Dimethyl sulfide mediates microbial predator–prey interactions between zooplankton and algae in the ocean
1.Simó, R. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol. Evol. 16, 287–294 (2001).PubMed
Article
PubMed Central
Google Scholar
2.Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987).CAS
Article
Google Scholar
3.Wang, S., Maltrud, M. E., Burrows, S. M., Elliott, S. M. & Cameron-Smith, P. Impacts of shifts in phytoplankton community on clouds and climate via the sulfur cycle. Glob. Biogeochem. Cycles 32, 1005–1026 (2018).Article
CAS
Google Scholar
4.Wolfe, G. V., Steinke, M. & Kirst, G. O. Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897 (1997).CAS
Article
Google Scholar
5.Seymour, J., Simó, R., Ahmed, T. & Stocker, R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329, 342–345 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
6.Alcolombri, U. et al. Identification of the algal dimethyl sulfide-releasing enzyme: a missing link in the marine sulfur cycle. Science 348, 1466–1469 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
7.Alcolombri, U., Lei, L., Meltzer, D., Vardi, A. & Tawfik, D. S. Assigning the algal source of dimethylsulfide using a selective lyase inhibitor. ACS Chem. Biol. 12, 41–46 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
8.Kettle, A. J. & Andreae, M. O. Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J. Geophys. Res. Atmos. 105, 26793–26808 (2000).CAS
Article
Google Scholar
9.Carpenter, L. J., Archer, S. D. & Beale, R. Ocean–atmosphere trace gas exchange. Chem. Soc. Rev. 41, 6473–6506 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
10.Franklin, D. J., Steinke, M., Young, J., Probert, I. & Malin, G. Dimethylsulphoniopropionate (DMSP), DMSP-lyase activity (DLA) and dimethylsulphide (DMS) in 10 species of coccolithophore. Mar. Ecol. Prog. Ser. 410, 13–23 (2010).CAS
Article
Google Scholar
11.Keller, M. D. Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biol. Oceanogr. 6, 375–382 (1989).
Google Scholar
12.Curson, A. R. J. et al. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nat. Microbiol. 3, 430–439 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
13.Sunda, W., Kieber, D. J., Kiene, R. P. & Huntsman, S. An antioxidant function for DMSP and DMS in marine algae. Nature 418, 317–320 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
14.Kirst, G. O. in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (eds Kiene, R. P. et al.) 121−129 (Springer, 1996).15.Darroch, L. et al. Effect of short-term light- and UV-stress on DMSP, DMS, and DMSP lyase activity in Emiliania huxleyi. Aquat. Microb. Ecol. 74, 173–185 (2015).16.Barak-Gavish, N. et al. Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. Sci. Adv. 4, eaau5716 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
17.Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
18.Garcés, E., Alacid, E., Reñé, A., Petrou, K. & Simó, R. Host-released dimethylsulphide activates the dinoflagellate parasitoid Parvilucifera sinerae. ISME J. 7, 1065–1068 (2013).PubMed
PubMed Central
Article
CAS
Google Scholar
19.Steinke, M., Stefels, J. & Stamhuis, E. Dimethyl sulfide triggers search behavior in copepods. Limnol. Oceanogr. 51, 1925–1930 (2006).CAS
Article
Google Scholar
20.Breckels, M., Bode, N., Codling, E. & Steinke, M. Effect of grazing-mediated dimethyl sulfide (DMS) production on the swimming behavior of the copepod Calanus helgolandicus. Mar. Drugs 11, 2486 (2013).PubMed
PubMed Central
Article
CAS
Google Scholar
21.Procter, J., Hopkins, F. E., Fileman, E. S. & Lindeque, P. K. Smells good enough to eat: dimethyl sulfide (DMS) enhances copepod ingestion of microplastics. Mar. Pollut. Bull. 138, 1–6 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
22.Foretich, M. A., Paris, C. B., Grosell, M., Stieglitz, J. D. & Benetti, D. D. Dimethyl sulfide is a chemical attractant for reef fish larvae. Sci. Rep. 7, 2498 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
23.Savoca, M. S. & Nevitt, G. A. Evidence that dimethyl sulfide facilitates a tritrophic mutualism between marine primary producers and top predators. Proc. Natl Acad. Sci. USA 111, 4157–4161 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
24.Wright, K. L. B., Pichegru, L. & Ryan, P. G. Penguins are attracted to dimethyl sulphide at sea. J. Exp. Biol. 214, 2509–2511 (2011).PubMed
Article
PubMed Central
Google Scholar
25.Owen, K. et al. Natural dimethyl sulfide gradients would lead marine predators to higher prey biomass. Commun. Biol. 4, 149 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
26.Wolfe, G. V. & Steinke, M. Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnol. Oceanogr. 41, 1151–1160 (1996).CAS
Article
Google Scholar
27.Simó, R. et al. The quantitative role of microzooplankton grazing in dimethylsulfide (DMS) production in the NW Mediterranean. Biogeochemistry 141, 125–142 (2018).Article
Google Scholar
28.Evans, C., Kadner, S. V. & Darroch, L. J. The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: an Emiliania huxleyi culture study. Limnol. Oceanogr. 52, 1036–1045 (2007).Article
Google Scholar
29.Kiene, R. P. Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Appl. Environ. Microbiol. 56, 3292–3297 (1990).CAS
PubMed
PubMed Central
Article
Google Scholar
30.Bullock, H. A., Luo, H. & Whitman, W. B. Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00637 (2017).31.Strom, S. et al. Chemical defense in the microplankton I: feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi. Limnol. Oceanogr. 48, 217–229 (2003).CAS
Article
Google Scholar
32.Calbet, A. & Landry, M. R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49, 51–57 (2004).CAS
Article
Google Scholar
33.Schmoker, C., Hernández-León, S. & Calbet, A. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35, 691–706 (2013).Article
Google Scholar
34.Steinke, M., Wolfe, G. V. & Kirst, G. O. Partial characterisation of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi. Mar. Ecol. 175, 215–225 (1998).CAS
Article
Google Scholar
35.Breckels, M. N., Roberts, E. C., Archer, S. D., Malin, G. & Steinke, M. The role of dissolved infochemicals in mediating predator–prey interactions in the heterotrophic dinoflagellate Oxyrrhis marina. J. Plankton Res. 33, 629–639 (2011).Article
Google Scholar
36.Saló, V., Simó, R., Vila-Costa, M. & Calbet, A. Sulfur assimilation by Oxyrrhis marina feeding on a 35S-DMSP-labelled prey. Environ. Microbiol. 11, 3063–3072 (2009).PubMed
Article
CAS
PubMed Central
Google Scholar
37.Raina, J. B. et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6, e23008 (2017).PubMed
PubMed Central
Article
Google Scholar
38.Franklin, D. J. et al. Identification of senescence and death in Emiliania huxleyi and Thalassiosira pseudonana: cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnol. Oceanogr. 57, 305–317 (2012).CAS
Article
Google Scholar
39.Kettles, N. L., Kopriva, S. & Malin, G. Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen. PLoS ONE 9, e94795 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
40.Poulsen, N., Chesley, P. M. & Kröger, N. Molecular genetic manipulation of the diatom Thalassiosira pseudonana (bacillariophyceae). J. Phycol. 42, 1059–1065 (2006).Article
Google Scholar
41.Armbrust, E. V. et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
42.Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl Acad. Sci. USA 113, E1516–E1525 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
43.Apt, K. E. et al. In vivo characterization of diatom multipartite plastid targeting signals. J. Cell Sci. 115, 4061–4069 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
44.McParland, E. L., Wright, A., Art, K., He, M. & Levine, N. M. Evidence for contrasting roles of dimethylsulfoniopropionate production in Emiliania huxleyi and Thalassiosira oceanica. New Phytol. 226, 396–409 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
45.Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
46.Olson, M. B. & Strom, S. L. Phytoplankton growth, microzooplankton herbivory and community structure in the southeast Bering Sea: insight into the formation and temporal persistence of an Emiliania huxleyi bloom. Deep-Sea Res. II 49, 5969–5990 (2002).CAS
Article
Google Scholar
47.Challenger, F. & Simpson, M. I. Studies on biological methylation; a precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata; dimethyl-2-carboxyethylsulphonium hydroxide and its salts. J. Chem. Soc. 3, 1591–1597 (1948).CAS
PubMed
Article
PubMed Central
Google Scholar
48.Haas, P. The liberation of methyl sulphide by seaweed. Biochem. J. 29, 1297–1299 (1935).CAS
PubMed
PubMed Central
Article
Google Scholar
49.Stefels, J. & Dijkhuizen, L. Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae). Mar. Ecol. 131, 307–313 (1996).CAS
Article
Google Scholar
50.Wolfe, G. V., Sherr, E. B. & Sherr, B. F. Release and consumption of DMSP from Emiliania huxleyi during grazing by Oxyrrhis marina. Mar. Ecol. 111, 111–119 (1994).CAS
Article
Google Scholar
51.Reisch, C. R., Moran, M. A. & Whitman, W. B. Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front. Microbiol. 2, 172 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
52.von Dassow, P. et al. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biol. 10, R114 (2009).Article
CAS
Google Scholar
53.Strom, S., Wolfe, G., Slajer, A., Lambert, S. & Clough, J. Chemical defense in the microplankton II: inhibition of protist feeding by β-dimethylsulfoniopropionate (DMSP). Limnol. Oceanogr. 48, 230–237 (2003).CAS
Article
Google Scholar
54.Li, W. Eat-me signals: keys to molecular phagocyte biology and “appetite” control. J. Cell. Physiol. 227, 1291–1297 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
55.Tyssebotn, I. M. B. et al. Concentrations, biological uptake, and respiration of dissolved acrylate and dimethylsulfoxide in the northern Gulf of Mexico. Limnol. Oceanogr. 62, 1198–1218 (2017).Article
Google Scholar
56.Curson, A. R. J., Todd, J. D., Sullivan, M. J. & Johnston, A. W. B. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat. Rev. Microbiol. 9, 849–859 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
57.Spiese, C. E., Le, T., Zimmer, R. L. & Kieber, D. J. Dimethylsulfide membrane permeability, cellular concentrations and implications for physiological functions in marine algae. J. Plankton Res. 38, 41–54 (2015).Article
CAS
Google Scholar
58.Hatton, A. D., Shenoy, D. M., Hart, M. C., Mogg, A. & Green, D. H. Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea. Biogeochemistry 110, 131–146 (2012).CAS
Article
Google Scholar
59.Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
60.Endres, C. S. & Lohmann, K. J. Perception of dimethyl sulfide (DMS) by loggerhead sea turtles: a possible mechanism for locating high-productivity oceanic regions for foraging. J. Exp. Biol. 215, 3535–3538 (2012).PubMed
Article
PubMed Central
Google Scholar
61.Savoca, M. S. Chemoattraction to dimethyl sulfide links the sulfur, iron, and carbon cycles in high-latitude oceans. Biogeochemistry 138, 1–21 (2018).CAS
Article
Google Scholar
62.Steinke, M., Malin, G. & Liss, P. Trophic interactions in the sea: an ecological role for climate relevant volatiles? J. Phycol. 38, 630–638 (2002).CAS
Article
Google Scholar
63.Pohnert, G., Steinke, M. & Tollrian, R. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204 (2007).PubMed
Article
PubMed Central
Google Scholar
64.Lewis, N. et al. Grazing-induced production of DMS can stabilize food-web dynamics and promote the formation of phytoplankton blooms in a multitrophic plankton model. Biogeochemistry 110, 303–313 (2012).CAS
Article
Google Scholar
65.Lewis, N. D., Breckels, M. N., Steinke, M. & Codling, E. A. Role of infochemical mediated zooplankton grazing in a phytoplankton competition model. Ecol. Complex. 16, 41–50 (2013).Article
Google Scholar
66.Hansen, F. C., Reckermann, M., Breteler, W. C. M. K. & Riegman, R. Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments. Mar. Ecol. Prog. Ser. 102, 51–57 (1993).Article
Google Scholar
67.Levasseur, M. et al. Production of DMSP and DMS during a mesocosm study of an Emiliania huxleyi bloom: influence of bacteria and Calanus finmarchicus grazing. Mar. Biol. 126, 609–618 (1996).CAS
Article
Google Scholar
68.Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 8, 229–239 (1962).CAS
PubMed
Article
PubMed Central
Google Scholar
69.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
70.Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. https://doi.org/10.3354/ame01753 (2015).71.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
72.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
73.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
74.Frost, B. W. Effects of size and concentration of food particles on the feeding and behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17, 805–815 (1972).Article
Google Scholar
75.Johnson, M. D., Michelle, R. & Stoecker, D. K. Microzooplankton grazing on Prorocentrum minimum and Karlodinium micrum in Chesapeake Bay. Limnol. Oceanogr. 48, 238–248 (2003).Article
Google Scholar
76.Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
77.Piredda, R. et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw200 (2017).78.Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
79.Slamovits, C. H., Saldarriaga, J. F., Larocque, A. & Keeling, P. J. The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes. J. Mol. Biol. 372, 356–368 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
80.Untergasser, A. et al. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, W71–W74 (2007).PubMed
PubMed Central
Article
Google Scholar
81.Dagg, M. J., Jackson, G. A. & Checkley, D. M. The distribution and vertical flux of fecal pellets from large zooplankton in Monterey Bay and coastal California. Deep-Sea Res. I 94, 72–86 (2014).Article
Google Scholar More