1.Dawbin, W. H. The migrations of humpback whales which pass the New Zealand coast. Trans. R. Soc. New Zeal. 84, 147–196 (1956).
Google Scholar
2.Chittleborough, R. Dynamics of two populations of the humpback whale, Megaptera novaeangliae (Borowski). Mar. Freshw. Res. 16, 33–128. https://doi.org/10.1071/mf9650033 (1965).Article
Google Scholar
3.Rasmussen, K. et al. Southern Hemisphere humpback whales wintering off Central America: Insights from water temperature into the longest mammalian migration. Biol. Let. 3, 302–305. https://doi.org/10.1098/rsbl.2007.0067 (2007).Article
Google Scholar
4.Friedlaender, A. S. et al. Whale distribution in relation to prey abundance and oceanographic processes in shelf waters of the Western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 317, 297–310. https://doi.org/10.3354/meps317297 (2006).ADS
Article
Google Scholar
5.Nowacek, D. P. et al. Super-aggregations of krill and humpback whales in Wilhelmina Bay Antarctic Peninsula. PLoS ONE 6, e19173. https://doi.org/10.1371/journal.pone.0019173 (2011).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
6.Barendse, J. et al. Transit station or destination? Attendance patterns, movements and abundance estimate of humpback whales off west South Africa from photographic and genotypic matching. Afr. J. Mar. Sci. 33, 353–373. https://doi.org/10.2989/1814232X.2011.637343 (2011).Article
Google Scholar
7.Best, P. B., Sekiguchi, K. & Findlay, K. P. A suspended migration of humpback whales Megaptera novaeangliae on the west coast of South Africa. Marine Ecol. Progr. Ser. Oldendorf 118, 1–12. https://doi.org/10.3354/meps118001 (1995).ADS
Article
Google Scholar
8.Findlay, K. & Best, P. Summer incidence of humpback whales on the west coast of South Africa. S. Afr. J. Mar. Sci. 15, 279–282. https://doi.org/10.2989/02577619509504851 (1995).Article
Google Scholar
9.Findlay, K. P. et al. Humpback whale “super-groups”–A novel low-latitude feeding behaviour of Southern Hemisphere humpback whales (Megaptera novaeangliae) in the Benguela Upwelling System. PLoS ONE 12, e0172002. https://doi.org/10.1371/journal.pone.0172002 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
10.Pirotta, V., Owen, K., Donnelly, D., Brasier, M. J. & Harcourt, R. First evidence of bubble‐net feeding and the formation of ‘super‐groups’ by the east Australian population of humpback whales during their southward migration. Aquat. Conserv. (2021).11.Veitch, J., Penven, P. & Shillington, F. The Benguela: A laboratory for comparative modeling studies. Prog. Oceanogr. 83, 296–302. https://doi.org/10.1016/j.pocean.2009.07.008 (2009).ADS
Article
Google Scholar
12.Preston-Whyte, R. A. & Tyson, P. D. Atmosphere and weather of southern Africa (Oxford University Press, 1988).
Google Scholar
13.Nemoto, T., Best, P., Ishimaru, K. & Takano, H. Diatom films on whales [minke whales and 4 species of toothed whales] in South African waters. Scientific Reports of the Whales Research Institute (1980).14.Hutchings, L., Pitcher, G., Probyn, T. & Bailey, G. in Upwelling in the ocean: modern processes and ancient records Vol. 18 (eds CP Summerhayes et al.) Ch. 3, 65–81 (Wiley & Sons, 1995).15.Clapham, P. J. in Encyclopedia of marine mammals (eds B Würsig, JGM Thewissen, & KM Kovacs) 489–492 (Academic Press, 2018).16.Bakun, A. et al. Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Clim. Change Rep. 1, 85–93. https://doi.org/10.1007/s40641-015-0008-4 (2015).Article
Google Scholar
17.Mackas, D. L. & Beaugrand, G. Comparisons of zooplankton time series. J. Mar. Syst. 79, 286–304. https://doi.org/10.1016/j.jmarsys.2008.11.030 (2010).Article
Google Scholar
18.Mackas, D. et al. Changing zooplankton seasonality in a changing ocean: Comparing time series of zooplankton phenology. Prog. Oceanogr. 97, 31–62. https://doi.org/10.1016/j.pocean.2011.11.005 (2012).ADS
Article
Google Scholar
19.Huggett, J., Verheye, H., Escribano, R. & Fairweather, T. Copepod biomass, size composition and production in the Southern Benguela: Spatio–temporal patterns of variation, and comparison with other eastern boundary upwelling systems. Prog. Oceanogr. 83, 197–207. https://doi.org/10.1016/j.pocean.2009.07.048 (2009).ADS
Article
Google Scholar
20.Verheye, H. M., Lamont, T., Huggett, J. A., Kreiner, A. & Hampton, I. Plankton productivity of the Benguela current large marine ecosystem (BCLME). Environ. Dev. 17, 75–92. https://doi.org/10.1016/j.envdev.2015.07.011 (2016).Article
Google Scholar
21.Shannon, L. J. et al. Exploring temporal variability in the Southern Benguela ecosystem over the past four decades using a time-dynamic ecosystem model. Front. Mar. Sci. 7, 540 (2020).ADS
Article
Google Scholar
22.Jarre, A. et al. Synthesis: climate effects on biodiversity, abundance and distribution of marine organisms in the Benguela. Fish. Oceanogr. 24, 122–149. https://doi.org/10.1111/fog.12086 (2015).Article
Google Scholar
23.Lamont, T., García-Reyes, M., Bograd, S., Van Der Lingen, C. & Sydeman, W. Upwelling indices for comparative ecosystem studies: Variability in the Benguela Upwelling System. J. Mar. Syst. 188, 3–16. https://doi.org/10.1016/j.jmarsys.2017.05.007 (2018).Article
Google Scholar
24.Tim, N., Zorita, E. & Hünicke, B. Decadal variability and trends of the Benguela upwelling system as simulated in a high-resolution ocean simulation. Ocean Sci. 11, 483–502. https://doi.org/10.5194/os-11-483-2015 (2015).ADS
Article
Google Scholar
25.Lamont, T., Barlow, R. & Brewin, R. Long-term trends in phytoplankton chlorophyll a and size structure in the Benguela Upwelling System. J. Geophys. Res. Oceans 124, 1170–1195. https://doi.org/10.1029/2018JC014334 (2019).ADS
Article
Google Scholar
26.Ragoasha, N. et al. Lagrangian pathways in the southern Benguela upwelling system. J. Mar. Syst. 195, 50–66. https://doi.org/10.1016/j.jmarsys.2019.03.008 (2019).Article
Google Scholar
27.Shannon, V., Hempel, G., Moloney, C., Woods, J. D. & Malanotte-Rizzoli, P. Benguela: Predicting a Large Marine Ecosystem (Elsevier, 2006).
Google Scholar
28.Veitch, J., Penven, P. & Shillington, F. Modeling equilibrium dynamics of the Benguela current system. J. Phys. Oceanogr. 40, 1942–1964. https://doi.org/10.1175/2010jpo4382.1 (2010).ADS
Article
Google Scholar
29.Lachkar, Z. & Gruber, N. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network. Biogeosciences 9, 293–308. https://doi.org/10.5194/bg-9-293-2012 (2012).ADS
Article
Google Scholar
30.Gruber, N. et al. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci. 4, 787–792. https://doi.org/10.1038/ngeo1273 (2011).ADS
CAS
Article
Google Scholar
31.Hutchings, L. et al. Multiple factors affecting South African anchovy recruitment in the spawning, transport and nursery areas. S. Afr. J. Mar. Sci. 19, 211–225. https://doi.org/10.2989/025776198784126908 (1998).Article
Google Scholar
32.Rossi, V., López, C., Sudre, J., Hernández-García, E. & Garçon, V. Comparative study of mixing and biological activity of the Benguela and Canary upwelling systems. Geophys. Res. Lett. https://doi.org/10.1029/2008gl033610 (2008).Article
Google Scholar
33.Barendse, J. & Best, P. B. Shore-based observations of seasonality, movements, and group behavior of southern right whales in a nonnursery area on the South African west coast. Mar. Mamm. Sci. 30, 1358–1382 (2014).Article
Google Scholar
34.Barendse, J. et al. Migration redefined? Seasonality, movements and group composition of humpback whales Megaptera novaeangliae off the west coast of South Africa. Afr. J. Mar. Sci. 32, 1–22 (2010).Article
Google Scholar
35.Gibbons, M. J. An introduction to the Zooplankton of the Benguella current Region. (1997).36.Olsen, Ø. Hvaler og hvalfangst i Sydafrika. 1–56 (Bergens Museums Arbok 1914–1915, 1914).37.Meynecke, J. O. et al. Responses of humpback whales to a changing climate in the Southern Hemisphere: Priorities for research efforts. Mar. Ecol. 41, e12616 (2020).Article
Google Scholar
38.Stockin, K. A. & Burgess, E. A. Opportunistic Feeding of an Adult Humpback Whale (Megaptera novaeangliae) Migrating Along the Coast of Southeastern Queensland, Australia. Aquat. Mamm. 31, 120. https://doi.org/10.1578/AM.31.1.2005.120 (2005).Article
Google Scholar
39.Visser, F., Hartman, K. L., Pierce, G. J., Valavanis, V. D. & Huisman, J. Timing of migratory baleen whales at the Azores in relation to the North Atlantic spring bloom. Mar. Ecol. Prog. Ser. 440, 267–279. https://doi.org/10.3354/meps09349 (2011).ADS
Article
Google Scholar
40.Trudelle, L. et al. Influence of environmental parameters on movements and habitat utilization of humpback whales (Megaptera novaeangliae) in the Madagascar breeding ground. R. Soc. Open Sci. 3, 160616. https://doi.org/10.1098/rsos.160616 (2016).ADS
Article
PubMed
PubMed Central
Google Scholar
41.Veitch, J., Hermes, J., Lamont, T., Penven, P. & Dufois, F. Shelf-edge jet currents in the southern Benguela: A modelling approach. J. Mar. Syst. 188, 27–38 (2018).Article
Google Scholar
42.Hutchings, L. et al. The Benguela current: An ecosystem of four components. Prog. Oceanogr. 83, 15–32. https://doi.org/10.1016/j.pocean.2009.07.046 (2009).ADS
Article
Google Scholar
43.Rockwood, R. C., Elliott, M. L., Saenz, B., Nur, N. & Jahncke, J. Modeling predator and prey hotspots: Management implications of baleen whale co-occurrence with krill in Central California. PLoS ONE 15, e0235603 (2020).CAS
Article
Google Scholar
44.Hayward, T. L. & Venrick, E. L. Nearsurface pattern in the California Current: Coupling between physical and biological structure. Deep Sea Res. Part II 45, 1617–1638 (1998).ADS
Article
Google Scholar
45.Croll, D. A. et al. From wind to whales: trophic links in a coastal upwelling system. Mar. Ecol. Prog. Ser. 289, 117–130 (2005).ADS
Article
Google Scholar
46.Walker, D. & Peterson, W. Relationships between hydrography, phytoplankton production, biomass, cell size and species composition, and copepod production in the southern Benguela upwelling system in April 1988. S. Afr. J. Mar. Sci. 11, 289–305 (1991).Article
Google Scholar
47.Stuart, V. & Pillar, S. Diel grazing patterns of all ontogenetic stages of Euphausia lucens and in situ predation rates on copepods in the southern Benguela upwelling region. Mar. Ecol. Progr. Ser. 2, 227–241 (1990).ADS
Article
Google Scholar
48.Clapham, P. & Baker, C. (Academic, New York, 2002).49.Shannon, L. J., Field, J. G. & Moloney, C. L. Simulating anchovy–sardine regime shifts in the southern Benguela ecosystem. Ecol. Model. 172, 269–281 (2004).Article
Google Scholar
50.Lett, C., Roy, C., Levasseur, A., Van Der Lingen, C. D. & Mullon, C. Simulation and quantification of enrichment and retention processes in the southern Benguela upwelling ecosystem. Fish. Oceanogr. 15, 363–372. https://doi.org/10.1111/j.1365-2419.2005.00392.x (2006).Article
Google Scholar
51.Branch, T. A. Humpback whale abundance south of 60°S from three complete circumpolar sets of surveys. J. Cetacean Res. Manage. https://doi.org/10.47536/jcrm.vi.305 (2011).Article
Google Scholar
52.Findlay, K., Best, P. & Meÿer, M. Migrations of humpback whales past Cape Vidal, South Africa, and an estimate of the population increase rate (1988–2002). Afr. J. Mar. Sci. 33, 375–392. https://doi.org/10.2989/1814232x.2011.637345 (2011).Article
Google Scholar
53.Henson, S. A., Cole, H. S., Hopkins, J., Martin, A. P. & Yool, A. Detection of climate change-driven trends in phytoplankton phenology. Glob. Change Biol. 24, e101–e111 (2018).ADS
Article
Google Scholar
54.Carvalho, I. et al. Does temporal and spatial segregation explain the complex population structure of humpback whales on the coast of West Africa?. Mar. Biol. 161, 805–819 (2014).Article
Google Scholar
55.Kershaw, F. et al. Multiple processes drive genetic structure of humpback whale (Megaptera novaeangliae) populations across spatial scales. Mol. Ecol. 26, 977–994 (2017).Article
Google Scholar
56.Korrûbel, J. An age-structured simulation model to investigate species replacement between pilchard and anchovy populations in the southern Benguela. S. Afr. J. Mar. Sci. 12, 375–391 (1992).Article
Google Scholar
57.Shannon, L. et al. The 1980s–a decade of change in the Benguela ecosystem. S. Afr. J. Mar. Sci. 12, 271–296 (1992).Article
Google Scholar
58.Verheye, H., Richardson, A., Hutchings, L., Marska, G. & Gianakouras, D. Long-term trends in the abundance and community structure of coastal zooplankton in the southern Benguela system, 1951–1996. Afr. J. Mar. Sci. 19, 2 (1998).
Google Scholar
59.Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).ADS
CAS
Article
Google Scholar
60.Sydeman, W. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science 345, 77–80 (2014).ADS
CAS
Article
Google Scholar
61.Bonino, G., Di Lorenzo, E., Masina, S. & Iovino, D. Interannual to decadal variability within and across the major eastern boundary upwelling systems. Sci. Rep. 9, 1–14 (2019).Article
Google Scholar
62.Fearon, G. et al. Enhanced vertical mixing in coastal upwelling systems driven by diurnal-inertial resonance: Numerical experiments. J. Geophys. Res. Oceans https://doi.org/10.1002/essoar.10502743.1 (2020).Article
Google Scholar
63.Xiu, P., Chai, F., Curchitser, E. N. & Castruccio, F. S. Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System. Sci. Rep. 8, 1–9 (2018).
Google Scholar
64.Roxy, M. K. et al. A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys. Res. Lett. 43, 826–833 (2016).ADS
Article
Google Scholar
65.Lockerbie, E. M. & Shannon, L. Toward exploring possible future states of the southern Benguela. Front. Mar. Sci. 6, 380 (2019).Article
Google Scholar
66.Ortega-Cisneros, K., Cochrane, K. L., Fulton, E. A., Gorton, R. & Popova, E. Evaluating the effects of climate change in the southern Benguela upwelling system using the Atlantis modelling framework. Fish. Oceanogr. 27, 489–503 (2018).Article
Google Scholar
67.Rykaczewski, R. R. & Checkley, D. M. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl. Acad. Sci. 105, 1965–1970 (2008).ADS
CAS
Article
Google Scholar
68.Veitch, J. A. & Penven, P. The role of the A gulhas in the B enguela current system: A numerical modeling approach. J. Geophys. Res. Oceans 122, 3375–3393 (2017).ADS
Article
Google Scholar
69.Beal, L. M., De Ruijter, W. P., Biastoch, A. & Zahn, R. On the role of the Agulhas system in ocean circulation and climate. Nature 472, 429–436 (2011).ADS
CAS
Article
Google Scholar
70.Beal, L. M. & Elipot, S. Broadening not strengthening of the Agulhas current since the early 1990s. Nature 540, 570–573 (2016).ADS
CAS
Article
Google Scholar
71.Lilliefors, H. W. On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. J. Am. Stat. Assoc. 64, 387–389. https://doi.org/10.1080/01621459.1969.10500983 (1969).Article
Google Scholar
72.Shchepetkin, A. F. & McWilliams, J. C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9, 347–404. https://doi.org/10.1016/j.ocemod.2004.08.002 (2005).ADS
Article
Google Scholar
73.Debreu, L., Marchesiello, P., Penven, P. & Cambon, G. Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Model 49, 1–21. https://doi.org/10.1016/j.ocemod.2012.03.003 (2012).ADS
Article
Google Scholar
74.Shchepetkin, A. F. & McWilliams, J. C. Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Weather Rev. 126, 1541–1580. https://doi.org/10.1175/1520-0493(1998)126%3C1541:qmasbo%3E2.0.co;2 (1998).ADS
Article
Google Scholar
75.Warner, J. C., Sherwood, C. R., Arango, H. G. & Signell, R. P. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Model 8, 81–113. https://doi.org/10.1016/j.ocemod.2003.12.003 (2005).ADS
Article
Google Scholar
76.Saha, S. et al. NCEP Climate Forecast System Reanalysis (CFSR) 6-Hourly Products, January 1979 to December 2010 (Boulder, 2010).
Google Scholar
77.Saha, S. et al. NCEP Climate Forecast System Version 2 (CFSv2) 6-hourly Products. D61C61TXF (Boulder, 2011).
Google Scholar
78.Burchard, H. & Hofmeister, R. A dynamic equation for the potential energy anomaly for analysing mixing and stratification in estuaries and coastal seas. Estuar. Coast. Shelf Sci. 77, 679–687. https://doi.org/10.1016/j.ecss.2007.10.025 (2008).ADS
Article
Google Scholar
79.Yamaguchi, R., Suga, T., Richards, K. J. & Qiu, B. Diagnosing the development of seasonal stratification using the potential energy anomaly in the North Pacific. Clim. Dyn. 53, 4667–4681. https://doi.org/10.1007/s00382-019-04816-y (2019).Article
Google Scholar
80.Lennard, C., Hahmann, A. N., Badger, J., Mortensen, N. G. & Argent, B. Development of a numerical wind atlas for South Africa. Energy Proc. 76, 128–137. https://doi.org/10.1016/j.egypro.2015.07.873 (2015).Article
Google Scholar
81.Thomson, R. E. & Emery, W. J. Data Analysis Methods in Physical Oceanography 3rd edn. (Elsevier, 2014).
Google Scholar More