More stories

  • in

    Impact of intensifying nitrogen limitation on ocean net primary production is fingerprinted by nitrogen isotopes

    Modelling approachWe used the PISCES-v2 biogeochemical model, attached to the Nucleus for European Modelling of the Ocean version 4.0 (NEMO-v4) general ocean circulation model29. PISCES-v2 includes five nutrients pools (nitrate, ammonium, phosphate, silicic acid and dissolved iron), dissolved oxygen, the full carbon system and accounts for two phytoplankton (nanophytoplankton and diatoms) and two zooplankton types (microzooplankton and mesozooplankton). Bioavailable nitrogen in our simulations is considered to be the combination of nitrate and ammonium. Its nitrogen cycle includes nitrogen fixation, nitrification, burial, denitrification in both the water column and sediments, and coupled nitrification–denitrification. Nitrogen isotopes were integrated within PISCES-v2 for the purposes of this study, using nine new tracers (Supplementary Note 1). Horizontal model resolution varied between ~0.5° at the equator and poles, and 2° in the subtropics, whereas vertical resolution varied between 10 and 500 m thickness over 31 levels.We conducted simulations under both preindustrial control and climate change scenarios. The preindustrial control scenario from 1801 to 2100 maintained preindustrial greenhouse gas concentrations and only included internal modes of variability. The climate change simulation from 1851 to 2100 included natural variability, prescribed changes in land use, as well as historical changes in concentrations of greenhouse gases and aerosols until 2005, after which future concentrations associated with RCP8.5 were imposed30. The biogeochemical model (PISCES-v2) was run offline from the physical model (NEMO-v4) using monthly transports and other physical conditions generated by the low resolution version of the IPSL-CM5A ESM57.Experiments were initialized from biogeochemical fields created from an extensive spin-up of 5000 years under repeat physical forcing, followed by a 300-year simulation under the preindustrial control scenario. The preindustrial control simulation used in analysis was therefore the final 300 years of a 5600-year spin-up involving two repeat simulations of the preindustrial control scenario. We utilized a global compilation of δ15NNO320 supplemented with recent data to assess the isotopic routines in the model and conducted a thorough model-data skill assessment at replicating observed patterns in space (Supplementary Note 2 and Supplementary Figs. 1–3).Anthropogenic nitrogen depositionThe effect of increasing aeolian deposition of nitrogen was assessed in our simulations. Preindustrial nitrogen deposition was prescribed as the preindustrial estimate at 1850, whereas the historical to future deposition was created by linear interpolation between preindustrial (1850) and modern/future fields (2000, 2030, 2050 and 2100). These fields were provided by Hauglustaine et al.8. However, the rapid rise between 1950 and 2000 was maintained, such that 60% of the increase between the preindustrial and modern fields occurred after 1950 (Supplementary Fig. 4).The historical rise in anthropogenic nitrogen deposition was assessed by including it in additional simulations under both preindustrial control and climate change scenarios. Four initial experiments were therefore conducted: preindustrial control; preindustrial control plus anthropogenic nitrogen deposition; climate change; and climate change plus anthropogenic nitrogen deposition.Global model experimentsWe undertook four initial simulations to quantify the impacts of anthropogenic climate change and nitrogen deposition: a preindustrial control simulation from 1801 to 2100; a full anthropogenic scenario from 1851 to 2100; a climate change-only scenario without the increase in anthropogenic nitrogen deposition from 1851 to 2100; and a nitrogen deposition scenario without anthropogenic climate change from 1851 to 2100. Anthropogenic effects to nitrogen cycling were quantified by comparing mean conditions over the final 20 years of the twenty-first century (2081–2100) with mean conditions over the final 20 years of the preindustrial control simulation, whereas effects on nitrogen isotopes were quantified by comparing mean conditions over the final 20 years of the twenty-first century (2081–2100) with mean conditions over the historical period (1986–2005) from the same simulation.To understand the direct and indirect effects of climate change, we undertook two additional idealized simulations. First, we imposed temperature changes on biogeochemical rates, while maintaining ocean circulation associated with the preindustrial control scenario, to assess the direct effects of warming on biogeochemical processes. Second, we imposed the preindustrial control temperature field on biogeochemical processes, while altering the circulation in line with the climate change scenario, to assess the indirect effects of climate change (i.e., how changing circulation alters substrate supply to biogeochemical reactions). Each experiment was run from 1851 to 2100 and without the anthropogenic increase in atmospheric nitrogen deposition, parallel with the full climate change simulation.Agreement between the climate change simulation without anthropogenic nitrogen deposition was quantified using a pixel-by-pixel correlation analysis using Spearman’s rank correlation based on the non-parametric nature of the two-dimensional fields used for comparison. Fields were euphotic zone nitrate, twilight zone δ15NNO3, euphotic zone δ15NPOM, and vertically integrated NPP, zooplankton grazing, nitrogen fixation, water column denitrification and sedimentary denitrification.Depth zonesWe assessed changes in biogeochemical variables related to nitrogen cycling in two depth zones defined by light. The euphotic zone was defined by depths between the surface and 0.1% of incident irradiance as recommended by Buesseler et al.42. The twilight zone was also defined using light, as advocated by Kaartvedt et al.58. Depths between 0.1% and 0.0001% of incident irradiance defined the twilight zone. These definitions typically returned euphotic zone thicknesses of 137 ± 23 m (mean ± SD), and twilight zone thicknesses of 233 ± 37 m. The boundary between these depth zones were deepest in oligotrophic tropical and subtropical waters, and were shallowest in equatorial and temperate waters (Supplementary Fig. 7).Time of emergenceToE calculations determined when anthropogenic, anomalous trends emerged from the noise of background variability. ToE was calculated at each grid cell within both the euphotic and twilight zones (depth-averaged) and using annually averaged fields of ocean tracers. We therefore ignored temporal trends and variability at seasonal and sub-seasonal scales. Raw time series were first detrended and normalized using the linear slope and mean of the preindustrial control experiment, such that the preindustrial control time series varied about zero, while anomalous trends in experiments with climate change and/or nitrogen deposition deviated from zero. These detrended and normalized time series were smoothed using a boxcar (flat) moving average with a window of 11 years to filter decadal variability (Supplementary Fig. 12). Differences with the preindustrial control experiment were then computed.To determine whether the differences with the preindustrial control experiment were anomalous, we calculated a measure of noise from the raw, inter-annual time series of the preindustrial control experiment (1801–2100). A signal emerged from the noise if it exceeded 2 SDs, a threshold that represents with 95% confidence that a value was anomalous and is therefore a conservative envelope to distinguish normality from anomaly16.Furthermore, we required that anomalous values must consistently exceed the noise of the preindustrial control experiment until the end of the simulation (2100) to be registered as having emerged. Temporary emergences were therefore rejected, making our ToE estimates more conservative. A graphical representation of this process is shown in Supplementary Fig. 12.Isolating biogeochemical 15NO3 fluxesWe analysed the biogeochemical fluxes of 15NO3 and NO3 into and out of each model grid cell within the twilight zone, to determine whether the trends in δ15NNO3 were related to biogeochemical or physical changes. Fluxes of 15NO3 and NO3 included a net source from nitrification (NO3nitr) and net sinks due to new production (NO3new) and denitrification (NO3den). Although nitrification did not directly alter the 15N : 14N ratio in our simulations, the release of 15NO3 and NO3 by nitrification conveyed an isotopic signature determined by prior fractionation processes that produce ammonium (NH4). These processes include remineralization of particulate and dissolved organic matter, excretion by zooplankton and nitrogen fixation. The isotopic signatures of these processes were thus included implicitly in NO3nitr. For each grid cell, we calculated the biogeochemical tendency to alter δ15NNO3 based on the ratio of inputs minus outputs:$${Delta} {delta }^{15}{{{{{{rm{N}}}}}}}_{{{{{{rm{NO3}}}}}}}=left(frac{{,{!}^{15}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{nitr}}}}}}}-{,{!}^{15}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{new}}}}}}}-{,{!}^{15}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{den}}}}}}}}{{,{!}^{14}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{nitr}}}}}}}-{,{!}^{14}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{new}}}}}}}-{,{!}^{14}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{den}}}}}}}}-1right)cdot 1000$$
    (1)
    This calculation excluded any upstream biological changes and circulation changes that might have altered δ15NNO3.0D water parcel modelWe simulated the nitrogen isotope dynamics in a recently upwelled water parcel during transit to the subtropics by building a 0D model. The model simulates state variables of dissolved inorganic nitrogen (DIN), particulate organic nitrogen (PON) and exported particulate nitrogen (ExpN), as well as their heavy isotopes (DI15N, PO15N and Exp15N) in units of mmol N m−3 over 100 days given initial conditions and constants listed in Supplementary Table 1.$$frac{Delta {{{{{rm{DIN}}}}}}}{Delta t}=-{{{{{mathrm{N}}}}}}_{{{{{{rm{uptake}}}}}}}+{{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}$$
    (2)
    $$frac{Delta {{{{{rm{PON}}}}}}}{Delta t}={{{{{mathrm{N}}}}}}_{{{{{{rm{uptake}}}}}}}-{{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}-{{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (3)
    $$frac{Delta {{{{{rm{ExpN}}}}}}}{Delta t}={{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (4)
    $$frac{Delta {{{{{rm{DI1}}}}}}{}^{15}{{{{{rm{N}}}}}}}{Delta t}=-{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{uptake}}}}}}}+{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{recycled}}}}}}}$$
    (5)
    $$frac{Delta {{{{{rm{PO}}}}}}{}^{15}{{{{{rm{N}}}}}}}{Delta t}={}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{uptake}}}}}}}-{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{recycled}}}}}}}-{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (6)
    $$frac{Delta {{{{mathrm{Exp}}}}}{}^{15}{{{{{rm{N}}}}}}}{Delta t}={}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (7)
    First, the model calculates maximum potential growth rate of phytoplankton (μmax) in units of day−1 (Eq. 8) using temperature and then finds nitrogen uptake (Nuptake, Eq. 10) using PON and limitation terms for nitrogen (Nlim, Eq. 9), light (Llim, Supplementary Table 1) and iron (Felim, Supplementary Table 1).$${mu }_{{{max }}}=0.6,{{{{{rm{da}}}}}}{y}^{-1}cdot {e}^{Tcdot {T}_{{{{{{rm{growth}}}}}}}}$$
    (8)
    $${{{{{mathrm{N}}}}}}_{{{{{mathrm{lim}}}}}}=frac{{{{{{rm{DIN}}}}}}}{{{{{{rm{DIN}}}}}}+{{{{{mathrm{K}}}}}}_{{{{{{rm{DIN}}}}}}}}$$
    (9)
    $${{{{{mathrm{N}}}}}}_{{{{{mathrm{uptake}}}}}}={mu }_{max }cdot {{{{{mathrm{L}}}}}}_{{{{{mathrm{lim}}}}}}cdot ,min ({{{{{mathrm{Fe}}}}}}_{{{{{mathrm{lim}}}}}},{{{{{mathrm{N}}}}}}_{{{{{mathrm{lim}}}}}})cdot {{{{{mathrm{PON}}}}}}$$
    (10)
    At a constant temperature of 18 °C, μmax is equal to ~1.9 day−1. Limitation terms for light and iron are set as constant and are used to prevent unrealistically high nitrogen uptake when nitrogen is high, such as occurs immediately following upwelling in the high-nutrient low-chlorophyll regions of the tropics. Fractionation by phytoplankton is calculated assuming an open system21, in this case where nitrogen can be lost through export of organic matter. To calculate the fractionation associated with uptake (15Nuptake, Eq. 11), we multiply the total nitrogen uptake (Nuptake, Eq. 10) by the heavy to light isotope ratio (({r}_{{{{{{rm{DIN}}}}}}}^{15}), Eq. 12) and the fractionation factor (εphy, Supplementary Table 1), which is converted from units of per mil (‰) to a fraction relative to one. This fractionation factor (εphy) is constant at 5‰ but is decreased towards 0‰ by the nitrogen limitation term (Nlim, Eq. 9), such that when nitrogen is limiting to growth, the fractionation during uptake decreases (last term on the right-hand side approaches 1).$${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{uptake}}}}}}},=,{{{{{mathrm{N}}}}}}_{{{{{{rm{uptake}}}}}}}cdot {r}_{{{{{{rm{DIN}}}}}}}^{15}cdot left(1-frac{{{{{mathrm{N}}}}}_{{{{{mathrm{lim}}}}}}cdot {varepsilon }_{{{{{{rm{phy}}}}}}}}{1000}right)$$
    (11)
    $${r}_{{{{{{rm{DIN}}}}}}}^{15},=,frac{{{{mathrm{DI}}}}^{15}{{{{{{rm{N}}}}}}}}{{{{{{rm{DIN}}}}}}}$$
    (12)
    At each timestep, a fraction of the PON pool becomes detritus (Eq. 15) and this detritus is instantaneously recycled back to DIN or exported to ExpN and removed from the water parcel. The amount of detritus produced per timestep is calculated as the sum of linear respiration (Eq. 13) and quadratic mortality (Eq. 14) terms, where Presp (units of day−1), Kresp (units of mmol N m−3) and Pmort (units of (mmol N m−3)−1 day−1) are constants (Supplementary Table 1).$${{{{{rm{Respiration}}}}}},=,{{{{{mathrm{P}}}}}}_{{{{{{rm{resp}}}}}}}cdot {{{{{rm{PON}}}}}}cdot frac{{{{{{rm{PON}}}}}}}{{{{{{rm{PON}}}}}}+{{{{{mathrm{K}}}}}}_{{{{{{rm{resp}}}}}}}}$$
    (13)
    $${{{{{rm{Mortality}}}}}},=,{{{{{mathrm{P}}}}}}_{{{{{{rm{mort}}}}}}}cdot {{{{{rm{PON}}}}}}^{2}$$
    (14)
    $${{{{{rm{Detritus}}}}}},=,{{{{{rm{Respiration}}}}}},+,{{{{{rm{Mortality}}}}}}$$
    (15)
    Once we know the fraction of PON that becomes detritus at any given timestep, we must solve for the fraction of that detritus that becomes DIN through recycling (Eq. 17), and that which becomes ExpN through export (Eq. 18). The fraction of detritus that is recycled back into DIN is temperature dependent (Eq. 16), with higher temperatures increasing rates of recycling above a minimum fraction set by frecmin (Supplementary Table 1). The relationship with temperature is exponential, similar to phytoplankton maximum growth (μmax), but the degree of increase associated with warming is scaled down by a constant factor equal to Trec (Supplementary Table 1). The fraction that is exported to ExpN is the remainder (Eq. 18).$${f}_{{{{{{rm{recycled}}}}}}}={f}_{{{{{{rm{recmin}}}}}}}+{T}_{{{{{{rm{rec}}}}}}}cdot {e}^{Tcdot {T}_{{{{{{rm{growth}}}}}}}}$$
    (16)
    $${{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}={{{{{rm{Detritus}}}}}}cdot {f}_{{{{{{rm{recycled}}}}}}}$$
    (17)
    $${{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}={{{{{rm{Detritus}}}}}}cdot (1-{f}_{{{{{{rm{recycled}}}}}}})$$
    (18)
    The major fluxes of Nuptake, Nrecycled and Nexported are now solved for. All that remains is to calculate the isotopic signatures of the recycling (Eq. 19) and export (Eq. 20) fluxes. These, similar to 15Nuptake (Eq. 11), are solved by multiplying against a standard ratio of heavy to light isotope (({r}_{{{{{{rm{PON}}}}}}}^{15}), Eq. 21).$${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{recycled}}}}}}}={{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}cdot {r}_{{{{{{rm{PON}}}}}}}^{15}$$
    (19)
    $${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{exported}}}}}}}={{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}cdot {r}_{{{{{{rm{PON}}}}}}}^{15}$$
    (20)
    $${r}_{{{{{{rm{PON}}}}}}}^{15}=frac{{{{{{rm{PO}}}}}}{}^{15}{{{{{rm{N}}}}}}}{{{{{{rm{PON}}}}}}}$$
    (21)
    Finally, we calculate the δ15N values of the major pools in the model (DIN, PON and ExpN) as output (Eqs. 22–24). We assume in this model that the major pools of DIN, PON and ExpN represent the total amount of the light isotope (14N), whereas the DI15N, PO15N and Exp15N pools represent the relative enrichment in 15N compared to a standard ratio. For simplicity, we make the standard ratio equal to 1. Therefore, taking the ratio of the DI15N to DIN pools and subtracting one returns the isotopic signature. Multiplying this by 1000 converts this signature to per mil units (‰).$${delta }^{15}{{{{{{rm{N}}}}}}}_{{{{{{rm{DIN}}}}}}}=left(frac{{{{{{rm{DI}}}}}}{}^{15}{{{{{rm{N}}}}}}}{{{{{{rm{DIN}}}}}}}-1right)cdot 1000$$
    (22)
    $${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{PON}}}}}}}=left(frac{{{{{{{rm{PO}}}}}}}^{15}N}{{{{{{rm{PON}}}}}}}-1right)cdot 1000$$
    (23)
    $${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{ExpN}}}}}}}=left(frac{{{{{mathrm{Exp}}}}}{}^{15}{{{{{rm{N}}}}}}}{{{{{{rm{ExpN}}}}}}}-1right)cdot 1000$$
    (24) More

  • in

    Protected areas are not effective for the conservation of freshwater insects in Brazil

    1.Brooks, T. M. et al. Global biodiversity conservation priorities. Science (80-. ). 313, 58–61 (2006).2.Camacho-Sandoval, J. & Duque, H. Indicators for biodiversity assessment in Costa Rica. Agric. Ecosyst. Environ. 87, 141–150 (2001).Article 

    Google Scholar 
    3.Diniz-Filho, J. A. F. et al. Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera: Acridoidea: Romaleidae). Insect Conserv. Divers. https://doi.org/10.1111/j.1752-4598.2010.00090.x (2010).Article 

    Google Scholar 
    4.Morse-Jones, S. et al. Stated preferences for tropical wildlife conservation amongst distant beneficiaries: Charisma, endemism, scope and substitution effects. Ecol. Econ. 78, (2012).5.Verissimo, D., MacMillan, D. C. & Smith, R. J. Toward a systematic approach for identifying conservation flagships. Conserv. Lett. vol. 4 (2011).6.Nóbrega, C. C. & De Marco, P. Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers. Distrib. 17, 491–505 (2011).Article 

    Google Scholar 
    7.SNUC, (Sistema Nacional de Unidades de Conservação da Natureza). Lei no 9.985, de 18 de julho de 2000. Mma/Sbf (2000) doi:https://doi.org/10.1017/CBO9781107415324.004.8.Abell, R., Allan, J. D. & Lehner, B. Unlocking the potential of protected areas for freshwaters. Biol. Conserv. 134, 48–63 (2007).Article 

    Google Scholar 
    9.Monteiro, C. da S., Esposito, M. C. & Juen, L. Are the adult odonate species found in a protected area different from those present in the surrounding zone? A case study from eastern Amazonia. J. Insect Conserv. 20, 643–652 (2016).10.Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).CAS 
    Article 

    Google Scholar 
    11.Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).Article 

    Google Scholar 
    12.Bini, L. M., Diniz-Filho, J. A. F., Rangel, T. F. L. V. B., Bastos, R. P. & Pinto, M. P. Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Divers. Distrib. https://doi.org/10.1111/j.1366-9516.2006.00286.x (2006).Article 

    Google Scholar 
    13.Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. https://doi.org/10.1016/S0006-3207(01)00208-7 (2002).Article 

    Google Scholar 
    14.Silva, D. C., Vieira, T. B., da Silva, J. M. & de Cassia Faria, K. Biogeography and priority areas for the conservation of bats in the Brazilian Cerrado. Biodivers. Conserv. 27, 815–828 (2018).15.Salkeld, D. J., Padgett, K. A. & Jones, J. H. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecol. Lett. 16, 679–686 (2013).Article 

    Google Scholar 
    16.Juen, L. & de Marco, P. Dragonfly endemism in the Brazilian Amazon: competing hypotheses for biogeographical patterns. Biodivers. Conserv. https://doi.org/10.1007/s10531-012-0377-0 (2012).Article 

    Google Scholar 
    17.Mendes, S. L. et al. Protected Areas for the Northern Muriqui, Brachyteles hypoxanthus (Primates, Atelidae). Neotrop. Primates 13, (2005).18.Serra, B. D. V., De Marco Júnior, P., Nóbrega, C. C. & Campos, L. A. D. O. Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 (Hymenoptera, apidae): conserving isolated populations in mountain habitats. Nat. a Conserv. 10, 199–206 (2012).19.Mendes, P. & De Marco, P. Bat species vulnerability in Cerrado: integrating climatic suitability with sensitivity to land-use changes. Environ. Conserv. 45, 67–74 (2018).Article 

    Google Scholar 
    20.Brasil, L. S. et al. A niche‐based gap analysis for the conservation of odonate species in the Brazilian Amazon. Aquat. Conserv. Mar. Freshw. Ecosyst. aqc.3599 (2021) doi:https://doi.org/10.1002/aqc.3599.21.da Silva, J. G., Vieira, T. B. & Mews, H. A. Fine-scale effect of environmental variation and distance from watercourses on pteridophyte assemblage structure in the western Amazon. Folia Geobot. https://doi.org/10.1007/s12224-021-09390-y (2021).Article 

    Google Scholar 
    22.Doughty, C. R. Freshwater biomonitoring and benthic macroinvertebrates, edited by D. M. Rosenberg and V. H. Resh, Chapman and Hall, New York, 1993. ix + 488pp. ISBN 0412 02251 6. Aquat. Conserv. Mar. Freshw. Ecosyst. 4, 92–92 (1994).23.Harper, D. M., Rosenberg, D. A. & Resh, V. H. Freshwater biomonitoring and benthic macroinvertebrates. J. Appl. Ecol. 31, 790 (1994).Article 

    Google Scholar 
    24.Cunha, E. J. & Juen, L. Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. J. Insect Conserv. 21, 111–119 (2017).Article 

    Google Scholar 
    25.Schuh, R. T. & Slater, J. A. True bugs of the World (Hemiptera: Heteroptera). Classification and Natural History. (Cornell University Press, 1995).26.Giehl, N. F. da S., Dias-Silva, K., Juen, L., Batista, J. D. & Cabette, H. S. R. Taxonomic and Numerical Resolutions of Nepomorpha (Insecta: Heteroptera) in Cerrado Streams. PLoS One 9, e103623 (2014).27.Dias-Silva, K., Cabette, H. S. R., Juen, L. & Jr, P. D. M. The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Zool. 27, 918–930 (2010).28.Panizzi, A. R. & Grazia, J. True Bugs (Heteroptera) of the Neotropics. True Bugs (Heteroptera) of the Neotropics vol. 2 (Springer Netherlands, 2015).29.Polhemus, J. T. & Polhemus, D. A. Global diversity of true bugs (Heteroptera; Insecta) in freshwater. Hydrobiologia https://doi.org/10.1007/s10750-007-9033-1 (2008).Article 

    Google Scholar 
    30.Nieser, N. & Melo, A. L. Os Heterópteros Aquáticos de Minas Gerais. (UFMG, Belo Horizonte, 1997).31.Cunha, E. J., de Assis Montag, L. F. & Juen, L. Oil palm crops effects on environmental integrity of Amazonian streams and Heteropteran (Hemiptera) species diversity. Ecol. Indic. 52, 422–429 (2015).32.Cordeiro, I. & Moreira, F. New distributional data on aquatic and semiaquatic bugs (Hemiptera: Heteroptera: Gerromorpha & Nepomorpha) from South America. Biodivers. Data J. 3, e4913 (2015).33.Rodrigues, A. S. L. & Brooks, T. M. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737 (2007).Article 

    Google Scholar 
    34.Andelman, S. J. & Fagan, W. F. Umbrellas and flagships: Efficient conservation surrogates or expensive mistakes?. Proc. Natl. Acad. Sci. 97, 5954–5959 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article 

    Google Scholar 
    36.Abellan, P., Sanchez-Fernandez, D., Velasco, J. & Millan, A. Conservation of freshwater biodiversity: a comparison of different area selection methods. Biodivers. Conserv. 14, 3457–3474 (2005).Article 

    Google Scholar 
    37.Fearnside, P. M. Conservation policy in brazilian amazonia: understanding the dilemmas. World Dev. 31, 757–779 (2003).Article 

    Google Scholar 
    38.dos Santos, A. J., Vieira, T. B. & Faria, K. de C. Effects of vegetation structure on the diversity of bats in remnants of Brazilian Cerrado savanna. Basic Appl. Ecol. 17, 720–730 (2016).39.Groves, C. R. et al. Planning for biodiversity conservation: putting conservation science into practice. Bioscience https://doi.org/10.1641/0006-3568(2002)052[0499:pfbcpc]2.0.co;2 (2002).Article 

    Google Scholar 
    40.Fearnside, P. M. & Ferraz, J. A conservation gap analysis of Brazil’s Amazonian vegetation. Conserv. Biol. 9, 1134–1147 (1995).Article 

    Google Scholar 
    41.Fearnside, P. M. Introduction: strategies for social and environmental conservation in conservation units. In The Amazon Várzea 233–238 (Springer Netherlands, 2011). doi:https://doi.org/10.1007/978-94-007-0146-5_16.42.Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).Article 

    Google Scholar 
    43.Marini, M. Â. & Garcia, F. I. Bird conservation in Brazil. Conserv. Biol. https://doi.org/10.1111/j.1523-1739.2005.00706.x (2005).Article 

    Google Scholar 
    44.Young, B. E. et al. Population declines and priorities for amphibian conservation in Latin America. Conserv. Biol. 15, 1213–1223 (2001).Article 

    Google Scholar 
    45.Dias-Silva, K., Moreira, F. F. F., Giehl, N. F. D. S., Nóbrega, C. C. & Cabette, H. S. R. Gerromorpha (Hemiptera: Heteroptera) of eastern Mato Grosso State, Brazil: checklist, new records, and species distribution modeling. Zootaxa https://doi.org/10.11646/zootaxa.3736.3.1 (2013).Article 
    PubMed 

    Google Scholar 
    46.Ferraz, K. M. P. M. de B., Ferraz, S. F. de B., Paula, R. C. de, Beisiegel, B. & Breitenmoser, C. Species Distribution Modeling for Conservation Purposes. Nat. Conserv. 10, 214–220 (2012).47.Marco-Júnior, P. & Siqueira, M. F. Como determinar a distribuição potencial de espécies sob uma abordagem conservacionista? Megadiversidade (2009).48.Hijmans, R. J. et al. DIVA-GIS, version 5.2. A geographic information system for the analysis of biodiversity data. Manual. . vol. 1 (International Potato Center, 2005).49.Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R. Numerical Ecology with R (Springer New York, 2011). doi:https://doi.org/10.1007/978-1-4419-7976-6.50.Serra, B. D. V., De Marco, P. J., Nóbrega, C. C. & Campos, L. A. D. O. Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 ( Hymenoptera, Apidae ): Conserving Isolated Populations in Mountain Habitats. Nat. e Conserv. 10, 199–206 (2012).Article 

    Google Scholar 
    51.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    52.Swets, J. Measuring the accuracy of diagnostic systems. Science (80-. ). 240, 1285–1293 (1988).53.Girardello, M., Griggio, M., Whittingham, M. J. & Rushton, S. P. Identifying important areas for butterfly conservation in Italy. Anim. Conserv. https://doi.org/10.1111/j.1469-1795.2008.00216.x (2009).Article 

    Google Scholar 
    54.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    55.Vieira, T. B., Mendes, P. & Oprea, M. Priority areas for bat conservation in the state of Espírito Santo, southeastern Brazil. Neotrop. Biol. Conserv. 7, 88–96 (2012).Article 

    Google Scholar 
    56.Delgado-Jaramillo, M., Aguiar, L. M. S., Machado, R. B. & Bernard, E. Assessing the distribution of a species-rich group in a continental-sized megadiverse country: Bats in Brazil. Divers. Distrib. 26, 632–643 (2020).Article 

    Google Scholar 
    57.Destro, G. F. G., de Fernandes, V., de Andrade, A. F. A., De Marco, P. & Terribile, L. C. Back home? Uncertainties for returning seized animals to the source-areas under climate change. Glob. Chang. Biol. 25, 3242–3253 (2019).ADS 
    Article 

    Google Scholar 
    58.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.). (2006) doi:https://doi.org/10.1111/j.2006.0906-7590.04596.x.59.Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2006).60.de Andrade, A. F. A., Velazco, S. J. E. & De Marco, P. Niche mismatches can impair our ability to predict potential invasions. Biol. Invasions 21, 3135–3150 (2019).Article 

    Google Scholar 
    61.Velazco, S. J. E., Villalobos, F., Galvão, F. & De Marco Júnior, P. A dark scenario for Cerrado plant species: Effects of future climate, land use and protected areas ineffectiveness. Divers. Distrib. 25, 660–673 (2019).62.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. https://doi.org/10.1111/j.1466-8238.2009.00490.x (2010).Article 

    Google Scholar 
    63.Moilanen, A. et al. Prioritizing multiple-use landscapes for conservation : methods for large multi-species planning problems. Proc. R. Soc. 272, 1885–1891 (2005).
    Google Scholar 
    64.Moilanen, A. et al. Zonation spatial conservation planning framework and software v. 3.1, User manual. (2012).65.Moilanen, A. Landscape zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biol. Conserv. 134, 571–579 (2007).Article 

    Google Scholar 
    66.Carvalho, A. R. de. Método de Monte Carlo e Aplicações. Repositório Inst. da Univ. Fed. Flum. 84 (2017).67.Feinleib, M. & Zar, J. H. Biostatistical analysis. J. Am. Stat. Assoc. https://doi.org/10.2307/2285423 (1975).Article 

    Google Scholar  More

  • in

    Worker-dependent gut symbiosis in an ant

    1.Lundberg JO, Weitzberg E, Cole JA, Benjamin N. Nitrate, bacteria and human health. Nat Rev Microbiol. 2004;2:593–602.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol. 2015;60:17–34.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Bourtzis K, Miller T (eds). Insect symbiosis. (CRC Press, Boca Raton, 2003)5.West SA, Fisher RM, Gardner A, Kiers ET. Major evolutionary transitions in individuality. Proc Natl Acad Sci USA. 2015;112:10112–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Hughes DP, Pierce NE, Boomsma JJ. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol. 2008;23:672–7.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Currie CR. A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annu Rev Microbiol. 2001;55:357–80.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, et al. The Ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol. 2002;47:733–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Heil M, McKey D. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst. 2003;34:425–53.Article 

    Google Scholar 
    10.Schröder D, Deppisch H, Obermayer M, Krohne G, Stackebrandt E, Hôlldobler B, et al. Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Mol Microbiol. 1996;21:479–89.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Zientz E, Dandekar T, Gross R. Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev. 2004;68:745–70.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Currie CR, Summerbell RC, Scott JA, Malloch D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature. 1999;423:461–461.Article 
    CAS 

    Google Scholar 
    13.Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci USA. 2009;106:21236–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA. The evolution of host-symbiont dependence. Nat Commun. 2017;8:15973 https://doi.org/10.1038/ncomms15973CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Hölldobler B, Wilson EO (eds). The ants. (Harvard University Press, Springer-Verlag, 1990).16.Koch H, Schmid-Hempel P. Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proc Natl Acad Sci USA. 2011;108:19288–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Zhukova M, Sapountzis P, Schiøtt M, Boomsma JJ. Diversity and transmission of gut bacteria in Atta and Acromyrmex leaf-cutting ants during development. Front Microbiol. 2017;8:1–14. https://doi.org/10.3389/fmicb.2017.01942Article 

    Google Scholar 
    18.Segers FH, Kaltenpoth M, Foitzik S. Abdominal microbial communities in ants depend on colony membership rather than caste and are linked to colony productivity. Ecol Evol. 2009;9:13450–67.Article 

    Google Scholar 
    19.Kapheim KM, Rao VD, Yeoman CJ, Wilson BA, White BA, Goldenfeld N, et al. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS ONE. 2015;10:e0123911 https://doi.org/10.1371/journal.pone.0123911CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Tarpy DR, Mattila HR, Newton ILG. Development of the honey bee gut microbiome throughout the queen-rearing process. Appl Environ Microbiol. 2015;81:3182–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, et al. Complementary symbiont contributions to plant decomposition in a fungus‐farming termite. Proc Natl Acad Sci USA. 2014;111:14500–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Russell JA, Sanders JG, Moreau CS. Hotspots for symbiosis: Function, evolution, and specificity of ant-microbe associations from trunk to tips of the ant phylogeny (Hymenoptera: Formicidae). Myrmecol News. 2017;24:43–69.
    Google Scholar 
    23.Bourke AFG. Colony size, social complexity and reproductive conflict in social insects. J Evol Biol. 1999;12:245–57.Article 

    Google Scholar 
    24.Moreau CS, Bell CD, Vila R, Archibald SB, Pierce NE. Phylogeny of the ants: diversification in the age of angiosperms. Science. 2006;312:101–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Peeters C, Crewe R. Insemination controls the reproductive division of labour in a ponerine ant. Naturwissenschaften. 1984;71:l50–51.Article 

    Google Scholar 
    26.Kikuchi T, Nakagawa T, Tsuji K. Changes in relative importance of multiple social regulatory forces with colony size in the ant Diacamma sp. from Japan. Anim Behav. 2008;76:2069–77.Article 

    Google Scholar 
    27.Fukumoto Y, Abe T, Taki A. A novel form of colony organization in the ‘queenless’ ant Diacamma rugosum. Physiol Ecol Jpn. 1989;26:55–61.
    Google Scholar 
    28.Nakata K. Age polyethism, idiosyncrasy and behavioural flexibility in the queenless ponerine ant, Diacamma sp. J Ethol. 1995;13:113–23.Article 

    Google Scholar 
    29.Nakata K. Does behavioral flexibility compensate or constrain colony productivity? Relationship among age structure, labor allocation, and production of workers in ant colonies. J Ins Behav. 1996;9:557–69.Article 

    Google Scholar 
    30.Shimoji H, Kasutani N, Ogawa S, Hojo MK. Worker propensity affects flexible task reversion in an ant. Behav Ecol Sociobiol. 2020;74:92.Article 

    Google Scholar 
    31.Peeters C, Tsuji K. Reproductive conflict among ant workers in Diacamma sp. from Japan: dominance and oviposition in the absence of the gamergate. Ins Soc. 1993;40:119–36.Article 

    Google Scholar 
    32.Shimoji H, Fujiki Y, Yamaoka R, Tsuji K. Egg discrimination by workers in Diacamma sp. from Japan. Ins Soc. 2012;59:201–6.Article 

    Google Scholar 
    33.Okada Y, Watanabe Y, Tin MMY, Tsuji K, Mikheyev AS. Social dominance alters nutrition-related gene expression immediately: transcriptomic evidence from a monomorphic queenless ant. Mol Ecol. 2017;26:2922–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Fujioka H, Abe MS, Fuchikawa T, Tsuji K, Shimada M, Okada Y. Ant circadian activity associated with brood care type. Biol Lett. 2017;13:13–16.Article 

    Google Scholar 
    35.Itoh H, Navarro R, Takeshita K, Tago K, Hayatsu M, Hori T, et al. Bacterial population succession and adaptation affected by insecticide application and soil spraying history. Front Microbiol. 2014;5:457 https://doi.org/10.3389/fmicb.2014.00457Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Itoh H, Aita M, Nagayama A, Meng XY, Kamagata Y, Navarro R, et al. Evidence of environmental and vertical transmission of Burkholderia symbionts in the oriental chinch bug Cavelerius saccharivorus (Heteroptera: Blissidae). Appl Environ Microbiol. 2014;80:5974–83.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve bayesian classifier for rapid assignment of rRNA Sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Kawano K, Ushijima N, Kihara M, Itoh H. Patiriisocius marinistellae gen. nov., sp. nov., isolated from the starfish Patiria pectinifera, and reclassification of Ulvibacter marinus as a member of the genus Patiriisocius comb. nov. Int J Syst Evol Microbiol. 2020;70:4119–29.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Kikuchi Y, Hosokawa T, Fukatsu T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol. 2007;73:4308–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 2015;43:W7–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Darriba D, Posada D, Kozlov AM, Stamatakis A, Morel B, Flouri T. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol Biol Evol. 2020;37:291–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Matsuura Y, Kikuchi Y, Meng XY, Koga R, Fukatsu T. Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Appl Environ Microbiol. 2012;78:4149–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Koga R, Tsuchida T, Fukatsu T. Quenching autofluorescence of insect tissues for in situ detection of endosymbionts. Appl Entomol Zool. 2009;44:281–91.CAS 
    Article 

    Google Scholar 
    48.Funaro CF, Kronauer DJ, Moreau CS, Goldman-Huertas B, Pierce NE, Russell JA. Army ants harbor a host-specific clade of Entomoplasmatales bacteria. Appl Environ Microbiol. 2011;77:346–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Łukasik P, Newton JA, Sanders JG, Hu Y, Moreau CS, Kronauer D, et al. The structured diversity of specialized gut symbionts of the New World army ants. Mol Ecol. 2017;26:3808–25.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Scott JJ, Budsberg KJ, Suen G, Wixon DL, Balser TC, Currie CR. Microbial community structure of leaf-cutter ant fungus gardens and refuse dumps. PloS ONE. 2010;5:e9922 https://doi.org/10.1371/journal.pone.0009922CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Yang H, Schmitt-Wagner D, Stingl U, Brune A. Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environ Microbiol. 2005;7:916–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.King JH, Mahadi NM, Bong CF, Ong KH, Hassan O. Bacterial microbiome of Coptotermes curvignathus (Isoptera: Rhinotermitidae) reflects the coevolution of species and dietary pattern. Insect Sci. 2014;21:584–96.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Koto A, Nobu MK, Miyazaki R. Deep sequencing uncovers caste-associated diversity of symbionts in the social ant Camponotus japonicus. mBio. 2020;11:e00408–20. https://doi.org/10.1128/mBio.00408-20CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Lombardo MP. Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behav Ecol Sociobiol. 2008;62:479–97.Article 

    Google Scholar 
    55.Engel P, Moran NA. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Moreau CS. Symbioses among ants and microbes. Curr Opin Ins Sci. 2020;39:1–5.Article 

    Google Scholar 
    57.Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, et al. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol. 2005;71:6590–9. 2005CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Lanan MC, Rodrigues PAP, Agellon A, Jansma P, Wheeler DE. A bacterial filter protects and structures the gut microbiome of an insect. ISME J. 2016;10:1866–76.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Blochmann F. Über das Vorkommen bakterienähnlicher Gebilde in den Geweben und Eiern verschiedener Insekten. Zbl Bakt. 1882;11:234–40.
    Google Scholar 
    60.Kupper M, Stigloher C, Feldhaar H, Gross R. Distribution of the obligate endosymbiont Blochmannia floridanus and expression analysis of putative immune genes in ovaries of the carpenter ant Camponotus floridanus. Arthropod Struct Dev. 2016;45:475–87.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Rafiqi AM, Rajakumar A, Abouheif E. Origin and elaboration of a major evolutionary transition in individuality. Nature. 2020;585:239–44.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    62.Wilkinson DM. Horizontally acquired mutualisms, an unsolved problem in ecology? Oikos. 2001;92:377–84.Article 

    Google Scholar 
    63.Benson DR, Silvester WB. Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev. 1993;57:293–319.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Shang Y, Feng P, Wang C. Fungi that infect insects: altering host behavior and beyond. PLoS Pathogen. 2015;11:e1005037 https://doi.org/10.1371/journal.ppat.1005037CAS 
    Article 

    Google Scholar 
    65.Hughes DP, Araújo JP, Loreto RG, Quevillon L, de Bekker C, Evans HC. From so Simple a Beginning: The Evolution of Behavioral Manipulation by Fungi. Adv Genet. 2016;94:437–69.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Araújo JPM, Hughes DP. Diversity of entomopathogenic fungi: which groups conquered the insect body? Adv Genet. 2016;94:1–39.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Cremer S, Armitage SAO, Schmid-Hempel P. Social immunity. Curr Biol. 2007;17:R693–R702.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Mersch DP, Crespi A, Keller L. Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science. 2013;340:1090–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Hart AG, Anderson C, Ratnieks FLW. Task partitioning in leafcutting ants. acta ethol. 2002;5:1–11.Article 

    Google Scholar 
    70.Okada Y, Miyazaki S, Miyakawa H, Ishikawa A, Tsuji K, Miura T. Ovarian development and insulin-signaling pathways during reproductive differentiation in the queenless ponerine ant Diacamma sp. J Ins Physiol. 2010;56:288–95.CAS 
    Article 

    Google Scholar 
    71.Miyazaki S, Shimoji H, Suzuki R, Chinushi I, Takayanagi H, Yaguchi H, et al. Expressions of conventional vitellogenin and vitellogenin-like A in worker brains are associated with a nursing task in a ponerine ant. Ins Mol Biol. 2021;30:113–21.CAS 
    Article 

    Google Scholar 
    72.Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Hu Y, Sanders JG, Łukasik P, D’Amelio CL, Millar JS, Vann DR, et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat Commun. 2018;9:964 https://doi.org/10.1038/s41467-018-03357-yCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Kikuta N, Tsuji K. Queen and worker policing in the monogynous and monandrous ant, Diacamma sp. Behav Ecol Sociobiol. 1999;46:180–9.Article 

    Google Scholar 
    75.Okada Y, Sasaki K, Miyazaki S, Shimoji H, Tsuji K, Miura T. Social dominance and reproductive differentiation mediated by dopaminergic signaling in a queenless ant. J Exp Biol. 2015;218:1091–8.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Shimoji H, Kikuchi T, Ohnishi H, Kikuta N, Tsuji K. Social enforcement depending on the stage of colony growth in an ant. Proce R Soc B. 2018;285:20172548.Article 

    Google Scholar  More

  • in

    In vitro metabolic capacity of carbohydrate degradation by intestinal microbiota of adults and pre-frail elderly

    Study setupSix adults and six elderly, who were included in a previously conducted in vivo GOS intervention study [11], donated their faecal material for the current study (Fig. S1) at their first visit or at least 4 weeks after the intervention period. Each participant defecated into a stool collector (Excretas Medical BV, Enschede, the Netherlands). Directly after defecation, faecal material was divided into two portions. A small portion (~0.5 g) was frozen immediately. The remaining faeces was anoxically cryo-conserved and used as inoculum for the in vitro incubations. The viability of different microbial groups in the anoxically cryo-conserved faecal material was determined with propidium monoazide (PMA) dye. The in vitro incubations lasted for 24 h with samples collected in duplicate to compare microbiota composition, carbohydrate degradation and metabolite production between age groups (adults vs elderly). The degrading capacity for two typical bifidogenic carbohydrates, i.e., GOS and 2′-FL, was determined for the microbiota of all six adults and six elderly and compared to a non-carbohydrate control. To further extend these experiments, we also studied the degradation of other typical bifidogenic carbohydrates, i.e. FOS, inulin, and IMMP, using the faecal inocula of three adults and three elderly for which sufficient material was still available.ParticipantsThe six adults (20–30 yrs) and six elderly participants (70–85 yrs) of the intervention study [11] were randomly contacted and participated in the current study, who differed significantly in age, but not in sex, BMI, alcohol consumption, smoking, medication use or dietary fibre intake (Table 1). None of the participants took acid inhibitors (e.g., proton pump inhibitors), nor antibiotics 90 days prior to the study, nor did any of the participants have a chronic disorder or major surgery, as these factors potentially could have limited participation, completion of the study, or interfered with the study outcomes. Detailed description of the inclusion and exclusion criteria has been provided previously [11]. Subject codes as shown in the results were randomly assigned in the data analysis phase and cannot be traced back to individual subjects without the specific randomization key. The study was approved by the medical Ethics Committee of the Maastricht University Medical Center+ and registered in the US National Library of Medicine (http://www.clinicaltrials.gov) with the registration number NCT03077529 [11].Table 1 Characteristics of adults (n = 6) and elderly (n = 6) included in this study.Full size tableDietary intakeParticipants in the current study completed the dietary records on 3 consecutive days, after instructed to record their food, beverage and dietary supplement intake based on standard household units. Their nutrient intake was analyzed using the online dietary assessment tool of The Netherlands Nutrition Centre (www.voedingcentrum.nl).CarbohydratesFive different carbohydrates, i.e., GOS, 2′-FL, FOS, inulin and IMMP were used as sole carbon sources in this study. GOS and the human milk oligosaccharide 2′-FL (Fucα1-2Galβ1-4Glc) were kindly provided by Friesland Campina (Amersfoort, The Netherlands). In order to mimic the actual portion of GOS utilized by intestinal microbiota, purified GOS with  0.05) to explain the observed difference, using the prc function in the vegan package [30]. As for the metabolite data, redundancy analysis (RDA) in combination with Monte Carlo permutation was performed to assess to what extent explanatory variables, i.e., incubation time, subject- and carbohydrate-specificity, could explain the overall variation in metabolite data, using the rda function in the vegan package [30]. To assess the effect of age group (adult vs elderly) on the degradation of carbohydrates/concentration of metabolites during incubation, we analyzed the data using two-way mixed ANOVA, with one between-subjects factor (age group) and one within-subjects factor (incubation time), using the anova_test function in the rstatix package [31]. False discovery rate (FDR) correction according to the Benjamini–Hochberg procedure was applied for multiple testing when applicable. A corrected P value < 0.05 was considered to indicate significant difference. More

  • in

    Strange invaders increase disturbance and promote generalists in an evolving food web

    Model: network structureCommunities are simulated using a modified version of the evolutionary food web models developed in Allhoff et al. (2015) and Allhoff & Drossel (2016), which build on previous models25,26 to show that biodiversity can be maintained in multitrophic networks despite ongoing species turnover when feeding traits are allowed to evolve independent of body mass. The model includes consumptive and competitive interactions, where interaction strengths are determined by the traits of consumer species and their resources. All species possess three traits, a body mass or size ((m)) (used interchangeably), which places them on a body size trait axis, a feeding center ((f)) and feeding range ((s)), which determine the shape and placement of their feeding curve along the axis (Fig. 1a). While the (s) parameter specifically represents one standard deviation of a species’ feeding curve, we refer to (s) throughout as simply the feeding range. The feeding curve represents the hypothetical, fundamental feeding niche of species and shows the potential strength of a consumer’s attack rate for a given resource located along the body size trait axis. Because interactions are determined through these Gaussian curves, our networks are technically fully connected. However, when resources are far from consumer’s feeding centers, interaction strengths become asymptotically small, having a negligible effect on dynamics. Additionally, a basal resource drives energy flow in the food web (Fig. 1a). A summary of all model parameters and variables is provided in Table 2.Model: population dynamicsDynamics are governed by a bioenergetics consumer-resource model, where parameters are scaled to the body mass of species, following previous developments in Yodzis & Innes (1992) and Brose et al. (2006). The rate of change of consumer biomass (({B}_{i})) is given by:$$frac{{dB_{i} }}{dt} = mathop sum limits_{j = resources} e_{j} g_{ij} B_{i} B_{j} – mathop sum limits_{j = consumers} g_{ji} B_{i} B_{j} – mathop sum limits_{j = competitors} c_{ij} B_{i} B_{j} – x_{i} B_{i}$$
    (1)
    where ({e}_{j}) represents the efficiency of biomass conversion of resource (j) by consumers, ({g}_{ij}) is the mass-specific consumption rate of resource (i) by consumer (j), ({c}_{ij}) is the interference competition between consumer (i) and (j), and ({x}_{i}) is the mass-specific biomass loss from respiration and mortality for consumer (i). The rate of change in basal resource biomass (({B}_{0})) is described by:$$frac{{dB_{0} }}{dt} = n_{0} – mathop sum limits_{j = consumers} g_{j0} B_{j} B_{0} – lB_{0}$$
    (2)
    where ({n}_{0}) represents the constant influx of resource biomass and (l) the outflow rate. The time scale of the whole system is therefore defined by setting the constant resource influx rate ({n}_{0}=1), meaning that all other rates in the system, and consequently also consumer lifespans, must be interpreted in relation to ({n}_{0}). The basal resource is given a constant body mass trait value of ({m}_{0}=1) which does not evolve. The mass-specific consumption rate is given by:$${g}_{ij} = frac{1}{{m}_{i}} frac{{a}_{ij}}{1+{sum }_{k=prey}{h}_{i}{a}_{ik}{B}_{k}}$$
    (3)
    where,$${a}_{ij}= {m}_{i}^{0.75}cdot {N}_{ij}={m}_{i}^{0.75}cdot frac{1}{{s}_{i}sqrt{2pi }}cdot mathrm{exp}left[-frac{{left({log}_{10}left({f}_{i}right)-{log}_{10}({m}_{j})right)}^{2}}{2{s}_{i}^{ 2}}right]$$
    (4)
    describes the mass-specific attack rate of consumer (i) on resource (j), given the feeding kernel (({N}_{ij})) of consumer (i). Gaussian feeding kernels are calculated from consumer (i)’s feeding range (({s}_{i})), feeding center (({f}_{i})), and resource j’s body mass (({m}_{i})), such that resources which occur close to consumer feeding center on the body size trait axis result in the highest attack rates (Fig. 1a). The mass-specific handling time for consumers is given by ({h}_{i}=0.4cdot {m}_{i}^{-0.25}). Interference competition between consumer (i) and (j) is described by:$${c}_{ij}= {c}_{0}cdot frac{{I}_{ij}}{{I}_{ii}} text{ for }ine j$$
    (5)
    where,$${I}_{ij}= int {N}_{ik}cdot {N}_{jk}dleft({log}_{10}{(m}_{k})right)$$
    (6)
    describes the overlap in resources (k) between two competing consumers (i) and (j), such that consumers with similar feeding traits will have greater overlap between their feeding kernels resulting in higher competition coefficients.Model: community assembly & network evolutionCommunity assembly of food webs occurs through a combination of ecological and evolutionary dynamics (Fig. 1b). All ecological dynamics are described by the consumer-resource model above, where species with viable biomass densities persist in communities and species whose biomass falls below a fixed extinction threshold ((varepsilon = {10}^{-8})) are removed from the network. New species are introduced probabilistically into the network at fixed intervals through either mutation events ((p)) or as invaders ((1-p)), where (p) can be manipulated to increase the frequency of either mutation or invasion events. The traits of new mutant species are drawn probabilistically from a Gaussian distribution set around the traits of a selected extant parent species in the network. Invader species traits are generated in a similar fashion but using a Gaussian distribution with a greater standard deviation. The standard deviation of this trait range is set with the invader strangeness parameter (z), which can be manipulated to increase the range of potential traits for invader species. Thus, a larger (z) value increases the probability that new invader species will appear “strange” compared to other species already in the community. For mutant species, (z) is always set to 0.1.Parents of mutants are chosen probabilistically, where species with greater individual density (species biomass/body mass) are more likely to generate new mutant species. The parents of invader species are chosen randomly, with equal probability given to all extant species in the community. Both mutants and invaders are introduced into the system at the extinction threshold biomass ((varepsilon ={10}^{-8})). For mutants the initial biomass is removed from the biomass of the parent species’ populations, while for invaders this biomass is added into the system without affecting the parent species’ biomass pool; however, this difference did not significantly impact our results.Communities are initialized with a single ancestor species (starting biomass (varepsilon ={10}^{-8})) and the basal resource (starting biomass (=frac{{n}_{0}}{l}=2.0)) (Fig. 1b). The ancestor species is given a body mass of (m=100), feeding center of (f=1), and feeding range of (s=0.4). Upon initialization, the system is a run with only the ancestor species consuming the basal resource until a new species is introduced at 100 time steps. Thereafter, new species are introduced every 100 time steps, with ecological dynamics occurring between each species introduction. Additionally, species biomass is assessed at each 100 time step interval and non-viable species populations that fall below the biomass extinction threshold are removed. This process is repeated cyclically over the course of simulations (Fig. 1b), with many new species being generated and many removed due to extinction. The persistence of individual species is thus determined by their individual traits and overall resource availability given the composition of the rest of the community. With this dynamical approach to simulating evolving food webs, similar models have been shown to generate viable communities with both multi-trophic diversity and constant species turnover27,28, making this framework useful for testing the evolutionary impacts of species invasion and disturbance on community composition.Simulation experimentsSimulations were conducted in C, where numerical integration of differential equations was performed using the Runge–Kutta–Fehlberg algorithm from the GNU Scientific library29. Simulations were run for 25 million time steps, with 250,000 novel species introductions (mutants or invaders) for each simulation. To test if invasion would increase disturbance and variability in communities and drive the evolution of more generalized species, we conducted simulations where invaders were introduced with an increased probability of having trait values that were divergent from parent species. We controlled this by manipulating the invader strangeness parameter ((z)) across a range from (z=0.1) (invader and mutant trait values are equivalent) to (z=5.0). Invasion frequency ((p)) was fixed at 0.2 for all simulations, making mutation events more likely to occur than invasion.We hypothesized that introducing invaders with traits that are very different from parent species and from the community should result in greater disturbance in food webs because these species would be more likely to occupy novel niche space along the body size trait axis, which could result in the overexploitation of resources either through superior feeding strategies or by allowing invaders to avoid consumption by other consumers. Together, this should increase the probability of disrupted consumer-resource dynamics and secondary species extinction occurring with the introduction of strange invaders, both resulting in increased variability of biomass in the community. As a result, this increased variation should favor the survival of more generalist species in the community if they can buffer variability by consuming a greater range of resources.This is tested against the assumption that specialist consumers are more efficient than generalist consumers (generalist trade-off hypothesis2,12), which is built into our model given the formulation of the attack rate parameter ((a)), where specialist species achieve higher optimal peaks in attack rates, given their smaller feeding ranges ((s)). Thus, under conditions of low variability, our model results in communities being composed of mostly very specialized species, with narrow feeding ranges. To counter this trend toward extreme specialization, we set a floor for minimum feeding range values for all species of (s=0.3). Given these tendencies, we expected the persistence (lifespan) of more specialist species to be greatest under conditions of low variability (low invader strangeness) and that the relative persistence of more generalist species compared to specialists should increase with disturbance due to increasingly strange invaders.To test the robustness of these predictions, we replicated the (z) parameter sweep 100 times using random initial seed sets, resulting in 5000 simulations total, which collectively generated over 1.25e+09 unique species across all simulations. Data from these simulations was extracted at three different time intervals. We assessed species traits and lifespan data for all species generated in simulations at every 100 time steps, excluding data from the first 50,000 time steps to avoid including transient dynamics. Community level data, including community biomass and basal resource biomass were extracted at every 50,000 time steps (excluding time 0 from analysis). Species turnover data was extracted at every 10,000 time steps. In the infrequent event that simulations did not complete (community level extinction or crashed runs) we reran simulations with different random seed sets but identical parameter values.Data & statistical analysisDo resource and community variation increase with invader strangeness?To assess whether the addition of increasingly strange invaders into food web communities resulted in increased variation we analyzed several metrics of community and resource variability. We calculated the standard deviation (SD) of the basal resource biomass across time for each simulation and pooled these data for all simulation replicates across the invader strangeness parameter sweep. To assess variation at the community level, we used a similar approach to calculate variability in community biomass. For this metric, we summed the population biomasses of all species in the community for each given time interval output (excluding species introduced at that time step) and calculated the SD of these values across time for each individual simulation.Finally, to further assess community variability and to determine if increasing invader strangeness drives increased extinction in communities, we calculated species turnover for each time output. Species turnover was measured as the percentage change in the composition of species in communities between each time output (10,000 time steps). We then calculated mean species turnover over time for each simulation replicate and pooled all data together. To account for the non-linearity observed in our variation data (see “Results”) we conducted generalized additive models (GAM) to determine if increasing invader strangeness resulted in a significant increase in variability. GAMs were fit using a gamma error distribution with a log link function to account for continuous data constrained to positive values.Does the degree of generalism in communities increase with invader strangeness?To determine if the degree of generalism and the proportion of generalist species in food webs increased as invader strangeness increased, we calculated the mean and median feeding range ((s)) (Table 1) of species which occurred in communities for each simulation. We included all species that were generated and that survived for at least 100 time-steps in simulations, to remove the many non-viable species which immediately go extinct. Additionally, we included only mutant species for this metric to avoid the influence of the traits of invaders species, which we directly manipulated through the invader strangeness parameter. We reasoned this would provide a more independent metric of feeding range trends in communities. Mean and median feeding range were calculated for all simulation replicates and the impact of invader strangeness was assessed with GAMs (gamma error distribution with a log link function) to account for non-linear data (see “Results”).Additionally, we calculated a measure of the realized feeding range of consumers (distinct from the fixed fundamental feeding range ((s)) (Table 1)) to determine if more species were functioning as feeding generalists in communities. For this metric, we calculated the attack rate of each consumer on all other species in the community (including the basal resource and the focal consumer) for each time output (every 50,000 time steps from our community data, excluding species introduced at that time step). We then calculated the proportion of the attack rate on each species compared to the focal species’ maximum possible attack rate (an ideal prey at the exact center of the consumer’s feeding kernel). We then excluded all values below a threshold of 0.1 and from this calculated the proportion of species consumed out of the total number of species in the community. This metric correlated positively with the fundamental feeding range ((s)) of consumer species (Supplementary Fig. S3) and we refer to it throughout as the realized feeding range (Table 1) of consumer species. For our statistical analysis, we calculated the mean realized feeding range of species per simulation across invader strangeness ((z)) and ran a GLM with a quasibinomial error distribution and logit link function to account for proportional data.Does the persistence of generalist species increase with invader strangeness?To determine the persistence of species in our simulations we assessed the lifespan of individual species in simulated communities across time. For a given species, lifespan was measured as the number of time steps it persisted in a simulation after its initial introduction. We used this data to determine the relationship between species persistence and feeding range traits in two ways. First, we assessed the lifespan of all species in individual simulations continuously given the feeding range trait values across species. From this, a regression coefficient was calculated from the log10-scaled data, using a GLM with a gamma error distribution (log link), to determine the trend or “lifespan slope” for each simulation under different levels of invader strangeness (Fig. 4b). These lifespan slope values were then assessed for all simulation replicates across the full range of the invader strangeness parameter. Because more specialized species have higher maximal attack rates and are typically more efficient in our model, we expected that the lifespans of specialist species would be longer than more generalized species and that lifespan slopes should be negative under conditions of low variation. Given this, we expected to observe a positive trend in lifespan slope values across the invader strangeness parameter sweep if disturbance was increased in simulations as (z) became higher. We tested for this positive trend in the lifespan slope data by conducting a GAM (Gaussian distribution and the identity link function) to manage the observed non-linear trend in our data (see “Results”).For the second approach, we aimed to determine the relative persistence of species by binning “generalist” and “specialist” species based on feeding range traits and comparing species lifespans between these groups. For this analysis we split species into bins, where specialist species included all species with feeding range (sle) 0.32 and generalists as all species with feeding range values (sge) 0.39 (species with intermediate feeding range values were excluded from the analysis). We performed a robustness check of bin cutoffs but found no qualitative or statically significant differences in our results for a range of bin cutoff values. To assess how the relative persistence of generalists compared to specialists was influenced by invader strangeness, we then calculated the mean life span of all species falling into either of these categories per simulation and determined how these values were influenced by (z) for all simulation replicates. To assess whether mean lifespan was different between each of these groups across the invader strangeness sweep, we conducted a GLM with species type (generalist or specialist) and invader strangeness ((z)) as fixed effect terms and tested for the statistical significance of their interaction on mean species lifespan. The GLM was run using a Poisson distribution to account for discrete lifespan count data with a log link function. All GLMs and GAMs were performed in R using the “glm” and “mgcv” functions30, respectively, and all non-linear parameters in GAMs were fit using generalized cross validation (GCV). More

  • in

    Rebound in China’s coastal wetlands following conservation and restoration

    1.Ma, Z. J. et al. Rethinking China’s new great wall. Science 346, 912–914 (2014).CAS 
    Article 

    Google Scholar 
    2.Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).Article 
    CAS 

    Google Scholar 
    3.Wang, X. et al. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 238, 110987 (2020).Article 

    Google Scholar 
    4.Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2, 488–491 (2009).CAS 
    Article 

    Google Scholar 
    5.Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P. & Fuller, R. A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front. Ecol. Environ. 12, 267–272 (2014).Article 

    Google Scholar 
    6.Gedan, K. B., Silliman, B. R. & Bertness, M. D. Centuries of human-driven change in salt marsh ecosystems. Ann. Rev. Mar. Sci. 1, 117–141 (2009).Article 

    Google Scholar 
    7.Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).CAS 
    Article 

    Google Scholar 
    8.Cui, B., He, Q., Gu, B., Bai, J. & Liu, X. China’s coastal wetlands: understanding environmental changes and human impacts for management and conservation. Wetlands 36, 1–9 (2016).Article 

    Google Scholar 
    9.Gong, P. et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 64, 370–373 (2019).Article 

    Google Scholar 
    10.Han, Q., Niu, Z., Wu, M. & Wang, J. Remote-sensing monitoring and analysis of China intertidal zone changes based on tidal correction. Sci. Bull. 64, 456–473 (2019).
    Google Scholar 
    11.Mao, D. et al. National wetland mapping in China: a new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote Sens. 164, 11–25 (2020).Article 

    Google Scholar 
    12.Wang, X. et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 163, 312–326 (2020).Article 

    Google Scholar 
    13.Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, e11764 (2017).Article 

    Google Scholar 
    14.Giri, C. et al. Status and distribution of mangrove forests of the world using Earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).Article 

    Google Scholar 
    15.Chen, Y. et al. Effects of reclamation and natural changes on coastal wetlands bordering China’s Yellow Sea from 1984 to 2015. Land Degrad. Dev. 30, 1533–1544 (2019).Article 

    Google Scholar 
    16.Hu, Y. et al. Mapping coastal salt marshes in China using time series of Sentinel-1 SAR. ISPRS J. Photogramm. Remote Sens. 173, 122–134 (2021).Article 

    Google Scholar 
    17.Zhang, X. et al. Quantifying expansion and removal of Spartina alterniflora on Chongming Island, China, using time series Landsat images during 1995–2018. Remote Sens. Environ. 247, 111916 (2020).18.Chen, B. Q. et al. A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 131, 104–120 (2017).Article 

    Google Scholar 
    19.Hu, L., Li, W. & Xu, B. Monitoring mangrove forest change in China from 1990 to 2015 using Landsat-derived spectral-temporal variability metrics. Int. J. Appl. Earth Obs. Geoinf. 73, 88–98 (2018).Article 

    Google Scholar 
    20.Jia, M., Wang, Z., Zhang, Y., Mao, D. & Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 73, 535–545 (2018).Article 

    Google Scholar 
    21.Jia, M. et al. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 255, 112285 (2021).Article 

    Google Scholar 
    22.Ma, T., Li, X., Bai, J. & Cui, B. Tracking three decades of land use and land cover transformation trajectories in China’s large river deltas. Land Degrad. Dev. 30, 799–810 (2019).Article 

    Google Scholar 
    23.Wang, K. Evolution of Yellow River delta coastline based on remote sensing from 1976 to 2014, China. Chin. Geogr. Sci. 29, 181–191 (2019).Article 

    Google Scholar 
    24.Zhao, Y. F. et al. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Sci. Total Environ. 607, 920–932 (2017).Article 
    CAS 

    Google Scholar 
    25.Yim, J. et al. Analysis of forty years long changes in coastal land use and land cover of the Yellow Sea: the gains or losses in ecosystem services. Environ. Pollut. 241, 74–84 (2018).CAS 
    Article 

    Google Scholar 
    26.Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).
    Google Scholar 
    27.Chen, Y. et al. Land claim and loss of tidal flats in the Yangtze Estuary. Sci. Rep. 6, 24018 (2016).CAS 
    Article 

    Google Scholar 
    28.Yang, M. et al. Spatio-temporal characterization of a reclamation settlement in the Shanghai coastal area with time series analyses of X-, C-, and L-band SAR datasets. Remote Sens. 10, 329 (2018).29.Han, X., Pan, J. & Devlin, A. T. Remote sensing study of wetlands in the Pearl River Delta during 1995–2015 with the support vector machine method. Front. Earth Sci. 12, 521–531 (2018).Article 

    Google Scholar 
    30.Liu, L., Xu, W., Yue, Q., Teng, X. & Hu, H. Problems and countermeasures of coastline protection and utilization in China. Ocean Coast. Manag. 153, 124–130 (2018).Article 

    Google Scholar 
    31.Yunxuan, Z. et al. Degradation of coastal wetland ecosystem in China: drivers, impacts, and strategies. Bull. Chin. Acad. Sci. 31, 1157–1166 (2016).
    Google Scholar 
    32.Jiang, T. T., Pan, J. F., Pu, X. M., Wang, B. & Pan, J. J. Current status of coastal wetlands in China: degradation, restoration, and future management. Estuar. Coast. Shelf Sci. 164, 265–275 (2015).Article 

    Google Scholar 
    33.Sun, Z. et al. China’s coastal wetlands: conservation history, implementation efforts, existing issues and strategies for future improvement. Environ. Int. 79, 25–41 (2015).Article 

    Google Scholar 
    34.Ren, C. et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. Geoinf. 82, 101902 (2019).35.Gu, J. et al. Losses of salt marsh in China: trends, threats and management. Estuar. Coast. Shelf Sci. 214, 98–109 (2018).Article 

    Google Scholar 
    36.Wang, W., Liu, H., Li, Y. & Su, J. Development and management of land reclamation in China. Ocean Coast. Manag. 102, 415–425 (2014).Article 

    Google Scholar 
    37.Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    38.Barbier, E. B. A global strategy for protecting vulnerable coastal populations. Science 345, 1250–1251 (2014).CAS 
    Article 

    Google Scholar 
    39.He, Q. et al. Economic development and coastal ecosystem change in China. Sci. Rep. 4, 5995 (2014).40.Zhou, C. et al. Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone. Sci. China Life Sci. 46, 475–486 (2016).
    Google Scholar 
    41.Zhang, Q. et al. Propagule types and environmental stresses matter in saltmarsh plant restoration. Ecol. Eng. 143, 105693 (2020).Article 

    Google Scholar 
    42.Cui, B., Yang, Q., Yang, Z. & Zhang, K. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecol. Eng. 35, 1090–1103 (2009).Article 

    Google Scholar 
    43.Pan, X. Research on Xi Jinping’s thought of ecological civilization and environment sustainable development. IOP Conf. Ser. Earth Environ. Sci. 153, 062067 (2018).44.Hansen, M. H., Li, H. & Svarverud, R. Ecological civilization: interpreting the Chinese past, projecting the global future. Glob. Environ. Change. 53, 195–203 (2018).Article 

    Google Scholar 
    45.Moreno-Mateos, D., Power, M. E., Comín, F. A. & Yockteng, R. Structural and functional loss in restored wetland ecosystems. PLoS Biol. 10, e1001247 (2012).CAS 
    Article 

    Google Scholar 
    46.He, Q. Conservation: ‘No net loss’ of wetland quantity and quality. Curr. Biol. 29, R1070–R1072 (2019).CAS 
    Article 

    Google Scholar 
    47.Gong, P., Li, X. & Zhang, W. 40-year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 64, 756–763 (2019).Article 

    Google Scholar 
    48.Wang, X. et al. Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nat. Commun. 11, 3471 (2020).49.Zou, Z. H. et al. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl Acad. Sci. USA 115, 3810–3815 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Soil organic matter is essential for colony growth in subterranean termites

    1.Fagan, W. F. et al. Nitrogen in insects: Implications for trophic complexity and species diversification. Am. Nat. 160, 784–802 (2002).PubMed 
    Article 

    Google Scholar 
    2.Kuhlmann, F. et al. Exploring the nitrogen ingestion of aphids—A new method using electrical penetration graph and (15)N labelling. PLoS ONE 8, e83085. https://doi.org/10.1371/journal.pone.0083085 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Nalepa, C. A. Origin of termite eusociality: Trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40, 323–335 (2015).Article 

    Google Scholar 
    4.Tong, R. L., Aguilera-Olivares, D., Chouvenc, T. & Su, N. Y. Nitrogen content of the exuviae of Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae). Heliyon 7, e06697. https://doi.org/10.1016/j.heliyon.2021.e06697 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Nalepa, C. A. Altricial development in subsocial cockroach ancestors: Foundation for the evolution of phenotypic plasticity in termites. Evol. Dev. 12, 95–105 (2011).Article 

    Google Scholar 
    6.Abe, T. Evolution of life types in termites. In Evolution and coadaptation in biotic Communities (eds. Kawano, S., Connell, J. H. & Hidaka, T.) 126–148, (University of Tokyo Press, 1987).7.Bourguignon, T. et al. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32, 406–421 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Bucek, A. et al. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr. Biol. 29, 3728–3734 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Breznak, J. A. Ecology of prokaryotic microbes in the guts of wood-and litter-feeding termites. In Termites: Evolution, Sociality, Symbioses, Ecology (eds Abe, T. et al.) 209–231 (Springer, 2000).Chapter 

    Google Scholar 
    10.Potrikus, C. J. & Breznak, J. A. Gut bacteria recycle uric acid nitrogen in termites: A strategy for nutrient conservation. Proc. Natl. Acad. Sci. USA 78, 4601–4605 (1981).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Bao, W., O’Malley, D. M. & Sederoff, R. R. Wood contains a cell-wall structural protein. Proc. Nat. Acad. Sci. USA 89, 6604–6608 (1992).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Ji, R. & Brune, A. Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochem. 78, 267–283 (2006).Article 
    CAS 

    Google Scholar 
    13.Ngugi, D. K., Ji, R. & Brune, A. Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites: A 15 N-based approach. Biogeochem. 103, 355–369 (2011).CAS 
    Article 

    Google Scholar 
    14.Chouvenc, T., Šobotník, J., Engel, M. S. & Bourguignon, T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell. Mol. Life Sci. 78, 2749–2769 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Engel, M. S., Grimaldi, D. A. & Krishna, K. Termites (Isoptera): Their phylogeny, classification, and rise to ecological dominance. Am. Mus. Nov. 3650, 1–27 (2009).
    Google Scholar 
    16.Bignell, D. E. The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics. In The mechanistic benefits of microbial symbionts (ed. Hurst C. J.) 121–172 (Springer, Cham 2016).17.Nalepa, C. A. Body size and termite evolution. Evol. Biol. 38, 243–257 (2011).Article 

    Google Scholar 
    18.Breznak, J. A., Brill, W. J., Mertins, J. W. & Coppel, H. C. Nitrogen fixation in termites. Nature 244, 577–580 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Noda, S., Ohkuma, M. & Kudo, T. Nitrogen fixation genes expressed in the symbiotic microbial community in the gut of the termite Coptotermes formosanus. Microbes Environ. 17, 139–143 (2002).Article 

    Google Scholar 
    20.Benemann, J. R. Nitrogen fixation in termites. Science 181, 164–165 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Waller, D. A., Breitenbeck, G. A. & La Fage, J. P. Variation in acetylene reduction by Coptotermes formosanus (Isoptera: Rhinotermitidae) related to colony source and termite size. Sociobiology 16, 191–196 (1989).
    Google Scholar 
    22.Pandey, S., Waller, D. A. & Gordon, A. S. Variation in acetylene-reduction (nitrogen-fixation) rates in Reticulitermes spp. (Isoptera: Rhinotermitidae). Virginia J. Sci. 43, 333–338 (1992).23.Curtis, A. D. & Waller, D. A. Changes in nitrogen fixation rates in termites (Isoptera: Rhinotermitidae) maintained in the laboratory. Ann. Entomol. Soc. 88, 764–767 (1995).Article 

    Google Scholar 
    24.Golichenkov, M. V., Kostina, N. V., Ul’yanova, T. A., Kuznetsova, T. A. & Umarov, M. M. Diazotrophs in the digestive tract of termite Neotermes castaneus. Biol. Bull. 33, 508–512 (2006).25.Dilworth, M. J. Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim. Biophys. Acta General Subjects 127, 285–294 (1966).CAS 
    Article 

    Google Scholar 
    26.Bentley, B. L. Nitrogen fixation in termites: Fate of newly fixed nitrogen. J. Insect Physiol. 30, 653–655 (1984).CAS 
    Article 

    Google Scholar 
    27.Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for delta(13)C analysis of diet. Oecologia 57, 32–37 (1983).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Dabundo, R. et al. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS One. https://doi.org/10.1371/journal.pone.0110335 (2014).29.Tayasu, I. Use of carbon and nitrogen isotope ratios in termite research. Ecol. Res. 13, 377–387 (1998).Article 

    Google Scholar 
    30.Bar-Shmuel, N., Behar, A. & Segoli, M. What do we know about biological nitrogen fixation in insects? Evidence and implications for the insect and the ecosystem. Insect Sci. 27, 392–403 (2020).PubMed 
    Article 

    Google Scholar 
    31.Du, H., Chouvenc, T., Osbrink, W. L. A. & Su, N.-Y. Social interactions in the central nest of Coptotermes formosanus juvenile colonies. Insectes Soc. 63, 279–290. https://doi.org/10.1007/s00040-016-0464-4 (2016).Article 

    Google Scholar 
    32.Josens, G. & Makatia Wango, S. P. Niche differentiation between two sympatric Cubitermes Species (Isoptera, Termitidae, Cubitermitinae) revealed by stable C and N isotopes. Insects 10, 38. https://doi.org/10.3390/insects10020038 (2019).Article 
    PubMed Central 

    Google Scholar 
    33.Burris, R. H. Nitrogenases. J. Biol. Chem. 266, 9339–9342 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Nutting, W. L. Flight and colony foundation. In Biology of Termites Vol. 1 (eds Krishna, K & Weesner, F.) 233–282 (Academic Press, 1969).35.Chouvenc, T. & Su, N. Y. Colony age-dependent pathway in caste development of Coptotermes formosanus Shiraki. Insectes Soc. 61, 171–182 (2014).Article 

    Google Scholar 
    36.Su, N. Y., Ban, P. M. & Scheffrahn, R. H. Foraging populations and territories of the eastern subterranean termite (Isoptera: Rhinotermitidae) in Southeastern Florida. Environ. Entomol. 22, 1113–1117 (1993).Article 

    Google Scholar 
    37.Su, N. Y., Osbrink, W. L. A., Kakkar, G., Mullins, A. & Chouvenc, T. Foraging distance and population size of juvenile colonies of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in laboratory extended arenas. J. Econ. Entomol. 110, 1728–1735 (2017).PubMed 
    Article 

    Google Scholar 
    38.Rust, M. K. & Su, N. Y. Managing social insects of urban importance. Annu. Rev. Entomol. 57, 355–375 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Krishna, K., Grimaldi, D. A., Krishna, V. & Engel, M. S. Treatise on the Isoptera of the world. Bull. Am. Mus. Nat. Hist. 377, 1–2704 (2013).Article 

    Google Scholar 
    40.Bourguignon, T. et al. Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proc. Roy. Soc. B: Biol. Sci. 283, 20160179. https://doi.org/10.1098/rspb.2016.0179 (2016).CAS 
    Article 

    Google Scholar 
    41.Cleveland, L. R. The ability of termites to live perhaps indefinitely on a diet of pure cellulose. Biol. Bull. 48, 289–293 (1925).CAS 
    Article 

    Google Scholar 
    42.Roessler, E. S. A Preliminary study of the nitrogen needs of growing Termopsis. Univ. Calif. Publ. Zool. 36, 357–368 (1932).CAS 

    Google Scholar 
    43.Hendee, E. C. The role of fungi in the diet of the common damp-wood termite Zootermopsis angusticolis. Hilgardia 9, 499–524 (1935).CAS 
    Article 

    Google Scholar 
    44.Hungate, R. E. Experiments on the nitrogen economy of termites. Ann. Entomol. Soc. Am. 34, 467–489 (1941).CAS 
    Article 

    Google Scholar 
    45.Mullins, A. J. & Su, N. Y. Parental nitrogen transfer and apparent absence of N2 fixation during colony foundation in Coptotermes formosanus Shiraki. Insects 9, 37. https://doi.org/10.3390/insects9020037 (2018).Article 
    PubMed Central 

    Google Scholar 
    46.Prestwich, G. D., Bentley, B. L. & Carpenter, E. J. Nitrogen sources for neotropical nasute termites: Fixation and selective foraging. Oecologia 46, 397–401 (1980).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Waidele, L., Korb, J., Voolstra, C.R., Dedeine, F. & Staubach, F. Ecological specificity of the metagenome in a set of lower termite species supports contribution of the microbiome to adaptation of the host. Anim. Microbio. 1, 13. https://doi.org/10.1186/s42523-019-0014-2 (2019).48.Oster, G. F. & Wilson, E. O. Caste and ecology in the social insects. (Princeton University Press, Princeton, 1978).49.Janzow, M. P. & Judd, T. M. The termite Reticulitermes flavipes (Rhinotermitidae: Isoptera) can acquire micronutrients from soil. Environ. Entomol. 44, 814–820 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Noda, S., Ohkuma, M. & Kudo, T. Nitrogen fixation genes expressed in the symbiotic microbial community in the gut of the termite Coptotermes formosanus. Microb. Environ. 17, 139–143 (2002).Article 

    Google Scholar 
    51.Desai, M. S. & Brune, A. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J. 6, 1302–1313 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Seefeldt, L. C., Hoffman, B. M. & Dean, D. R. Mechanism of Mo-dependent nitrogenase. Annu. Rev. biochem. 78, 701–722 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Yamada, A., Inoue, T., Noda, S., Hongoh, Y. & Ohkuma, M. Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol. Ecol. 16, 3768–3777 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Thanganathan, S. & Hasan, K. Diversity of nitrogen fixing bacteria associated with various termite species. Pertanika J. Tropic. Agri. Sci. 41, 925–940 (2018).
    Google Scholar 
    56.Mullins, A. J. et al. Dispersal flights of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 108, 707–719 (2015).PubMed 
    Article 

    Google Scholar 
    57.Mullins, D. E. & Cochran, D. G. Nitrogen metabolism in the American cockroach—II. An examination of negative nitrogen balance with respect to mobilization of uric acid stores. Comp. Biochem. Physiol. A Physiol. 50, 501–510 (1975).58.Waller, D. A. & La Fage, j. P. Seasonal patterns in foraging groups of Coptotermes formosanus (Rhinotermitidae). Sociobiology 13, 173–181 (1987).59.Waller, D. A. & La Fage, J. P. Size variation in Coptotermes formosanus Shiraki (Rhinotermitidae): Consequences of host use. Am. Midl. Nat. 119, 436–440 (1988).Article 

    Google Scholar 
    60.Su, N.-Y. & La Fage, J. P. Forager proportion and caste composition of colonies of the Formosan subterranean termite (Isoptera: Rhinotermitidae) restricted to cypress trees in the Calcasieu River, Lake Charles, Louisiana. Sociobiology 33, 185–193 (1999).
    Google Scholar 
    61.Osbrink, W. L. A., Cornelius, M. L. & Showler, A. T. Bionomics and Formation of “bonsai” colonies with long-term rearing of Coptotermes formosanus (Isoptera: Rhinotermitidae). J. Econ. Entomol. 109, 770–778 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Hochmair, H. H. & Scheffrahn, R. H. Spatial association of marine dockage with land-borne infestations of invasive termites (Isoptera: Rhinotermitidae: Coptotermes) in urban South Florida. J. Econ. Entomol. 103, 1338–1346 (2010).PubMed 
    Article 

    Google Scholar 
    63.Scheffrahn, R. H. & Crowe, W. Ship-borne termite (Isoptera) border interceptions in Australia and onboard infestations in Florida, 1986–2009. Florida Entomol. 94, 57–63 (2011).Article 

    Google Scholar 
    64.Evans, T. A., Forschler, B. T. & Grace, J. K. Biology of invasive termites: A worldwide review. Annu. Rev. Entomol. 58, 455–474 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Blumenfeld, A. J. et al. Bridgehead effect and multiple introductions shape the global invasion history of a termite. Comm. Biol. 4, 196. https://doi.org/10.1038/s42003-021-01725-x (2021).CAS 
    Article 

    Google Scholar 
    66.Evans, T. A. Predicting ecological impacts of invasive termites. Curr. Op. Insect Sci. 46, 88–94 (2021).Article 

    Google Scholar 
    67.Ayayee, P. A., Jones, S. C. & Sabree, Z. L. Can 13C stable isotope analysis uncover essential amino acid provisioning by termite-associated gut microbes?. PeerJ 3, e1218. https://doi.org/10.7717/peerj.1218 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow?. PLoS Biol. 13, e1002311. https://doi.org/10.1371/journal.pbio.1002311 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Bennett, G. M. & Moran, N. A. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc. Natl. Acad. Sci. USA 112, 10169–10176 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in bacterial symbiosis. Proc. Nat. Acad. Sci. USA 108, 10800–10807 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Peterson B. F. & Scharf M. E. Metatranscriptomic techniques for identifying cellulases in termites and their symbionts. In Cellulases. Methods in Molecular Biology, vol 1796 (ed. Lübeck, M.) 85–101 (Humana Press, New York, NY 2018).72.Gaby, J. C. & Buckley, D. H. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE 7, e42149. https://doi.org/10.1371/journal.pone.0042149 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Poly, F., Ranjard, L., Nazaret, S., Gourbiere, F. & Monrozier, L. J. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. App. Environ. Microbiol. 67, 2255–2262 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    74.Rocha, D. J., Santos, C. S. & Pacheco, L. G. Bacterial reference genes for gene expression studies by RT-qPCR: Survey and analysis. Antonie Van Leeuwenhoek 108, 685–693 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Galisa, P. S. et al. Identification and validation of reference genes to study the gene expression in Gluconacetobacter diazotrophicus grown in different carbon sources using RT-qPCR. J. Microbiol. Methods 91, 1–7 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Mignard, S. & Flandrois, J. P. Identification of Mycobacterium using the EF-Tu encoding (tuf) gene and the tmRNA encoding (ssrA) gene. J. Med. Microbiol. 56, 1033–1041 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Contribution of historical herbarium small RNAs to the reconstruction of a cassava mosaic geminivirus evolutionary history

    1.Stukenbrock, E. H. & McDonald, B. A. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev.phyto.010708.154114 (2008).Article 
    PubMed 

    Google Scholar 
    2.Savary, S., Ficke, A., Aubertot, J. N. & Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. https://doi.org/10.1007/s12571-012-0200-5 (2012).Article 

    Google Scholar 
    3.Strange, R. N. & Scott, P. R. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev.phyto.43.113004.133839 (2005).Article 
    PubMed 

    Google Scholar 
    4.Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2004.07.021 (2004).Article 
    PubMed 

    Google Scholar 
    5.Scholthof, K. B. G. et al. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2011.00752.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Stukenbrock, E. H. & Bataillon, T. A population genomics perspective on the emergence and adaptation of new plant pathogens in agro-ecosystems. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002893 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Gilligan, C. A. Sustainable agriculture and plant diseases: an epidemiological perspective. Philos. Trans. R. Soc. B: Biol. Sci. https://doi.org/10.1098/rstb.2007.2181 (2008).Article 

    Google Scholar 
    8.Li, L. M., Grassly, N. C. & Fraser, C. Genomic analysis of emerging pathogens: methods, application and future trends. Genome Biol.ogy https://doi.org/10.1186/s13059-014-0541-9 (2014).Article 

    Google Scholar 
    9.Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1000520 (2009).MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lefeuvre, P. et al. The spread of tomato yellow leaf curl virus from the middle east to the world. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1001164 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Monjane, A. L. et al. Reconstructing the history of maize streak virus strain A dispersal tor reveal diversification hot spots and its origin in southern Africa. J. Virol. https://doi.org/10.1128/jvi.00640-11 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Trovao, N. S. et al. Host ecology determines the dispersal patterns of a plant virus. Virus Evol. https://doi.org/10.1093/ve/vev016 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Rakotomalala, M. et al. Comparing patterns and scales of plant virus phylogeography: rice yellow mottle virus in Madagascar and in continental Africa. Virus Evol. https://doi.org/10.1093/ve/vez023 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Gibbs, A. J., Fargette, D., García-Arenal, F. & Gibbs, M. J. Time – The emerging dimension of plant virus studies. J General Virol. https://doi.org/10.1099/vir.0.015925-0 (2010).Article 

    Google Scholar 
    15.Simmonds, P., Aiewsakun, P. & Katzourakis, A. Prisoners of war: host adaptation and its constraints on virus evolution. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-018-0120-2 (2019).Article 
    PubMed 

    Google Scholar 
    16.Jones, R. A. C., Boonham, N., Adams, I. P. & Fox, A. Historical virus isolate collections: an invaluable resource connecting plant virology’s pre-sequencing and post-sequencing eras. Plant Pathol. 70, 235–248 (2021).Article 

    Google Scholar 
    17.Smith, O. et al. A complete ancient RNA genome: Identification, reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus. Sci. Rep. https://doi.org/10.1038/srep04003 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Malmstrom, C. M., Shu, R., Linton, E. W., Newton, L. A. & Cook, M. A. Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease ecology of invasive and native grasses. J. Ecol. https://doi.org/10.1111/j.1365-2745.2007.01307.x (2007).Article 

    Google Scholar 
    19.Peyambari, M., Warner, S., Stoler, N., Rainer, D. & Roossinck, M. J. A 1000-Year-old RNA virus. J. Virol. 93, e01188-18 (2019).CAS 
    Article 

    Google Scholar 
    20.Adams, I. P. et al. Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2009.00545.x (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Vayssier-Taussat, M. et al. Shifting the paradigm from pathogens to pathobiome new concepts in the light of meta-omics. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2014.00029 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Massart, S., Olmos, A., Jijakli, H. & Candresse, T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. https://doi.org/10.1016/j.virusres.2014.03.029 (2014).Article 
    PubMed 

    Google Scholar 
    23.Roossinck, M. J., Martin, D. P. & Roumagnac, P. Plant virus metagenomics: advances in virus discovery. Phytopathology https://doi.org/10.1094/PHYTO-12-14-0356-RVW (2015).Article 
    PubMed 

    Google Scholar 
    24.Kreuze, J. F. et al. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology https://doi.org/10.1016/j.virol.2009.03.024 (2009).Article 
    PubMed 

    Google Scholar 
    25.Pooggin, M. M. Small RNA-omics for plant virus identification, virome reconstruction, and antiviral defense characterization. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02779 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Hartung, J. S. et al. History and diversity of Citrus Leprosis virus recorded in herbarium specimens. Phytopathology https://doi.org/10.1094/PHYTO-03-15-0064-R (2015).Article 
    PubMed 

    Google Scholar 
    27.Golyaev, V., Candresse, T., Rabenstein, F. & Pooggin, M. M. Plant virome reconstruction and antiviral RNAi characterization by deep sequencing of small RNAs from dried leaves. Sci. Rep. https://doi.org/10.1038/s41598-019-55547-3 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2009.00559.x (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Legg, J. P., Owor, B., Sseruwagi, P. & Ndunguru, J. Cassava mosaic virus disease in east and central Africa: epidemiology and management of a regional pandemic. Adv. Virus Res. https://doi.org/10.1016/S0065-3527(06)67010-3 (2006).Article 
    PubMed 

    Google Scholar 
    30.Wang, H. L. et al. First report of Sri Lankan cassava mosaic virus infecting cassava in Cambodia. Plant Dis. https://doi.org/10.1094/PDIS-10-15-1228-PDN (2016).Article 
    PubMed 

    Google Scholar 
    31.Minato, N. et al. Surveillance for sri lankan cassava mosaic virus (SLCMV) in Cambodia and Vietnam one year after its initial detection in a single plantation in 2015. PLoS One https://doi.org/10.1371/journal.pone.0212780 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Mugerwa, H., Wang, H. L., Sseruwagi, P., Seal, S. & Colvin, J. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies. Insect Sci. https://doi.org/10.1111/1744-7917.12881 (2020).Article 
    PubMed 

    Google Scholar 
    33.Ntawuruhunga, P. et al. Incidence and severity of cassava mosaic disease in the Republic of Congo. African Crop Sci. J. https://doi.org/10.4314/acsj.v15i1.54405 (2010).Article 

    Google Scholar 
    34.Zinga, I. et al. Epidemiological assessment of cassava mosaic disease in Central African Republic reveals the importance of mixed viral infection and poor health of plant cuttings. Crop Prot. https://doi.org/10.1016/j.cropro.2012.10.010 (2013).Article 

    Google Scholar 
    35.Jeske, H. Geminiviruses. Curr. Topics Microbiol. Immunol. https://doi.org/10.1007/978-3-540-70972-5_11 (2009).Article 

    Google Scholar 
    36.Vanitharani, R., Chellappan, P. & Fauquet, C. M. Geminiviruses and RNA silencing. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2005.01.005 (2005).Article 
    PubMed 

    Google Scholar 
    37.Aregger, M. et al. Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002941 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Olsen, K. M. & Schaal, B. A. Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.96.10.5586 (1999).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Fauquet, C. African cassava mosaic virus: etiology, epidemiology, and control. Plant Dis. https://doi.org/10.1094/pd-74-0404 (1990).Article 

    Google Scholar 
    40.Legg, J. P. & Fauquet, C. M. Cassava mosaic geminiviruses in Africa. Plant Mol. Biol. https://doi.org/10.1007/s11103-004-1651-7 (2004).Article 
    PubMed 

    Google Scholar 
    41.De Bruyn, A. et al. Divergent evolutionary and epidemiological dynamics of cassava mosaic geminiviruses in Madagascar. BMC Evol. Biol. https://doi.org/10.1186/s12862-016-0749-2 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Weiß, C. L. et al. Temporal patterns of damage and decay kinetics of dna retrieved from plant herbarium specimens. R. Soc. Open Sci. https://doi.org/10.1098/rsos.160239 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Chellappan, P., Vanitharani, R., Ogbe, F. & Fauquet, C. M. Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol. https://doi.org/10.1104/pp.105.066563 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Smith, O. & Gilbert, M. T. P. Ancient RNA. in (2018). doi:https://doi.org/10.1007/13836_2018_17.45.Filloux, D. et al. The genomes of many yam species contain transcriptionally active endogenous geminiviral sequences that may be functionally expressed. Virus Evol. https://doi.org/10.1093/ve/vev002 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Sharma, V. et al. Large-scale survey reveals pervasiveness and potential function of endogenous geminiviral sequences in plants. Virus Evol. https://doi.org/10.1093/ve/veaa071 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Bredeson, J. V. et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. https://doi.org/10.1038/nbt.3535 (2016).Article 
    PubMed 

    Google Scholar 
    48.Serfraz, S. et al. Insertion of Badnaviral DNA in the Late Blight Resistance Gene (R1a) of Brinjal Eggplant (Solanum melongena). Front. Plant Sci. https://doi.org/10.3389/fpls.2021.683681 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Lefeuvre, P. et al. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. PLoS One https://doi.org/10.1371/journal.pone.0019193 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. https://doi.org/10.1093/ve/vev003 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Murray, G. G. R. et al. The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol. Evol. 7, 80–89 (2016).Article 

    Google Scholar 
    52.Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. https://doi.org/10.1186/1471-2148-7-214 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Yoshida, K. et al. Mining herbaria for plant pathogen genomes: back to the future. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1004028 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Dufrénoy, J. & Hédin, L. . La. Mosaïque des feuilles du Manioc au Cameroun. J. d’agriculture Tradit. Bot. appliquée 94, 361–365 (1929).
    Google Scholar 
    55.Duffy, S. & Holmes, E. C. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J. Gen. Virol. 90, 1539–1547 (2009).CAS 
    Article 

    Google Scholar 
    56.Worobey, M. et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature https://doi.org/10.1038/nature07390 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Mühlemann, B. et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature https://doi.org/10.1038/s41586-018-0097-z (2018).Article 
    PubMed 

    Google Scholar 
    58.Toppinen, M. et al. Bones hold the key to DNA virus history and epidemiology. Sci. Rep. https://doi.org/10.1038/srep17226 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Gilbert, M. T. P., Bandelt, H. J., Hofreiter, M. & Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2005.07.005 (2005).Article 
    PubMed 

    Google Scholar 
    60.Inoue-Nagata, A. K., Albuquerque, L. C., Rocha, W. B. & Nagata, T. A simple method for cloning the complete begomovirus genome using the bacteriophage φ29 DNA polymerase. J. Virol. Methods https://doi.org/10.1016/j.jviromet.2003.11.015 (2004).Article 
    PubMed 

    Google Scholar 
    61.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics https://doi.org/10.1093/bioinformatics/btu170 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Zheng, Y. et al. VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology https://doi.org/10.1016/j.virol.2016.10.017 (2017).Article 
    PubMed 

    Google Scholar 
    63.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics https://doi.org/10.1093/bioinformatics/btp324 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. https://doi.org/10.1186/gb-2009-10-3-r25 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. in Bioinformatics (2013). doi:https://doi.org/10.1093/bioinformatics/btt193.66.Broad Institute. Picard Tools – By Broad Institute. Github (2009).67.Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics https://doi.org/10.1093/bioinformatics/btq033 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. https://doi.org/10.1101/gr.092759.109 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Depristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. https://doi.org/10.1038/ng.806 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. https://doi.org/10.1089/cmb.2012.0021 (2012).MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mst010 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    Article 

    Google Scholar 
    73.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods https://doi.org/10.1038/nmeth.2109 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Jombart, T. & Dray, S. Adephylo: Exploratory analyses for the phylogenetic comparative method. Bioinformatics (2010).75.Duchêne, S., Duchêne, D., Holmes, E. C. & Ho, S. Y. W. The performance of the date-randomization test in phylogenetic analyses of time-structured virus data. Mol. Biol. Evol. 32, 1895–1906 (2015).Article 

    Google Scholar 
    76.Rieux, A. & Khatchikian, C. E. Tipdatingbeast: an r package to assist the implementation of phylogenetic tip-dating tests using beast. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.12603 (2017).Article 
    PubMed 

    Google Scholar 
    77.Raftery, A. E. Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika https://doi.org/10.1093/biomet/83.2.251 (1996).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    78.Ho, S. Y. W. & Shapiro, B. Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol. Ecol. Resour. https://doi.org/10.1111/j.1755-0998.2011.02988.x (2011).Article 
    PubMed 

    Google Scholar 
    79.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. (2018) doi:https://doi.org/10.1093/sysbio/syy032. More