Selection on adaptive and maladaptive gene expression plasticity during thermal adaptation to urban heat islands
1.Grant, V. Organismic Evolution (Freeman, 1977).2.Falconer, D. Introduction to Quantitative Genetics (Longmans, 1981).3.Levin, D. in Plant Evolutionary Biology pp. 305–329 (Chapman and Hall, 1988).4.Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).Article
Google Scholar
5.Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).CAS
PubMed
PubMed Central
Article
Google Scholar
6.Simpson, G. The Baldwin effect. Evolution 7, 110–117 (1953).Article
Google Scholar
7.Williams, G. C. Adaptation and Natural Selection (Princeton Univ. Press, 1966).8.Kingsolver, J. G. & Huey, R. B. Evolutionary analyses of morphological and physiological plasticity in thermally variable environments. Am. Zool. 38, 545–560 (1998).Article
Google Scholar
9.Woods, H. A. & Harrison, J. F. Interpreting rejections of the beneficial acclimation hypothesis: When is physiological plasticity adaptive? Evolution 56, 1863–1866 (2002).PubMed
Article
Google Scholar
10.Meyer, A. Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Chichlidae) and their implications for speciation in cichlid fishes. Evolution 41, 1357 (1987).PubMed
Google Scholar
11.Losos, J. B. et al. Evolutionary implications of phenotypic plasticity in the hindlimb of the lizard Anolis sagrei. Evolution 54, 301–305 (2000).CAS
PubMed
Google Scholar
12.Kappeler, P. M. & Fichtel, C. Eco-evo-devo of the lemur syndrome: did adaptive behavioral plasticity get canalized in a large primate radiation? Front. Zool. 12, 1–16 (2015).Article
Google Scholar
13.Nunney, L. & Cheung, W. The effect of temperature on body size and fecundity in female Drosophila melanogaster: evidence for adaptive plasticity. Evolution 51, 1529 (1997).PubMed
Google Scholar
14.Price, T. D., Qvarnström, A. & Irwin, D. E. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. B Biol. Sci. 270, 1433–1440 (2003).Article
Google Scholar
15.Corl, A. et al. The genetic basis of adaptation following plastic changes in coloration in a novel environment. Curr. Biol. 28, 2970–2977.e7 (2018).CAS
PubMed
Article
Google Scholar
16.Levis, N. A., Isdaner, A. J. & Pfennig, D. W. Morphological novelty emerges from pre-existing phenotypic plasticity. Nat. Ecol. Evol. 2, 1289–1297 (2018).PubMed
Article
Google Scholar
17.Whitehead, A., Roach, J. L., Zhang, S. & Galvez, F. Genomic mechanisms of evolved physiological plasticity in killifish distributed along an environmental salinity gradient. Proc. Natl Acad. Sci. USA 108, 6193–6198 (2011).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
18.Grant, P. R. & Grant, B. R. Evolutionary Dynamics of a Natural Population (Univ. Chicago Press, 1989).19.Huey, R. B. & Berrigan, D. in Animals and Temperature: Phenotypic and Evolutionary Adaptation pp. 205–238 (Cambridge Univ. Press, 1996).20.Blanckenhorn, W. U. Temperature effects on egg size and their fitness consequences in the yellow dung fly Scathophaga stercoraria. Evol. Ecol. 14, 627–643 (2000).Article
Google Scholar
21.Woods, H. A. & Harrison, J. F. The beneficial acclimation hypothesis versus acclimation of specific traits: physiological change in water-stressed Manduca sexta caterpillars. Physiol. Biochem. Zool. 74, 32–44 (2001).CAS
PubMed
Article
Google Scholar
22.Storz, J. F., Scott, G. R. & Cheviron, Z. A. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J. Exp. Biol. 213, 4125–4136 (2010).PubMed
PubMed Central
Article
Google Scholar
23.Durmowicz, A. G., Hofmeister, S., Kadyraliev, T. K., Aldashev, A. A. & Stenmark, K. R. Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude. J. Appl. Physiol. 74, 2276–2285 (1993).CAS
PubMed
Article
Google Scholar
24.Ge, R. L., Kubo, K., Kobayashi, T., Sekiguchi, M. & Honda, T. Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am. J. Physiol. Hear. Circ. Physiol. 274, 1792–1799 (1998).Article
Google Scholar
25.Sakai, A. et al. Cardiopulmonary hemodynamics of blue-sheep, Pseudois nayaur, as high-altitude adapted mammals. Jpn J. Physiol. 53, 377–384 (2003).PubMed
Article
Google Scholar
26.Beall, C. M. Two routes to functional adaptation: Tibetan and andean high-altitude natives. Proc. Natl Acad. Sci. USA 1, 239–255 (2007).
Google Scholar
27.Velotta, J. P., Ivy, C. M., Wolf, C. J., Scott, G. R. & Cheviron, Z. A. Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice. Evolution 72, 2712–2727 (2018).28.Ho, W. C. & Zhang, J. Evolutionary adaptations to new environments generally reverse plastic phenotypic changes. Nat. Commun. 9, 1–11 (2018).Article
ADS
CAS
Google Scholar
29.Santangelo,J. S., Ruth Rivkin, L. & Johnson, M. T. J. The evolution of city life. Proc. R. Soc. B Biol. Sci. 285, https://doi.org/10.1098/rspb.2018.1529 (2018).30.Thompson, K. A., Rieseberg, L. H. & Schluter, D. Speciation and the city. Trends Ecol. Evol. 33, 815–826 (2018).PubMed
Article
PubMed Central
Google Scholar
31.Chown, S. L., Slabber, S., McGeoch, M. A., Janion, C. & Leinaas, H. P. Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc. R. Soc. B Biol. Sci. 274, 2531–2537 (2007).Article
Google Scholar
32.Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
33.Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).PubMed
PubMed Central
Article
Google Scholar
34.Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed
Article
PubMed Central
Google Scholar
35.Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
36.Oke, T. City size and the urban heat island. Atmos. Environ. 7, 769–779 (1973).Article
ADS
Google Scholar
37.Angilletta, M. J. et al. Urban physiology: city ants possess high heat tolerance. PLoS ONE 2, e258 (2007).PubMed
PubMed Central
Article
ADS
Google Scholar
38.Brans, K. I. et al. The heat is on: genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob. Chang. Biol. 23, 5218–5227 (2017).PubMed
Article
ADS
PubMed Central
Google Scholar
39.Diamond, S. E., Chick, L., Perez, A., Strickler, S. A. & Martin, R. A. Rapid evolution of ant thermal tolerance across an urban-rural temperature cline. Biol. J. Linn. Soc. 121, 248–257 (2017).Article
Google Scholar
40.Hamblin, A. L., Youngsteadt, E. & Frank, S. D. Wild bee abundance declines with urban warming, regardless of floral density. Urban Ecosyst. 21, 419–428 (2018).Article
Google Scholar
41.Diamond, S. E., Chick, L. D., Perez, A., Strickler, S. A. & Martin, R. A. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities. Proc. R. Soc. B Biol. Sci. 285, https://doi.org/10.1098/rspb.2018.0036 (2018).42.Gibert, P., Debat, V. & Ghalambor, C. K. Phenotypic plasticity, global change, and the speed of adaptive evolution. Curr. Opin. Insect Sci. 35, 34–40 (2019).PubMed
Article
Google Scholar
43.Chick, L. D., Strickler, S. A., Perez, A., Martin, R. A. & Diamond, S. E. Urban heat islands advance the timing of reproduction in a social insect. J. Therm. Biol. 80, 119–125 (2019).PubMed
Article
Google Scholar
44.Pipoly, I., Bókony, V., Seress, G., Szabó, K. & Liker, A. Effects of extreme weather on reproductive success in a temperate-breeding songbird. PLoS ONE 8, e80033 (2013).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
45.Tiatragul, S., Kurniawan, A., Kolbe, J. J. & Warner, D. A. Embryos of non-native anoles are robust to urban thermal environments. J. Therm. Biol. 65, 119–124 (2017).PubMed
Article
Google Scholar
46.Kaiser, A., Merckx, T. & Van Dyck, H. The urban heat island and its spatial scale dependent impact on survival and development in butterflies of different thermal sensitivity. Ecol. Evol. 6, 4129–4140 (2016).PubMed
PubMed Central
Article
Google Scholar
47.Hall, J. M. & Warner, D. A. Thermal spikes from the urban heat island increase mortality and alter physiology of lizard embryos. J. Exp. Biol. 221, jeb181552 (2018).PubMed
Article
Google Scholar
48.Johnson, J. C., Urcuyo, J., Moen, C. & Stevens, D. R. Urban heat island conditions experienced by the Western black widow spider (Latrodectus hesperus): extreme heat slows development but results in behavioral accommodations. PLoS ONE 14, 1–13 (2019).
Google Scholar
49.Battles, A. C. & Kolbe, J. J. Miami heat: urban heat islands influence the thermal suitability of habitats for ectotherms. Glob. Chang. Biol. 25, 562–576 (2019).PubMed
Article
ADS
Google Scholar
50.Hamblin, A. L., Youngsteadt, E., López-Uribe, M. M. & Frank, S. D. Physiological thermal limits predict differential responses of bees to urban heat-island effects. Biol. Lett. 13, https://doi.org/10.1098/rsbl.2017.0125 (2017).51.Kingsolver, J. G., Diamond, S. E. & Buckley, L. B. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct. Ecol. 27, 1415–1423 (2013).Article
Google Scholar
52.Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).PubMed
Article
Google Scholar
53.Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).CAS
PubMed
Article
Google Scholar
54.Wingfield, J. C. & Sapolsky, R. M. Reproduction and resistance to stress: when and how. J. Neuroendocrinol. 15, 711–724 (2003).CAS
PubMed
Article
Google Scholar
55.Angilletta, M. J. Looking for answers to questions about heat stress: researchers are getting warmer. Funct. Ecol. 23, 231–232 (2009).Article
Google Scholar
56.James, C. D., Whitford, W. G., James, C. D. & Whitford, W. G. An experimental study of phenotypic plasticity in the clutch size of a lizard. Oikos 70, 49–56 (1994).Article
Google Scholar
57.Sorci, G., Clobert, J. & Belichon, S. Phenotypic plasticity of growth and survival in the common lizard Lacerta vivipara. J. Anim. Ecol. 65, 781 (1996).Article
Google Scholar
58.Jordan, M. A. & Snell, H. L. Life history trade-offs and phenotypic plasticity in the reproduction of Galápagos lava lizards (Microlophus delanonis). Oecologia 130, 44–52 (2002).PubMed
Article
ADS
Google Scholar
59.Gilbert, A. L. & Miles, D. B. Antagonistic responses of exposure to sublethal temperatures: adaptive phenotypic plasticity coincides with a reduction in organismal performance. Am. Nat. 194, 344–355 (2019).PubMed
Article
Google Scholar
60.Campbell-Staton, S. C. et al. Parallel selection on thermal physiology facilitates repeated adaptation of city lizards to urban heat islands. Nat. Ecol. Evol. 4, 652–658 (2020).PubMed
Article
Google Scholar
61.Herrel, A., Vanhooydonck, B., Porck, J. & Irschick, D. Anatomical basis of differences in locomotor behavior in Anolis lizards: a comparison between two ecomorphs. Bull. Mus. Comp. Zool. 159, 213–238 (2008).Article
Google Scholar
62.Anderson, C. V. & Roberts, T. J. The need for speed: functional specializations of locomotor and feeding muscles in Anolis lizards. J. Exp. Biol. 223, 1–9 (2020).
Google Scholar
63.Cowles, R. & Bogert, C. A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist. 83, 265–296 (1944).
Google Scholar
64.Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: data to support the onset of spasms as the definitive end point. Can. J. Zool. 75, 1553–1560 (1997).Article
Google Scholar
65.Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).PubMed
PubMed Central
Article
CAS
Google Scholar
66.Cardiello, J. F., Goodrich, J. A. & Kugel, J. F. Heat shock causes a reversible increase in RNA polymerase II occupancy downstream of mRNA genes, consistent with a global loss in transcriptional termination. Mol. Cell. Biol. 38, 1–18 (2018).CAS
Article
Google Scholar
67.Sandaltzopoulos, R. & Becker, P. B. Heat shock factor increases the reinitiation rate from potentiated chromatin templates. Mol. Cell. Biol. 18, 361–367 (1998).CAS
PubMed
PubMed Central
Article
Google Scholar
68.Velichko, A. K., Petrova, N. V., Kantidze, O. L. & Razin, S. V. Dual effect of heat shock on DNA replication and genome integrity. Mol. Biol. Cell. 23, 3450–3460 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
69.Barreiro, L. B., Laval, G., Quach, H., Patin, E. & Quintana-Murci, L. Natural selection has driven population differentiation in modern humans. Nat. Genet. 40, 340–345 (2008).CAS
PubMed
Article
Google Scholar
70.Huey, R. B. & Webster, T. P. Thermal biology of Anolis lizards in a complex fauna: the Christatellus group on Puerto Rico. Ecology 57, 985–994 http://www.jstor.org/stable/1941063 (1976).71.Gorman, G. C. & Hillman, S. Physiological basis for climatic niche partitioning in two species of Puerto Rican Anolis (Reptilia, Lacertilia, Iguanidae). J. Herp 11, 337–340 (1977).Article
Google Scholar
72.Gunderson, A. R., Mahler, D. L. & Leal, M. Thermal niche evolution across replicated Anolis lizard adaptive radiations. Proc. R. Soc. B Biol. Sci. 285, https://doi.org/10.1098/rspb.2017.2241 (2018).73.McKechnie, A. E. & Wolf, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253–256 (2010).PubMed
Article
PubMed Central
Google Scholar
74.Huey, R. B., Losos, J. B. & Moritz, C. Are lizards toast? Science 328, 832–833 (2010).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
75.Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525, 372–375 (2015).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
76.Van Gestel, J. & Weissing, F. J. Is plasticity caused by single genes? Nature 555, E19–E20 (2018).PubMed
Article
CAS
PubMed Central
Google Scholar
77.Turchin, M. C. et al. Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nat. Genet. 44, 1015–1019 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
78.Guo, J. et al. Global genetic differentiation of complex traits shaped by natural selection in humans. Nat. Commun. 9, 1–9 (2018).Article
ADS
CAS
Google Scholar
79.Mallard, F., Jakšic´, A. M. & Schlötterer, C. Contesting the evidence for non-adaptive plasticity. Nature 555, E21–E22 (2015).Article
CAS
Google Scholar
80.Ghalambor, C. K. et al. Reply to Ghalambor et al. Nature 555, E29 (2015).
Google Scholar
81.Perrier, C., Caizergues, A. & Charmantier, A. in Urban Evolutionary Biology (eds. Szulkin, M., Munshi-South, J. & Charmantier, A.) pp. 74–90 (Oxford Univ. Press, 2020).82.Lambert, M. R., Brans, K. I., Des Roches, S., Donihue, C. M. & Diamond, S. E. Adaptive evolution in cities: progress and misconceptions. Trends Ecol. Evol. 36, 239–257 (2021).PubMed
Article
Google Scholar
83.Grether, G. F. Environmental change, phenotypic plasticity, and genetic compensation. Am. Nat. 166, https://doi.org/10.1086/432023 (2005).84.Velotta, J. P. & Cheviron, Z. A. Remodeling ancestral phenotypic plasticity in local adaptation: a new framework to explore the role of genetic compensation in the evolution of homeostasis. Integr. Comp. Biol. 58, 1098–1110 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
85.Fischer, E. K., Ghalambor, C. K. & Hoke, K. L. Can a network approach resolve how adaptive vs nonadaptive plasticity impacts evolutionary trajectories? Integr. Comp. Biol. 56, 877–888 (2016).PubMed
Article
Google Scholar
86.Huang, Y. & Agrawal, A. F. Experimental evolution of gene expression and plasticity in alternative selective regimes. PLoS Genet. 12, 1–23 (2016).
Google Scholar
87.Leonard, A. M. & Lancaster, L. T. Maladaptive plasticity facilitates evolution of thermal tolerance during an experimental range shift. BMC Evol. Biol. 20, 1–11 (2020).Article
Google Scholar
88.Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc. Natl Acad. Sci. USA 106, 3835–3840 (2009).89.Huey, R. B. & Tewksbury, J. J. Can behavior douse the fire of climate warming? Proc. Natl Acad. Sci. USA 106, 3647–3648 (2009).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
90.Winchell, K. M., Reynolds, R. G., Prado-irwin, S. R., Puente-rol, A. R. & Revell, L. J. Phenotypic shifts in urban areas in the tropical lizard Anolis cristatellus. Evolution 70, 1009–1022 (2016).PubMed
Article
Google Scholar
91.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
92.Alföldi, J. et al. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477, 587–91 (2011).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
93.Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).PubMed
PubMed Central
Article
CAS
Google Scholar
94.Reimand, J. et al. g:Profiler—web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 35, 193–200 (2007).Article
Google Scholar
95.Robinson, M. D., Mccarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS
Article
Google Scholar
96.Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
97.McKenna, D. M. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).98.Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).PubMed
PubMed Central
Article
Google Scholar
99.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
100.R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing, https://www.r-project.org (2017).101.Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS
PubMed
Article
Google Scholar More