More stories

  • in

    Climate impacts and adaptation in US dairy systems 1981–2018

    1.Dairy Production and Products: Milk and Milk Products (FAO, 2013); http://www.fao.org/dairy-production-products/production/dairy-animals/cattle/en/2.Background: Corn and Other Feedgrains (USDA ERS, 2018); https://www.ers.usda.gov/topics/animal-products/dairy/background/3.National Agricultural Statistics Service (US Department of Agriculture); https://www.nass.usda.gov/index.php4.Capper, J. L., Cady, R. A. & Bauman, D. E. The environmental impact of dairy production: 1944 compared with 2007. J. Anim. Sci. 87, 2160–2167 (2009).CAS 
    Article 

    Google Scholar 
    5.Niles, M. T. & Wiltshire, S. Tradeoffs in US dairy manure greenhouse gas emissions, productivity, climate, and manure management strategies. Environ. Res. Commun 1, 075003 (2019).Article 

    Google Scholar 
    6.Field, T. G. & Taylor, R. E. Scientific Farm Animal Production: An Introduction, Eleventh Edition (Pearson, 2018).7.Fuquay, J. W. Heat stress as it affects animal production. J. Anim. Sci. 52, 164–174 (1981).CAS 
    Article 

    Google Scholar 
    8.St-Pierre, N. R., Cobanov, B. & Schnitkey, G. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 86, E52–E77 (2003).Article 

    Google Scholar 
    9.Kadzere, C. T., Murphy, M. R., Silanikove, N. & Maltz, E. Heat stress in lactating dairy cows: a review. Livest. Prod. Sci. 77, 59–91 (2002).Article 

    Google Scholar 
    10.Bouraoui, R., Lahmar, M., Majdoub, A., Djemali, M. & Belyea, R. The relationship of temperature–humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res. 51, 479–491 (2002).Article 

    Google Scholar 
    11.West, J. W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 86, 2131–2144 (2003).CAS 
    Article 

    Google Scholar 
    12.Vitali, A. et al. Seasonal pattern of mortality and relationships between mortality and temperature–humidity index in dairy cows. J. Dairy Sci. 92, 3781–3790 (2009).CAS 
    Article 

    Google Scholar 
    13.Pragna, P. et al. Heat stress and dairy cow: impact on both milk yield and composition. Int. J. Dairy Sci. 12, 1–11 (2017).CAS 
    Article 

    Google Scholar 
    14.Hoffmann, I. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet. 41, 32–46 (2010).Article 

    Google Scholar 
    15.Qi, L., Bravo-Ureta, B. E. & Cabrera, V. E. From cold to hot: a preliminary analysis of climatic effects on the productivity of Wisconsin dairy farms. AgEconSearch https://doi.org/10.22004/ag.econ.172411 (2014).16.Bohmanova, J., Misztal, I. & Cole, J. B. Temperature–humidity indices as indicators of milk production losses due to heat stress. J. Dairy Sci. 90, 1947–1956 (2007).CAS 
    Article 

    Google Scholar 
    17.Field, C. B. et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (IPCC, 2021); https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/18.Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Chang. 6, 317–322 (2016).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    19.Seneviratne, S. I., Donat, M. G., Mueller, B. & Alexander, L. V. No pause in the increase of hot temperature extremes. Nat. Clim. Chang. 4, 161–163 (2014).ADS 
    Article 

    Google Scholar 
    20.Dairy 2014: Dairy Cattle Management Practices in the United States, 2014 (USDA, APHIS, NAHMS, 2016); https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_PartI_1.pdf21.Mondaca, M. R. & Cook, N. B. Modeled construction and operating costs of different ventilation systems for lactating dairy cows. J. Dairy Sci. 102, 896–908 (2019).CAS 
    Article 

    Google Scholar 
    22.Ferreira, F. C., Gennari, R. S., Dahl, G. E. & De Vries, A. Economic feasibility of cooling dry cows across the United States. J. Dairy Sci. 99, 9931–9941 (2016).CAS 
    Article 

    Google Scholar 
    23.Hayhoe, K. et al. Emissions pathways, climate change, and impacts on California. Proc. Natl Acad. Sci. USA 101, 12422–12427 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Klinedinst, P. L., Wilhite, D. A., Hahn, L. G. & Hubbard, K. G. The potential effects of climate change on summer seasonal dairy cattle milk production and reproduction. Clim. Chang. 23, 21–36 (1993).ADS 
    Article 

    Google Scholar 
    25.Mauger, G., Bauman, Y., Nennich, T. & Salathé, E. Impacts of climate change on milk production in the United States. Prof. Geogr. 67, 121–131 (2015).Article 

    Google Scholar 
    26.Key, N. & Sneeringer, S. Potential effects of climate change on the productivity of U.S. dairies. Am. J. Agric. Econ. 96, 1136–1156 (2014).Article 

    Google Scholar 
    27.Ortiz-Bobea, A., Knippenberg, E. & Chambers, R. G. Growing climatic sensitivity of U.S. agriculture linked to technological change and regional specialization. Sci. Adv. 4, eaat4343 (2018).ADS 
    Article 

    Google Scholar 
    28.Butler, E. E., Mueller, N. D. & Huybers, P. Peculiarly pleasant weather for US maize. Proc. Natl Acad. Sci. USA 115, 11935–11940 (2018).CAS 
    Article 

    Google Scholar 
    29.Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Tigchelaar, M., Battisti, D. S., Naylor, R. L. & Ray, D. K. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl Acad. Sci. U. S. A. 115, 6644–6649 (2018).ADS 
    Article 

    Google Scholar 
    31.PRISM Climate Data (Oregon State Univ., 2019); http://www.prism.oregonstate.edu/32.Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. https://doi.org/10.1002/joc.1688 (2008).33.National Research Council. Nutrient Requirements of Dairy Cattle, Seventh Revised Edition (National Academies Press, 2001).34.Auldist, M. J., Walsh, B. J. & Thomson, N. A. Seasonal and lactational influences on bovine milk composition in New Zealand. J. Dairy Res. 65, 401–411 (1998).CAS 
    Article 

    Google Scholar 
    35.Lobell, D. B. Climate change adaptation in crop production: beware of illusions. Glob. Food Sec. 3, 72–76 (2014).Article 

    Google Scholar 
    36.Mukherjee, D., Bravo-Ureta, B. E. & De Vries, A. Dairy productivity and climatic conditions: econometric evidence from South-eastern United States. Aust. J. Agric. Resour. Econ. 57, 123–140 (2013).Article 

    Google Scholar 
    37.Milk Cost of Production Estimates: Cost-of-Production Estimates-2016 Base (USDA ERS, 2021); https://www.ers.usda.gov/data-products/milk-cost-of-production-estimates/milk-cost-of-production-estimates/#Milk38.Liang, X. Z. et al. Determining climate effects on US total agricultural productivity. Proc. Natl Acad. Sci. USA 114, E2285–E2292 (2017).CAS 
    Article 

    Google Scholar 
    39.Malikov, E., Miao, R. & Zhang, J. Distributional and temporal heterogeneity in the climate change effects on U.S. agriculture. J. Environ. Econ. Manage. 104, 102386 (2020).Article 

    Google Scholar 
    40.MacDonald, J. M., Law, J. & Mosheim, R. Consolidation in U.S. Dairy Farming Economic Research Report No. 274 (ERS, USDA, 2020); https://www.ers.usda.gov/publications/pub-details/?pubid=9890041.Hemme, T. & Otte, J. Pro-Poor Livestock Policy Initiative Status and Prospects for Smallholder Milk Production a Global Perspective (Food and Agriculture Organization of the United Nations, 2010).42.Osei-Amponsah, R. et al. Heat stress impacts on lactating cows grazing Australian summer pastures on an automatic robotic dairy. Animals 10, 869 (2020).Article 

    Google Scholar 
    43.Chang-Fung-Martel, J., Harrison, M. T., Rawnsley, R., Smith, A. P. & Meinke, H. The impact of extreme climatic events on pasture-based dairy systems: a review. Crop Pasture Sci 68, 1158 (2017).Article 

    Google Scholar 
    44.Livestock Hot Weather Stress. Operations Manual (NOAA, 1976); https://scirp.org/reference/referencespapers.aspx?referenceid=191321645.Pinheiro J., Bates D., Debroy S. S. D. Linear and nonlinear mixed effects models, R package nlme version 3.1-152 (2021).46.Conley, T. G. GMM estimation with cross sectional dependence. J. Econom. 92, 1–45 (1999).MathSciNet 
    Article 

    Google Scholar 
    47.Borchers, H. W. pracma: practical numerical math functions, version 2.2.9.1–393 (2019).48.Colin Cameron, A., Gelbach, J. B. & Miller, D. L. Robust inference with multiway clustering. J. Bus. Econ. Stat. 29, 238–249 (2011).MathSciNet 
    Article 

    Google Scholar 
    49.Zeileis, A., Köll, S. & Graham, N. Various versatile variances: an object-oriented implementation of clustered covariances in R. J. Stat. Softw. https://doi.org/10.18637/jss.v095.i01 (2020). More

  • in

    Ovicidal activity of spirotetramat and its effect on hatching, development and formation of Frankliniella occidentalis egg

    Toxicity of spirotetramat to F. occidentalis eggsThe indoor toxicity of spirotetramat to 0-h-, 12-h-, and 24-h-old eggs of F. occidentalis using egg dipping method and leaf dipping method was shown in Table 1 after egg hatching was observed for 144 h. The results suggested that the LC50 value gradually decreased as the egg age increased. The two methods have the same trend. And in the leaf dipping method, according to the confidence limits analysis, 0-h-old eggs are significantly more sensitive to spirotretramat than 24-h-old eggs.Table 1 Toxicity of spirotetramat to F. occidentalis eggs.Full size tableEgg external shape observationsExternal morphology of normally developed isolated 0-h-old eggs of F. occidentalis in the control treatment (Fig. 1a) were compared with those treated with spirotetramat (Fig. 1b, c). After spirotetramat treatment, some eggs appeared darker, yellowish-brown, and with embryonic development abnormalities (Fig. 1b); some of the egg embryo cells treated with spirotetramat appeared atrophied, and there were obvious gaps between the outer and the inner egg embryo cells, compared with the control treatment (Fig. 1c). Some eggs ruptured at the top after the egg shell was treated with spirotetramat, and the internal egg embryo cells flowed out, thus failing to form a complete embryo (Fig. 1d); the full egg embryo cells formed a control treatment.Figure 1The effect of spirotetramat on external morphology of isolated 0-h-old eggs of F. occidentalis. (a) 0-h-old isolated eggs of normal developing thrips; (b) yellowish-brown, developmentally deformed eggs after spirotetramat treatment; (c) eggs with shrunken oocytes after spirotetramat treatment; (d) eggs with apical rupture of the eggshell after spirotetramat treatment.Full size imageThe effect of spirotetramat on external morphology of live F. occidentalis 0-h-old eggs (Fig. 2b, c) was compared with normal development in the control treatment (Fig. 2a). Similar to the effect on external morphology of isolated 0-h-old eggs of F. occidentalis, the eggs treated with spirotetramat also showed abnormal embryonic development (Fig. 2b), egg embryo cell atrophy (Fig. 2c) and the phenomenon of rupture of the egg shell and outflow of embryo cells.Figure 2The effect of spirotetramat on external morphology of living 0-h-old eggs of F. occidentalis. (a) External morphology of live 0-h-old eggs of normal developing thrips; (b) developmentally deformed eggs after spirotetramat treatment; (c) eggs with shrunken oocytes after spirotetramat treatment; (d) eggs with apical rupture of the eggshell after spirotetramat treatment.Full size imageCompared with the control (Fig. 3a), the isolated 24-h-old eggs treated with spirotetramat (Fig. 3b) did not show obvious external morphological differences. After spirotetramat treatment, the eggs were still white and plump and with no embryonic deformities, egg cell atrophy or egg shell rupture, and could still develop normally. There were clear red eye spots on the head end, and embryo movement was clearly seen under the super-depth microscope (Fig. 3b). Similarly, the live 24-h-old eggs in the control treatment (Fig. 4a) and those treated with spirotetramat (Fig. 4b) showed no obvious external morphological differences, and the eggs developed normally.Figure 3The effect of spirotetramat on external morphology of isolated 24-h-old eggs of F. occidentalis. (a) Normally developing 24-h-isolated eggs in the control group; (b) 24-h-old eggs after spirotetramat treatment.Full size imageFigure 4The effect of spirotetramat on external morphology living of 24-h-old eggs of F. occidentalis. (a) Normally developing 24-h-live eggs in the control group; (b) live 24-h-old eggs after spirotetramat treatment.Full size imageEffect of egg hatchingThe 0-h-old eggs of F. occidentalis treated with spirotetramat did not hatch normally, and the mortality rate was 100% (Fig. 5). Among them, 77 eggs eventually showed rupture of the egg shell, the internal egg embryo cells flowed out and they did not hatch; 23 eggs showed no changes in external morphology, but did not hatch after continuous observation for 144 h, and showed no developmental phenomena such as embryo movement under a super-depth microscope, which was regarded as egg death. In the control treatment, 96 eggs hatched normally, and only six eggs did not rupture but did not hatch normally and were considered dead.Figure 5Effect of spirotetramat on hatching rate of F. occidentalis 0-h-old eggs.Full size imageThere was no significant difference between the 24-h-old eggs of F. occidentalis treated with spirotetramat and the control treatment. After spirotetramat treatment, 93 eggs hatched normally, and the shells of seven eggs were not ruptured (Fig. 6). Any eggs not hatched after 144 h of continuous observation were considered dead. In the control treatment, 95 eggs hatched normally and five eggs did not rupture but did not hatch normally, and so were considered dead.Figure 6The effect of spirotetramat on hatching rate of F. occidentalis 24-h-old eggs.Full size imageSEM observationsThe F. occidentalis eggs in the control treatment were kidney-shaped, with regular egg morphology, smooth surfaces and no folds or protrusions (Fig. 7a). At 24 h after spirotetramat treatment, part of the egg shells treated with spirotetramat had fallen off the chorion, and the embryonic material was exposed (Fig. 7b). The surface of the egg shell was uneven and severely wrinkled (Fig. 7c). The pores of some eggs treated with spirotetramat were sunken down and shrunken (Fig. 7d). Spirotetramat treatment of 0-h-old eggs affect clearly egg shells, resulting in shrinkage of egg shells, ovarian depression and egg malformations, and destroyed the egg shell structure. Thus, normal embryonic development was affected, and disrupted normal hatching.Figure 7The effect of spirotetramat on the surface of egg shells of F. occidentalis 0-h-old eggs. (a) 0-h-old eggs in the control treatment; (b) eggs shells were shed 24 h after treatment with spirotetramat; (c) the surface of the egg shell was uneven and severely wrinkled; (d) the pores of some eggs were sunken down and shrunken after treatment with spirotetramat.Full size imageThe shells of eggs treated with spirotetramat (Fig. 8b) showed no significant difference compared with controls (Fig. 8a). The eggs of the two groups of F. occidentalis were regular in shape, with smooth surfaces and without folds or protrusions. Thus, development of 24-h-old eggs showed some resistance to spirotetramat. Spirotetramat did not destroy the egg shell surface structure of 24-h-old eggs, indicating a high resistance to spirotetramat.Figure 8The effect of spirotetramat on the egg shell surface of F. occidentalis 24-h-old eggs. (a) 24-h-old eggs in the control treatment; (b) 24-h-old eggs in the spirotetramat treatment.Full size imageTEM observationsThe TEM observations showed that the egg structure of the control treatment was complete, the protoplasm and yolk were clearly observed inside the egg and the yolk was packed in the void of the protoplasm network (Fig. 9a). The egg shell structure was clear, and the outer and inner egg shell were clearly observed, as was the yolk membrane and the dense layer structure (Fig. 9c). Eggs treated with spirotetramat were flocculent, and no clear internal material was observed. The protoplasm and yolk structure were blurred, and flocculation in the protoplasm appeared to agglomerate and form blocks (Fig. 9b). The egg shell structure was unclear, and no clear outer egg shell, inner egg shell, yolk membrane and lamellar structures were observed. The egg shell was also filled with many flocs (Fig. 9d).Figure 9The effect of spirotetramat on the structure of F. occidentalis 0-h-old eggs. (a) and (b) 0-h-old eggs in the control treatment; (c) and (d) 0-h-old eggs in the spirotetramat treatment.Full size imageEffect on embryonic developmentThe initial eggs of the control group were kidney-shaped, white and full of vitellin (Fig. 10a). After 12 h of development, the eggs were larger and of oval shape (Fig. 10b). After 24 h of development, the egg had increased in volume, a partially transparent region appeared in the embryo and the embryo had transparent top follicles (Fig. 10c). After 36 h of development, some yolk granules disappeared and eggs became smooth and translucent (Fig. 10d). After 48 h of development, the insect outline was visible within the egg, a pair of antennae were visible on the head and a red eye point was clearly observed on the head during the blastokinesis phenomenon (Fig. 10e). After 60 h of development, embryo color deepened, the eye point was clearer and the head, femur, tibia and tarsus were clear (Fig. 10f). After 72 h of development, the egg shell began to break at the head, the tail constantly jittered, internal fluid flowed and the larva hatched from the top of the egg (Fig. 10g).Figure 10The embryonic development process of control 0-h-old eggs of F. occidentalis. (a) Control initial eggs; (b) eggs after 12 h of development; (c) eggs after 24 h of development; (d) eggs after 36 h of development; (e) eggs after 48 h of development; (f) eggs after 60 h of development; (g) eggs hatching as larvae after 72 h of development.Full size imageEggs of F. occidentalis were initially white, kidney-shaped and full of vitellin (Fig. 11a). Following treatment with spirotetramat, after 12 h of development, the eggs became large and oval, and the embryo was a pale brown color (Fig. 11b). After 24 h of development, color of the egg deepened to dark brown. There was a gap between the egg and the egg shell, and a small amount of spillage appeared at the end of the egg (Fig. 11c). After 36 h of development, the egg shell ruptured, material flowed out of the egg and embryo development did not proceed (Fig. 11d).Figure 11Effects of spirotetramat on development of 0-h-old eggs of F. occidentalis. (a) Frankliniella occidentalis initial eggs; (b) eggs developing 12 h after spirotetramat treatment; (c) eggs developing 24 h after spirotetramat treatment; (d) eggs developing 36 h after spirotetramat treatment.Full size imageIn the control treatment, the egg volume increased at 24 h, the embryo had a partially transparent area and there was a transparent follicle on the top of the embryo (Fig. 12a). After 12 h of development, some of the yolk particles disappeared and the egg body was smooth and translucent (Fig. 12b). After 24 h of development, the body outline, a pair of antennae and red eye spots were visible, and there was obvious embryo movement (Fig. 12c). At 36 h of development, the head, leg segments, tibia and tarsus were apparent (Fig. 12d). After 48 h of development, the embryo moved violently, internal body fluid flowed and the larva was ready to hatch (Fig. 12e). After 60 h of development, the larva emerged from its shell (Fig. 12f).Figure 1224-h-old eggs embryo development of F. occidentalis in control treatment. (a) Control 24-h-old eggs; (b) eggs after 12 h of development; (c) eggs after 24 h of development; (d) eggs after 36 h of development; (e) eggs after 48 h of development; (f) eggs hatching as larvae after 60 h of development.Full size imageThe 24 h old eggs of F. occidentalis showed enlarged volume, and there were transparent follicles on the top of the embryo (Fig. 13a). After 24 h eggs were treated with spirotetramat, they developed for 12–36 h, and the developmental status was the same as that of the control. The embryos developed normally, and there was no egg body discoloration or egg shell rupture (Fig. 13b–d). After 48 h of development, hairy scales appeared on the surface of the egg shell, and the egg body turned yellowish-brown in color, but the egg shell was not broken and no internal material overflow was seen (Fig. 13e). After 60 h of development, larvae hatched normally (Fig. 13f).Figure 13The effect of spirotetramat on embryonic development of F. occidentalis 24-h-old eggs. (a) Frankliniella occidentalis 24-h-old eggs; (b) eggs developing 12 h after spirotetramat treatment; (c) eggs developing 24 h after spirotetramat treatment; (d) eggs developing 36 h after spirotetramat treatment; (e) eggs developing 48 h after spirotetramat treatment; (f) eggs hatching as larvae after 60 h of development.Full size image More

  • in

    Natural infrastructure in sustaining global urban freshwater ecosystem services

    1.Gartner, T., Mulligan, J., Schmidt, R. & Gunn, J. Natural Infrastructure (World Resources Institute, 2013).2.McDonald, R. I. et al. Water on an urban planet: urbanization and the reach of urban water infrastructure. Glob. Environ. Change 27, 96–105 (2014).Article 

    Google Scholar 
    3.Vorosmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).CAS 
    Article 

    Google Scholar 
    4.Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).CAS 
    Article 

    Google Scholar 
    5.Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).CAS 
    Article 

    Google Scholar 
    6.Palmer, M. A. Water resources: beyond infrastructure. Nature 467, 534–535 (2010).CAS 
    Article 

    Google Scholar 
    7.Michalak, A. M. Study role of climate change in extreme threats to water quality. Nature 535, 349–350 (2016).CAS 
    Article 

    Google Scholar 
    8.McDonald, R. I., Weber, K. F., Padowski, J., Boucher, T. & Shemie, D. Estimating watershed degradation over the last century and its impact on water-treatment costs for the world’s large cities. Proc. Natl Acad. Sci. USA 113, 9117–9122 (2016).CAS 
    Article 

    Google Scholar 
    9.Romulo, C. L. et al. Global state and potential scope of investments in watershed services for large cities. Nat. Commun. 9, 4375 (2018).Article 
    CAS 

    Google Scholar 
    10.Tellman, B. et al. Opportunities for natural infrastructure to improve urban water security in Latin America. PLoS ONE 13, e0209470 (2018).Article 

    Google Scholar 
    11.United Nations World Water Assessment Programme/UN-Water The United Nations World Water Development Report 2018: Nature-Based Solutions for Water (UNESCO, 2018).12.Palmer, M. A., Liu, J., Matthews, J. H., Mumba, M. & D’Odorico, P. Manage water in a green way. Science 349, 584–585 (2015).CAS 
    Article 

    Google Scholar 
    13.Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2012).CAS 
    Article 

    Google Scholar 
    14.Harrison, I. J. et al. Protected areas and freshwater provisioning: a global assessment of freshwater provision, threats and management strategies to support human water security. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 103–120 (2016).Article 

    Google Scholar 
    15.The World Database on Protected Areas (IUCN and UNEP-WCMC, 2017); http://www.protectedplanet.net16.Huber-Stearns, H. R., Goldstein, J. H., Cheng, A. S. & Toombs, T. P. Institutional analysis of payments for watershed services in the western United States. Ecosyst. Serv. 16, 83–93 (2015).Article 

    Google Scholar 
    17.Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).CAS 
    Article 

    Google Scholar 
    18.Zheng, H. et al. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program. Proc. Natl Acad. Sci. USA 110, 16681–16686 (2013).CAS 
    Article 

    Google Scholar 
    19.Adamowicz, W. et al. Assessing ecological infrastructure investments. Proc. Natl Acad. Sci. USA 116, 201802883 (2019).Article 
    CAS 

    Google Scholar 
    20.McDonald R. I. Conservation for Cities: How to Plan & Build Natural Infrastructure (Island Press, 2015).21.Grill, G. et al. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 10, 015001 (2015).Article 

    Google Scholar 
    22.Poff, N. L. & Schmidt, J. C. How dams can go with the flow. Science 353, 1099–1100 (2016).CAS 
    Article 

    Google Scholar 
    23.Liu, J. & Yang, W. Integrated assessments of payments for ecosystem services programs. Proc. Natl Acad. Sci. USA 110, 16297–16298 (2013).CAS 
    Article 

    Google Scholar 
    24.Muller, M., Biswas, A., Martin-Hurtado, R. & Tortajada, C. Built infrastructure is essential. Science 349, 585–586 (2015).CAS 
    Article 

    Google Scholar 
    25.Veldkamp, T. I. E. et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 8, 15697 (2017).CAS 
    Article 

    Google Scholar 
    26.Cohen, S., Kettner, A. J. & Syvitski, J. P. M. Global suspended sediment and water discharge dynamics between 1960 and 2010: continental trends and intra-basin sensitivity. Glob. Planet. Change 115, 44–58 (2014).Article 

    Google Scholar 
    27.Dottori, F. et al. Development and evaluation of a framework for global flood hazard mapping. Adv. Water Resour. 94, 87–102 (2016).Article 

    Google Scholar 
    28.Byers L. et al. A Global Database of Power Plants (World Resources Institute, 2018); https://www.wri.org/publication/global-power-plant-database29.Liu, J. Integration across a metacoupled world. Ecol. Soc. 22, 29 (2017).Article 

    Google Scholar 
    30.Vercruysse, K., Grabowski, R. C. & Rickson, R. J. Suspended sediment transport dynamics in rivers: multi-scale drivers of temporal variation. Earth Sci. Rev. 166, 38–52 (2017).Article 

    Google Scholar 
    31.Wu, X.-X., Gu, Z.-J., Luo, H., Shi, X.-Z. & Yu, D.-S. Analyzing forest effects on runoff and sediment production using leaf area index. J. Mt. Sci. 11, 119–130 (2014).Article 

    Google Scholar 
    32.Wang, Y. et al. Annual runoff and evapotranspiration of forestlands and non-forestlands in selected basins of the Loess Plateau of China. Ecohydrology 4, 277–287 (2011).CAS 
    Article 

    Google Scholar 
    33.Bilotta, G. S. & Brazier, R. E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 42, 2849–2861 (2008).CAS 
    Article 

    Google Scholar 
    34.Stickler, C. M. et al. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc. Natl Acad. Sci. USA 110, 9601–9606 (2013).CAS 
    Article 

    Google Scholar 
    35.Maltby, E. & Acreman, M. C. Ecosystem services of wetlands: pathfinder for a new paradigm. Hydrol. Sci. J. 56, 1341–1359 (2011).Article 

    Google Scholar 
    36.Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E. & Smith, D. R. Impacts of impervious surface on watershed hydrology: a review. Urban Water J. 2, 263–275 (2005).Article 

    Google Scholar 
    37.Borrelli, P. et al. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl Acad. Sci. USA 117, 21994–22001 (2020).CAS 
    Article 

    Google Scholar 
    38.Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).Article 
    CAS 

    Google Scholar 
    39.Symes, W. S., Rao, M., Mascia, M. B. & Carrasco, L. R. Why do we lose protected areas? Factors influencing protected area downgrading, downsizing and degazettement in the tropics and subtropics. Glob. Change Biol. 22, 656–665 (2016).Article 

    Google Scholar 
    40.Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).Article 
    CAS 

    Google Scholar 
    41.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS 
    Article 

    Google Scholar 
    42.Liu, J. et al. China’s environment on a metacoupled planet. Annu. Rev. Environ. Resour. 43, 1–34 (2018).CAS 
    Article 

    Google Scholar 
    43.Viña, A., McConnell, W. J., Yang, H., Xu, Z. & Liu, J. Effects of conservation policy on China’s forest recovery. Sci. Adv. 2, e1500965 (2016).Article 

    Google Scholar 
    44.Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article 

    Google Scholar 
    45.Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).CAS 
    Article 

    Google Scholar 
    46.Vörösmarty, C. J. et al. Ecosystem-based water security and the Sustainable Development Goals (SDGs). Ecohydrol. Hydrobiol. 18, 317–333 (2018).Article 

    Google Scholar 
    47.Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476 (2018).Article 

    Google Scholar 
    48.Flörke, M., Schneider, C. & McDonald, R. I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 1, 51–58 (2018).Article 

    Google Scholar 
    49.McDonald, R. I. et al. Urban growth, climate change, and freshwater availability. Proc. Natl Acad. Sci. USA 108, 6312–6317 (2011).CAS 
    Article 

    Google Scholar 
    50.Willner, S. N., Otto, C. & Levermann, A. Global economic response to river floods. Nat. Clim. Change 8, 594–598 (2018).Article 

    Google Scholar 
    51.Cattaneo, A., Nelson, A. & McMenomy, T. Global mapping of urban–rural catchment areas reveals unequal access to services. Proc. Natl Acad. Sci. USA 118, e2011990118 (2021).CAS 
    Article 

    Google Scholar 
    52.Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).Article 

    Google Scholar 
    53.Schneider, A., Friedl, M. A. & Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 4, 044003 (2009).Article 

    Google Scholar 
    54.Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. EOS 89, 93–94 (2008).55.Yang, H. et al. A global assessment of the impact of individual protected areas on preventing forest loss. Sci. Total Environ. 777, 145995 (2021).CAS 
    Article 

    Google Scholar 
    56.Smith, A. et al. New estimates of flood exposure in developing countries using high-resolution population data. Nat. Commun. 10, 1814 (2019).Article 
    CAS 

    Google Scholar 
    57.Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).CAS 
    Article 

    Google Scholar 
    58.Hanasaki, N. et al. An integrated model for the assessment of global water resources—Part 1: model description and input meteorological forcing. Hydrol. Earth Syst. Sci. 12, 1007–1025 (2008).Article 

    Google Scholar 
    59.Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).Article 

    Google Scholar 
    60.Pokhrel, Y. N. et al. Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts. Water Resour. Res. 51, 78–96 (2015).Article 

    Google Scholar 
    61.Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 5, 15–40 (2014).Article 

    Google Scholar 
    62.Müller Schmied, H. et al. Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrol. Earth Syst. Sci. 20, 2877–2898 (2016).Article 

    Google Scholar 
    63.Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).Article 

    Google Scholar 
    64.Dirmeyer, P. A. et al. GSWP-2: multimodel analysis and implications for our perception of the land surface. Bull. Am. Meteorol. Soc. 87, 1381–1398 (2006).Article 

    Google Scholar 
    65.Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).Article 

    Google Scholar 
    66.Bingham, H. C. et al. Sixty years of tracking conservation progress using the World Database on Protected Areas. Nat. Ecol. Evol. 3, 737–743 (2019).Article 

    Google Scholar 
    67.ArcGIS Desktop: Release 10.3.1 (Environmental Systems Research Institution, 2015).68.Domisch, S., Amatulli, G. & Jetz, W. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2, 150073 (2015).CAS 
    Article 

    Google Scholar 
    69.Bennett, G. & Ruef, F. Alliances for Green Infrastructure: State of Watershed Investment 2016 (Forest Trends, 2016).70.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).71.Wellman, B. & Frank, K. in Social Capital: Theory and Research (eds Lin, N. et al.) 233–273 (Routledge, 2001).72.Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar  More

  • in

    High canopy cover of invasive Acer negundo L. affects ground vegetation taxonomic richness

    1.Vinogradova, Y. K., Mayorov, S. R. & Khorun, L. V. Chernaya kniga flory Sredney Rossii (Chuzherodnye vidy rasteniy v ekosistemakh Sredney Rossii) (The Black-book of the flora of the Middle Russia (Alien species in the plant communities of the Middle Russia). (GEOS, 2010).2.Straigytė, L., Cekstere, G., Laivins, M. & Marozas, V. The spread, intensity and invasiveness of the Acer negundo in Riga and Kaunas. Dendrobiology 74, 157–168 (2015).Article 

    Google Scholar 
    3.Merceron, N. R., Lamarque, L. J., Delzon, S. & Porté, A. J. Killing it softly: girdling as an efficient eco-friendly method to locally remove invasive Acer negundo. Ecol. Restor. 34, 297–305 (2016).Article 

    Google Scholar 
    4.Gusev, A. P., Shpilevskaya, N. S. & Veselkin, D. V. The influence of Acer negundo L. on progressive successions in Belarusian landscapes. Vestnik Vitebskogo Gosudarstvennogo Universiteta. 94, 47–53 (2017).
    Google Scholar 
    5.Veselkin, D. V. & Korzhinevskaya, A. A. Spatial factors of understory adventization in park forests of a large city. Izvestiya Akademii Nauk, Seriya Geograficheskaya. 4, 54–64 (2018).
    Google Scholar 
    6.Veselkin, D. V., Korzhinevskaya, A. A. & Podgayevskaya, E. N. The species composition and abundance of alien and invasive understory shrubs and trees in urban forests of Yekaterinburg. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya. 42, 102–118 (2018).
    Google Scholar 
    7.Emelyanov, A. V. & Frolova, S. V. Ash-leaf maple (Acer negundo L.) in coastal phytocenoses of the Vorona River. Russ. J. Biol. Invasions 2, 161–163 (2011).Article 

    Google Scholar 
    8.Saccone, P., Pagès, J.-P., Girel, J., Brun, J.-J. & Michalet, R. Acer negundo invasion along a successional gradient: Early direct facilitation by native pioneers and late indirect facilitation by conspecifics. New Phytol. 187, 831–842. https://doi.org/10.1111/j.1469-8137.2010.03289.x (2010).Article 
    PubMed 

    Google Scholar 
    9.Kostina, M. V., Yasinskaya, O. I., Barabanshchikova, N. S. & Orlyuk, F. A. Toward a issue of box elder invasion into the forests around Moscow. Russ. J. Biol. Invasions 7, 47–51 (2016).Article 

    Google Scholar 
    10.Veselkin, D. V. & Dubrovin, D. I. Diversity of the grass layer of urbanized communities dominated by invasive Acer negundo. Russ. J. Ecol. 50, 413–421 (2019).Article 

    Google Scholar 
    11.Reinhart, K. O., Greene, E. & Callaway, R. M. Effects of Acer platanoides invasion on understory plant communities and tree regeneration in the Rocky Mountains. Ecography 28, 573–582 (2005).Article 

    Google Scholar 
    12.Schuster, M. J. & Reich, P. B. Amur maple (Acer ginnala): an emerging invasive plant in North America. Biol. Invasions 20, 2997–3007 (2018).Article 

    Google Scholar 
    13.Richardson, D. M. et al. Naturalization and invasion of alien plants: Concepts and definitions. Divers. Distrib. 6, 93–107 (2000).Article 

    Google Scholar 
    14.Gorchov, D. L. & Trisel, D. E. Competitive effects of the invasive shrub, Lonicera maackii (Rupr.) Herder (Caprifoliaceae), on the growth and survival of native tree seedlings. Plant Ecol. 166, 13–24 (2003).Article 

    Google Scholar 
    15.Knight, K. S., Oleksyn, J., Jagodzinski, A. M., Reich, P. B. & Kasprowicz, M. Overstorey tree species regulate colonization by native and exotic plants: A source of positive relationships between understorey diversity and invasibility. Divers. Distrib. 14, 666–675 (2008).Article 

    Google Scholar 
    16.Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693–714 (2010).Article 

    Google Scholar 
    17.Allison, S. D. & Vitousek, P. M. Rapid nutrient cycling in leaf litter from invasive plants in Hawaii. Oecologia 141, 612–619 (2004).ADS 
    PubMed 
    Article 

    Google Scholar 
    18.Gioria, M. & Osborne, B. A. Resource competition in plant invasions: Emerging patterns and research needs. Front. Plant Sci. https://doi.org/10.3389/fpls.2014.00501 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Bonifacio, E. et al. Alien red oak affects soil organic matter cycling and nutrient availability in low-fertility well-developed soils. Plant Soil 395, 215–229 (2015).CAS 
    Article 

    Google Scholar 
    20.Horodecki, P. & Jagodzínski, A. M. Tree species effects on litter decomposition in pure stands on afforested post-mining sites. For. Ecol. Manag. 406, 1–11 (2017).Article 

    Google Scholar 
    21.Zhang, P., Li, B., Wu, J. & Hu, S. Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis. Ecol. Lett. 22, 200–210 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    22.Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Stinson, K. A. et al. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. https://doi.org/10.1371/journal.pbio.0040140 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Suding, K. N. et al. Consequences of plant-soil feedbacks in invasion. J. Ecol. 101, 298–308 (2013).Article 

    Google Scholar 
    25.Mueller, K. E. et al. Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species. Soil Biol. Biochem. 92, 184–198 (2016).CAS 
    Article 

    Google Scholar 
    26.Kamczyc, J., Dyderski, M. K., Horodecki, P. & Jagodzinski, A. M. Mite communities (Acari, Mesostigmata) in the initially decomposed ‘litter islands’ of 11 tree species in scots pine (Pinus sylvestris L.) forest. Forests https://doi.org/10.3390/f10050403 (2019).Article 

    Google Scholar 
    27.Veselkin, D. V., Rafikova, O. S. & Ekshibarov, E. D. The soil of invasive Acer negundo thickets is unfavorable for mycorrhizal formation in native herbs. Zh. Obshch. Biol. 80, 214–225 (2019).
    Google Scholar 
    28.Gilliam, F. S. & Roberts, M. R. Interactions between the herbaceous layer and overstory canopy of eastern forests in The herbaceous layer in forests of Eastern North America (ed. Gilliam, F. S.) 233–254 (Oxford, 2014).29.Landuyt, D. et al. The functional role of temperate forest understorey vegetation in a changing world. Glob. Change Biol. 25, 3625–3641 (2019).ADS 
    Article 

    Google Scholar 
    30.Czapiewska, N., Dyderski, M. K. & Jagodzinski, A. M. Seasonal dynamics of floodplain forest understory—Impacts of degradation, light availability and temperature on biomass and species composition. Forests https://doi.org/10.3390/f10010022 (2019).Article 

    Google Scholar 
    31.Canham, C. D., Finzi, A. C., Pacala, S. W. & Burbank, D. H. Causes and consequences of resource heterogeneity in forests: Interspecific variation in light transmission by canopy trees. Can. J. For. Res. 24, 337–349 (1994).Article 

    Google Scholar 
    32.Barbier, S., Gosselin, F. & Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. For. Ecol. Manag. 254, 1–15 (2008).Article 

    Google Scholar 
    33.Reinhart, K. O., Gurnee, J., Tirado, R. & Callaway, R. M. Invasion through quantitative effects: Intense shade drives native decline and invasive success. Ecol. Appl. 16, 1821–1831 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Nilsson, C., Engelmark, O., Cory, J., Forsslund, A. & Carlborg, E. Differences in litter cover and understory flora between stands of introduced lodgepole pine and native Scots pine in Sweden. For. Ecol. Manag. 255, 1900–1905 (2008).Article 

    Google Scholar 
    35.Bravo-Monasterio, P., Pauchard, A. & Fajardo, A. Pinus contorta invasion into treeless steppe reduces species richness and alters species traits of the local community. Biol. Invasions 18, 1883–1894 (2016).Article 

    Google Scholar 
    36.Lanta, V., Hyvönen, T. & Norrdahl, K. Non-native and native shrubs have differing impacts on species diversity and composition of associated plant communities. Plant Ecol. 214, 1517–1528 (2013).Article 

    Google Scholar 
    37.Dyderski, M. K. & Jagodzinski, A. M. Similar impacts of alien and native tree species on understory light availability in a temperate forest. Forests https://doi.org/10.3390/f10110951 (2019).Article 

    Google Scholar 
    38.Bottollier-Curtet, M. et al. Light interception principally drives the understory response to boxelder invasion in riparian forests. Biol. Invasions 14, 1445–1458 (2012).Article 

    Google Scholar 
    39.Cusack, D. F. & McCleery, T. L. Patterns in understory woody diversity and soil nitrogen across native- and non-native-urban tropical forests. For. Ecol. Manag. 318, 34–43 (2014).Article 

    Google Scholar 
    40.Berg, C., Drescherl, A. & Essl, F. Using relevé-based metrics to explain invasion patterns of alien trees in temperate forests. Tuexenia. 37, 127–142 (2017).
    Google Scholar 
    41.Hladyz, S., Abjornsson, K., Giller, P. S. & Woodward, G. Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs. J. Appl. Ecol. 48, 443–452 (2011).Article 

    Google Scholar 
    42.Call, L. J. & Nilsen, E. T. Analysis of interactions between the invasive tree-of-heaven (Ailanthus altissima) and the native black locust (Robinia pseudoacacia). Plant Ecol. 176, 275–285 (2005).Article 

    Google Scholar 
    43.Dorning, M. & Cipollini, D. Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects. Plant Ecol. 184, 287–296 (2006).Article 

    Google Scholar 
    44.Kumar, A. S. & Bais, H. P. Allelopathy and exotic plant invasion in Plant communication from an ecological perspective. Signaling and communication in plants (ed. Baluška, F. & Ninkovic, V.) 61–74 (Berlin, 2010).45.Cipollini, D., Rigsby, C. M. & Barto, E. K. Microbes as targets and mediators of allelopathy in plants. J. Chem. Ecol. 38, 714–727 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Nielsen, J. A., Frew, R. D., Whigam, P. A., Callaway, R. M. & Dickinson, K. J. M. Germination and growth responses of co-occurring grass species to soil from under invasive Thymus vulgaris. Allelopath. J. 35, 139–152 (2015).
    Google Scholar 
    47.Gruntman, M., Segev, U., Glauser, G. & Tielbörger, K. Evolution of plant defences along an invasion chronosequence: Defence is lost due to enemy release—but not forever. J. Ecol. 105, 255–264 (2017).CAS 
    Article 

    Google Scholar 
    48.Maron, J. L. & Marler, M. Effects of native species diversity and resource additions on invader impact. Am. Nat. 172, 18–33 (2008).Article 

    Google Scholar 
    49.Hejda, M., Pyšek, P. & Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403 (2009).Article 

    Google Scholar 
    50.Adams, J. M. et al. A cross-continental test of the enemy release hypothesis: leaf herbivory on Acer platanoides (L.) is three times lower in North America than in its native Europe. Biol. Invasions 11, 1005–1016 (2009).Article 

    Google Scholar 
    51.Cincotta, C. L., Adams, J. M. & Holzapfel, C. Testing the enemy release hypothesis: A comparison of foliar insect herbivory of the exotic Norway maple (Acer platanoides L.) and the native sugar maple (A. saccharum L.). Biol. Invasions 11, 379–388 (2009).Article 

    Google Scholar 
    52.Veselkin, D. V. et al. Levels of leaf damage by phyllophages in invasive Acer negundo and Native Betula pendula and Salix caprea. Russ. J. Ecol. 50, 511–516 (2019).Article 

    Google Scholar 
    53.Gioria, M., Pyšek, P. & Moravcová, L. Soil seed banks in plant invasions: promoting species invasiveness and long-term impact on plant community dynamics. Preslia 84, 327–350 (2012).
    Google Scholar 
    54.Csiszár, A. Allelopathic effect of invasive woody plant species in Hungary. Acta Silvatica et Lignaria Hungarica. 5, 9–17 (2009).
    Google Scholar 
    55.Csiszár, Á. et al. Allelopathic potential of some invasive plant species occurring in Hungary. Allelopath. J. 31, 309–318 (2013).
    Google Scholar 
    56.Yeryomenko, Y. A. Allelopathic activity of invasive arboreal species. Russ. J. Biol. Invasions 5, 146–150 (2014).Article 

    Google Scholar 
    57.Veselkin, D. V., Kiseleva, O. A., Ekshibarov, E. D., Rafikova, O. S. & Korzhinevskaya, A. A. Abundance and diversity of seedlings of the soil seed bank in the monospecific stands of the invasive species Acer negundo L.. Russ. J. Biol. Invasions. 9, 108–113 (2018).Article 

    Google Scholar 
    58.Davies, C. E., Moss, D. & Hill, M. O. EUNIS Habitat Classification Revised 2004 (European Topic Centre on Nature Protection and Biodiversity, (2004).59.Dopico, E., Ardura, A. & Garcia-Valguez, E. Exploring changes in biodiversity through pictures: A citizen science experience. Soc. Nat. Resour. 30, 1049–1063. https://doi.org/10.1080/08941920.2017.1284292 (2017).Article 

    Google Scholar 
    60.Fitzgerald, N. B., Kirkpatrick, J. B. & Scott, J. J. Rephotography, permanent plots and remote sensing data provide varying insights on vegetation change on subantarctic Macquarie Island, 1980–2015. Austral Ecol. https://doi.org/10.1111/aec.13015 (2021).Article 

    Google Scholar 
    61.Rosenberg, M. S. & Anderson, C. D. PASSAGE: Pattern analysis, spatial statistics, and geographic exegesis version 2. Methods Ecol. Evol. 2, 229–232. https://doi.org/10.1111/j.2041-210X.2010.00081.x (2011).Article 

    Google Scholar  More

  • in

    Microsatellites reveal that genetic mixing commonly occurs between invasive fall armyworm populations in Africa

    1.CABI. Fall Armyworm (FAW) Portal. www.cabi.org/isc/fallarmyworm (2020).2.Westbrook, J., Nagoshi, R., Meagher, R., Fleischer, S. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267. https://doi.org/10.1007/s00484-015-1022-x (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Nagoshi, R. & Meagher, R. Review of fall armyworm (Lepidoptera: noctuidae) genetic complexity and migration. Fla. Entomol. 91, 546–554. https://doi.org/10.1653/0015-4040-91.4.546 (2008).Article 

    Google Scholar 
    4.Nagoshi, R. N., Meagher, R. L. & Jenkins, D. A. Puerto Rico fall armyworm has only limited interactions with those from Brazil or Texas but could have substantial exchanges with Florida populations. J. Econ. Entomol. 103, 360–367. https://doi.org/10.1603/EC09253 (2010).Article 
    PubMed 

    Google Scholar 
    5.Johnson, S. J. Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the western hemisphere. Int. J. Trop. Insect Sci. 8, 543–549. https://doi.org/10.1017/S1742758400022591 (1987).Article 

    Google Scholar 
    6.Abrahams, P. et al. Fall Armyworm: Impacts and Implications for Africa. Evidence Note 2 (CABI, 2017).
    Google Scholar 
    7.Nagoshi, R. N. et al. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. PLoS ONE 12, e0171743. https://doi.org/10.1371/journal.pone.0171743 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Arias, O. et al. Population genetic structure and demographic history of Spodoptera frugiperda (Lepidoptera: Noctuidae): Implications for insect resistance management programs. Pest Manag. Sci. 75, 2948–2957. https://doi.org/10.1002/ps.5407 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Nagoshi, R. et al. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci. Rep. 8, 3710–3710. https://doi.org/10.1038/s41598-018-21954-1 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Nagoshi, R. N., Adamczyk, J. J., Meagher, R. L., Gore, J. & Jackson, R. Using stable isotope analysis to examine fall armyworm (Lepidoptera: Noctuidae) host strains in a cotton habitat. J. Econ. Entomol. 100, 1569. https://doi.org/10.1603/0022-0493(2007)100[1569:USIATE]2.0.CO2 (2007).Article 
    PubMed 

    Google Scholar 
    11.Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1421. https://doi.org/10.1038/s41598-020-58249-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Nagoshi, R. N. et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE 14, e0217755. https://doi.org/10.1371/journal.pone.0217755 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Nayyar, N. et al. Population structure and genetic diversity of invasive Fall Armyworm after 2 years of introduction in India. Sci. Rep. 11, 7760. https://doi.org/10.1038/s41598-021-87414-5 (2021).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Zhang, L. et al. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol. Ecol. Resour. 20, 1682–1696. https://doi.org/10.1111/1755-0998.13219 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Raymond, L., Plantegenest, M. & Vialatte, A. Migration and dispersal may drive to high genetic variation and significant genetic mixing: The case of two agriculturally important, continental hoverflies (E. pisyrphus balteatus and S. phaerophoria scripta). Mol. Ecol. 22, 5329–5339. https://doi.org/10.1111/mec.12483 (2013).Article 
    PubMed 

    Google Scholar 
    16.Stevens, L. et al. Migration and gene flow among domestic populations of the Chagas insect vector Triatoma dimidiata (Hemiptera: Reduviidae) detected by microsatellite loci. J. Med. Entomol. 52, 419–428. https://doi.org/10.1093/jme/tjv002 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Arias, R. S., Blanco, C. A., Portilla, M., Snodgrass, G. L. & Scheffler, B. E. First microsatellites from Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use for population genetics. Ann. Entomol. Soc. Am. 104, 576–587. https://doi.org/10.1603/an10135 (2011).CAS 
    Article 

    Google Scholar 
    18.Pavinato, V. A., Martinelli, S., de Lima, P. F., Zucchi, M. I. & Omoto, C. Microsatellite markers for genetic studies of the fall armyworm, Spodoptera frugiperda. Genet. Mol. Res.: GMR https://doi.org/10.4238/2013.February.8.1 (2013).Article 
    PubMed 

    Google Scholar 
    19.Nagoshi, R., Silvie, P. & Meagher, R. Comparison of haplotype frequencies differentiate fall armyworm (Lepidoptera: Noctuidae) corn-strain populations from Florida and Brazil. J. Econ. Entomol. 100, 954–961 (2007).Article 

    Google Scholar 
    20.Agapow, P.-M. & Burt, A. Indices of multilocus linkage disequilibrium. Mol. Ecol. Notes 1, 101–102. https://doi.org/10.1046/j.1471-8278.2000.00014.x (2001).CAS 
    Article 

    Google Scholar 
    21.Weir, B. S. Genetic Data Analysis II: Methods for Discrete Population Genetic Data (Sinauer, 1996).
    Google Scholar 
    22.Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. 70, 3321. https://doi.org/10.1073/pnas.70.12.3321 (1973).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    23.Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638. https://doi.org/10.1111/j.0014-3820.2005.tb01814.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Jost, L. O. U. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x (2008).Article 
    PubMed 

    Google Scholar 
    25.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982. https://doi.org/10.1371/journal.pone.0181982 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 8311. https://doi.org/10.1038/s41598-019-44744-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Buès, R., Bouvier, J. C. & Boudinhon, L. Insecticide resistance and mechanisms of resistance to selected strains of Helicoverpa armigera (Lepidoptera: Noctuidae) in the south of France. Crop Prot. 24, 814–820. https://doi.org/10.1016/j.cropro.2005.01.006 (2005).CAS 
    Article 

    Google Scholar 
    30.Armes, N. J., Jadhav, D. R. & DeSouza, K. R. A survey of insecticide resistance in Helicoverpa armigera in the Indian subcontinent. Bull. Entomol. Res. 86, 499–514. https://doi.org/10.1017/S0007485300039298 (1996).CAS 
    Article 

    Google Scholar 
    31.Parry, H. R. et al. Estimating the landscape distribution of eggs by Helicoverpa spp., with implications for Bt resistance management. Ecol. Model. 365, 129–140. https://doi.org/10.1016/j.ecolmodel.2017.10.004 (2017).Article 

    Google Scholar 
    32.Jones, C. M., Parry, H., Tay, W. T., Reynolds, D. R. & Chapman, J. W. Movement ecology of pest Helicoverpa: Implications for ongoing spread. Annu. Rev. Entomol. 64, 277–295. https://doi.org/10.1146/annurev-ento-011118-111959 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Tucker, M. R., Mwandoto, S. & Pedgley, D. E. Further evidence for windborne movement of armyworm moths, Spodoptera exempta, in East Africa. Ecol. Entomol. 7, 463–473. https://doi.org/10.1111/j.1365-2311.1982.tb00689.x (1982).Article 

    Google Scholar 
    34.Rose, D. J. W. et al. Downwind migration of the African army worm moth, Spodoptera exempta, studied by mark-and-capture and by radar. Ecol. Entomol. 10, 299–313. https://doi.org/10.1111/j.1365-2311.1985.tb00727.x (1985).Article 

    Google Scholar 
    35.Rose, D. J. W., Dewhurst, C. F. & Page, W. W. The African Armyworm Handbook: The Status, Biology, Ecology, Epidemiology and Management of Spodoptera exempta (Lepidoptera: Noctuidae) (Natural Resources Institute, 2000).
    Google Scholar 
    36.Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: Mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18, 287–302. https://doi.org/10.1111/ele.12407 (2015).Article 
    PubMed 

    Google Scholar 
    37.Nagoshi, R. N. & Meagher, R. L. Using intron sequence comparisons in the triose-phosphate isomerase gene to study the divergence of the fall armyworm host strains. Insect Mol. Biol. 25, 324–337. https://doi.org/10.1111/imb.12223 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acid Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    39.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673 (1994).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.R Core Team. R Foundation for Statistical Computing (R Core Team, 2020).
    Google Scholar 
    41.Paradis, E. pegas: An R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420. https://doi.org/10.1093/bioinformatics/btp696 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Adamack, A. & Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12158 (2014).Article 

    Google Scholar 
    43.Goudet, J. Hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x (2005).Article 

    Google Scholar 
    44.Winter, D. MMOD: An R library for the calculation of population differentiation statistics. Mol. Ecol. Resour. https://doi.org/10.1111/j.1755-0998.2012.03174.x (2012).Article 
    PubMed 

    Google Scholar 
    45.Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573 (1995).Article 

    Google Scholar 
    47.Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.0-2. (2012).48.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    Article 

    Google Scholar 
    49.Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    50.Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806. https://doi.org/10.1093/bioinformatics/btm233 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138. https://doi.org/10.1046/j.1471-8286.2003.00566.x (2004).Article 

    Google Scholar  More

  • in

    The invasive cactus Opuntia stricta creates fertility islands in African savannas and benefits from those created by native trees

    1.Pyšek, P. et al. Naturalized alien flora of the world. Preslia 89, 203–274 (2017).Article 

    Google Scholar 
    2.Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. (2020).3.Vilà, M. et al. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).PubMed 
    Article 

    Google Scholar 
    4.Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 18, 1725–1737 (2012).ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    5.Le Roux, J. J. et al. Recent anthropogenic plant extinctions differ in biodiversity hotspots and coldspots. Curr. Biol. 29, 2912-2918.e2 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    6.Hulme, P. E. et al. Greater focus needed on alien plant impacts in protected areas. Conserv. Lett. 7, 459–466 (2014).Article 

    Google Scholar 
    7.Foxcroft, L. C., Pyšek, P., Richardson, D. M., Genovesi, P. & MacFadyen, S. Plant invasion science in protected areas: progress and priorities. Biol. Invasions 19, 1353–1378 (2017).Article 

    Google Scholar 
    8.Novoa, A. et al. Invasion syndromes: A systematic approach for predicting biological invasions and facilitating effective management. Biol. Invasions 22, 1801–1820 (2020).Article 

    Google Scholar 
    9.Foxcroft, L. C., Pickett, S. T. A. & Cadenasso, M. L. Expanding the conceptual frameworks of plant invasion ecology. Perspect. Plant Ecol. Evol. Syst. 13, 89–100 (2011).Article 

    Google Scholar 
    10.Scholes, R. J. & Archer, S. R. Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).Article 

    Google Scholar 
    11.Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis (Island Press, 2005).
    Google Scholar 
    12.Foxcroft, L. C., Richardson, D. M., Rejmánek, M. & Pyšek, P. Alien plant invasions in tropical and sub-tropical savannas: Patterns, processes and prospects. Biol. Invasions 12, 3913–3933 (2010).Article 

    Google Scholar 
    13.Rejmánek, M., Huntley, B. J., Le Roux, J. J. & Richardson, D. M. A rapid survey of the invasive plant species in western Angola. Afr. J. Ecol. 55, 56–69 (2017).Article 

    Google Scholar 
    14.Shackleton, R. T., Foxcroft, L. C., Pyšek, P., Wood, L. E. & Richardson, D. M. Assessing biological invasions in protected areas after 30 years: Revisiting nature reserves targeted by the 1980s SCOPE programme. Biol. Conserv. 243, 108424 (2020).Article 

    Google Scholar 
    15.Skarpe, C. Dynamics of savanna ecosystems. J. Veg. Sci. 3, 293–300 (1992).Article 

    Google Scholar 
    16.Okin, G. S. et al. Spatial patterns of soil nutrients in two southern African savannas. J. Geophys. Res. Biogeosci. 113, G2 (2008).Article 

    Google Scholar 
    17.Ridolfi, L., Laio, F. & D’Odorico, P. Fertility island formation and evolution in dryland ecosystems. Ecol. Soc. 13, 5 (2008).Article 

    Google Scholar 
    18.Perroni-Ventura, Y., Montaña, C. & Garcí-a-Oliva, F. Carbon-nitrogen interactions in fertility island soil from a tropical semi-arid ecosystem. Funct. Ecol. 24, 233–242 (2010).Article 

    Google Scholar 
    19.Belnap, J. & Susan, L. P. Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion. Ecol. Appl. 51, 1261–1275. (2001).Article 

    Google Scholar 
    20.Ludwig, F., Kroon, H., Prins, H. H. T. & Berendse, F. Effects of nutrients and shade on tree-grass interactions in an East African savanna. J. Veg. Sci. 12, 579–588 (2001).Article 

    Google Scholar 
    21.Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. New Phytol. 170, 445–457 (2006).PubMed 
    Article 

    Google Scholar 
    22.Weidenhamer, J. D. & Callaway, R. M. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J. Chem. Ecol. 36, 59–69 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Levine, J. M., Pachepsky, E., Kendall, B. E., Yelenik, S. G. & Lambers, J. H. R. Plant-soil feedbacks and invasive spread. Ecol. Lett. 9, 1005–1014 (2006).PubMed 
    Article 

    Google Scholar 
    24.du Toit, J. T., Rogers, K. H. & Biggs, H. C. The Kruger Experience: Ecology and Management of Savanna Heterogeneity. (Island Press, 2003).25.Foxcroft, L. C., Van Wilgen, N. J., Baard, J. A. & Cole, N. S. Biological invasions in South African National Parks. Bothalia 47, 11 (2017).Article 

    Google Scholar 
    26.Pyšek, P. et al. Into the great wide open: do alien plants spread from rivers to dry savanna in the Kruger National Park?. NeoBiota 60, 61–77 (2020).Article 

    Google Scholar 
    27.Kueffer, C., Pyšek, P. & Richardson, D. M. Integrative invasion science: Model systems, multi-site studies, focused meta-analysis and invasion syndromes. New Phytol. 200, 615–633 (2013).PubMed 
    Article 

    Google Scholar 
    28.Lotter, W. D. & Hoffmann, J. H. An integrated management plan for the control of Opuntia stricta (Cactaceae) in the Kruger National Park, South Africa. Koedoe 41, 63–68 (1998).Article 

    Google Scholar 
    29.Hoffmann, J. H., Moran, V. C., Zimmermann, H. G. & Impson, F. A. C. Biocontrol of a prickly pear cactus in South Africa: Reinterpreting the analogous, renowned case in Australia. J. Appl. Ecol. 13737, 1365–2664. (2020).
    Google Scholar 
    30.Foxcroft, L. C., Rouget, M., Richardson, D. M. & MacFadyen, S. Reconstructing 50 years of Opuntia stricta invasion in the Kruger National Park, South Africa: Environmental determinants and propagule pressure. Divers. Distrib. 10, 427–437 (2004).Article 

    Google Scholar 
    31.Novoa, A., Le Roux, J. J., Robertson, M. P., Wilson, J. R. U. & Richardson, D. M. Introduced and invasive cactus species: A global review. AoB Plants 7, 1 (2015).Article 

    Google Scholar 
    32.Foxcroft, L. C., Hoffmann, J. H., Viljoen, J. J. & Kotze, J. J. Environmental factors influencing the distribution of Opuntia stricta, an invasive alien plant in the Kruger National Park, South Africa. S. Afr. J. Bot. 73, 109–112 (2007).Article 

    Google Scholar 
    33.Foxcroft, L. C. & Rejmánek, M. What helps Opuntia stricta invade Kruger National Park, South Africa: Baboons or elephants?. Appl. Veg. Sci. 10, 265–270 (2007).Article 

    Google Scholar 
    34.Anderson, E. F. The Cactus Family. (Timber Press, 2001).35.Reyes-Agüero, J. A., Aguirre, R. J. R. & Valiente-Banuet, A. Reproductive biology of Opuntia: A review. J. Arid Environ. 64, 549–585 (2006).ADS 
    Article 

    Google Scholar 
    36.Robertson, M. P. et al. Assessing local scale impacts of Opuntia stricta (Cactaceae) invasion on beetle and spider diversity in Kruger National Park, South Africa. Afr. Zool. 46, 205–223 (2011).Article 

    Google Scholar 
    37.Butterfield, B. J. & Briggs, J. M. Patch dynamics of soil biotic feedbacks in the Sonoran Desert. J. Arid Environ. 73, 96–102 (2009).ADS 
    Article 

    Google Scholar 
    38.Neffar, S., Chenchouni, H., Beddiar, A. & Redjel, N. Rehabilitation of degraded rangeland in drylands by Prickly Pear (Opuntia ficus-indica L.) plantations: Effect on soil and spontaneous vegetation. Ecol. Balk. 5, 63–76 (2013).39.Garner, W. & Steinberger, Y. A proposed mechanism for the formation of ‘Fertile Islands’ in the desert ecosystem. J. Arid Environ. 16, 257–262 (1989).ADS 
    Article 

    Google Scholar 
    40.Marchante, H., Elizabete M, & Helena, F. Invasion of the Portuguese dune ecosystems by the exotic species Acacia longifolia (Andrews) Willd.: effects at the community level. Plant invasions: ecological threats and management solutions. pp. 75–85 (2003).41.Marchante, E. et al. Short-and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Appl. Soil Ecol. 40(2), 210–217 (2008).Article 

    Google Scholar 
    42.Yelenik, S. G., Stock, W. D. & Richardson, D. M. Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restor. Ecol. 12(1), 44–51 (2004).Article 

    Google Scholar 
    43.Werner, C. et al. High competitiveness of a resource demanding invasive acacia under low resource supply. Plant Ecol. 206(1), 83–96 (2010).Article 

    Google Scholar 
    44.Le Maitre, D. C. et al. Impacts of invasive Australian acacias: implications for management and restoration. Divers. Distrib. 17(5), 1015–1029 (2011).Article 

    Google Scholar 
    45.Bargali, K. & Bargali, S. S. Acacia nilotica: a multipurpose leguminous plant. Nat. Sci. 7, 11–19 (2009).
    Google Scholar 
    46.Rughöft, S. et al. Community composition and abundance of bacterial, archaeal and nitrifying populations in savanna soils on contrasting bedrock material in Kruger National Park, South Africa. Front. Microbiol. 7, 1638 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    47.Neilson, J. W. et al. Life at the hyperarid margin: Novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles 16, 553–566 (2012).PubMed 
    Article 

    Google Scholar 
    48.de Vos, P. et al. The Firmicutes. Bergey’s Manual of Systematic Bacteriology. (Springer, 2009).49.Brockett, B. F. T., Prescott, C. E. & Grayston, S. J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 44, 9–20 (2012).CAS 
    Article 

    Google Scholar 
    50.Yang, Y., Dou, Y. & An, S. Testing association between soil bacterial diversity and soil carbon storage on the Loess Plateau. Sci. Total Environ. 626, 48–58 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Rajaniemi, T. K. & Allison, V. J. Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biol. Biochem. 41, 102–109 (2009).CAS 
    Article 

    Google Scholar 
    52.Novoa, A., Rodríguez, R., Richardson, D. & González, L. Soil quality: A key factor in understanding plant invasion? The case of Carpobrotus edulis (L.) N.E.Br. Biol. Invasions 16, 429–443 (2014).53.Penfield, S. Seed dormancy and germination. Curr. Biol. 27, R874–R878 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Tielbörger, K. & Prasse, R. Do seeds sense each other? Testing for density-dependent germination in desert perennial plants. Oikos 118, 792–800 (2009).Article 

    Google Scholar 
    55.Renne, I. J. et al. Eavesdropping in plants: delayed germination via biochemical recognition. J. Ecol. 102, 86–94 (2014).Article 

    Google Scholar 
    56.Yannelli, F. A., Novoa, A., Lorenzo, P., Rodríguez, J. & Le Roux, J. J. No evidence for novel weapons: biochemical recognition modulates early ontogenetic processes in native species and invasive acacias. Biol. Invasions 22, 549–562 (2020).Article 

    Google Scholar 
    57.Al-Wakeel, S. A. M., Gabr, M. A., Hamid, A. A. & Abu-El-Soud, W. M. Allelopathic effects of Acacia nilotica leaf residue on Pisum sativum L. Allelopath. J. 19, 411 (2007).
    Google Scholar 
    58.Scholes, M. C., Scholes, R. J., Otter, L. B. & Woghiren, A. J. Biogeochemistry: The cycling of elements. in The Kruger Experience: Ecology and Management of Savanna Heterogeneity (eds. du Toit, J. T., Rogers, K. H. & Biggs, H. C.) 130–148 (Island Press, 2003).59.Kyalangalilwa, B., Boatwright, J. S., Daru, B. H., Maurin, O. & van der Bank, M. Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Bot. J. Linn. Soc. 172, 500–523 (2013).Article 

    Google Scholar 
    60.van Wyk, B. & van Wyk, P. Field Guide to Trees of Southern Africa. (Struik Nature, 2013).61.Coates Palgrave, K. & Coates Palgrave, M. Palgrave’s Trees of Southern Africa. (Struik Publishers, 2002).62.Novoa, A., Kumschick, S., Richardson, D. M., Rouget, M. & Wilson, J. R. U. Native range size and growth form in Cactaceae predict invasiveness and impact. NeoBiota 30, 75–90 (2016).Article 

    Google Scholar 
    63.Allen, S. E. Chemical Analysis of Ecological Materials. (Blackwell Scientific Publications, 1989).64.Tabatabai, M. A. & Bremner, J. M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1, 301–307 (1969).CAS 
    Article 

    Google Scholar 
    65.Kandeler, E. & Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6, 68–72 (1988).CAS 
    Article 

    Google Scholar 
    66.Allison, S. D. & Vitousek, P. M. Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica 36, 285–296 (2004).
    Google Scholar 
    67.German, D. P., Chacon, S. S. & Allison, S. D. Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology 92, 1471–1480 (2011).PubMed 
    Article 

    Google Scholar 
    68.Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. 82, 6955–6959 (1985).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Tringe, S. G. & Hugenholtz, P. A renaissance for the pioneering 16S rRNA gene. Curr. Opin. Microbiol. 11, 442–446 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Bukin, Y. S. et al. The effect of 16s rRNA region choice on bacterial community metabarcoding results. Sci. Data 6, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    71.Chakravorty, S., Helb, D., Burday, M., Connell, N. & Alland, D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69, 330–339 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Beckers, B. et al. Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in metabarcoding studies. Front. Microbiol. 7, 1–15 (2016).Article 

    Google Scholar 
    73.Thijs, S. et al. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front. Microbiol. 8, 1–15 (2017).Article 

    Google Scholar 
    74.Schloss, P. D., & Westcott, S. L. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 77(10), 3219–3226 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    79.Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 1–18 (2017).Article 

    Google Scholar 
    80.de Cárcer, D. A., Denman, S. E., McSweeney, C. & Morrison, M. Evaluation of subsampling-based normalization strategies for tagged high-throughput sequencing data sets from gut microbiomes. Appl. Environ. Microbiol. 77, 8795–8798 (2011).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    81.Chiapusio, G., Sánchez, A. M., Reigosa, M. J., González, L. & Pellissier, F. Do germination indices adequately reflect allelochemical effects on the germination process?. J. Chem. Ecol. 23, 2445–2453 (1997).CAS 
    Article 

    Google Scholar 
    82.Oksanen, J. F. et al. vegan: Community Ecology Package. R package version 2.3-3. (2016).83.Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    84.Jost, L. The relation between evenness and diversity. Diversity 2, 207–232 (2010).Article 

    Google Scholar 
    85.Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).PubMed 
    Article 

    Google Scholar 
    86.Charney, N. & Record, S. vegetarian: Jost Diversity Measures for Community Data. R package version 1.2. (2012).87.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 
    88.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, 1–18 (2011).Article 

    Google Scholar 
    89.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article 

    Google Scholar  More

  • in

    Interspecific variation in evaporative water loss and temperature response, but not metabolic rate, among hibernating bats

    1.Lyman, C. P. & Chatfield, P. O. Physiology of hibernation in mammals. Physiol. Rev. 35, 403–425 (1955).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Geiser, F. Hibernation. Curr. Biol. 23, R188–R193 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Humphries, M. M., Thomas, D. W. & Speakman, J. R. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418, 313–316 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Wilkinson, G. S. & Adams, D. M. Recurrent evolution of extreme longevity in bats. Biol. Lett. 15, 20180860 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Frick, W. F., Reynolds, D. S. & Kunz, T. H. Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J. Anim. Ecol. 79, 128–136 (2010).PubMed 
    Article 

    Google Scholar 
    6.Willis, C. K. Trade-offs influencing the physiological ecology of hibernation in temperate-zone bats. Integr. Comp. Biol. 57, 1214–1224 (2017).PubMed 
    Article 

    Google Scholar 
    7.Lane, J. E. In Living in a Seasonal World 51–61 (Springer, 2012).8.Inouye, D. W., Barr, B., Armitage, K. B. & Inouye, B. D. Climate change is affecting altitudinal migrants and hibernating species. Proc. Natl. Acad. Sci. 97, 1630–1633 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Lane, J. E., Kruuk, L. E., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Feder, M. E. In New Directions in Ecological Physiology (eds M. E. Feder, A. F. Bennett, W. W. Burggren, & R. B Huey) 38–75 (Cambridge University Press, 1987).11.Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274. https://doi.org/10.1146/annurev.physiol.66.032102.115105 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Boyles, J. G. et al. A global heterothermic continuum in mammals. Glob. Ecol. Biogeogr. 22, 1029–1039 (2013).Article 

    Google Scholar 
    13.Ruf, T. & Arnold, W. Effects of polyunsaturated fatty acids on hibernation and torpor: A review and hypothesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1044-1052. https://doi.org/10.1152/ajpregu.00688.2007 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Ruf, T. & Geiser, F. Daily torpor and hibernation in birds and mammals. Biol. Rev. Camb. Philos. Soc. https://doi.org/10.1111/brv.12137 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Heldmaier, G., Ortmann, S. & Elvert, R. Natural hypometabolism during hibernation and daily torpor in mammals. Respir. Physiol. Neurobiol. 141, 317–329 (2004).PubMed 
    Article 

    Google Scholar 
    16.van Breukelen, F. & Martin, S. L. The hibernation continuum: Physiological and molecular aspects of metabolic plasticity in mammals. Physiology 30, 273–281 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    17.Nowack, J., Levesque, D. L., Reher, S. & Dausmann, K. H. Variable climates lead to varying phenotypes: ‘Weird’mammalian torpor and lessons from non-Holarctic species. Front. Ecol. Evol. 8, 60 (2020).Article 

    Google Scholar 
    18.Stawski, C., Willis, C. & Geiser, F. The importance of temporal heterothermy in bats. J. Zool. 292, 86–100 (2014).Article 

    Google Scholar 
    19.Thomas, D. W., Dorais, M. & Bergeron, J.-M. Winter energy budgets and cost of arousals for hibernating little brown bats, Myotis lucifugus. J. Mammal. 71, 475–479 (1990).Article 

    Google Scholar 
    20.Kunz, T. H., Wrazen, J. A. & Burnett, C. D. Changes in body mass and fat reserves in pre-hibernating little brown bats (Myotis lucifugus). Ecoscience 5, 8–17 (1998).Article 

    Google Scholar 
    21.Thomas, D. W. & Cloutier, D. Evaporative water loss by hibernating little brown bats, Myotis lucifugus. Physiol. Zool. 65, 443–456 (1992).Article 

    Google Scholar 
    22.Kornfeld, S. F., Biggar, K. K. & Storey, K. B. Differential expression of mature microRNAs involved in muscle maintenance of hibernating little brown bats, Myotis lucifugus: A model of muscle atrophy resistance. Genom. Proteom. Bioinform. 10, 295–301 (2012).CAS 
    Article 

    Google Scholar 
    23.Eddy, S. F., Morin, P. Jr. & Storey, K. B. Differential expression of selected mitochondrial genes in hibernating little brown bats, Myotis lucifugus. J. Exp. Zool. A Comp. Exp. Biol. 305, 620–630 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    24.Brigham, R., Ianuzzo, C., Hamilton, N. & Fenton, M. Histochemical and biochemical plasticity of muscle fibers in the little brown bat (Myotis lucifugus). J. Comp. Physiol. B. 160, 183–186 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.McGuire, L. P., Mayberry, H. W. & Willis, C. K. R. White-nose syndrome increases torpid metabolic rate and evaporative water loss in hibernating bats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 313, R680–R686 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Jonasson, K. A. & Willis, C. K. Hibernation energetics of free-ranging little brown bats. J. Exp. Biol. 215, 2141–2149 (2012).PubMed 
    Article 

    Google Scholar 
    27.Klüg-Baerwald, B. J. & Brigham, R. M. Hung out to dry? Intraspecific variation in water loss in a hibernating bat. Oecologia 183, 977–985 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    28.Dunbar, M. B. & Brigham, R. M. Thermoregulatory variation among populations of bats along a latitudinal gradient. J. Comp. Physiol. B 180, 885–893 (2010).PubMed 
    Article 

    Google Scholar 
    29.Yacoe, M. E. Protein metabolism in the pectoralis muscle and liver of hibernating bats, Eptesicus fuscus. J. Comp. Physiol. 152, 137–144 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Yacoe, M. E. Maintenance of the pectoralis muscle during hibernation in the big brown bat, Eptesicus fuscus. J. Comp. Physiol. 152, 97–104 (1983).Article 

    Google Scholar 
    31.Twente, J. W. & Twente, J. Biological alarm clock arouses hibernating big brown bats, Eptesicus fuscus. Can. J. Zool. 65, 1668–1674 (1987).Article 

    Google Scholar 
    32.Boratyński, J. S., Willis, C. K., Jefimow, M. & Wojciechowski, M. S. Huddling reduces evaporative water loss in torpid Natterer’s bats, Myotis nattereri. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 179, 125–132 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    33.Hope, P. R. & Jones, G. Warming up for dinner: Torpor and arousal in hibernating Natterer’s bats (Myotis nattereri) studied by radio telemetry. J. Comp. Physiol. B. 182, 569–578 (2012).PubMed 
    Article 

    Google Scholar 
    34.Park, K. J., Jones, G. & Ransome, R. D. Torpor, arousal and activity of hibernating greater horseshoe bats (Rhinolophus ferrumequinum). Funct. Ecol. 14, 580–588 (2000).Article 

    Google Scholar 
    35.Ben-Hamo, M., Muñoz-Garcia, A., Williams, J. B., Korine, C. & Pinshow, B. Waking to drink: Rates of evaporative water loss determine arousal frequency in hibernating bats. J. Exp. Biol. 216, 573–577 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lausen, C. & Barclay, R. Winter bat activity in the Canadian prairies. Can. J. Zool. 84, 1079–1086 (2006).Article 

    Google Scholar 
    37.McGuire, L. P. et al. Similar physiology in hibernating bats across broad geographic ranges. J. Comp. Physiol. B. https://doi.org/10.1007/s00360-021-01400-x (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009).MATH 
    Book 

    Google Scholar 
    39.Hothorn, T. & Everitt, B. S. A handbook of statistical analyses using R (CRC Press, London, 2014).MATH 
    Book 

    Google Scholar 
    40.United States Fish and Wildlife Service. National white-nose syndrome decontamination protocol-Version 09-13-2018. http://www.whitenosesyndrome.org (2018).41.Canadian Cooperative Wildlife Health Centre. Guidelines for decontamination of equipment and clothing to prevent the spread of white-nose syndrome (the causal fungus: Pseudogymnoascus destructans) in Canada, http://www2.cwhc-rcsf.ca/wns_decontamination.php (2020).42.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).43.McGuire, L. P., Guglielmo, C. G., Mackenzie, S. A. & Taylor, P. D. Migratory stopover in the long-distance migrant silver-haired bat, Lasionycteris noctivagans. J. Anim. Ecol. 81, 377–385 (2012).PubMed 
    Article 

    Google Scholar 
    44.Nagorsen, D. W. & Brigham, R. M. Bats of British Columbia. Vol. 1 (UBC Press, 1993).45.Villa, B. R. & Cockrum, E. L. Migration in the guano bat Tadarida brasiliensis mexicana (Saussure). J. Mammal. 43, 43–64 (1962).Article 

    Google Scholar 
    46.Kunkel, E. L. Ecology and energetics of partial migration and facultative hibernation of Mexican free-tailed bats MS thesis, Texas Tech University (2020).47.Sandel, J. K. et al. Use and selection of winter hibernacula by the eastern pipistrelle (Pipistrellus subflavus) in Texas. J. Mammal. 82, 173–178 (2001).Article 

    Google Scholar 
    48.Jones, C. & Pagels, J. Notes on a population of Pipistrellus subflavus in southern Louisiana. J. Mammal. 49, 134–139 (1968).Article 

    Google Scholar 
    49.McClure, M. M. et al. A hybrid corelative-mechanistic approach for modeling and mapping winter distributions of North American bat species. J. Biogeogr. 48, 2429–2444 (2021).Article 

    Google Scholar 
    50.McClure, M. M. et al. Linking surface and subterranean climate: Implications for the study of hibernating bats and other cave dwellers. Ecosphere 11, E03274 (2020).Article 

    Google Scholar 
    51.Perry, R. W. A review of factors affecting cave climates for hibernating bats in temperate North America. Environ. Rev. 21, 28–39. https://doi.org/10.1139/er-2012-0042 (2013).Article 

    Google Scholar 
    52.Hranac, C. R. et al. What is winter? Modelling spatial variation in bat host traits and hibernation and their implications for overwintering energetics. Ecol. Evol. 11, 11604–11614 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.McGuire, L., Muise, K. A., Shrivastav, A. & Willis, C. K. R. No evidence of hyperphagia during prehibernation in a northern population of little brown bats (Myotis lucifugus). Can. J. Zool. 94, 821–827 (2016).CAS 
    Article 

    Google Scholar 
    54.Czenze, Z. J., Jonasson, K. A. & Willis, C. K. Thrifty females, frisky males: Winter energetics of hibernating bats from a cold climate. Physiol. Biochem. Zool. 90, 502–511 (2017).PubMed 
    Article 

    Google Scholar 
    55.Kurta, A. The misuse of relative humidity in ecological studies of hibernating bats. Acta Chiropt. 16, 249–254 (2014).Article 

    Google Scholar 
    56.Weller, T. J. et al. A review of bat hibernacula across the western United States: Implications for white-nose syndrome surveillance and management. PLoS One 13, e0205647 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Gearhart, C., Adams, A. M., Pinshow, B. & Korine, C. Evaporative water loss in Kuhl’s pipistrelles declines along an environmental gradient, from mesic to hyperarid. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 240, 110587 (2020).CAS 
    Article 

    Google Scholar 
    58.Thomas, D. W. & Geiser, F. Periodic arousals in hibernating mammals: Is evaporative water loss involved?. Funct. Ecol. 11, 585–591 (1997).Article 

    Google Scholar 
    59.Haase, C. G. et al. Incorporating evaporative water loss into bioenergetic models of hibernation to test for relative influence of host and pathogen traits on white-nose syndrome. PLoS One 14, e0222311 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Willis, C. K. Conservation physiology and conservation pathogens: White-nose syndrome and integrative biology for host–pathogen systems. Integr. Comp. Biol. 55, 631–641 (2015).PubMed 
    Article 

    Google Scholar 
    61.Frick, W. F. et al. Disease alters macroecological patterns of North American bats. Glob. Ecol. Biogeogr. 24, 741–749 (2015).Article 

    Google Scholar 
    62.Willis, C. K., Menzies, A. K., Boyles, J. G. & Wojciechowski, M. S. Evaporative water loss is a plausible explanation for mortality of bats from white-nose syndrome. Integr. Comp. Biol. 51, 364–373. https://doi.org/10.1093/icb/icr076 (2011).Article 
    PubMed 

    Google Scholar 
    63.Wilder, A. P., Frick, W. F., Langwig, K. E. & Kunz, T. H. Risk factors associated with mortality from white-nose syndrome among hibernating bat colonies. Biol. Lett. 7, 950–953 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Langwig, K. E. et al. Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol. Lett. 15, 1050–1057. https://doi.org/10.1111/j.1461-0248.2012.01829.x (2012).Article 
    PubMed 

    Google Scholar 
    65.Voigt, C. C. & Kingston, T. Bats in the Anthropocene: Conservation of Bats in a Changing World (Springer, New York, 2016).Book 

    Google Scholar 
    66.Kahle, D. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J. 5, 144–161 (2013).Article 

    Google Scholar  More

  • in

    Multidimensional natal isotopic niches reflect migratory patterns in birds

    1.Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    2.Chase, J. M. & Leibold, M. A. Ecological Niches. Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).Book 

    Google Scholar 
    3.Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proc. Natl. Acad. Sci. 106, 19659–19665 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Heldbjerg, H. & Fox, T. Long-term population declines in Danish trans-Saharan migrant birds. Bird Study 55, 267–279 (2008).Article 

    Google Scholar 
    5.Evans, K. L., Newton, J., Mallord, J. W. & Markman, S. Stable isotope analysis provides new information on winter habitat use of declining avian migrants that is relevant to their conservation. PLoS ONE 7, e34542 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).Article 

    Google Scholar 
    7.Heiss, M. The importance of Besh Barmag bottleneck (Azerbaijan) for Eurasian migrant birds. Acta Ornithol. 48, 151–164 (2013).Article 

    Google Scholar 
    8.Buechley, E. R. et al. Identifying critical migratory bottlenecks and high-use areas for an endangered migratory soaring bird across three continents. J. Avian Biol. 49, e01629 (2018).Article 

    Google Scholar 
    9.Cardenas-Ortiz, L., Bayly, N. J., Kardynal, K. J. & Hobson, K. A. Defining catchment origins of a geographical bottleneck: Implications of population mixing and phenological overlap for the conservation of Neotropical migratory birds. The Condor 122, 004 (2020).Article 

    Google Scholar 
    10.Yohannes, E., Hobson, K. A. & Pearson, D. J. Feather stable-isotope profiles reveal stopover habitat selection and site fidelity in nine migratory species moving through sub-Saharan Africa: Feather stable-isotope profiles reveal stopover habitat selection. J. Avian Biol. 38, 347–355 (2007).
    Google Scholar 
    11.Hobson, K. A. & Koehler, G. On the use of stable oxygen isotope (δ18O) measurements for tracking avian movements in North America. Ecol. Evol. 5, 799–806 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: A novel approach using stable isotope analysis: Stable isotopes as measures of niche width. J. Anim. Ecol. 73, 1007–1012 (2004).Article 

    Google Scholar 
    13.Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436 (2007).Article 

    Google Scholar 
    14.Hobson, K. Isotopic ornithology: A perspective. J. Ornithol. https://doi.org/10.1007/s10336-011-0653-x (2011).Article 

    Google Scholar 
    15.Hoenighaus, D. J., Winemiller, K. O. & Agostinho, A. A. Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs. Ecosystems 10, 1019–1033 (2007).Article 

    Google Scholar 
    16.Hette-Tronquart, N. Isotopic niche is not equal to trophic niche. Ecol. Lett. 22, 1987–1989 (2019).PubMed 
    Article 

    Google Scholar 
    17.Inger, R. & Bearhop, S. Applications of stable isotope analyses to avian ecology: Avian stable isotope analysis. Ibis 150, 447–461 (2008).Article 

    Google Scholar 
    18.Bowen, G. J. Isoscapes: Spatial pattern in isotopic biogeochemistry. Annu. Rev. Earth Planet. Sci. 38, 161–187 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Hobson, K. A., Bowen, G. J., Wassenaar, L. I., Ferrand, Y. & Lormee, H. Using stable hydrogen and oxygen isotope measurements of feathers to infer geographical origins of migrating European birds. Oecologia 141, 477–488 (2004).ADS 
    PubMed 
    Article 

    Google Scholar 
    20.Magozzi, S., Vander Zanden, H. B., Wunder, M. B. & Bowen, G. J. Mechanistic model predicts tissue-environment relationships and trophic shifts in animal hydrogen and oxygen isotope ratios. Oecologia 191, 777–789 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    21.Vander Zanden, H. B., Soto, D. X., Bowen, G. J. & Hobson, K. A. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2016 (2016).Article 

    Google Scholar 
    22.Pekarsky, S. et al. Enriching the isotopic toolbox for migratory connectivity analysis: A new approach for migratory species breeding in remote or unexplored areas. Divers. Distrib. 21, 416–427 (2015).Article 

    Google Scholar 
    23.Shipley, O. N. & Matich, P. Studying animal niches using bulk stable isotope ratios: An updated synthesis. Oecologia 193, 27–51 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    24.Hobson, K. A. Tracing origins and migration of wildlife using stable isotopes: A review. Oecologia 120, 314–326 (1999).ADS 
    PubMed 
    Article 

    Google Scholar 
    25.Hobson, K. A. & Wassenaar, L. I. Tracking Animal Migration with Stable Isotopes (Academic Press, 2018).
    Google Scholar 
    26.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 16 (2002).
    Google Scholar 
    27.Abrantes, K. G., Barnett, A. & Bouillon, S. Stable isotope-based community metrics as a tool to identify patterns in food web structure in east African estuaries. Funct. Ecol. 28, 270–282 (2014).Article 

    Google Scholar 
    28.Wang, J., Chapman, D., Xu, J., Wang, Y. & Gu, B. Isotope niche dimension and trophic overlap between bigheaded carps and native filter-feeding fish in the lower Missouri River, USA. PLoS ONE 13, e0197584 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Steenweg, R. J. et al. Stable isotopes can be used to infer the overwintering locations of prebreeding marine birds in the Canadian Arctic. Ecol. Evol. 7, 8742–8752 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Rader, J. A. et al. Isotopic niches support the resource breadth hypothesis. J. Anim. Ecol. 86, 405–413 (2017).PubMed 
    Article 

    Google Scholar 
    31.Ma, C., Shen, Y., Bearup, D., Fagan, W. F. & Liao, J. Spatial variation in branch size promotes metapopulation persistence in dendritic river networks. Freshw. Biol. 65, 426–434 (2020).Article 

    Google Scholar 
    32.Langin, K. M. et al. Hydrogen isotopic variation in migratory bird tissues of known origin: Implications for geographic assignment. Oecologia 152, 449–457 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    33.Levey, D. J. & Stiles, F. G. Evolutionary precursors of long-distance migration: Resource availability and movement patterns in neotropical landbirds. Am. Nat. 140, 447–476 (1992).Article 

    Google Scholar 
    34.Cresswell, W. Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: The serial residency hypothesis. Ibis 156, 493–510 (2014).Article 

    Google Scholar 
    35.Reif, J., Hořák, D., Krištín, A., Kopsová, L. & Devictor, V. Linking habitat specialization with species’ traits in European birds. Oikos 125, 405–413 (2016).Article 

    Google Scholar 
    36.Laube, I., Graham, C. H. & Böhning-Gaese, K. Niche availability in space and time: Migration in Sylvia warblers. J. Biogeogr. 42, 1896–1906 (2015).Article 

    Google Scholar 
    37.Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Seasonal climatic niches diverge in migratory birds. Ibis 162, 318–330 (2020).Article 

    Google Scholar 
    38.Dunn, E., Hobson, K., Wassenaar, L., Hussell, D. & Allen, M. Identification of summer origins of songbirds migrating through southern Canada in Autumn. Avian Conserv. Ecol. https://doi.org/10.5751/ACE-00048-010204 (2006).Article 

    Google Scholar 
    39.Briedis, M. et al. Breeding latitude leads to different temporal but not spatial organization of the annual cycle in a long-distance migrant. J. Avian Biol. 47, 743–748 (2016).Article 

    Google Scholar 
    40.Briedis, M. et al. Broad-scale patterns of the Afro-Palaearctic landbird migration. Glob. Ecol. Biogeogr. 29, 722–735 (2020).Article 

    Google Scholar 
    41.Cortesi, N., Gonzalez-Hidalgo, J. C., Brunetti, M. & Martin-Vide, J. Daily precipitation concentration across Europe 1971–2010. Nat. Hazards Earth Syst. Sci. 12, 2799–2810 (2012).ADS 
    Article 

    Google Scholar 
    42.Salewski, V., Bairlein, F. & Leisler, B. Niche partitioning of two Palearctic passerine migrants with Afrotropical residents in their West African winter quarters. Behav. Ecol. 14, 493–502 (2003).Article 

    Google Scholar 
    43.Jones, P., Salewski, V., Vickery, J. & Mapaure, I. Habitat use and densities of co-existing migrant Willow Warblers Phylloscopus trochilus and resident eremomelas Eremomela spp. in Zimbabwe. Bird Study 57, 44–55 (2010).Article 

    Google Scholar 
    44.Brändle, M., Prinzing, A., Pfeifer, R. & Brandl, R. Dietary niche breadth for Central European birds: Correlations with species-specific traits. Evol. Ecol. Res. 4(5), 643–657 (2002).
    Google Scholar 
    45.Hahn, S., Amrhein, V., Zehtindijev, P. & Liechti, F. Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long-distance migrating songbird. Oecologia 173, 1217–1225 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    46.Finch, T., Butler, S. J., Franco, A. M. A. & Cresswell, W. Low migratory connectivity is common in long-distance migrant birds. J. Anim. Ecol. 86, 662–673 (2017).PubMed 
    Article 

    Google Scholar 
    47.Somveille, M., Manica, A. & Rodrigues, A. S. L. Where the wild birds go: Explaining the differences in migratory destinations across terrestrial bird species. Ecography 42, 225–236 (2019).Article 

    Google Scholar 
    48.Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons? J. Biogeogr. 45, 1459–1468 (2018).Article 

    Google Scholar 
    49.Rubenstein, D. R. Linking breeding and wintering ranges of a migratory songbird using stable isotopes. Science 295, 1062–1065 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & van Bommel, F. P. J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).Article 

    Google Scholar 
    51.Ockendon, N., Hewson, C. M., Johnston, A. & Atkinson, P. W. Declines in British-breeding populations of Afro-Palaearctic migrant birds are linked to bioclimatic wintering zone in Africa, possibly via constraints on arrival time advancement. Bird Study 59, 111–125 (2012).Article 

    Google Scholar 
    52.Keller, G. S. & Yahner, R. H. Declines of migratory songbirds: Evidence for Wintering-ground causes. Northeast. Nat. 13, 83–92 (2006).Article 

    Google Scholar 
    53.Morrison, C. A., Robinson, R. A., Clark, J. A., Risely, K. & Gill, J. A. Recent population declines in Afro-Palaearctic migratory birds: The influence of breeding and non-breeding seasons. Divers. Distrib. 19, 1051–1058 (2013).Article 

    Google Scholar 
    54.López-Calderón, C. et al. Environmental conditions during winter predict age- and sex-specific differences in reproductive success of a trans-Saharan migratory bird. Sci. Rep. 7, 18082 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Møller, A. P. & Hobson, K. A. Heterogeneity in stable isotope profiles predicts coexistence of populations of barn swallows Hirundo rustica differing in morphology and reproductive performance. Proc. R. Soc. Lond. B Biol. Sci. 271, 1355–1362 (2004).Article 

    Google Scholar 
    56.Hobson, K., Møller, A. & Wilgenburg, S. L. V. A multi-isotope (δ13C, δ15N, δ2H) approach to connecting European breeding and African wintering populations of barn swallow (Hirundo rustica). Anim. Migr. https://doi.org/10.2478/ami-2012-0002 (2012).Article 

    Google Scholar 
    57.Newton, I. The Migration Ecology of Birds (Academic Press, 2007).
    Google Scholar 
    58.Thorup, K. et al. Resource tracking within and across continents in long-distance bird migrants. Sci. Adv. 3, e1601360 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Jenni, L. & Winkler, R. Moult and Ageing of European Passerines (Academic Press, 2011).
    Google Scholar 
    60.Pedrini, P., Rossi, F. & Rizzoli, F. Le Alpi italiane quale barriera ecologica nel corso della migrazione post-riproduttiva attraverso l’Europa. Risultati generali del della prima fase del Progetto Alpi (1997–2002). Biol. Conserv. Fauna 116, 1–336 (2008).
    Google Scholar 
    61.Bontempo, L. et al. Comparison of methods for stable isotope ratio (δ13C, δ15N, δ2H, δ18O) measurements of feathers. Methods Ecol. Evol. 5, 363–371 (2014).Article 

    Google Scholar 
    62.Wassenaar, L. I. & Hobson, K. A. Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ. Health Stud. 39, 211–217 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Wassenaar, L. I. & Hobson, K. A. Stable-hydrogen isotope heterogeneity in keratinous materials: Mass spectrometry and migratory wildlife tissue subsampling strategies. Rapid Commun. Mass Spectrom. 20, 2505–2510 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M. & Prohaska, T. Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report). Pure Appl. Chem. 86, 425–467 (2014).CAS 
    Article 

    Google Scholar 
    65.Del Hoyo, J., Elliott, A., Sargatal, J. & Christie, D. Handbook of the Birds of the World (Lynx Edicions, 2013).
    Google Scholar 
    66.Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. 105, 16195–16200 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian ellipses in R: Bayesian isotopic niche metrics. J. Anim. Ecol. 80, 595–602 (2011).PubMed 
    Article 

    Google Scholar  More