A new ant-butterfly symbiosis in the forest canopy fills an evolutionary gap
1.Kronauer, D. J. C. & Pierce, N. E. Myrmecophiles. Curr. Biol. 21, R208-209 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
2.Parker, J. Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms. Myrmecol. News 22, 65–108 (2016).
Google Scholar
3.Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, 1990).Book
Google Scholar
4.Hughes, D. P., Pierce, N. E. & Boomsma, J. J. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol. Evol. 23, 672–677 (2008).PubMed
Article
PubMed Central
Google Scholar
5.Lachaud, J.-P., Lenoir, A. & Witte, V. Ants and their parasites. Psyche 2012, Article ID 342157; https://doi.org/10.1155/2012/342157 (2012).6.Wheeler, W. M. Ants, their Structure, Development and Behavior. (Columbia University Press, 1910).
Google Scholar
7.Buschinger, A. Social parasitism among ants: A review (Hymenoptera: Formicidae). Myrmecol. News 12, 219–235 (2009).
Google Scholar
8.Nash, D. R. & Boomsma, J. J. Communication between hosts and social parasites. In Sociobiology of Communication: An Interdisciplinary Perspective (eds d’Ettorre, P. & Hughes, D. P.) 55–79 (Oxford University Press, 2008).Chapter
Google Scholar
9.Akino, T., Knapp, J. J., Thomas, J. A. & Elmes, G. W. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc. R. Soc. Lond. B 266, 1419–1426 (1999).CAS
Article
Google Scholar
10.Barbero, F., Thomas, J. A., Bonelli, S., Balletto, E. & Schönrogge, K. Queen ants make distinctive sounds that are mimicked by a butterfly social parasite. Science 323, 782–785 (2009).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
11.Kaminski, L. A., Volkmann, L., Callaghan, C. J., DeVries, P. J. & Vila, R. The first known riodinid ‘cuckoo’ butterfly reveals deep-time convergence and parallelism in ant social parasites. Zool. J. Linn. Soc. 192, 1–20. https://doi.org/10.1093/zoolinnean/zlaa150 (2021).Article
Google Scholar
12.Elmes, G. W., Barr, B., Thomas, J. A. & Clark, R. T. Extreme host specificity by Microdon mutabilis (Diptera, Syrphidae), a social parasite of ants. Proc. R. Soc. Lond. B 266, 447–453 (1999).Article
Google Scholar
13.Schönrogge, K. et al. Host propagation permits extreme local adaptation in a social parasite of ants. Ecol. Lett. 9, 1032–1040 (2006).PubMed
Article
PubMed Central
Google Scholar
14.Bonelli, S. et al. Distribution, host specificity, and the potential for cryptic speciation in hoverfly Microdon myrmicae (Diptera: Syrphidae), a social parasite of Myrmica ants. Ecol. Entomol. 36, 135–143 (2011).Article
Google Scholar
15.Di Giulio, A. et al. The pied piper: A parasitic beetle’s melodies modulate ant behaviours. PLoS ONE 10, e0130541 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
16.Van Oystaeyen, A. et al. Chemical strategies of the beetle Metoecus paradoxus, social parasite of the wasp Vespula vulgaris. J. Chem. Ecol. 41, 1137–1147 (2015).PubMed
Article
CAS
Google Scholar
17.Yamamoto, S., Maruyama, M. & Parker, J. Evidence for social parasitism of early insect societies by Cretaceaous rove beetles. Nat. Commun. 7, 13658 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
18.Hinton, H.E. Myrmecophilous Lycaenidae and other Lepidoptera—A summary. Proc. Trans. South Lond. Entomol. Nat. Hist. Soc. 1949–1950, 111–175 (1951).19.Pierce, N. E. Predatory and parasitic Lepidoptera: Carnivores living on plants. J. Lepid. Soc. 49, 412–453 (1995).
Google Scholar
20.Dejean, A. et al. Ant-lepidopteran associations along African forest edges. Sci. Nat. 104, 7 (2017).Article
CAS
Google Scholar
21.Fiedler, K. Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea). Bonn. Zool. Monogr. 31, 1–210 (1991).
Google Scholar
22.Pierce, N. E. et al. The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu. Rev. Entomol. 47, 733–771 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
23.DeVries, P. J. Mutualism between Thisbe irenea butterflies and ants, and the role of ant ecology in the evolution of larval-ant associations. Biol. J. Linn. Soc. 43, 179–195 (1991).MathSciNet
Article
Google Scholar
24.DeVries, P. J. Evolutionary and ecological patterns in myrmecophilous riodinid butterflies. In Ant-Plant Interactions (eds Huxley, C. R. & Cutler, D. F.) 143–156 (Oxford University Press, 1991).
Google Scholar
25.DeVries, P.J. Butterflies. Encyclopedia of Biodiversity 1, 559–573 (2001).26.Pierce, N. E. & Mead, P. S. Parasitoids as selective agents in the symbiosis between lycaenid butterfly larvae and ants. Science 211, 1185–1187 (1981).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
27.Kaminski, L. A., Freitas, A. V. L. & Oliveira, P. S. Interaction between mutualisms: Ant-tended butterflies exploit enemy-free space provided by ant-treehopper associations. Am. Nat. 176, 322–334 (2010).PubMed
Article
PubMed Central
Google Scholar
28.Balduf, W. V. The rise of entomophagy among Lepidoptera. Am. Nat. 72, 358–379 (1938).Article
Google Scholar
29.Cottrell, C. B. Aphytophagy in butterflies: Its relationship to myrmecophily. Zool. J. Linn. Soc. 79, 1–57 (1984).Article
Google Scholar
30.Fiedler, K. Lycaenid–ant interactions of the Maculinea type: Tracing their historical roots in a comparative framework. J. Insect Conserv. 2, 3–14 (1998).Article
Google Scholar
31.Kaliszewska, Z. A. et al. When caterpillars attack: Biogeography and life history evolution of the Miletinae (Lepidoptera: Lycaenidae). Evolution 69, 571–588 (2015).PubMed
Article
PubMed Central
Google Scholar
32.Sala, M., Casacci, L. P., Balleto, E., Bonelli, S. & Barbero, F. Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources. PLoS ONE 9, e94341 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
33.Schönrogge, K., Barbero, F., Casacci, L. P., Settele, J. & Thomas, J. A. Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles. Anim. Behav. 134, 249–256 (2017).Article
Google Scholar
34.Casacci, L. P., Bonelli, S., Balleto, E. & Barbero, F. Multimodal signaling in myrmecophilous butterflies. Front. Ecol. Evol. 7, 454 (2019).Article
Google Scholar
35.Thomas, J. A., Elmes, G. W. & Wardlaw, J. C. Polymorphic growth in larvae of the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc. R. Soc. Lond. B 265, 1895–1901 (1998).Article
Google Scholar
36.Espeland, M. et al. Ancient Neotropical origin and recent recolonisation: Phylogeny, biogeography and diversification of the Riodinidae (Lepidoptera: Papilionoidea). Mol. Phylogenet. Evol. 93, 296–306 (2015).PubMed
Article
PubMed Central
Google Scholar
37.Seraphim, N. et al. Molecular phylogeny and higher systematics of the metalmark butterflies (Lepidoptera: Riodinidae). Syst. Entomol. 43, 407–425 (2018).Article
Google Scholar
38.Seraphim, N. Riodinidae Species Checklist: a preliminary species checklist for the Riodinidae (2019). Available at: https://www2.ib.unicamp.br/labor/site/?page_id=805.39.DeVries P.J. The butterflies of Costa Rica and their natural history. Vol II: Riodinidae. Princeton University Press (1997).40.Campbell, D. L., Brower, A. V. Z. & Pierce, N. E. Molecular evolution of the wingless gene and its implications for the phylogenetic placement of the butterfly family Riodinidae (Lepidoptera: Papilionoidea). Mol. Biol. Evol. 17, 684–696 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
41.Espeland, M. et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770–778 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
42.Mota, L. L., Kaminski, L. A. & Freitas, A. V. L. The tortoise caterpillar: carnivory and armoured larval morphology of the metalmark butterfly Pachythone xanthe (Lepidoptera: Riodinidae). J. Nat. Hist. 54, 309–319 (2020).Article
Google Scholar
43.Nielsen, G. J. & Kaminski, L. A. Immature stages of the Rubiaceae-feeding metalmark butterflies (Lepidoptera: Riodinidae), and a new function for the tentacle nectary organs. Zootaxa 4524, 1–32 (2018).PubMed
Article
PubMed Central
Google Scholar
44.Kaminski, L. A., Carneiro, E., Dolibaina, D. R., Casagrande, M. M. & Mielke, O. H. H. Oviposition of Minstrellus grandis (Lepidoptera: Riodinidae) in a harmful ant-plant symbiosis. Acta Amazon. 50, 256–259 (2020).Article
Google Scholar
45.Kaminski, L. A. & Lima, L. D. Larval omnivory in the myrmecophilous butterfly Setabis lagus lagus (Riodinidae: Nymphidiini). J. Lepid. Soc. 73, 276–279 (2019).
Google Scholar
46.Lamborn, W. A. On the relationship between certain West African insects, especially ants, Lycaenidae, and Homoptera. Trans. Ent. Soc. Lond. 1913, 436–498 (1914).
Google Scholar
47.Eastwood, R. & Fraser, A. M. Associations between lycaenid butterflies and ants in Australia. Austral. Ecol. 24, 503–537 (1999).Article
Google Scholar
48.Bruch, C. Orugas mirmecofilas de Hameris epulus signatus – Stich. Rev. Soc. Entomol. Argent. 1, 2–9 (1926).
Google Scholar
49.Bourquin, F. Notas sobre la metamorfosis de Hamearis susanae Orfila, 1953, con oruga mirmicófila (Lep. Riodin.). Rev. Soc. Entomol. Argent. 16, 83–87 (1953).50.Ross, G. N. Life-history studies on Mexican butterflies. IV. The ecology and ethology of Anatole rossi, a myrmecophilous metalmark (Lepidoptera: Riodinidae). Ann. Entomol. Soc. Am. 59, 985–1004 (1966).51.Kaminski, L. A. & Carvalho-Filho, F. S. Life history of Aricoris propitia (Lepidoptera: Riodinidae)—A myrmecophilous butterfly obligately associated with fire ants. Psyche 2012, Article ID 126876; https://doi.org/10.1155/2012/126876 (2012).52.Fiedler, K. The host genera of ant-parasitic Lycaenidae butterflies: a review. Psyche 2012, Article ID 153975; https://doi.org/10.1155/2012/153975 (2012).53.Rocha, F. H., Lachaud, J.-P. & Pérez-Lachaud, G. Myrmecophilous organisms associated with colonies of the ponerine ant Neoponera villosa (Hymenoptera: Formicidae) nesting in Aechmea bracteata bromeliads: a biodiversity hotspot. Myrmecol. News 30, 73–92 (2020).
Google Scholar
54.Rocha, F. H., Lachaud, J.-P., Hénaut, Y., Pozo, C. & Pérez-Lachaud, G. Nest site selection during colony relocation in Yucatan Peninsula populations of the ponerine ant Neoponera villosa (Hymenoptera: Formicidae). Insects 11, 200; https://doi.org/10.3390/insects11030200 (2020).55.Mackay, W. P. & Mackay, E. E. The systematics and biology of the New World ants of the genus Pachycondyla (Hymenoptera: Formicidae) (The Edwin Mellen Press, 2010).
Google Scholar
56.Wheeler, W. M. The ants of Texas, New Mexico and Arizona. Part I. Bull. Am. Mus. Nat. Hist. 24, 399–485 (1908).57.Lachaud, J.-P., Fresneau, D. & García-Pérez, J. Étude des stratégies d’approvisionnement chez 3 espèces de fourmis ponérines (Hymenoptera: Formicidae). Folia Entomol. Mex. 61, 159–177 (1984).
Google Scholar
58.Hölldobler, B. Liquid food transmission and antennation signals in ponerine ants. Isr. J. Entomol. 19, 89–99 (1985).
Google Scholar
59.Dejean, A. & Corbara, B. Predatory behavior of a Neotropical arboricolous ant: Pachycondyla villosa (Formicidae: Ponerinae). Sociobiology 17, 271–286 (1990).
Google Scholar
60.Pérez-Bautista, M., Lachaud, J.-P. & Fresneau, D. L. división del trabajo en la hormiga primitiva Neoponera villosa (Hymenoptera : Formicidae). Folia Entomol. Mex. 65, 119–130 (1985).
Google Scholar
61.Dejean, A., Olmsted, I. & Snelling, R. R. Tree-epiphyte-ant relationships in the low inundated forest of Sian Ka´an biosphere reserve, Quintana Roo, Mexico. Biotropica 27, 57–70 (1995).Article
Google Scholar
62.Fernandes, I. O., De Oliveira, M. L. & Delabie, J. H. C. Notes on the biology of Brazilian ant populations of the Pachycondyla foetida species complex (Formicidae: Ponerinae). Sociobiology 60, 380–386 (2013).Article
Google Scholar
63.Castaño-Meneses, G. et al. The ant community and their accompanying arthropods in cacao dry pods: An unexplored diverse habitat. Dugesiana 22, 29–35 (2015).
Google Scholar
64.Dejean, A. Influence de l’environnement pré-imaginal et précoce dans le choix du site de nidification de Pachycondyla (= Neoponera) villosa (Fabr.) (Formicidae, Ponerinae). Behav. Process. 21, 107–125 (1990).65.Dejean, A. & Olmsted, I. Ecological studies on Aechmea bracteata (Swartz) (Bromeliaceae). J. Nat. Hist. 31, 1313–1334 (1997).Article
Google Scholar
66.Hénaut, Y. et al. A tank bromeliad favors spider presence in a Neotropical inundated forest. PLoS ONE 9, e114592 (2014).67.Pérez-Lachaud, G., Jervis, M. A., Reemer, M. & Lachaud, J.-P. An unusual, but not unexpected, evolutionary step taken by syrphid flies: the first record of true primary parasitoidism of ants by Microdontinae. Biol. J. Linn. Soc. 111, 462–472 (2014).Article
Google Scholar
68.Pérez-Lachaud, G. & Lachaud, J.-P. Hidden biodiversity in entomological collections: The overlooked co-occurrence of dipteran and hymenopteran ant parasitoids in stored biological material. PLoS ONE 12, e0184614 (2017).69.Benzing, D. H., Derr, J. A. & Titus, J. E. The water chemistry of microcosms associated with the bromeliad Aechmea bracteata. Am. Midl. Nat. 87, 60–70 (1972).CAS
Article
Google Scholar
70.Beutelspacher Baigts, C. R. Bromeliáceas Como Ecosistemas, con Especial Referencia a Aechmea bracteata (Swartz) Griseb. Plaza y Valdés, México (1999).71.Dézerald, O. et al. Environmental drivers of invertebrate population dynamics in Neotropical tank bromeliads. Freshw. Biol. 62, 229–242 (2017).Article
Google Scholar
72.Ivanova, N. V., DeWaard, J. R. & Hebert, P. D. N. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes 6, 998–1002 (2006).CAS
Article
Google Scholar
73.Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. T. species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Nat. Acad. Sci. USA 101, 14812–14817 (2004).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
74.Montes-Ortiz, L. & Elías-Gutiérrez, M. Faunistic survey of the zooplankton community in an oligotrophic sinkhole, Cenote Azul (Quintana Roo, Mexico), using different sampling methods, and documented with DNA barcodes. J. Limnol. 77, 428–440 (2018).
Google Scholar
75.Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
76.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
77.Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
78.Guindon S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).79.Stehr, F. W. Order Lepidoptera. In: Stehr, F. W. (ed.) Immature insects. Vol. 1. Kendall-Hunt Publishing Company (1987).80.DeVries, P. J. The larval ant-organs of Thisbe irenea (Lepidoptera: Riodinidae) and their effects upon attending ants. Zool. J. Linn. Soc. 94, 379–393 (1988).Article
Google Scholar
81.Godman, F. D. & Salvin, O. Biologia Centrali-Americana. Insecta. Lepidoptera-Rhopalocera 1: 462, pl. 47, fig. 7–8. Published for the editors by R.H. Porter, London (1886).82.D’Abrera, B. Butterflies of the Neotropical Region. Part VI (Riodinidae). Hill House (1994).83.Lamas, G. Hesperioidea – Papilionoidea. In: Heppner, J. B. (ed.) Atlas of Neotropical Lepidoptera. Checklist: Part 4A. Association for Tropical Lepidoptera (2004).84.Hall, J. P. W. & Harvey, D. J. A phylogenetic analysis of the Neotropical riodinid butterfly genera Juditha, Lemonias, Thisbe and Uraneis, with a revision of Juditha (Lepidoptera: Riodinidae: Nymphidiini). Syst. Entomol. 26, 453–490 (2001).Article
Google Scholar
85.Zhang, J., Cong, Q., Shen, J., Opler, P. A. & Grishin, N. V. Genomic evidence suggests further changes of butterfly names. Taxon. Rep. Intern. Lepid. Surv. 8(7), 1–40 (2020).
Google Scholar
86.Zhang, J., Cong, Q., Shen, J., Opler, P. A. & Grishin, N. V. Genomics-guided refinement of butterfly taxonomy. Taxon. Rep. Intern. Lepid. Surv. 9(3), 1–54 (2021).
Google Scholar
87.Arellano-Covarrubias, A., Llorente-Bousquets, J. & Luis-Martínez, A. Distribución y fenología de la familia Riodinidae (Lepidoptera: Papilionoidea) en el bosque tropical subcaducifolio de Oaxaca, México. Rev. Biol. Trop. 66, 503–558 (2018).Article
Google Scholar
88.Pozo, C. et al. Seasonality and phenology of the butterflies (Lepidoptera: Papilionoidea and Hesperioidea) of Mexico’s Calakmul Region. Fla. Entomol. 91, 407–422 (2008).Article
Google Scholar
89.Erwin, T. L. Tropical forest canopies: the last biotic frontier. Bull. Entomol. Soc. Am. 29, 14–19 (1983).
Google Scholar
90.Rico-Gray, V. & Oliveira, P. S. The Ecology and Evolution of Ant–Plant interactions (The University of Chicago Press, 2007).Book
Google Scholar
91.DeVries, P. J., Cabral, B. C. & Penz, C. M. The early stages of Apodemia paucipuncta (Riodinidae): myrmecophily, a new caterpillar ant-organ and consequences for classification. Milw. Public Mus. Contrib. Biol. Geol. 102, 1–13 (2004).
Google Scholar
92.Kaminski, L. A., Mota, L. L., Freitas, A. V. L. & Moreira, G. R. P. Two ways to be a myrmecophilous butterfly: natural history and comparative immature-stage morphology of two species of Theope (Lepidoptera: Riodinidae). Biol. J. Linn. Soc. 108, 844–870 (2013).Article
Google Scholar
93.Kaminski, L. A., Mota, L. L. & Freitas, A. V. L. Larval cryptic coloration and mistletoe use in the metalmark butterfly Dachetola azora (Lepidoptera: Riodinidae). Entomol. Am. 120, 18–23 (2014).
Google Scholar
94.Torres, P. J. & Pomerantz, A. F. Butterfly kleptoparasitism and first account of immature stages, myrmecophily, and bamboo host plant of the metalmark Adelotypa annulifera (Riodinidae). J. Lepid. Soc. 70, 130–138 (2016).
Google Scholar
95.Gallard, J.-Y. Les Riodinidae de Guyane. Pensoft, Sofia (2017).96.Hall, J. P. W. A monograph of the Nymphidiina (Lepidoptera: Riodinidae: Nymphidiini): Phylogeny, taxonomy, biology, and biogeography (The Entomological Society of Washington, 2018).
Google Scholar
97.Moraga Medina, R. 2014. Pachythone gigas (Riodinidae). Área de Conservación Guanacaste (2014). https://www.acguanacaste.ac.cr/paginas-de-especies/insectos/111-160riodinidae/581-i-pachythone-gigas-i-riodinidae98.Dupont, S. T., Zemeitat, D. S., Lohman, D. J. & Pierce, N. E. The setae of parasitic Liphyra brassolis butterfly larvae form a flexible armour for resisting attack by their ant hosts (Lycaenidae: Lepidoptera). Biol. J. Linn. Soc. 117, 607–619 (2016).Article
Google Scholar
99.DeVries, P. J., Chacon, I. A. & Murray, D. Toward a better understanding of host use and biodiversity in riodinid butterflies (Lepidoptera). J. Res. Lepid. 31, 103–126 (1992).
Google Scholar
100.Davidson, D. W., Cook, S. C., Snelling, R. R. & Chua, T. H. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300, 969–972 (2003).ADS
CAS
PubMed
Article
Google Scholar
101.Schmidt, C. A. & Shattuck, S. O. The higher classification of the ant subfamily Ponerinae (Hymenoptera: Formicidae), with a review of ponerine ecology and behavior. Zootaxa 3817, 1–242 (2014).CAS
PubMed
Article
Google Scholar
102.Atsatt, P. R. Lycaenid butterflies and ants: Selection for enemy-free space. Am. Nat. 118, 638–654 (1981).Article
Google Scholar
103.Dáttilo, W. et al. Trait-mediated indirect interactions of ant shape on the attack of caterpillars and fruits. Biol. Lett. 12, 20160401 (2016).PubMed
PubMed Central
Article
Google Scholar
104.Orivel, J. & Dejean, A. Myrmecophily in Hesperiidae. The case of Vettius tertianus in ant gardens. C. R. Acad. Sci. Paris 323, 705–715 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
105.Meurville, M.-P. & LeBoeuf, A. C. Trophallaxis: The functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae). Myrmecol. News 31, 1–30 (2021).
Google Scholar
106.Hall, J. P. W. & Harvey, D. J. Basal subtribes of the Nymphidiini (Lepidoptera: Riodinidae): Phylogeny and myrmecophily. Cladistics 18, 539–569 (2002).Article
Google Scholar
107.Hall, J. P. W. Phylogenetic revision of the new Neotropical riodinid genus Minstrellus (Lepidoptera: Riodinidae). Ann. Entomol. Soc. Am. 100, 773–786 (2007).Article
Google Scholar
108.Ballmer, G. R. & Wright, D. M. Notes on the immature stages of Setabis sp., a myrmecophagous riodinid butterfly (Lepidoptera: Riodinidae). J. Res. Lepid. 47, 11–15 (2014).
Google Scholar
109.Callaghan, C. J. Studies on Restinga butterflies: I. Life cycle and immature biology of Menander felsina (Riodinidae), a myrmecophilous metalmark. J. Lepid. Soc. 31, 173–182 (1977).
Google Scholar
110.Hojo, M. K, Yamaguchi, S., Akino, T. & Yamaoka, R. Adoption of lycaenid Niphanda fusca (Lepidoptera: Lycaenidae) caterpillars by the host ant Camponotus japonicus (Hymenoptera: Formicidae). Entomol. Sci. 17, 59–65 (2014).111.Maschwitz, U., Nässig, W. A., Dumpert, K. & Fiedler, K. Larval carnivory and myrmecoxeny, and imaginal myrmecophily in miletine lycaenids (Lepidoptera, Lycaenidae) on the Malay Peninsula. Tyô to Ga 39, 167–181 (1988).
Google Scholar More