More stories

  • in

    Habitat geometry in artificial microstructure affects bacterial and fungal growth, interactions, and substrate degradation

    1.IPCC, Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis, AR5. 2013.2.IPCC, Working Group I Report ‘The Physical Science Basis,’ PCC Fourth Assessment Report. 2007.3.IPCC, “IPCC Fourth Assessment Report (AR4),” IPCC, 1, 976, 2007.4.Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nature Communications 11, 1–13 (2020).Article 
    CAS 

    Google Scholar 
    5.Nagy, K., Ábrahám, Á., Keymer, J. E. & Galajda, P. Application of microfluidics in experimental ecology: the importance of being spatial. Front. Microbiol. 9, 496 (2018).6.Tecon, R. & Or, D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol. Rev. 41, 599–623 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science. https://doi.org/10.1126/science.1153213 (2008).8.Hobbie, J. E. & Hobbie, E. A. Microbes in nature are limited by carbon and energy: the starving-survival lifestyle in soil and consequences for estimating microbial rates. Front. Microbiol. 4, 1–11 (2013). no. NOV.Article 

    Google Scholar 
    9.Hill, P. W., Farrar, J. F. & Jones, D. L. Decoupling of microbial glucose uptake and mineralization in soil. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2007.09.008 (2008).10.IPCC. Climate change 2007: the physical science basis. 2007, https://doi.org/10.1260/095830507781076194.11.Baveye, P. C. et al. Emergent properties of microbial activity in heterogeneous soil microenvironments: different research approaches are slowly converging, yet major challenges remain. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01929 (2018).12.Bruand, A. & Cousin, I. Variation of textural porosity of a clay‐loam soil during compaction. Eur. J. Soil Sci. https://doi.org/10.1111/j.1365-2389.1995.tb01334.x (1995).13.Cnudde, V. & Boone, M. N. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth-Science Rev. https://doi.org/10.1016/j.earscirev.2013.04.003 (2013).14.Pagliai, M., Vignozzi, N. & Pellegrini, S. Soil structure and the effect of management practices. https://doi.org/10.1016/j.still.2004.07.002 (2004).15.Pires, L. F., Bacchi, O. O. S., Reichardt, K. & Timm, L. C. Application of γ-ray computed tomography to analysis of soil structure before density evaluations. Appl. Radiat. Isot. https://doi.org/10.1016/j.apradiso.2005.03.019 (2005).16.Larsbo, M., Koestel, J., Kätterer, T. & Jarvis, N. Preferential transport in macropores is reduced by soil organic carbon. Vadose Zone J. https://doi.org/10.2136/vzj2016.03.0021 (2016).17.Ananyeva, K., Wang, W., Smucker, A. J. M., Rivers, M. L. & Kravchenko, A. N. Can intra-aggregate pore structures affect the aggregate’s effectiveness in protecting carbon? Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2012.10.019 (2013).18.Toosi, E. R., Kravchenko, A. N., Mao, J., Quigley, M. Y. & Rivers, M. L. Effects of management and pore characteristics on organic matter composition of macroaggregates: evidence from characterization of organic matter and imaging. Eur. J. Soil Sci. https://doi.org/10.1111/ejss.12411 (2017).19.Katuwal, S. et al. Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography. Geoderma. https://doi.org/10.1016/j.geoderma.2014.08.006 (2015).20.Negassa, W. C. et al. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria. PLoS ONE https://doi.org/10.1371/journal.pone.0123999 (2015).21.Rabot, E., Wiesmeier, M., Schlüter, S. & Vogel, H. J. Soil structure as an indicator of soil functions: a review. Geoderma. https://doi.org/10.1016/j.geoderma.2017.11.009 (2018).22.Pronk, G. J. et al. Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments. Biol. Fertil. Soils. https://doi.org/10.1007/s00374-016-1161-1 (2017).23.Downie, H. et al. Transparent Soil for Imaging the Rhizosphere. PLoS ONE. https://doi.org/10.1371/journal.pone.0044276 (2012).24.Aleklett, K. et al. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME J. 12, 312–319 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and Applications of Microfluidics in Biology. Annu. Rev. Biomed. Eng. https://doi.org/10.1146/annurev.bioeng.4.112601.125916 (2002).26.Ahmed, T., Shimizu, T. S. & Stocker, R. Microfluidics for bacterial chemotaxis. Integr. Biol. https://doi.org/10.1039/c0ib00049c (2010).27.Ahmed, T. & Stocker, R. Experimental verification of the behavioral foundation of bacterial transport parameters using microfluidics. Biophys. J. https://doi.org/10.1529/biophysj.108.134510 (2008).28.Mao, H., Cremer, P. S. & Manson, M. D. A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl Acad. Sci. https://doi.org/10.1073/pnas.0931258100 (2003).29.Saragosti, J. et al. Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc. Natl Acad. Sci. https://doi.org/10.1073/pnas.1101996108 (2011).30.Deng, J. et al. Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biol. Biochem. 83, 116–124 (2015).CAS 
    Article 

    Google Scholar 
    31.Rubinstein, R. L., Kadilak, A. L., Cousens, V. C., Gage, D. J. & Shor, L. M. Protist-facilitated particle transport using emulated soil micromodels. Environ. Sci. Technol. 49, 1384–1391 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Stanley, C. E. et al. Probing bacterial-fungal interactions at the single cell level. Integr. Biol. 6, 935–945 (2014).CAS 
    Article 

    Google Scholar 
    33.Aleklett, K., Ohlsson, P., Bengtsson, M. & Hammer, E. C. Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips. ISME J. https://doi.org/10.1038/s41396-020-00886-7 (2021).34.Mafla-Endara, P. M. et al. Microfluidic chips provide visual access to in situ soil ecology. Commun. Biol. 4, 889 (2021).35.Falconer, R., Houston, A., Otten, W. & Baveye, P. Emergent behavior of soil fungal dynamics: influence of soil architecture and water distribution. Soil Sci. 177, 111–119 (2012).CAS 
    Article 

    Google Scholar 
    36.Duffy, K. J. & Ford, R. M. Turn angle and run time distributions characterize swimming behavior for Pseudomonas putida. J. Bacteriol. 179, 1428–1430 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Rashid, S. et al. Adjustment in tumbling rates improves bacterial chemotaxis on obstacle-laden terrains. Proc. Natl Acad Sci USA 116, 11770–11775 (2019).38.Duffy, K. J., Cummings, P. T. & Ford, R. M. Random walk calculations for bacterial migration in porous media. Biophys. J. 68, 800–806 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Shum, H. & Gaffney, E. A. Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels. Phys. Rev. E 92, 1–11 (2015).Article 
    CAS 

    Google Scholar 
    40.Guadayol, Ò., Thornton, K. L. & Humphries, S. Cell morphology governs directional control in swimming bacteria. Sci. Rep. https://doi.org/10.1038/s41598-017-01565-y (2017).41.Essig, A. et al. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J. Biol. Chem. 289, 34953–34964 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Dixon, E. F. & Hall, R. A. Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections. Cell. Microbiol. 17, 1431–1441 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Banitz, T. et al. Assessing biodegradation benefits from dispersal networks. Ecol. Model. 222, 2552–2560 (2011).Article 

    Google Scholar 
    44.Furuno, S. et al. Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems. Environ. Microbiol. 12, 1391–1398 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Kohlmeier, S. et al. Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ. Sci. Technol. 39, 4640–4646 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Held, M., Kaspar, O., Edwards, C. & Nicolau, D. V. Intracellular mechanisms of fungal space searching in microenvironments. Proc. Natl Acad. Sci. USA 116, 13543–13552 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Soufan, R. et al. Pore-scale monitoring of the effect of microarchitecture on fungal growth in a two-dimensional soil-like micromodel. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00068 (2018).48.Hanson, K. L. et al. Fungi use efficient algorithms for the exploration of microfluidic networks. Small 2, 1212–1220 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Pajor, R., Falconer, R., Hapca, S. & Otten, W. Modelling and quantifying the effect of heterogeneity in soil physical conditions on fungal growth. Biogeosciences 7, 3731–3740 (2010).Article 

    Google Scholar 
    50.Varma, A., Abbott, L., Werner, D. & Hampp, R. Plant Surface Microbiology (Springer, 2008)..51.Lew, R. R. How does a hypha grow? The biophysics of pressurized growth in fungi. Nat. Rev. Microbiol. 9, 509–518 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Tayagui, A., Sun, Y., Collings, D. A., Garrill, A. & Nock, V. An elastomeric micropillar platform for the study of protrusive forces in hyphal invasion. Lab a Chip 17, 3643–3653 (2017).CAS 
    Article 

    Google Scholar 
    53.Bardgett, R. D. & McAlister, E. The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils 29, 282–290 (1999).Article 

    Google Scholar 
    54.De Deyn, G. B., Cornelissen, J. H. C. & Bardgett, R. D. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett. 11, 516–531 (2008).PubMed 
    Article 

    Google Scholar 
    55.Kuijper, L. D. J., Berg, M. P., Morriën, E., Kooi, B. W. & Verhoef, H. A. Global change effects on a mechanistic decomposer food web model. Glob. Change Biol. 11, 249–265 (2005).Article 

    Google Scholar 
    56.Falconer, R. E. et al. Microscale heterogeneity explains experimental variability and non-linearity in soil organic matter mineralisation. PLoS ONE 10, e0123774 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Deveau, A. et al. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Postma, J. & van Veen, J.A. Habitable pore space and survival of Rhizobium leguminosarum biovar trifolii introduced into soil. Microb. Ecol. 19, 149–161 (1990).59.Grundmann, G. L. Spatial scales of soil bacterial diversity—the size of a clone. FEMS Microbiol. Ecol. 48, 119–127 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83, 184–199 (2015).CAS 
    Article 

    Google Scholar 
    61.Kim, D. S. & Fogler, H. S. Biomass evolution in porous media and its effects on permeability under starvation conditions. Biotechnol. Bioeng. 69, 47–56 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Dupin, H. J. & McCarty, P. L. Mesoscale and microscale observations of biological growth in a silicon pore imaging element. Environ. Sci. Technol. 33, 1230–1236 (1999).CAS 
    Article 

    Google Scholar 
    63.Aufrecht, J. A. et al. Pore-scale hydrodynamics influence the spatial evolution of bacterial biofilms in a microfluidic porous network. PLoS ONE 14, 1–17 (2019).Article 
    CAS 

    Google Scholar 
    64.Vervoort, R. W. & Cattle, S. R. Linking hydraulic conductivity and tortuosity parameters to pore space geometry and pore-size distribution. J. Hydrol. 272, 36–49 (2003).Article 

    Google Scholar 
    65.Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 34, 139–162 (2002).Article 

    Google Scholar 
    66.Hoffman, M. T. & Arnold, A. E. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl. Environ. Microbiol. 76, 4063–4075 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Mcdonald, J. C., Duffy, D. C., Anderson, J. R. & Chiu, D. T. Review general fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21, 27–40 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Cánovas, D., Cases, I. & De Lorenzo, V. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ. Microbiol. 5, 1242–1256 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Mooney, A., Ward, P. G. & O’Connor, K. E. Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications. Appl. Microbiol. Biotechnol. 72, 1–10 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Ward, P. G., Goff, M., Donner, M., Kaminsky, W. & O’Connor, K. E. A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ. Sci. Technol. 40, 2433–2437 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Gomes, N. C. M., Kosheleva, I. A., Abraham, W. R. & Smalla, K. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiol. Ecol. 54, 21–33 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Smith, M. C. M. Molecular biological methods for bacillus. FEBS Lett. https://doi.org/10.1016/0014-5793(91)80059-c. (1991).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Razavi, B. S., Zhang, X., Bilyera, N., Guber, A. & Zarebanadkouki, M. Soil zymography: simple and reliable? Review of current knowledge and optimization of the method. Rhizosphere 11, 100161 (2019). no. June.Article 

    Google Scholar 
    75.Nicodème, M., Grill, J. P., Humbert, G. & Gaillard, J. L. Extracellular protease activity of different Pseudomonas strains: dependence of proteolytic activity on culture conditions. J. Appl. Microbiol. https://doi.org/10.1111/j.1365-2672.2005.02634.x (2005).76.Güll, I., Alves, P. M., Gabor, F. & Wirth, M. Viability of the human adenocarcinoma cell line Caco-2: influence of cryoprotectant, freezing rate, and storage temperature. Scientia Pharmaceutica https://doi.org/10.3797/scipharm.0810-07 (2009).77.Burns, C. et al. Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns. Fungal Genetics Biol. https://doi.org/10.1016/j.fgb.2004.11.005 (2005).78.Stajich, J. E. et al. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc. Natl Acad. Sci. USA 107, 11889–11894 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. https://doi.org/10.1038/nmeth.2019 (2012).80.Kneen, M. A. & Annegarn, H. J. Algorithm for fitting XRF, SEM and PIXE X-ray spectra backgrounds. Nucl. Instrum. Methods Phys. Res. Section B https://doi.org/10.1016/0168-583X(95)00908-6 (1996).81.Team, R. C. R: a language and environment for statistical computing. Vienna, Austria, 2019.82.Dunn, O. J. Multiple comparisons among means. J. Am. Stat. Assoc. https://doi.org/10.2307/2282330 (1961).83.Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979.84.C. et al. Arellano-Caicedo, “Habitat geometry in artificial microstructure affects bacterial and fungal growth, interactions, and substrate degradation 2nd part,” Dryad, Dataset. 2021.85.C. et al. Arellano-Caicedo, “Habitat geometry in artificial microstructure affects bacterial and fungal growth, interactions, and substrate degradation. Part 1,” Dryad, Dataset, 2021. More

  • in

    Metabarcoding insights into the diet and trophic diversity of six declining farmland birds

    1.Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    2.Van Zanten, B. T. et al. European agricultural landscapes, common agricultural policy and ecosystem services: A review. Agron. Sustain. Dev. 34, 309–325 (2014).Article 

    Google Scholar 
    3.Jongman, R. H. Homogenisation and fragmentation of the European landscape: Ecological consequences and solutions. Landsc. Urban Plan. 58, 211–221 (2002).Article 

    Google Scholar 
    4.Stoate, C. et al. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 63, 337–365 (2001).CAS 
    Article 

    Google Scholar 
    5.Storkey, J., Meyer, S., Still, K. S. & Leuschner, C. The impact of agricultural intensification and land-use change on the European arable flora. Proc. R. Soc. B 279, 1421–1429 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Donald, P. F., Sanderson, F. J., Burfield, I. J. & Van Bommel, F. P. J. Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric. Ecosyst. Environ. 116, 189–196 (2006).Article 

    Google Scholar 
    7.Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188 (2003).Article 

    Google Scholar 
    8.Traba, J. & Morales, M. B. The decline of farmland birds in Spain is strongly associated to the loss of fallowland. Sci. Rep. 9, 1–6 (2019).Article 
    CAS 

    Google Scholar 
    9.Mcmahon, B. J., Giralt, D., Raurell, M., Brotons, L. & Bota, G. Identifying set-aside features for bird conservation and management in northeast Iberian pseudo-steppes. Bird Study 57, 289–300 (2010).Article 

    Google Scholar 
    10.Tarjuelo, R. et al. Living in seasonally dynamic farmland: The role of natural and semi-natural habitats in the movements and habitat selection of a declining bird. Biol. Conserv. 251, 108794 (2020).Article 

    Google Scholar 
    11.Donázar, J. A., Naveso, M. A., Tella, J. L. & Campión, D. Extensive grazing and raptors in Spain. 117–149. in Farming and Birds in Europe: The Common Agricultural Policy and Its Implications for Bird Conservation (Pain, D. J. & Pienkowski, M. W. eds.). (Academic Press, 1997).12.Santos, T. & Suárez, F. Biogeography and population trends of the Iberian steppe birds. in Ecology and Conservation of Steppe-Land Birds (Bota, G., Morales, M. B., Mañosa, S. & Camprodon, J. eds.). (Lynx Edicions, 2005).13.Tarjuelo, R., Margalida, A. & Mougeot, F. Changing the fallow paradigm: A win–win strategy for the post-2020 Common Agricultural Policy to halt farmland bird declines. J. Appl. Ecol. 57, 642–649 (2020).Article 

    Google Scholar 
    14.Wilson, J. D., Morris, A. J., Arroyo, B. E., Clark, S. C. & Bradbury, R. B. A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric. Ecosyst. Environ. 75, 13–30 (1999).Article 

    Google Scholar 
    15.Benton, T. G., Bryant, D. M., Cole, L. & Crick, H. Q. Linking agricultural practice to insect and bird populations: A historical study over three decades. J. Appl. Ecol. 39, 673–687 (2002).Article 

    Google Scholar 
    16.Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. U.S.A. 118, 2 (2021).Article 
    CAS 

    Google Scholar 
    17.Andreasen, C., Jensen, H. A. & Jensen, S. M. Decreasing diversity in the soil seed bank after 50 years in Danish arable fields. Agric. Ecosyst. Environ. 259, 61–71 (2018).Article 

    Google Scholar 
    18.Newton, I. The recent declines of farmland bird populations in Britain: An appraisal of causal factors and conservation actions. Ibis 146, 579–600 (2004).Article 

    Google Scholar 
    19.Burfield, I. J. The conservation status of steppic birds in Europe. 119–140. in Ecology and Conservation of Steppe-Land Birds (Bota, G., Morales, M. B., Mañosa, S. & Camprodon, J. eds.). (Lynx Edicions, 2005).20.Del Hoyo, J., Elliott, A., Sargatal, J. & Christie D. A. Handbook of the Birds of the World. (Lynx Edicions, 1992).21.Madroño, A., González, C. & Atienza, J. C. Libro Rojo de las Aves de España. (Dirección General para la Biodiversidad-SEO/BirdLife, 2004)22.Suárez, F., Hervás, I., Levassor, C. & Casado, M. A. La alimentación de la ganga ibérica y la ganga ortega. 215–229. in La Ganga Iberica (Pterocles alchata) y la Ganga Ortega (Pterocles orientalis) en España. Distribución, Abundancia, Biología y Conservación (Herranz, J. & Suárez, F. eds.). (Ministerio de Medio Ambiente, 1999).23.Jiguet, F. Arthropods in diet of Little Bustards Tetrax tetrax during the breeding season in western France. Bird Study 49, 105–109 (2002).Article 

    Google Scholar 
    24.Bravo, C., Ponce, C., Palacín, C. & Alonso, J. C. Diet of young Great Bustards Otis tarda in Spain: Sexual and seasonal differences. Bird Study 59, 243–251 (2012).Article 

    Google Scholar 
    25.Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Shokralla, S., Spall, J. L., Gibson, J. F. & Hajibabaei, M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21, 1794–1805 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Mougeot, F., Fernández-Tizón, M., Tarjuelo, R., Benítez-López, A. & Jiménez, J. La Ganga Ibérica y la Ganga Ortega en España, Población Reproductora en 2019 y Método de Censo. (SEO/BirdLife, 2021).28.Martin, T. E. Food as a limit on breeding birds: A life-history perspective. Annu. Rev. Ecol. Evol. Syst. 18, 453–487 (1987).Article 

    Google Scholar 
    29.Martín, C. A., Casas, F., Mougeot, F., García, J. T. & Viñuela, J. Positive interactions between vulnerable species in agrarian pseudo-steppes: Habitat use by pin-tailed sandgrouse depends on its association with the little bustard. Anim. Conserv. 13, 383–389 (2010).Article 

    Google Scholar 
    30.Bravo, C., Cuscó, F., Morales, M. & Mañosa, S. Diet composition of a declining steppe bird the Little Bustard (Tetrax tetrax) in relation to farming practices. Avian Conserv. Ecol. 12, 1 (2017).CAS 

    Google Scholar 
    31.Morse, J. G. & Hoddle, M. S. Invasion biology of thrips. Annu. Rev. Entomol. 51, 67–89 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Goldarazena, A. Orden Thysanoptera. Ide@-Sea 52, 1–20 (2015).
    Google Scholar 
    33.Ndang’ang’a, P. K., Njoroge, J. B. & Vickery, J. Quantifying the contribution of birds to the control of arthropod pests on kale, Brassica oleracea acephala, a key crop in East African highland farmland. Int. J. Pest Manag. 59, 211–216 (2013).Article 

    Google Scholar 
    34.Gunnarsson, B. Bird predation on spiders: Ecological mechanisms and evolutionary consequences. J. Arachnol. 35(509), 529 (2007).
    Google Scholar 
    35.Lee, J. H. et al. Anticancer activity of the antimicrobial peptide scolopendrasin VII derived from the centipede, Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 25, 1275–1280 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Lima, D. B. et al. Antiparasitic effect of Dinoponera quadriceps giant ant venom. Toxicon 120, 128–132 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Whitman, D. W. et al. Antiparasitic properties of cantharidin and the blister beetle berberomeloe majalis (Coleoptera: meloidae). Toxins 11, 234 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    38.Bravo, C., Bautista, L. M., García-París, M., Blanco, G. & Alonso, J. C. Males of a strongly polygynous species consume more poisonous food than females. PLoS ONE 9, e111057 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Bolívar, P. et al. Antiparasitic effects of plant species from the diet of great bustards. Preprint. https://doi.org/10.21203/rs.3.rs-122399/v1 (2020).Article 

    Google Scholar 
    40.Boyer, A. G. et al. Seasonal variation in top-down and bottom-up processes in a grassland arthropod community. Oecologia 136, 309–316 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Palacios, F., Garzón, J. & Castroviejo, J. L. alimentación de la avutarda (Otis tarda) en España, especialmente en primavera. Ardeola 21, 347–406 (1975).
    Google Scholar 
    42.Cabodevilla, X., Gómez-Moliner, B. J. & Madeira, M. J. Simultaneous analysis of the intestinal parasites and diet through eDNA metabarcoding. Preprint. https://doi.org/10.22541/au.158531783.33894277 (2020).Article 

    Google Scholar 
    43.García de la Morena, E. L., Bota, G., Mañosa, S. & Morales, M. B. El Sisón Común en España. II Censo Nacional (2016). (SEO/BirdLife, 2018).44.Cabodevilla, X., Aebischer, N. J., Mougeot, F., Morales, M. B. & Arroyo, B. Are population changes of endangered little bustards associated with releases of red-legged partridges for hunting? A large-scale study from central Spain. Eur. J. Wildl. Res. 66, 1–10 (2020).Article 

    Google Scholar 
    45.Cuscó, F., Cardador, L., Bota, G., Morales, M. B. & Mañosa, S. Inter-individual consistency in habitat selection patterns and spatial range constraints of female little bustards during the non-breeding season. BMC Ecol. 18, 1–12 (2018).Article 

    Google Scholar 
    46.González del Portillo, D., Arroyo, B., García Simón, G. & Morales, M. B. Can current farmland landscapes feed declining steppe birds? Evaluating arthropod abundance for the endangered little bustard (Tetrax tetrax) in cereal farmland during the chick‐rearing period: Variations between habitats and localities. Ecol. Evol. 11, 3219–3238 (2021).
    47.Silva, J. P., Pinto, M. & Palmeirim, J. M. Managing landscapes for the little bustard Tetrax tetrax: Lessons from the study of winter habitat selection. Biol. Conserv. 117, 521–528 (2004).Article 

    Google Scholar 
    48.Pfiffner, L. & Luka, H. Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric. Ecosyst. Environ. 78, 215–222 (2000).Article 

    Google Scholar 
    49.Hendrickx, F. et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 44, 340–351 (2007).Article 

    Google Scholar 
    50.Tarjuelo, R., Morales, M. B., Arribas, L. & Traba, J. Abundance of weeds and seeds but not of arthropods differs between arable habitats in an extensive Mediterranean farming system. Ecol. Res. 34, 624–636 (2019).Article 

    Google Scholar 
    51.Green, R. E. The feeding ecology and survival of partridge chicks (Alectoris rufa and Perdix perdix) on arable farmland in East Anglia. J. Appl. Ecol. 1, 817–830 (1984).Article 

    Google Scholar 
    52.Palacín, C. La decadencia de la comunidad de aves de los cultivos cerealistas mediterráneos. in XV Congreso del Grupo Ibérico de Aguiluchos. https://xvcongresoaguiluchosgia.es/wp-content/uploads/2019/11/LA-DECADENCIA-DE-LA-COMUNIDAD-DE-AVES-DE-LOS-CULTIVOS-CEREALISTAS-MEDITERRÁNEOS-Carlos-Palac%C3%ADn.pdf (2019).53.Blanco-Aguiar, J. A., Virgós, E. & Villafuerte, R. Perdiz roja (Alectoris rufa). in Atlas de las Aves Reproductoras de España. 212–213 (2003).54.Rodríguez-Teijeiro, J. D., Puigcerver, M. & Gallego, S. Codorniz común. in Atlas de las Aves Reproductoras de España. 218–219 (2003).55.Andueza, A. et al. Evaluación del Impacto Económico y Social de la Caza en España. (Fundación Artemisan, 2018)56.Lane, S. J., Alonso, J. C., Alonso, J. A. & Naveso, M. A. Seasonal changes in diet and diet selection of great bustards (Otis tarda) in north-west Spain. J. Zool. 247, 201–214 (1999).Article 

    Google Scholar 
    57.QGIS Development Team. QGIS Geographic Information System. http://qgis.osgeo.org (Open Source Geospatial Foundation Project, 2018).58.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).Article 

    Google Scholar 
    59.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    Article 

    Google Scholar 
    60.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic. Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.McKnight, D. T. et al. Methods for normalizing microbiome data: An ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).Article 

    Google Scholar 
    62.Lamb, P. D. et al. How quantitative is metabarcoding: A meta-analytical approach. Mol. Ecol. 28, 420–430 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Piñol, J., Senar, M. A. & Symondson, W. O. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol. Ecol. 28, 407–419 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    64.Russo, T. et al. All is fish that comes to the net: metabarcoding for rapid fisheries catch assessment. Ecol. Appl. 31, e02273 (2021).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.González-Teuber, M., Vilo, C., Guevara-Araya, M. J., Salgado-Luarte, C. & Gianoli, E. Leaf resistance traits influence endophytic fungi colonization and community composition in a South American temperate rainforest. J. Ecol. 108, 1019–1029 (2020).Article 
    CAS 

    Google Scholar 
    66.Aliche, E. B., Talsma, W., Munnik, T. & Bouwmeester, H. J. Characterization of maize root microbiome in two different soils by minimizing plant DNA contamination in metabarcoding analysis. Biol. Fertil. Soils. 57, 731–737 (2021).CAS 
    Article 

    Google Scholar 
    67.de Groot, G. A. et al. The aerobiome uncovered: Multi-marker metabarcoding reveals potential drivers of turn-over in the full microbial community in the air. Environ. Int. 154, 106551 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Tordoni, E. et al. Integrated eDNA metabarcoding and morphological analyses assess spatio-temporal patterns of airborne fungal spores. Ecol. Indic. 121, 107032 (2021).Article 

    Google Scholar 
    69.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (R Foundation for Statistical Computing, 2019).70.Russell, V. L. Least-squares means: The R Package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
    Google Scholar 
    71.Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.0 (2013). More

  • in

    Variable intraspecific space use supports optimality in an apex predator

    1.Mitchell, M. S. & Powell, R. A. A mechanistic home range model for optimal use of spatially distributed resources. Ecol. Model. 177, 209–232 (2004).Article 

    Google Scholar 
    2.Horne, J. S., Garton, E. O. & Rachlow, J. L. A synoptic model of animal space use: Simultaneous estimation of home range, habitat selection, and inter/intra–specific relationships. Ecol. Model. 214, 338–348 (2008).Article 

    Google Scholar 
    3.Nathan, R. An emerging movement ecology paradigm. Proc. Natl. Acad. Sci. USA 105, 19050–19051 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Fretwell, S. D. & Lucas, H. L. J. On territorial behavior and other factors influencing habitat distribution in birds. Part 1. Theoretical development. Acta. Biotheor. 19, 16–36 (1969).Article 

    Google Scholar 
    5.Powell, R. A. Animal home ranges and territories and home range estimators. Res. Tech. Animal Ecol. Controversies Consequences. 1, 476 (2000).
    Google Scholar 
    6.Parker, G. A. & Smith, J. M. Optimality theory in evolutionary biology. Nature 348, 27 (1990).ADS 
    Article 

    Google Scholar 
    7.Hiller, T. L., Belant, J. L. & Beringer, J. Sexual size dimorphism mediates effects of spatial resource variability on American black bear space use. J. Zool. 296, 200–207 (2015).Article 

    Google Scholar 
    8.Mitchell, M. S. & Powell, R. A. Optimal use of resources structures home ranges and spatial distribution of black bears. Anim. Behav. 74, 219–230 (2007).Article 

    Google Scholar 
    9.McLoughlin, P. D. & Ferguson, S. H. A hierarchical pattern of limiting factors helps explain variation in home range size. Ecoscience 7, 123–130 (2000).Article 

    Google Scholar 
    10.Johnson, D. D., Kays, R., Blackwell, P. G. & Macdonald, D. W. Does the resource dispersion hypothesis explain group living?. Trends Ecol. Evol. 17, 563–570 (2002).Article 

    Google Scholar 
    11.Macdonald, D. W. The ecology of carnivore social behavior. Nature 301, 379–384 (1983).ADS 
    Article 

    Google Scholar 
    12.Macdonald, D. W. & Johnson, D. D. P. Patchwork planet: The resource dispersion hypothesis, society, and the ecology of life. J. Zool. 295, 75–107 (2015).Article 

    Google Scholar 
    13.Lukacs, P. M. et al. Factors influencing elk recruitment across ecotypes in the Western United States. J. Wildl. Manag. 82, 698–710 (2018).Article 

    Google Scholar 
    14.Mangipane, L. S. et al. Influences of landscape heterogeneity on home-range sizes of brown bears. Mamm. Biol. 88, 1–7 (2018).Article 

    Google Scholar 
    15.McClintic, L. F., Taylor, J. D., Jones, J. C., Singleton, R. D. & Wang, G. Effects of spatiotemporal resource heterogeneity on home range size of American beaver. J. Zool. 293, 134–141 (2014).Article 

    Google Scholar 
    16.Harestad, A. S. & Bunnel, F. L. Home range and body weight—A reevaluation. Ecology 60, 389–402 (1979).Article 

    Google Scholar 
    17.Knick, S. T. Ecology of bobcats relative to exploitation and a prey decline in southeastern Idaho. Wildl. Monogr. 108, 3–42 (1990).
    Google Scholar 
    18.Kelt, D. A. & Van Vuren, D. H. The ecology and macroecology of mammalian home range area. Am. Nat. 157, 637–645 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.McNab, B. K. Bioenergetics and the determination of home range size. Am. Nat. 97, 133–140 (1963).Article 

    Google Scholar 
    20.Dahle, B., Støen, O. G. & Swenson, J. E. Factors influencing home-range size in subadult brown bears. J. Mammal. 87, 859–865 (2006).Article 

    Google Scholar 
    21.Dahle, B. & Swenson, J. E. Home ranges in adult Scandinavian brown bears (Ursus arctos): Effect of mass, sex, reproductive category, population density and habitat type. J. Zool. 260, 329–335 (2003).Article 

    Google Scholar 
    22.Lafferty, D. J. R., Loman, Z. G., White, K. S., Morzillo, A. T. & Belant, J. L. Moose (Alces alces) hunters subsidize the scavenger community in Alaska. Polar Biol. 39, 639–647 (2016).Article 

    Google Scholar 
    23.Van Manen, F. T. et al. Primarily resident grizzly bears respond to late-season elk harvest. Ursus 2019, 1–15 (2019).Article 

    Google Scholar 
    24.Taylor, M.K. Density-dependent population regulation of black, brown and polar bears. in 9th International Conference on Bear Research and Management. International Bear Association, Missoula (1994).25.Swenson, J. E., Dahle, B. & Sandegren, F. Intraspecific predation in Scandinavian brown bears older than cubs-of-the-year. Ursus 12, 81–91 (2001).
    Google Scholar 
    26.Hilderbrand, G. V. et al. Body size and lean mass of brown bears across and within four diverse ecosystems. J. Zool. 305, 53–62 (2018).Article 

    Google Scholar 
    27.Hilderbrand, G. V. et al. The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can. J. Zool. 77, 132–138 (1999).Article 

    Google Scholar 
    28.Belant, J. L., Kielland, K., Follmann, E. H. & Adams, L. G. Interspecific resource partitioning in sympatric ursids. Ecol. Appl. 16, 2333–2343 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Belant, J. L., Griffith, B., Zhang, Y., Follmann, E. H. & Adams, L. G. Population-level resource selection by sympatric brown and American black bears in Alaska. Polar Biol. 33, 31–40 (2010).Article 

    Google Scholar 
    30.Munro, R. H. M., Nielsen, S. E., Price, M. H., Stenhouse, G. B. & Boyce, M. S. Seasonal and diel patterns of grizzly bear diet and activity in west-central Alberta. J. Mammal. 87, 1112–1121 (2006).Article 

    Google Scholar 
    31.US Fish and Wildlife Service. Izembek National Wildlife Refuge Land Exchange/Road Corridor, Draft Environmental Impact Statement (US Fish and Wildlife Service, 2018).
    Google Scholar 
    32.Svoboda, N. J. & Crye, J. R. Roosevelt Elk Management Report and Plan, Game Management Unit 8: Report Period 1 July 2013–30 June 2018, and Plan Period 1 July 2018–30 June 2023 (Alaska Department of Fish and Game, 2020).
    Google Scholar 
    33.Van Daele, M. B. et al. Salmon consumption by Kodiak brown bears (Ursus arctos middendorffi) with ecosystem management implications. Can. J. Zool. 91, 164–174 (2013).Article 

    Google Scholar 
    34.Barnes, V. The influence of salmon availability on movements and range of brown bears on Southwest Kodiak Island. Bears Biol. Manag. 8, 305–313 (1990).
    Google Scholar 
    35.Deacy, W., Leacock, W., Armstrong, J. B. & Stanford, J. A. Kodiak brown bears surf the salmon red wave: Direct evidence from GPS collared individuals. Ecology 97, 1091–1098 (2016).PubMed 
    Article 

    Google Scholar 
    36.Van Daele, L. J., Barnes, V. G. & Belant, J. L. Ecological flexibility of brown bears on Kodiak Island, Alaska. Ursus 23, 21–29 (2012).Article 

    Google Scholar 
    37.Stirling, I., Spencer, C. & Andriashek, D. Immobilization of polar bears (Ursus maritimus) with Telazol® in the Canadian Arctic. J. Wildl. Dis. 25, 159–168 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Woolf, A., Hays, H. R., Allen, W. B. & Swart, J. Immobilization of wild ungulates with etorphine HC1. J. Zoo Animal Med. 4, 16–19 (1973).Article 

    Google Scholar 
    39.Meuleman, T., Port, J. D., Stanley, T. H., Williard, K. F. & Kimball, J. Immobilization of elk and moose with carfentanil. J. Wildl. Manag. 48, 258–262 (1984).Article 

    Google Scholar 
    40.Lance, W.R. & Kenny, D.E. Thiafentanil oxalate (A3080) in nondomestic ungulate species. in Fowler’s Zoo and Wild Animal Medicine (ed. Miller and Fowler) 589–595 (W.B. Saunders, 2012).41.Garshelis, D. L. & McLaughlin, C. R. Review and evaluation of breakaway devices for bear radiocollars. Ursus 10, 459–465 (1998).
    Google Scholar 
    42.Calvert, W. & Ramsay, M. A. Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10, 449–453 (1998).
    Google Scholar 
    43.Thiemann, G. W. et al. Effects of chemical immobilization on the movement rates of free-ranging polar bears. J. Mammal. 94, 386–397 (2013).Article 

    Google Scholar 
    44.Noonan, M. J. et al. A comprehensive analysis of autocorrelation and bias in home range estimation. Ecol. Monogr. 89, e01344 (2019).Article 

    Google Scholar 
    45.Bishop, A., Brown, C., Rehberg, M., Torres, L. & Horning, M. Juvenile Steller sea lion (Eumetopias jubatus) utilization distributions in the Gulf of Alaska. Mov. Ecol. 6, 1–15 (2018).Article 

    Google Scholar 
    46.Long, R. A., Muir, J. D., Rachlow, J. L. & Kie, J. G. A comparison of two modeling approaches for evaluating wildlife-habitat relationships. J. Wildl. Manag. 73, 294–302 (2009).Article 

    Google Scholar 
    47.Fleming, M. D. & Spencer, P. A vegetative cover map for the Kodiak Archipelago Alaska (USGS, Alaska Science Center, Anchorage, 2004).
    Google Scholar 
    48.Brodeur, V., Ouellet, J. P., Courtois, R. & Fortin, D. Habitat selection by black bears in an intensively logged boreal forest. Can. J. Zool. 86, 1307–1316 (2008).Article 

    Google Scholar 
    49.Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).Article 

    Google Scholar 
    50.Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, 1963).MATH 

    Google Scholar 
    51.Smith, T. S. & Partridge, S. T. Dynamics of intertidal foraging by coastal brown bears in southwestern Alaska. J. Wildl. Manag. 68, 233–240 (2004).Article 

    Google Scholar 
    52.Zager, P. & Beecham, J. The role of American black bears and brown bears as predators on ungulates in North America. Ursus 17, 95–108 (2006).Article 

    Google Scholar 
    53.Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article 

    Google Scholar 
    54.Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: An R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).Article 

    Google Scholar 
    55.Morris, L. R., Proffitt, K. M., Asher, V. & Blackburn, J. K. Elk resource selection and implications for anthrax management in Montana. J. Wildl. Manag. 80, 235–244 (2016).Article 

    Google Scholar 
    56.Pontius, R. G. & Parmentier, B. Recommendations for using the relative operating characteristic (ROC). Landsc. Ecol. 29, 367–382 (2014).Article 

    Google Scholar 
    57.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    58.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    59.R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.60.Lewis, T. M. & Lafferty, D. J. Brown bears and wolves scavenge humpback whale carcass in Alaska. Ursus 25, 8–13 (2014).Article 

    Google Scholar 
    61.Paralikidis, N. P., Papageorgiou, N. K., Kontsiotis, V. J. & Tsiompanoudis, A. C. The dietary habits of the brown bear (Ursus arctos) in western Greece. Mamm. Biol. 75, 29–35 (2010).Article 

    Google Scholar 
    62.Sandell, M. The mating tactics and spacing patterns of solitary carnivores In Carnivore Behavior, Ecology, and Evolution (ed. Gittleman J.L.) 164–182 (Springer, 1989).63.Hilderbrand, G. V., Jenkins, S. G., Schwartz, C. C., Hanley, T. A. & Robbins, C. T. Effect of seasonal differences in dietary meat intake on changes in body mass and composition in wild and captive brown bears. Can. J. Zool. 77, 1623–1630 (1999).Article 

    Google Scholar 
    64.Milakovic, B. & Parker, K. L. Quantifying carnivory by grizzly bears in a multi-ungulate system. J. Wildl. Manag. 77, 39–47 (2013).Article 

    Google Scholar 
    65.Nieminen, M. The impact of large carnivores on the mortality of semi-domesticated reindeer (Rangifer tarandus tarandus L.) calves in Kainuu, southeastern reindeer herding region of Finland. Rangifer. 30, 79–88 (2010).Article 

    Google Scholar 
    66.Mumma, M. A. et al. Intrinsic traits of woodland caribou Rangifer tarandus caribou calves depredated by black bears Ursus americanus and coyotes Canis latrans. Wildl. Biol. 2019, 1–9 (2019).Article 

    Google Scholar 
    67.Svoboda, N. J., Belant, J. L., Beyer, D. E., Duquette, J. F. & Lederle, P. E. Carnivore space use shifts in response to seasonal resource availability. Ecosphere. 10, e02817 (2019).Article 

    Google Scholar 
    68.Ruth, T. K. et al. Large-carnivore response to recreational big-game hunting along the Yellowstone National Park and Absaroka-Beartooth Wilderness boundary. Wildl. Soc. Bull. 31, 1150–1161 (2003).
    Google Scholar 
    69.Haroldson, M. A., Schwartz, C. C., Cherry, S. & Moody, D. S. Possible effects of elk harvest on fall distribution of grizzly bears in the Greater Yellowstone Ecosystem. J. Wildl. Manag. 68, 129–137 (2004).Article 

    Google Scholar 
    70.Bastille-Rousseau, G., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J. P. Foraging strategies by omnivores: are black bears actively searching for ungulate neonates or are they simply opportunistic predators?. Ecography 34, 588–596 (2011).Article 

    Google Scholar 
    71.Gehr, B. et al. Evidence for nonconsumptive effects from a large predator in an ungulate prey?. Behav. Ecol. 29, 724–735 (2018).Article 

    Google Scholar 
    72.Hebblewhite, M., Merrill, E. H. & McDonald, T. L. Spatial decomposition of predation risk using resource selection functions: An example in a wolf–elk predator–prey system. Oikos 111, 101–111 (2005).Article 

    Google Scholar 
    73.Nielsen, S. E., Boyce, M. S. & Stenhouse, G. B. Grizzly bears and forestry: I. Selection of clearcuts by grizzly bears in west-central Alberta, Canada. For. Ecol. Manag. 199, 51–65 (2004).Article 

    Google Scholar 
    74.McLellan, B. N. Relationships between human industrial activity and grizzly bears. Bears Biol. Manag. 8, 57–64 (1990).
    Google Scholar 
    75.Sigman, M. Impacts of Clearcut Logging on the Fish and Wildlife Resources of Southeast Alaska Vol. 85 (Alaska Department of Fish and Game, 1985).
    Google Scholar 
    76.Linnell, J. D., Swenson, J. E., Andersen, R. & Barnes, B. How vulnerable are denning bears to disturbance?. Wildl. Soc. Bull. 28, 400–413 (2000).
    Google Scholar 
    77.McLellan, B. N. & Shackleton, D. M. Grizzly bears and resource-extraction industries: Effects of roads on behaviour, habitat use and demography. J. Appl. Ecol. 25, 451–460 (1988).Article 

    Google Scholar 
    78.Nielsen, S. E., Munro, R. H. M., Bainbridge, E. L., Stenhouse, G. B. & Boyce, M. S. Grizzly bears and forestry: II. Distribution of grizzly bear foods in clearcuts of west-central Alberta, Canada. For. Ecol. Manag. 199, 67–82 (2004).Article 

    Google Scholar 
    79.Nielsen, S. E., Stenhouse, G. B., Beyer, H. L., Huettmann, F. & Boyce, M. S. Can natural disturbance-based forestry rescue a declining population of grizzly bears?. Biol. Cons. 141, 2193–2207 (2008).Article 

    Google Scholar 
    80.Frank, S. C. et al. A “clearcut” case? Brown bear selection of coarse woody debris and carpenter ants on clearcuts. For. Ecol. Manage. 348, 164–173 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Hertel, A. G. et al. Bears and berries: Species-specific selective foraging on a patchily distributed food resource in a human-altered landscape. Behav. Ecol. Sociobiol. 70, 831–842 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Valeix, M., Loveridge, A. J. & Macdonald, D. W. Influence of prey dispersion on territory and group size of African lions: A test of the resource dispersion hypothesis. Ecology 93, 2490–2496 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Robbins, C. T. et al. Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos 116, 1675–1682 (2007).Article 

    Google Scholar 
    84.Ben-David, M., Titus, K. & Beier, L. R. Consumption of salmon by Alaskan brown bears: A trade-off between nutritional requirements and the risk of infanticide?. Oecologia 138, 465–474 (2004).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Smith, T. R. & Pelton, M. R. Home ranges and movements of black bears in bottomland hardwood forest in Arkansas. Int. Conf. Bear Res. Manag. 8, 213–218 (1990).
    Google Scholar 
    86.Welch, C. A., Keay, J., Kendall, K. C. & Robbins, C. T. Constraints on frugivory by bears. Ecology 78, 1105–1119 (1997).Article 

    Google Scholar 
    87.Gantchoff, M., Wang, G., Beyer, D. & Belant, J. Scale-dependent home range optimality for a solitary omnivore. Ecol. Evol. 8, 12271–12282 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Tao, Y., Börger, L. & Hastings, A. Dynamic range size analysis of territorial animals: An optimality approach. Am. Nat. 188, 460–474 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Microclimate and the vertical stratification of potential bridge vectors of mosquito‑borne viruses captured by nets and ovitraps in a central Amazonian forest bordering Manaus, Brazil

    Variation in microclimateMicroclimate at the tower varied across the daily sampling period with temperatures highest and relative humidity lowest around midday and the early afternoon hours, although the time of peak temperature and nadir humidity varied by height (Fig. 3a, b). Mean temperature was highest at ground level at 11:30 (30.0 °C) when it was on average 0.2 °C hotter than at 9 m, whereas at 5 m and 9 m, it was highest at 13:30 (29.7 °C and 30.3 °C, respectively). The inverse was true for mean relative humidity, which was lowest at ground level at 11:30 (83.8%) and lowest at 5 m and 9 m at 13:30 (80.1% and 76.4%, respectively). Both variables showed substantial overlap in means and standard errors across the sampled heights during the morning hours, before diverging in the afternoon. For comparison, we extracted microclimate data from the corresponding sampling period in the BG-Sentinel trap study15, which revealed clear differences in temperature and humidity at each height sampled (Fig. 3c, d). BG-Sentinel traps were often hung beneath the forest canopy where it was considerably cooler and more humid than at the treefall gap, particularly at ground level.Figure 3Variation in microclimate by height and collection method. (a) and (b) show the mean temperature (temp,°C) + / − 1 standard error (S.E.) and relative humidity (RH, %) + / − 1 standard error (S.E.) for net collections made at the tower between 10:00 and 15:00 in this study. (c) and (d) show corresponding data extracted from the BG-Sentinel trap study15.Full size imageCommunity composition of diurnally active, anthropophilic mosquitoesA total of 2146 adult mosquitoes representing seven genera and 34 species were collected using nets (Fig. 4a), of which 99.8% (2142/2146) were female and 99.7% (2140/2146) were identified to species level. Mosquito abundance was similar at ground level and 9 m but was slightly lower at 5 m, while species richness was higher at ground level (28 species), than at 5 m (18 species) and 9 m (22 species). Psorophora was the most abundant genus (1231 mosquitoes, 57.4% of the total catch), followed by Haemagogus (32.3%), and Sabethes (6.6%). The genera Limatus (1.4%), Culex (1.2%), Wyeomyia (1.0%), and Onirion ( 0.1 for both comparisons). A linear regression showed that, across all heights, lag to first approach decreased significantly as Hg. janthinomys abundance increased (DF = 1, F = 52.1, P  More

  • in

    Microbiomes of an oyster are shaped by metabolism and environment

    More detailed methods can be found in the supplementary material. Data from this experiment on the characterisation of the microbial community and its response to climate change has been previously published in Scanes et al.12, therefore, the present study focussed on the interaction of metabolic processes with the microbiome. We examined the links between climate change, metabolism, genotype and microbiome of the Sydney rock oyster, Saccostrea glomerata20. Nine oyster aquacultural breeding lineages (labelled as genotype-lines A–I) of S. glomerata, which are known to differ in their resilience to climate change12 were exposed to ambient and elevated temperature and PCO2 treatments. All seawater used in acclimation and experimental exposure was collected from Little Beach, Port Stephens (152°9′30.00″E, 32°42′43.03″S), filtered through canister filters to a nominal 5 µm, and stored onsite in 38,000 L polyethylene tanks as a stock of filtered seawater.Approximately 72 individual S. glomerata, from each of the nine families (A-I) were collected from intertidal leases in Cromarty Bay, Port Stephens (152° 4′0.69″E, 32°43′19.69″S). Oysters were held on private leases so a collection permit was not required. Oysters were collected in September 2019 for experiments, meaning all oysters were 22 months old when experiments began. Oysters were placed into a 2000 L fibreglass tank and maintained at 24 °C, a salinity of 35 ppt and ambient PCO2 (pH 8.18) for two weeks to acclimate to laboratory conditions. Following acclimation, oysters from each genotype-line were divided among twelve 750 L polyethylene tanks filled with 400 L of filtered seawater (5 µm) at a density of 54 oysters per tank, with each genotype-line represented by six replicate individuals. Treatments consisted of orthogonal combinations of two PCO2 concentrations (ambient [400 µatm]; elevated [1000 µatm]) and two temperature treatments (24 and 28 °C). Each combination was replicated across three tanks. Treatments were selected to represent temperatures and PCO2 concentrations predicted for 2080–2100 by the IPCC27 and reflect measured changes in estuary temperatures reported from south eastern Australia20.Once oysters were transferred to experimental tanks, the PCO2 level and temperature were steadily increased in elevated exposure tanks over one week until the experimental treatment level was reached. The elevated CO2 level was maintained using a pH negative feedback system (Aqua Medic, Aqacenta Pty Ltd, Kingsgrove, NSW, Australia; accuracy ± 0.01 pH units) bubbling food grade CO2 (BOC Australia) through a mixing chamber and into each tank, previously described in18. These PCO2 levels corresponded to a mean ambient pHNBS of (8.18 ± 0.01) and at elevated CO2 levels a mean pHNBS of (7.84 ± 0.01). Temperature was increased and then maintained using 1000 W aquarium heaters in each tank. Oysters were then exposed to their respective treatments for a further four weeks. Oysters were checked daily for mortality; no dead oysters were found in any tanks during the four-week exposure period.Haemolymph sampling for DNA extractionFollowing exposure to experimental conditions, haemolymph was taken from two replicate oysters, from each genotype-line, from each tank for microbial analysis following the methods previously described in Scanes et al.,12. This amounted to six individuals from each genotype-line, in each treatment. Each oyster was opened using an autoclave sterilised shucking knife, ensuring that the pericardial cavity was not ruptured. Excess fluid was tipped off the tissue surface and 200–300 µL of haemolymph was extracted from the pericardial cavity using a new sterile 1 mL needled syringe (Terumo Co.). Samples from two oysters were transferred to two new pre-labelled DNA/RNA free 1 mL tubes (Eppendorf Co.) and immediately frozen at − 80 °C where they were stored until DNA extraction.We used 16 s rRNA amplicon sequencing to characterise the bacterial microbiome of S. glomerata haemolymph following the methods previously described in Scanes et al.12. DNA was extracted from 216 oyster haemolymph samples (9 genotype-lines × 4 treatments × 3 replicate tanks × 2 replicate oysters per tank) using the Qiagen DNeasy Blood and Tissue Kit (Qiagen Australia, Chadstone, VIC), according to the manufacturer’s instructions. The bacterial microbiome of the oyster haemolymph was characterised with 16S rRNA amplicon sequencing, using the 341F (CCTACGGGNGGCWGCAG) and 805R (GACTACHVGGGTATCTAATCC) primer pair28 targeting the V3-V4 variable regions of the 16S rRNA gene with the following cycling conditions: 95 °C for 3 min, 25 cycles of 95 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s, and a final extension at 72 °C for 5 min. Amplicons were sequenced on the Illumina Miseq platform (2 × 300 bp) following the manufacturer’s guidelines at the Ramaciotti Centre for Genomics, University of New South Wales. Raw data files in FASTQ format were deposited in NCBI Sequence Read Archive (SRA) under Bioproject number PRJNA663356.Sequence analysisRaw demultiplexed data was processed using the Quantitative Insights into Microbial Ecology (QIIME 2 version 2019.1.0) pipeline. Briefly, paired-end sequences were imported (qiime tools import), trimmed and denoised using DADA2 (version 2019.1.0). Sequences were identified at the single nucleotide threshold (Amplicon Sequence Variants; ASV) and taxonomy was assigned using the classify-sklearn QIIME 2 feature classifier against the Silva v138 database29. Sequences identified as chloroplasts or mitochondria were also removed. Cleaned data were then rarefied at 6,500 counts per sample.Physiological analysisWe measured physiological variables relating to oyster haemolymph metabolic function. These were: extracellular pH (pHe), extracellular CO2 concentrations (PCO2e) and the whole oyster metabolic rate (MR) measured as a standardised rate of oxygen consumption. Physiological measurements were taken from two oysters from each genotype-line in each tank (methods followed that of Parker et al.16,30 and Scanes et al.18). Oysters were immediately opened without rupturing the pericardial cavity. Haemolymph samples were drawn from the interstitial fluid filling the pericardial cavity chamber of an opened oyster using a sealed 1 mL needled syringe. A 0.2 mL sample was drawn carefully to avoid aeration of the haemolymph. Half of the sample was then immediately transferred to an Eppendorf tube where pHe of the sample was measured at 20 °C using a micro pH probe (Metrohm 827 biotrode). The remaining haemolymph was transferred to a gas analyser (CIBA Corning 965) to determine total CO2 (CCO2). The micro pH probe was calibrated prior to use with NBS standards at the acclimation temperature and the gas analyser was calibrated using manufacturer guidelines. Two oysters were sampled per genotype-line in each replicate tank. Partial pressure of CO2 in haemolymph (PCO2e) was calculated from the CCO2 using the modified Henderson-Hasselbalch equation according to Heisler31,32. Metabolic rate (MR) was determined using a closed respiratory system as previously described in Parker et al.16 and Scanes et al.18. Briefly, MR was measured in two oysters per genotype-line, per tank by placing oysters in a closed 500 mL glass chamber containing filtered seawater (5 µm) set at the correct treatment conditions. Oxygen concentrations were then measured within the chamber using a fibre optic dipping probe (PreSens dipping probe DP-PSt3, AS1 Ltd, Regensburg, Germany) and recorded (15 s intervals) until the oxygen concentration had been reduced by 20%, the time taken to reduce oxygen by 20% was recorded. Oysters were removed from the chambers, opened and the tissue was dried at 70 °C for 72 h. Tissue was then weighed on an electronic balance (± 0.001 g), and MR was calculated using Eq. (1):$$MR = frac{{left[ {V_{r} times Delta {text{C}}_{W} O_{2} } right]}}{{Delta t times {text{bw}}}}$$
    (1)

    where MR is oxygen consumption normalised to 1 g of dry tissue mass (mg O2 g−1 dry tissue mass h−1), Vr is the volume of the respiratory chamber minus the volume of the oyster (L), ΔCWO2 is the change in water oxygen concentration measured (mg O2L−1), Δt is the measuring time (h), bw is the dry tissue mass (g). Equation is modified from Parker et al.16.Data analysisIt was not possible to measure all variables in each oyster, but rather three individuals were needed to fulfil one replicate set of measurements. PCO2e and pHe could be measured in the same individual however, MR and the microbiome were measured in separate individuals. This meant that measurements were taken from 6 oysters per genotype-line, per replicate tank (each measurement replicated twice). To align physiological data with microbiome data we took a conservative approach where data from PCO2e and pHe, MR and the microbiome were randomly matched to individuals from the same genotype-line and replicate tank. This gave us the best approximation and is conservative because it increased variability compared to taking all measurements from the same individual. ANOVA was used to determine the significant (n = 210; P  More

  • in

    Parental methyl-enhanced diet and in ovo corticosterone affect first generation Japanese quail (Coturnix japonica) development, behaviour and stress response

    1.Hill, W. L. Importance of prenatal nutrition to the development of a precocial chick. Dev. Psychobiol. 26, 237–249. https://doi.org/10.1002/dev.420260502 (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    2.van Emous, R. A., Kwakkel, R. P., van Krimpen, M. M., van den Brand, H. & Hendriks, W. H. Effects of growth patterns and dietary protein levels during rearing of broiler breeders on fertility, hatchability, embryonic mortality, and offspring performance. Poult. Sci. 94, 681–691. https://doi.org/10.3382/ps/pev024 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Spratt, R. S. & Leeson, S. Broiler breeder performance in response to diet protein and energy. Poult. Sci. 66, 683–693. https://doi.org/10.3382/ps.0660683 (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Walsh, T. J. & Brake, J. The effect of nutrient intake during rearing of broiler breeder females on subsequent fertility. Poult. Sci. 76, 297–305. https://doi.org/10.1093/ps/76.2.297 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Goodwin, K., Lamoreux, W. F. & Dickerson, G. E. Maternal effects in chickens: Performance of daughters from dams of differing ages. Poult. Sci. 43, 1435–1442. https://doi.org/10.3382/ps.0431435 (1964).Article 

    Google Scholar 
    6.Coakley, C. M., Staszewski, V., Herborn, K. A. & Cunningham, E. J. Factors affecting the levels of protection transferred from mother to offspring following immune challenge. Front Zool. 11, 46–46. https://doi.org/10.1186/1742-9994-11-46 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38. https://doi.org/10.1038/npp.2012.112 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev. 23, 781–783. https://doi.org/10.1101/gad.1787609 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Nelson, V. R. & Nadeau, J. H. Transgenerational genetic effects. Epigenomics 2, 797–806. https://doi.org/10.2217/epi.10.57 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Dupont, C., Armant, D. R. & Brenner, C. A. Epigenetics: Definition, mechanisms and clinical perspective. Sem. Reprod. Med. 27, 351–357. https://doi.org/10.1055/s-0029-1237423 (2009).CAS 
    Article 

    Google Scholar 
    11.Burdge, G. C., Hoile, S. P. & Lillycrop, K. A. Epigenetics: Are there implications for personalised nutrition?. Curr. Opin. Clin. Nutr. Metab. Care 15, 442–447. https://doi.org/10.1097/MCO.0b013e3283567dd2 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Anderson, O. S., Sant, K. E. & Dolinoy, D. C. Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 23, 853–859. https://doi.org/10.1016/j.jnutbio.2012.03.003 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Clare, C. E., Brassington, A. H., Kwong, W. Y. & Sinclair, K. D. One-carbon metabolism: Linking nutritional biochemistry to epigenetic programming of long-term development. Ann. Rev. Anim. Biosci. 7, 263–287. https://doi.org/10.1146/annurev-animal-020518-115206 (2019).CAS 
    Article 

    Google Scholar 
    14.Kadayifci, F. Z., Zheng, S. & Pan, Y.-X. Molecular mechanisms underlying the link between diet and DNA methylation. Int. J. Mol. Sci. 19, 4055. https://doi.org/10.3390/ijms19124055 (2018).Article 
    PubMed Central 

    Google Scholar 
    15.Waterland, R. A. & Jirtle, R. L. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20, 63–68. https://doi.org/10.1016/j.nut.2003.09.011 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Eklund, M., Bauer, E., Wamatu, J. & Mosenthin, R. Potential nutritional and physiological functions of betaine in livestock. Nutr. Res. Rev. 18, 31–48. https://doi.org/10.1079/nrr200493 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Ratriyanto, A., Indreswari, R., Dewanti, R. & Wahyuningsih, S. Egg quality of quails fed low methionine diet supplemented with betaine. IOP Conf. Ser. Earth Environ. Sci. 142, 012002. https://doi.org/10.1088/1755-1315/142/1/012002 (2018).Article 

    Google Scholar 
    18.Ratriyanto, A., Indreswari, R. & Nuhriawangsa, A. Effects of dietary protein level and betaine supplementation on nutrient digestibility and performance of Japanese quails. Braz. J. Poultry Sci. 19, 445–454 (2017).Article 

    Google Scholar 
    19.Fetterer, R. H., Augustine, P. C., Allen, P. C. & Barfield, R. C. The effect of dietary betaine on intestinal and plasma levels of betaine in uninfected and coccidia-infected broiler chicks. Parasitol. Res. 90, 343–348. https://doi.org/10.1007/s00436-003-0864-z (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Kettunen, H., Tiihonen, K., Peuranen, S., Saarinen, M. T. & Remus, J. C. Dietary betaine accumulates in the liver and intestinal tissue and stabilizes the intestinal epithelial structure in healthy and coccidia-infected broiler chicks. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 130, 759–769. https://doi.org/10.1016/s1095-6433(01)00410-x (2001).CAS 
    Article 

    Google Scholar 
    21.Ratriyanto, A., Mosenthin, R., Bauer, E. & Eklund, M. Metabolic, osmoregulatory and nutritional functions of betaine in monogastric animals. Asian-Australas J. Anim. Sci. 22, 1461–1476. https://doi.org/10.5713/ajas.2009.80659 (2009).CAS 
    Article 

    Google Scholar 
    22.Zhan, X. A., Li, J. X., Xu, Z. R. & Zhao, R. Q. Effects of methionine and betaine supplementation on growth performance, carcase composition and metabolism of lipids in male broilers. Braz. Poult. Sci. 47, 576–580. https://doi.org/10.1080/00071660600963438 (2006).CAS 
    Article 

    Google Scholar 
    23.Omer, N. A. et al. Dietary betaine improves egg-laying rate in hens through hypomethylation and glucocorticoid receptor–mediated activation of hepatic lipogenesis-related genes. Poult. Sci. 99, 3121–3132. https://doi.org/10.1016/j.psj.2020.01.017 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Maidin, M. B. M. et al. Dietary betaine reduces plasma homocysteine concentrations and improves bone strength in laying hens. Br. Poult. Sci. https://doi.org/10.1080/00071668.2021.1883550 (2021).Article 
    PubMed 

    Google Scholar 
    25.Chen, R. et al. Betaine improves the growth performance and muscle growth of partridge shank broiler chickens via altering myogenic gene expression and insulin-like growth factor-1 signaling pathway. Poult. Sci. 97, 4297–4305. https://doi.org/10.3382/ps/pey303 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Ratriyanto, A., Nuhriawangsa, A. M. P., Masykur, A., Prastowo, S. & Widyas, N. Egg production pattern of quails given diets containing different energy and protein contents. AIP Conf. Proc. 2014, 020011. https://doi.org/10.1063/1.5054415 (2018).Article 

    Google Scholar 
    27.Rao, S. V. R., Raju, M. V. L. N., Panda, A. K., Saharia, P. & Sunder, G. S. Effect of supplementing betaine on performance, carcass traits and immune responses in broiler chicken fed diets containing different concentrations of methionine. Asian-Australas J. Anim. Sci. 24, 662–669. https://doi.org/10.5713/ajas.2011.10286 (2011).CAS 
    Article 

    Google Scholar 
    28.Adkins-Regan, E., Banerjee, S. B., Correa, S. M. & Schweitzer, C. Maternal effects in quail and zebra finches: Behavior and hormones. Gen. Comp. Endocrinol. 190, 34–41. https://doi.org/10.1016/j.ygcen.2013.03.002 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Henriksen, R., Rettenbacher, S. & Groothuis, T. G. Prenatal stress in birds: Pathways, effects, function and perspectives. Neurosci. Biobehav. Rev. 35, 1484–1501. https://doi.org/10.1016/j.neubiorev.2011.04.010 (2011).Article 
    PubMed 

    Google Scholar 
    30.Peixoto, M. R. L. V., Karrow, N. A., Newman, A. & Widowski, T. M. Effects of maternal stress on measures of anxiety and fearfulness in different strains of laying hens. Front. Vet. Sci. https://doi.org/10.3389/fvets.2020.00128 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Lay, D. C. Jr. & Wilson, M. E. Development of the chicken as a model for prenatal stress. J. Anim. Sci. 80, 1954–1961. https://doi.org/10.2527/2002.8071954x (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Zhang, M. et al. Impacts of heat stress on meat quality and strategies for amelioration: A review. Int. J. Biometeorol. 64, 1613–1628. https://doi.org/10.1007/s00484-020-01929-6 (2020).ADS 
    Article 
    PubMed 

    Google Scholar 
    33.Boonstra, R. Coping with changing northern environments: The role of the stress axis in birds and mammals. Integr. Comp. Biol. 44, 95–108. https://doi.org/10.1093/icb/44.2.95 (2004).Article 
    PubMed 

    Google Scholar 
    34.Smulders, T. V. The avian hippocampal formation and the stress response. Brain Behav. Evol. 90, 81–91. https://doi.org/10.1159/000477654 (2017).Article 
    PubMed 

    Google Scholar 
    35.Wingfield, J.C. in Perspectives in Comparative Endocrinology (eds Davey, K.G., Peter, R.E. Tobe, S.S.) 520–528 (National Research Council of Canada, 1994).36.Wingfield, J. C. & Romero, L. M. Handbook of Physiology, Section 7: The Endocrine System. In Ch. Coping with the Environment: Neural and Endocrine Mechanisms Vol. 4 (eds McEwen, B. S. & Goodman, H. M.) 211–234 (Oxford University Press, 2001).
    Google Scholar 
    37.Love, O. P. & Williams, T. D. Plasticity in the adrenocortical response of a free-living vertebrate: The role of pre- and post-natal developmental stress. Horm. Behav. 54, 496–505. https://doi.org/10.1016/j.yhbeh.2008.01.006 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. Biol. Sci. 271, 847–852. https://doi.org/10.1098/rspb.2004.2680 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Martins, T. L., Roberts, M. L., Giblin, I., Huxham, R. & Evans, M. R. Speed of exploration and risk-taking behavior are linked to corticosterone titres in zebra finches. Horm. Behav. 52, 445–453. https://doi.org/10.1016/j.yhbeh.2007.06.007 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Blas, J., Bortolotti, G. R., Tella, J. L., Baos, R. & Marchant, T. A. Stress response during development predicts fitness in a wild, long lived vertebrate. Proc. Natl. Acad. Sci. U.S.A. 104, 8880–8884. https://doi.org/10.1073/pnas.0700232104 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Breuner, C. W., Greenberg, A. L. & Wingfield, J. C. Noninvasive corticosterone treatment rapidly increases activity in Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii). Gen. Comp. Endocrinol. 111, 386–394. https://doi.org/10.1006/gcen.1998.7128 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Zimmer, C., Boogert, N. J. & Spencer, K. A. Developmental programming: Cumulative effects of increased pre-hatching corticosterone levels and post-hatching unpredictable food availability on physiology and behaviour in adulthood. Horm. Behav. 64, 494–500. https://doi.org/10.1016/j.yhbeh.2013.07.002 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Morris, K. M. et al. The quail genome: Insights into social behaviour, seasonal biology and infectious disease response. BMC Biol. 18, 14. https://doi.org/10.1186/s12915-020-0743-4 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Phillips, C., Angel, R. & Ashwell, C. in XVth European Poultry Conference 548 (Dubrovnik, 2018).45.Daghir, N. J., Marion, W. W. & Balloun, S. L. Influence of dietary fat and choline on serum and egg yolk cholesterol in the laying chicken1. Poult. Sci. 39, 1459–1466. https://doi.org/10.3382/ps.0391459 (1960).CAS 
    Article 

    Google Scholar 
    46.Griffith, M., Olinde, A. J., Schexnailder, R., Davenport, R. F. & McKnight, W. F. Effect of choline, methionine and vitamin B12 on liver fat, egg production and egg weight in hens. Poult. Sci. 48, 2160–2172. https://doi.org/10.3382/ps.0482160 (1969).CAS 
    Article 

    Google Scholar 
    47.Xiao, X., Wang, Y., Liu, W., Ju, T. & Zhan, X. Effects of different methionine sources on production and reproduction performance, egg quality and serum biochemical indices of broiler breeders. Asian Australas. J. Anim. Sci. 30, 828–833. https://doi.org/10.5713/ajas.16.0404 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Min, Y. N. et al. Effects of methionine hydroxyl analog chelated zinc on laying performance, eggshell quality, eggshell mineral deposition, and activities of Zn-containing enzymes in aged laying hens. Poult. Sci. 97, 3587–3593. https://doi.org/10.3382/ps/pey203 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Woolveridge, I. & Peddie, M. J. The inhibition of androstenedione production in mature thecal cells from the ovary of the domestic hen (Gallus domesticus): Evidence for the involvement of progestins. Steroids 62, 214–220. https://doi.org/10.1016/s0039-128x(96)00209-7 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Herrick, E. H. Some influences of stilbestrol, estrone, and testosterone propionate on the genital tract of young female fowls*. Poult. Sci. 23, 65–66. https://doi.org/10.3382/ps.0230065 (1944).CAS 
    Article 

    Google Scholar 
    51.Berg, C., Holm, L., Brandt, I. & Brunström, B. Anatomical and histological changes in the oviducts of Japanese quail, Coturnix japonica, after embryonic exposure to ethynyloestradiol. Reproduction 121, 155–165. https://doi.org/10.1530/rep.0.1210155 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Ratriyanto, A., Nuhriawangsa, A.M.P., Masykur, A., Prastowo, S. & Widyas, N. Egg production pattern of quails given diets containing different energy and protein contents. 2011, 020011. https://doi.org/10.1063/1.5054415 (2018).53.Taves, M. D., Gomez-Sanchez, C. E. & Soma, K. K. Extra-adrenal glucocorticoids and mineralocorticoids: Evidence for local synthesis, regulation, and function. Am. J. Physiol.-Endocrinol. Metab. 301, E11–E24. https://doi.org/10.1152/ajpendo.00100.2011 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Dunnington, E. A. & Siegel, P. B. Age and body weight at sexual maturity in female white leghorn chickens. Poult. Sci. 63, 828–830 (1984).CAS 
    Article 

    Google Scholar 
    55.Saunderson, C. L. & Mackinlay, J. Changes in body-weight, composition and hepatic enzyme activities in response to dietary methionine, betaine and choline levels in growing chicks. Br. J. Nutr. 63, 339–349. https://doi.org/10.1079/BJN19900120 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Zaefarian, F., Abdollahi, M. R., Cowieson, A. & Ravindran, V. Avian liver: The forgotten organ. Animals 9, 63. https://doi.org/10.3390/ani9020063 (2019).Article 
    PubMed Central 

    Google Scholar 
    57.Daisley, J. N., Bromundt, V., Möstl, E. & Kotrschal, K. Enhanced yolk testosterone influences behavioral phenotype independent of sex in Japanese quail chicks Coturnix japonica. Horm. Behav. 47, 185–194. https://doi.org/10.1016/j.yhbeh.2004.09.006 (2005).CAS 
    Article 

    Google Scholar 
    58.Koolhaas, J. M. et al. Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 23, 925–935. https://doi.org/10.1016/s0149-7634(99)00026-3 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Schwabl, H. Environment modifies the testosterone levels of a female bird and its eggs. J. Exp. Zool. 276, 157–163. https://doi.org/10.1002/(sici)1097-010x(19961001)276:2%3c157::aid-jez9%3e3.0.co;2-n (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Marasco, V., Herzyk, P., Robinson, J. & Spencer, K. A. Pre- and post-natal stress programming: Developmental exposure to glucocorticoids causes long-term brain-region specific changes to transcriptome in the precocial Japanese quail. J. Neuroendocrinol. 28, 1. https://doi.org/10.1111/jne.12387 (2016).CAS 
    Article 

    Google Scholar 
    61.Satterlee, D. G. & Marin, R. H. Stressor-induced changes in open-field behavior of Japanese quail selected for contrasting adrenocortical responsiveness to immobili-zation. Poult. Sci. 85, 404–409 (2006).CAS 
    Article 

    Google Scholar 
    62.Denham, S. G. et al. Development and validation of a method for the determination of steroid profiles in chickens using LC-MS/MS (University of Edinburgh, 2019).
    Google Scholar 
    63.Gilmour, A. R., Gogel, B. J., Cullis, B. R. & Thompson, R. ASReml User Guide Release 3.0 (VSNi, 2009).
    Google Scholar  More

  • in

    Multi-trophic markers illuminate the understanding of the functioning of a remote, low coral cover Marquesan coral reef food web

    1.Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711 (2004).Article 

    Google Scholar 
    2.Briand, M. J., Bonnet, X., Goiran, C., Guillou, G. & Letourneur, Y. Major sources of organic matter in a complex coral reef lagoon: Identification from isotopic signatures (δ13C and δ15N). PLoS ONE 10, e0131555. https://doi.org/10.1371/journal.pone.0131555 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Fey, P. et al. Sources of organic matter in an atypical phytoplankton rich coral ecosystem, Marquesas Islands: composition and properties. Mar. Biol. 167, 92. https://doi.org/10.1007/s00227-020-03703-z (2020).CAS 
    Article 

    Google Scholar 
    4.Briand, M. J., Bonnet, X., Guillou, G. & Letourneur, Y. Complex food webs in highly diversified coral reefs: insights from δ13C and δ15N stable isotopes. Food Webs 8, 12–22. https://doi.org/10.1016/j.fooweb.2016.07.002 (2016).Article 

    Google Scholar 
    5.Bierwagen, S. L., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Trophodynamics as a tool for understanding coral reef ecosystems. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00024 (2018).Article 

    Google Scholar 
    6.Halpern, B. S. et al. A Global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496. https://doi.org/10.1038/s41586-018-0041-2 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390. https://doi.org/10.1038/s41586-019-1081-y (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Wyatt, A. S. J., Waite, A. M. & Humphries, S. Stable isotope analysis reveals community-level variation in fish trophodynamics across a fringing coral reef. Coral Reefs 31, 1029–1044 (2012).ADS 
    Article 

    Google Scholar 
    10.Letourneur, Y. et al. Identifying carbon sources and trophic position of coral reef fishes using diet and stable isotope (δ15N and δ13C) analyses in two contrasted bays in Moorea, French Polynesia. Coral Reefs 32, 1091–1102. https://doi.org/10.1007/s00338-013-1073-6 (2013).ADS 
    Article 

    Google Scholar 
    11.Zhu, Y., Newman, S. P., Reid, W. D. K. & Polunin, N. V. C. Fish stable isotope community structure of a Bahamian coral reef. Mar. Biol. 166, 160. https://doi.org/10.1007/s00227-019-3599-9 (2019).Article 

    Google Scholar 
    12.McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821. https://doi.org/10.1007/s00442-015-3475-3 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    13.Skinner, C. et al. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. Sci. Adv. https://doi.org/10.1126/sciadv.abf3792 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Mann, K. H. Production and use of detritus in various freshwater, estuarine and coastal marine ecosystems. Limnol. Oceanogr. 33, 910–930 (1988).ADS 
    CAS 

    Google Scholar 
    15.Antonio, B., Maria Teresa, A.-O. & Manuel, V. Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Mar. Ecol. Prog. Ser. 318, 89–102 (2006).Article 

    Google Scholar 
    16.Gazeau, F., Smith, S. V., Gentili, B., Frankignoulle, M. & Gattuso, J.-P. The European coastal zone: characterization and first assessment of ecosystem metabolism. Est. Coast. Shelf Sci. 60, 673–694. https://doi.org/10.1016/j.ecss.2004.03.007 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. M. Zooplankton, planktivorous fish, and water currents on a windward reef face: great Barrier Reef, Australia. Bull. Mar. Sci. 42, 459–479 (1988).
    Google Scholar 
    18.Hamner, W. M., Colin, P. L. & Hamner, P. P. Export-import dynamics of zooplankton on a coral reef in Palau. Mar. Ecol. Prog. Ser. 334, 83–92 (2007).ADS 
    Article 

    Google Scholar 
    19.Carassou, L., Kulbicki, M., Nicola, T. J. R. & Polunin, N. V. C. Assessment of fish trophic status and relationships by stable isotope data in the coral reef lagoon of New Caledonia, southwest Pacific. Aquat. Living Resour. 21, 1–12 (2008).Article 

    Google Scholar 
    20.Frédérich, B., Fabri, G., Lepoint, G., Vandewalle, P. & Parmentier, E. Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichthyol. Res. 56, 10–17. https://doi.org/10.1007/s10228-008-0053-2 (2009).Article 

    Google Scholar 
    21.Riera, P. & Richard, P. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuar. Coast. Shelf Sci. 42, 347–360 (1996).ADS 
    Article 

    Google Scholar 
    22.Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Fresh. Wat. Res. 50, 839–866 (1999).
    Google Scholar 
    23.Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711. https://doi.org/10.1371/journal.pone.0000711 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Roff, G. et al. Porites and the Phoenix effect: unprecedented recovery after a mass coral bleaching event at Rangiroa Atoll, French Polynesia. Mar. Biol. 161, 1385–1393. https://doi.org/10.1007/s00227-014-2426-6 (2014).Article 

    Google Scholar 
    26.Hoey, A. et al. Recent advances in understanding the effects of climate change on coral reefs. Diversity 8, 12 (2016).Article 

    Google Scholar 
    27.Cabioch, G. et al. Successive reef depositional events along the Marquesas foreslopes (French Polynesia) since 26 ka. Mar. Geol. 254, 18–34. https://doi.org/10.1016/j.margeo.2008.04.014 (2008).ADS 
    Article 

    Google Scholar 
    28.Galzin, R., Duron, S. D. & Meyer, J. Y. Biodiversité terrestre et marine des îles Marquises, Polynésie française. (Société française d’Ichtyologie, 2016).29.SO CORAIL. Site d’observation CORAIL, https://sextant.ifremer.fr/record/le51de1b-7979-4487-b5d5-329394d166da (2018).30.Martinez, E., M., R. & Maamaatuaiahutapu, K. in Biodiversité terrestre et marine des îles Marquises, Polynésie française (eds Galzin R., Duron S.-D., & Meyer J.-Y) 123–136 (Société Française d’Ichtyologie, 2016).31.Houk, P. & Musburger, C. Trophic interactions and ecological stability across coral reefs in the Marshall Islands. Mar. Ecol. Prog. Ser. 488, 23–34 (2013).ADS 
    Article 

    Google Scholar 
    32.Raapoto, H., Martinez, E., Petrenko, A., Doglioli, A. M. & Maes, C. Modeling the Wake of the Marquesas Archipelago. J. Geophys. Res. Oceans 123, 1213–1228. https://doi.org/10.1002/2017jc013285 (2018).ADS 
    Article 

    Google Scholar 
    33.Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 8 (2001).
    Google Scholar 
    34.De Niro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).ADS 
    Article 

    Google Scholar 
    35.Layman, C. A. et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 87, 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2012).Article 
    PubMed 

    Google Scholar 
    36.Pinnegar, J. & Polunin, N. V. C. Differential fractionation of d13C and d15N among fish tissues: implications for the study of trophic interactions. Funct. Ecol. 13, 225–231 (1999).Article 

    Google Scholar 
    37.De Niro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).ADS 
    Article 

    Google Scholar 
    38.Hannides, C. C. S., Popp, B. N., Landry, M. R. & Graham, B. S. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnol. Oceanogr. 54, 50–61. https://doi.org/10.4319/lo.2009.54.1.0050 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Hannides, C. C. S., Popp, B. N., Choy, C. A. & Drazen, J. C. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnol. Oceanogr. 58, 1931–1946. https://doi.org/10.4319/lo.2013.58.6.1931 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–710 (2002).Article 

    Google Scholar 
    41.Meziane, T. et al. Inter-specific and geographical variations in the fatty acid composition of mangrove leaves: implications for using fatty acids as a taxonomic tool and tracers of organic matter. Mar. Biol. 150, 1103–1113. https://doi.org/10.1007/s00227-006-0424-z (2007).CAS 
    Article 

    Google Scholar 
    42.Parrish, C. C. et al. in Marine Chemistry (ed P. J. Wangersky) 193–223 (Springer Berlin Heidelberg, 2000).43.Alfaro, A. C., Thomas, F., Sergent, L. & Duxbury, M. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Est. Coast. Shelf Sci. 70, 271–286. https://doi.org/10.1016/j.ecss.2006.06.017 (2006).ADS 
    Article 

    Google Scholar 
    44.Meyers, P. A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 27, 213–250. https://doi.org/10.1016/S0146-6380(97)00049-1 (1997).CAS 
    Article 

    Google Scholar 
    45.Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D. & Hagen, W. in Advances in Marine Biology Vol. 46 225–340 (Academic Press, 2003).46.Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I. & Garland, C. D. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128, 219–240. https://doi.org/10.1016/0022-0981(89)90029-4 (1989).CAS 
    Article 

    Google Scholar 
    47.Volkman, J. K., Johns, R. B., Gillan, F. T., Perry, G. J. & Bavor, H. J. Microbial lipids of an intertidal sediment—I. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta 44, 1133–1143. https://doi.org/10.1016/0016-7037(80)90067-8 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Lee, R. F., Hirota, J. & Barnett, A. M. Distribution and importance of wax esters in marine copepods and other zooplankton. Deep Sea Res. A 18, 1147. https://doi.org/10.1016/0011-7471(71)90023-4 (1971).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Wakeham, S. G., Hedges, J. I., Lee, C., Peterson, M. L. & Hernes, P. J. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean. Deep Sea Res. Part II 44, 2131–2162. https://doi.org/10.1016/S0967-0645(97)00035-0 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Budge, S. M. & Parrish, C. C. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Organic Geochem. 29, 1547–1559. https://doi.org/10.1016/S0146-6380(98)00177-6 (1998).CAS 
    Article 

    Google Scholar 
    51.Meziane, T., Agata, D. F. & Lee, S. Y. Fate of mangrove organic matter along a subtropical estuary: small-scale exportation and contribution to the food of crab communities. Mar. Ecol. Prog. Ser. 312, 15–27 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–269 (2003).ADS 
    Article 

    Google Scholar 
    53.Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5, e9672. https://doi.org/10.1371/journal.pone.0009672 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.R Core Team. (R Foundation for Statistical Computing, Vienna, Austria, 2018).55.du Percie, S. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol. 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).CAS 
    Article 

    Google Scholar 
    56.Page, H. M. et al. Stable isotopes reveal trophic relationships and diet of consumers in temperate kelp forest and coral reef ecosystems. Oceanography 26, 180–189 (2013).Article 

    Google Scholar 
    57.Morillo-Velarde, P. S. et al. Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. Sci. Rep. 8, 4109. https://doi.org/10.1038/s41598-018-22463-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Bellwood, D. R. & Choat, J. H. A functional analysis of grazing in parrotfishes (family Scaridae): The ecological implications. Environ. Biol. Fish. 28, 189–214 (1990).Article 

    Google Scholar 
    59.Choat, J. H., Clements, K. D. & Robbins, W. D. The trophic status of herbivorous fishes on coral reefs. I: Dietary analyses. Mar. Biol. 140, 613–623 (2002).CAS 
    Article 

    Google Scholar 
    60.Dromard, C. R. et al. Resource use of two damselfishes, Stegastes planifrons and Stegastes adustus, on Guadeloupean reefs (Lesser Antilles): Inference from stomach content and stable isotope analysis. J. Exp. Mar. Biol. Ecol. 440, 116–125. https://doi.org/10.1016/j.jembe.2012.12.011 (2013).Article 

    Google Scholar 
    61.Hedges, J. I. et al. Compositions and fluxes of particulate organic material in the Amazon River1. Limnol. Oceanogr. 31, 717–738. https://doi.org/10.4319/lo.1986.31.4.0717 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    62.Nicholson, G. M. & Clements, K. D. Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata. Coral Reefs 39, 1313–1327. https://doi.org/10.1007/s00338-020-01964-0 (2020).Article 

    Google Scholar 
    63.Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol. J. Lin. Soc. 120, 729–751. https://doi.org/10.1111/bij.12914 (2016).Article 

    Google Scholar 
    64.Bradley, C. J., Longenecker, K., Pyle, R. L. & Popp, B. N. Compound-specific isotopic analysis of amino acids reveals dietary changes in mesophotic coral-reef fish. Mar. Ecol. Prog. Ser. 558, 65–79 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    65.Raimbault, P., Garcia, N. & Cerutti, F. Distribution of inorganic and organic nutrients in the South Pacific Ocean-evidence for long-term accumulation of organic matter in nitrogen-depleted waters. Biogeosciences 5, 281. https://doi.org/10.5194/bg-5-281-2008 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    66.Savoye, N. et al. Dynamics of particulate organic matter d15N and d13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay of Seine, France). Mar. Ecol. Prog. Ser. 255, 27–41 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    67.Montoya, J. P. & McCarthy, J. J. Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture. J. Plankton Res. 17, 439–464. https://doi.org/10.1093/plankt/17.3.439 (1995).CAS 
    Article 

    Google Scholar 
    68.Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250. https://doi.org/10.1111/ele.12226 (2014).Article 
    PubMed 

    Google Scholar 
    69.Letourneur, Y., Briand, M. J. & Graham, N. A. J. Coral reef degradation alters the isotopic niche of reef fishes. Mar. Biol. 164, 224. https://doi.org/10.1007/s00227-017-3272-0 (2017).CAS 
    Article 

    Google Scholar 
    70.Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).Article 

    Google Scholar 
    71.Viviani, J. et al. Synchrony patterns reveal different degrees of trophic guild vulnerability after disturbances in a coral reef fish community. Divers. Distrib. 25, 1210–1221. https://doi.org/10.1111/ddi.12931 (2019).Article 

    Google Scholar 
    72.Diaz-Pulido, G., Gouezo, M., Tilbrook, B., Dove, S. & Anthony, K. R. N. High CO2 enhances the competitive strength of seaweeds over corals. Ecol. Lett. 14, 156–162. https://doi.org/10.1111/j.1461-0248.2010.01565.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Koch, M., Bowes, G., Ross, C. & Zhang, X.-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x (2013).ADS 
    Article 

    Google Scholar 
    74.Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342. https://doi.org/10.1126/science.aac7125 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Jackson, J. B. C. What is natural in the coastal oceans?. Proc. Natl. Acad. Sci. USA 98, 5411–5418 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of Reef ecosystems. Annu. Rev. Microbiol. 70, 317–340. https://doi.org/10.1146/annurev-micro-102215-095440 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    77.Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521-1527.e1526. https://doi.org/10.1016/j.cub.2019.03.044 (2019).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Optimal virtual water flows for improved food security in water-scarce countries

    Crop production, water productivity, and virtual waterA method to calculate the water needed for crops is the water footprint (WF). The WF has a color-based classification: green water (precipitation), blue water (ground and surface water), and grey water (water to dilute polluted water to accepted water quality standards). A manual on how to calculate WFs has been published12. Calculations of WFs integrate green and blue crop water use (evapotranspiration by crops) over the growing period of specific crops and express results per unit of yield (m3 kg−1). The difference between crop-water use and effective rainfall is applied as a proxy for blue WFs when no data on actual irrigation water supply are available. WFs of specific crops vary greatly among countries, and even within countries45. This means that water can be saved when crops are smartly traded. This may also be possible within a country if crops are grown where water productivity is the highest.Calculation of the water footprintWater footprints (WFs) are calculated as green and blue water footprints (WFgreen, WFblue, respectively) adopting the method from the WF manual12. This study assumes that the difference between crop water requirement and evapotranspiration of green water (ETGreen) in crops is equal to the evapotranspiration of blue water (ETblue); therefore, crop water requirements are met with irrigation water. The crop water requirements are estimated with the Food and Agriculture Organization’s CROPWAT model46. The selected methods for calculating the reference evapotranspiration (ET0) and effective precipitation (Peff) are the FAO Penman–Monteith method47,48 and the USDA’s SCS method48, respectively. Calculations were performed at the provincial scale for each crop. Equations (1) through (4) are applied to calculate WFgreen and WFblue for the crops included in this study:Actual crop evapotranspiration from reference evapotranspiration:$$ ET_{c} = sum_{t} {ET_{0} times K_{c} } $$
    (1)
    Reference evapotranspiration:$$ ET_{0} = frac{{0.408Delta left( {R_{n} – G} right) + gamma frac{900}{{T + 273}}U_{2} left( {e_{a} – e_{d} } right)}}{{Delta + gamma left( {1 + 0.34U_{2} } right)}} $$
    (2)
    $$ WF_{green} = 10 times frac{{min left[ {ET_{c} ,P_{eff} } right]}}{Y} $$
    (3)
    $$ WF_{blue} = 10 times frac{{max left[ {0,ET_{c} – P_{eff} } right]}}{Y} $$
    (4)
    where ETc denotes the actual crop evapotranspiration (mm) during the growth period (t), ET0 represents the reference evapotranspiration (mm day−1), and Kc denotes the crop coefficient based on crop type and development stages (initial, middle, and late stages). In Eq. (2) ea (kPa), ed (kPa), Δ (kPa °C−1), G (MJ m−2 day−1), T (°C), Rn (MJ m−2 day−1), U2 (m s−1), and γ (kPa °C−1) denote the saturation vapor pressure, the actual vapor pressure, the slope of the saturation-vapor pressure curve, the soil heat flux, the average air temperature, the net radiation on the crop surface, the wind speed measured at a height of 2 m above ground level, and the psychrometric constant, respectively. Equations (3) and (4) calculate the green and blue water footprints (m3 ton−1), in which Peff (mm), Y (ton ha−1), and 10, are represent effective precipitation, the crop yield, and a conversion factor from mm to m3 ha−1, respectively. WFgreen and WFblue occur in irrigated cultivation; however, there is only WFgreen in rainfed cultivation.Optimization of crop productionAll the steps of the methods used in this work were coded in MATLAB for use by decision-makers, planners, and interested organizations.Balancing the agricultural systemAn internal trade network was created to organize and remedy the weaknesses of the trade network. The lack of a comprehensive trade network has caused the crops to be exported regardless of the country’s demands, which eventually leads to the import of the same crops. The production and demand amounts of each crop in each province and their WFgreen and WFblue are determined with the following equations applied to N = 51 crops in J = 31 provinces:$$ {CP}_{(i,j)} = {ICP}_{(i,j)} + {RCP}_{(i,j)} $$
    (5)
    $$ {ICP}_{(i,j)} = left( {{BCY}_{(i,j)} times {ICA}_{(i,j)} } right) $$
    (6)
    $$ {RCP}_{(i,j)} = left( {{GCY}_{(i,j)} times {RCA}_{(i,j)} } right) $$
    (7)
    $$ {CD}_{(i,j)} = left( {{PCD}_{i} times {POP}_{J} } right) $$
    (8)
    $$ {TWF}_{blue(i,j)} = {ICP}_{(i,j)} times {WF}_{blue(i,j)} $$
    (9)
    $$ {TWF}_{green(i,j)} = {ICP}_{(i,j)} times {WF}_{green(i,j)} $$
    (10)
    where (i=1, 2,ldots , N;j=1, 2, ldots, J,) CP(i,j) (ton), ICP(i,j) (ton), RCP(i,j) (ton), BCY(i,j) (ton.ha−1), GCY(i,j) (ton.ha−1), ICA(i,j) (ha), RCA(i,j) (ha), CD(i,j) (ton), PCDi (ton.person−1), POPj (person), TWFblue(i,j) (m3), and TWFgreen(i,j) (m3) denote the production of crop i in province j, crop production of irrigated land, crop production in rainfed cultivation, irrigated crop yield, rainfed crop yield, irrigated acreage, rainfed areas acreage, demand for crop i in province j, per capita diet, population of province j, the blue WF of crop i in province j corresponding to irrigated cultivation, and the green WFs of crop i in province j corresponding to irrigated cultivation, respectively.TWFblue(i,j) equals zero in rainfed cultivation, and TWFgreen(i,j) is calculated with Eq. (10) based on RCP(i,j). The deficit or surplus over the demand of the provinces were determined by comparing CP(i,j) and CD(i,j) for each crop in each province. Equation (11) implies that CS(i,j) is the amount of crop i supplied in province j (ton), which involves the export and import of crops:$$ {CS}_{(i,j)} = {CP}_{(i,j)} – {CD}_{(i,j)} $$
    (11)
    where (i=1, 2,ldots , N;j=1, 2, ldots, J) .The internal trade network is formed once the deficit and surplus for each crop in the provinces is determined, and crops are traded based on the shortest distance between the provinces. The developed trade network would improve the country’s agricultural system and reduce transportation costs between the provinces. Each province adds to or subtracts Ti,j (ton) from its crop amounts, where imports imply an addition and exports a subtraction of crop amounts. The internal exports and imports of WFs and the net water footprints trade (NWFT) in each province are calculated as follows:$$ {WFT}_{(x,r,i)} = T_{(x,r,i)} times left( {{WF}_{green} + {WF}_{blue} } right)_{(x,i)} $$
    (12)
    $$EW{F}_{(x)}={sum }_{r,i}WF{T}_{(x,r,i)}$$
    (13)
    $$ IWF_{(r)} = sumlimits_{x,i} {WFT_{(x,r,i)} } $$
    (14)
    $$ {NWFT}_{(j)} = IWF_{(j)} – EWF_{(j)} $$
    (15)
    where (i=1, 2,ldots , N;j, x=1, 2, ldots, J, r=x-1), WFT(x,r,i) (m3), T(x,r,i) (ton), (WFgreen + WFblue)(x,i) (m3 ton−1), EWF(x) (m3), IWF(r) (m3), and NWFT(j) (m3) denote the WFs traded for crop i from exporting province x to importing province r, the amount of crop i exported from province x to province r, the blue and green WFs related to crop i in exporting province x, the WFs exported from province x by the trade of crops, the WFs imported into province r by the trade of crops, and the net water footprints trade in province j, respectively.The positive and negative values ​​of NWFT(j) represent the import and export of WFs to province j, respectively. The calculation of the internal trade between provinces with Eq. (11) permits determining the deficits and surpluses for each crop in the provinces nationally. At this juncture the provinces may resort to international trade to cope with deficits and surpluses. However, from this work’s premise of improving food security and self-sufficiency the cropping patterns of surplus crops in the provinces are modified as described in the next section.Modifying exports to optimize the cropping patternThe multi-objective optimization approach to increase food security and self-sufficiency redirects the resources to be used to cultivate export crops to the cultivation of crops that are in deficit (i.e., whose production is less than demand). This modification of cropping patterns in the provinces is based on their traditional cropping patterns. For this purpose, the internal trade network is linked to the optimization method to manage cropping patterns of the regions based on the output of the trade network, and on the goals of achieving food security and preventing water crisis. These two goals are pertinent in many countries where water scarcity is a limiting factor to achieve food security49. Therefore, concerning available agricultural water it is imperative to pay attention to the type of water (green or blue) used. Specifically, WFblue can be used in several areas of consumption; however, WFgreen is not controllable in the same manner. The usage of WFgreen by crops depends on the growing season, and the maximum use can be achieved by choosing the optimal crops. Therefore, this work treats WFgreen and WFblue as indicators of water crisis and food security, which were chosen as objective functions. In other words, controlling and managing WFs prevent its waste (thus reducing the water deficit and crisis). Selecting optimal crops based on WFs will increase production and food security. The water crisis and food security serve as the benchmark for comparison between the reference situation (without optimization) and the results of this new method. The reference situation refers to the initial state of food security and water crisis, which occurs before optimizing the cropping patterns.The food-security objective function is expressed as follows:$$F{S}_{i}=frac{{sum }_{j=1}^{J}C{P}_{(i,j)}}{{sum }_{j=1}^{J}C{D}_{(i,j)}}$$
    (16)
    The water-crisis objective function is written as follows:$${WC}_{j}=frac{sum_{i=1}^{N}{TWF}_{blue(i,j)}}{{RWR}_{j}}$$
    (17)
    where (i=1, 2,ldots, N=51;j=1, 2, ldots, J=31,) FSi, CP(i,j) (ton), CD(i,j) (ton), WCj, TWFblue(i,j) (m3), and RWRj (m3) denote the food security for crop i, production of crop i in province j, the demand of crop i in province j, the water crisis in province j, the blue WFs of crop i in province j, and the renewable water resources in province j, respectively.Maximizing the FS index and minimizing the WC index represent the ideal situation. The maximizing function was converted to a minimization function for the purpose of multiobjective optimization. The final form of the objective functions i given by the following equations:$$Min({Z}_{1})=frac{1}{N}{sum }_{i=1}^{N}(1-F{S}_{i})begin{array}{cc},& where,, F{S}_{i}end{array}=Minleft(frac{{sum }_{j=1}^{J}C{P}_{(i,j)}}{{sum }_{j=1}^{J}C{D}_{(i,j)}},1right)$$
    (18)
    $$Min({Z}_{2})=frac{1}{J}{sum }_{j=1}^{J}W{C}_{j}$$
    (19)
    where (i=1, 2,ldots , N=51;j=1, 2, ldots, J=31.) The objective function Z1 is calculated based on the food security index expressed as an average for all crops, and the objective function Z2 is calculated as the average of the water crisis indexes in the 31 provinces. Both objective functions are affected by cropping patterns and cultivation areas. The water and land used must be calculated prior to modifying the cropping patterns. The amounts of surplus crops in the provinces and their equivalent water and land are calculated using the following equations:$$ {SCP}_{(i,j)} = Max({CP}_{(i,j)} – {CD}_{(i,j)} + T_{(i,j)} ,0) $$
    (20)
    $$ {BCY}_{(i,j)} times (X_{1(i,j)} times ICA_{(i,j)} ) + {GCY}_{(i,j)} times (X_{2(i,j)} times RCA_{(i,j)} ) = {SCP}_{(i,j)} $$
    (21)
    where (i=1, 2,ldots, N;j=1, 2, ldots, J,) SCP(i,j), (X_{1(i,j)}), (X_{2(i,j)}) denote the surplus crop i in province j (ton) determined based on demand and trade in the province, and the percentage of crop i in province j that must be removed from irrigated and rainfed cultivation, respectively. The amount of water and land available for new cultivation are calculated as follows:$$ ICA_{j}^{free} = sumlimits_{i = 1}^{51} {X_{1(i,j)} times ICA_{(i,j)} } $$
    (22)
    $$ RCA_{j}^{free} = sumlimits_{i = 1}^{51} {X_{2(i,j)} times RCA_{(i,j)} } $$
    (23)
    $$ TWF_{blue,j}^{free} = sumlimits_{i = 1}^{51} {{WF}_{blue(i,j)} times BCY_{(i,j)} } times ICA_{j}^{free} $$
    (24)
    where (i=1, 2,ldots , N;j=1, 2, ldots, J,) ICAjfree and RCAjfree denote the total available area of ​​irrigated and rainfed cultivation (ha) in province j, respectively, and TWFblue,jfree represents the total amount of blue WFs available in province j (m3). It is noteworthy that the water and land available in irrigated cultivation can be altered. On the other hand, only the available land is controllable under rainfed cultivation.The objective functions of the proposed method [Eqs. (18) and (19)] were subjected to a set of constraints introduced next.

    (i)

    Modification of the cropping patterns

    The available land in each province is allocated to crops that feature a deficit in the country and are part of the traditional cropping patterns of the provinces. The set of cultivable crops is determined using the following equation:$$ P = left{ {pleft| {p in i,sum_{j = 1}^{31} {SCP_{(p,j)} < 0} } right.} right} $$ (25) where p denotes the set of crops with deficit conditions in the country and SCP(i,j) was defined above. Letting traditional irrigated and rainfed cropping patterns be denoted by Aj and Bj in province j, respectively, the set of irrigated and rainfed crops cultivable in province j was calculated as follows:$$ IC_{j} = P cap A_{j} begin{array}{*{20}c} {} & {(j = 1,2,3,ldots,31)} \ end{array} $$ (26) $$ RC_{j} = P cap B_{j} begin{array}{*{20}c} {} & {(j = 1,2,3,ldots,31)} \ end{array} $$ (27) where (j=1, 2, ldots, J), ICj and RCj denote the irrigated and rainfed crops cultivable in province j, respectively. (ii) Constraint on cultivation area A fraction of ICAjfree can be used in irrigated lands:$$ 0 le M times sumlimits_{i = 1}^{51} {{(X}_{1(i,j)} times ICA_{(i,j)} ) le ICA_{j}^{free} } begin{array}{*{20}c} , & {0 le M le 1} & {} \ end{array} $$ (28) where (j=1, 2, ldots, J), and M denotes the fraction of blue water available. (iii) Constraint on water use The amount of water used to modify the cropping pattern in the provinces is limited:$$ sumlimits_{i = 1}^{51} {TWF_{blue(i,j)}^{m} le RWR_{j} - sumlimits_{i = 1}^{51} {TWF_{blue(i,j)} + } } TWF_{blue,j}^{free} $$ (29) where (left(j=1,2,3,ldots,Jright),) TWFmblue(i,j) denotes the blue WFs used to modify the cultivation in province j, and TWFblue(i,j) represents the initial blue WFs consumed in province j to cultivate crops before changing the cropping pattern.Ideal solution and pareto optimalityThis work applied the multi-objective optimization Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The NSGA is based on the Genetic Evolutionary Algorithm and the Selection, Crossover, and Mutation operations50. The NSGA was introduced by Deb et al.51,Srinivas and Deb52, then improved to the NSGA-II51. The NSGA-II has been widely studied in water resources management53,54,55.The NSGA-II produces a Pareto front of solutions, in which, each point represents a management scenario. The decision-maker selects a scenario based on the objective functions and situational analysis. Multi-criteria decision-making methods (MCDM) can be applied to select an efficient point on the Pareto front curve56,57. This work implements the technique for order preference by similarity to ideal solution (TOPSIS) as the MCDM employed for that purpose. A description of the TOPSIS method is presented in the appendix.The NSGA-II parameters were determined based on a trial-and-error process. Multiple runs of the algorithm were used to adjust the parameters to reduce uncertainty. For this purpose, the population size and maximum iteration were set equal to 400 and 500, respectively, and the crossover and mutation rates were set equal to 0.8 and 0.1, respectively. The flowchart of the proposed approach is displayed in Fig. 1.Figure 1Flowchart of the methodology.Full size image More