More stories

  • in

    High canopy cover of invasive Acer negundo L. affects ground vegetation taxonomic richness

    1.Vinogradova, Y. K., Mayorov, S. R. & Khorun, L. V. Chernaya kniga flory Sredney Rossii (Chuzherodnye vidy rasteniy v ekosistemakh Sredney Rossii) (The Black-book of the flora of the Middle Russia (Alien species in the plant communities of the Middle Russia). (GEOS, 2010).2.Straigytė, L., Cekstere, G., Laivins, M. & Marozas, V. The spread, intensity and invasiveness of the Acer negundo in Riga and Kaunas. Dendrobiology 74, 157–168 (2015).Article 

    Google Scholar 
    3.Merceron, N. R., Lamarque, L. J., Delzon, S. & Porté, A. J. Killing it softly: girdling as an efficient eco-friendly method to locally remove invasive Acer negundo. Ecol. Restor. 34, 297–305 (2016).Article 

    Google Scholar 
    4.Gusev, A. P., Shpilevskaya, N. S. & Veselkin, D. V. The influence of Acer negundo L. on progressive successions in Belarusian landscapes. Vestnik Vitebskogo Gosudarstvennogo Universiteta. 94, 47–53 (2017).
    Google Scholar 
    5.Veselkin, D. V. & Korzhinevskaya, A. A. Spatial factors of understory adventization in park forests of a large city. Izvestiya Akademii Nauk, Seriya Geograficheskaya. 4, 54–64 (2018).
    Google Scholar 
    6.Veselkin, D. V., Korzhinevskaya, A. A. & Podgayevskaya, E. N. The species composition and abundance of alien and invasive understory shrubs and trees in urban forests of Yekaterinburg. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya. 42, 102–118 (2018).
    Google Scholar 
    7.Emelyanov, A. V. & Frolova, S. V. Ash-leaf maple (Acer negundo L.) in coastal phytocenoses of the Vorona River. Russ. J. Biol. Invasions 2, 161–163 (2011).Article 

    Google Scholar 
    8.Saccone, P., Pagès, J.-P., Girel, J., Brun, J.-J. & Michalet, R. Acer negundo invasion along a successional gradient: Early direct facilitation by native pioneers and late indirect facilitation by conspecifics. New Phytol. 187, 831–842. https://doi.org/10.1111/j.1469-8137.2010.03289.x (2010).Article 
    PubMed 

    Google Scholar 
    9.Kostina, M. V., Yasinskaya, O. I., Barabanshchikova, N. S. & Orlyuk, F. A. Toward a issue of box elder invasion into the forests around Moscow. Russ. J. Biol. Invasions 7, 47–51 (2016).Article 

    Google Scholar 
    10.Veselkin, D. V. & Dubrovin, D. I. Diversity of the grass layer of urbanized communities dominated by invasive Acer negundo. Russ. J. Ecol. 50, 413–421 (2019).Article 

    Google Scholar 
    11.Reinhart, K. O., Greene, E. & Callaway, R. M. Effects of Acer platanoides invasion on understory plant communities and tree regeneration in the Rocky Mountains. Ecography 28, 573–582 (2005).Article 

    Google Scholar 
    12.Schuster, M. J. & Reich, P. B. Amur maple (Acer ginnala): an emerging invasive plant in North America. Biol. Invasions 20, 2997–3007 (2018).Article 

    Google Scholar 
    13.Richardson, D. M. et al. Naturalization and invasion of alien plants: Concepts and definitions. Divers. Distrib. 6, 93–107 (2000).Article 

    Google Scholar 
    14.Gorchov, D. L. & Trisel, D. E. Competitive effects of the invasive shrub, Lonicera maackii (Rupr.) Herder (Caprifoliaceae), on the growth and survival of native tree seedlings. Plant Ecol. 166, 13–24 (2003).Article 

    Google Scholar 
    15.Knight, K. S., Oleksyn, J., Jagodzinski, A. M., Reich, P. B. & Kasprowicz, M. Overstorey tree species regulate colonization by native and exotic plants: A source of positive relationships between understorey diversity and invasibility. Divers. Distrib. 14, 666–675 (2008).Article 

    Google Scholar 
    16.Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res. 25, 693–714 (2010).Article 

    Google Scholar 
    17.Allison, S. D. & Vitousek, P. M. Rapid nutrient cycling in leaf litter from invasive plants in Hawaii. Oecologia 141, 612–619 (2004).ADS 
    PubMed 
    Article 

    Google Scholar 
    18.Gioria, M. & Osborne, B. A. Resource competition in plant invasions: Emerging patterns and research needs. Front. Plant Sci. https://doi.org/10.3389/fpls.2014.00501 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Bonifacio, E. et al. Alien red oak affects soil organic matter cycling and nutrient availability in low-fertility well-developed soils. Plant Soil 395, 215–229 (2015).CAS 
    Article 

    Google Scholar 
    20.Horodecki, P. & Jagodzínski, A. M. Tree species effects on litter decomposition in pure stands on afforested post-mining sites. For. Ecol. Manag. 406, 1–11 (2017).Article 

    Google Scholar 
    21.Zhang, P., Li, B., Wu, J. & Hu, S. Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis. Ecol. Lett. 22, 200–210 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    22.Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Stinson, K. A. et al. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. https://doi.org/10.1371/journal.pbio.0040140 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Suding, K. N. et al. Consequences of plant-soil feedbacks in invasion. J. Ecol. 101, 298–308 (2013).Article 

    Google Scholar 
    25.Mueller, K. E. et al. Light, earthworms, and soil resources as predictors of diversity of 10 soil invertebrate groups across monocultures of 14 tree species. Soil Biol. Biochem. 92, 184–198 (2016).CAS 
    Article 

    Google Scholar 
    26.Kamczyc, J., Dyderski, M. K., Horodecki, P. & Jagodzinski, A. M. Mite communities (Acari, Mesostigmata) in the initially decomposed ‘litter islands’ of 11 tree species in scots pine (Pinus sylvestris L.) forest. Forests https://doi.org/10.3390/f10050403 (2019).Article 

    Google Scholar 
    27.Veselkin, D. V., Rafikova, O. S. & Ekshibarov, E. D. The soil of invasive Acer negundo thickets is unfavorable for mycorrhizal formation in native herbs. Zh. Obshch. Biol. 80, 214–225 (2019).
    Google Scholar 
    28.Gilliam, F. S. & Roberts, M. R. Interactions between the herbaceous layer and overstory canopy of eastern forests in The herbaceous layer in forests of Eastern North America (ed. Gilliam, F. S.) 233–254 (Oxford, 2014).29.Landuyt, D. et al. The functional role of temperate forest understorey vegetation in a changing world. Glob. Change Biol. 25, 3625–3641 (2019).ADS 
    Article 

    Google Scholar 
    30.Czapiewska, N., Dyderski, M. K. & Jagodzinski, A. M. Seasonal dynamics of floodplain forest understory—Impacts of degradation, light availability and temperature on biomass and species composition. Forests https://doi.org/10.3390/f10010022 (2019).Article 

    Google Scholar 
    31.Canham, C. D., Finzi, A. C., Pacala, S. W. & Burbank, D. H. Causes and consequences of resource heterogeneity in forests: Interspecific variation in light transmission by canopy trees. Can. J. For. Res. 24, 337–349 (1994).Article 

    Google Scholar 
    32.Barbier, S., Gosselin, F. & Balandier, P. Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests. For. Ecol. Manag. 254, 1–15 (2008).Article 

    Google Scholar 
    33.Reinhart, K. O., Gurnee, J., Tirado, R. & Callaway, R. M. Invasion through quantitative effects: Intense shade drives native decline and invasive success. Ecol. Appl. 16, 1821–1831 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Nilsson, C., Engelmark, O., Cory, J., Forsslund, A. & Carlborg, E. Differences in litter cover and understory flora between stands of introduced lodgepole pine and native Scots pine in Sweden. For. Ecol. Manag. 255, 1900–1905 (2008).Article 

    Google Scholar 
    35.Bravo-Monasterio, P., Pauchard, A. & Fajardo, A. Pinus contorta invasion into treeless steppe reduces species richness and alters species traits of the local community. Biol. Invasions 18, 1883–1894 (2016).Article 

    Google Scholar 
    36.Lanta, V., Hyvönen, T. & Norrdahl, K. Non-native and native shrubs have differing impacts on species diversity and composition of associated plant communities. Plant Ecol. 214, 1517–1528 (2013).Article 

    Google Scholar 
    37.Dyderski, M. K. & Jagodzinski, A. M. Similar impacts of alien and native tree species on understory light availability in a temperate forest. Forests https://doi.org/10.3390/f10110951 (2019).Article 

    Google Scholar 
    38.Bottollier-Curtet, M. et al. Light interception principally drives the understory response to boxelder invasion in riparian forests. Biol. Invasions 14, 1445–1458 (2012).Article 

    Google Scholar 
    39.Cusack, D. F. & McCleery, T. L. Patterns in understory woody diversity and soil nitrogen across native- and non-native-urban tropical forests. For. Ecol. Manag. 318, 34–43 (2014).Article 

    Google Scholar 
    40.Berg, C., Drescherl, A. & Essl, F. Using relevé-based metrics to explain invasion patterns of alien trees in temperate forests. Tuexenia. 37, 127–142 (2017).
    Google Scholar 
    41.Hladyz, S., Abjornsson, K., Giller, P. S. & Woodward, G. Impacts of an aggressive riparian invader on community structure and ecosystem functioning in stream food webs. J. Appl. Ecol. 48, 443–452 (2011).Article 

    Google Scholar 
    42.Call, L. J. & Nilsen, E. T. Analysis of interactions between the invasive tree-of-heaven (Ailanthus altissima) and the native black locust (Robinia pseudoacacia). Plant Ecol. 176, 275–285 (2005).Article 

    Google Scholar 
    43.Dorning, M. & Cipollini, D. Leaf and root extracts of the invasive shrub, Lonicera maackii, inhibit seed germination of three herbs with no autotoxic effects. Plant Ecol. 184, 287–296 (2006).Article 

    Google Scholar 
    44.Kumar, A. S. & Bais, H. P. Allelopathy and exotic plant invasion in Plant communication from an ecological perspective. Signaling and communication in plants (ed. Baluška, F. & Ninkovic, V.) 61–74 (Berlin, 2010).45.Cipollini, D., Rigsby, C. M. & Barto, E. K. Microbes as targets and mediators of allelopathy in plants. J. Chem. Ecol. 38, 714–727 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Nielsen, J. A., Frew, R. D., Whigam, P. A., Callaway, R. M. & Dickinson, K. J. M. Germination and growth responses of co-occurring grass species to soil from under invasive Thymus vulgaris. Allelopath. J. 35, 139–152 (2015).
    Google Scholar 
    47.Gruntman, M., Segev, U., Glauser, G. & Tielbörger, K. Evolution of plant defences along an invasion chronosequence: Defence is lost due to enemy release—but not forever. J. Ecol. 105, 255–264 (2017).CAS 
    Article 

    Google Scholar 
    48.Maron, J. L. & Marler, M. Effects of native species diversity and resource additions on invader impact. Am. Nat. 172, 18–33 (2008).Article 

    Google Scholar 
    49.Hejda, M., Pyšek, P. & Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403 (2009).Article 

    Google Scholar 
    50.Adams, J. M. et al. A cross-continental test of the enemy release hypothesis: leaf herbivory on Acer platanoides (L.) is three times lower in North America than in its native Europe. Biol. Invasions 11, 1005–1016 (2009).Article 

    Google Scholar 
    51.Cincotta, C. L., Adams, J. M. & Holzapfel, C. Testing the enemy release hypothesis: A comparison of foliar insect herbivory of the exotic Norway maple (Acer platanoides L.) and the native sugar maple (A. saccharum L.). Biol. Invasions 11, 379–388 (2009).Article 

    Google Scholar 
    52.Veselkin, D. V. et al. Levels of leaf damage by phyllophages in invasive Acer negundo and Native Betula pendula and Salix caprea. Russ. J. Ecol. 50, 511–516 (2019).Article 

    Google Scholar 
    53.Gioria, M., Pyšek, P. & Moravcová, L. Soil seed banks in plant invasions: promoting species invasiveness and long-term impact on plant community dynamics. Preslia 84, 327–350 (2012).
    Google Scholar 
    54.Csiszár, A. Allelopathic effect of invasive woody plant species in Hungary. Acta Silvatica et Lignaria Hungarica. 5, 9–17 (2009).
    Google Scholar 
    55.Csiszár, Á. et al. Allelopathic potential of some invasive plant species occurring in Hungary. Allelopath. J. 31, 309–318 (2013).
    Google Scholar 
    56.Yeryomenko, Y. A. Allelopathic activity of invasive arboreal species. Russ. J. Biol. Invasions 5, 146–150 (2014).Article 

    Google Scholar 
    57.Veselkin, D. V., Kiseleva, O. A., Ekshibarov, E. D., Rafikova, O. S. & Korzhinevskaya, A. A. Abundance and diversity of seedlings of the soil seed bank in the monospecific stands of the invasive species Acer negundo L.. Russ. J. Biol. Invasions. 9, 108–113 (2018).Article 

    Google Scholar 
    58.Davies, C. E., Moss, D. & Hill, M. O. EUNIS Habitat Classification Revised 2004 (European Topic Centre on Nature Protection and Biodiversity, (2004).59.Dopico, E., Ardura, A. & Garcia-Valguez, E. Exploring changes in biodiversity through pictures: A citizen science experience. Soc. Nat. Resour. 30, 1049–1063. https://doi.org/10.1080/08941920.2017.1284292 (2017).Article 

    Google Scholar 
    60.Fitzgerald, N. B., Kirkpatrick, J. B. & Scott, J. J. Rephotography, permanent plots and remote sensing data provide varying insights on vegetation change on subantarctic Macquarie Island, 1980–2015. Austral Ecol. https://doi.org/10.1111/aec.13015 (2021).Article 

    Google Scholar 
    61.Rosenberg, M. S. & Anderson, C. D. PASSAGE: Pattern analysis, spatial statistics, and geographic exegesis version 2. Methods Ecol. Evol. 2, 229–232. https://doi.org/10.1111/j.2041-210X.2010.00081.x (2011).Article 

    Google Scholar  More

  • in

    Microsatellites reveal that genetic mixing commonly occurs between invasive fall armyworm populations in Africa

    1.CABI. Fall Armyworm (FAW) Portal. www.cabi.org/isc/fallarmyworm (2020).2.Westbrook, J., Nagoshi, R., Meagher, R., Fleischer, S. & Jairam, S. Modeling seasonal migration of fall armyworm moths. Int. J. Biometeorol. 60, 255–267. https://doi.org/10.1007/s00484-015-1022-x (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Nagoshi, R. & Meagher, R. Review of fall armyworm (Lepidoptera: noctuidae) genetic complexity and migration. Fla. Entomol. 91, 546–554. https://doi.org/10.1653/0015-4040-91.4.546 (2008).Article 

    Google Scholar 
    4.Nagoshi, R. N., Meagher, R. L. & Jenkins, D. A. Puerto Rico fall armyworm has only limited interactions with those from Brazil or Texas but could have substantial exchanges with Florida populations. J. Econ. Entomol. 103, 360–367. https://doi.org/10.1603/EC09253 (2010).Article 
    PubMed 

    Google Scholar 
    5.Johnson, S. J. Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the western hemisphere. Int. J. Trop. Insect Sci. 8, 543–549. https://doi.org/10.1017/S1742758400022591 (1987).Article 

    Google Scholar 
    6.Abrahams, P. et al. Fall Armyworm: Impacts and Implications for Africa. Evidence Note 2 (CABI, 2017).
    Google Scholar 
    7.Nagoshi, R. N. et al. Fall armyworm migration across the Lesser Antilles and the potential for genetic exchanges between North and South American populations. PLoS ONE 12, e0171743. https://doi.org/10.1371/journal.pone.0171743 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Arias, O. et al. Population genetic structure and demographic history of Spodoptera frugiperda (Lepidoptera: Noctuidae): Implications for insect resistance management programs. Pest Manag. Sci. 75, 2948–2957. https://doi.org/10.1002/ps.5407 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Nagoshi, R. et al. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Sci. Rep. 8, 3710–3710. https://doi.org/10.1038/s41598-018-21954-1 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Nagoshi, R. N., Adamczyk, J. J., Meagher, R. L., Gore, J. & Jackson, R. Using stable isotope analysis to examine fall armyworm (Lepidoptera: Noctuidae) host strains in a cotton habitat. J. Econ. Entomol. 100, 1569. https://doi.org/10.1603/0022-0493(2007)100[1569:USIATE]2.0.CO2 (2007).Article 
    PubMed 

    Google Scholar 
    11.Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1421. https://doi.org/10.1038/s41598-020-58249-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Nagoshi, R. N. et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE 14, e0217755. https://doi.org/10.1371/journal.pone.0217755 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Nayyar, N. et al. Population structure and genetic diversity of invasive Fall Armyworm after 2 years of introduction in India. Sci. Rep. 11, 7760. https://doi.org/10.1038/s41598-021-87414-5 (2021).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Zhang, L. et al. Genetic structure and insecticide resistance characteristics of fall armyworm populations invading China. Mol. Ecol. Resour. 20, 1682–1696. https://doi.org/10.1111/1755-0998.13219 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Raymond, L., Plantegenest, M. & Vialatte, A. Migration and dispersal may drive to high genetic variation and significant genetic mixing: The case of two agriculturally important, continental hoverflies (E. pisyrphus balteatus and S. phaerophoria scripta). Mol. Ecol. 22, 5329–5339. https://doi.org/10.1111/mec.12483 (2013).Article 
    PubMed 

    Google Scholar 
    16.Stevens, L. et al. Migration and gene flow among domestic populations of the Chagas insect vector Triatoma dimidiata (Hemiptera: Reduviidae) detected by microsatellite loci. J. Med. Entomol. 52, 419–428. https://doi.org/10.1093/jme/tjv002 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Arias, R. S., Blanco, C. A., Portilla, M., Snodgrass, G. L. & Scheffler, B. E. First microsatellites from Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use for population genetics. Ann. Entomol. Soc. Am. 104, 576–587. https://doi.org/10.1603/an10135 (2011).CAS 
    Article 

    Google Scholar 
    18.Pavinato, V. A., Martinelli, S., de Lima, P. F., Zucchi, M. I. & Omoto, C. Microsatellite markers for genetic studies of the fall armyworm, Spodoptera frugiperda. Genet. Mol. Res.: GMR https://doi.org/10.4238/2013.February.8.1 (2013).Article 
    PubMed 

    Google Scholar 
    19.Nagoshi, R., Silvie, P. & Meagher, R. Comparison of haplotype frequencies differentiate fall armyworm (Lepidoptera: Noctuidae) corn-strain populations from Florida and Brazil. J. Econ. Entomol. 100, 954–961 (2007).Article 

    Google Scholar 
    20.Agapow, P.-M. & Burt, A. Indices of multilocus linkage disequilibrium. Mol. Ecol. Notes 1, 101–102. https://doi.org/10.1046/j.1471-8278.2000.00014.x (2001).CAS 
    Article 

    Google Scholar 
    21.Weir, B. S. Genetic Data Analysis II: Methods for Discrete Population Genetic Data (Sinauer, 1996).
    Google Scholar 
    22.Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. 70, 3321. https://doi.org/10.1073/pnas.70.12.3321 (1973).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    23.Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638. https://doi.org/10.1111/j.0014-3820.2005.tb01814.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Jost, L. O. U. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x (2008).Article 
    PubMed 

    Google Scholar 
    25.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982. https://doi.org/10.1371/journal.pone.0181982 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 8311. https://doi.org/10.1038/s41598-019-44744-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Buès, R., Bouvier, J. C. & Boudinhon, L. Insecticide resistance and mechanisms of resistance to selected strains of Helicoverpa armigera (Lepidoptera: Noctuidae) in the south of France. Crop Prot. 24, 814–820. https://doi.org/10.1016/j.cropro.2005.01.006 (2005).CAS 
    Article 

    Google Scholar 
    30.Armes, N. J., Jadhav, D. R. & DeSouza, K. R. A survey of insecticide resistance in Helicoverpa armigera in the Indian subcontinent. Bull. Entomol. Res. 86, 499–514. https://doi.org/10.1017/S0007485300039298 (1996).CAS 
    Article 

    Google Scholar 
    31.Parry, H. R. et al. Estimating the landscape distribution of eggs by Helicoverpa spp., with implications for Bt resistance management. Ecol. Model. 365, 129–140. https://doi.org/10.1016/j.ecolmodel.2017.10.004 (2017).Article 

    Google Scholar 
    32.Jones, C. M., Parry, H., Tay, W. T., Reynolds, D. R. & Chapman, J. W. Movement ecology of pest Helicoverpa: Implications for ongoing spread. Annu. Rev. Entomol. 64, 277–295. https://doi.org/10.1146/annurev-ento-011118-111959 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Tucker, M. R., Mwandoto, S. & Pedgley, D. E. Further evidence for windborne movement of armyworm moths, Spodoptera exempta, in East Africa. Ecol. Entomol. 7, 463–473. https://doi.org/10.1111/j.1365-2311.1982.tb00689.x (1982).Article 

    Google Scholar 
    34.Rose, D. J. W. et al. Downwind migration of the African army worm moth, Spodoptera exempta, studied by mark-and-capture and by radar. Ecol. Entomol. 10, 299–313. https://doi.org/10.1111/j.1365-2311.1985.tb00727.x (1985).Article 

    Google Scholar 
    35.Rose, D. J. W., Dewhurst, C. F. & Page, W. W. The African Armyworm Handbook: The Status, Biology, Ecology, Epidemiology and Management of Spodoptera exempta (Lepidoptera: Noctuidae) (Natural Resources Institute, 2000).
    Google Scholar 
    36.Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: Mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18, 287–302. https://doi.org/10.1111/ele.12407 (2015).Article 
    PubMed 

    Google Scholar 
    37.Nagoshi, R. N. & Meagher, R. L. Using intron sequence comparisons in the triose-phosphate isomerase gene to study the divergence of the fall armyworm host strains. Insect Mol. Biol. 25, 324–337. https://doi.org/10.1111/imb.12223 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acid Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    39.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673 (1994).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.R Core Team. R Foundation for Statistical Computing (R Core Team, 2020).
    Google Scholar 
    41.Paradis, E. pegas: An R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420. https://doi.org/10.1093/bioinformatics/btp696 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Adamack, A. & Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12158 (2014).Article 

    Google Scholar 
    43.Goudet, J. Hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x (2005).Article 

    Google Scholar 
    44.Winter, D. MMOD: An R library for the calculation of population differentiation statistics. Mol. Ecol. Resour. https://doi.org/10.1111/j.1755-0998.2012.03174.x (2012).Article 
    PubMed 

    Google Scholar 
    45.Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573 (1995).Article 

    Google Scholar 
    47.Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.0-2. (2012).48.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    Article 

    Google Scholar 
    49.Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    50.Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806. https://doi.org/10.1093/bioinformatics/btm233 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138. https://doi.org/10.1046/j.1471-8286.2003.00566.x (2004).Article 

    Google Scholar  More

  • in

    The invasive cactus Opuntia stricta creates fertility islands in African savannas and benefits from those created by native trees

    1.Pyšek, P. et al. Naturalized alien flora of the world. Preslia 89, 203–274 (2017).Article 

    Google Scholar 
    2.Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. (2020).3.Vilà, M. et al. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).PubMed 
    Article 

    Google Scholar 
    4.Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 18, 1725–1737 (2012).ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    5.Le Roux, J. J. et al. Recent anthropogenic plant extinctions differ in biodiversity hotspots and coldspots. Curr. Biol. 29, 2912-2918.e2 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    6.Hulme, P. E. et al. Greater focus needed on alien plant impacts in protected areas. Conserv. Lett. 7, 459–466 (2014).Article 

    Google Scholar 
    7.Foxcroft, L. C., Pyšek, P., Richardson, D. M., Genovesi, P. & MacFadyen, S. Plant invasion science in protected areas: progress and priorities. Biol. Invasions 19, 1353–1378 (2017).Article 

    Google Scholar 
    8.Novoa, A. et al. Invasion syndromes: A systematic approach for predicting biological invasions and facilitating effective management. Biol. Invasions 22, 1801–1820 (2020).Article 

    Google Scholar 
    9.Foxcroft, L. C., Pickett, S. T. A. & Cadenasso, M. L. Expanding the conceptual frameworks of plant invasion ecology. Perspect. Plant Ecol. Evol. Syst. 13, 89–100 (2011).Article 

    Google Scholar 
    10.Scholes, R. J. & Archer, S. R. Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).Article 

    Google Scholar 
    11.Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Biodiversity Synthesis (Island Press, 2005).
    Google Scholar 
    12.Foxcroft, L. C., Richardson, D. M., Rejmánek, M. & Pyšek, P. Alien plant invasions in tropical and sub-tropical savannas: Patterns, processes and prospects. Biol. Invasions 12, 3913–3933 (2010).Article 

    Google Scholar 
    13.Rejmánek, M., Huntley, B. J., Le Roux, J. J. & Richardson, D. M. A rapid survey of the invasive plant species in western Angola. Afr. J. Ecol. 55, 56–69 (2017).Article 

    Google Scholar 
    14.Shackleton, R. T., Foxcroft, L. C., Pyšek, P., Wood, L. E. & Richardson, D. M. Assessing biological invasions in protected areas after 30 years: Revisiting nature reserves targeted by the 1980s SCOPE programme. Biol. Conserv. 243, 108424 (2020).Article 

    Google Scholar 
    15.Skarpe, C. Dynamics of savanna ecosystems. J. Veg. Sci. 3, 293–300 (1992).Article 

    Google Scholar 
    16.Okin, G. S. et al. Spatial patterns of soil nutrients in two southern African savannas. J. Geophys. Res. Biogeosci. 113, G2 (2008).Article 

    Google Scholar 
    17.Ridolfi, L., Laio, F. & D’Odorico, P. Fertility island formation and evolution in dryland ecosystems. Ecol. Soc. 13, 5 (2008).Article 

    Google Scholar 
    18.Perroni-Ventura, Y., Montaña, C. & Garcí-a-Oliva, F. Carbon-nitrogen interactions in fertility island soil from a tropical semi-arid ecosystem. Funct. Ecol. 24, 233–242 (2010).Article 

    Google Scholar 
    19.Belnap, J. & Susan, L. P. Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion. Ecol. Appl. 51, 1261–1275. (2001).Article 

    Google Scholar 
    20.Ludwig, F., Kroon, H., Prins, H. H. T. & Berendse, F. Effects of nutrients and shade on tree-grass interactions in an East African savanna. J. Veg. Sci. 12, 579–588 (2001).Article 

    Google Scholar 
    21.Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. New Phytol. 170, 445–457 (2006).PubMed 
    Article 

    Google Scholar 
    22.Weidenhamer, J. D. & Callaway, R. M. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J. Chem. Ecol. 36, 59–69 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Levine, J. M., Pachepsky, E., Kendall, B. E., Yelenik, S. G. & Lambers, J. H. R. Plant-soil feedbacks and invasive spread. Ecol. Lett. 9, 1005–1014 (2006).PubMed 
    Article 

    Google Scholar 
    24.du Toit, J. T., Rogers, K. H. & Biggs, H. C. The Kruger Experience: Ecology and Management of Savanna Heterogeneity. (Island Press, 2003).25.Foxcroft, L. C., Van Wilgen, N. J., Baard, J. A. & Cole, N. S. Biological invasions in South African National Parks. Bothalia 47, 11 (2017).Article 

    Google Scholar 
    26.Pyšek, P. et al. Into the great wide open: do alien plants spread from rivers to dry savanna in the Kruger National Park?. NeoBiota 60, 61–77 (2020).Article 

    Google Scholar 
    27.Kueffer, C., Pyšek, P. & Richardson, D. M. Integrative invasion science: Model systems, multi-site studies, focused meta-analysis and invasion syndromes. New Phytol. 200, 615–633 (2013).PubMed 
    Article 

    Google Scholar 
    28.Lotter, W. D. & Hoffmann, J. H. An integrated management plan for the control of Opuntia stricta (Cactaceae) in the Kruger National Park, South Africa. Koedoe 41, 63–68 (1998).Article 

    Google Scholar 
    29.Hoffmann, J. H., Moran, V. C., Zimmermann, H. G. & Impson, F. A. C. Biocontrol of a prickly pear cactus in South Africa: Reinterpreting the analogous, renowned case in Australia. J. Appl. Ecol. 13737, 1365–2664. (2020).
    Google Scholar 
    30.Foxcroft, L. C., Rouget, M., Richardson, D. M. & MacFadyen, S. Reconstructing 50 years of Opuntia stricta invasion in the Kruger National Park, South Africa: Environmental determinants and propagule pressure. Divers. Distrib. 10, 427–437 (2004).Article 

    Google Scholar 
    31.Novoa, A., Le Roux, J. J., Robertson, M. P., Wilson, J. R. U. & Richardson, D. M. Introduced and invasive cactus species: A global review. AoB Plants 7, 1 (2015).Article 

    Google Scholar 
    32.Foxcroft, L. C., Hoffmann, J. H., Viljoen, J. J. & Kotze, J. J. Environmental factors influencing the distribution of Opuntia stricta, an invasive alien plant in the Kruger National Park, South Africa. S. Afr. J. Bot. 73, 109–112 (2007).Article 

    Google Scholar 
    33.Foxcroft, L. C. & Rejmánek, M. What helps Opuntia stricta invade Kruger National Park, South Africa: Baboons or elephants?. Appl. Veg. Sci. 10, 265–270 (2007).Article 

    Google Scholar 
    34.Anderson, E. F. The Cactus Family. (Timber Press, 2001).35.Reyes-Agüero, J. A., Aguirre, R. J. R. & Valiente-Banuet, A. Reproductive biology of Opuntia: A review. J. Arid Environ. 64, 549–585 (2006).ADS 
    Article 

    Google Scholar 
    36.Robertson, M. P. et al. Assessing local scale impacts of Opuntia stricta (Cactaceae) invasion on beetle and spider diversity in Kruger National Park, South Africa. Afr. Zool. 46, 205–223 (2011).Article 

    Google Scholar 
    37.Butterfield, B. J. & Briggs, J. M. Patch dynamics of soil biotic feedbacks in the Sonoran Desert. J. Arid Environ. 73, 96–102 (2009).ADS 
    Article 

    Google Scholar 
    38.Neffar, S., Chenchouni, H., Beddiar, A. & Redjel, N. Rehabilitation of degraded rangeland in drylands by Prickly Pear (Opuntia ficus-indica L.) plantations: Effect on soil and spontaneous vegetation. Ecol. Balk. 5, 63–76 (2013).39.Garner, W. & Steinberger, Y. A proposed mechanism for the formation of ‘Fertile Islands’ in the desert ecosystem. J. Arid Environ. 16, 257–262 (1989).ADS 
    Article 

    Google Scholar 
    40.Marchante, H., Elizabete M, & Helena, F. Invasion of the Portuguese dune ecosystems by the exotic species Acacia longifolia (Andrews) Willd.: effects at the community level. Plant invasions: ecological threats and management solutions. pp. 75–85 (2003).41.Marchante, E. et al. Short-and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Appl. Soil Ecol. 40(2), 210–217 (2008).Article 

    Google Scholar 
    42.Yelenik, S. G., Stock, W. D. & Richardson, D. M. Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restor. Ecol. 12(1), 44–51 (2004).Article 

    Google Scholar 
    43.Werner, C. et al. High competitiveness of a resource demanding invasive acacia under low resource supply. Plant Ecol. 206(1), 83–96 (2010).Article 

    Google Scholar 
    44.Le Maitre, D. C. et al. Impacts of invasive Australian acacias: implications for management and restoration. Divers. Distrib. 17(5), 1015–1029 (2011).Article 

    Google Scholar 
    45.Bargali, K. & Bargali, S. S. Acacia nilotica: a multipurpose leguminous plant. Nat. Sci. 7, 11–19 (2009).
    Google Scholar 
    46.Rughöft, S. et al. Community composition and abundance of bacterial, archaeal and nitrifying populations in savanna soils on contrasting bedrock material in Kruger National Park, South Africa. Front. Microbiol. 7, 1638 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    47.Neilson, J. W. et al. Life at the hyperarid margin: Novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles 16, 553–566 (2012).PubMed 
    Article 

    Google Scholar 
    48.de Vos, P. et al. The Firmicutes. Bergey’s Manual of Systematic Bacteriology. (Springer, 2009).49.Brockett, B. F. T., Prescott, C. E. & Grayston, S. J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 44, 9–20 (2012).CAS 
    Article 

    Google Scholar 
    50.Yang, Y., Dou, Y. & An, S. Testing association between soil bacterial diversity and soil carbon storage on the Loess Plateau. Sci. Total Environ. 626, 48–58 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Rajaniemi, T. K. & Allison, V. J. Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biol. Biochem. 41, 102–109 (2009).CAS 
    Article 

    Google Scholar 
    52.Novoa, A., Rodríguez, R., Richardson, D. & González, L. Soil quality: A key factor in understanding plant invasion? The case of Carpobrotus edulis (L.) N.E.Br. Biol. Invasions 16, 429–443 (2014).53.Penfield, S. Seed dormancy and germination. Curr. Biol. 27, R874–R878 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Tielbörger, K. & Prasse, R. Do seeds sense each other? Testing for density-dependent germination in desert perennial plants. Oikos 118, 792–800 (2009).Article 

    Google Scholar 
    55.Renne, I. J. et al. Eavesdropping in plants: delayed germination via biochemical recognition. J. Ecol. 102, 86–94 (2014).Article 

    Google Scholar 
    56.Yannelli, F. A., Novoa, A., Lorenzo, P., Rodríguez, J. & Le Roux, J. J. No evidence for novel weapons: biochemical recognition modulates early ontogenetic processes in native species and invasive acacias. Biol. Invasions 22, 549–562 (2020).Article 

    Google Scholar 
    57.Al-Wakeel, S. A. M., Gabr, M. A., Hamid, A. A. & Abu-El-Soud, W. M. Allelopathic effects of Acacia nilotica leaf residue on Pisum sativum L. Allelopath. J. 19, 411 (2007).
    Google Scholar 
    58.Scholes, M. C., Scholes, R. J., Otter, L. B. & Woghiren, A. J. Biogeochemistry: The cycling of elements. in The Kruger Experience: Ecology and Management of Savanna Heterogeneity (eds. du Toit, J. T., Rogers, K. H. & Biggs, H. C.) 130–148 (Island Press, 2003).59.Kyalangalilwa, B., Boatwright, J. S., Daru, B. H., Maurin, O. & van der Bank, M. Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Bot. J. Linn. Soc. 172, 500–523 (2013).Article 

    Google Scholar 
    60.van Wyk, B. & van Wyk, P. Field Guide to Trees of Southern Africa. (Struik Nature, 2013).61.Coates Palgrave, K. & Coates Palgrave, M. Palgrave’s Trees of Southern Africa. (Struik Publishers, 2002).62.Novoa, A., Kumschick, S., Richardson, D. M., Rouget, M. & Wilson, J. R. U. Native range size and growth form in Cactaceae predict invasiveness and impact. NeoBiota 30, 75–90 (2016).Article 

    Google Scholar 
    63.Allen, S. E. Chemical Analysis of Ecological Materials. (Blackwell Scientific Publications, 1989).64.Tabatabai, M. A. & Bremner, J. M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1, 301–307 (1969).CAS 
    Article 

    Google Scholar 
    65.Kandeler, E. & Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6, 68–72 (1988).CAS 
    Article 

    Google Scholar 
    66.Allison, S. D. & Vitousek, P. M. Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica 36, 285–296 (2004).
    Google Scholar 
    67.German, D. P., Chacon, S. S. & Allison, S. D. Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology 92, 1471–1480 (2011).PubMed 
    Article 

    Google Scholar 
    68.Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. 82, 6955–6959 (1985).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Tringe, S. G. & Hugenholtz, P. A renaissance for the pioneering 16S rRNA gene. Curr. Opin. Microbiol. 11, 442–446 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Bukin, Y. S. et al. The effect of 16s rRNA region choice on bacterial community metabarcoding results. Sci. Data 6, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    71.Chakravorty, S., Helb, D., Burday, M., Connell, N. & Alland, D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69, 330–339 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Beckers, B. et al. Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in metabarcoding studies. Front. Microbiol. 7, 1–15 (2016).Article 

    Google Scholar 
    73.Thijs, S. et al. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front. Microbiol. 8, 1–15 (2017).Article 

    Google Scholar 
    74.Schloss, P. D., & Westcott, S. L. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 77(10), 3219–3226 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    79.Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 1–18 (2017).Article 

    Google Scholar 
    80.de Cárcer, D. A., Denman, S. E., McSweeney, C. & Morrison, M. Evaluation of subsampling-based normalization strategies for tagged high-throughput sequencing data sets from gut microbiomes. Appl. Environ. Microbiol. 77, 8795–8798 (2011).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    81.Chiapusio, G., Sánchez, A. M., Reigosa, M. J., González, L. & Pellissier, F. Do germination indices adequately reflect allelochemical effects on the germination process?. J. Chem. Ecol. 23, 2445–2453 (1997).CAS 
    Article 

    Google Scholar 
    82.Oksanen, J. F. et al. vegan: Community Ecology Package. R package version 2.3-3. (2016).83.Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    84.Jost, L. The relation between evenness and diversity. Diversity 2, 207–232 (2010).Article 

    Google Scholar 
    85.Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).PubMed 
    Article 

    Google Scholar 
    86.Charney, N. & Record, S. vegetarian: Jost Diversity Measures for Community Data. R package version 1.2. (2012).87.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 
    88.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, 1–18 (2011).Article 

    Google Scholar 
    89.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article 

    Google Scholar  More

  • in

    Influence of historical changes in tropical reef habitat on the diversification of coral reef fishes

    1.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    2.Zaffos, A., Finnegan, S. & Peters, S. E. Plate tectonic regulation of global marine animal diversity. Proc. Natl. Acad. Sci. 114, 5653–5658 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    3.Claramunt, S. & Cracraft, J. A new time tree reveals Earth historys imprint on the evolution of modern birds. Sci. Adv. 1, e1501005 (2015).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    4.Leprieur, F., Descombes, P., Gaboriau, T., Cowman, P. F. & Parravicini, V. Plate tectonics drive tropical reef biodiversity dynamics. Nat. Commun. 7, 11461 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    5.Ficetola, G. F., Mazel, F. & Thuiller, W. Global determinants of zoogeographical boundaries. Nat. Ecol. Evol. 1, 0089 (2017).Article 

    Google Scholar 
    6.Mazel, F. et al. Global patterns of β-diversity along the phylogenetic time-scale: The role of climate and plate tectonics. Glob. Ecol. Biogeogr. 26, 1211–1221 (2017).Article 

    Google Scholar 
    7.Hofreiter, M. & Stewart, J. Ecological change, range fluctuations and population dynamics during the pleistocene. Curr. Biol. 19, R584–R594 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Pellissier, L. et al. Quaternary coral reef refugia preserved fish diversity. Science 344, 1016–1019 (2014).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    9.Jaramillo, C. et al. Effects of rapid global warming at the paleocene-eocene boundary on neotropical vegetation. Science 330, 957–961 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    10.Svenning, J.-C., Eiserhardt, W. L., Normand, S., Ordonez, A. & Sandel, B. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annu. Rev. Ecol. Evol. Syst. 46, 551–572 (2015).Article 

    Google Scholar 
    11.Steeman, M. E. et al. Radiation of extant cetaceans driven by restructuring of the oceans. Syst. Biol. 58, 573–585 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Antonelli, A. & Sanmartín, I. Mass Extinction, gradual cooling, or rapid radiation? reconstructing the spatiotemporal evolution of the ancient angiosperm genus hedyosmum (Chloranthaceae) using empirical and simulated approaches. Syst. Biol. 60, 596–615 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Philos. Trans. R. Soc. Lond. B 344, 305–311 (1994).CAS 
    Article 
    ADS 

    Google Scholar 
    14.Morlon, H., Parsons, T. L. & Plotkin, J. B. From the cover: Reconciling molecular phylogenies with the fossil record. Proc. Natl. Acad. Sci. 108, 16327–16332 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    15.Condamine, F. L., Rolland, J. & Morlon, H. Macroevolutionary perspectives to environmental change. Ecol. Lett. 16, 72–85 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Condamine, F. L. et al. Deciphering the evolution of birdwing butterflies 150 years after Alfred Russel Wallace Deciphering the evolution of birdwing butterflies 150 years after. Sci. Rep. 5, 11860 (2015).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    17.Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Rolland, J. & Condamine, F. L. The contribution of temperature and continental fragmentation to amphibian diversification. J. Biogeogr. 46, 1857–1873 (2019).Article 

    Google Scholar 
    19.Gaboriau, T. et al. Ecological constraints coupled with deep-time habitat dynamics predict the latitudinal diversity gradient in reef fishes. Proc. R. Soc. B Biol. Sci. 286, 20191506 (2019).Article 

    Google Scholar 
    20.Descombes, P. et al. Linking species diversification to palaeo-environmental changes: A process-based modelling approach. Glob. Ecol. Biogeogr. 00, 1–12 (2017).
    Google Scholar 
    21.Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science 361, 5452 (2018).Article 
    CAS 

    Google Scholar 
    22.Pontarp, M. et al. The latitudinal diversity gradient: Novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Cowman, P. F. Historical factors that have shaped the evolution of tropical reef fishes: A review of phylogenies, biogeography, and remaining questions. Front. Genet. 5, 1–15 (2014).Article 

    Google Scholar 
    24.Bellwood, D. R. et al. Evolutionary history of the butterflyfishes (f: Chaetodontidae) and the rise of coral feeding fishes. J. Evol. Biol. 23, 335–349 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Cowman, P. F. & Bellwood, D. R. Coral reefs as drivers of cladogenesis: Expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots. J. Evol. Biol. 24, 2543–2562 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Sorenson, L., Santini, F., Carnevale, G. & Alfaro, M. E. A multi-locus timetree of surgeonfishes (Acanthuridae, Percomorpha), with revised family taxonomy. Mol. Phylogenet. Evol. 68, 150–160 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Dornburg, A., Moore, J., Beaulieu, J. M., Eytan, R. I. & Near, T. J. The impact of shifts in marine biodiversity hotspots on patterns of range evolution: Evidence from the Holocentridae (squirrelfishes and soldierfishes). Evolution 69, 146–161 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Cowman, P. F. & Bellwood, D. R. The historical biogeography of coral reef fishes: Global patterns of origination and dispersal. J. Biogeogr. 40, 209–224 (2013).Article 

    Google Scholar 
    29.Lohman, D. J. et al. Biogeography of the Indo-Australian archipelago. Annu. Rev. Ecol. Evol. Syst. 42, 205–226 (2011).Article 

    Google Scholar 
    30.Gaboriau, T., Leprieur, F., Mouillot, D. & Hubert, N. Influence of the geography of speciation on current patterns of coral reef fish biodiversity across the Indo-Pacific. Ecography 41, 1295–1306 (2017).Article 

    Google Scholar 
    31.McManus, J. W. Marine speciation, tectonics and sea- level changes in Southeast Asia. Proc. Fifth Int. Coral Reef 4, 133–138 (1985).
    Google Scholar 
    32.Potts, D. C. Sea-level fluctuations and speciation in Scleractinia. Proc. Fifth Int. Coral Reef 4, 51–62 (1985).
    Google Scholar 
    33.Hou, Z. & Li, S. Tethyan changes shaped aquatic diversification. Biol. Rev. https://doi.org/10.1111/brv.12376 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. Proc. Natl. Acad. Sci. USA 108, 6187–6192 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    35.Bellwood, D. R. & Wainwright, P. C. The history and biogeography of Fishes on Coral Reefs. in Coral Reef Fishes, Dynamics and Diversity in a Complex Ecosystem, 5–32 (2002).36.Williams, S. T. & Duda, T. F. Did tectonic activity stimulate Oligo-Miocene speciation in the Indo-West Pacific?. Evolution 62, 1618–1634 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Renema, W. et al. Hopping hotspots: Global shifts in marine biodiversity. Science 321, 654–657 (2008).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    38.Tea, Y.-K. et al. Phylogenomic analysis of concatenated ultraconserved elements reveals the recent evolutionary radiation of the fairy wrasses (teleostei: labridae: cirrhilabrus). Syst. Biol. 1, 1–12 (2021).
    Google Scholar 
    39.Hall, R. Southeast Asia’s changing palaeogeography. Blumea J. Plant Taxon. Plant Geogr. 54, 148–161 (2009).Article 

    Google Scholar 
    40.Keith, S. A., Baird, A. H., Hughes, T. P., Madin, J. S. & Connolly, S. R. Faunal breaks and species composition of Indo-Pacific corals: The role of plate tectonics, environment and habitat distribution. Proc. Biol. Sci. 280, 20130818 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Cowman, P. F. & Bellwood, D. R. Vicariance across major marine biogeographic barriers: Temporal concordance and the relative intensity of hard versus soft barriers. Proc. Biol. Sci. 280, 20131541 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    42.Price, S. A., Claverie, T., Near, T. J. & Wainwright, P. C. Phylogenetic insights into the history and diversification of fishes on reefs. Coral Reefs 34, 997–1009 (2015).Article 
    ADS 

    Google Scholar 
    43.Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: Form, function and interdependence. Biol. Rev. 92, 878–901 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bowen, B. W., Rocha, L. A., Toonen, R. J. & Karl, S. A. The origins of tropical marine biodiversity. Trends Ecol. Evol. 28, 359–366 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Price, S. A., Tavera, J. J., Near, T. J. & Wainwright, P. C. Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes. Evolution 67, 417–428 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Kiessling, W., Simpson, C., Beck, B., Mewis, H. & Pandolfi, J. M. Equatorial decline of reef corals during the last Pleistocene interglacial. Proc. Natl. Acad. Sci. USA. 109, 21378–21383 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    47.Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–45 (2007).
    Google Scholar 
    48.Riginos, C., Buckley, Y. M., Blomberg, S. P. & Treml, E. A. Dispersal capacity predicts both population genetic structure and species richness in reef fishes. Am. Nat. 184, 52–64 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Rocha, L. A. & Bowen, B. W. Speciation in coral-reef fishes. J. Fish Biol. 72, 1101–1121 (2008).Article 

    Google Scholar 
    50.Tedesco, P. A., Paradis, E., EvEque, C. L. & Hugueny, B. Explaining global-scale diversification patterns in actinopterygian fishes. J. Biogeogr. 44, 773–783 (2016).Article 

    Google Scholar 
    51.Rosenzweig, M. L. Species Diversity in Space and Time (Springer, 1995).Book 

    Google Scholar 
    52.Kisel, Y. & Barraclough, T. G. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316–334 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Fine, P. V. A. & Ree, R. H. Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. Am. Nat. 168, 796–804 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Jetz, W. & Fine, P. V. A. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol. 10, e1001292 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Konow, N., Price, S., Abom, R., Bellwood, D. & Wainwright, P. Decoupled diversification dynamics of feeding morphology following a major functional innovation in marine butterflyfishes. Proc. Biol. Sci. 284, 20170906 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    56.Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: Multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. 120, 729–751 (2017).
    Google Scholar 
    57.Lobato, F. L. et al. Diet and diversification in the evolution of coral reef fishes. PLoS ONE 9, e102094 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    58.Siqueira, A. C., Morais, R. A., Bellwood, D. R. & Cowman, P. F. Trophic innovations fuel reef fish diversification. Nat. Commun. 11, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    59.Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    60.Morlon, H., Hartig, F. & Robin, S. Prior hypotheses or regularization allow inference of diversification histories from extant timetrees. bioRxiv (2020).61.McCord, C. L. & Westneat, M. W. Phylogenetic relationships and the evolution of BMP4 in triggerfishes and filefishes (Balistoidea). Mol. Phylogenet. Evol. 94, 397–409 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Santini, F. & Carnevale, G. First multilocus and densely sampled timetree of trevallies, pompanos and allies (Carangoidei, Percomorpha) suggests a Cretaceous origin and Eocene radiation of a major clade of piscivores. Mol. Phylogenet. Evol. 83, 33–39 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Santini, F., Carnevale, G. & Sorenson, L. First multi-locus timetree of seabreams and porgies (Percomorpha: Sparidae). Ital. J. Zool. 81, 55–71 (2014).Article 

    Google Scholar 
    64.Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 1357–1362 (2008).PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    65.Heine, C., Yeo, L. G. & Müller, R. D. Evaluating global paleoshoreline models for the Cretaceous and Cenozoic. Aust. J. Earth Sci. 62, 275–287 (2015).CAS 

    Google Scholar 
    66.Kleypas, J. A. & Mcmanus, J. W. Environmental Limits to Coral Reef Development : Where Do We Draw the Line ?. Am. Zool. 39, 146–159 (1999).Article 

    Google Scholar 
    67.Bugayevskiy, L. M. & Snyder, J. P. Map Projections: A Reference Manual (Taylor & Francis, London, 1995).
    Google Scholar 
    68.Chang, J., Rabosky, D. L. & Alfaro, M. E. Estimating diversification rates on incompletely sampled phylogenies: Theoretical concerns and practical solutions. Syst. Biol. 69, 602–611 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Morlon, H. et al. RPANDA: An R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).Article 

    Google Scholar  More

  • in

    Population structure, biogeography and transmissibility of Mycobacterium tuberculosis

    Detailed population structure of L1–4 and a hierarchical sub-lineage naming systemWe assembled a high-quality data set of whole genomes, antibiotic resistance phenotypes, and geographic sites of isolation for 9584 clinical Mtb samples (“Methods” section and Supplementary Data 1). Of the total, 4939 (52%) were pan-susceptible, i.e., susceptible to at least isoniazid and rifampicin (and all other antibiotics when additional phenotypic data were available), and 4645 (48%) were resistant to one or more antibiotics (Supplementary Fig. 1a). Using the 62 SNS lineage barcode6, 738 isolates were classified as L1 (8%), 2193 as L2 (22%), 1104 as L3 (12%) and 5549 as L4 (58%, Supplementary Fig. 1b). Among the 4939 pan-susceptible isolates, we identified high-quality genome-wide SNSs (83,735 for L1, 56,736 for L2, 76,817 for L3, and 185,622 for L4) that we used in building maximum-likelihood phylogenies for each major lineage (L1–4, “Methods” section). We computed an index of genetic divergence (FST) between groups defined by each bifurcation in each phylogeny. Sub-lineages were defined as monophyletic groups that had high FST ( >0.33) and were also clearly separated from other groups in principal component analysis (PCA, see “Methods” section). We also defined internal groups to sub-lineages (see “Methods” section): an internal group is a monophyletic group genetically divergent (by FST and PCA) from its neighboring groups, but has one or more ancestral branches that show a low degree of divergence or low support (bootstrap values). Internal groups do not represent true sub-lineages in a hierarchical fashion, but defining them allows us to further characterize the Mtb population structure. We provide code to automate all the steps described above. Our approach is scalable and can be used on other organisms (see “Methods” section).To better classify Mtb isolates in the context of the global Mtb population structure, we developed a hierarchical sub-lineage naming scheme (Supplementary Data 2) where each subdivision in the classification corresponds to a split in the phylogenetic tree of each major Mtb lineage. Starting with the global Mtb lineage numbers (e.g., L1), we recursively introduced a subdivision (e.g., from 1.2 to 1.2.1 and 1.2.2) at each bifurcation of the phylogenetic tree whenever both subclades sufficiently diverged. Formally, we defined these splits using bootstrap criteria, and independent validations by FST and PCA (see “Methods” section). Internal groups were denoted with the letter “i” (e.g., 4.1.i1). This proposed system overcomes two major shortcomings of the existing schemas: same-level sub-lineages are never overlapping (unlike the system of Stucki et al.8 sub-lineage 4.10 includes sub-lineages 4.7–4.9), and the names reflect both phylogenetic relationships and genetic similarity (unlike semantic naming such as the “Asia ancestral” lineage in the system of Shitikov et al.7). Further, this naming system can be standardized to automate the process of lineage definition. These advantages come at the price of long sub-lineage names in the case of complex phylogenies (e.g., for L4, sub-lineage 4.10 gets the lineage designation 4.2.1.1.1.1.1.1). For compatibility with naming conventions already in use and to keep names as short as possible, we designed a second, shorthand, naming system that expands the Coll et al. lineage schema by adding new subdivisions and differentiating between sub-lineages and internal groups. For instance, sub-lineage 4.3.1 is designated as 4.3.i1, informing the user that this is an internal group of sub-lineage 4.3. To simplify the use of the hierarchical naming schema and the updated shorthand schema, we provide a table that compares them side by side along with naming systems currently in use (Supplementary Data 2).Using the sub-lineage definition rules and the sub-lineage naming scheme described above, we characterized six previously undescribed sub-lineages of L1 (Fig. 1 and Supplementary Fig. 2); five of which expand the current description of 1.2. We also detected an internal group of 91 isolates (1.1.3.i1) characterized by a long defining branch in the phylogeny (corresponding to 82 SNSs), a high FST (0.48), and geographically restricted to Malawi (85/91, 93% isolates, Fig. 1 and Supplementary Fig. 3). We estimated the date of the emergence of the MRCA of such a group (see “Methods” section) and we found it to be between 1497 and 1754. We found four previously undescribed sub-lineages of L3 (Fig. 2 and Supplementary Fig. 4), revising L3 into four main groups, whereas previously only two partitions of one sub-lineage were characterized (3.1). We found that the latter two partitions are in fact internal groups of the largest sub-lineage (3.1.1) in our revised classification.Fig. 1: Phylogenetic tree reconstruction of lineage 1 (binary tree).Gray circles define splits where the FST (fixation index) calculated using the descendants of the two children nodes is greater than 0.33. The sub-lineages are defined by colored areas (blue: sub-lineages already described in the literature; green: sub-lineages described here; purple: internal sub-lineages). Source data are provided as a Source Data file.Full size imageFig. 2: Phylogenetic tree reconstruction of lineage 3 (binary tree).Gray circles define splits where the FST (fixation index) calculated using the descendants of the two children nodes is greater than 0.33. The sub-lineages are defined by colored areas (green: sub-lineages described here; purple: internal sub-lineages). Source data are provided as a Source Data file.Full size imageL2 is divided into two groups: proto-Beijing and Beijing with the latter in turn partitioned into two groups: ancient- and modern-Beijing7. Each one of these groups is characterized by further subdivisions (three for the ancient-Beijing group and seven for the modern-Beijing group; see Supplementary Fig. 4). We found a new sub-lineage (2.2.1.2, Fig. 3, and Supplementary Fig. 5) within the previously characterized ancient-Beijing group. However, genetic diversity within the modern-Beijing group (2.2.1.1.1) was lower than in the other L2 sub-lineages and the tree topology and FST calculations did not support further hierarchical subdivisions. Although we did find three internal groups of modern-Beijing: two undescribed and one that corresponds to the Central Asia group7. For L4, our results support a complex population structure with 21 sub-lineages and 15 internal groups. In particular, we found 11 previously undescribed sub-lineages and 5 internal groups that expand our understanding of previously characterized sub-lineages (e.g., 4.2.2; 4.2 in the Coll et al. classification) or that were not characterized since these isolates were simply classified as L4 (e.g., 4.11, Fig. 4, and Supplementary Fig. 6) using the other barcodes.Fig. 3: Phylogenetic tree reconstruction of lineage 2 (binary tree).Gray circles define splits where the FST (fixation index) calculated using the descendants of the two children nodes is greater than 0.33. The sub-lineages are defined by colored areas (blue: sub-lineages already described in the literature; green: sub-lineages described here; purple: internal sub-lineages). Source data are provided as a Source Data file.Full size imageFig. 4: Phylogenetic tree reconstruction of lineage 4 (binary tree).Gray circles define splits where the FST (fixation index) calculated using the descendants of the two children nodes is greater than 0.33. The sub-lineages are defined by colored areas (blue: sub-lineages already described in the literature; green: sub-lineages described here; purple: internal sub-lineages). Source data are provided as a Source Data file.Full size imageA new barcode to define L1–4 Mtb sub-lineages and a software package to type Mtb strains from WGS dataWe defined a SNS barcode for distinguishing the obtained sub-lineages (Supplementary Data 3). We characterized new synonymous SNSs found in 100% of isolates from a given sub-lineage, but not in other isolates from the same major lineage, compiling 95 SNSs into an expanded barcode (Supplementary Data 3). We validated the barcode by using it to call sub-lineages in the hold-out set of 4645 resistant isolates and comparing the resulting sub-lineage designations with maximum-likelihood phylogenies inferred from the full SNS data (Supplementary Figs. 7–10). A sub-lineage was validated if it was found in the hold-out data and formed a monophyletic group in the phylogeny. Considering the “recent” sub-lineages, i.e., the most detailed level of classification in our system, we were able to validate eight out of nine L1 sub-lineages including five out of six of the new sub-lineages described here, with the exception of 1.1.1.2. We validated all four new L3 sub-lineages, all five L2 sub-lineages including the one previously undescribed, and 16 of the 21 L4 sub-lineages including two described here. The sub-lineages we could not confirm were not represented by any isolate in the validation phylogenies. We did not observe any paraphyletic sub-lineages in the revised classification system.We developed fast-lineage-caller, a software tool that classifies Mtb genomes using the SNS barcode proposed above. For a given genome, it returns the corresponding sub-lineage as output using our hierarchical naming system in addition to four other existing numerical/semantic naming systems, when applicable (see “Methods” section). The tool also informs the user on how many SNSs support a given lineage call and allows for filtering of low-quality variants. The tool is generalizable and can manage additional barcodes defined by the user to type the core genome of potentially any bacterial species.Geographic distribution of the Mtb sub-lineagesNext, we examined whether certain sub-lineages were geographically restricted, which would support the Mtb-human co-evolution hypothesis, or whether they constituted prevalent circulating sub-lineages in several different countries (i.e., geographically unrestricted)8. We used our SNS barcode to determine the sub-lineages of 17,432 isolates (see “Methods” section) sampled from 74 countries (Supplementary Fig. 11 and Supplementary Data 4, 5). We computed the Simpson diversity index (Sdi) as a measure of geographic diversity that controls for variable sub-lineage frequency (see “Methods” section) for each well-represented sub-lineage or internal group (n  > 20). We hypothesized that geographically unrestricted lineages would have a higher Sdi. We found Sdi to correlate highly (⍴ = 0.68; p-value = 5.7 × 10−7) with the number of continents from which a given sub-lineage was isolated (Supplementary Fig. 12). The Sdi ranged between a minimum of 0.05 and a maximum of 0.72, with a median value of 0.46 (Fig. 5). The known geographically restricted sub-lineages8 had an Sdi between 0.28 and 0.5 (Fig. 5 and Supplementary Table 1), while the known geographically unrestricted sub-lineages8,9 had an Sdi between 0.55 and 0.61 (Fig. 5 and Supplementary Table 2). We found 11 sub-lineages/internal groups with Sdi 0.61 (Supplementary Table 4), i.e., more extreme than previously reported geographically restricted or unrestricted sub-lineages, respectively.Fig. 5: Histogram of the Simpson diversity index calculated for sub-lineages of lineages 1–4.A data set of 17,432 isolates from 74 countries was used to perform this analysis. Yellow triangles designate the Simpson diversity index values of sub-lineages designated as geographically restricted by Stucki et al. Light gray circles designate the Simpson diversity index values of sub-lineages designated as geographically unrestricted by Stucki et al. Source data are provided as a Source Data file.Full size imageWhile the currently known geographically restricted sub-lineages are all in L4, we found evidence of geographic restriction for two sub-lineages/internal groups of L1. The first, the L1 internal group 1.1.3.i1, showed a very low Sdi (0.06) and was only found at high frequency among the circulating L1 isolates in Malawi (Fig. 6). This finding is also in agreement with the L1 phylogeny (Fig. 1) that shows a relatively long (82 SNS) branch defining this group. The second geographically restricted L1 sub-lineage is 1.1.1.1 (Sdi = 0.12) that was only found at high frequency among circulating L1 isolates in South-East Asia (Vietnam and Thailand, Fig. 7). To exclude the possibility that these two groups appeared geographically restricted as a result of oversampling transmission outbreaks, we calculated the distribution of the pairwise SNS distance for each of these two sub-lineages. We measured a median SNS distance of 204 and 401, respectively, refuting this kind of sampling error for these groups (typical pairwise SNS distance in outbreaks 0.67 and results on L4 transmissibility below.Differences in transmissibility between the Mtb global lineagesThe observation that some lineages/sub-lineages are more geographically widespread than others raises the question of whether this results from differences in marginal transmissibility across human populations. On a topological level, we observed L2 and L3 phylogenies to be qualitatively different from those of L1 and L4 (Figs. 1–4): displaying a star-like pattern with shorter internal branches and longer branches near the termini. We confirmed this quantitatively by generating a single phylogenetic tree for all 9584 L1–4 isolates and plotting cumulative branch lengths from root to tip for each main lineage (Supplementary Fig. 20). Star-like topologies have been postulated to associate with rapid or effective viral or bacterial transmission e.g., a “super-spreading” event in outbreak contexts25. To compare transmissibility between the four lineages, we compared the distributions of terminal branch lengths expecting a skew toward shorter terminal branch lengths supporting the idea of higher transmissibility. We found L4 to have the shortest median terminal branch length, followed in order by L2, L3, and L1 (medians: 6.2 × 10−5, 8.2 × 10−5, 10.2 × 10−5, 17.5 × 10−5, respectively; all pairwise two-sided Wilcoxon rank-sum tests significant p-value < 0.001; Fig. 9). Shorter internal node-to-tip distance is a second phylogenetic correlate of transmissibility; the distribution of this measure across the four lineages revealed a similar hierarchy to the terminal branch length distribution (Supplementary Fig. 21). We also computed the cumulative distribution of isolates separated by increasing total pairwise SNS distance (Supplementary Fig. 22). The proportion of L4 isolates separated by More

  • in

    Strong nutrient-plant interactions enhance the stability of ecosystems

    Review of C–R stability theoryTo set the context for how the R–N module will be used to understand the dynamics of nutrient-limited ecosystem models, we first briefly review stability results from modular food web theory. We do this by laying out a set of examples that serve to illustrate that in general, strong C–R interactions promote oscillatory dynamics while carefully placed weak C–R interactions dampen them5. We begin with the Rosenzweig–MacArthur C–R system as our base C–R module (Fig. 1a). It is biologically supported and produces a range of biologically plausible dynamics5, making it an appropriate system for this analysis. It exhibits three different dynamical phases over a gradient of interaction strengths (energetically defined sensu Nilsson et al. 2018) such that increasing the attack rate (({a}_{{CR}})) increases interaction strength15 (Fig. 2). We use the return time after a small perturbation (i.e., eigenvalues) to highlight the natural stability trade-off that occurs as interaction strength is changed, (i.e., the “checkmark” stability pattern)5,6. Equations and parameters can be found in Supplementary Results 1A. We draw your attention to three notable dynamical phases of the C–R module. At low interaction strengths the dominant eigenvalue (({lambda }_{{max }})) is negative and real and the C–R module follows a monotonic return to a stable equilibrium (Fig. 2a). During this phase ({lambda }_{{max }}) decreases from 0 (i.e., where ({a}_{{{CR}}}) allows the consumer to persist) to more negative values and thus stronger interactions tend to increase stability (Fig. 2d, i). At moderate interaction strengths, there is a sudden shift to eigenvalues with a non-zero complex part and population dynamics overshoot the equilibrium (Fig. 2b). Increases in interaction strength then further excite population dynamics and we observe less stable dynamics across this phase (Fig. 2d, ii). Last, the system reaches a Hopf bifurcation where the dominant eigenvalue becomes positive, yielding sustained cycles or oscillations (Fig. 2c, d, iii). As interaction strength increases across this phase, it is difficult to determine stability from the magnitude of a positive dominant eigenvalue; however, destabilization with increased interaction strength is readily observed in that the cycles become increasingly larger oscillations with a high coefficient of variation (CV)5. Note that while the Rosenzweig–MacArthur C–R system is shown here under a single set of parameters, analysis of the Jacobian shows the qualitative results to be general5. Moreover, the qualitative stability pattern remains for a type I and type III functional response5.Fig. 1: C–R and R–N base modules.a Rosenzweig–MacArthur C–R module modelled with Holling type II functional response and logistic resource growth, where (R) is resource biomass and (C) is consumer biomass. Parameters: (r) is the intrinsic growth rate of (R), (K) is the carrying capacity of (R), ({a}_{{mathrm {CR}}}) is the attack rate of (C) on (R), (e) is the assimilation rate of (C), ({R}_{0}) is the half-saturation density of (C), ({m}_{R}) and ({m}_{C}) are the mortality rates of (R) and (C), respectively. b R–N module modelled with a Monod nutrient uptake equation and external nutrient input, where (N) is a limiting-nutrient pool and (R) is the resource biomass. Parameters: ({I}_{N}) is external nutrient input to (N), ({a}_{{RN}}) is nutrient uptake rate by (R), (k) is the half-saturation density of (R), ({l}_{N}) and ({l}_{R}) are nutrient loss rates from (N) and (R), respectively.Full size imageFig. 2: C–R checkmark stability response.d Local stability (real and complex parts of the dominant eigenvalue; ({lambda }_{{max }})) as a function of interaction strength (({a}_{{{mathrm {CR}}}})) for the Rosenzweig–MacArthur C–R module. Time series reflect dynamics associated with region i, ii, and iii, respectively, following a perturbation that removes 50% of consumer biomass: a Stable equilibrium; monotonic dynamics. b Stable equilibrium; overshoot dynamics. c Unstable equilibrium; limit cycle. Boldness of arrows indicates the strength of interaction (({a}_{{CR}})).Full size imageWe now couple C–R modules into higher order food web modules to demonstrate how the addition of weak and/or strong interactions to a system can be used to predict dynamics at steady state (Fig. 3), constituting the “algebra” of C–R modules. Equations and parameters can be found in Supplementary Results 1B–D. We start with the three trophic level food chain (Fig. 3a), consisting of two coupled C–R modules (i.e., C1-R and P–C1). Theory has tended to find two weakly interacting C–R modules to generally produce locally stable equilibria16 (Fig. 3a). Increasing the strength of the C1–R interaction causes it to act like an oscillator (see Fig. 2c, above), and with enough increase this underlying oscillation is reflected in the limit cycles of the entire food chain (Fig. 3b). If the P–C1 interaction is strengthened as well, we end up with two coupled oscillators—the recipe for chaos17,18 (Fig. 3c). As such, coupled strong interactions are not surprisingly the recipe for complex and highly unstable dynamics.Fig. 3: Algebra of C–R modules.Time series showing the general dynamical outcomes for the food chain and diamond module at steady state with varied combinations of C–R interaction strengths. a Weak–weak interaction; point attractor. b Strong–weak interaction; limit cycle. c Strong–strong interaction; chaos. d Strong–strong, weak interaction; limit cycle. e Strong–strong, weak–weak interaction; point attractor.Full size imageFollowing McCann et al.19, we now add a weakly coupled consumer C2 to the food chain system of Fig. 3c. This weak consumer essentially draws energy away from the strong P–C1–R pathway and in doing so partially mutes the coupled oscillators, bringing the dynamics back to a more even limit cycle (Fig. 3d) and under certain conditions can drive equilibrium dynamics19. Last, the predator is weakly coupled to C2, creating a strong and weak pathway. The second weak interaction further draws energy away from the strong pathway, muting the oscillators entirely and bringing the system in this example to a point attractor (Fig. 3e). These examples show that well placed weak interactions (i.e., non-oscillatory phases, Fig. 2a, b) can be used to draw energy away from strong pathways and act as potent stabilizers of potentially oscillatory pathways. Note that weak interactions play a similarly stabilizing role in the omnivory module20 and further, weak interactions have been shown to stabilize large food web networks4,6 suggesting the principles derived from modular theory scale up to whole systems. Taken altogether, the oscillatory nature of strong C–R interactions generally promotes oscillatory dynamics in higher order systems, while the careful placement of weak C–R interactions—which are monotonic in nature—act to dampen oscillations. Although not discussed to our knowledge, we conjecture that if a subsystem exists such that strong interactions lead to monotonic dynamics (i.e., without oscillatory decay), strong interactions in this case would serve as a potent stabilizer. Below, we show the R–N module appears to be such a case.R–N module and stabilityTowards understanding how the R–N subsystem may interact in a higher order system, we first briefly consider the stability of the R–N module alone (akin to what we discussed for the C–R module above). The R–N module consists of a resource that takes up nutrients according to a Monod-like growth term, is open to flows from the external environment as a result of geochemical processes, and nutrients are lost to the external environment according to a linear term11 (Fig. 1b). Performing a local stability analysis about the interior equilibrium reveals the R–N module to be locally stable for all biologically feasible parameterizations, as determined by the signs of the trace and determinant of the Jacobian matrix (see Supplementary Results 2B). We now perform further numerical and analytical analyses to understand how stability is influenced by interaction strength.As the maximum rate of nutrient uptake (({a}_{{RN}})) is increased (i.e., R–N interaction strength), stability is generally increased (Fig. 4d), with the real part of the dominant eigenvalue (({lambda }_{{max }})) tending from 0 (i.e., where ({a}_{{RN}}) allows the resource to persist) towards an asymptote of ({-l}_{R}) (see Supplementary Results 2C). Numerical analysis reveals that the asymptote at ({-l}_{R}) can be approached from above or below depending on the relative leakiness of the R and N compartments (i.e., the rate at which nutrients are lost to the external environment from compartment R (({l}_{R})) and N (({l}_{N}))). For ({l}_{N} , > , {l}_{R}) (Fig. 4d), the R–N module only follows a monotonic return to equilibrium as interaction strength is increased, with increased interaction strength only tending to increased stability (i.e., reduce return time). For ({l}_{N} < {l}_{R}) (Fig. 4d), the R–N module follows a monotonic return to equilibrium for weak (Fig. 4a) and strong (Fig. 4c) interaction strength, but modest overshoot dynamics are observed for intermediate interaction strength (Fig. 4b). Stability tended to increase with interaction strength for weak to intermediate interaction strength (i.e., dominant eigenvalue becomes more negative), then slightly decrease as interaction strength became strong. A special case exists when ({l}_{R}={l}_{N}) (Fig. 4d), where stability increases with interaction strength until ({lambda }_{{max }}) becomes locked in at ({-l}_{R}), indicating stability does not change regardless of any further increase in interaction strength. Overall, the R–N interaction tends to generally stabilize in all cases (dominant eigenvalue goes from zero to a more negative saturating value with monotonic dynamics), although there are some intermediate cases that produce complex eigenvalues that suggest population dynamic overshoot potential (Fig. 4b). Note that we obtain qualitatively similar results when implicitly strengthening the R–N interaction by increasing nutrient loading (see Supplementary Results 2D and Supplementary Fig. 1). Now, given the above framework for coupled C–R modules—where weak C–R interactions with underlying monotonic dynamics dampen the oscillatory potential of strong C–R interactions—the underlying monotonic dynamics of the R–N module suggest that R–N interactions ought to be stabilizing when coupled to strong C–R interactions. Further, the underlying increase in stability (i.e., more rapid return to equilibrium) as R–N interaction strength is increased suggests the stabilizing potential of the R–N module ought to increase as the interaction becomes stronger.Fig. 4: R–N stability response to increasing interaction strength.Time series showing R density following a perturbation that lowered R density to 50% of equilibrium density for a low (({a}_{{RN}}=0.8)), b intermediate (({a}_{{RN}}=1)), and c high maximum rate of nutrient uptake (({a}_{{RN}}=2.8)). d Local stability (dominant eigenvalue; ({lambda }_{{max }})) of the R–N subsystem as ({a}_{{RN}}) is increased for ({l}_{N} , > , {l}_{R}), ({l}_{N}={l}_{R}), and ({l}_{N} < {l}_{R}), where ({l}_{R}) and ({l}_{N}) are the rate at which nutrients are lost to the external environment from compartment R and N, respectively. Solid lines are real parts and dashed lines are complex parts of ({lambda }_{{max }}).Full size imageTo look into this conjecture, we first coupled R–N to multiple configurations of strong and expectantly oscillatory C–R interactions and increased R–N interaction strength (({a}_{{RN}})). Following this, we added nutrient cycling and repeated the experiment to demonstrate that our results can be generalized to nutrient-limited ecosystem models. The full equations and parameter values for each model are listed in Supplementary Results 3A–D and 4A, B. We begin with the C–R–N system, where C–R and R–N are coupled through R (Fig. 5a). The initial increase in ({a}_{{RN}}) implicitly strengthens the C–R interaction and fuels the oscillatory potential of C–R and cycles emerge almost immediately after C is able to persist. As ({a}_{{RN}}) is increased further the cycles disappear and we obverse a steep stabilization phase, followed by a modest period of destabilization. Adding a weakly coupled predator gives a similar outcome, although the system continually stabilizes as ({a}_{{RN}}) is increased (Fig. 5b). If the P–C interaction is strengthened (i.e., both C1–R and P–C1 are strong, the recipe for chaos), R–N is unable to dampen oscillations even with a strong interaction strength, although a strong interaction gives tighter bound cycles than a weak interaction (Fig. 5c). We next add a weakly coupled consumer to the nutrient-limited food chain with strong P–C1 and C1–R interactions (Fig. 5d). As seen previously, this interaction draws energy out of the strong pathway, partially muting oscillatory potential. Thus, the ability for a strong R–N interaction to once again return the system to a stable equilibrium is not surprising. Finally, we add a detrital compartment to show that strong R–N interactions remain potent stabilizers in the context of nutrient cycling (Fig. 6b) when compared to a nutrient-limited food chain without nutrient cycling (Fig. 6a).Fig. 5: Nutrient-limited food chain stability.a–d Non-equilibrium dynamics (log10(C1,max/C1,min)) and equilibrium stability (real part of the dominant eigenvalue; ({lambda }_{{max }})) of the C–R–N, P–C–R–N with a single oscillator, P–C–R–N with coupled oscillators, and P–C1–C2–R–N modules, respectively, as ({a}_{{RN}}) is varied.Full size imageFig. 6: Nutrient-limited ecosystem module stability.a, b Non-equilibrium dynamics (log10(Cmax/Cmin)) and equilibrium stability (real part of the dominant eigenvalue; ({lambda }_{{max }})) of the C–R–N nutrient-limited food chain model and the C–R–N–D nutrient-limited ecosystem model, respectively, as ({a}_{{RN}}) is varied.Full size imageNote that we repeat our analysis of higher order modules by implicitly increasing R–N interaction strength through nutrient loading (see Supplementary Results 3E and 4C and Supplementary Figs. 2 and 3). In all cases, increased nutrient loading led to less stable dynamics, consistent with DeAngelis’ (1992) paradox of enrichment finding where increased nutrient loading lead to destabilizing autotroph–herbivore oscillations. More

  • in

    Late Quaternary dynamics of Arctic biota from ancient environmental genomics

    1.Binney, H. et al. Vegetation of Eurasia from the last glacial maximum to present: key biogeographic patterns. Quat. Sci. Rev. 157, 80–97 (2017).ADS 
    Article 

    Google Scholar 
    2.Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Bigelow, N. H. Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present. J. Geophys. Res. 108, https://doi.org/10.1029/2002jd002558 (2003).4.Graham, R. W. et al. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. Proc. Natl Acad. Sci. USA 113, 9310–9314 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Stuart, A. J. Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50, 338–363 (2015).Article 

    Google Scholar 
    6.Koch, P. L. & Barnosky, A. D. Late Quaternary extinctions: state of the debate. Ann. Rev. Ecol. Evol. Syst. 37, 215–250 (2006).Article 

    Google Scholar 
    7.Rabanus-Wallace, M. T. et al. Megafaunal isotopes reveal role of increased moisture on rangeland during late Pleistocene extinctions. Nat. Ecol. Evol. 1, 0125 (2017).Article 

    Google Scholar 
    8.Mann, D. H., Groves, P., Kunz, M. L., Reanier, R. E. & Gaglioti, B. V. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival. Quat. Sci. Rev. 70, 91–108 (2013).ADS 
    Article 

    Google Scholar 
    9.Capo, E. et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, https://doi.org/10.3390/quat4010006 (2021).10.Edwards, M. E. et al. Metabarcoding of modern soil DNA gives a highly local vegetation signal in Svalbard tundra. Holocene 28, 2006–2016 (2018).ADS 
    Article 

    Google Scholar 
    11.Hughes, P. D., Gibbard, P. L. & Ehlers, J. Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’ (LGM). Earth Sci. Rev. 125, 171–198 (2013).ADS 
    Article 

    Google Scholar 
    12.Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. 111, https://doi.org/10.1029/2005jd006079 (2006).14.Mangerud, J. The discovery of the Younger Dryas, and comments on the current meaning and usage of the term. Boreas 50, 1–5 (2020).Article 

    Google Scholar 
    15.Bauska, T. K. et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl Acad. Sci. USA 113, 3465–3470 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Wesser, S. D. & Armbruster, W. S. Species distribution controls across a forest‐steppe transition: a causal model and experimental test. Ecol. Monogr. 61, 323–342 (1991).Article 

    Google Scholar 
    17.Rijal, D. P. et al. Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia. Sci. Adv. 7, eabf9557 (2021).18.Birks, H. H. Aquatic macrophyte vegetation development in Kråkenes Lake, western Norway, during the late-glacial and early-Holocene. J. Paleolimnol. 23, 7–19 (2000).ADS 
    Article 

    Google Scholar 
    19.Guthrie, R. D. Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quat. Sci. Rev. 20, 549–574 (2001).ADS 
    Article 

    Google Scholar 
    20.Mann, D. H., Peteet, D. M., Reanier, R. E. & Kunz, M. L. Responses of an Arctic landscape to Lateglacial and early Holocene climatic changes: the importance of moisture. Quat. Sci. Rev. 21, 997–1021 (2002).ADS 
    Article 

    Google Scholar 
    21.Ritchie, M. in Competition and Coexistence (eds Sommer, U. & Worm, B.) 109–131 (Springer, 2002).22.Signor, P. W., Lipps, J. H., Silver, L. & Schultz, P. in Geological Implications of Impacts of Large Asteroids and Comets on the Earth vol. 190 (eds Silver, L. T. & Schultz, P. H.) 291–296 (1982).23.Haile, J. et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl Acad. Sci. USA 106, 22352–22357 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Librado, P. et al. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proc. Natl Acad. Sci. USA 112, E6889–E6897 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Nikolskiy, P. A., Sulerzhitsky, L. D. & Pitulko, V. V. Last straw versus Blitzkrieg overkill: climate-driven changes in the Arctic Siberian mammoth population and the Late Pleistocene extinction problem. Quat. Sci. Rev. 30, 2309–2328 (2011).ADS 
    Article 

    Google Scholar 
    26.Pavlov, P., Svendsen, J. I. & Indrelid, S. Human presence in the European Arctic nearly 40,000 years ago. Nature 413, 64–67 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Kuzmin, Y. V. & Keates, S. G. Siberia and neighboring regions in the Last Glacial Maximum: did people occupy northern Eurasia at that time? Archaeol. Anthropol. Sci. 10, 111–124 (2016).Article 

    Google Scholar 
    28.Stuart, A. J. & Lister, A. M. Extinction chronology of the woolly rhinoceros Coelodonta antiquitatis in the context of late Quaternary megafaunal extinctions in northern Eurasia. Quat. Sci. Rev. 51, 1–17 (2012).ADS 
    Article 

    Google Scholar 
    29.Chang, D. et al. The evolutionary and phylogeographic history of woolly mammoths: a comprehensive mitogenomic analysis. Sci. Rep. 7, 44585 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Vartanyan, S. L., Arslanov, K. A., Karhu, J. A., Possnert, G. & Sulerzhitsky, L. D. Collection of radiocarbon dates on the mammoths (Mammuthus primigenius) and other genera of Wrangel Island, northeast Siberia, Russia. Quat. Res. 70, 51–59 (2017).Article 
    CAS 

    Google Scholar 
    31.Rogers, R. L. & Slatkin, M. Excess of genomic defects in a woolly mammoth on Wrangel island. PLoS Genet. 13, e1006601 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Zimov, S. A., Zimov, N. S., Tikhonov, A. N. & Chapin, F. S. Mammoth steppe: a high-productivity phenomenon. Quat. Sci. Rev. 57, 26–45 (2012).ADS 
    Article 

    Google Scholar 
    33.Yurtsev, B. A. The Pleistocene “Tundra-Steppe” and the productivity paradox: the landscape approach. Quat. Sci. Rev. 20, 165–174 (2001).ADS 
    Article 

    Google Scholar 
    34.Rybczynski, N. et al. Mid-Pliocene warm-period deposits in the High Arctic yield insight into camel evolution. Nat. Commun. 4, 1550 (2013).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    35.Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    36.Pedersen, M. W. et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature 537, 45–49 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Lorenz, M. G. & Wackernagel, W. Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Appl. Environ. Microb. 53, 2948–2952 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Willerslev, E., Hansen, A. J. & Poinar, H. N. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol. Evol. 19, 141–147 (2004).PubMed 
    Article 

    Google Scholar 
    41.Alsos, I. G. et al. The treasure vault can be opened: large-scale genome skimming works well using herbarium and silica gel dried material. Plants 9, https://doi.org/10.3390/plants9040432 (2020).42.Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    43.Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382 (2003).Article 

    Google Scholar 
    44.Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    45.Grootes, P. M. & Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10−3- to 105-year time resolution. J. Geophys. Res. Oceans 102, 26455–26470 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Stuiver, M. & Grootes, P. M. GISP2 oxygen isotope ratios. Quat. Res. 53, 277–284 (2017).Article 
    CAS 

    Google Scholar 
    48.Johnsen, S. J. et al. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. J. Geophys. Res. Oceans 102, 26397–26410 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Fuhrer, K., Neftel, A., Anklin, M. & Maggi, V. Continuous measurements of hydrogen peroxide, formaldehyde, calcium and ammonium concentrations along the new grip ice core from summit, Central Greenland. Atmos. Environ. A 27, 1873–1880 (1993).ADS 
    Article 

    Google Scholar 
    50.Mayewski, P. A. et al. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. J. Geophys. Res. Oceans 102, 26345–26366 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Alley, R. B. et al. Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362, 527–529 (1993).ADS 
    Article 

    Google Scholar 
    52.Holden, P. B. et al. PALEO-PGEM v1.0: a statistical emulator of Pliocene–Pleistocene climate. Geosci. Model Dev. 12, 5137–5155 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Martindale, A. et al. Canadian Archaeological Radiocarbon Database (CARD 2.1) (Laboratory of Archaeology at the University of British Columbia, and the Canadian Museum of History, accessed 6 February 2020).55.Vermeersch, P. M. Radiocarbon Palaeolithic Europe database: a regularly updated dataset of the radiometric data regarding the Palaeolithic of Europe, Siberia included. Data Brief 31, 105793 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    57.Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 1–25 (2015).Article 

    Google Scholar 
    58.Martiniano, R., De Sanctis, B., Hallast, P. & Durbin, R. Placing ancient DNA sequences into reference phylogenies. Preprint at https://doi.org/10.1101/2020.12.19.423614 (2020).59.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).60.Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Wang, Y. et al. Supporting Data for: Late Quaternary Dynamics of Arctic Biota from Ancient Environmental Metagenomics https://dataverse.no/privateurl.xhtml?token=86979109-5605-43b5-b3fb-f470d85b114c (2021).62.Theodoridis, S. et al. Climate and genetic diversity change in mammals during the Late Quaternary. Preprint at https://doi.org/10.1101/2021.03.05.433883 (2021). More

  • in

    Congo Basin rainforest — invest US$150 million in science

    COMMENT
    20 October 2021

    Congo Basin rainforest — invest US$150 million in science

    The world’s second-largest rainforest is key to limiting climate change — it needs urgent study and protection.

    Lee J. T. White

    0
    ,

    Eve Bazaiba Masudi

    1
    ,

    Jules Doret Ndongo

    2
    ,

    Rosalie Matondo

    3
    ,

    Arlette Soudan-Nonault

    4
    ,

    Alfred Ngomanda

    5
    ,

    Ifo Suspense Averti

    6
    ,

    Corneille E. N. Ewango

    7
    ,

    Bonaventure Sonké

    8
    &

    Simon L. Lewis

    9

    Lee J. T. White

    Lee J. T. White is Minister of Water, Forests, Oceans, Environment, Climate Change and Land-use Planning, Gabonese Republic.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Eve Bazaiba Masudi

    Eve Bazaiba Masudi is Deputy Prime Minister and Minister of Environment and Sustainable Development, Democratic Republic of the Congo.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Jules Doret Ndongo

    Jules Doret Ndongo is Minister of Forestry and Wildlife, Republic of Cameroon.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Rosalie Matondo

    Rosalie Matondo is Minister of Forest Economy, Republic of the Congo.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Arlette Soudan-Nonault

    Arlette Soudan-Nonault is Minister of Environment, Sustainable Development and the Congo Basin, Republic of the Congo.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Alfred Ngomanda

    Alfred Ngomanda is director of the National Centre for Scientific Research and Technology (CENAREST), Gabonese Republic.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Ifo Suspense Averti

    Ifo Suspense Averti is an associate professor in tropical forest ecology at Marian Ngouabi University, Republic of the Congo.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Corneille E. N. Ewango

    Corneille E. N. Ewango is a professor of tropical forest ecology and management at the University of Kisangani, Democratic Republic of the Congo.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Bonaventure Sonké

    Bonaventure Sonké is a professor of plant systematics and ecology at the University of Yaounde I, Republic of Cameroon.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Simon L. Lewis

    Simon L. Lewis is professor of global change science at University College London and the University of Leeds, UK.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    A warden with an orphaned mountain gorilla in the Virunga National Park sanctuary in the Democratic Republic of the Congo.Credit: Phil Moore/AFP/Getty

    Earth’s second-largest expanse of tropical forest lies in central Africa, in the Congo Basin. The region supports the livelihoods of 80 million people. The rainfall that the forest generates as far away as the Sahel and the Ethiopian highlands supports a further 300 million rural Africans. These forests are crucial to regulating Earth’s climate, and are home to forest elephants, gorillas and humans’ closest relatives, chimpanzees and bonobos.Such services to people and the planet are not guaranteed, given rapid climate change and ongoing development in the region. The forest’s ability to absorb carbon dioxide is slowing as temperatures rise1. Deforestation, although lower than elsewhere in the tropics over recent decades, has led to the loss of more than 500,000 hectares of forest in 2019 alone (see go.nature.com/3dnxm9e). Without new policies, this is expected to increase.Yet, too often, central Africa’s rainforests are ignored or downplayed. The Congo Basin forests receive much less academic and public attention than do those in the Amazon and southeast Asia. Between 2008 and 2017, the Congo Basin received just 11.5% of international financial flows for forest protection and sustainable management in tropical areas, compared with 55% for southeast Asia and 34% for the Amazon region2.The area is neglected even by comparison with the rest of Africa. For example, a key UK-funded programme of climate research, called Future Climate for Africa, invested £20 million (US$27 million) in modelling and four projects focused on eastern, western and southern Africa. None focused on the Congo Basin or central Africa.The result of this neglect is clear in high-level climate assessments. Central Africa was one of only two regions worldwide without enough data for the Intergovernmental Panel on Climate Change to assess past trends in extreme heat in its 2021 Working Group I report (the other was the southern tip of South America).
    A collaborative look at the Congo Basin
    We are a group of ministers who have responsibility for forests in the region, and scientists who work on the ground and advise governments. Together we call for a Congo Basin Climate Science Initiative. This should comprise a $100-million, decade-long programme of research, tied to a separate $50-million fund to train Congo Basin nationals to become PhD-level scientists. Such funding would transform our understanding of these majestic forests, providing crucial input for policymakers to help them enact policies to avoid the region’s looming environmental crises.There is precedent for such a transformation. In the mid-1990s, rainforest science in the Amazon region was limited and was largely conducted by overseas scientists. Formally beginning in 1998 and led by Brazilians, the Large-Scale Biosphere-Atmosphere Experiment in Amazonia programme, known as the LBA, was a 10-year, $100-million effort. It revolutionized understanding of the Amazon rainforest and its role in the Earth system.The LBA involved 6 years of intensive measurements and covered climatology, hydrology, ecology and biogeochemistry across an area of 550 million hectares. It comprised 120 projects and 1,700 participants, 990 of whom were Brazilians3. One of its greatest legacies was the creation of a new cadre of Brazilian researchers. Two decades on, Brazil is now widely acknowledged as the world’s leading nation for tropical forest monitoring, and is at the forefront of rainforest science.We should — we must — do the same for central Africa.Known unknownsThe Greater Congo Basin covers some 240 million hectares of contiguous forests, straddling 8 nations (see ‘Earth’s second green lung’). Merely sampling this vast area is daunting. Access often requires days of travel in dugout canoes and long treks through the humid jungle, punctuated by wading through swamps. There is also a pervasive prejudice: too many people think working in the Congo Basin region is perilous, whether the hazards are political instability, unfamiliar diseases or dangerous animals. In reality, for the vast majority of central Africa, the risks are similar to working in the Amazon rainforest or east African savannah ecosystems.

    Source: Ref. 1

    These various challenges can be surmounted. Papers from the past few years, co-authored by many of us, highlight how important and understudied the region is. In 2017, the world’s largest tropical peatland complex was mapped for the first time — an area spanning 14.6 million hectares in the heart of the Congo basin4. This work radically shifted our understanding of carbon stores in the region. In March 2020, an international consortium showed that Africa’s rainforests annually absorb the same amount of carbon1 as was emitted each year by fossil-fuel use across the entire African continent in the 2010s5.In December 2020, a striking 81% decline in fruit production over 3 decades in an area of forest in Gabon was shown to coincide with climate warming and an 11% decline in the body condition of forest elephants (they rely on fruit for part of their diet)6. And in April, the first region-wide assessment of tree community composition in central Africa was published7, mapping areas that are vulnerable to climate change and human pressures.
    Biodiversity needs every tool in the box: use OECMs
    Overall, the strikingly recent (although somewhat limited) data suggest that the tropical forests of the Congo Basin are more carbon-dense8, more efficient at slowing climate change1 and more resistant to our changing climate9 than are Amazon tropical forests. But we do not know how increasing droughts, higher temperatures, selective logging and deforestation might interact — including the possibility of reduced rainfall in the Sahel10 and Ethiopian highlands11. Some 2,500 years ago, vast swathes of the Congo Basin forests were lost during a period of climate stress, but researchers do not understand the historic context of that event, nor the likelihood of a repeat12.Little is known about the region because not enough science is done in central Africa. Remarkably, researchers still do not understand the basic principles of why different types of forest occur where they do in the Congo Basin. Climate models for this region are poor, both because of the complex interplay of Atlantic, Indian and Southern ocean influences and because of a lack of local climate data. Without more data and more specialists, it is impossible to make reliable predictions of these forests’ responses to changes in climate and land use.Next stepsInvestment in basic science is urgently needed to fill these gaps. A Congo Basin Climate Science Initiative should focus on three important overarching questions: how does the Congo Basin currently operate as an integrated system? How will changes in land use and climate affect its function? And how sustainable are different options for development?Within these broad topics are more specific questions that politicians will need answers to if nations are to achieve net-zero CO2 emissions by 2050. One such question is how much carbon is stored in vegetation and soils. These and other quantities must be reported as part of countries’ commitments to the 2015 Paris climate agreement. At present, most central African countries rely on default values, which could be way off the mark. A recent paper13 on African montane forests largely near the edges of the basin, for example, showed that measured carbon storage values were 67% higher than the default values.

    A child on the Mongala River in the dense forest of the Democratic Republic of the Congo.Credit: Pascal Maitre/Panos

    A science initiative will work only if there is enthusiasm and leadership from researchers and active support from key Congo Basin countries, alongside buy-in from funders. We envision three steps to achieve these aims.First, scientists from the Congo region should hold a workshop with the LBA architects and participants to assess lessons from the Amazon region. This south–south cooperation would build a scientist-led framework to address the crucial research questions.Second, a meeting of politicians and advisers from the region would facilitate discussions of the policy-relevant questions that scientists should investigate. This would be led by Cameroon, the Democratic Republic of the Congo, Gabon and the Republic of the Congo — the four nations conducting the most research in the region. The meeting will help to lock in political support across ministries responsible for forests, environment, water, climate, science and universities.
    Nature-based solutions can help cool the planet — if we act now
    Third, partners will need to develop an overarching science programme that is acceptable to funders. Such a programme will probably include scaling up many efforts that are already under way, but which are currently insufficient in scope or unreliably funded. This would speed up scientific progress.For example, a handful of established, long-term field sites already exist in the Greater Congo Basin, including in Lopé National Park in Gabon and in the Yangambi Biosphere Reserve in the Democratic Republic of the Congo. These ‘supersites’ are sophisticated field stations with full-time staff who collect reliable, long-term data sets on vegetation, animals and the physical environment, including greenhouse-gas fluxes at Yangambi. But the sites are too few in number, and they rely on the heroic efforts of local champions. There should be a dozen or so locations across the region, with consistent funding to support complex research projects.Similarly, the African Tropical Rainforest Observation Network (AfriTRON), established in 2009, tracks every tree in permanent sample plots to estimate the carbon balance of undisturbed forests. Although this observatory has ramped up from its original 40 sites in central Africa to more than 200 today, these cover just 250 hectares of the roughly 240-million-hectare total. That is very sparse sampling from which to draw regional conclusions.Meanwhile, the Forest Global Earth Observatory (ForestGEO), established in 1990 to understand how tropical forests maintain such a diverse number of tree species, has established just 4 sites in central Africa in 30 years, with none in the centre of the basin. There is an obvious need for expansion.

    African forest elephants in Ivindo National Park, Gabon.Credit: Amaury Hauchard/AFP/Getty

    Finally, the 2016 AfriSAR airborne field campaign, a collaboration between NASA, the European Space Agency and the Gabonese Agency for Space Studies and Observation, showed how to combine different data sets to carefully map forest types and their carbon stocks in Lopé National Park in Gabon. This model could be replicated elsewhere in the basin.All of this work will require linking theory, observations, experiments and modelling. It should attract a diversity of leading international experts to focus on Africa and provide training to Congo Basin nationals. A $100-million research programme would provide new opportunities and much-needed career options for African scientists. The tied investment of $50 million, focused on building talent, could produce approximately 200 PhDs awarded by leading universities worldwide. This would create a new generation of scientists, including future leaders, from central Africa. The training programme would ensure the necessary step-change in science capacity, and provide opportunities for young African researchers who currently find it hard to compete for international scholarships, which are often won by students from Asia or South America.Agreeing on open access for all the data collected, as in the LBA programme, will significantly boost the initiative’s science impact.Money well spentThis $150-million science programme over 10 years needs investors. One option would be to combine funds from governments that have made large forest- and science-related investments in the Congo Basin in the past, notably Belgium, France, Germany, Norway, the United Kingdom, the United States and the European Union. Alternatives include United Nations agencies, international climate funds and private philanthropy organizations. Such a programme should be high on funders’ agendas, given the UN Sustainable Development Goals (SDGs). These include raising capacity for effective climate-change-related planning and management (SDG13), increasing financial resources to conserve and sustainably use biodiversity and ecosystems (SDG15), boosting the number of researchers in lower-income countries, and increasing research and development (R&D) funding (SDG9), all before 2030.Global R&D funding was $2.2 trillion in 201914. Thus, investing $150 million over a decade to better understand and protect the world’s second-largest extent of tropical forest is modest. To put this sum in context, the US government’s total projected cost for the Human Genome Project was $2.7 billion, and the European Space Agency spends approximately $500 million on its larger, long-lasting scientific satellites. The $100 million that the LBA brought to the Amazon in the 1990s is equivalent to about $160 million in today’s terms.
    Ethiopia, Somalia and Kenya face devastating drought
    The investment in science will pay for itself many times over. Consider just the role of forests as reservoirs of zoonotic diseases. Better forest management lowers the risk of disease outbreaks, let alone a pandemic15.Critics might argue that direct interventions in development aid are more urgent than investing in climate and ecological science. However, these funds are usually independent and do not compete. Furthermore, the old division between ending poverty and protecting the environment no longer applies: Africans will suffer disproportionately if temperatures are not limited as per the Paris agreement. That must include protection of the forests of the Congo Basin.Further efforts could help to support the goals of the Congo Basin science programme. For example, there is a lack of economic models that show how standing forests can become more valuable than converted landscapes. Developing these would support policy decisions to maintain forest cover.There are also several efforts under way to improve forest management that aim to empower local people, increase income and protect the environment. These include the transfer of land-management decisions to local populations, such as through community forestry, and creating high-value end products from selective logging rather than relying on the export of raw, unprocessed timber. A new science initiative could assess various approaches to understand what works best.We know so little about the majestic forests of central Africa. A Congo Basin Climate Science Initiative would curb our collective ignorance. A lack of investment is the barrier to safeguarding these precious ecosystems. Surmount this, and the future of Earth’s second ‘great green lung’ will be brighter.

    Nature 598, 411-414 (2021)
    doi: https://doi.org/10.1038/d41586-021-02818-7

    References1.Hubau, W. et al. Nature 579, 80–87 (2020).PubMed 
    Article 

    Google Scholar 
    2.Atyi, R. E. et al. International Financial Flows to Support Nature Protection and Sustainable Forest Management in Central Africa (Central Africa Forest Observatory, 2019).
    Google Scholar 
    3.Lahsen, M. & Nobre, C. A. Environ. Sci. Policy 10, 62–74 (2007).Article 

    Google Scholar 
    4.Dargie, G. C. et al. Nature 542, 86–90 (2017).PubMed 
    Article 

    Google Scholar 
    5.Ayompe, L. M., Davis, S. J. & Egoh, B. N. Environ. Res. Lett. 15, 124039 (2020).Article 

    Google Scholar 
    6.Bush, E. R. et al. Science 370, 1219–1222 (2020).PubMed 
    Article 

    Google Scholar 
    7.Réjou-Méchain, M. et al. Nature 593, 90–94 (2021).PubMed 
    Article 

    Google Scholar 
    8.Lewis, S. L. et al. Phil. Trans. R. Soc. B 368, 20120295 (2013).PubMed 
    Article 

    Google Scholar 
    9.Bennett, A. C. et al. Proc. Natl Acad. Sci. USA 118, e2003169118 (2021).PubMed 
    Article 

    Google Scholar 
    10.Salih, A. A. M., Zhang, Q. & Tjernström, M. J. Geophys. Res. Atmospheres 120, 6793–6808 (2015).Article 

    Google Scholar 
    11.Gebrehiwot, S. G. et al. WIREs Water 6, e1317 (2019).Article 

    Google Scholar 
    12.Malhi, Y. Proc. Natl Acad. Sci. USA 115, 3202–3204 (2018).PubMed 
    Article 

    Google Scholar 
    13.Cuni-Zanchez, A. et al. Nature 596, 536–542 (2021).PubMed 
    Article 

    Google Scholar 
    14.Sargent, J. F. Global Research and Development Expenditures: Fact Sheet R44283 (Congressional Research Service, 2021).15.Everard, M., Johnston, P., Santillo, D. & Staddon, C. Environ. Sci. Policy 111, 7–17 (2020).PubMed 
    Article 

    Google Scholar 
    Download references

    Competing Interests
    L.J.T.W. (Gabon), E.B.M. (Democratic Republic of the Congo), J.D.N. (Cameroon), R.M. (Republic of the Congo) and A.S-N. (Republic of the Congo) are ministers of forests and/or the environment. Their countries stand to benefit if international donors take on board the recommendations in this Comment article.

    Related Articles

    Nature-based solutions can help cool the planet — if we act now

    Biodiversity needs every tool in the box: use OECMs

    Ethiopia, Somalia and Kenya face devastating drought

    A collaborative look at the Congo Basin

    Subjects

    Conservation biology

    Climate change

    Ecology

    Latest on:

    Climate change

    Before making a mammoth, ask the public
    World View 20 OCT 21

    Why fossil fuel subsidies are so hard to kill
    News Feature 20 OCT 21

    The broken $100-billion promise of climate finance — and how to fix it
    News Feature 20 OCT 21

    Ecology

    Rhinoceros genomes uncover family secrets
    News & Views 19 OCT 21

    A toxic ‘tide’ is creeping over bountiful Arctic waters
    Research Highlight 06 OCT 21

    Spatiotemporal origin of soil water taken up by vegetation
    Article 06 OCT 21

    Jobs

    Community Practice Pathologist (AP/CP)

    University of Vermont (UVM)
    Plattsburgh, NY, United States

    Postdoctoral Fellowship in Vascular Biology at Boston Children’s Hospital and Harvard Medical School

    Boston Children’s Hospital (BCH)
    Boston, MA, United States

    Assistant Professor/Associate Professor of Physiology and Cellular Biophysics (Tenure-Track)

    Columbia University in the City of New York (CU)
    New York, United States

    Associate or Senior Editor, Nature Biomedical Engineering

    Springer Nature
    New York, NY, United States More