More stories

  • in

    The invasive cactus Opuntia stricta creates fertility islands in African savannas and benefits from those created by native trees

    1.Pyšek, P. et al. Naturalized alien flora of the world. Preslia 89, 203–274 (2017).Article 

    Google Scholar 
    2.Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. (2020).3.Vilà, M. et al. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).PubMed 
    Article 

    Google Scholar 
    4.Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 18, 1725–1737 (2012).ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    5.Le Roux, J. J. et al. Recent anthropogenic plant extinctions differ in biodiversity hotspots and coldspots. Curr. Biol. 29, 2912-2918.e2 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    6.Hulme, P. E. et al. Greater focus needed on alien plant impacts in protected areas. Conserv. Lett. 7, 459–466 (2014).Article 

    Google Scholar 
    7.Foxcroft, L. C., Pyšek, P., Richardson, D. M., Genovesi, P. & MacFadyen, S. Plant invasion science in protected areas: progress and priorities. Biol. Invasions 19, 1353–1378 (2017).Article 

    Google Scholar 
    8.Novoa, A. et al. Invasion syndromes: A systematic approach for predicting biological invasions and facilitating effective management. Biol. Invasions 22, 1801–1820 (2020).Article 

    Google Scholar 
    9.Foxcroft, L. C., Pickett, S. T. A. & Cadenasso, M. L. Expanding the conceptual frameworks of plant invasion ecology. Perspect. Plant Ecol. Evol. Syst. 13, 89–100 (2011).Article 

    Google Scholar 
    10.Scholes, R. J. & Archer, S. R. Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).Article 

    Google Scholar 
    11.Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis (Island Press, 2005).
    Google Scholar 
    12.Foxcroft, L. C., Richardson, D. M., Rejmánek, M. & Pyšek, P. Alien plant invasions in tropical and sub-tropical savannas: Patterns, processes and prospects. Biol. Invasions 12, 3913–3933 (2010).Article 

    Google Scholar 
    13.Rejmánek, M., Huntley, B. J., Le Roux, J. J. & Richardson, D. M. A rapid survey of the invasive plant species in western Angola. Afr. J. Ecol. 55, 56–69 (2017).Article 

    Google Scholar 
    14.Shackleton, R. T., Foxcroft, L. C., Pyšek, P., Wood, L. E. & Richardson, D. M. Assessing biological invasions in protected areas after 30 years: Revisiting nature reserves targeted by the 1980s SCOPE programme. Biol. Conserv. 243, 108424 (2020).Article 

    Google Scholar 
    15.Skarpe, C. Dynamics of savanna ecosystems. J. Veg. Sci. 3, 293–300 (1992).Article 

    Google Scholar 
    16.Okin, G. S. et al. Spatial patterns of soil nutrients in two southern African savannas. J. Geophys. Res. Biogeosci. 113, G2 (2008).Article 

    Google Scholar 
    17.Ridolfi, L., Laio, F. & D’Odorico, P. Fertility island formation and evolution in dryland ecosystems. Ecol. Soc. 13, 5 (2008).Article 

    Google Scholar 
    18.Perroni-Ventura, Y., Montaña, C. & Garcí-a-Oliva, F. Carbon-nitrogen interactions in fertility island soil from a tropical semi-arid ecosystem. Funct. Ecol. 24, 233–242 (2010).Article 

    Google Scholar 
    19.Belnap, J. & Susan, L. P. Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion. Ecol. Appl. 51, 1261–1275. (2001).Article 

    Google Scholar 
    20.Ludwig, F., Kroon, H., Prins, H. H. T. & Berendse, F. Effects of nutrients and shade on tree-grass interactions in an East African savanna. J. Veg. Sci. 12, 579–588 (2001).Article 

    Google Scholar 
    21.Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. New Phytol. 170, 445–457 (2006).PubMed 
    Article 

    Google Scholar 
    22.Weidenhamer, J. D. & Callaway, R. M. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J. Chem. Ecol. 36, 59–69 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Levine, J. M., Pachepsky, E., Kendall, B. E., Yelenik, S. G. & Lambers, J. H. R. Plant-soil feedbacks and invasive spread. Ecol. Lett. 9, 1005–1014 (2006).PubMed 
    Article 

    Google Scholar 
    24.du Toit, J. T., Rogers, K. H. & Biggs, H. C. The Kruger Experience: Ecology and Management of Savanna Heterogeneity. (Island Press, 2003).25.Foxcroft, L. C., Van Wilgen, N. J., Baard, J. A. & Cole, N. S. Biological invasions in South African National Parks. Bothalia 47, 11 (2017).Article 

    Google Scholar 
    26.Pyšek, P. et al. Into the great wide open: do alien plants spread from rivers to dry savanna in the Kruger National Park?. NeoBiota 60, 61–77 (2020).Article 

    Google Scholar 
    27.Kueffer, C., Pyšek, P. & Richardson, D. M. Integrative invasion science: Model systems, multi-site studies, focused meta-analysis and invasion syndromes. New Phytol. 200, 615–633 (2013).PubMed 
    Article 

    Google Scholar 
    28.Lotter, W. D. & Hoffmann, J. H. An integrated management plan for the control of Opuntia stricta (Cactaceae) in the Kruger National Park, South Africa. Koedoe 41, 63–68 (1998).Article 

    Google Scholar 
    29.Hoffmann, J. H., Moran, V. C., Zimmermann, H. G. & Impson, F. A. C. Biocontrol of a prickly pear cactus in South Africa: Reinterpreting the analogous, renowned case in Australia. J. Appl. Ecol. 13737, 1365–2664. (2020).
    Google Scholar 
    30.Foxcroft, L. C., Rouget, M., Richardson, D. M. & MacFadyen, S. Reconstructing 50 years of Opuntia stricta invasion in the Kruger National Park, South Africa: Environmental determinants and propagule pressure. Divers. Distrib. 10, 427–437 (2004).Article 

    Google Scholar 
    31.Novoa, A., Le Roux, J. J., Robertson, M. P., Wilson, J. R. U. & Richardson, D. M. Introduced and invasive cactus species: A global review. AoB Plants 7, 1 (2015).Article 

    Google Scholar 
    32.Foxcroft, L. C., Hoffmann, J. H., Viljoen, J. J. & Kotze, J. J. Environmental factors influencing the distribution of Opuntia stricta, an invasive alien plant in the Kruger National Park, South Africa. S. Afr. J. Bot. 73, 109–112 (2007).Article 

    Google Scholar 
    33.Foxcroft, L. C. & Rejmánek, M. What helps Opuntia stricta invade Kruger National Park, South Africa: Baboons or elephants?. Appl. Veg. Sci. 10, 265–270 (2007).Article 

    Google Scholar 
    34.Anderson, E. F. The Cactus Family. (Timber Press, 2001).35.Reyes-Agüero, J. A., Aguirre, R. J. R. & Valiente-Banuet, A. Reproductive biology of Opuntia: A review. J. Arid Environ. 64, 549–585 (2006).ADS 
    Article 

    Google Scholar 
    36.Robertson, M. P. et al. Assessing local scale impacts of Opuntia stricta (Cactaceae) invasion on beetle and spider diversity in Kruger National Park, South Africa. Afr. Zool. 46, 205–223 (2011).Article 

    Google Scholar 
    37.Butterfield, B. J. & Briggs, J. M. Patch dynamics of soil biotic feedbacks in the Sonoran Desert. J. Arid Environ. 73, 96–102 (2009).ADS 
    Article 

    Google Scholar 
    38.Neffar, S., Chenchouni, H., Beddiar, A. & Redjel, N. Rehabilitation of degraded rangeland in drylands by Prickly Pear (Opuntia ficus-indica L.) plantations: Effect on soil and spontaneous vegetation. Ecol. Balk. 5, 63–76 (2013).39.Garner, W. & Steinberger, Y. A proposed mechanism for the formation of ‘Fertile Islands’ in the desert ecosystem. J. Arid Environ. 16, 257–262 (1989).ADS 
    Article 

    Google Scholar 
    40.Marchante, H., Elizabete M, & Helena, F. Invasion of the Portuguese dune ecosystems by the exotic species Acacia longifolia (Andrews) Willd.: effects at the community level. Plant invasions: ecological threats and management solutions. pp. 75–85 (2003).41.Marchante, E. et al. Short-and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Appl. Soil Ecol. 40(2), 210–217 (2008).Article 

    Google Scholar 
    42.Yelenik, S. G., Stock, W. D. & Richardson, D. M. Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restor. Ecol. 12(1), 44–51 (2004).Article 

    Google Scholar 
    43.Werner, C. et al. High competitiveness of a resource demanding invasive acacia under low resource supply. Plant Ecol. 206(1), 83–96 (2010).Article 

    Google Scholar 
    44.Le Maitre, D. C. et al. Impacts of invasive Australian acacias: implications for management and restoration. Divers. Distrib. 17(5), 1015–1029 (2011).Article 

    Google Scholar 
    45.Bargali, K. & Bargali, S. S. Acacia nilotica: a multipurpose leguminous plant. Nat. Sci. 7, 11–19 (2009).
    Google Scholar 
    46.Rughöft, S. et al. Community composition and abundance of bacterial, archaeal and nitrifying populations in savanna soils on contrasting bedrock material in Kruger National Park, South Africa. Front. Microbiol. 7, 1638 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    47.Neilson, J. W. et al. Life at the hyperarid margin: Novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles 16, 553–566 (2012).PubMed 
    Article 

    Google Scholar 
    48.de Vos, P. et al. The Firmicutes. Bergey’s Manual of Systematic Bacteriology. (Springer, 2009).49.Brockett, B. F. T., Prescott, C. E. & Grayston, S. J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 44, 9–20 (2012).CAS 
    Article 

    Google Scholar 
    50.Yang, Y., Dou, Y. & An, S. Testing association between soil bacterial diversity and soil carbon storage on the Loess Plateau. Sci. Total Environ. 626, 48–58 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Rajaniemi, T. K. & Allison, V. J. Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biol. Biochem. 41, 102–109 (2009).CAS 
    Article 

    Google Scholar 
    52.Novoa, A., Rodríguez, R., Richardson, D. & González, L. Soil quality: A key factor in understanding plant invasion? The case of Carpobrotus edulis (L.) N.E.Br. Biol. Invasions 16, 429–443 (2014).53.Penfield, S. Seed dormancy and germination. Curr. Biol. 27, R874–R878 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Tielbörger, K. & Prasse, R. Do seeds sense each other? Testing for density-dependent germination in desert perennial plants. Oikos 118, 792–800 (2009).Article 

    Google Scholar 
    55.Renne, I. J. et al. Eavesdropping in plants: delayed germination via biochemical recognition. J. Ecol. 102, 86–94 (2014).Article 

    Google Scholar 
    56.Yannelli, F. A., Novoa, A., Lorenzo, P., Rodríguez, J. & Le Roux, J. J. No evidence for novel weapons: biochemical recognition modulates early ontogenetic processes in native species and invasive acacias. Biol. Invasions 22, 549–562 (2020).Article 

    Google Scholar 
    57.Al-Wakeel, S. A. M., Gabr, M. A., Hamid, A. A. & Abu-El-Soud, W. M. Allelopathic effects of Acacia nilotica leaf residue on Pisum sativum L. Allelopath. J. 19, 411 (2007).
    Google Scholar 
    58.Scholes, M. C., Scholes, R. J., Otter, L. B. & Woghiren, A. J. Biogeochemistry: The cycling of elements. in The Kruger Experience: Ecology and Management of Savanna Heterogeneity (eds. du Toit, J. T., Rogers, K. H. & Biggs, H. C.) 130–148 (Island Press, 2003).59.Kyalangalilwa, B., Boatwright, J. S., Daru, B. H., Maurin, O. & van der Bank, M. Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Bot. J. Linn. Soc. 172, 500–523 (2013).Article 

    Google Scholar 
    60.van Wyk, B. & van Wyk, P. Field Guide to Trees of Southern Africa. (Struik Nature, 2013).61.Coates Palgrave, K. & Coates Palgrave, M. Palgrave’s Trees of Southern Africa. (Struik Publishers, 2002).62.Novoa, A., Kumschick, S., Richardson, D. M., Rouget, M. & Wilson, J. R. U. Native range size and growth form in Cactaceae predict invasiveness and impact. NeoBiota 30, 75–90 (2016).Article 

    Google Scholar 
    63.Allen, S. E. Chemical Analysis of Ecological Materials. (Blackwell Scientific Publications, 1989).64.Tabatabai, M. A. & Bremner, J. M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1, 301–307 (1969).CAS 
    Article 

    Google Scholar 
    65.Kandeler, E. & Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6, 68–72 (1988).CAS 
    Article 

    Google Scholar 
    66.Allison, S. D. & Vitousek, P. M. Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica 36, 285–296 (2004).
    Google Scholar 
    67.German, D. P., Chacon, S. S. & Allison, S. D. Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology 92, 1471–1480 (2011).PubMed 
    Article 

    Google Scholar 
    68.Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. 82, 6955–6959 (1985).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Tringe, S. G. & Hugenholtz, P. A renaissance for the pioneering 16S rRNA gene. Curr. Opin. Microbiol. 11, 442–446 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Bukin, Y. S. et al. The effect of 16s rRNA region choice on bacterial community metabarcoding results. Sci. Data 6, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    71.Chakravorty, S., Helb, D., Burday, M., Connell, N. & Alland, D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69, 330–339 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Beckers, B. et al. Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in metabarcoding studies. Front. Microbiol. 7, 1–15 (2016).Article 

    Google Scholar 
    73.Thijs, S. et al. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front. Microbiol. 8, 1–15 (2017).Article 

    Google Scholar 
    74.Schloss, P. D., & Westcott, S. L. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 77(10), 3219–3226 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    79.Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 1–18 (2017).Article 

    Google Scholar 
    80.de Cárcer, D. A., Denman, S. E., McSweeney, C. & Morrison, M. Evaluation of subsampling-based normalization strategies for tagged high-throughput sequencing data sets from gut microbiomes. Appl. Environ. Microbiol. 77, 8795–8798 (2011).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    81.Chiapusio, G., Sánchez, A. M., Reigosa, M. J., González, L. & Pellissier, F. Do germination indices adequately reflect allelochemical effects on the germination process?. J. Chem. Ecol. 23, 2445–2453 (1997).CAS 
    Article 

    Google Scholar 
    82.Oksanen, J. F. et al. vegan: Community Ecology Package. R package version 2.3-3. (2016).83.Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    84.Jost, L. The relation between evenness and diversity. Diversity 2, 207–232 (2010).Article 

    Google Scholar 
    85.Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).PubMed 
    Article 

    Google Scholar 
    86.Charney, N. & Record, S. vegetarian: Jost Diversity Measures for Community Data. R package version 1.2. (2012).87.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 
    88.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, 1–18 (2011).Article 

    Google Scholar 
    89.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article 

    Google Scholar  More

  • in

    Interspecific variation in evaporative water loss and temperature response, but not metabolic rate, among hibernating bats

    1.Lyman, C. P. & Chatfield, P. O. Physiology of hibernation in mammals. Physiol. Rev. 35, 403–425 (1955).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Geiser, F. Hibernation. Curr. Biol. 23, R188–R193 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Humphries, M. M., Thomas, D. W. & Speakman, J. R. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418, 313–316 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Wilkinson, G. S. & Adams, D. M. Recurrent evolution of extreme longevity in bats. Biol. Lett. 15, 20180860 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Frick, W. F., Reynolds, D. S. & Kunz, T. H. Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J. Anim. Ecol. 79, 128–136 (2010).PubMed 
    Article 

    Google Scholar 
    6.Willis, C. K. Trade-offs influencing the physiological ecology of hibernation in temperate-zone bats. Integr. Comp. Biol. 57, 1214–1224 (2017).PubMed 
    Article 

    Google Scholar 
    7.Lane, J. E. In Living in a Seasonal World 51–61 (Springer, 2012).8.Inouye, D. W., Barr, B., Armitage, K. B. & Inouye, B. D. Climate change is affecting altitudinal migrants and hibernating species. Proc. Natl. Acad. Sci. 97, 1630–1633 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Lane, J. E., Kruuk, L. E., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Feder, M. E. In New Directions in Ecological Physiology (eds M. E. Feder, A. F. Bennett, W. W. Burggren, & R. B Huey) 38–75 (Cambridge University Press, 1987).11.Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274. https://doi.org/10.1146/annurev.physiol.66.032102.115105 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Boyles, J. G. et al. A global heterothermic continuum in mammals. Glob. Ecol. Biogeogr. 22, 1029–1039 (2013).Article 

    Google Scholar 
    13.Ruf, T. & Arnold, W. Effects of polyunsaturated fatty acids on hibernation and torpor: A review and hypothesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1044-1052. https://doi.org/10.1152/ajpregu.00688.2007 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Ruf, T. & Geiser, F. Daily torpor and hibernation in birds and mammals. Biol. Rev. Camb. Philos. Soc. https://doi.org/10.1111/brv.12137 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Heldmaier, G., Ortmann, S. & Elvert, R. Natural hypometabolism during hibernation and daily torpor in mammals. Respir. Physiol. Neurobiol. 141, 317–329 (2004).PubMed 
    Article 

    Google Scholar 
    16.van Breukelen, F. & Martin, S. L. The hibernation continuum: Physiological and molecular aspects of metabolic plasticity in mammals. Physiology 30, 273–281 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    17.Nowack, J., Levesque, D. L., Reher, S. & Dausmann, K. H. Variable climates lead to varying phenotypes: ‘Weird’mammalian torpor and lessons from non-Holarctic species. Front. Ecol. Evol. 8, 60 (2020).Article 

    Google Scholar 
    18.Stawski, C., Willis, C. & Geiser, F. The importance of temporal heterothermy in bats. J. Zool. 292, 86–100 (2014).Article 

    Google Scholar 
    19.Thomas, D. W., Dorais, M. & Bergeron, J.-M. Winter energy budgets and cost of arousals for hibernating little brown bats, Myotis lucifugus. J. Mammal. 71, 475–479 (1990).Article 

    Google Scholar 
    20.Kunz, T. H., Wrazen, J. A. & Burnett, C. D. Changes in body mass and fat reserves in pre-hibernating little brown bats (Myotis lucifugus). Ecoscience 5, 8–17 (1998).Article 

    Google Scholar 
    21.Thomas, D. W. & Cloutier, D. Evaporative water loss by hibernating little brown bats, Myotis lucifugus. Physiol. Zool. 65, 443–456 (1992).Article 

    Google Scholar 
    22.Kornfeld, S. F., Biggar, K. K. & Storey, K. B. Differential expression of mature microRNAs involved in muscle maintenance of hibernating little brown bats, Myotis lucifugus: A model of muscle atrophy resistance. Genom. Proteom. Bioinform. 10, 295–301 (2012).CAS 
    Article 

    Google Scholar 
    23.Eddy, S. F., Morin, P. Jr. & Storey, K. B. Differential expression of selected mitochondrial genes in hibernating little brown bats, Myotis lucifugus. J. Exp. Zool. A Comp. Exp. Biol. 305, 620–630 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    24.Brigham, R., Ianuzzo, C., Hamilton, N. & Fenton, M. Histochemical and biochemical plasticity of muscle fibers in the little brown bat (Myotis lucifugus). J. Comp. Physiol. B. 160, 183–186 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.McGuire, L. P., Mayberry, H. W. & Willis, C. K. R. White-nose syndrome increases torpid metabolic rate and evaporative water loss in hibernating bats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 313, R680–R686 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Jonasson, K. A. & Willis, C. K. Hibernation energetics of free-ranging little brown bats. J. Exp. Biol. 215, 2141–2149 (2012).PubMed 
    Article 

    Google Scholar 
    27.Klüg-Baerwald, B. J. & Brigham, R. M. Hung out to dry? Intraspecific variation in water loss in a hibernating bat. Oecologia 183, 977–985 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    28.Dunbar, M. B. & Brigham, R. M. Thermoregulatory variation among populations of bats along a latitudinal gradient. J. Comp. Physiol. B 180, 885–893 (2010).PubMed 
    Article 

    Google Scholar 
    29.Yacoe, M. E. Protein metabolism in the pectoralis muscle and liver of hibernating bats, Eptesicus fuscus. J. Comp. Physiol. 152, 137–144 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Yacoe, M. E. Maintenance of the pectoralis muscle during hibernation in the big brown bat, Eptesicus fuscus. J. Comp. Physiol. 152, 97–104 (1983).Article 

    Google Scholar 
    31.Twente, J. W. & Twente, J. Biological alarm clock arouses hibernating big brown bats, Eptesicus fuscus. Can. J. Zool. 65, 1668–1674 (1987).Article 

    Google Scholar 
    32.Boratyński, J. S., Willis, C. K., Jefimow, M. & Wojciechowski, M. S. Huddling reduces evaporative water loss in torpid Natterer’s bats, Myotis nattereri. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 179, 125–132 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    33.Hope, P. R. & Jones, G. Warming up for dinner: Torpor and arousal in hibernating Natterer’s bats (Myotis nattereri) studied by radio telemetry. J. Comp. Physiol. B. 182, 569–578 (2012).PubMed 
    Article 

    Google Scholar 
    34.Park, K. J., Jones, G. & Ransome, R. D. Torpor, arousal and activity of hibernating greater horseshoe bats (Rhinolophus ferrumequinum). Funct. Ecol. 14, 580–588 (2000).Article 

    Google Scholar 
    35.Ben-Hamo, M., Muñoz-Garcia, A., Williams, J. B., Korine, C. & Pinshow, B. Waking to drink: Rates of evaporative water loss determine arousal frequency in hibernating bats. J. Exp. Biol. 216, 573–577 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lausen, C. & Barclay, R. Winter bat activity in the Canadian prairies. Can. J. Zool. 84, 1079–1086 (2006).Article 

    Google Scholar 
    37.McGuire, L. P. et al. Similar physiology in hibernating bats across broad geographic ranges. J. Comp. Physiol. B. https://doi.org/10.1007/s00360-021-01400-x (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009).MATH 
    Book 

    Google Scholar 
    39.Hothorn, T. & Everitt, B. S. A handbook of statistical analyses using R (CRC Press, London, 2014).MATH 
    Book 

    Google Scholar 
    40.United States Fish and Wildlife Service. National white-nose syndrome decontamination protocol-Version 09-13-2018. http://www.whitenosesyndrome.org (2018).41.Canadian Cooperative Wildlife Health Centre. Guidelines for decontamination of equipment and clothing to prevent the spread of white-nose syndrome (the causal fungus: Pseudogymnoascus destructans) in Canada, http://www2.cwhc-rcsf.ca/wns_decontamination.php (2020).42.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).43.McGuire, L. P., Guglielmo, C. G., Mackenzie, S. A. & Taylor, P. D. Migratory stopover in the long-distance migrant silver-haired bat, Lasionycteris noctivagans. J. Anim. Ecol. 81, 377–385 (2012).PubMed 
    Article 

    Google Scholar 
    44.Nagorsen, D. W. & Brigham, R. M. Bats of British Columbia. Vol. 1 (UBC Press, 1993).45.Villa, B. R. & Cockrum, E. L. Migration in the guano bat Tadarida brasiliensis mexicana (Saussure). J. Mammal. 43, 43–64 (1962).Article 

    Google Scholar 
    46.Kunkel, E. L. Ecology and energetics of partial migration and facultative hibernation of Mexican free-tailed bats MS thesis, Texas Tech University (2020).47.Sandel, J. K. et al. Use and selection of winter hibernacula by the eastern pipistrelle (Pipistrellus subflavus) in Texas. J. Mammal. 82, 173–178 (2001).Article 

    Google Scholar 
    48.Jones, C. & Pagels, J. Notes on a population of Pipistrellus subflavus in southern Louisiana. J. Mammal. 49, 134–139 (1968).Article 

    Google Scholar 
    49.McClure, M. M. et al. A hybrid corelative-mechanistic approach for modeling and mapping winter distributions of North American bat species. J. Biogeogr. 48, 2429–2444 (2021).Article 

    Google Scholar 
    50.McClure, M. M. et al. Linking surface and subterranean climate: Implications for the study of hibernating bats and other cave dwellers. Ecosphere 11, E03274 (2020).Article 

    Google Scholar 
    51.Perry, R. W. A review of factors affecting cave climates for hibernating bats in temperate North America. Environ. Rev. 21, 28–39. https://doi.org/10.1139/er-2012-0042 (2013).Article 

    Google Scholar 
    52.Hranac, C. R. et al. What is winter? Modelling spatial variation in bat host traits and hibernation and their implications for overwintering energetics. Ecol. Evol. 11, 11604–11614 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.McGuire, L., Muise, K. A., Shrivastav, A. & Willis, C. K. R. No evidence of hyperphagia during prehibernation in a northern population of little brown bats (Myotis lucifugus). Can. J. Zool. 94, 821–827 (2016).CAS 
    Article 

    Google Scholar 
    54.Czenze, Z. J., Jonasson, K. A. & Willis, C. K. Thrifty females, frisky males: Winter energetics of hibernating bats from a cold climate. Physiol. Biochem. Zool. 90, 502–511 (2017).PubMed 
    Article 

    Google Scholar 
    55.Kurta, A. The misuse of relative humidity in ecological studies of hibernating bats. Acta Chiropt. 16, 249–254 (2014).Article 

    Google Scholar 
    56.Weller, T. J. et al. A review of bat hibernacula across the western United States: Implications for white-nose syndrome surveillance and management. PLoS One 13, e0205647 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Gearhart, C., Adams, A. M., Pinshow, B. & Korine, C. Evaporative water loss in Kuhl’s pipistrelles declines along an environmental gradient, from mesic to hyperarid. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 240, 110587 (2020).CAS 
    Article 

    Google Scholar 
    58.Thomas, D. W. & Geiser, F. Periodic arousals in hibernating mammals: Is evaporative water loss involved?. Funct. Ecol. 11, 585–591 (1997).Article 

    Google Scholar 
    59.Haase, C. G. et al. Incorporating evaporative water loss into bioenergetic models of hibernation to test for relative influence of host and pathogen traits on white-nose syndrome. PLoS One 14, e0222311 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Willis, C. K. Conservation physiology and conservation pathogens: White-nose syndrome and integrative biology for host–pathogen systems. Integr. Comp. Biol. 55, 631–641 (2015).PubMed 
    Article 

    Google Scholar 
    61.Frick, W. F. et al. Disease alters macroecological patterns of North American bats. Glob. Ecol. Biogeogr. 24, 741–749 (2015).Article 

    Google Scholar 
    62.Willis, C. K., Menzies, A. K., Boyles, J. G. & Wojciechowski, M. S. Evaporative water loss is a plausible explanation for mortality of bats from white-nose syndrome. Integr. Comp. Biol. 51, 364–373. https://doi.org/10.1093/icb/icr076 (2011).Article 
    PubMed 

    Google Scholar 
    63.Wilder, A. P., Frick, W. F., Langwig, K. E. & Kunz, T. H. Risk factors associated with mortality from white-nose syndrome among hibernating bat colonies. Biol. Lett. 7, 950–953 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Langwig, K. E. et al. Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol. Lett. 15, 1050–1057. https://doi.org/10.1111/j.1461-0248.2012.01829.x (2012).Article 
    PubMed 

    Google Scholar 
    65.Voigt, C. C. & Kingston, T. Bats in the Anthropocene: Conservation of Bats in a Changing World (Springer, New York, 2016).Book 

    Google Scholar 
    66.Kahle, D. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J. 5, 144–161 (2013).Article 

    Google Scholar  More

  • in

    Multidimensional natal isotopic niches reflect migratory patterns in birds

    1.Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    2.Chase, J. M. & Leibold, M. A. Ecological Niches. Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).Book 

    Google Scholar 
    3.Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proc. Natl. Acad. Sci. 106, 19659–19665 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Heldbjerg, H. & Fox, T. Long-term population declines in Danish trans-Saharan migrant birds. Bird Study 55, 267–279 (2008).Article 

    Google Scholar 
    5.Evans, K. L., Newton, J., Mallord, J. W. & Markman, S. Stable isotope analysis provides new information on winter habitat use of declining avian migrants that is relevant to their conservation. PLoS ONE 7, e34542 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).Article 

    Google Scholar 
    7.Heiss, M. The importance of Besh Barmag bottleneck (Azerbaijan) for Eurasian migrant birds. Acta Ornithol. 48, 151–164 (2013).Article 

    Google Scholar 
    8.Buechley, E. R. et al. Identifying critical migratory bottlenecks and high-use areas for an endangered migratory soaring bird across three continents. J. Avian Biol. 49, e01629 (2018).Article 

    Google Scholar 
    9.Cardenas-Ortiz, L., Bayly, N. J., Kardynal, K. J. & Hobson, K. A. Defining catchment origins of a geographical bottleneck: Implications of population mixing and phenological overlap for the conservation of Neotropical migratory birds. The Condor 122, 004 (2020).Article 

    Google Scholar 
    10.Yohannes, E., Hobson, K. A. & Pearson, D. J. Feather stable-isotope profiles reveal stopover habitat selection and site fidelity in nine migratory species moving through sub-Saharan Africa: Feather stable-isotope profiles reveal stopover habitat selection. J. Avian Biol. 38, 347–355 (2007).
    Google Scholar 
    11.Hobson, K. A. & Koehler, G. On the use of stable oxygen isotope (δ18O) measurements for tracking avian movements in North America. Ecol. Evol. 5, 799–806 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: A novel approach using stable isotope analysis: Stable isotopes as measures of niche width. J. Anim. Ecol. 73, 1007–1012 (2004).Article 

    Google Scholar 
    13.Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436 (2007).Article 

    Google Scholar 
    14.Hobson, K. Isotopic ornithology: A perspective. J. Ornithol. https://doi.org/10.1007/s10336-011-0653-x (2011).Article 

    Google Scholar 
    15.Hoenighaus, D. J., Winemiller, K. O. & Agostinho, A. A. Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs. Ecosystems 10, 1019–1033 (2007).Article 

    Google Scholar 
    16.Hette-Tronquart, N. Isotopic niche is not equal to trophic niche. Ecol. Lett. 22, 1987–1989 (2019).PubMed 
    Article 

    Google Scholar 
    17.Inger, R. & Bearhop, S. Applications of stable isotope analyses to avian ecology: Avian stable isotope analysis. Ibis 150, 447–461 (2008).Article 

    Google Scholar 
    18.Bowen, G. J. Isoscapes: Spatial pattern in isotopic biogeochemistry. Annu. Rev. Earth Planet. Sci. 38, 161–187 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Hobson, K. A., Bowen, G. J., Wassenaar, L. I., Ferrand, Y. & Lormee, H. Using stable hydrogen and oxygen isotope measurements of feathers to infer geographical origins of migrating European birds. Oecologia 141, 477–488 (2004).ADS 
    PubMed 
    Article 

    Google Scholar 
    20.Magozzi, S., Vander Zanden, H. B., Wunder, M. B. & Bowen, G. J. Mechanistic model predicts tissue-environment relationships and trophic shifts in animal hydrogen and oxygen isotope ratios. Oecologia 191, 777–789 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    21.Vander Zanden, H. B., Soto, D. X., Bowen, G. J. & Hobson, K. A. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2016 (2016).Article 

    Google Scholar 
    22.Pekarsky, S. et al. Enriching the isotopic toolbox for migratory connectivity analysis: A new approach for migratory species breeding in remote or unexplored areas. Divers. Distrib. 21, 416–427 (2015).Article 

    Google Scholar 
    23.Shipley, O. N. & Matich, P. Studying animal niches using bulk stable isotope ratios: An updated synthesis. Oecologia 193, 27–51 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    24.Hobson, K. A. Tracing origins and migration of wildlife using stable isotopes: A review. Oecologia 120, 314–326 (1999).ADS 
    PubMed 
    Article 

    Google Scholar 
    25.Hobson, K. A. & Wassenaar, L. I. Tracking Animal Migration with Stable Isotopes (Academic Press, 2018).
    Google Scholar 
    26.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 16 (2002).
    Google Scholar 
    27.Abrantes, K. G., Barnett, A. & Bouillon, S. Stable isotope-based community metrics as a tool to identify patterns in food web structure in east African estuaries. Funct. Ecol. 28, 270–282 (2014).Article 

    Google Scholar 
    28.Wang, J., Chapman, D., Xu, J., Wang, Y. & Gu, B. Isotope niche dimension and trophic overlap between bigheaded carps and native filter-feeding fish in the lower Missouri River, USA. PLoS ONE 13, e0197584 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Steenweg, R. J. et al. Stable isotopes can be used to infer the overwintering locations of prebreeding marine birds in the Canadian Arctic. Ecol. Evol. 7, 8742–8752 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Rader, J. A. et al. Isotopic niches support the resource breadth hypothesis. J. Anim. Ecol. 86, 405–413 (2017).PubMed 
    Article 

    Google Scholar 
    31.Ma, C., Shen, Y., Bearup, D., Fagan, W. F. & Liao, J. Spatial variation in branch size promotes metapopulation persistence in dendritic river networks. Freshw. Biol. 65, 426–434 (2020).Article 

    Google Scholar 
    32.Langin, K. M. et al. Hydrogen isotopic variation in migratory bird tissues of known origin: Implications for geographic assignment. Oecologia 152, 449–457 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    33.Levey, D. J. & Stiles, F. G. Evolutionary precursors of long-distance migration: Resource availability and movement patterns in neotropical landbirds. Am. Nat. 140, 447–476 (1992).Article 

    Google Scholar 
    34.Cresswell, W. Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: The serial residency hypothesis. Ibis 156, 493–510 (2014).Article 

    Google Scholar 
    35.Reif, J., Hořák, D., Krištín, A., Kopsová, L. & Devictor, V. Linking habitat specialization with species’ traits in European birds. Oikos 125, 405–413 (2016).Article 

    Google Scholar 
    36.Laube, I., Graham, C. H. & Böhning-Gaese, K. Niche availability in space and time: Migration in Sylvia warblers. J. Biogeogr. 42, 1896–1906 (2015).Article 

    Google Scholar 
    37.Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Seasonal climatic niches diverge in migratory birds. Ibis 162, 318–330 (2020).Article 

    Google Scholar 
    38.Dunn, E., Hobson, K., Wassenaar, L., Hussell, D. & Allen, M. Identification of summer origins of songbirds migrating through southern Canada in Autumn. Avian Conserv. Ecol. https://doi.org/10.5751/ACE-00048-010204 (2006).Article 

    Google Scholar 
    39.Briedis, M. et al. Breeding latitude leads to different temporal but not spatial organization of the annual cycle in a long-distance migrant. J. Avian Biol. 47, 743–748 (2016).Article 

    Google Scholar 
    40.Briedis, M. et al. Broad-scale patterns of the Afro-Palaearctic landbird migration. Glob. Ecol. Biogeogr. 29, 722–735 (2020).Article 

    Google Scholar 
    41.Cortesi, N., Gonzalez-Hidalgo, J. C., Brunetti, M. & Martin-Vide, J. Daily precipitation concentration across Europe 1971–2010. Nat. Hazards Earth Syst. Sci. 12, 2799–2810 (2012).ADS 
    Article 

    Google Scholar 
    42.Salewski, V., Bairlein, F. & Leisler, B. Niche partitioning of two Palearctic passerine migrants with Afrotropical residents in their West African winter quarters. Behav. Ecol. 14, 493–502 (2003).Article 

    Google Scholar 
    43.Jones, P., Salewski, V., Vickery, J. & Mapaure, I. Habitat use and densities of co-existing migrant Willow Warblers Phylloscopus trochilus and resident eremomelas Eremomela spp. in Zimbabwe. Bird Study 57, 44–55 (2010).Article 

    Google Scholar 
    44.Brändle, M., Prinzing, A., Pfeifer, R. & Brandl, R. Dietary niche breadth for Central European birds: Correlations with species-specific traits. Evol. Ecol. Res. 4(5), 643–657 (2002).
    Google Scholar 
    45.Hahn, S., Amrhein, V., Zehtindijev, P. & Liechti, F. Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long-distance migrating songbird. Oecologia 173, 1217–1225 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    46.Finch, T., Butler, S. J., Franco, A. M. A. & Cresswell, W. Low migratory connectivity is common in long-distance migrant birds. J. Anim. Ecol. 86, 662–673 (2017).PubMed 
    Article 

    Google Scholar 
    47.Somveille, M., Manica, A. & Rodrigues, A. S. L. Where the wild birds go: Explaining the differences in migratory destinations across terrestrial bird species. Ecography 42, 225–236 (2019).Article 

    Google Scholar 
    48.Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons? J. Biogeogr. 45, 1459–1468 (2018).Article 

    Google Scholar 
    49.Rubenstein, D. R. Linking breeding and wintering ranges of a migratory songbird using stable isotopes. Science 295, 1062–1065 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & van Bommel, F. P. J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).Article 

    Google Scholar 
    51.Ockendon, N., Hewson, C. M., Johnston, A. & Atkinson, P. W. Declines in British-breeding populations of Afro-Palaearctic migrant birds are linked to bioclimatic wintering zone in Africa, possibly via constraints on arrival time advancement. Bird Study 59, 111–125 (2012).Article 

    Google Scholar 
    52.Keller, G. S. & Yahner, R. H. Declines of migratory songbirds: Evidence for Wintering-ground causes. Northeast. Nat. 13, 83–92 (2006).Article 

    Google Scholar 
    53.Morrison, C. A., Robinson, R. A., Clark, J. A., Risely, K. & Gill, J. A. Recent population declines in Afro-Palaearctic migratory birds: The influence of breeding and non-breeding seasons. Divers. Distrib. 19, 1051–1058 (2013).Article 

    Google Scholar 
    54.López-Calderón, C. et al. Environmental conditions during winter predict age- and sex-specific differences in reproductive success of a trans-Saharan migratory bird. Sci. Rep. 7, 18082 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Møller, A. P. & Hobson, K. A. Heterogeneity in stable isotope profiles predicts coexistence of populations of barn swallows Hirundo rustica differing in morphology and reproductive performance. Proc. R. Soc. Lond. B Biol. Sci. 271, 1355–1362 (2004).Article 

    Google Scholar 
    56.Hobson, K., Møller, A. & Wilgenburg, S. L. V. A multi-isotope (δ13C, δ15N, δ2H) approach to connecting European breeding and African wintering populations of barn swallow (Hirundo rustica). Anim. Migr. https://doi.org/10.2478/ami-2012-0002 (2012).Article 

    Google Scholar 
    57.Newton, I. The Migration Ecology of Birds (Academic Press, 2007).
    Google Scholar 
    58.Thorup, K. et al. Resource tracking within and across continents in long-distance bird migrants. Sci. Adv. 3, e1601360 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Jenni, L. & Winkler, R. Moult and Ageing of European Passerines (Academic Press, 2011).
    Google Scholar 
    60.Pedrini, P., Rossi, F. & Rizzoli, F. Le Alpi italiane quale barriera ecologica nel corso della migrazione post-riproduttiva attraverso l’Europa. Risultati generali del della prima fase del Progetto Alpi (1997–2002). Biol. Conserv. Fauna 116, 1–336 (2008).
    Google Scholar 
    61.Bontempo, L. et al. Comparison of methods for stable isotope ratio (δ13C, δ15N, δ2H, δ18O) measurements of feathers. Methods Ecol. Evol. 5, 363–371 (2014).Article 

    Google Scholar 
    62.Wassenaar, L. I. & Hobson, K. A. Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ. Health Stud. 39, 211–217 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Wassenaar, L. I. & Hobson, K. A. Stable-hydrogen isotope heterogeneity in keratinous materials: Mass spectrometry and migratory wildlife tissue subsampling strategies. Rapid Commun. Mass Spectrom. 20, 2505–2510 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M. & Prohaska, T. Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report). Pure Appl. Chem. 86, 425–467 (2014).CAS 
    Article 

    Google Scholar 
    65.Del Hoyo, J., Elliott, A., Sargatal, J. & Christie, D. Handbook of the Birds of the World (Lynx Edicions, 2013).
    Google Scholar 
    66.Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. 105, 16195–16200 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian ellipses in R: Bayesian isotopic niche metrics. J. Anim. Ecol. 80, 595–602 (2011).PubMed 
    Article 

    Google Scholar  More

  • in

    A new ant-butterfly symbiosis in the forest canopy fills an evolutionary gap

    1.Kronauer, D. J. C. & Pierce, N. E. Myrmecophiles. Curr. Biol. 21, R208-209 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Parker, J. Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms. Myrmecol. News 22, 65–108 (2016).
    Google Scholar 
    3.Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, 1990).Book 

    Google Scholar 
    4.Hughes, D. P., Pierce, N. E. & Boomsma, J. J. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol. Evol. 23, 672–677 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Lachaud, J.-P., Lenoir, A. & Witte, V. Ants and their parasites. Psyche 2012, Article ID 342157; https://doi.org/10.1155/2012/342157 (2012).6.Wheeler, W. M. Ants, their Structure, Development and Behavior. (Columbia University Press, 1910).
    Google Scholar 
    7.Buschinger, A. Social parasitism among ants: A review (Hymenoptera: Formicidae). Myrmecol. News 12, 219–235 (2009).
    Google Scholar 
    8.Nash, D. R. & Boomsma, J. J. Communication between hosts and social parasites. In Sociobiology of Communication: An Interdisciplinary Perspective (eds d’Ettorre, P. & Hughes, D. P.) 55–79 (Oxford University Press, 2008).Chapter 

    Google Scholar 
    9.Akino, T., Knapp, J. J., Thomas, J. A. & Elmes, G. W. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc. R. Soc. Lond. B 266, 1419–1426 (1999).CAS 
    Article 

    Google Scholar 
    10.Barbero, F., Thomas, J. A., Bonelli, S., Balletto, E. & Schönrogge, K. Queen ants make distinctive sounds that are mimicked by a butterfly social parasite. Science 323, 782–785 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Kaminski, L. A., Volkmann, L., Callaghan, C. J., DeVries, P. J. & Vila, R. The first known riodinid ‘cuckoo’ butterfly reveals deep-time convergence and parallelism in ant social parasites. Zool. J. Linn. Soc. 192, 1–20. https://doi.org/10.1093/zoolinnean/zlaa150 (2021).Article 

    Google Scholar 
    12.Elmes, G. W., Barr, B., Thomas, J. A. & Clark, R. T. Extreme host specificity by Microdon mutabilis (Diptera, Syrphidae), a social parasite of ants. Proc. R. Soc. Lond. B 266, 447–453 (1999).Article 

    Google Scholar 
    13.Schönrogge, K. et al. Host propagation permits extreme local adaptation in a social parasite of ants. Ecol. Lett. 9, 1032–1040 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Bonelli, S. et al. Distribution, host specificity, and the potential for cryptic speciation in hoverfly Microdon myrmicae (Diptera: Syrphidae), a social parasite of Myrmica ants. Ecol. Entomol. 36, 135–143 (2011).Article 

    Google Scholar 
    15.Di Giulio, A. et al. The pied piper: A parasitic beetle’s melodies modulate ant behaviours. PLoS ONE 10, e0130541 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Van Oystaeyen, A. et al. Chemical strategies of the beetle Metoecus paradoxus, social parasite of the wasp Vespula vulgaris. J. Chem. Ecol. 41, 1137–1147 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    17.Yamamoto, S., Maruyama, M. & Parker, J. Evidence for social parasitism of early insect societies by Cretaceaous rove beetles. Nat. Commun. 7, 13658 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Hinton, H.E. Myrmecophilous Lycaenidae and other Lepidoptera—A summary. Proc. Trans. South Lond. Entomol. Nat. Hist. Soc. 1949–1950, 111–175 (1951).19.Pierce, N. E. Predatory and parasitic Lepidoptera: Carnivores living on plants. J. Lepid. Soc. 49, 412–453 (1995).
    Google Scholar 
    20.Dejean, A. et al. Ant-lepidopteran associations along African forest edges. Sci. Nat. 104, 7 (2017).Article 
    CAS 

    Google Scholar 
    21.Fiedler, K. Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea). Bonn. Zool. Monogr. 31, 1–210 (1991).
    Google Scholar 
    22.Pierce, N. E. et al. The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu. Rev. Entomol. 47, 733–771 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.DeVries, P. J. Mutualism between Thisbe irenea butterflies and ants, and the role of ant ecology in the evolution of larval-ant associations. Biol. J. Linn. Soc. 43, 179–195 (1991).MathSciNet 
    Article 

    Google Scholar 
    24.DeVries, P. J. Evolutionary and ecological patterns in myrmecophilous riodinid butterflies. In Ant-Plant Interactions (eds Huxley, C. R. & Cutler, D. F.) 143–156 (Oxford University Press, 1991).
    Google Scholar 
    25.DeVries, P.J. Butterflies. Encyclopedia of Biodiversity 1, 559–573 (2001).26.Pierce, N. E. & Mead, P. S. Parasitoids as selective agents in the symbiosis between lycaenid butterfly larvae and ants. Science 211, 1185–1187 (1981).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Kaminski, L. A., Freitas, A. V. L. & Oliveira, P. S. Interaction between mutualisms: Ant-tended butterflies exploit enemy-free space provided by ant-treehopper associations. Am. Nat. 176, 322–334 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Balduf, W. V. The rise of entomophagy among Lepidoptera. Am. Nat. 72, 358–379 (1938).Article 

    Google Scholar 
    29.Cottrell, C. B. Aphytophagy in butterflies: Its relationship to myrmecophily. Zool. J. Linn. Soc. 79, 1–57 (1984).Article 

    Google Scholar 
    30.Fiedler, K. Lycaenid–ant interactions of the Maculinea type: Tracing their historical roots in a comparative framework. J. Insect Conserv. 2, 3–14 (1998).Article 

    Google Scholar 
    31.Kaliszewska, Z. A. et al. When caterpillars attack: Biogeography and life history evolution of the Miletinae (Lepidoptera: Lycaenidae). Evolution 69, 571–588 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Sala, M., Casacci, L. P., Balleto, E., Bonelli, S. & Barbero, F. Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources. PLoS ONE 9, e94341 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Schönrogge, K., Barbero, F., Casacci, L. P., Settele, J. & Thomas, J. A. Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles. Anim. Behav. 134, 249–256 (2017).Article 

    Google Scholar 
    34.Casacci, L. P., Bonelli, S., Balleto, E. & Barbero, F. Multimodal signaling in myrmecophilous butterflies. Front. Ecol. Evol. 7, 454 (2019).Article 

    Google Scholar 
    35.Thomas, J. A., Elmes, G. W. & Wardlaw, J. C. Polymorphic growth in larvae of the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc. R. Soc. Lond. B 265, 1895–1901 (1998).Article 

    Google Scholar 
    36.Espeland, M. et al. Ancient Neotropical origin and recent recolonisation: Phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea). Mol. Phylogenet. Evol. 93, 296–306 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Seraphim, N. et al. Molecular phylogeny and higher systematics of the metalmark butterflies (Lepidoptera: Riodinidae). Syst. Entomol. 43, 407–425 (2018).Article 

    Google Scholar 
    38.Seraphim, N. Riodinidae Species Checklist: a preliminary species checklist for the Riodinidae (2019). Available at: https://www2.ib.unicamp.br/labor/site/?page_id=805.39.DeVries P.J. The butterflies of Costa Rica and their natural history. Vol II: Riodinidae. Princeton University Press (1997).40.Campbell, D. L., Brower, A. V. Z. & Pierce, N. E. Molecular evolution of the wingless gene and its implications for the phylogenetic placement of the butterfly family Riodinidae (Lepidoptera: Papilionoidea). Mol. Biol. Evol. 17, 684–696 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Espeland, M. et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770–778 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Mota, L. L., Kaminski, L. A. & Freitas, A. V. L. The tortoise caterpillar: carnivory and armoured larval morphology of the metalmark butterfly Pachythone xanthe (Lepidoptera: Riodinidae). J. Nat. Hist. 54, 309–319 (2020).Article 

    Google Scholar 
    43.Nielsen, G. J. & Kaminski, L. A. Immature stages of the Rubiaceae-feeding metalmark butterflies (Lepidoptera: Riodinidae), and a new function for the tentacle nectary organs. Zootaxa 4524, 1–32 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Kaminski, L. A., Carneiro, E., Dolibaina, D. R., Casagrande, M. M. & Mielke, O. H. H. Oviposition of Minstrellus grandis (Lepidoptera: Riodinidae) in a harmful ant-plant symbiosis. Acta Amazon. 50, 256–259 (2020).Article 

    Google Scholar 
    45.Kaminski, L. A. & Lima, L. D. Larval omnivory in the myrmecophilous butterfly Setabis lagus lagus (Riodinidae: Nymphidiini). J. Lepid. Soc. 73, 276–279 (2019).
    Google Scholar 
    46.Lamborn, W. A. On the relationship between certain West African insects, especially ants, Lycaenidae, and Homoptera. Trans. Ent. Soc. Lond. 1913, 436–498 (1914).
    Google Scholar 
    47.Eastwood, R. & Fraser, A. M. Associations between lycaenid butterflies and ants in Australia. Austral. Ecol. 24, 503–537 (1999).Article 

    Google Scholar 
    48.Bruch, C. Orugas mirmecofilas de Hameris epulus signatus – Stich. Rev. Soc. Entomol. Argent. 1, 2–9 (1926).
    Google Scholar 
    49.Bourquin, F. Notas sobre la metamorfosis de Hamearis susanae Orfila, 1953, con oruga mirmicófila (Lep. Riodin.). Rev. Soc. Entomol. Argent. 16, 83–87 (1953).50.Ross, G. N. Life-history studies on Mexican butterflies. IV. The ecology and ethology of Anatole rossi, a myrmecophilous metalmark (Lepidoptera: Riodinidae). Ann. Entomol. Soc. Am. 59, 985–1004 (1966).51.Kaminski, L. A. & Carvalho-Filho, F. S. Life history of Aricoris propitia (Lepidoptera: Riodinidae)—A myrmecophilous butterfly obligately associated with fire ants. Psyche 2012, Article ID 126876; https://doi.org/10.1155/2012/126876 (2012).52.Fiedler, K. The host genera of ant-parasitic Lycaenidae butterflies: a review. Psyche 2012, Article ID 153975; https://doi.org/10.1155/2012/153975 (2012).53.Rocha, F. H., Lachaud, J.-P. & Pérez-Lachaud, G. Myrmecophilous organisms associated with colonies of the ponerine ant Neoponera villosa (Hymenoptera: Formicidae) nesting in Aechmea bracteata bromeliads: a biodiversity hotspot. Myrmecol. News 30, 73–92 (2020).
    Google Scholar 
    54.Rocha, F. H., Lachaud, J.-P., Hénaut, Y., Pozo, C. & Pérez-Lachaud, G. Nest site selection during colony relocation in Yucatan Peninsula populations of the ponerine ant Neoponera villosa (Hymenoptera: Formicidae). Insects 11, 200; https://doi.org/10.3390/insects11030200 (2020).55.Mackay, W. P. & Mackay, E. E. The systematics and biology of the New World ants of the genus Pachycondyla (Hymenoptera: Formicidae) (The Edwin Mellen Press, 2010).
    Google Scholar 
    56.Wheeler, W. M. The ants of Texas, New Mexico and Arizona. Part I. Bull. Am. Mus. Nat. Hist. 24, 399–485 (1908).57.Lachaud, J.-P., Fresneau, D. & García-Pérez, J. Étude des stratégies d’approvisionnement chez 3 espèces de fourmis ponérines (Hymenoptera: Formicidae). Folia Entomol. Mex. 61, 159–177 (1984).
    Google Scholar 
    58.Hölldobler, B. Liquid food transmission and antennation signals in ponerine ants. Isr. J. Entomol. 19, 89–99 (1985).
    Google Scholar 
    59.Dejean, A. & Corbara, B. Predatory behavior of a Neotropical arboricolous ant: Pachycondyla villosa (Formicidae: Ponerinae). Sociobiology 17, 271–286 (1990).
    Google Scholar 
    60.Pérez-Bautista, M., Lachaud, J.-P. & Fresneau, D. L. división del trabajo en la hormiga primitiva Neoponera villosa (Hymenoptera : Formicidae). Folia Entomol. Mex. 65, 119–130 (1985).
    Google Scholar 
    61.Dejean, A., Olmsted, I. & Snelling, R. R. Tree-epiphyte-ant relationships in the low inundated forest of Sian Ka´an biosphere reserve, Quintana Roo, Mexico. Biotropica 27, 57–70 (1995).Article 

    Google Scholar 
    62.Fernandes, I. O., De Oliveira, M. L. & Delabie, J. H. C. Notes on the biology of Brazilian ant populations of the Pachycondyla foetida species complex (Formicidae: Ponerinae). Sociobiology 60, 380–386 (2013).Article 

    Google Scholar 
    63.Castaño-Meneses, G. et al. The ant community and their accompanying arthropods in cacao dry pods: An unexplored diverse habitat. Dugesiana 22, 29–35 (2015).
    Google Scholar 
    64.Dejean, A. Influence de l’environnement pré-imaginal et précoce dans le choix du site de nidification de Pachycondyla (= Neoponera) villosa (Fabr.) (Formicidae, Ponerinae). Behav. Process. 21, 107–125 (1990).65.Dejean, A. & Olmsted, I. Ecological studies on Aechmea bracteata (Swartz) (Bromeliaceae). J. Nat. Hist. 31, 1313–1334 (1997).Article 

    Google Scholar 
    66.Hénaut, Y. et al. A tank bromeliad favors spider presence in a Neotropical inundated forest. PLoS ONE 9, e114592 (2014).67.Pérez-Lachaud, G., Jervis, M. A., Reemer, M. & Lachaud, J.-P. An unusual, but not unexpected, evolutionary step taken by syrphid flies: the first record of true primary parasitoidism of ants by Microdontinae. Biol. J. Linn. Soc. 111, 462–472 (2014).Article 

    Google Scholar 
    68.Pérez-Lachaud, G. & Lachaud, J.-P. Hidden biodiversity in entomological collections: The overlooked co-occurrence of dipteran and hymenopteran ant parasitoids in stored biological material. PLoS ONE 12, e0184614 (2017).69.Benzing, D. H., Derr, J. A. & Titus, J. E. The water chemistry of microcosms associated with the bromeliad Aechmea bracteata. Am. Midl. Nat. 87, 60–70 (1972).CAS 
    Article 

    Google Scholar 
    70.Beutelspacher Baigts, C. R. Bromeliáceas Como Ecosistemas, con Especial Referencia a Aechmea bracteata (Swartz) Griseb. Plaza y Valdés, México (1999).71.Dézerald, O. et al. Environmental drivers of invertebrate population dynamics in Neotropical tank bromeliads. Freshw. Biol. 62, 229–242 (2017).Article 

    Google Scholar 
    72.Ivanova, N. V., DeWaard, J. R. & Hebert, P. D. N. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes 6, 998–1002 (2006).CAS 
    Article 

    Google Scholar 
    73.Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. T. species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Nat. Acad. Sci. USA 101, 14812–14817 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Montes-Ortiz, L. & Elías-Gutiérrez, M. Faunistic survey of the zooplankton community in an oligotrophic sinkhole, Cenote Azul (Quintana Roo, Mexico), using different sampling methods, and documented with DNA barcodes. J. Limnol. 77, 428–440 (2018).
    Google Scholar 
    75.Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Guindon S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).79.Stehr, F. W. Order Lepidoptera. In: Stehr, F. W. (ed.) Immature insects. Vol. 1. Kendall-Hunt Publishing Company (1987).80.DeVries, P. J. The larval ant-organs of Thisbe irenea (Lepidoptera: Riodinidae) and their effects upon attending ants. Zool. J. Linn. Soc. 94, 379–393 (1988).Article 

    Google Scholar 
    81.Godman, F. D. & Salvin, O. Biologia Centrali-Americana. Insecta. Lepidoptera-Rhopalocera 1: 462, pl. 47, fig. 7–8. Published for the editors by R.H. Porter, London (1886).82.D’Abrera, B. Butterflies of the Neotropical Region. Part VI (Riodinidae). Hill House (1994).83.Lamas, G. Hesperioidea – Papilionoidea. In: Heppner, J. B. (ed.) Atlas of Neotropical Lepidoptera. Checklist: Part 4A. Association for Tropical Lepidoptera (2004).84.Hall, J. P. W. & Harvey, D. J. A phylogenetic analysis of the Neotropical riodinid butterfly genera Juditha, Lemonias, Thisbe and Uraneis, with a revision of Juditha (Lepidoptera: Riodinidae: Nymphidiini). Syst. Entomol. 26, 453–490 (2001).Article 

    Google Scholar 
    85.Zhang, J., Cong, Q., Shen, J., Opler, P. A. & Grishin, N. V. Genomic evidence suggests further changes of butterfly names. Taxon. Rep. Intern. Lepid. Surv. 8(7), 1–40 (2020).
    Google Scholar 
    86.Zhang, J., Cong, Q., Shen, J., Opler, P. A. & Grishin, N. V. Genomics-guided refinement of butterfly taxonomy. Taxon. Rep. Intern. Lepid. Surv. 9(3), 1–54 (2021).
    Google Scholar 
    87.Arellano-Covarrubias, A., Llorente-Bousquets, J. & Luis-Martínez, A. Distribución y fenología de la familia Riodinidae (Lepidoptera: Papilionoidea) en el bosque tropical subcaducifolio de Oaxaca, México. Rev. Biol. Trop. 66, 503–558 (2018).Article 

    Google Scholar 
    88.Pozo, C. et al. Seasonality and phenology of the butterflies (Lepidoptera: Papilionoidea and Hesperioidea) of Mexico’s Calakmul Region. Fla. Entomol. 91, 407–422 (2008).Article 

    Google Scholar 
    89.Erwin, T. L. Tropical forest canopies: the last biotic frontier. Bull. Entomol. Soc. Am. 29, 14–19 (1983).
    Google Scholar 
    90.Rico-Gray, V. & Oliveira, P. S. The Ecology and Evolution of Ant–Plant interactions (The University of Chicago Press, 2007).Book 

    Google Scholar 
    91.DeVries, P. J., Cabral, B. C. & Penz, C. M. The early stages of Apodemia paucipuncta (Riodinidae): myrmecophily, a new caterpillar ant-organ and consequences for classification. Milw. Public Mus. Contrib. Biol. Geol. 102, 1–13 (2004).
    Google Scholar 
    92.Kaminski, L. A., Mota, L. L., Freitas, A. V. L. & Moreira, G. R. P. Two ways to be a myrmecophilous butterfly: natural history and comparative immature-stage morphology of two species of Theope (Lepidoptera: Riodinidae). Biol. J. Linn. Soc. 108, 844–870 (2013).Article 

    Google Scholar 
    93.Kaminski, L. A., Mota, L. L. & Freitas, A. V. L. Larval cryptic coloration and mistletoe use in the metalmark butterfly Dachetola azora (Lepidoptera: Riodinidae). Entomol. Am. 120, 18–23 (2014).
    Google Scholar 
    94.Torres, P. J. & Pomerantz, A. F. Butterfly kleptoparasitism and first account of immature stages, myrmecophily, and bamboo host plant of the metalmark Adelotypa annulifera (Riodinidae). J. Lepid. Soc. 70, 130–138 (2016).
    Google Scholar 
    95.Gallard, J.-Y. Les Riodinidae de Guyane. Pensoft, Sofia (2017).96.Hall, J. P. W. A monograph of the Nymphidiina (Lepidoptera: Riodinidae: Nymphidiini): Phylogeny, taxonomy, biology, and biogeography (The Entomological Society of Washington, 2018).
    Google Scholar 
    97.Moraga Medina, R. 2014. Pachythone gigas (Riodinidae). Área de Conservación Guanacaste (2014). https://www.acguanacaste.ac.cr/paginas-de-especies/insectos/111-160riodinidae/581-i-pachythone-gigas-i-riodinidae98.Dupont, S. T., Zemeitat, D. S., Lohman, D. J. & Pierce, N. E. The setae of parasitic Liphyra brassolis butterfly larvae form a flexible armour for resisting attack by their ant hosts (Lycaenidae: Lepidoptera). Biol. J. Linn. Soc. 117, 607–619 (2016).Article 

    Google Scholar 
    99.DeVries, P. J., Chacon, I. A. & Murray, D. Toward a better understanding of host use and biodiversity in riodinid butterflies (Lepidoptera). J. Res. Lepid. 31, 103–126 (1992).
    Google Scholar 
    100.Davidson, D. W., Cook, S. C., Snelling, R. R. & Chua, T. H. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300, 969–972 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    101.Schmidt, C. A. & Shattuck, S. O. The higher classification of the ant subfamily Ponerinae (Hymenoptera: Formicidae), with a review of ponerine ecology and behavior. Zootaxa 3817, 1–242 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    102.Atsatt, P. R. Lycaenid butterflies and ants: Selection for enemy-free space. Am. Nat. 118, 638–654 (1981).Article 

    Google Scholar 
    103.Dáttilo, W. et al. Trait-mediated indirect interactions of ant shape on the attack of caterpillars and fruits. Biol. Lett. 12, 20160401 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Orivel, J. & Dejean, A. Myrmecophily in Hesperiidae. The case of Vettius tertianus in ant gardens. C. R. Acad. Sci. Paris 323, 705–715 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Meurville, M.-P. & LeBoeuf, A. C. Trophallaxis: The functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecol. News 31, 1–30 (2021).
    Google Scholar 
    106.Hall, J. P. W. & Harvey, D. J. Basal subtribes of the Nymphidiini (Lepidoptera: Riodinidae): Phylogeny and myrmecophily. Cladistics 18, 539–569 (2002).Article 

    Google Scholar 
    107.Hall, J. P. W. Phylogenetic revision of the new Neotropical riodinid genus Minstrellus (Lepidoptera: Riodinidae). Ann. Entomol. Soc. Am. 100, 773–786 (2007).Article 

    Google Scholar 
    108.Ballmer, G. R. & Wright, D. M. Notes on the immature stages of Setabis sp., a myrmecophagous riodinid butterfly (Lepidoptera: Riodinidae). J. Res. Lepid. 47, 11–15 (2014).
    Google Scholar 
    109.Callaghan, C. J. Studies on Restinga butterflies: I. Life cycle and immature biology of Menander felsina (Riodinidae), a myrmecophilous metalmark. J. Lepid. Soc. 31, 173–182 (1977).
    Google Scholar 
    110.Hojo, M. K, Yamaguchi, S., Akino, T. & Yamaoka, R. Adoption of lycaenid Niphanda fusca (Lepidoptera: Lycaenidae) caterpillars by the host ant Camponotus japonicus (Hymenoptera: Formicidae). Entomol. Sci. 17, 59–65 (2014).111.Maschwitz, U., Nässig, W. A., Dumpert, K. & Fiedler, K. Larval carnivory and myrmecoxeny, and imaginal myrmecophily in miletine lycaenids (Lepidoptera, Lycaenidae) on the Malay Peninsula. Tyô to Ga 39, 167–181 (1988).
    Google Scholar  More

  • in

    The early maternal environment shapes the parental response to offspring UV ornamentation

    1.Trivers, R. Parental investment and sexual selection. In Sexual Selection and the Descent of Man (ed. Campbell, B.) 136–179 (Aldine, 1972).
    Google Scholar 
    2.Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).
    Google Scholar 
    3.Mock, D. W. & Parker, G. A. The Evolution of Sibling Rivalry (Oxford University Press, 1997).
    Google Scholar 
    4.Caro, S. M., Griffin, A. S., Hinde, C. A. & West, S. A. Unpredictable environments lead to the evolution of parental neglect in birds. Nat. Commun. https://doi.org/10.1038/ncomms10985 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Davis, J. N., Todd, P. M. & Bullock, S. Environment quality predicts parental provisioning decisions. Proc. R. Soc. Ser. B-Biol. 266(1430), 1791–1797 (1999).Article 

    Google Scholar 
    6.Haig, D. Brood reduction and optimal parental investment when offspring differ in quality. Am. Nat. 136, 550–556 (1990).Article 

    Google Scholar 
    7.O’Connor, R. J. Brood reduction in birds: Selection for fratricide, infanticide and suicide?. Anim. Behav. 26(Part 1), 79–96 (1978).Article 

    Google Scholar 
    8.Stenning, M. J. Hatching asynchrony, brood reduction and other rapidly reproducing hypotheses. Trends Ecol. Evol. https://doi.org/10.1016/0169-5347(96)10030-6 (1996).Article 
    PubMed 

    Google Scholar 
    9.Leonard, M. L., Horn, A. G. & Parks, E. The role of posturing and calling in the begging display of nestling birds. Behav. Ecol. Sociobiol. 54(2), 188–193 (2003).Article 

    Google Scholar 
    10.Kilner, R. M. The evolution of complex begging displays. In Wright J., Leonard M. L. (eds) The Evolution of Begging 87–106 (Springer, 2005).11.Thorogood, R., Ewen, J. G. & Kilner, R. M. Sense and sensitivity: Responsiveness to offspring signals varies with the parents’ potential to breed again. Proc. R. Soc. Ser. B-Biol. 278(1718), 2638–2645 (2011).Article 

    Google Scholar 
    12.Pirrello, S. et al. Skin and flange colour, but not ectoparasites, predict condition and survival in starling nestlings. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-017-2292-6 (2017).Article 

    Google Scholar 
    13.Maynard-Smith, J. & Harper, D. Animal signals. Oxford Series in Ecology and Evolution (Oxford University Press, 2003).
    Google Scholar 
    14.Laidre, M. E. & Johnstone, R. A. Animal signals. Curr. Biol. https://doi.org/10.1016/j.cub.2013.07.070 (2013).Article 
    PubMed 

    Google Scholar 
    15.Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: A role for parasites?. Science 218(4570), 384–387 (1982).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Zahavi, A. The Handicap Principle: A Missing Piece of Darwin’s (Oxford University Press, 1997).
    Google Scholar 
    17.Morales, J. & Velando, A. Signals in family conflicts. Anim. Behav. 86(1), 11–16 (2013).Article 

    Google Scholar 
    18.Hinde, C. A., Johnstone, R. A. & Kilner, R. M. Parent-offspring conflict and coadaptation. Science 327(5971), 1373–1376 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Grodzinski, U. & Johnstone, R. A. Parents and offspring in an evolutionary game: The effect of supply on demand when costs of care vary. Proc. R. Soc. Ser. B-Biol. 279(1726), 109–115 (2011).Article 

    Google Scholar 
    20.Kilner, R. & Johnstone, R. A. Begging the question: Are offspring solicitation behaviours signals of need?. Trends Ecol. Evol. https://doi.org/10.1016/S0169-5347(96)10061-6 (1997).Article 
    PubMed 

    Google Scholar 
    21.Roulin, A., Kölliker, M. & Richner, H. Barn owl (Tyto alba) siblings vocally negotiate resources. Proc. R. Soc. Ser. B-Biol. 267, 459–463 (2000).CAS 
    Article 

    Google Scholar 
    22.Godfray, H. C. Evolutionary theory of parent-offspring conflict. Nature 376, 133–138 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.De Ayala, R. M., Saino, N., Møller, A. P. & Anselmi, C. Mouth coloration of nestlings covaries with offspring quality and influences parental feeding behavior. Behav. Ecol. 18(3), 526–534 (2007).Article 

    Google Scholar 
    24.Godfray, H. C. J. Signalling of need by offspring to their parents. Nature 352, 328–330 (1991).ADS 
    Article 

    Google Scholar 
    25.Bize, P., Piault, R., Moureau, B. & Heeb, P. A UV signal of offspring condition mediates context-dependent parental favouritism. Proc. R. Soc. Ser. B-Biol. 273(1597), 2063–2068 (2006).Article 

    Google Scholar 
    26.Jourdie, V., Moureau, B., Bennett, A. T. D. & Heeb, P. Ultraviolet reflectance by the skin of nestlings. Nature 431(7006), 262 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Johnsen, A., Delhey, K., Andersson, S. & Kempenaers, B. Plumage colour in nestling blue tits: Sexual dichromatism, condition dependence and genetic effects. Proc. R. Soc. Ser. B-Biol. 270(1521), 1263–1270 (2003).Article 

    Google Scholar 
    28.Royle, N. J., Russell, A. F. & Wilson, A. J. The evolution of flexible parenting. Science 345, 776–781 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Morales, J. & Velando, A. Coloration of chicks modulates costly interactions among family members. Behav. Ecol. 29(4), 894–903 (2018).Article 

    Google Scholar 
    30.García-Campa, J., Müller, W., González-Braojos, S., García-Juárez, E. & Morales, J. J. Dietary carotenoid supplementation facilitates egg laying in a wild passerine. Ecol. Evol. 10(11), 4968–4978 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Roulin, A. The sibling negotiation hypothesis. In The Evolution of Begging: Competition, Cooperation and Communication (eds Wright, J. & Leonard, M. L.) 107–127 (Kluwer Academic Press, 2002).Chapter 

    Google Scholar 
    32.Limbourg, T., Mateman, A. C. & Lessells, C. M. Parental care and UV coloration in blue tits: Opposite correlations in males and females between provisioning rate and mate’s coloration. J. Avian Biol. 44(1), 017–026 (2013).Article 

    Google Scholar 
    33.Limbourg, T., Mateman, A. C. & Lessells, C. M. Opposite differential allocation by males and females of the same species. Bio. Lett. https://doi.org/10.1098/rsbl.2012.0835 (2013).Article 

    Google Scholar 
    34.García-Campa, J., Müller, W. S. & Morales, J. J. Experimental evidence that UV/yellow colouration functions as a signal of parental quality in the blue tit. Preprint at https://doi.org/10.1101/2020.09.14.293613 (2020)35.Jacot, A. & Kempenaers, B. Effects of nestling condition on UV plumage traits in blue tits: An experimental approach. Behav. Ecol. 18(1), 34–40 (2007).Article 

    Google Scholar 
    36.McGraw, K. J. (2006). Mechanisms of Carotenoid-based coloration. In G. E. Hill and K. J. McGraw (ed.) Bird Coloration Function and Evolution, Vol. II, 177–242 (Harvard University Press, 2006).37.Surai, P. F., Speake, B. K. & Sparks, N. H. C. Absorption, availability and levels in plasma and egg yolk in carotenoids in avian nutrition and embryonic development. J. Poult. Sci. 38, 1–27 (2001).CAS 
    Article 

    Google Scholar 
    38.Tschirren, B., Fitze, P. S. & Richner, H. Carotenoid-based nestling colouration and parental favouritism in the great tit. Oecologia 143, 477–482 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    39.Biard, C., Surai, P. F. & Møller, A. P. An analysis of pre- and post-hatching maternal effects mediated by carotenoids in the blue tit. J. Evol. Biol. 20, 326–339 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Galván, I., Amo, L. & Sanz, J. J. Ultraviolet-blue reflectance of some nestling plumage patches mediates parental favouritism in great tits Parus major. J. Avian Biol. 39(3), 277–282 (2008).Article 

    Google Scholar 
    41.Wiebe, K. L. & Slagsvold, T. Brood parasites may use gape size constraints to exploit provisioning rules of smaller hosts: An experimental test of mechanisms of food allocation. Behav. Ecol. 23, 391–396 (2012).Article 

    Google Scholar 
    42.Stalwick, J. A. & Wiebe, K. L. Prey size and nestling gape size affect allocation within broods of the Mountain Bluebird. J. Ornithol. 160(1), 145–154 (2019).Article 

    Google Scholar 
    43.Kölliker, M., Richner, H., Werner, I. & Heeb, P. Begging signals and biparental care: Nestling choice between parental feeding locations. Anim. Behav. 55(1), 215–222 (1998).Article 

    Google Scholar 
    44.Cantarero, A., López-Arrabé, J., Palma, A., Redondo, A. J. & Moreno, J. Males respond to female begging signals of need: A handicapping experiment in the pied flycatcher, Ficedula hypoleuca. Anim. Behav. 94, 167–173 (2014).Article 

    Google Scholar 
    45.Griffioen, M., Iserbyt, A. & Müller, W. Handicapping males does not affect their rate of parental provisioning, but impinges on their partners’ turn taking behavior. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00347 (2019).Article 

    Google Scholar 
    46.Santucci, D., Masterson, D. & Elwood, R. W. Effects of age, sex, and odours from conspecific adult males on ultrasonic vocalizations of infant CS1 mice. Behav. Process. 32, 285–295 (1994).CAS 
    Article 

    Google Scholar 
    47.Moreno, J., Carrascal, L. M. & Sanz, J. J. Parent-offspring interactions and feeding chases in the chinstrap penguin Pygoscelis antarctica. Bird Behav. 11(1), 31–34 (2011).Article 

    Google Scholar 
    48.Smiseth, P. T., Andrews, C., Brown, E. & Prentice, P. M. Chemical stimuli from parents trigger larval begging in burying beetles. Behav. Ecol. 21, 526–531 (2010).Article 

    Google Scholar 
    49.Velando, A., Kim, S. Y. & Noguera, J. C. Begging response of gull chicks to the red spot on the parental bill. Anim. Behav. 85(6), 1359–1366 (2013).Article 

    Google Scholar 
    50.Tinbergen, N. & Perdeck, A. C. On the stimulus situation releasing the begging response in the newly hatched herring gull chick (Larus argentatus argentatus Pont.). Behaviour 3, 1e39 (1950).
    Google Scholar 
    51.Bustamante, J., Cuervo, J. J. & Moreno, J. The function of feeding chases in the chinstrap penguin, Pygoscelis antarctica. Anim. Behav. 44(4), 753–759 (1992).Article 

    Google Scholar 
    52.Amininasab, S. M., Birker, M., Kingma, S. A., Hildenbrandt, H. & Komdeur, J. The effect of male incubation feeding on female nest attendance and reproductive performance in a socially monogamous bird. J. Ornithol. 158(3), 687–696 (2017).Article 

    Google Scholar 
    53.Bambini, G., Schlicht, E. & Kempenaers, B. Patterns of female nest attendance and male feeding throughout the incubation period in Blue Tits Cyanistes caeruleus. Ibis 161(1), 50–65 (2019).Article 

    Google Scholar 
    54.Iserbyt, A., Griffioen, M., Eens, M. & Müller, W. Enduring rules of care within pairs—How blue tit parents resume provisioning behaviour after experimental disturbance. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar  More

  • in

    Different patterns of human activities in nature during Covid-19 pandemic and African swine fever outbreak confirm direct impact on wildlife disruption

    1.DeStefano, S. & DeGraaf, R. M. Exploring the ecology of suburban wildlife. Front. Ecol. Environ. 1, 95 (2003).Article 

    Google Scholar 
    2.Treves, A., Wallace, R. B., Naughton-Treves, L. & Morales, A. Co-managing human–wildlife conflicts: a review. Hum. Dimens. Wildl. 11, 383–396 (2006).Article 

    Google Scholar 
    3.Oberosler, V., Groff, C., Iemma, A., Pedrini, P. & Rovero, F. The influence of human disturbance on occupancy and activity patterns of mammals in the Italian Alps from systematic camera trapping. Mamm. Biol. 87, 50–61 (2017).Article 

    Google Scholar 
    4.Tyler, N. J. C. Short-term behavioural responses of Svalbard reindeer Rangifer tarandus platyrhynchus to direct provocation by a snowmobile. Biol. Conserv. 56, 179–194 (1991).Article 

    Google Scholar 
    5.Tolvanen, A. & Kangas, K. Tourism, biodiversity and protected areas—review from northern Fennoscandia. J. Environ. Manage. 169, 58–66 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Ballantyne, M. & Pickering, C. M. Tourism and recreation: a common threat to IUCN red-listed vascular plants in Europe. Biodivers. Conserv. 22, 3027–3044 (2013).Article 

    Google Scholar 
    7.Pickering, C. M., Hill, W., Newsome, D. & Leung, Y. F. Comparing hiking, mountain biking and horse riding impacts on vegetation and soils in Australia and the United States of America. J. Environ. Manage. 91, 551–562 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Coppes, J., Ehrlacher, J., Thiel, D., Suchant, R. & Braunisch, V. Outdoor recreation causes effective habitat reduction in capercaillie Tetrao urogallus: a major threat for geographically restricted populations. J. Avian Biol. 48, 1583–1594 (2017).Article 

    Google Scholar 
    9.Siikamäki, P., Kangas, K., Paasivaara, A. & Schroderus, S. Biodiversity attracts visitors to national parks. Biodivers. Conserv. 24, 2521–2534 (2015).Article 

    Google Scholar 
    10.Gerstenberg, T., Baumeister, C. F., Schraml, U. & Plieninger, T. Hot routes in urban forests: the impact of multiple landscape features on recreational use intensity. Landsc. Urban Plan. 203, 103888 (2020).Article 

    Google Scholar 
    11.Fischer, L. K. & Kowarik, I. Dogwalkers’ views of urban biodiversity across five European cities. Sustain. 12, 1–11 (2020).
    Google Scholar 
    12.Lundgren, J. O. Polar tourism: tourism in the Arctic and Antarctic regions. in The tourism space penetration processes in northern Canada and Scandinavia: a comparison 43–61 (1995).13.Balmford, A. et al. Walk on the wild side: estimating the global magnitude of visits to protected areas. PLoS Biol. 13, 1–6 (2015).Article 
    CAS 

    Google Scholar 
    14.George, S. L. & Crooks, K. R. Recreation and large mammal activity in an urban nature reserve. Biol. Conserv. 133, 107–117 (2006).Article 

    Google Scholar 
    15.Zhong, L., Zhang, X., Deng, J. & Pierskalla, C. Recreation ecology research in China’s protected areas: progress and prospect. Ecosyst. Heal. Sustain. 6 (2020).16.Mancini, F., Leyshon, B., Manson, F., Coghill, G. M. & Lusseau, D. Monitoring tourists’ specialisation and implementing adaptive governance is necessary to avoid failure of the wildlife tourism commons. Tour. Manag. 81, 104160 (2020).Article 

    Google Scholar 
    17.Abate, M., Christidis, P. & Purwanto, A. J. Government support to airlines in the aftermath of the COVID-19 pandemic. J. Air Transp. Manag. 89, 101931 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Castanho, R. A. et al. The impact of SARS-CoV-2 outbreak on the accommodation selection of Azorean tourists. A study based on the assessment of the Azores population’s attitudes. Sustainability 12, 9990 (2020).CAS 
    Article 

    Google Scholar 
    19.Neupane, D. How conservation will be impacted in the COVID-19 pandemic. Wildlife Biol. 2020, 19–21 (2020).Article 

    Google Scholar 
    20.Herrero, C. & Villar, A. A synthetic indicator on the impact of COVID-19 on the community’s health. PLoS ONE 15, 1–14 (2020).
    Google Scholar 
    21.World Health Organization (WHO). Coronavirus Disease (COVID-19) Situation Reports Updates 27 September 2020. World Health Organization Technical Report Series (2020).22.da Silva, F. C. T. & Neto, M. L. R. Psychological effects caused by the COVID-19 pandemic in health professionals: a systematic review with meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 104, 110 (2021).Article 
    CAS 

    Google Scholar 
    23.Sohrabi, C. et al. World health organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 76, 71–76 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Hellewell, J. et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Heal. 8, e488–e496 (2020).Article 

    Google Scholar 
    25.Steidtmann, D., McBride, S. & Mishkind, M. C. Experiences of mental health clinicians and staff in rapidly converting to full-time telemental health and work from home during the COVID-19 pandemic. Telemed. e-Health 27(7), 785–791 (2021).Article 

    Google Scholar 
    26.Chiu, W. A., Fischer, R. & Ndeffo-Mbah, M. L. State-level needs for social distancing and contact tracing to contain COVID-19 in the United States. Nat. Hum. Behav. 4, 1080–1090 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 4, 1156–1159 (2020).PubMed 
    Article 

    Google Scholar 
    28.Zellmer, A. J. et al. What can we learn from wildlife sightings during the COVID-19 global shutdown?. Ecosphere 11, e03215 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Ghahremanloo, M., Lops, Y., Choi, Y. & Mousavinezhad, S. Impact of the COVID-19 outbreak on air pollution levels in East Asia. Sci. Total Environ. 754, 142226 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Rosenbloom, D. & Markard, J. A COVID-19 recovery for climate. Science 368, 447–447 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Lokhandwala, S. & Gautam, P. Indirect impact of COVID-19 on environment: a brief study in Indian context. Environ. Res. 188, 109807 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Manenti, R. et al. The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: insights from the first European locked down country. Biol. Conserv. 249, 108728 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Corlett, R. T. et al. Impacts of the coronavirus pandemic on biodiversity conservation. Biol. Conserv. 246, 8–11 (2020).Article 

    Google Scholar 
    34.Bates, A. E., Primack, R. B., Moraga, P. & Duarte, C. M. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 248, 108665 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Arias, M., Jurado, C., Gallardo, C., Fernández-Pinero, J. & Sánchez-Vizcaíno, J. M. Gaps in African swine fever: analysis and priorities. Transbound. Emerg. Dis. 65, 235–247 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Galindo, I. & Alonso, C. African swine fever virus: a review. Viruses 9, 103 (2017).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    37.Taylor, R. A. et al. Predicting spread and effective control measures for African swine fever—should we blame the boars?. Transbound Emerg. Dis. https://doi.org/10.1111/tbed.13690 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Mason-D’Croz, D. et al. Modelling the global economic consequences of a major African swine fever outbreak in China. Nat. Food. 1, 221–228 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Podgórski, T. & Śmietanka, K. Do wild boar movements drive the spread of African Swine Fever?. Transbound. Emerg. Dis. 65, 1588–1596 (2018).PubMed 
    Article 

    Google Scholar 
    40.Petit, K. et al. Assessment of the impact of forestry and leisure activities on wild boar spatial disturbance with a potential application to ASF risk of spread. Transbound. Emerg. Dis. 67, 1164–1176 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Watanabe, S. & Wahlqvist, M. L. Covid-19 and dietary socioecology: Risk minimisation. Asia Pac. J. Clin. Nutr. 29, 207–219 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Geng, D., Innes, J., Wu, W. & Wang, G. Impacts of COVID-19 pandemic on urban park visitation: a global analysis. J. For. Res. https://doi.org/10.1007/s11676-020-01249-w (2020).Article 

    Google Scholar 
    43.Godbersen, H., Hofmann, L. A. & Ruiz-Fernández, S. How people evaluate anti-corona measures for their social spheres: attitude, subjective norm, and perceived behavioral control. Front. Psychol. 11, 1–20 (2020).Article 

    Google Scholar 
    44.Cukor, J. et al. Wild boar deathbed choice in relation to ASF : Are there any differences between positive and negative carcasses? Prev. Vet. 177, 1–7 (2020).
    Google Scholar 
    45.McGinlay, J. et al. The impact of COVID-19 on the management of European protected areas and policy implications. Forests 11, 1–15 (2020).Article 

    Google Scholar 
    46.Derks, J., Giessen, L. & Winkel, G. COVID-19-induced visitor boom reveals the importance of forests as critical infrastructure. For. Policy Econ. 118, 102253 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Venter, Z. S., Barton, D. N., Gundersen, V., Figari, H., Nowell, M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 15, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    48.Jůza, R., Jarský, V., Riedl, M., Zahradník, D. & Šišák, L. Possibilities for harmonisation between recreation services and their production within the forest sector—a case study of municipal forest enterprise hradec Králové (CZ). Forests 12, 13 (2020).Article 

    Google Scholar 
    49.Dellicour, S. et al. Unravelling the dispersal dynamics and ecological drivers of the African swine fever outbreak in Belgium. J. Appl. Ecol. 57, 1619–1629 (2020).Article 

    Google Scholar 
    50.Carnol, M. et al. Ecosystem services of mixed species forest stands and monocultures: comparing practitioners and scientists perceptions with formal scientific knowledge. Forestry 87, 639–653 (2014).Article 

    Google Scholar 
    51.Dušek, D., Kacálek, D., Novák, J. & Slodičák, M. Public perception of recreation needs—a questionnaire study from Ostrava urban forests (Czech Republic). Zpravy Lesn. Vyzk Rep. For. Res. 62, 174–181 (2017).
    Google Scholar 
    52.Meo, I. D., Paletto, A. & Cantiani, M. G. The attractiveness of forests: Preferences and perceptions in a mountain community in Italy. Ann. For. Res. 58, 145–156 (2015).
    Google Scholar 
    53.Sadecký, D., Pejcha, J. & Šišák, L. Analysis of the public opinion on forest and forest management in the žďárské vrchy protected landscape area, czech republic [Analýza názorů veřejnosti na les a lesní hospodářství v chráněné krajinné oblasti žďárské vrchy]. Zpravy Lesn. Vyzk. 59, 11–17 (2014).
    Google Scholar 
    54.Ciuti, S. et al. Effects of Humans on Behaviour of Wildlife Exceed Those of Natural Predators in a Landscape of Fear. PLoS ONE 7, 1–16 (2012).Article 
    CAS 

    Google Scholar 
    55.Palacios, M. G., D’Amico, V. L. & Bertellotti, M. Ecotourism effects on health and immunity of Magellanic penguins at two reproductive colonies with disparate touristic regimes and population trends. Conserv. Physiol. 6, 1–13 (2018).Article 
    CAS 

    Google Scholar 
    56.Schuttler, S. G. et al. Deer on the lookout: how hunting, hiking and coyotes affect white-tailed deer vigilance. J. Zool. 301, 320–327 (2017).Article 

    Google Scholar 
    57.Preisser, E. L., Bolnick, D. I. & Benard, M. F. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86, 501–509 (2005).Article 

    Google Scholar 
    58.Creel, S., Winnie, J., Maxwell, B., Hamlin, K. & Creel, M. Elk alter habitat selection as an antipredator response to wolves. Ecology 86, 3387–3397 (2005).Article 

    Google Scholar 
    59.French, S. S., Denardo, D. F., Greives, T. J., Strand, C. R. & Demas, G. E. Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus). Horm. Behav. 58, 792–799 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Beehner, J. C. & Bergman, T. J. The next step for stress research in primates: to identify relationships between glucocorticoid secretion and fitness. Horm. Behav. 91, 68–83 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Dhabhar, F. S. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol. Res. 58, 193–210 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Almasi, B., Béziers, P., Roulin, A. & Jenni, L. Agricultural land use and human presence around breeding sites increase stress-hormone levels and decrease body mass in barn owl nestlings. Oecologia 179, 89–101 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    63.Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).CAS 
    PubMed 

    Google Scholar 
    64.Szwagrzyk, J. et al. Effects of species and environmental factors on browsing frequency of young trees in mountain forests affected by natural disturbances. For. Ecol. Manage. 474, 1–13 (2020).Article 

    Google Scholar 
    65.Möst, L., Hothorn, T., Müller, J. & Heurich, M. Creating a landscape of management: unintended effects on the variation of browsing pressure in a national park. For. Ecol. Manage. 338, 46–56 (2015).Article 

    Google Scholar 
    66.Cukor, J. et al. Effects of bark stripping on timber production and structure of Norway Spruce forests in relation to climatic factors. Forests 10, 13–17 (2019).Article 

    Google Scholar 
    67.Vacek, Z. et al. Bark stripping, the crucial factor affecting stem rot development and timber production of Norway spruce forests in Central Europe. For. Ecol. Manage. 474, 118360 (2020).Article 

    Google Scholar 
    68.Barrueto, M., Ford, A. T. & Clevenger, A. P. Anthropogenic effects on activity patterns of wildlife at crossing structures. Ecosphere 5, 1–19 (2014).Article 

    Google Scholar 
    69.Ignatavičius, G. et al. Temporal patterns of ungulate-vehicle collisions in a sparsely populated country. Eur. J. Wildl. Res. 66, 1–9 (2020).Article 

    Google Scholar 
    70.Price, M. V., Strombom, E. H. & Blumstein, D. T. Human activity affects the perception of risk by mule deer. Curr. Zool. 60, 693–699 (2014).Article 

    Google Scholar 
    71.Romero, L. M., Dickens, M. J. & Cyr, N. E. The reactive scope model—a new model integrating homeostasis, allostasis, and stress. Horm. Behav. 55, 375–389 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Cukor, J., Havránek, F., Rohla, J. & Bukovjan, K. Estimation of red deer density in the west part of the Ore Mts (Czech Republic). Zpravy Lesn. Vyzk. Rep. For. Res. 62, 288–295 (2017).
    Google Scholar 
    73.Carpio, A. J., Apollonio, M. & Acevedo, P. Wild ungulate overabundance in Europe: contexts, causes, monitoring and management recommendations. Mamm. Rev. 51, 95–108 (2021).Article 

    Google Scholar 
    74.Iacolina, L., Corlatti, L., Buzan, E., Safner, T. & Šprem, N. Hybridisation in European ungulates: an overview of the current status, causes, and consequences. Mamm. Rev. 49, 45–59 (2019).Article 

    Google Scholar 
    75.Kangas, K., Luoto, M., Ihantola, A., Tomppo, E. & Siikamäki, P. Recreation-induced changes in boreal bird communities in protected areas. Ecol. Appl. 20, 1775–1786 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Tost, D., Strauß, E., Jung, K. & Siebert, U. Impact of tourism on habitat use of black grouse (Tetrao tetrix) in an isolated population in northern Germany. PLoS ONE 15, e0238660 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Köppen, W. Das Geographische System der Klimate, Handbuch der Klimatologie (Gebrüder Borntraeger, 1936).
    Google Scholar 
    78.Rob, F. et al. Compliance, safety concerns and anxiety in patients treated with biologics for psoriasis during the COVID-19 pandemic national lockdown: a multicenter study in the Czech Republic. J. Eur. Acad. Dermatol. Venereol. 76, jdv.16771 (2020).
    Google Scholar 
    79.Government of the Czech Republic. Measures adopted by the Czech Government against the coronavirus. (2021). Available at: https://www.vlada.cz/en/media-centrum/aktualne/measures-adopted-by-the-czech-government-against-coronavirus-180545/. (Accessed: 5th February 2021).80.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (2016). More

  • in

    Fish can use hydrostatic pressure to determine their absolute depth

    We have demonstrated that Mexican tetra fish can locate their depth with high fidelity by using hydrostatic pressure alone. Crucially, the fish can use hydrostatic pressure not only as a gradient, giving information about upward and downward movement but also as a distance-based cue that can allow precise localisation of their vertical position. This newly identified sensory capability indicates how fish can achieve the complex task of navigating through three-dimensional environments.The basis of navigation in all animals, hinges on the individual knowing the spatial relationship between their current location and an intended destination. Although all animals inhabit a three-dimensional world, many, including humans, are constrained to travelling over surfaces with three degrees of freedom: two translational and one rotational14. The addition of the vertical dimension enlarges the size of the navigable space from a two-dimensional plane to a three-dimensional volume2, leading to a multiplicative increase in the complexity of a navigational task14,15,16. Reliable information on vertical position would therefore be a significant benefit for three-dimensional navigation.Although it is likely that in the wild fish rely on multiple cues to navigate, a sense of pressure would be particularly useful when other cues are unavailable or unreliable, for example, in turbid waters where visual landmarks are absent or obscured, and in turbulent waters where olfactory plumes cannot provide fine-scale information. The stability and ubiquity of hydrostatic pressure in aquatic environments allow fish access to a reliable navigational cue and could explain why two separate experiments, each testing a different species, found that fish perceived vertical information as the more reliable cue when horizontal and vertical information conflicted.The physiological mechanism underlying depth perception in fish is yet to be identified, although the swim-bladder has been implicated. In this putative mechanism, absolute depth is estimated during fast, steady vertical displacements by combining a measurement of vertical speed with a measurement of the fractional rate of change of swim-bladder volume. If this is the mechanism that these and other bony fish are using to sense their depth, there are likely to be important ecological and welfare consequences for fish that suffer barotrauma from angling or transit through hydroelectric power facilities, where the damage caused from exposure to rapid changes in barometric pressure may cause swim bladder ruptures17. Therefore, governments need to be aware of key migratory paths that fish use to move between feeding and breeding sites to enable them to protect important species. Similarly, fish that contract parasitic infections of the swim bladder are likely to find their vertical navigation is severely compromised. While there are currently no studies on the pressure sensing in fish with parasitic infections of the swim bladder, previous research has reported that infected Koi carp (Cyprinus carpio) are less able to achieve and sustain neutral buoyancy and demonstrate abnormal swimming behaviour18. Similarly, silver eels (Anguilla Anguilla) infected with a swim bladder nematode experienced a loss of buoyancy resulting in them expending more energy while swimming, impeding their migration19.While the swim bladder appears to be a good candidate organ for sensing hydrostatic pressure in bony fish, many cartilaginous or deep-sea species do not possess a gas phase, despite still being able to navigate vertically. Previous research has suggested that instead of relying on fractional changes in swim bladder volume, these species may rely on the sensory afferents of their lateral line system; with evidence that swimming crabs (Callinectes ornatus), mud crabs (Panopeus herbstii) and dogfish (Scyliorhinus canicula) sense pressure changes via the bending of hair cells oriented to sense either vertical or horizontal displacements20. The ability of fish to use hydrostatic pressure to accurately locate a point in the vertical dimension may be important for fisheries management. Known points of interest, for example, food sites, refugia, heavily predated areas, present in the vertical column could be learned and remembered by fish, with them either returning to or avoiding these areas as necessary. Further field studies on individual fish and shoals of fish using hydrostatic pressure in this context are needed to identify how this cue is used both in the wild and in farmed fisheries.Our findings reveal novel sensory information that A. mexicanus, and possibly other fish species, use to gain detailed navigational information over short distances in the vertical dimension. Extrapolating from this, we argue that it is likely that fish could use pressure to navigate over larger distances as the pressure magnitudes will increase as the vertical distance increases. Together, this study reveals a new sensory capacity that has great adaptive value in the fish’s volumetric world. More

  • in

    Climate change benefits negated by extreme heat

    1.Mueller, N. D. et al. Nat. Food https://doi.org/10.1038/s43016-021-00372-z (2021).2.IPCC Climate Change 2021: The Physical Science Basis Summary for Policymakers (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in the press).3.Harrison, M. T., Tardieu, F., Dong, Z., Messina, C. D. & Hammer, G. L. Glob. Change Biol. 20, 867–878 (2014).ADS 
    Article 

    Google Scholar 
    4.Chang-Fung-Martel, J., Harrison, M. T., Rawnsley, R., Smith, A. P. & Meinke, H. Crop Pasture Sci. 68, 1158–1169 (2017).Article 

    Google Scholar 
    5.Climate Change and the Global Dairy Cattle Sector: The Role of the Dairy Sector in a Low-Carbon Future (FAO and GDP, 2018).6.World Dairy Map 2020: Shifting Gears in Global Dairy Trade (Rabobank, 2020); https://research.rabobank.com/far/en/sectors/dairy/world-dairy-map-2020.html7.Harrison, M. T., Cullen, B. R. & Armstrong, D. Agric. Syst. 155, 19–32 (2017).Article 

    Google Scholar 
    8.Harrison, M. T. et al. Anim. Prod. Sci. 56, 370–384 (2016).CAS 
    Article 

    Google Scholar 
    9.Harrison, M. T. et al. Glob. Change Biol. https://doi.org/10.1111/gcb.15816 (2021).10.Chang-Fung-Martel, J. et al. Int. J. Biometeorol. https://doi.org/10.1007/s00484-021-02167-0 (2021).11.U.S. Climate Extremes Index (CEI) (NOAA National Centers for Environmental Information, accessed 19 September 2021); https://www.ncdc.noaa.gov/extremes/cei/graph/us/01-12/2 More