Influence of historical changes in tropical reef habitat on the diversification of coral reef fishes
1.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
2.Zaffos, A., Finnegan, S. & Peters, S. E. Plate tectonic regulation of global marine animal diversity. Proc. Natl. Acad. Sci. 114, 5653–5658 (2017).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
3.Claramunt, S. & Cracraft, J. A new time tree reveals Earth historys imprint on the evolution of modern birds. Sci. Adv. 1, e1501005 (2015).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
4.Leprieur, F., Descombes, P., Gaboriau, T., Cowman, P. F. & Parravicini, V. Plate tectonics drive tropical reef biodiversity dynamics. Nat. Commun. 7, 11461 (2016).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
5.Ficetola, G. F., Mazel, F. & Thuiller, W. Global determinants of zoogeographical boundaries. Nat. Ecol. Evol. 1, 0089 (2017).Article
Google Scholar
6.Mazel, F. et al. Global patterns of β-diversity along the phylogenetic time-scale: The role of climate and plate tectonics. Glob. Ecol. Biogeogr. 26, 1211–1221 (2017).Article
Google Scholar
7.Hofreiter, M. & Stewart, J. Ecological change, range fluctuations and population dynamics during the pleistocene. Curr. Biol. 19, R584–R594 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
8.Pellissier, L. et al. Quaternary coral reef refugia preserved fish diversity. Science 344, 1016–1019 (2014).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
9.Jaramillo, C. et al. Effects of rapid global warming at the paleocene-eocene boundary on neotropical vegetation. Science 330, 957–961 (2010).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
10.Svenning, J.-C., Eiserhardt, W. L., Normand, S., Ordonez, A. & Sandel, B. The influence of paleoclimate on present-day patterns in biodiversity and ecosystems. Annu. Rev. Ecol. Evol. Syst. 46, 551–572 (2015).Article
Google Scholar
11.Steeman, M. E. et al. Radiation of extant cetaceans driven by restructuring of the oceans. Syst. Biol. 58, 573–585 (2009).PubMed
PubMed Central
Article
Google Scholar
12.Antonelli, A. & Sanmartín, I. Mass Extinction, gradual cooling, or rapid radiation? reconstructing the spatiotemporal evolution of the ancient angiosperm genus hedyosmum (Chloranthaceae) using empirical and simulated approaches. Syst. Biol. 60, 596–615 (2011).PubMed
Article
PubMed Central
Google Scholar
13.Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Philos. Trans. R. Soc. Lond. B 344, 305–311 (1994).CAS
Article
ADS
Google Scholar
14.Morlon, H., Parsons, T. L. & Plotkin, J. B. From the cover: Reconciling molecular phylogenies with the fossil record. Proc. Natl. Acad. Sci. 108, 16327–16332 (2011).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
15.Condamine, F. L., Rolland, J. & Morlon, H. Macroevolutionary perspectives to environmental change. Ecol. Lett. 16, 72–85 (2013).PubMed
Article
PubMed Central
Google Scholar
16.Condamine, F. L. et al. Deciphering the evolution of birdwing butterflies 150 years after Alfred Russel Wallace Deciphering the evolution of birdwing butterflies 150 years after. Sci. Rep. 5, 11860 (2015).PubMed
PubMed Central
Article
ADS
Google Scholar
17.Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442 (2016).PubMed
PubMed Central
Article
Google Scholar
18.Rolland, J. & Condamine, F. L. The contribution of temperature and continental fragmentation to amphibian diversification. J. Biogeogr. 46, 1857–1873 (2019).Article
Google Scholar
19.Gaboriau, T. et al. Ecological constraints coupled with deep-time habitat dynamics predict the latitudinal diversity gradient in reef fishes. Proc. R. Soc. B Biol. Sci. 286, 20191506 (2019).Article
Google Scholar
20.Descombes, P. et al. Linking species diversification to palaeo-environmental changes: A process-based modelling approach. Glob. Ecol. Biogeogr. 00, 1–12 (2017).
Google Scholar
21.Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science 361, 5452 (2018).Article
CAS
Google Scholar
22.Pontarp, M. et al. The latitudinal diversity gradient: Novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).PubMed
Article
PubMed Central
Google Scholar
23.Cowman, P. F. Historical factors that have shaped the evolution of tropical reef fishes: A review of phylogenies, biogeography, and remaining questions. Front. Genet. 5, 1–15 (2014).Article
Google Scholar
24.Bellwood, D. R. et al. Evolutionary history of the butterflyfishes (f: Chaetodontidae) and the rise of coral feeding fishes. J. Evol. Biol. 23, 335–349 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
25.Cowman, P. F. & Bellwood, D. R. Coral reefs as drivers of cladogenesis: Expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots. J. Evol. Biol. 24, 2543–2562 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
26.Sorenson, L., Santini, F., Carnevale, G. & Alfaro, M. E. A multi-locus timetree of surgeonfishes (Acanthuridae, Percomorpha), with revised family taxonomy. Mol. Phylogenet. Evol. 68, 150–160 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
27.Dornburg, A., Moore, J., Beaulieu, J. M., Eytan, R. I. & Near, T. J. The impact of shifts in marine biodiversity hotspots on patterns of range evolution: Evidence from the Holocentridae (squirrelfishes and soldierfishes). Evolution 69, 146–161 (2015).PubMed
Article
PubMed Central
Google Scholar
28.Cowman, P. F. & Bellwood, D. R. The historical biogeography of coral reef fishes: Global patterns of origination and dispersal. J. Biogeogr. 40, 209–224 (2013).Article
Google Scholar
29.Lohman, D. J. et al. Biogeography of the Indo-Australian archipelago. Annu. Rev. Ecol. Evol. Syst. 42, 205–226 (2011).Article
Google Scholar
30.Gaboriau, T., Leprieur, F., Mouillot, D. & Hubert, N. Influence of the geography of speciation on current patterns of coral reef fish biodiversity across the Indo-Pacific. Ecography 41, 1295–1306 (2017).Article
Google Scholar
31.McManus, J. W. Marine speciation, tectonics and sea- level changes in Southeast Asia. Proc. Fifth Int. Coral Reef 4, 133–138 (1985).
Google Scholar
32.Potts, D. C. Sea-level fluctuations and speciation in Scleractinia. Proc. Fifth Int. Coral Reef 4, 51–62 (1985).
Google Scholar
33.Hou, Z. & Li, S. Tethyan changes shaped aquatic diversification. Biol. Rev. https://doi.org/10.1111/brv.12376 (2017).Article
PubMed
PubMed Central
Google Scholar
34.Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. Proc. Natl. Acad. Sci. USA 108, 6187–6192 (2011).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
35.Bellwood, D. R. & Wainwright, P. C. The history and biogeography of Fishes on Coral Reefs. in Coral Reef Fishes, Dynamics and Diversity in a Complex Ecosystem, 5–32 (2002).36.Williams, S. T. & Duda, T. F. Did tectonic activity stimulate Oligo-Miocene speciation in the Indo-West Pacific?. Evolution 62, 1618–1634 (2008).PubMed
Article
PubMed Central
Google Scholar
37.Renema, W. et al. Hopping hotspots: Global shifts in marine biodiversity. Science 321, 654–657 (2008).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
38.Tea, Y.-K. et al. Phylogenomic analysis of concatenated ultraconserved elements reveals the recent evolutionary radiation of the fairy wrasses (teleostei: labridae: cirrhilabrus). Syst. Biol. 1, 1–12 (2021).
Google Scholar
39.Hall, R. Southeast Asia’s changing palaeogeography. Blumea J. Plant Taxon. Plant Geogr. 54, 148–161 (2009).Article
Google Scholar
40.Keith, S. A., Baird, A. H., Hughes, T. P., Madin, J. S. & Connolly, S. R. Faunal breaks and species composition of Indo-Pacific corals: The role of plate tectonics, environment and habitat distribution. Proc. Biol. Sci. 280, 20130818 (2013).CAS
PubMed
PubMed Central
Google Scholar
41.Cowman, P. F. & Bellwood, D. R. Vicariance across major marine biogeographic barriers: Temporal concordance and the relative intensity of hard versus soft barriers. Proc. Biol. Sci. 280, 20131541 (2013).PubMed
PubMed Central
Google Scholar
42.Price, S. A., Claverie, T., Near, T. J. & Wainwright, P. C. Phylogenetic insights into the history and diversification of fishes on reefs. Coral Reefs 34, 997–1009 (2015).Article
ADS
Google Scholar
43.Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: Form, function and interdependence. Biol. Rev. 92, 878–901 (2017).PubMed
Article
PubMed Central
Google Scholar
44.Bowen, B. W., Rocha, L. A., Toonen, R. J. & Karl, S. A. The origins of tropical marine biodiversity. Trends Ecol. Evol. 28, 359–366 (2013).PubMed
Article
PubMed Central
Google Scholar
45.Price, S. A., Tavera, J. J., Near, T. J. & Wainwright, P. C. Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes. Evolution 67, 417–428 (2012).PubMed
Article
PubMed Central
Google Scholar
46.Kiessling, W., Simpson, C., Beck, B., Mewis, H. & Pandolfi, J. M. Equatorial decline of reef corals during the last Pleistocene interglacial. Proc. Natl. Acad. Sci. USA. 109, 21378–21383 (2012).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
47.Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–45 (2007).
Google Scholar
48.Riginos, C., Buckley, Y. M., Blomberg, S. P. & Treml, E. A. Dispersal capacity predicts both population genetic structure and species richness in reef fishes. Am. Nat. 184, 52–64 (2014).PubMed
Article
PubMed Central
Google Scholar
49.Rocha, L. A. & Bowen, B. W. Speciation in coral-reef fishes. J. Fish Biol. 72, 1101–1121 (2008).Article
Google Scholar
50.Tedesco, P. A., Paradis, E., EvEque, C. L. & Hugueny, B. Explaining global-scale diversification patterns in actinopterygian fishes. J. Biogeogr. 44, 773–783 (2016).Article
Google Scholar
51.Rosenzweig, M. L. Species Diversity in Space and Time (Springer, 1995).Book
Google Scholar
52.Kisel, Y. & Barraclough, T. G. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316–334 (2010).PubMed
Article
PubMed Central
Google Scholar
53.Fine, P. V. A. & Ree, R. H. Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. Am. Nat. 168, 796–804 (2006).PubMed
Article
PubMed Central
Google Scholar
54.Jetz, W. & Fine, P. V. A. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol. 10, e1001292 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
55.Konow, N., Price, S., Abom, R., Bellwood, D. & Wainwright, P. Decoupled diversification dynamics of feeding morphology following a major functional innovation in marine butterflyfishes. Proc. Biol. Sci. 284, 20170906 (2017).PubMed
PubMed Central
Google Scholar
56.Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: Multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. 120, 729–751 (2017).
Google Scholar
57.Lobato, F. L. et al. Diet and diversification in the evolution of coral reef fishes. PLoS ONE 9, e102094 (2014).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
58.Siqueira, A. C., Morais, R. A., Bellwood, D. R. & Cowman, P. F. Trophic innovations fuel reef fish diversification. Nat. Commun. 11, 1–11 (2020).Article
CAS
Google Scholar
59.Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
60.Morlon, H., Hartig, F. & Robin, S. Prior hypotheses or regularization allow inference of diversification histories from extant timetrees. bioRxiv (2020).61.McCord, C. L. & Westneat, M. W. Phylogenetic relationships and the evolution of BMP4 in triggerfishes and filefishes (Balistoidea). Mol. Phylogenet. Evol. 94, 397–409 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Santini, F. & Carnevale, G. First multilocus and densely sampled timetree of trevallies, pompanos and allies (Carangoidei, Percomorpha) suggests a Cretaceous origin and Eocene radiation of a major clade of piscivores. Mol. Phylogenet. Evol. 83, 33–39 (2015).PubMed
Article
PubMed Central
Google Scholar
63.Santini, F., Carnevale, G. & Sorenson, L. First multi-locus timetree of seabreams and porgies (Percomorpha: Sparidae). Ital. J. Zool. 81, 55–71 (2014).Article
Google Scholar
64.Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 1357–1362 (2008).PubMed
Article
ADS
CAS
PubMed Central
Google Scholar
65.Heine, C., Yeo, L. G. & Müller, R. D. Evaluating global paleoshoreline models for the Cretaceous and Cenozoic. Aust. J. Earth Sci. 62, 275–287 (2015).CAS
Google Scholar
66.Kleypas, J. A. & Mcmanus, J. W. Environmental Limits to Coral Reef Development : Where Do We Draw the Line ?. Am. Zool. 39, 146–159 (1999).Article
Google Scholar
67.Bugayevskiy, L. M. & Snyder, J. P. Map Projections: A Reference Manual (Taylor & Francis, London, 1995).
Google Scholar
68.Chang, J., Rabosky, D. L. & Alfaro, M. E. Estimating diversification rates on incompletely sampled phylogenies: Theoretical concerns and practical solutions. Syst. Biol. 69, 602–611 (2020).PubMed
Article
PubMed Central
Google Scholar
69.Morlon, H. et al. RPANDA: An R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).Article
Google Scholar More