Soil organic matter is essential for colony growth in subterranean termites
1.Fagan, W. F. et al. Nitrogen in insects: Implications for trophic complexity and species diversification. Am. Nat. 160, 784–802 (2002).PubMed
Article
Google Scholar
2.Kuhlmann, F. et al. Exploring the nitrogen ingestion of aphids—A new method using electrical penetration graph and (15)N labelling. PLoS ONE 8, e83085. https://doi.org/10.1371/journal.pone.0083085 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
3.Nalepa, C. A. Origin of termite eusociality: Trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40, 323–335 (2015).Article
Google Scholar
4.Tong, R. L., Aguilera-Olivares, D., Chouvenc, T. & Su, N. Y. Nitrogen content of the exuviae of Coptotermes gestroi (Wasmann) (Blattodea: Rhinotermitidae). Heliyon 7, e06697. https://doi.org/10.1016/j.heliyon.2021.e06697 (2021).Article
PubMed
PubMed Central
Google Scholar
5.Nalepa, C. A. Altricial development in subsocial cockroach ancestors: Foundation for the evolution of phenotypic plasticity in termites. Evol. Dev. 12, 95–105 (2011).Article
Google Scholar
6.Abe, T. Evolution of life types in termites. In Evolution and coadaptation in biotic Communities (eds. Kawano, S., Connell, J. H. & Hidaka, T.) 126–148, (University of Tokyo Press, 1987).7.Bourguignon, T. et al. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32, 406–421 (2015).CAS
PubMed
Article
Google Scholar
8.Bucek, A. et al. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr. Biol. 29, 3728–3734 (2019).CAS
PubMed
Article
Google Scholar
9.Breznak, J. A. Ecology of prokaryotic microbes in the guts of wood-and litter-feeding termites. In Termites: Evolution, Sociality, Symbioses, Ecology (eds Abe, T. et al.) 209–231 (Springer, 2000).Chapter
Google Scholar
10.Potrikus, C. J. & Breznak, J. A. Gut bacteria recycle uric acid nitrogen in termites: A strategy for nutrient conservation. Proc. Natl. Acad. Sci. USA 78, 4601–4605 (1981).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
11.Bao, W., O’Malley, D. M. & Sederoff, R. R. Wood contains a cell-wall structural protein. Proc. Nat. Acad. Sci. USA 89, 6604–6608 (1992).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
12.Ji, R. & Brune, A. Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochem. 78, 267–283 (2006).Article
CAS
Google Scholar
13.Ngugi, D. K., Ji, R. & Brune, A. Nitrogen mineralization, denitrification, and nitrate ammonification by soil-feeding termites: A 15 N-based approach. Biogeochem. 103, 355–369 (2011).CAS
Article
Google Scholar
14.Chouvenc, T., Šobotník, J., Engel, M. S. & Bourguignon, T. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell. Mol. Life Sci. 78, 2749–2769 (2021).CAS
PubMed
Article
Google Scholar
15.Engel, M. S., Grimaldi, D. A. & Krishna, K. Termites (Isoptera): Their phylogeny, classification, and rise to ecological dominance. Am. Mus. Nov. 3650, 1–27 (2009).
Google Scholar
16.Bignell, D. E. The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics. In The mechanistic benefits of microbial symbionts (ed. Hurst C. J.) 121–172 (Springer, Cham 2016).17.Nalepa, C. A. Body size and termite evolution. Evol. Biol. 38, 243–257 (2011).Article
Google Scholar
18.Breznak, J. A., Brill, W. J., Mertins, J. W. & Coppel, H. C. Nitrogen fixation in termites. Nature 244, 577–580 (1973).ADS
CAS
PubMed
Article
Google Scholar
19.Noda, S., Ohkuma, M. & Kudo, T. Nitrogen fixation genes expressed in the symbiotic microbial community in the gut of the termite Coptotermes formosanus. Microbes Environ. 17, 139–143 (2002).Article
Google Scholar
20.Benemann, J. R. Nitrogen fixation in termites. Science 181, 164–165 (1973).ADS
CAS
PubMed
Article
Google Scholar
21.Waller, D. A., Breitenbeck, G. A. & La Fage, J. P. Variation in acetylene reduction by Coptotermes formosanus (Isoptera: Rhinotermitidae) related to colony source and termite size. Sociobiology 16, 191–196 (1989).
Google Scholar
22.Pandey, S., Waller, D. A. & Gordon, A. S. Variation in acetylene-reduction (nitrogen-fixation) rates in Reticulitermes spp. (Isoptera: Rhinotermitidae). Virginia J. Sci. 43, 333–338 (1992).23.Curtis, A. D. & Waller, D. A. Changes in nitrogen fixation rates in termites (Isoptera: Rhinotermitidae) maintained in the laboratory. Ann. Entomol. Soc. 88, 764–767 (1995).Article
Google Scholar
24.Golichenkov, M. V., Kostina, N. V., Ul’yanova, T. A., Kuznetsova, T. A. & Umarov, M. M. Diazotrophs in the digestive tract of termite Neotermes castaneus. Biol. Bull. 33, 508–512 (2006).25.Dilworth, M. J. Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim. Biophys. Acta General Subjects 127, 285–294 (1966).CAS
Article
Google Scholar
26.Bentley, B. L. Nitrogen fixation in termites: Fate of newly fixed nitrogen. J. Insect Physiol. 30, 653–655 (1984).CAS
Article
Google Scholar
27.Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for delta(13)C analysis of diet. Oecologia 57, 32–37 (1983).ADS
CAS
PubMed
Article
Google Scholar
28.Dabundo, R. et al. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS One. https://doi.org/10.1371/journal.pone.0110335 (2014).29.Tayasu, I. Use of carbon and nitrogen isotope ratios in termite research. Ecol. Res. 13, 377–387 (1998).Article
Google Scholar
30.Bar-Shmuel, N., Behar, A. & Segoli, M. What do we know about biological nitrogen fixation in insects? Evidence and implications for the insect and the ecosystem. Insect Sci. 27, 392–403 (2020).PubMed
Article
Google Scholar
31.Du, H., Chouvenc, T., Osbrink, W. L. A. & Su, N.-Y. Social interactions in the central nest of Coptotermes formosanus juvenile colonies. Insectes Soc. 63, 279–290. https://doi.org/10.1007/s00040-016-0464-4 (2016).Article
Google Scholar
32.Josens, G. & Makatia Wango, S. P. Niche differentiation between two sympatric Cubitermes Species (Isoptera, Termitidae, Cubitermitinae) revealed by stable C and N isotopes. Insects 10, 38. https://doi.org/10.3390/insects10020038 (2019).Article
PubMed Central
Google Scholar
33.Burris, R. H. Nitrogenases. J. Biol. Chem. 266, 9339–9342 (1991).CAS
PubMed
Article
Google Scholar
34.Nutting, W. L. Flight and colony foundation. In Biology of Termites Vol. 1 (eds Krishna, K & Weesner, F.) 233–282 (Academic Press, 1969).35.Chouvenc, T. & Su, N. Y. Colony age-dependent pathway in caste development of Coptotermes formosanus Shiraki. Insectes Soc. 61, 171–182 (2014).Article
Google Scholar
36.Su, N. Y., Ban, P. M. & Scheffrahn, R. H. Foraging populations and territories of the eastern subterranean termite (Isoptera: Rhinotermitidae) in Southeastern Florida. Environ. Entomol. 22, 1113–1117 (1993).Article
Google Scholar
37.Su, N. Y., Osbrink, W. L. A., Kakkar, G., Mullins, A. & Chouvenc, T. Foraging distance and population size of juvenile colonies of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in laboratory extended arenas. J. Econ. Entomol. 110, 1728–1735 (2017).PubMed
Article
Google Scholar
38.Rust, M. K. & Su, N. Y. Managing social insects of urban importance. Annu. Rev. Entomol. 57, 355–375 (2012).CAS
PubMed
Article
Google Scholar
39.Krishna, K., Grimaldi, D. A., Krishna, V. & Engel, M. S. Treatise on the Isoptera of the world. Bull. Am. Mus. Nat. Hist. 377, 1–2704 (2013).Article
Google Scholar
40.Bourguignon, T. et al. Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proc. Roy. Soc. B: Biol. Sci. 283, 20160179. https://doi.org/10.1098/rspb.2016.0179 (2016).CAS
Article
Google Scholar
41.Cleveland, L. R. The ability of termites to live perhaps indefinitely on a diet of pure cellulose. Biol. Bull. 48, 289–293 (1925).CAS
Article
Google Scholar
42.Roessler, E. S. A Preliminary study of the nitrogen needs of growing Termopsis. Univ. Calif. Publ. Zool. 36, 357–368 (1932).CAS
Google Scholar
43.Hendee, E. C. The role of fungi in the diet of the common damp-wood termite Zootermopsis angusticolis. Hilgardia 9, 499–524 (1935).CAS
Article
Google Scholar
44.Hungate, R. E. Experiments on the nitrogen economy of termites. Ann. Entomol. Soc. Am. 34, 467–489 (1941).CAS
Article
Google Scholar
45.Mullins, A. J. & Su, N. Y. Parental nitrogen transfer and apparent absence of N2 fixation during colony foundation in Coptotermes formosanus Shiraki. Insects 9, 37. https://doi.org/10.3390/insects9020037 (2018).Article
PubMed Central
Google Scholar
46.Prestwich, G. D., Bentley, B. L. & Carpenter, E. J. Nitrogen sources for neotropical nasute termites: Fixation and selective foraging. Oecologia 46, 397–401 (1980).ADS
CAS
PubMed
Article
Google Scholar
47.Waidele, L., Korb, J., Voolstra, C.R., Dedeine, F. & Staubach, F. Ecological specificity of the metagenome in a set of lower termite species supports contribution of the microbiome to adaptation of the host. Anim. Microbio. 1, 13. https://doi.org/10.1186/s42523-019-0014-2 (2019).48.Oster, G. F. & Wilson, E. O. Caste and ecology in the social insects. (Princeton University Press, Princeton, 1978).49.Janzow, M. P. & Judd, T. M. The termite Reticulitermes flavipes (Rhinotermitidae: Isoptera) can acquire micronutrients from soil. Environ. Entomol. 44, 814–820 (2015).CAS
PubMed
Article
Google Scholar
50.Noda, S., Ohkuma, M. & Kudo, T. Nitrogen fixation genes expressed in the symbiotic microbial community in the gut of the termite Coptotermes formosanus. Microb. Environ. 17, 139–143 (2002).Article
Google Scholar
51.Desai, M. S. & Brune, A. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J. 6, 1302–1313 (2012).CAS
PubMed
Article
Google Scholar
52.Seefeldt, L. C., Hoffman, B. M. & Dean, D. R. Mechanism of Mo-dependent nitrogenase. Annu. Rev. biochem. 78, 701–722 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
53.Yamada, A., Inoue, T., Noda, S., Hongoh, Y. & Ohkuma, M. Evolutionary trend of phylogenetic diversity of nitrogen fixation genes in the gut community of wood-feeding termites. Mol. Ecol. 16, 3768–3777 (2007).CAS
PubMed
Article
Google Scholar
54.Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168–180 (2014).ADS
CAS
PubMed
Article
Google Scholar
55.Thanganathan, S. & Hasan, K. Diversity of nitrogen fixing bacteria associated with various termite species. Pertanika J. Tropic. Agri. Sci. 41, 925–940 (2018).
Google Scholar
56.Mullins, A. J. et al. Dispersal flights of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J. Econ. Entomol. 108, 707–719 (2015).PubMed
Article
Google Scholar
57.Mullins, D. E. & Cochran, D. G. Nitrogen metabolism in the American cockroach—II. An examination of negative nitrogen balance with respect to mobilization of uric acid stores. Comp. Biochem. Physiol. A Physiol. 50, 501–510 (1975).58.Waller, D. A. & La Fage, j. P. Seasonal patterns in foraging groups of Coptotermes formosanus (Rhinotermitidae). Sociobiology 13, 173–181 (1987).59.Waller, D. A. & La Fage, J. P. Size variation in Coptotermes formosanus Shiraki (Rhinotermitidae): Consequences of host use. Am. Midl. Nat. 119, 436–440 (1988).Article
Google Scholar
60.Su, N.-Y. & La Fage, J. P. Forager proportion and caste composition of colonies of the Formosan subterranean termite (Isoptera: Rhinotermitidae) restricted to cypress trees in the Calcasieu River, Lake Charles, Louisiana. Sociobiology 33, 185–193 (1999).
Google Scholar
61.Osbrink, W. L. A., Cornelius, M. L. & Showler, A. T. Bionomics and Formation of “bonsai” colonies with long-term rearing of Coptotermes formosanus (Isoptera: Rhinotermitidae). J. Econ. Entomol. 109, 770–778 (2016).CAS
PubMed
Article
Google Scholar
62.Hochmair, H. H. & Scheffrahn, R. H. Spatial association of marine dockage with land-borne infestations of invasive termites (Isoptera: Rhinotermitidae: Coptotermes) in urban South Florida. J. Econ. Entomol. 103, 1338–1346 (2010).PubMed
Article
Google Scholar
63.Scheffrahn, R. H. & Crowe, W. Ship-borne termite (Isoptera) border interceptions in Australia and onboard infestations in Florida, 1986–2009. Florida Entomol. 94, 57–63 (2011).Article
Google Scholar
64.Evans, T. A., Forschler, B. T. & Grace, J. K. Biology of invasive termites: A worldwide review. Annu. Rev. Entomol. 58, 455–474 (2013).CAS
PubMed
Article
Google Scholar
65.Blumenfeld, A. J. et al. Bridgehead effect and multiple introductions shape the global invasion history of a termite. Comm. Biol. 4, 196. https://doi.org/10.1038/s42003-021-01725-x (2021).CAS
Article
Google Scholar
66.Evans, T. A. Predicting ecological impacts of invasive termites. Curr. Op. Insect Sci. 46, 88–94 (2021).Article
Google Scholar
67.Ayayee, P. A., Jones, S. C. & Sabree, Z. L. Can 13C stable isotope analysis uncover essential amino acid provisioning by termite-associated gut microbes?. PeerJ 3, e1218. https://doi.org/10.7717/peerj.1218 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
68.Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow?. PLoS Biol. 13, e1002311. https://doi.org/10.1371/journal.pbio.1002311 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
69.Bennett, G. M. & Moran, N. A. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc. Natl. Acad. Sci. USA 112, 10169–10176 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
70.Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in bacterial symbiosis. Proc. Nat. Acad. Sci. USA 108, 10800–10807 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
71.Peterson B. F. & Scharf M. E. Metatranscriptomic techniques for identifying cellulases in termites and their symbionts. In Cellulases. Methods in Molecular Biology, vol 1796 (ed. Lübeck, M.) 85–101 (Humana Press, New York, NY 2018).72.Gaby, J. C. & Buckley, D. H. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE 7, e42149. https://doi.org/10.1371/journal.pone.0042149 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
73.Poly, F., Ranjard, L., Nazaret, S., Gourbiere, F. & Monrozier, L. J. Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. App. Environ. Microbiol. 67, 2255–2262 (2001).ADS
CAS
Article
Google Scholar
74.Rocha, D. J., Santos, C. S. & Pacheco, L. G. Bacterial reference genes for gene expression studies by RT-qPCR: Survey and analysis. Antonie Van Leeuwenhoek 108, 685–693 (2015).CAS
PubMed
Article
Google Scholar
75.Galisa, P. S. et al. Identification and validation of reference genes to study the gene expression in Gluconacetobacter diazotrophicus grown in different carbon sources using RT-qPCR. J. Microbiol. Methods 91, 1–7 (2012).CAS
PubMed
Article
Google Scholar
76.Mignard, S. & Flandrois, J. P. Identification of Mycobacterium using the EF-Tu encoding (tuf) gene and the tmRNA encoding (ssrA) gene. J. Med. Microbiol. 56, 1033–1041 (2007).CAS
PubMed
Article
Google Scholar
77.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar More