, Q. K., He, Y. M. & Yao, W. J. Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau. Geomorphology 228, 462–469 (2015).Article 
    ADS 

    Google Scholar 
    29.Chen, J., Ban, Y. F. & Li, S. N. China, Open access to Earth land-cover map. Nature 514, 434–434 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    30.Alijani, B., Mahmoudi, P. & Chogan, A. J. A study of annual and seasonal precipitation trends in Iran using a nonparametric method (Sen’s slope estimator). For. Ecol. Manag. 121, 137–146 (2012).
    Google Scholar 
    31.Rahman, A. U. & Dawood, M. Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s Slope approach. Clim. Dynam. 48, 783–797 (2017).Article 
    ADS 

    Google Scholar 
    32.Lin, X. S., Tang, J., Li, Z. Y. & Li, H. Y. Vegetation greenness modelling in response to interannual precipitation and temperature changes between 2001 and 2012 in Liao River Basin in Jilin Province, China. Springerplus https://doi.org/10.1186/s40064-016-2737-9 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Lawrance, A. J. Partial and multiple correlation for time series. Am. Stat. 33, 127–130 (1979).MATH 

    Google Scholar 
    34.Wetzels, R. & Wagenmakers, E. J. A default Bayesian hypothesis test for correlations and partial correlations. Psychon. B Rev. 19, 1057–1064 (2012).Article 

    Google Scholar 
    35.Anghelache, C., Anghel, M. G., Prodan, L., Sacala, C. & Popovici, M. Multiple linear regression model used in economic analyses. Roman. Stat. Rev. Suppl. 62, 120–127 (2014).
    Google Scholar 
    36.Miao, L. J., Liu, Q., Fraser, R., He, B. & Cui, X. F. Shifts in vegetation growth in response to multiple factors on the Mongolian Plateau from 1982 to 2011. Phys. Chem. Earth 87–88, 50–59 (2015).Article 
    ADS 

    Google Scholar 
    37.Tang, Y. Z., Shao, Q. Q., Liu, J. Y. & Zhang, H. Y. Did ecological restoration hit its mark? Monitoring and assessing ecological changes in the Grain for Green Program Region using multi-source satellite images. Remote Sens. https://doi.org/10.3390/rs11030358 (2019).Article 

    Google Scholar 
    38.Cai, D. W. et al. Contributions of ecological programs to vegetation restoration in arid and semiarid China. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abbde9 (2020).Article 

    Google Scholar 
    39.Yao, N., Huang, C. H., Yang, J., Bosch, C. & Jia, Z. Combined effects of impervious surface change and large-scale afforestation on the surface urban heat island intensity of Beijing, China based on remote sensing analysis. Remote Sens. https://doi.org/10.3390/rs12233906 (2020).Article 

    Google Scholar 
    40.Wu, Z. T., Wu, J. J., He, B., Liu, J. H. & Wang, Q. F. Drought offset ecological restoration program-induced increase in vegetation activity in the Beijing–Tianjin Sand Source Region, China. Environ. Sci. Technol. 48, 12108–12117 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    41.Yang, X. C. et al. Remote sensing monitoring of grassland vegetation growth in the Beijing–Tianjin sandstorm source project area from 2000 to 2010. Ecol. Indic. 51, 244–251 (2015).Article 

    Google Scholar 
    42.Li, X. S., Wang, H. Y., Zhou, S. F., Sun, B. & Gao, Z. H. Did ecological engineering projects have a significant effect on large-scale vegetation restoration in Beijing–Tianjin Sand Source Region, China? A remote sensing approach. Chin. Geogr. Sci. 26, 216–228 (2016).Article 

    Google Scholar 
    43.Hu, S. et al. Detecting and attributing vegetation changes in Taihang Mountain, China. J. Mt. Sci. 16, 337–350 (2019).Article 

    Google Scholar 
    44.Li, D. et al. Identification of the roles of climate factors, engineering construction, and agricultural practices in vegetation dynamics in the Lhasa River Basin, Tibetan Plateau. Remote Sens. https://doi.org/10.3390/rs12111883 (2020).Article 

    Google Scholar 
    45.Sun, H. Y. et al. Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain. Agr. Water Manag. 97, 1139–1145 (2010).Article 

    Google Scholar 
    46.Tao, Y., Li, F., Crittenden, J. C., Lu, Z. M. & Sun, X. Environmental impacts of China’s urbanization from 2000 to 2010 and management implications. Environ. Manag. 57, 498–507 (2016).Article 
    ADS 

    Google Scholar 
    47.Jia, G. J., Epstein, H. E. & Balser, A. Spatial heterogeneity of tundra vegetation response to recent temperature changes. Glob. Change Biol. 12, 42–55 (2010).Article 
    ADS 

    Google Scholar 
    48.Wen, Y. Y., Liu, X. P., Xin, Q. C. & Wu, J. Cumulative effects of climatic factors on terrestrial vegetation growth. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2018JG004751 (2019).Article 

    Google Scholar 
    49.Zhao, A. Z., Yu, Q. Y., Feng, L. L., Zhang, A. P. & Pei, T. Evaluating the cumulative and time-lag effects of drought on grassland vegetation, A case study in the Chinese Loess Plateau. J. Environ. Manag. https://doi.org/10.1016/j.jenvman.2020.110214 (2020).Article 

    Google Scholar  More

  • in

    Microbial diversity in Mediterranean sponges as revealed by metataxonomic analysis

    1.Joseph, B. & Sujatha, S. Pharmacologically important natural products from marine sponges. J. Nat. Prod. 4, 5–12 (2011).CAS 

    Google Scholar 
    2.Bergmann, W. & Feeney, R. J. Contributions to the study of marine products XXXII The nucleosides of sponges. I. J. Org. Chem. 16, 981–987 (1951).CAS 
    Article 

    Google Scholar 
    3.Munro, M. H. G., Luibrand, R. T. & Blunt, J. W. The search for antiviral and anticancer compounds from marine organisms. in Bioorganic Marine Chemistry (ed. Scheuer, P. J.) vol. 1 93–176 (Springer-Verlag, Berlin, Heidelberg, 1987).4.Fuerst, J. A. Diversity and biotechnological potential of microorganisms associated with marine sponges. Appl. Microbiol. Biotechnol. 98, 7331–7347 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Mehbub, M. F., Lei, J., Franco, C. & Zhang, W. Marine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives. Mar. Drugs 12, 4539–4577 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 26, 338–362 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Piel, J. et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. U. S. A. 101, 16222–16227 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    8.Noro, J. C., Kalaitzis, J. A. & Neilan, B. A. Bioactive natural products from Papua New Guinea marine sponges. Chem. Biodivers. 9, 2077–2095 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Schirmer, A. et al. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl. Environ. Microbiol. 71, 4840–4849 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    10.Siegl, A. & Hentschel, U. PKS and NRPS gene clusters from microbial symbiont cells of marine sponges by whole genome amplification. Environ. Microbiol. Rep. 2, 507–513 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Graça, A. P. et al. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLoS ONE 8, e78992 (2013).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    12.Santos, O. C. S. et al. Investigation of biotechnological potential of sponge-associated bacteria collected in Brazilian coast. Lett. Appl. Microbiol. 60, 140–147 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Su, P., Wang, D. X., Ding, S. X. & Zhao, J. Isolation and diversity of natural product biosynthetic genes of cultivable bacteria associated with marine sponge Mycale sp from the coast of Fujian. China. Can. J. Microbiol. 60, 217–225 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Van Soest, R. W. M. et al. World Porifera Database. http://www.marinespecies.org/porifera/. (2020).15.Bertolino, M. et al. Stability of the sponge assemblage of Mediterranean coralligenous concretions along a millennial time span. Mar. Ecol. 35, 149–158 (2014).Article 
    ADS 

    Google Scholar 
    16.Longo, C. et al. Sponges associated with coralligenous formations along the Apulian coasts. Mar. Biodivers. 48, 2151–2163 (2018).Article 

    Google Scholar 
    17.Costa, G. et al. Sponge community variation along the Apulian coasts (Otranto Strait) over a pluri-decennial time span Does water warming drive a sponge diversity increasing in the Mediterranean Sea?. J. Mar. Biol. Assoc. United Kingdom 99, 1519–1534 (2019).Article 

    Google Scholar 
    18.Bertolino, M. et al. Changes and stability of a Mediterranean hard bottom benthic community over 25 years. J. Mar. Biol. Assoc. United Kingdom 96, 341–350 (2016).Article 

    Google Scholar 
    19.Bertolino, M. et al. Have climate changes driven the diversity of a Mediterranean coralligenous sponge assemblage on a millennial timescale?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 355–363 (2017).Article 

    Google Scholar 
    20.Gerovasileiou, V. et al. New Mediterranean biodiversity records. Mediterr. Mar. Sci. 18, 355–384 (2017).Article 

    Google Scholar 
    21.Ulman, A. et al. A massive update of non-indigenous species records in Mediterranean marinas. PeerJ 2017, e3954 (2017).Article 

    Google Scholar 
    22.Costantini, M. An analysis of sponge genomes. Gene 342, 321–325 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Costantini, S. et al. Anti-inflammatory effects of a methanol extract from the marine sponge Geodia cydonium on the human breast cancer MCF-7 cell line. Mediators Inflamm. https://doi.org/10.1155/2015/204975 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Costantini, S. et al. Evaluating the effects of an organic extract from the mediterranean sponge Geodia cydonium on human breast cancer cell lines. Int. J. Mol. Sci. 18, 2112 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5, e11842 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    26.Marra, M. V. et al. Long-term turnover of the sponge fauna in Faro Lake (North-East Sicily, Mediterranean Sea). Ital. J. Zool. 83, 579–588 (2016).CAS 
    Article 

    Google Scholar 
    27.Cárdenas, P., Xavier, J. R., Reveillaud, J., Schander, C. & Rapp, H. T. Molecular phylogeny of the astrophorida (Porifera, Demospongiaep) reveals an unexpected high level of spicule homoplasy. PLoS ONE 6, e18318 (2011).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    28.Erpenbeck, D. et al. The phylogeny of halichondrid demosponges: past and present re-visited with DNA-barcoding data. Org. Divers. Evol. 12, 57–70 (2012).Article 

    Google Scholar 
    29.Abdul Wahab, M. A., Fromont, J., Whalan, S., Webster, N. & Andreakis, N. Combining morphometrics with molecular taxonomy: How different are similar foliose keratose sponges from the Australian tropics?. Mol. Phylogenet. Evol. 73, 23–39 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Wörheide, G. Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar. Biol. 148, 907–912 (2006).Article 
    CAS 

    Google Scholar 
    31.Carella, M., Agell, G., Cárdenas, P. & Uriz, M. J. Phylogenetic reassessment of antarctic tetillidae (Demospongiae, Tetractinellida) reveals new genera and genetic similarity among morphologically distinct species. PLoS ONE 11, 1–33 (2016).
    Google Scholar 
    32.Morrow, C. C. et al. Congruence between nuclear and mitochondrial genes in Demospongiae: a new hypothesis for relationships within the G4 clade (Porifera: Demospongiae). Mol. Phylogenet. Evol. 62, 174–190 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Vargas, S. et al. Diversity in a cold hot-spot: DNA-barcoding reveals patterns of evolution among Antarctic demosponges (class demospongiae, phylum Porifera). PLoS ONE 10, 1–17 (2015).
    Google Scholar 
    34.Yang, Q., Franco, C. M. M., Sorokin, S. J. & Zhang, W. Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations. Sci. Rep. 7, 1–14 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    35.Cosentino, A., Giacobbe, S. & Potoschi, A. The CSI of Faro coastal lake (Messina): a natural observatory for the incoming of marine alien species. Biol. Mar. Mediterr. 16, 132–133 (2009).
    Google Scholar 
    36.Zagami, G., Costanzo, G. & Crescenti, N. First record in Mediterranean Sea and redescription of the bentho-planktonic calanoid copepod species Pseudocyclops xiphophorus Wells, 1967. J. Mar. Syst. 55, 67–76 (2005).Article 

    Google Scholar 
    37.Zagami, G. et al. Biogeographical distribution and ecology of the planktonic copepod Oithona davisae: rapid invasion in lakes Faro and Ganzirri (central Meditteranean Sea). in Trends in copepod studies. Distribution, biology and ecology (ed. Uttieri, M.) 1–55 (Nova Science Publishers, 2017).38.Saccà, A. & Giuffrè, G. Biogeography and ecology of Rhizodomus tagatzi, a presumptive invasive tintinnid ciliate. J. Plankton Res. 35, 894–906 (2013).Article 
    CAS 

    Google Scholar 
    39.Cao, S. et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome 8, 47 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Donnarumma, L. et al. Environmental and benthic community patterns of the shallow hydrothermal area of Secca Delle Fumose (Baia, Naples, Italy). Front. Mar. Sci. 6, 1–15 (2019).Article 

    Google Scholar 
    41.Poli, A., Anzelmo, G. & Nicolaus, B. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar. Drugs 8, 1779–1802 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Shukla, P. J., Nathani, N. M. & Dave, B. P. Marine bacterial exopolysaccharides [EPSs] from extreme environments and their biotechnological applications. Int. J. Res. Biosci. 6, 20–32 (2017).
    Google Scholar 
    43.Patel, A., Matsakas, L., Rova, U. & Christakopoulos, P. A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresour. Technol. 278, 424–434 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Schultz, J. & Rosado, A. S. Extreme environments: a source of biosurfactants for biotechnological applications. Extremophiles 24, 189–206 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Gloeckner, V. et al. The HMA-LMA dichotomy revisited: An electron microscopical survey of 56 sponge species. Biol. Bull. 227, 78–88 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Erwin, P. M., Coma, R., López-Sendino, P., Serrano, E. & Ribes, M. Stable symbionts across the HMA-LMA dichotomy: Low seasonal and interannual variation in sponge-associated bacteria from taxonomically diverse hosts. FEMS Microbiol. Ecol. 91, 1–11 (2015).Article 
    CAS 

    Google Scholar 
    47.Moitinho-Silva, L. et al. The sponge microbiome project. Gigascience 6, 1–13 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Hardoim, C. C. P. & Costa, R. Temporal dynamics of prokaryotic communities in the marine sponge Sarcotragus spinosulus. Mol. Ecol. 23, 3097–3112 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Karimi, E. et al. Metagenomic binning reveals versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine sponges. FEMS Microbiol. Ecol. 94, 1–18 (2018).Article 
    CAS 

    Google Scholar 
    50.Mohamed, N. M. et al. Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges. Environ. Microbiol. 10, 75–86 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Thiel, V. & Imhoff, J. F. Phylogenetic identification of bacteria with antimicrobial activities isolated from Mediterranean sponges. Biomol. Eng. 20, 421–423 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Bibi, F., Yasir, M., Al-Sofyani, A., Naseer, M. I. & Azhar, E. I. Antimicrobial activity of bacteria from marine sponge Suberea mollis and bioactive metabolites of Vibrio sp EA348. Saudi J. Biol. Sci. 27, 1139–1147 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Thakur, A. N. et al. Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Mar. Biotechnol. 7, 245–252 (2005).CAS 
    Article 

    Google Scholar 
    54.Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Thomas, T. R. A., Kavlekar, D. P. & LokaBharathi, P. A. Marine drugs from sponge-microbe association—A review. Mar. Drugs 8, 1417–1468 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Brinkmann, C. M., Marker, A. & Kurtböke, D. I. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity 9, 40 (2017).Article 
    CAS 

    Google Scholar 
    57.Haber, M. & Ilan, M. Diversity and antibacterial activity of bacteria cultured from Mediterranean Axinella spp sponges. J. Appl. Microbiol. 116, 519–532 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Öner, Ö. et al. Cultivable sponge-associated Actinobacteria from coastal area of eastern Mediterranean Sea. Adv. Microbiol. 04, 306–316 (2014).Article 

    Google Scholar 
    59.Gonçalves, A. C. S. et al. Draft genome sequence of Vibrio sp strain Vb278, an antagonistic bacterium isolated from the marine sponge Sarcotragus spinosulus. Genome Announc. 3, 2014–2015 (2015).Article 

    Google Scholar 
    60.Cheng, C. et al. Biodiversity, anti-trypanosomal activity screening, and metabolomic profiling of actinomycetes isolated from Mediterranean sponges. PLoS ONE 10, 1–21 (2015).
    Google Scholar 
    61.Graça, A. P. et al. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Front. Microbiol. 6, 389 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    62.Kuo, J. et al. Antimicrobial activity and diversity of bacteria associated with Taiwanese marine sponge Theonella swinhoei. Ann. Microbiol. 69, 253–265 (2019).CAS 
    Article 

    Google Scholar 
    63.Liu, T. et al. Diversity and antimicrobial potential of Actinobacteria isolated from diverse marine sponges along the Beibu Gulf of the South China Sea. FEMS Microbiol. Ecol. 95, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    64.Hentschel, U. et al. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol. Ecol. 35, 305–312 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Chelossi, E., Milanese, M., Milano, A., Pronzato, R. & Riccardi, G. Characterisation and antimicrobial activity of epibiotic bacteria from Petrosia ficiformis (Porifera, Demospongiae). J. Exp. Mar. Bio. Ecol. 309, 21–33 (2004).CAS 
    Article 

    Google Scholar 
    66.Kennedy, J. et al. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from irish waters. Mar. Biotechnol. 11, 384–396 (2009).CAS 
    Article 

    Google Scholar 
    67.Penesyan, A., Marshall-Jones, Z., Holmstrom, C., Kjelleberg, S. & Egan, S. Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. FEMS Microbiol. Ecol. 69, 113–124 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Santos, O. C. S. et al. Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil. Res. Microbiol. 161, 604–612 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Flemer, B. et al. Diversity and antimicrobial activities of microbes from two Irish marine sponges, Suberites carnosus and Leucosolenia sp. J. Appl. Microbiol. 112, 289–301 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Margassery, L. M., Kennedy, J., O’Gara, F., Dobson, A. D. & Morrissey, J. P. Diversity and antibacterial activity of bacteria isolated from the coastal marine sponges Amphilectus fucorum and Eurypon major. Lett. Appl. Microbiol. 55, 2–8 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Abdelmohsen, U. R. et al. Actinomycetes from Red Sea sponges: sources for chemical and phylogenetic diversity. Mar. Drugs 12, 2771–2789 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Montalvo, N. F. & Hill, R. T. Sponge-associated bacteria are strictly maintained in two closely related but geographically distant sponge hosts. Appl. Environ. Microbiol. 77, 7207–7216 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    73.Cleary, D. F. R. et al. Compositional analysis of bacterial communities in seawater, sediment, and sponges in the Misool coral reef system. Indonesia. Mar. Biodivers. 48, 1889–1901 (2018).Article 

    Google Scholar 
    74.Bedard, D. L., Ritalahti, K. M. & Löffler, F. E. The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Appl. Environ. Microbiol. 73, 2513–2521 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    75.Taş, N., Van Eekert, M. H. A., De Vos, W. M. & Smidt, H. The little bacteria that can – Diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp in contaminated environments. Microb. Biotechnol. 3, 389–402 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Arnds, J., Knittel, K., Buck, U., Winkel, M. & Amann, R. Development of a 16S rRNA-targeted probe set for Verrucomicrobia and its application for fluorescence in situ hybridization in a humic lake. Syst. Appl. Microbiol. 33, 139–148 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Sizikov, S. et al. Characterization of sponge-associated Verrucomicrobia: microcompartment-based sugar utilization and enhanced toxin–antitoxin modules as features of host-associated Opitutales. Environ. Microbiol. 22, 4669–4688 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Cardman, Z. et al. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an Arctic fjord of Svalbard. Appl. Environ. Microbiol. 80, 3749–3756 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    79.Cabello-Yeves, P. J. et al. Reconstruction of diverse verrucomicrobial genomes from metagenome datasets of freshwater reservoirs. Front. Microbiol. 8, 2131 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.He, S. et al. Ecophysiology of freshwater Verrucomicrobia inferred from metagenome-assembled genomes. MSphere 2, e00277 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. 5, 1026–1039 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Shindo, K. et al. Diapolycopenedioic acid xylosyl esters A, B, and C, novel antioxidative glyco-C30-carotenoic acids produced by a new marine bacterium Rubritalea Squalenifaciens. J. Antibiot. (Tokyo) 61, 185–191 (2008).CAS 
    Article 

    Google Scholar 
    83.Watson, S. W., Bock, E., Valois, F. W., Waterbury, J. B. & Schlosser, U. Nitrospira marina gen. nov sp nov: a chemolithotrophic nitrite-oxidizing bacterium. Arch. Microbiol. 144, 1–7 (1986).Article 

    Google Scholar 
    84.Daims, H. & Wagner, M. Nitrospira. Trends Microbiol. 26, 462–463 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Off, S., Alawi, M. & Spieck, E. Enrichment and physiological characterization of a novel nitrospira-like bacterium obtained from a marine sponge. Appl. Environ. Microbiol. 76, 4640–4646 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    86.Feng, G., Sun, W., Zhang, F., Karthik, L. & Li, Z. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei. Sci. Rep. 6, 1–11 (2016).CAS 
    Article 

    Google Scholar 
    87.Andreo-Vidal, A., Sanchez-Amat, A. & Campillo-Brocal, J. C. The Pseudoalteromonas luteoviolacea L-amino acid oxidase with antimicrobial activity is a flavoenzyme. Mar. Drugs 16, 499 (2018).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    88.Saccà, A., Guglielmo, L. & Bruni, V. Vertical and temporal microbial community patterns in a meromictic coastal lake influenced by the Straits of Messina upwelling system. Hydrobiologia 600, 89–104 (2008).Article 

    Google Scholar 
    89.Polese, G. et al. Meiofaunal assemblages of the bay of Nisida and the environmental status of the Phlegraean area (Naples, Southern Italy). Mar. Biodivers. 48, 127–137 (2018).Article 

    Google Scholar 
    90.Gambi, M. C., Tiberti, L. & Mannino, A. M. An update of marine alien species off the Ischia Island (Tyrrhenian Sea) with a closer look at neglected invasions of Lophocladia lallemandii (Rhodophyta). Not. Sibm 75, 58–65 (2019).
    Google Scholar 
    91.Hooper, J. N. A. ‘Sponguide’. Guide to sponge collection and identification. https://www.academia.edu/34258606/SPONGE_GUIDE_GUIDE_TO_SPONGE_COLLECTION_AND_IDENTIFICATION_Version_August_2000. (2000).92.Rützler, K. Sponges in coral reefs. in Coral reefs: Research methods, monographs on oceanographic methodology (eds. Stoddart, D. R. & Johannes, R. E.) 299–313 (Paris: Unesco, 1978).93.Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Schmitt, S., Hentschel, U., Zea, S., Dandekar, T. & Wolf, M. ITS-2 and 18S rRNA gene phylogeny of Aplysinidae (Verongida, Demospongiae). J. Mol. Evol. 60, 327–336 (2005).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    95.Chombard, C., Boury-Esnault, N. & Tillier, S. Reassessment of homology of morphological characters in Tetractinellid sponges based on molecular data. Syst. Biol. 47, 351–366 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Collins, A. G. Phylogeny of medusozoa and the evolution of cnidarian life cycles. J. Evol. Biol. 15, 418–432 (2002).Article 

    Google Scholar 
    97.Dohrmann, M., Janussen, D., Reitner, J., Collins, A. G. & Wörheide, G. Phylogeny and evolution of glass sponges (Porifera, Hexactinellida). Syst. Biol. 57, 388–405 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Manuel, M. et al. Phylogeny and evolution of calcareous sponges: monophyly of calcinea and calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry. Syst. Biol. 52, 311–333 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Wörheide, G., Degnan, B., Hooper, J. & Reitner, J. Phylogeography and taxonomy of the Indo-Pacific reef cave dwelling coralline demosponge Astrosclera willeyana: new data from nuclear internal transcribed spacer sequences. Proc. 9th Int. Coral Reef Symp. 1, 339–346 (2002).100.Meyer, C. P., Geller, J. B. & Paulay, G. Fine scale endemism on coral reefs: Archipelagic differentiation in turbinid gastropods. Evolution 59, 113–125 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 
    CAS 

    Google Scholar 
    103.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.R Core Team. A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. (2020).105.Urbanek, S. & Horner, J. Cairo: R Graphics device using Cairo graphics library for creating high-quality bitmap (PNG, JPEG, TIFF), vector (PDF, SVG, PostScript) and display (X11 and Win32) output. R package version 1.5–12.2. https://cran.r-project.org/package=Cairo (2020).106.Chao, B. F. Interannual length-of-the-day variation with relation to the southern oscillation/El Nino. Geophys. Res. Lett. 11, 541–544 (1984).Article 
    ADS 

    Google Scholar 
    107.Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    108.Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, 1949).MATH 

    Google Scholar 
    109.Simpson, E. H. Measurment of diversity. Nature 163, 688 (1949).MATH 
    Article 
    ADS 

    Google Scholar  More

  • in

    Symbiosis maintenance in the facultative coral, Oculina arbuscula, relies on nitrogen cycling, cell cycle modulation, and immunity

    1.Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.MeloClavijo, J., Donath, A., Serôdio, J. & Christa, G. Polymorphic adaptations in metazoans to establish and maintain photosymbioses. Biol. Rev. 93, 2006–2020 (2018).Article 

    Google Scholar 
    3.Wernegreen, J. J. Endosymbiosis. Curr. Biol. 22, 555–561 (2012).Article 
    CAS 

    Google Scholar 
    4.Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA 108, 3047–3052 (2011).ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 
    5.Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: From association to modulation. Cell 172, 1198–1215 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Morgan, X. C. et al. Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease. Genome Biol. 16, 67 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Tromas, A. et al. Heart of endosymbioses: Transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses. PLoS One 7, 1–7 (2012).
    Google Scholar 
    8.Chun, C. K. et al. An annotated cDNA library of juvenile Euprymna scolopes with and without colonization by the symbiont Vibrio fischeri. BMC Genom. 7, 1–10 (2006).MathSciNet 
    Article 
    CAS 

    Google Scholar 
    9.Sørensen, M. E. S. et al. Comparison of independent evolutionary origins reveals both convergence and divergence in the metabolic mechanisms of symbiosis. Curr. Biol. 30, 328-334.e4 (2020).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    10.LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Muscatine, L. R., McCloskey, L. & Marian, E. R. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Anthony, K. R. N., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G. & Middlebrook, R. Energetics approach to predicting mortality risk from environmental stress: A case study of coral bleaching. Funct. Ecol. 23, 539–550 (2009).Article 

    Google Scholar 
    13.De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. 109, 17995–17999 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Davies, S. W., Marchetti, A., Ries, J. B. & Castillo, K. D. Thermal and pCO2 stress elicit divergent transcriptomic responses in a resilient coral. Front. Mar. Sci. 3, 1–15 (2016).Article 

    Google Scholar 
    16.DeSalvo, M. K., Estrada, A., Sunagawa, S. & Medina, M. Transcriptomic responses to darkness stress point to common coral bleaching mechanisms. Coral Reefs 31, 215–228 (2011).ADS 
    Article 

    Google Scholar 
    17.González-Pech, R. A., Vargas, S., Francis, W. R. & Wörheide, G. Transcriptomic resilience of the Montipora digitata holobiont to low pH. Front. Mar. Sci. 4, 1–9 (2017).Article 

    Google Scholar 
    18.Rubin, E. T. et al. Molecular mechanisms of coral persistence within highly urbanized locations in the Port of Miami, Florida. Front. Mar. Sci. 8, 8695236 (2021).Article 

    Google Scholar 
    19.Hawkins, T. D., Krueger, T., Wilkinson, S. P., Fisher, P. L. & Davy, S. K. Antioxidant responses to heat and light stress differ with habitat in a common reef coral. Coral Reefs 34, 1229–1241 (2015).ADS 
    Article 

    Google Scholar 
    20.Agostini, S., Fujimura, H., Hayashi, H. & Fujita, K. Mitochondrial electron transport activity and metabolism of experimentally bleached hermatypic corals. J. Exp. Mar. Biol. Ecol. 475, 100–107 (2016).CAS 
    Article 

    Google Scholar 
    21.Gardner, S. G. et al. Dismutase and glutathione as stress response indicators in three corals under short-term hyposalinity stress. Proc. R. Soc. B 283, 20152418 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Kenkel, C. & Matz, M. V. Gene expression plasticity as a mechanism of adaptation to a variable environment. Nat. Ecol. Evol. 1, 0014 (2016).Article 

    Google Scholar 
    23.Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl. Acad. Sci. 110, 1387–1392 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Hashimoto, K., Shibuno, T., Murayama-Kayano, E., Tanaka, H. & Kayano, T. Isolation and characterization of stress-responsive genes from the scleractinian coral Pocillopora damicornis. Coral Reefs 23, 485–491 (2004).
    Google Scholar 
    25.Rosic, N. N., Pernice, M., Dove, S., Dunn, S. & Hoegh-Guldberg, O. Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: Possible implications for coral bleaching. Cell Stress Chaperones 16, 69–80 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Meyer, E., Aglyamova, G. V. & Matz, M. V. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol. Ecol. 20, 3599–3616 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Mansour, T. A., Rosenthal, J. J. C., Brown, C. T. & Roberson, L. M. Transcriptome of the Caribbean stony coral Porites astreoides from three developmental stages. GigaScience 5, 33 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Polato, N. R., Altman, N. S. & Baums, I. B. Variation in the transcriptional response of threatened coral larvae to elevated temperatures. Mol. Ecol. 22, 1366–1382 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Paxton, C. W., Davy, S. K. & Weis, V. M. Stress and death of cnidarian host cells play a role in cnidarian bleaching. J. Exp. Biol. 216, 2813–2820 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    30.Matthews, J. L. et al. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proc. Natl. Acad. Sci. USA 114, 13194–13199 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Jacobovitz, M. R. et al. Dinoflagellate symbionts escape vomocytosis by host cell immune suppression. Nat. Microbiol. 6, 769–782 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Mitchelmore, C. L., Ringwood, A. H. & Weis, V. M. Differential accumulation of cadmium and changes in glutathione levels as a function of symbiotic state in the sea anemone Anthopleura elegantissima. J. Exp. Mar. Biol. Ecol. 284, 71–85 (2003).CAS 
    Article 

    Google Scholar 
    33.Dunn, S. R., Pernice, M., Green, K., Hoegh-Guldberg, O. & Dove, S. G. Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: Are the batteries of the reef going to run out?. PLoS One 7, 25 (2012).
    Google Scholar 
    34.Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Tivey, T. R., Parkinson, J. E. & Weis, V. M. Host and symbiont cell cycle coordination is mediated by symbiotic state, nutrition, and partner identity in a model cnidarian-dinoflagellate symbiosis. MBio 11, 25 (2020).Article 

    Google Scholar 
    36.Tivey, T. R. et al. N-linked surface glycan biosynthesis, composition, inhibition, and function in cnidarian-dinoflagellate symbiosis. Mircobial Ecol. 80, 223–236 (2020).CAS 
    Article 

    Google Scholar 
    37.Parkinson, J. E. et al. Subtle differences in symbiont cell surface glycan profiles do not explain species-specific colonization rates in a model cnidarian-algal symbiosis. Front. Microbiol. 9, 842 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Mansfield, K. M. et al. Transcription factor NF-κB is modulated by symbiotic status in a sea anemone model of cnidarian bleaching. Sci. Rep. 7, 1–14 (2017).CAS 
    Article 

    Google Scholar 
    39.Madin, J. S. et al. The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Sci. Data 3, 160017 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Dimond, J. & Carrington, E. Temporal variation in the symbiosis and growth of the temperate scleractinian coral Astrangia poculata. Mar. Ecol. Prog. Ser. 348, 161–172 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Sharp, K. H., Pratte, Z. A., Kerwin, A. H., Rotjan, R. D. & Stewart, F. J. Season, but not symbiont state, drives microbiome structure in the temperate coral Astrangia poculata. Microbiome 5, 120 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Dimond, J. & Carrington, E. Symbiosis regulation in a facultatively symbiotic temperate coral: Zooxanthellae division and expulsion. Coral Reefs 27, 601–604 (2008).ADS 
    Article 

    Google Scholar 
    43.Burmester, E. M., Finnerty, J. R., Kaufman, L. & Rotjan, R. D. Temperature and symbiosis affect lesion recovery in experimentally wounded, facultatively symbiotic temperate corals. Mar. Ecol. Prog. Ser. 570, 87–99 (2017).ADS 
    Article 

    Google Scholar 
    44.Wuitchik, D. M. et al. Characterizing environmental stress responses of aposymbiotic Astrangia poculata to divergent thermal challenges. Mol. Ecol. https://doi.org/10.1111/mec.16108 (2021).Article 
    PubMed 

    Google Scholar 
    45.Schoepf, V. et al. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PloS One 8, e75049 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Lajeunesse, T. C., Parkinson, J. E. & Reimer, J. D. A genetics-based description of Symbiodinium minutum sp. Nov. and S. psygmophilum sp. Nov. (dinophyceae), two dinoflagellates symbiotic with cnidaria. J. Phycol. 48, 1380–1391 (2012).PubMed 
    Article 

    Google Scholar 
    47.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods 14, 687–690 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Harrison, P. L. Sexual reproduction of scleractinian corals. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 59–85 (Springer, 2011).Chapter 

    Google Scholar 
    51.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Kauffmann, A., Gentleman, R. & Huber, W. arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics 25, 415–416 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    58.Oksanen, J. et al. vegan: Community Ecology Package. (2020).59.Kolde, R. pheatmap: Pretty Heatmaps. (2019).60.Wright, R. M., Aglyamova, G. V., Meyer, E. & Matz, M. V. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genom. 16, 1–12 (2015).CAS 
    Article 

    Google Scholar 
    61.Cui, G. et al. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLoS Genet. 15, 1–19 (2019).CAS 
    Article 

    Google Scholar 
    62.Burns, J. A., Zhang, H., Hill, E., Kim, E. & Kerney, R. Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis. Elife 6, 1–32 (2017).Article 

    Google Scholar 
    63.Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Shinzato, C., Inoue, M. & Kusakabe, M. A snapshot of a coral “Holobiont”: A transcriptome assembly of the scleractinian coral, porites, captures a wide variety of genes from both the host and symbiotic zooxanthellae. PLoS One 9, e85182 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Maor-Landaw, K., van Oppen, M. J. H. & McFadden, G. I. Symbiotic lifestyle triggers drastic changes in the gene expression of the algal endosymbiont Breviolum minutum (Symbiodiniaceae). Ecol. Evol. https://doi.org/10.1002/ece3.5910 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Davies, S. W. Understanding Coral Dispersal. PhD Thesis, The University of Texas at Austin (2014).68.Simona, F., Zhang, H. & Voolstra, C. R. Evidence for a role of protein phosphorylation in the maintenance of the cnidarian–algal symbiosis. Mol. Ecol. 28, 5373–5386 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Xiang, T. et al. Symbiont population control by host-symbiont metabolic interaction in Symbiodiniaceae-cnidarian associations. Nat. Commun. 11, 1–9 (2020).ADS 
    CAS 

    Google Scholar 
    70.Bernard, S. M. & Habash, D. Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol. 182, 608–620 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Konishi, N. et al. Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots. J. Exp. Bot. 68, 613–625 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Lee, R. W., Robinson, J. J. & Cavanaugh, C. M. Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: Expression of host and symbiont glutamine synthetase. J. Exp. Biol. 202, 289–300 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Kim, D., Minhas, B. F., Li-Byarlay, H. & Hansen, A. K. Key transport and ammonia recycling genes involved in aphid symbiosis respond to host–plant specialization. Genes Genomes Genet. 8, 2433–2443 (2018).CAS 

    Google Scholar 
    74.Lin, M. F., Takahashi, S., Forêt, S., Davy, S. K. & Miller, D. J. Transcriptomic analyses highlight the likely metabolic consequences of colonization of a cnidarian host by native or non-native Symbiodinium species. Biology Open 8, 1–11 (2019).
    Google Scholar 
    75.Su, Y., Zhou, Z. & Yu, X. Possible roles of glutamine synthetase in responding to environmental changes in a scleractinian coral. Mol. Biol. Rep. 45, 2115–2124 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Hamada, M. et al. Metabolic co-dependence drives the evolutionarily ancient Hydra-Chlorella symbiosis. Elife 7, 1–37 (2018).Article 

    Google Scholar 
    77.Hall, C. et al. Freshwater sponge hosts and their green algae symbionts: A tractable model to understand intracellular symbiosis. PeerJ 9, 1–28 (2021).
    Google Scholar 
    78.Mao, M. & Bennett, G. M. Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria. ISME J. 14, 1384–1395 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Fam, R. R. S. et al. Molecular characterization of a novel algal glutamine synthetase (GS) and an algal glutamate synthase (GOGAT) from the colorful outer mantle of the giant clam, Tridacna squamosa, and the putative GS-GOGAT cycle in its symbiotic zooxanthellae. Gene 656, 40–52 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Gates, R. D., Hoegh-Guldberg, O., McFall-Ngai, M. J., Bil, K. Y. & Muscatine, L. Free amino acids exhibit anthozoan “host factor” activity: They induce the release of photosynthate from symbiotic dinoflagellates in vitro. Proc. Natl. Acad. Sci. 92, 7430–7434 (1995).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Perland, E., Bagchi, S., Klaesson, A. & Fredriksson, R. Characteristics of 29 novel atypical solute carriers of major facilitator superfamily type: Evolutionary conservation, predicted structure and neuronal co-expression. Open Biol. 7, 25 (2017).Article 
    CAS 

    Google Scholar 
    82.Kenkel, C. D., Meyer, E. & Matz, M. V. Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Mol. Ecol. 22, 4322–4334 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Yuyama, I., Ishikawa, M., Nozawa, M., Yoshida, M. & Ikeo, K. Transcriptomic changes with increasing algal symbiont reveal the detailed process underlying establishment of coral-algal symbiosis. Sci. Rep. 8, 1–11 (2018).CAS 
    Article 

    Google Scholar 
    84.Rodriguez-Lanetty, M., Phillips, W. S. & Weis, V. M. Transcriptome analysis of a cnidarian-dinoflagellate mutualism reveals complex modulation of host gene expression. BMC Genom. 7, 1–11 (2006).Article 
    CAS 

    Google Scholar 
    85.Xu, X. et al. Specific structure and unique function define the hemicentin. Cell Biosci. 3, 27 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Smith, T. E. & Moran, N. A. Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera. Proc. Natl. Acad. Sci. USA 117, 2113–2121 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Sun, Y. et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. 35, 600–604 (2015).CAS 
    Article 

    Google Scholar 
    88.Lisovsky, M., Itoh, K. & Sokol, S. Y. Frizzled receptors activate a novel JNK-dependent pathway that may lead to apoptosis. Curr. Biol. 12, 53–58 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Jiang, X. & Wang, X. Cytochrome c-mediated apoptosis. Annu. Rev. Biochem. 73, 87–106 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Detournay, O. & Weis, V. M. Role of the sphingosine rheostat in the regulation of cnidarian-dinoflagellate symbioses. Biol. Bull. 221, 261–269 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Wolfowicz, I. et al. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci. Rep. 6, 1–12 (2016).Article 
    CAS 

    Google Scholar 
    92.Weis, V. M. Cell biology of coral symbiosis: Foundational study can inform solutions to the coral reef crisis. Integr. Comp. Biol. 59, 845–855 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Mansfield, K. M. et al. Varied effects of algal symbionts on transcription factor NF-kB in a sea anemone and a coral: Possible roles in symbiosis and thermotolerance. bioRxiv 5444, 25 (2019).
    Google Scholar 
    94.Zuliani-Alvarez, L. et al. Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers. Nat. Commun. 8, 25 (2017).Article 
    CAS 

    Google Scholar 
    95.Piccinini, A. M. & Midwood, K. S. Endogenous control of immunity against infection: Tenascin-C regulates TLR4-mediated inflammation via microRNA-155. Cell Rep. 2, 914–926 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Thompson, J. R., Rivera, H. E., Closek, C. J. & Medina, M. Microbes in the coral holobiont: Partners through evolution, development, and ecological interactions. Front. Cell. Infect. Microbiol. 4, 1–20 (2014).
    Google Scholar 
    97.Maynard, J. et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat. Clim. Change 5, 688–694 (2015).ADS 
    Article 

    Google Scholar 
    98.Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A. & González-Barrios, F. J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 2019, 25 (2019).
    Google Scholar 
    99.Walton, C. J., Hayes, N. K. & Gilliam, D. S. Impacts of a regional, multi-year, multi-species coral disease outbreak in Southeast Florida. Front. Mar. Sci. 5, 1–14 (2018).Article 

    Google Scholar 
    100.Weil, E., Hernández-Delgado, E. A., Gonzalez, M., Williams, S. & Figuerola, M. Spread of the new coral disease “SCTLD” into the Caribbean: Implications for Puerto Rico. Reef Encounter 34, 38–43 (2019).
    Google Scholar 
    101.Rippe, J. P., Kriefall, N. G., Davies, S. W. & Castillo, K. D. Differential disease incidence and mortality of inner and outer reef corals of the upper Florida Keys in association with a white syndrome outbreak. Bull. Mar. Sci. 95, 305–316 (2019).Article 

    Google Scholar 
    102.DeFilippo, L., Burmester, E. M., Kaufman, L. & Rotjan, R. D. Patterns of surface lesion recovery in the Northern Star Coral, Astrangia poculata. J. Exp. Mar. Biol. Ecol. 481, 15–24 (2016).Article 

    Google Scholar 
    103.Leydet, K. P. & Hellberg, M. E. The invasive coral Oculina patagonica has not been recently introduced to the Mediterranean from the western Atlantic. BMC Evol. Biol. 15, 79 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Leydet, K. P. & Hellberg, M. E. Discordant coral–symbiont structuring: Factors shaping geographical variation of Symbiodinium communities in a facultative zooxanthellate coral genus, Oculina. Coral Reefs 35, 583–595 (2016).ADS 
    Article 

    Google Scholar  More