More stories

  • in

    Habitat geometry in artificial microstructure affects bacterial and fungal growth, interactions, and substrate degradation

    1.IPCC, Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical Science Basis, AR5. 2013.2.IPCC, Working Group I Report ‘The Physical Science Basis,’ PCC Fourth Assessment Report. 2007.3.IPCC, “IPCC Fourth Assessment Report (AR4),” IPCC, 1, 976, 2007.4.Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nature Communications 11, 1–13 (2020).Article 
    CAS 

    Google Scholar 
    5.Nagy, K., Ábrahám, Á., Keymer, J. E. & Galajda, P. Application of microfluidics in experimental ecology: the importance of being spatial. Front. Microbiol. 9, 496 (2018).6.Tecon, R. & Or, D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol. Rev. 41, 599–623 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science. https://doi.org/10.1126/science.1153213 (2008).8.Hobbie, J. E. & Hobbie, E. A. Microbes in nature are limited by carbon and energy: the starving-survival lifestyle in soil and consequences for estimating microbial rates. Front. Microbiol. 4, 1–11 (2013). no. NOV.Article 

    Google Scholar 
    9.Hill, P. W., Farrar, J. F. & Jones, D. L. Decoupling of microbial glucose uptake and mineralization in soil. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2007.09.008 (2008).10.IPCC. Climate change 2007: the physical science basis. 2007, https://doi.org/10.1260/095830507781076194.11.Baveye, P. C. et al. Emergent properties of microbial activity in heterogeneous soil microenvironments: different research approaches are slowly converging, yet major challenges remain. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01929 (2018).12.Bruand, A. & Cousin, I. Variation of textural porosity of a clay‐loam soil during compaction. Eur. J. Soil Sci. https://doi.org/10.1111/j.1365-2389.1995.tb01334.x (1995).13.Cnudde, V. & Boone, M. N. High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth-Science Rev. https://doi.org/10.1016/j.earscirev.2013.04.003 (2013).14.Pagliai, M., Vignozzi, N. & Pellegrini, S. Soil structure and the effect of management practices. https://doi.org/10.1016/j.still.2004.07.002 (2004).15.Pires, L. F., Bacchi, O. O. S., Reichardt, K. & Timm, L. C. Application of γ-ray computed tomography to analysis of soil structure before density evaluations. Appl. Radiat. Isot. https://doi.org/10.1016/j.apradiso.2005.03.019 (2005).16.Larsbo, M., Koestel, J., Kätterer, T. & Jarvis, N. Preferential transport in macropores is reduced by soil organic carbon. Vadose Zone J. https://doi.org/10.2136/vzj2016.03.0021 (2016).17.Ananyeva, K., Wang, W., Smucker, A. J. M., Rivers, M. L. & Kravchenko, A. N. Can intra-aggregate pore structures affect the aggregate’s effectiveness in protecting carbon? Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2012.10.019 (2013).18.Toosi, E. R., Kravchenko, A. N., Mao, J., Quigley, M. Y. & Rivers, M. L. Effects of management and pore characteristics on organic matter composition of macroaggregates: evidence from characterization of organic matter and imaging. Eur. J. Soil Sci. https://doi.org/10.1111/ejss.12411 (2017).19.Katuwal, S. et al. Linking air and water transport in intact soils to macropore characteristics inferred from X-ray computed tomography. Geoderma. https://doi.org/10.1016/j.geoderma.2014.08.006 (2015).20.Negassa, W. C. et al. Properties of soil pore space regulate pathways of plant residue decomposition and community structure of associated bacteria. PLoS ONE https://doi.org/10.1371/journal.pone.0123999 (2015).21.Rabot, E., Wiesmeier, M., Schlüter, S. & Vogel, H. J. Soil structure as an indicator of soil functions: a review. Geoderma. https://doi.org/10.1016/j.geoderma.2017.11.009 (2018).22.Pronk, G. J. et al. Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments. Biol. Fertil. Soils. https://doi.org/10.1007/s00374-016-1161-1 (2017).23.Downie, H. et al. Transparent Soil for Imaging the Rhizosphere. PLoS ONE. https://doi.org/10.1371/journal.pone.0044276 (2012).24.Aleklett, K. et al. Build your own soil: exploring microfluidics to create microbial habitat structures. ISME J. 12, 312–319 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Beebe, D. J., Mensing, G. A. & Walker, G. M. Physics and Applications of Microfluidics in Biology. Annu. Rev. Biomed. Eng. https://doi.org/10.1146/annurev.bioeng.4.112601.125916 (2002).26.Ahmed, T., Shimizu, T. S. & Stocker, R. Microfluidics for bacterial chemotaxis. Integr. Biol. https://doi.org/10.1039/c0ib00049c (2010).27.Ahmed, T. & Stocker, R. Experimental verification of the behavioral foundation of bacterial transport parameters using microfluidics. Biophys. J. https://doi.org/10.1529/biophysj.108.134510 (2008).28.Mao, H., Cremer, P. S. & Manson, M. D. A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc. Natl Acad. Sci. https://doi.org/10.1073/pnas.0931258100 (2003).29.Saragosti, J. et al. Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc. Natl Acad. Sci. https://doi.org/10.1073/pnas.1101996108 (2011).30.Deng, J. et al. Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biol. Biochem. 83, 116–124 (2015).CAS 
    Article 

    Google Scholar 
    31.Rubinstein, R. L., Kadilak, A. L., Cousens, V. C., Gage, D. J. & Shor, L. M. Protist-facilitated particle transport using emulated soil micromodels. Environ. Sci. Technol. 49, 1384–1391 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Stanley, C. E. et al. Probing bacterial-fungal interactions at the single cell level. Integr. Biol. 6, 935–945 (2014).CAS 
    Article 

    Google Scholar 
    33.Aleklett, K., Ohlsson, P., Bengtsson, M. & Hammer, E. C. Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips. ISME J. https://doi.org/10.1038/s41396-020-00886-7 (2021).34.Mafla-Endara, P. M. et al. Microfluidic chips provide visual access to in situ soil ecology. Commun. Biol. 4, 889 (2021).35.Falconer, R., Houston, A., Otten, W. & Baveye, P. Emergent behavior of soil fungal dynamics: influence of soil architecture and water distribution. Soil Sci. 177, 111–119 (2012).CAS 
    Article 

    Google Scholar 
    36.Duffy, K. J. & Ford, R. M. Turn angle and run time distributions characterize swimming behavior for Pseudomonas putida. J. Bacteriol. 179, 1428–1430 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Rashid, S. et al. Adjustment in tumbling rates improves bacterial chemotaxis on obstacle-laden terrains. Proc. Natl Acad Sci USA 116, 11770–11775 (2019).38.Duffy, K. J., Cummings, P. T. & Ford, R. M. Random walk calculations for bacterial migration in porous media. Biophys. J. 68, 800–806 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Shum, H. & Gaffney, E. A. Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels. Phys. Rev. E 92, 1–11 (2015).Article 
    CAS 

    Google Scholar 
    40.Guadayol, Ò., Thornton, K. L. & Humphries, S. Cell morphology governs directional control in swimming bacteria. Sci. Rep. https://doi.org/10.1038/s41598-017-01565-y (2017).41.Essig, A. et al. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis. J. Biol. Chem. 289, 34953–34964 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Dixon, E. F. & Hall, R. A. Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections. Cell. Microbiol. 17, 1431–1441 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Banitz, T. et al. Assessing biodegradation benefits from dispersal networks. Ecol. Model. 222, 2552–2560 (2011).Article 

    Google Scholar 
    44.Furuno, S. et al. Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems. Environ. Microbiol. 12, 1391–1398 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Kohlmeier, S. et al. Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ. Sci. Technol. 39, 4640–4646 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Held, M., Kaspar, O., Edwards, C. & Nicolau, D. V. Intracellular mechanisms of fungal space searching in microenvironments. Proc. Natl Acad. Sci. USA 116, 13543–13552 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Soufan, R. et al. Pore-scale monitoring of the effect of microarchitecture on fungal growth in a two-dimensional soil-like micromodel. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2018.00068 (2018).48.Hanson, K. L. et al. Fungi use efficient algorithms for the exploration of microfluidic networks. Small 2, 1212–1220 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Pajor, R., Falconer, R., Hapca, S. & Otten, W. Modelling and quantifying the effect of heterogeneity in soil physical conditions on fungal growth. Biogeosciences 7, 3731–3740 (2010).Article 

    Google Scholar 
    50.Varma, A., Abbott, L., Werner, D. & Hampp, R. Plant Surface Microbiology (Springer, 2008)..51.Lew, R. R. How does a hypha grow? The biophysics of pressurized growth in fungi. Nat. Rev. Microbiol. 9, 509–518 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Tayagui, A., Sun, Y., Collings, D. A., Garrill, A. & Nock, V. An elastomeric micropillar platform for the study of protrusive forces in hyphal invasion. Lab a Chip 17, 3643–3653 (2017).CAS 
    Article 

    Google Scholar 
    53.Bardgett, R. D. & McAlister, E. The measurement of soil fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils 29, 282–290 (1999).Article 

    Google Scholar 
    54.De Deyn, G. B., Cornelissen, J. H. C. & Bardgett, R. D. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett. 11, 516–531 (2008).PubMed 
    Article 

    Google Scholar 
    55.Kuijper, L. D. J., Berg, M. P., Morriën, E., Kooi, B. W. & Verhoef, H. A. Global change effects on a mechanistic decomposer food web model. Glob. Change Biol. 11, 249–265 (2005).Article 

    Google Scholar 
    56.Falconer, R. E. et al. Microscale heterogeneity explains experimental variability and non-linearity in soil organic matter mineralisation. PLoS ONE 10, e0123774 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Deveau, A. et al. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol. Rev. 42, 335–352 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Postma, J. & van Veen, J.A. Habitable pore space and survival of Rhizobium leguminosarum biovar trifolii introduced into soil. Microb. Ecol. 19, 149–161 (1990).59.Grundmann, G. L. Spatial scales of soil bacterial diversity—the size of a clone. FEMS Microbiol. Ecol. 48, 119–127 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83, 184–199 (2015).CAS 
    Article 

    Google Scholar 
    61.Kim, D. S. & Fogler, H. S. Biomass evolution in porous media and its effects on permeability under starvation conditions. Biotechnol. Bioeng. 69, 47–56 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Dupin, H. J. & McCarty, P. L. Mesoscale and microscale observations of biological growth in a silicon pore imaging element. Environ. Sci. Technol. 33, 1230–1236 (1999).CAS 
    Article 

    Google Scholar 
    63.Aufrecht, J. A. et al. Pore-scale hydrodynamics influence the spatial evolution of bacterial biofilms in a microfluidic porous network. PLoS ONE 14, 1–17 (2019).Article 
    CAS 

    Google Scholar 
    64.Vervoort, R. W. & Cattle, S. R. Linking hydraulic conductivity and tortuosity parameters to pore space geometry and pore-size distribution. J. Hydrol. 272, 36–49 (2003).Article 

    Google Scholar 
    65.Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem. 34, 139–162 (2002).Article 

    Google Scholar 
    66.Hoffman, M. T. & Arnold, A. E. Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl. Environ. Microbiol. 76, 4063–4075 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Mcdonald, J. C., Duffy, D. C., Anderson, J. R. & Chiu, D. T. Review general fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophoresis 21, 27–40 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Cánovas, D., Cases, I. & De Lorenzo, V. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ. Microbiol. 5, 1242–1256 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Mooney, A., Ward, P. G. & O’Connor, K. E. Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications. Appl. Microbiol. Biotechnol. 72, 1–10 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Ward, P. G., Goff, M., Donner, M., Kaminsky, W. & O’Connor, K. E. A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ. Sci. Technol. 40, 2433–2437 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Gomes, N. C. M., Kosheleva, I. A., Abraham, W. R. & Smalla, K. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiol. Ecol. 54, 21–33 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Smith, M. C. M. Molecular biological methods for bacillus. FEBS Lett. https://doi.org/10.1016/0014-5793(91)80059-c. (1991).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Razavi, B. S., Zhang, X., Bilyera, N., Guber, A. & Zarebanadkouki, M. Soil zymography: simple and reliable? Review of current knowledge and optimization of the method. Rhizosphere 11, 100161 (2019). no. June.Article 

    Google Scholar 
    75.Nicodème, M., Grill, J. P., Humbert, G. & Gaillard, J. L. Extracellular protease activity of different Pseudomonas strains: dependence of proteolytic activity on culture conditions. J. Appl. Microbiol. https://doi.org/10.1111/j.1365-2672.2005.02634.x (2005).76.Güll, I., Alves, P. M., Gabor, F. & Wirth, M. Viability of the human adenocarcinoma cell line Caco-2: influence of cryoprotectant, freezing rate, and storage temperature. Scientia Pharmaceutica https://doi.org/10.3797/scipharm.0810-07 (2009).77.Burns, C. et al. Efficient GFP expression in the mushrooms Agaricus bisporus and Coprinus cinereus requires introns. Fungal Genetics Biol. https://doi.org/10.1016/j.fgb.2004.11.005 (2005).78.Stajich, J. E. et al. Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc. Natl Acad. Sci. USA 107, 11889–11894 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. https://doi.org/10.1038/nmeth.2019 (2012).80.Kneen, M. A. & Annegarn, H. J. Algorithm for fitting XRF, SEM and PIXE X-ray spectra backgrounds. Nucl. Instrum. Methods Phys. Res. Section B https://doi.org/10.1016/0168-583X(95)00908-6 (1996).81.Team, R. C. R: a language and environment for statistical computing. Vienna, Austria, 2019.82.Dunn, O. J. Multiple comparisons among means. J. Am. Stat. Assoc. https://doi.org/10.2307/2282330 (1961).83.Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979.84.C. et al. Arellano-Caicedo, “Habitat geometry in artificial microstructure affects bacterial and fungal growth, interactions, and substrate degradation 2nd part,” Dryad, Dataset. 2021.85.C. et al. Arellano-Caicedo, “Habitat geometry in artificial microstructure affects bacterial and fungal growth, interactions, and substrate degradation. Part 1,” Dryad, Dataset, 2021. More

  • in

    Metabarcoding insights into the diet and trophic diversity of six declining farmland birds

    1.Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    2.Van Zanten, B. T. et al. European agricultural landscapes, common agricultural policy and ecosystem services: A review. Agron. Sustain. Dev. 34, 309–325 (2014).Article 

    Google Scholar 
    3.Jongman, R. H. Homogenisation and fragmentation of the European landscape: Ecological consequences and solutions. Landsc. Urban Plan. 58, 211–221 (2002).Article 

    Google Scholar 
    4.Stoate, C. et al. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 63, 337–365 (2001).CAS 
    Article 

    Google Scholar 
    5.Storkey, J., Meyer, S., Still, K. S. & Leuschner, C. The impact of agricultural intensification and land-use change on the European arable flora. Proc. R. Soc. B 279, 1421–1429 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Donald, P. F., Sanderson, F. J., Burfield, I. J. & Van Bommel, F. P. J. Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric. Ecosyst. Environ. 116, 189–196 (2006).Article 

    Google Scholar 
    7.Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188 (2003).Article 

    Google Scholar 
    8.Traba, J. & Morales, M. B. The decline of farmland birds in Spain is strongly associated to the loss of fallowland. Sci. Rep. 9, 1–6 (2019).Article 
    CAS 

    Google Scholar 
    9.Mcmahon, B. J., Giralt, D., Raurell, M., Brotons, L. & Bota, G. Identifying set-aside features for bird conservation and management in northeast Iberian pseudo-steppes. Bird Study 57, 289–300 (2010).Article 

    Google Scholar 
    10.Tarjuelo, R. et al. Living in seasonally dynamic farmland: The role of natural and semi-natural habitats in the movements and habitat selection of a declining bird. Biol. Conserv. 251, 108794 (2020).Article 

    Google Scholar 
    11.Donázar, J. A., Naveso, M. A., Tella, J. L. & Campión, D. Extensive grazing and raptors in Spain. 117–149. in Farming and Birds in Europe: The Common Agricultural Policy and Its Implications for Bird Conservation (Pain, D. J. & Pienkowski, M. W. eds.). (Academic Press, 1997).12.Santos, T. & Suárez, F. Biogeography and population trends of the Iberian steppe birds. in Ecology and Conservation of Steppe-Land Birds (Bota, G., Morales, M. B., Mañosa, S. & Camprodon, J. eds.). (Lynx Edicions, 2005).13.Tarjuelo, R., Margalida, A. & Mougeot, F. Changing the fallow paradigm: A win–win strategy for the post-2020 Common Agricultural Policy to halt farmland bird declines. J. Appl. Ecol. 57, 642–649 (2020).Article 

    Google Scholar 
    14.Wilson, J. D., Morris, A. J., Arroyo, B. E., Clark, S. C. & Bradbury, R. B. A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric. Ecosyst. Environ. 75, 13–30 (1999).Article 

    Google Scholar 
    15.Benton, T. G., Bryant, D. M., Cole, L. & Crick, H. Q. Linking agricultural practice to insect and bird populations: A historical study over three decades. J. Appl. Ecol. 39, 673–687 (2002).Article 

    Google Scholar 
    16.Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. U.S.A. 118, 2 (2021).Article 
    CAS 

    Google Scholar 
    17.Andreasen, C., Jensen, H. A. & Jensen, S. M. Decreasing diversity in the soil seed bank after 50 years in Danish arable fields. Agric. Ecosyst. Environ. 259, 61–71 (2018).Article 

    Google Scholar 
    18.Newton, I. The recent declines of farmland bird populations in Britain: An appraisal of causal factors and conservation actions. Ibis 146, 579–600 (2004).Article 

    Google Scholar 
    19.Burfield, I. J. The conservation status of steppic birds in Europe. 119–140. in Ecology and Conservation of Steppe-Land Birds (Bota, G., Morales, M. B., Mañosa, S. & Camprodon, J. eds.). (Lynx Edicions, 2005).20.Del Hoyo, J., Elliott, A., Sargatal, J. & Christie D. A. Handbook of the Birds of the World. (Lynx Edicions, 1992).21.Madroño, A., González, C. & Atienza, J. C. Libro Rojo de las Aves de España. (Dirección General para la Biodiversidad-SEO/BirdLife, 2004)22.Suárez, F., Hervás, I., Levassor, C. & Casado, M. A. La alimentación de la ganga ibérica y la ganga ortega. 215–229. in La Ganga Iberica (Pterocles alchata) y la Ganga Ortega (Pterocles orientalis) en España. Distribución, Abundancia, Biología y Conservación (Herranz, J. & Suárez, F. eds.). (Ministerio de Medio Ambiente, 1999).23.Jiguet, F. Arthropods in diet of Little Bustards Tetrax tetrax during the breeding season in western France. Bird Study 49, 105–109 (2002).Article 

    Google Scholar 
    24.Bravo, C., Ponce, C., Palacín, C. & Alonso, J. C. Diet of young Great Bustards Otis tarda in Spain: Sexual and seasonal differences. Bird Study 59, 243–251 (2012).Article 

    Google Scholar 
    25.Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Shokralla, S., Spall, J. L., Gibson, J. F. & Hajibabaei, M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21, 1794–1805 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Mougeot, F., Fernández-Tizón, M., Tarjuelo, R., Benítez-López, A. & Jiménez, J. La Ganga Ibérica y la Ganga Ortega en España, Población Reproductora en 2019 y Método de Censo. (SEO/BirdLife, 2021).28.Martin, T. E. Food as a limit on breeding birds: A life-history perspective. Annu. Rev. Ecol. Evol. Syst. 18, 453–487 (1987).Article 

    Google Scholar 
    29.Martín, C. A., Casas, F., Mougeot, F., García, J. T. & Viñuela, J. Positive interactions between vulnerable species in agrarian pseudo-steppes: Habitat use by pin-tailed sandgrouse depends on its association with the little bustard. Anim. Conserv. 13, 383–389 (2010).Article 

    Google Scholar 
    30.Bravo, C., Cuscó, F., Morales, M. & Mañosa, S. Diet composition of a declining steppe bird the Little Bustard (Tetrax tetrax) in relation to farming practices. Avian Conserv. Ecol. 12, 1 (2017).CAS 

    Google Scholar 
    31.Morse, J. G. & Hoddle, M. S. Invasion biology of thrips. Annu. Rev. Entomol. 51, 67–89 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Goldarazena, A. Orden Thysanoptera. Ide@-Sea 52, 1–20 (2015).
    Google Scholar 
    33.Ndang’ang’a, P. K., Njoroge, J. B. & Vickery, J. Quantifying the contribution of birds to the control of arthropod pests on kale, Brassica oleracea acephala, a key crop in East African highland farmland. Int. J. Pest Manag. 59, 211–216 (2013).Article 

    Google Scholar 
    34.Gunnarsson, B. Bird predation on spiders: Ecological mechanisms and evolutionary consequences. J. Arachnol. 35(509), 529 (2007).
    Google Scholar 
    35.Lee, J. H. et al. Anticancer activity of the antimicrobial peptide scolopendrasin VII derived from the centipede, Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 25, 1275–1280 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Lima, D. B. et al. Antiparasitic effect of Dinoponera quadriceps giant ant venom. Toxicon 120, 128–132 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Whitman, D. W. et al. Antiparasitic properties of cantharidin and the blister beetle berberomeloe majalis (Coleoptera: meloidae). Toxins 11, 234 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    38.Bravo, C., Bautista, L. M., García-París, M., Blanco, G. & Alonso, J. C. Males of a strongly polygynous species consume more poisonous food than females. PLoS ONE 9, e111057 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Bolívar, P. et al. Antiparasitic effects of plant species from the diet of great bustards. Preprint. https://doi.org/10.21203/rs.3.rs-122399/v1 (2020).Article 

    Google Scholar 
    40.Boyer, A. G. et al. Seasonal variation in top-down and bottom-up processes in a grassland arthropod community. Oecologia 136, 309–316 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Palacios, F., Garzón, J. & Castroviejo, J. L. alimentación de la avutarda (Otis tarda) en España, especialmente en primavera. Ardeola 21, 347–406 (1975).
    Google Scholar 
    42.Cabodevilla, X., Gómez-Moliner, B. J. & Madeira, M. J. Simultaneous analysis of the intestinal parasites and diet through eDNA metabarcoding. Preprint. https://doi.org/10.22541/au.158531783.33894277 (2020).Article 

    Google Scholar 
    43.García de la Morena, E. L., Bota, G., Mañosa, S. & Morales, M. B. El Sisón Común en España. II Censo Nacional (2016). (SEO/BirdLife, 2018).44.Cabodevilla, X., Aebischer, N. J., Mougeot, F., Morales, M. B. & Arroyo, B. Are population changes of endangered little bustards associated with releases of red-legged partridges for hunting? A large-scale study from central Spain. Eur. J. Wildl. Res. 66, 1–10 (2020).Article 

    Google Scholar 
    45.Cuscó, F., Cardador, L., Bota, G., Morales, M. B. & Mañosa, S. Inter-individual consistency in habitat selection patterns and spatial range constraints of female little bustards during the non-breeding season. BMC Ecol. 18, 1–12 (2018).Article 

    Google Scholar 
    46.González del Portillo, D., Arroyo, B., García Simón, G. & Morales, M. B. Can current farmland landscapes feed declining steppe birds? Evaluating arthropod abundance for the endangered little bustard (Tetrax tetrax) in cereal farmland during the chick‐rearing period: Variations between habitats and localities. Ecol. Evol. 11, 3219–3238 (2021).
    47.Silva, J. P., Pinto, M. & Palmeirim, J. M. Managing landscapes for the little bustard Tetrax tetrax: Lessons from the study of winter habitat selection. Biol. Conserv. 117, 521–528 (2004).Article 

    Google Scholar 
    48.Pfiffner, L. & Luka, H. Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric. Ecosyst. Environ. 78, 215–222 (2000).Article 

    Google Scholar 
    49.Hendrickx, F. et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 44, 340–351 (2007).Article 

    Google Scholar 
    50.Tarjuelo, R., Morales, M. B., Arribas, L. & Traba, J. Abundance of weeds and seeds but not of arthropods differs between arable habitats in an extensive Mediterranean farming system. Ecol. Res. 34, 624–636 (2019).Article 

    Google Scholar 
    51.Green, R. E. The feeding ecology and survival of partridge chicks (Alectoris rufa and Perdix perdix) on arable farmland in East Anglia. J. Appl. Ecol. 1, 817–830 (1984).Article 

    Google Scholar 
    52.Palacín, C. La decadencia de la comunidad de aves de los cultivos cerealistas mediterráneos. in XV Congreso del Grupo Ibérico de Aguiluchos. https://xvcongresoaguiluchosgia.es/wp-content/uploads/2019/11/LA-DECADENCIA-DE-LA-COMUNIDAD-DE-AVES-DE-LOS-CULTIVOS-CEREALISTAS-MEDITERRÁNEOS-Carlos-Palac%C3%ADn.pdf (2019).53.Blanco-Aguiar, J. A., Virgós, E. & Villafuerte, R. Perdiz roja (Alectoris rufa). in Atlas de las Aves Reproductoras de España. 212–213 (2003).54.Rodríguez-Teijeiro, J. D., Puigcerver, M. & Gallego, S. Codorniz común. in Atlas de las Aves Reproductoras de España. 218–219 (2003).55.Andueza, A. et al. Evaluación del Impacto Económico y Social de la Caza en España. (Fundación Artemisan, 2018)56.Lane, S. J., Alonso, J. C., Alonso, J. A. & Naveso, M. A. Seasonal changes in diet and diet selection of great bustards (Otis tarda) in north-west Spain. J. Zool. 247, 201–214 (1999).Article 

    Google Scholar 
    57.QGIS Development Team. QGIS Geographic Information System. http://qgis.osgeo.org (Open Source Geospatial Foundation Project, 2018).58.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).Article 

    Google Scholar 
    59.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    Article 

    Google Scholar 
    60.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic. Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.McKnight, D. T. et al. Methods for normalizing microbiome data: An ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).Article 

    Google Scholar 
    62.Lamb, P. D. et al. How quantitative is metabarcoding: A meta-analytical approach. Mol. Ecol. 28, 420–430 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Piñol, J., Senar, M. A. & Symondson, W. O. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol. Ecol. 28, 407–419 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    64.Russo, T. et al. All is fish that comes to the net: metabarcoding for rapid fisheries catch assessment. Ecol. Appl. 31, e02273 (2021).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.González-Teuber, M., Vilo, C., Guevara-Araya, M. J., Salgado-Luarte, C. & Gianoli, E. Leaf resistance traits influence endophytic fungi colonization and community composition in a South American temperate rainforest. J. Ecol. 108, 1019–1029 (2020).Article 
    CAS 

    Google Scholar 
    66.Aliche, E. B., Talsma, W., Munnik, T. & Bouwmeester, H. J. Characterization of maize root microbiome in two different soils by minimizing plant DNA contamination in metabarcoding analysis. Biol. Fertil. Soils. 57, 731–737 (2021).CAS 
    Article 

    Google Scholar 
    67.de Groot, G. A. et al. The aerobiome uncovered: Multi-marker metabarcoding reveals potential drivers of turn-over in the full microbial community in the air. Environ. Int. 154, 106551 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Tordoni, E. et al. Integrated eDNA metabarcoding and morphological analyses assess spatio-temporal patterns of airborne fungal spores. Ecol. Indic. 121, 107032 (2021).Article 

    Google Scholar 
    69.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (R Foundation for Statistical Computing, 2019).70.Russell, V. L. Least-squares means: The R Package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
    Google Scholar 
    71.Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.0 (2013). More

  • in

    Multi-trophic markers illuminate the understanding of the functioning of a remote, low coral cover Marquesan coral reef food web

    1.Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711 (2004).Article 

    Google Scholar 
    2.Briand, M. J., Bonnet, X., Goiran, C., Guillou, G. & Letourneur, Y. Major sources of organic matter in a complex coral reef lagoon: Identification from isotopic signatures (δ13C and δ15N). PLoS ONE 10, e0131555. https://doi.org/10.1371/journal.pone.0131555 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Fey, P. et al. Sources of organic matter in an atypical phytoplankton rich coral ecosystem, Marquesas Islands: composition and properties. Mar. Biol. 167, 92. https://doi.org/10.1007/s00227-020-03703-z (2020).CAS 
    Article 

    Google Scholar 
    4.Briand, M. J., Bonnet, X., Guillou, G. & Letourneur, Y. Complex food webs in highly diversified coral reefs: insights from δ13C and δ15N stable isotopes. Food Webs 8, 12–22. https://doi.org/10.1016/j.fooweb.2016.07.002 (2016).Article 

    Google Scholar 
    5.Bierwagen, S. L., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Trophodynamics as a tool for understanding coral reef ecosystems. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00024 (2018).Article 

    Google Scholar 
    6.Halpern, B. S. et al. A Global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496. https://doi.org/10.1038/s41586-018-0041-2 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390. https://doi.org/10.1038/s41586-019-1081-y (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Wyatt, A. S. J., Waite, A. M. & Humphries, S. Stable isotope analysis reveals community-level variation in fish trophodynamics across a fringing coral reef. Coral Reefs 31, 1029–1044 (2012).ADS 
    Article 

    Google Scholar 
    10.Letourneur, Y. et al. Identifying carbon sources and trophic position of coral reef fishes using diet and stable isotope (δ15N and δ13C) analyses in two contrasted bays in Moorea, French Polynesia. Coral Reefs 32, 1091–1102. https://doi.org/10.1007/s00338-013-1073-6 (2013).ADS 
    Article 

    Google Scholar 
    11.Zhu, Y., Newman, S. P., Reid, W. D. K. & Polunin, N. V. C. Fish stable isotope community structure of a Bahamian coral reef. Mar. Biol. 166, 160. https://doi.org/10.1007/s00227-019-3599-9 (2019).Article 

    Google Scholar 
    12.McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821. https://doi.org/10.1007/s00442-015-3475-3 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    13.Skinner, C. et al. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. Sci. Adv. https://doi.org/10.1126/sciadv.abf3792 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Mann, K. H. Production and use of detritus in various freshwater, estuarine and coastal marine ecosystems. Limnol. Oceanogr. 33, 910–930 (1988).ADS 
    CAS 

    Google Scholar 
    15.Antonio, B., Maria Teresa, A.-O. & Manuel, V. Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Mar. Ecol. Prog. Ser. 318, 89–102 (2006).Article 

    Google Scholar 
    16.Gazeau, F., Smith, S. V., Gentili, B., Frankignoulle, M. & Gattuso, J.-P. The European coastal zone: characterization and first assessment of ecosystem metabolism. Est. Coast. Shelf Sci. 60, 673–694. https://doi.org/10.1016/j.ecss.2004.03.007 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. M. Zooplankton, planktivorous fish, and water currents on a windward reef face: great Barrier Reef, Australia. Bull. Mar. Sci. 42, 459–479 (1988).
    Google Scholar 
    18.Hamner, W. M., Colin, P. L. & Hamner, P. P. Export-import dynamics of zooplankton on a coral reef in Palau. Mar. Ecol. Prog. Ser. 334, 83–92 (2007).ADS 
    Article 

    Google Scholar 
    19.Carassou, L., Kulbicki, M., Nicola, T. J. R. & Polunin, N. V. C. Assessment of fish trophic status and relationships by stable isotope data in the coral reef lagoon of New Caledonia, southwest Pacific. Aquat. Living Resour. 21, 1–12 (2008).Article 

    Google Scholar 
    20.Frédérich, B., Fabri, G., Lepoint, G., Vandewalle, P. & Parmentier, E. Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichthyol. Res. 56, 10–17. https://doi.org/10.1007/s10228-008-0053-2 (2009).Article 

    Google Scholar 
    21.Riera, P. & Richard, P. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuar. Coast. Shelf Sci. 42, 347–360 (1996).ADS 
    Article 

    Google Scholar 
    22.Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Fresh. Wat. Res. 50, 839–866 (1999).
    Google Scholar 
    23.Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711. https://doi.org/10.1371/journal.pone.0000711 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Roff, G. et al. Porites and the Phoenix effect: unprecedented recovery after a mass coral bleaching event at Rangiroa Atoll, French Polynesia. Mar. Biol. 161, 1385–1393. https://doi.org/10.1007/s00227-014-2426-6 (2014).Article 

    Google Scholar 
    26.Hoey, A. et al. Recent advances in understanding the effects of climate change on coral reefs. Diversity 8, 12 (2016).Article 

    Google Scholar 
    27.Cabioch, G. et al. Successive reef depositional events along the Marquesas foreslopes (French Polynesia) since 26 ka. Mar. Geol. 254, 18–34. https://doi.org/10.1016/j.margeo.2008.04.014 (2008).ADS 
    Article 

    Google Scholar 
    28.Galzin, R., Duron, S. D. & Meyer, J. Y. Biodiversité terrestre et marine des îles Marquises, Polynésie française. (Société française d’Ichtyologie, 2016).29.SO CORAIL. Site d’observation CORAIL, https://sextant.ifremer.fr/record/le51de1b-7979-4487-b5d5-329394d166da (2018).30.Martinez, E., M., R. & Maamaatuaiahutapu, K. in Biodiversité terrestre et marine des îles Marquises, Polynésie française (eds Galzin R., Duron S.-D., & Meyer J.-Y) 123–136 (Société Française d’Ichtyologie, 2016).31.Houk, P. & Musburger, C. Trophic interactions and ecological stability across coral reefs in the Marshall Islands. Mar. Ecol. Prog. Ser. 488, 23–34 (2013).ADS 
    Article 

    Google Scholar 
    32.Raapoto, H., Martinez, E., Petrenko, A., Doglioli, A. M. & Maes, C. Modeling the Wake of the Marquesas Archipelago. J. Geophys. Res. Oceans 123, 1213–1228. https://doi.org/10.1002/2017jc013285 (2018).ADS 
    Article 

    Google Scholar 
    33.Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 8 (2001).
    Google Scholar 
    34.De Niro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).ADS 
    Article 

    Google Scholar 
    35.Layman, C. A. et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 87, 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2012).Article 
    PubMed 

    Google Scholar 
    36.Pinnegar, J. & Polunin, N. V. C. Differential fractionation of d13C and d15N among fish tissues: implications for the study of trophic interactions. Funct. Ecol. 13, 225–231 (1999).Article 

    Google Scholar 
    37.De Niro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).ADS 
    Article 

    Google Scholar 
    38.Hannides, C. C. S., Popp, B. N., Landry, M. R. & Graham, B. S. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnol. Oceanogr. 54, 50–61. https://doi.org/10.4319/lo.2009.54.1.0050 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Hannides, C. C. S., Popp, B. N., Choy, C. A. & Drazen, J. C. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnol. Oceanogr. 58, 1931–1946. https://doi.org/10.4319/lo.2013.58.6.1931 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–710 (2002).Article 

    Google Scholar 
    41.Meziane, T. et al. Inter-specific and geographical variations in the fatty acid composition of mangrove leaves: implications for using fatty acids as a taxonomic tool and tracers of organic matter. Mar. Biol. 150, 1103–1113. https://doi.org/10.1007/s00227-006-0424-z (2007).CAS 
    Article 

    Google Scholar 
    42.Parrish, C. C. et al. in Marine Chemistry (ed P. J. Wangersky) 193–223 (Springer Berlin Heidelberg, 2000).43.Alfaro, A. C., Thomas, F., Sergent, L. & Duxbury, M. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Est. Coast. Shelf Sci. 70, 271–286. https://doi.org/10.1016/j.ecss.2006.06.017 (2006).ADS 
    Article 

    Google Scholar 
    44.Meyers, P. A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 27, 213–250. https://doi.org/10.1016/S0146-6380(97)00049-1 (1997).CAS 
    Article 

    Google Scholar 
    45.Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D. & Hagen, W. in Advances in Marine Biology Vol. 46 225–340 (Academic Press, 2003).46.Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I. & Garland, C. D. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128, 219–240. https://doi.org/10.1016/0022-0981(89)90029-4 (1989).CAS 
    Article 

    Google Scholar 
    47.Volkman, J. K., Johns, R. B., Gillan, F. T., Perry, G. J. & Bavor, H. J. Microbial lipids of an intertidal sediment—I. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta 44, 1133–1143. https://doi.org/10.1016/0016-7037(80)90067-8 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Lee, R. F., Hirota, J. & Barnett, A. M. Distribution and importance of wax esters in marine copepods and other zooplankton. Deep Sea Res. A 18, 1147. https://doi.org/10.1016/0011-7471(71)90023-4 (1971).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Wakeham, S. G., Hedges, J. I., Lee, C., Peterson, M. L. & Hernes, P. J. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean. Deep Sea Res. Part II 44, 2131–2162. https://doi.org/10.1016/S0967-0645(97)00035-0 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Budge, S. M. & Parrish, C. C. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Organic Geochem. 29, 1547–1559. https://doi.org/10.1016/S0146-6380(98)00177-6 (1998).CAS 
    Article 

    Google Scholar 
    51.Meziane, T., Agata, D. F. & Lee, S. Y. Fate of mangrove organic matter along a subtropical estuary: small-scale exportation and contribution to the food of crab communities. Mar. Ecol. Prog. Ser. 312, 15–27 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–269 (2003).ADS 
    Article 

    Google Scholar 
    53.Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5, e9672. https://doi.org/10.1371/journal.pone.0009672 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.R Core Team. (R Foundation for Statistical Computing, Vienna, Austria, 2018).55.du Percie, S. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol. 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).CAS 
    Article 

    Google Scholar 
    56.Page, H. M. et al. Stable isotopes reveal trophic relationships and diet of consumers in temperate kelp forest and coral reef ecosystems. Oceanography 26, 180–189 (2013).Article 

    Google Scholar 
    57.Morillo-Velarde, P. S. et al. Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. Sci. Rep. 8, 4109. https://doi.org/10.1038/s41598-018-22463-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Bellwood, D. R. & Choat, J. H. A functional analysis of grazing in parrotfishes (family Scaridae): The ecological implications. Environ. Biol. Fish. 28, 189–214 (1990).Article 

    Google Scholar 
    59.Choat, J. H., Clements, K. D. & Robbins, W. D. The trophic status of herbivorous fishes on coral reefs. I: Dietary analyses. Mar. Biol. 140, 613–623 (2002).CAS 
    Article 

    Google Scholar 
    60.Dromard, C. R. et al. Resource use of two damselfishes, Stegastes planifrons and Stegastes adustus, on Guadeloupean reefs (Lesser Antilles): Inference from stomach content and stable isotope analysis. J. Exp. Mar. Biol. Ecol. 440, 116–125. https://doi.org/10.1016/j.jembe.2012.12.011 (2013).Article 

    Google Scholar 
    61.Hedges, J. I. et al. Compositions and fluxes of particulate organic material in the Amazon River1. Limnol. Oceanogr. 31, 717–738. https://doi.org/10.4319/lo.1986.31.4.0717 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    62.Nicholson, G. M. & Clements, K. D. Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata. Coral Reefs 39, 1313–1327. https://doi.org/10.1007/s00338-020-01964-0 (2020).Article 

    Google Scholar 
    63.Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol. J. Lin. Soc. 120, 729–751. https://doi.org/10.1111/bij.12914 (2016).Article 

    Google Scholar 
    64.Bradley, C. J., Longenecker, K., Pyle, R. L. & Popp, B. N. Compound-specific isotopic analysis of amino acids reveals dietary changes in mesophotic coral-reef fish. Mar. Ecol. Prog. Ser. 558, 65–79 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    65.Raimbault, P., Garcia, N. & Cerutti, F. Distribution of inorganic and organic nutrients in the South Pacific Ocean-evidence for long-term accumulation of organic matter in nitrogen-depleted waters. Biogeosciences 5, 281. https://doi.org/10.5194/bg-5-281-2008 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    66.Savoye, N. et al. Dynamics of particulate organic matter d15N and d13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay of Seine, France). Mar. Ecol. Prog. Ser. 255, 27–41 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    67.Montoya, J. P. & McCarthy, J. J. Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture. J. Plankton Res. 17, 439–464. https://doi.org/10.1093/plankt/17.3.439 (1995).CAS 
    Article 

    Google Scholar 
    68.Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250. https://doi.org/10.1111/ele.12226 (2014).Article 
    PubMed 

    Google Scholar 
    69.Letourneur, Y., Briand, M. J. & Graham, N. A. J. Coral reef degradation alters the isotopic niche of reef fishes. Mar. Biol. 164, 224. https://doi.org/10.1007/s00227-017-3272-0 (2017).CAS 
    Article 

    Google Scholar 
    70.Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).Article 

    Google Scholar 
    71.Viviani, J. et al. Synchrony patterns reveal different degrees of trophic guild vulnerability after disturbances in a coral reef fish community. Divers. Distrib. 25, 1210–1221. https://doi.org/10.1111/ddi.12931 (2019).Article 

    Google Scholar 
    72.Diaz-Pulido, G., Gouezo, M., Tilbrook, B., Dove, S. & Anthony, K. R. N. High CO2 enhances the competitive strength of seaweeds over corals. Ecol. Lett. 14, 156–162. https://doi.org/10.1111/j.1461-0248.2010.01565.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Koch, M., Bowes, G., Ross, C. & Zhang, X.-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x (2013).ADS 
    Article 

    Google Scholar 
    74.Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342. https://doi.org/10.1126/science.aac7125 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Jackson, J. B. C. What is natural in the coastal oceans?. Proc. Natl. Acad. Sci. USA 98, 5411–5418 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of Reef ecosystems. Annu. Rev. Microbiol. 70, 317–340. https://doi.org/10.1146/annurev-micro-102215-095440 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    77.Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521-1527.e1526. https://doi.org/10.1016/j.cub.2019.03.044 (2019).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Optimal virtual water flows for improved food security in water-scarce countries

    Crop production, water productivity, and virtual waterA method to calculate the water needed for crops is the water footprint (WF). The WF has a color-based classification: green water (precipitation), blue water (ground and surface water), and grey water (water to dilute polluted water to accepted water quality standards). A manual on how to calculate WFs has been published12. Calculations of WFs integrate green and blue crop water use (evapotranspiration by crops) over the growing period of specific crops and express results per unit of yield (m3 kg−1). The difference between crop-water use and effective rainfall is applied as a proxy for blue WFs when no data on actual irrigation water supply are available. WFs of specific crops vary greatly among countries, and even within countries45. This means that water can be saved when crops are smartly traded. This may also be possible within a country if crops are grown where water productivity is the highest.Calculation of the water footprintWater footprints (WFs) are calculated as green and blue water footprints (WFgreen, WFblue, respectively) adopting the method from the WF manual12. This study assumes that the difference between crop water requirement and evapotranspiration of green water (ETGreen) in crops is equal to the evapotranspiration of blue water (ETblue); therefore, crop water requirements are met with irrigation water. The crop water requirements are estimated with the Food and Agriculture Organization’s CROPWAT model46. The selected methods for calculating the reference evapotranspiration (ET0) and effective precipitation (Peff) are the FAO Penman–Monteith method47,48 and the USDA’s SCS method48, respectively. Calculations were performed at the provincial scale for each crop. Equations (1) through (4) are applied to calculate WFgreen and WFblue for the crops included in this study:Actual crop evapotranspiration from reference evapotranspiration:$$ ET_{c} = sum_{t} {ET_{0} times K_{c} } $$
    (1)
    Reference evapotranspiration:$$ ET_{0} = frac{{0.408Delta left( {R_{n} – G} right) + gamma frac{900}{{T + 273}}U_{2} left( {e_{a} – e_{d} } right)}}{{Delta + gamma left( {1 + 0.34U_{2} } right)}} $$
    (2)
    $$ WF_{green} = 10 times frac{{min left[ {ET_{c} ,P_{eff} } right]}}{Y} $$
    (3)
    $$ WF_{blue} = 10 times frac{{max left[ {0,ET_{c} – P_{eff} } right]}}{Y} $$
    (4)
    where ETc denotes the actual crop evapotranspiration (mm) during the growth period (t), ET0 represents the reference evapotranspiration (mm day−1), and Kc denotes the crop coefficient based on crop type and development stages (initial, middle, and late stages). In Eq. (2) ea (kPa), ed (kPa), Δ (kPa °C−1), G (MJ m−2 day−1), T (°C), Rn (MJ m−2 day−1), U2 (m s−1), and γ (kPa °C−1) denote the saturation vapor pressure, the actual vapor pressure, the slope of the saturation-vapor pressure curve, the soil heat flux, the average air temperature, the net radiation on the crop surface, the wind speed measured at a height of 2 m above ground level, and the psychrometric constant, respectively. Equations (3) and (4) calculate the green and blue water footprints (m3 ton−1), in which Peff (mm), Y (ton ha−1), and 10, are represent effective precipitation, the crop yield, and a conversion factor from mm to m3 ha−1, respectively. WFgreen and WFblue occur in irrigated cultivation; however, there is only WFgreen in rainfed cultivation.Optimization of crop productionAll the steps of the methods used in this work were coded in MATLAB for use by decision-makers, planners, and interested organizations.Balancing the agricultural systemAn internal trade network was created to organize and remedy the weaknesses of the trade network. The lack of a comprehensive trade network has caused the crops to be exported regardless of the country’s demands, which eventually leads to the import of the same crops. The production and demand amounts of each crop in each province and their WFgreen and WFblue are determined with the following equations applied to N = 51 crops in J = 31 provinces:$$ {CP}_{(i,j)} = {ICP}_{(i,j)} + {RCP}_{(i,j)} $$
    (5)
    $$ {ICP}_{(i,j)} = left( {{BCY}_{(i,j)} times {ICA}_{(i,j)} } right) $$
    (6)
    $$ {RCP}_{(i,j)} = left( {{GCY}_{(i,j)} times {RCA}_{(i,j)} } right) $$
    (7)
    $$ {CD}_{(i,j)} = left( {{PCD}_{i} times {POP}_{J} } right) $$
    (8)
    $$ {TWF}_{blue(i,j)} = {ICP}_{(i,j)} times {WF}_{blue(i,j)} $$
    (9)
    $$ {TWF}_{green(i,j)} = {ICP}_{(i,j)} times {WF}_{green(i,j)} $$
    (10)
    where (i=1, 2,ldots , N;j=1, 2, ldots, J,) CP(i,j) (ton), ICP(i,j) (ton), RCP(i,j) (ton), BCY(i,j) (ton.ha−1), GCY(i,j) (ton.ha−1), ICA(i,j) (ha), RCA(i,j) (ha), CD(i,j) (ton), PCDi (ton.person−1), POPj (person), TWFblue(i,j) (m3), and TWFgreen(i,j) (m3) denote the production of crop i in province j, crop production of irrigated land, crop production in rainfed cultivation, irrigated crop yield, rainfed crop yield, irrigated acreage, rainfed areas acreage, demand for crop i in province j, per capita diet, population of province j, the blue WF of crop i in province j corresponding to irrigated cultivation, and the green WFs of crop i in province j corresponding to irrigated cultivation, respectively.TWFblue(i,j) equals zero in rainfed cultivation, and TWFgreen(i,j) is calculated with Eq. (10) based on RCP(i,j). The deficit or surplus over the demand of the provinces were determined by comparing CP(i,j) and CD(i,j) for each crop in each province. Equation (11) implies that CS(i,j) is the amount of crop i supplied in province j (ton), which involves the export and import of crops:$$ {CS}_{(i,j)} = {CP}_{(i,j)} – {CD}_{(i,j)} $$
    (11)
    where (i=1, 2,ldots , N;j=1, 2, ldots, J) .The internal trade network is formed once the deficit and surplus for each crop in the provinces is determined, and crops are traded based on the shortest distance between the provinces. The developed trade network would improve the country’s agricultural system and reduce transportation costs between the provinces. Each province adds to or subtracts Ti,j (ton) from its crop amounts, where imports imply an addition and exports a subtraction of crop amounts. The internal exports and imports of WFs and the net water footprints trade (NWFT) in each province are calculated as follows:$$ {WFT}_{(x,r,i)} = T_{(x,r,i)} times left( {{WF}_{green} + {WF}_{blue} } right)_{(x,i)} $$
    (12)
    $$EW{F}_{(x)}={sum }_{r,i}WF{T}_{(x,r,i)}$$
    (13)
    $$ IWF_{(r)} = sumlimits_{x,i} {WFT_{(x,r,i)} } $$
    (14)
    $$ {NWFT}_{(j)} = IWF_{(j)} – EWF_{(j)} $$
    (15)
    where (i=1, 2,ldots , N;j, x=1, 2, ldots, J, r=x-1), WFT(x,r,i) (m3), T(x,r,i) (ton), (WFgreen + WFblue)(x,i) (m3 ton−1), EWF(x) (m3), IWF(r) (m3), and NWFT(j) (m3) denote the WFs traded for crop i from exporting province x to importing province r, the amount of crop i exported from province x to province r, the blue and green WFs related to crop i in exporting province x, the WFs exported from province x by the trade of crops, the WFs imported into province r by the trade of crops, and the net water footprints trade in province j, respectively.The positive and negative values ​​of NWFT(j) represent the import and export of WFs to province j, respectively. The calculation of the internal trade between provinces with Eq. (11) permits determining the deficits and surpluses for each crop in the provinces nationally. At this juncture the provinces may resort to international trade to cope with deficits and surpluses. However, from this work’s premise of improving food security and self-sufficiency the cropping patterns of surplus crops in the provinces are modified as described in the next section.Modifying exports to optimize the cropping patternThe multi-objective optimization approach to increase food security and self-sufficiency redirects the resources to be used to cultivate export crops to the cultivation of crops that are in deficit (i.e., whose production is less than demand). This modification of cropping patterns in the provinces is based on their traditional cropping patterns. For this purpose, the internal trade network is linked to the optimization method to manage cropping patterns of the regions based on the output of the trade network, and on the goals of achieving food security and preventing water crisis. These two goals are pertinent in many countries where water scarcity is a limiting factor to achieve food security49. Therefore, concerning available agricultural water it is imperative to pay attention to the type of water (green or blue) used. Specifically, WFblue can be used in several areas of consumption; however, WFgreen is not controllable in the same manner. The usage of WFgreen by crops depends on the growing season, and the maximum use can be achieved by choosing the optimal crops. Therefore, this work treats WFgreen and WFblue as indicators of water crisis and food security, which were chosen as objective functions. In other words, controlling and managing WFs prevent its waste (thus reducing the water deficit and crisis). Selecting optimal crops based on WFs will increase production and food security. The water crisis and food security serve as the benchmark for comparison between the reference situation (without optimization) and the results of this new method. The reference situation refers to the initial state of food security and water crisis, which occurs before optimizing the cropping patterns.The food-security objective function is expressed as follows:$$F{S}_{i}=frac{{sum }_{j=1}^{J}C{P}_{(i,j)}}{{sum }_{j=1}^{J}C{D}_{(i,j)}}$$
    (16)
    The water-crisis objective function is written as follows:$${WC}_{j}=frac{sum_{i=1}^{N}{TWF}_{blue(i,j)}}{{RWR}_{j}}$$
    (17)
    where (i=1, 2,ldots, N=51;j=1, 2, ldots, J=31,) FSi, CP(i,j) (ton), CD(i,j) (ton), WCj, TWFblue(i,j) (m3), and RWRj (m3) denote the food security for crop i, production of crop i in province j, the demand of crop i in province j, the water crisis in province j, the blue WFs of crop i in province j, and the renewable water resources in province j, respectively.Maximizing the FS index and minimizing the WC index represent the ideal situation. The maximizing function was converted to a minimization function for the purpose of multiobjective optimization. The final form of the objective functions i given by the following equations:$$Min({Z}_{1})=frac{1}{N}{sum }_{i=1}^{N}(1-F{S}_{i})begin{array}{cc},& where,, F{S}_{i}end{array}=Minleft(frac{{sum }_{j=1}^{J}C{P}_{(i,j)}}{{sum }_{j=1}^{J}C{D}_{(i,j)}},1right)$$
    (18)
    $$Min({Z}_{2})=frac{1}{J}{sum }_{j=1}^{J}W{C}_{j}$$
    (19)
    where (i=1, 2,ldots , N=51;j=1, 2, ldots, J=31.) The objective function Z1 is calculated based on the food security index expressed as an average for all crops, and the objective function Z2 is calculated as the average of the water crisis indexes in the 31 provinces. Both objective functions are affected by cropping patterns and cultivation areas. The water and land used must be calculated prior to modifying the cropping patterns. The amounts of surplus crops in the provinces and their equivalent water and land are calculated using the following equations:$$ {SCP}_{(i,j)} = Max({CP}_{(i,j)} – {CD}_{(i,j)} + T_{(i,j)} ,0) $$
    (20)
    $$ {BCY}_{(i,j)} times (X_{1(i,j)} times ICA_{(i,j)} ) + {GCY}_{(i,j)} times (X_{2(i,j)} times RCA_{(i,j)} ) = {SCP}_{(i,j)} $$
    (21)
    where (i=1, 2,ldots, N;j=1, 2, ldots, J,) SCP(i,j), (X_{1(i,j)}), (X_{2(i,j)}) denote the surplus crop i in province j (ton) determined based on demand and trade in the province, and the percentage of crop i in province j that must be removed from irrigated and rainfed cultivation, respectively. The amount of water and land available for new cultivation are calculated as follows:$$ ICA_{j}^{free} = sumlimits_{i = 1}^{51} {X_{1(i,j)} times ICA_{(i,j)} } $$
    (22)
    $$ RCA_{j}^{free} = sumlimits_{i = 1}^{51} {X_{2(i,j)} times RCA_{(i,j)} } $$
    (23)
    $$ TWF_{blue,j}^{free} = sumlimits_{i = 1}^{51} {{WF}_{blue(i,j)} times BCY_{(i,j)} } times ICA_{j}^{free} $$
    (24)
    where (i=1, 2,ldots , N;j=1, 2, ldots, J,) ICAjfree and RCAjfree denote the total available area of ​​irrigated and rainfed cultivation (ha) in province j, respectively, and TWFblue,jfree represents the total amount of blue WFs available in province j (m3). It is noteworthy that the water and land available in irrigated cultivation can be altered. On the other hand, only the available land is controllable under rainfed cultivation.The objective functions of the proposed method [Eqs. (18) and (19)] were subjected to a set of constraints introduced next.

    (i)

    Modification of the cropping patterns

    The available land in each province is allocated to crops that feature a deficit in the country and are part of the traditional cropping patterns of the provinces. The set of cultivable crops is determined using the following equation:$$ P = left{ {pleft| {p in i,sum_{j = 1}^{31} {SCP_{(p,j)} < 0} } right.} right} $$ (25) where p denotes the set of crops with deficit conditions in the country and SCP(i,j) was defined above. Letting traditional irrigated and rainfed cropping patterns be denoted by Aj and Bj in province j, respectively, the set of irrigated and rainfed crops cultivable in province j was calculated as follows:$$ IC_{j} = P cap A_{j} begin{array}{*{20}c} {} & {(j = 1,2,3,ldots,31)} \ end{array} $$ (26) $$ RC_{j} = P cap B_{j} begin{array}{*{20}c} {} & {(j = 1,2,3,ldots,31)} \ end{array} $$ (27) where (j=1, 2, ldots, J), ICj and RCj denote the irrigated and rainfed crops cultivable in province j, respectively. (ii) Constraint on cultivation area A fraction of ICAjfree can be used in irrigated lands:$$ 0 le M times sumlimits_{i = 1}^{51} {{(X}_{1(i,j)} times ICA_{(i,j)} ) le ICA_{j}^{free} } begin{array}{*{20}c} , & {0 le M le 1} & {} \ end{array} $$ (28) where (j=1, 2, ldots, J), and M denotes the fraction of blue water available. (iii) Constraint on water use The amount of water used to modify the cropping pattern in the provinces is limited:$$ sumlimits_{i = 1}^{51} {TWF_{blue(i,j)}^{m} le RWR_{j} - sumlimits_{i = 1}^{51} {TWF_{blue(i,j)} + } } TWF_{blue,j}^{free} $$ (29) where (left(j=1,2,3,ldots,Jright),) TWFmblue(i,j) denotes the blue WFs used to modify the cultivation in province j, and TWFblue(i,j) represents the initial blue WFs consumed in province j to cultivate crops before changing the cropping pattern.Ideal solution and pareto optimalityThis work applied the multi-objective optimization Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The NSGA is based on the Genetic Evolutionary Algorithm and the Selection, Crossover, and Mutation operations50. The NSGA was introduced by Deb et al.51,Srinivas and Deb52, then improved to the NSGA-II51. The NSGA-II has been widely studied in water resources management53,54,55.The NSGA-II produces a Pareto front of solutions, in which, each point represents a management scenario. The decision-maker selects a scenario based on the objective functions and situational analysis. Multi-criteria decision-making methods (MCDM) can be applied to select an efficient point on the Pareto front curve56,57. This work implements the technique for order preference by similarity to ideal solution (TOPSIS) as the MCDM employed for that purpose. A description of the TOPSIS method is presented in the appendix.The NSGA-II parameters were determined based on a trial-and-error process. Multiple runs of the algorithm were used to adjust the parameters to reduce uncertainty. For this purpose, the population size and maximum iteration were set equal to 400 and 500, respectively, and the crossover and mutation rates were set equal to 0.8 and 0.1, respectively. The flowchart of the proposed approach is displayed in Fig. 1.Figure 1Flowchart of the methodology.Full size image More

  • in

    Functional composition of ant assemblages in habitat islands is driven by habitat factors and landscape composition

    1.Fletcher, R. J. et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226, 9–15. https://doi.org/10.1016/j.biocon.2018.07.022 (2018).Article 

    Google Scholar 
    2.Feranec, J. et al. (eds) European Landscape Dynamics: CORINE Land Cover Data (CRC Press, 2016).
    Google Scholar 
    3.Deák, B. et al. Fragmented dry grasslands preserve unique components of species and phylogenetic diversity in agricultural landscapes. Biodivers. Conserv. https://doi.org/10.1007/s10531-020-02066-7 (2020).Article 

    Google Scholar 
    4.Fekete, R. et al. Roadside verges and cemeteries: Comparative analysis of anthropogenic orchid habitats in the Eastern Mediterranean. Ecol. Evol. 9, 6655–6664. https://doi.org/10.1002/ece3.5245 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Batáry, P. et al. Biologia Futura: Landscape perspectives on farmland biodiversity conservation. Biol. Fut. 71, 9–18. https://doi.org/10.1007/s42977-020-00015-7 (2020).Article 

    Google Scholar 
    6.Deák, B. et al. Landscape and habitat filters jointly drive richness and abundance of grassland specialist plants in terrestrial habitat islands. Landsc. Ecol. 33, 1117–1132. https://doi.org/10.1007/s10980-018-0660-x (2018).Article 

    Google Scholar 
    7.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574(7780), 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Vanbergen, A. J. & Initiative, T. I. P. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11(5), 251–259. https://doi.org/10.1890/120126 (2013).Article 

    Google Scholar 
    10.Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes: Eight hypotheses. Biol. Rev. 87(3), 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x (2012).Article 
    PubMed 

    Google Scholar 
    11.Seastedt, T. R. The role of microarthropods in decomposition and mineralization processes. Annu. Rev. Entomol. 29(1), 25–46. https://doi.org/10.1146/annurev.en.29.010184.000325 (1984).Article 

    Google Scholar 
    12.Deák, B. et al. Habitat islands outside nature reserves: Threatened biodiversity hotspots of grassland specialist plant and arthropod species. Biol. Conserv. 241, 108254. https://doi.org/10.1016/j.biocon.2019.108254 (2020).Article 

    Google Scholar 
    13.Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31(1), 79–92. https://doi.org/10.1046/j.0305-0270.2003.00994.x (2004).Article 

    Google Scholar 
    14.Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32. https://doi.org/10.1111/j.1523-1739.1991.tb00384.x (1991).Article 

    Google Scholar 
    15.Kuussaari, M. et al. Extinction debt: A challenge for biodiversity conservation. Trends. Ecol. Evol. 24, 564–571. https://doi.org/10.1016/j.tree.2009.04.011 (2009).Article 
    PubMed 

    Google Scholar 
    16.Gazol, A. et al. Landscape and small-scale determinants of grassland species diversity: Direct and indirect influences. Ecography 35, 944–951. https://doi.org/10.1111/j.1600-0587.2012.07627.x (2012).Article 

    Google Scholar 
    17.Deák, B. et al. Linking environmental heterogeneity and plant diversity: The ecological role of small natural features in homogeneous landscapes. Sci. Total Env. 763, 144199. https://doi.org/10.1016/j.scitotenv.2020.144199 (2021).CAS 
    Article 

    Google Scholar 
    18.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science 1(2), e1500052. https://doi.org/10.1126/sciadv.1500052 (2015).Article 

    Google Scholar 
    19.Bolger, D. T., Suarez, A. V., Crooks, K. R., Morrison, S. A. & Case, T. J. Arthropods in urban habitat fragments in southern California: Area, age, and edge effects. Ecol. Appl. 10(4), 1230–1248. https://doi.org/10.1890/1051-0761(2000)010[1230:AIUHFI]2.0.CO;2 (2000).Article 

    Google Scholar 
    20.Bommarco, R., Lindborg, R., Marini, L. & Öckinger, E. Extinction debt for plants and flower-visiting insects in landscapes with contrasting land use history. Divers. Distrib. 20(5), 591–599. https://doi.org/10.1111/ddi.12187 (2014).Article 

    Google Scholar 
    21.Marques, L. Collapse of terrestrial biodiversity. In Capitalism and Environmental Collapse 247–273 (Springer, 2020).Chapter 

    Google Scholar 
    22.Biró, M., Bölöni, J. & Molnár, Z. Use of long-term data to evaluate loss and endangerment status of Natura 2000 habitats and effects of protected areas. Conserv. Biol. 32(3), 660–671. https://doi.org/10.1111/cobi.13038 (2018).Article 
    PubMed 

    Google Scholar 
    23.Dembicz, I. et al. Steppe islands in a sea of fields: Where island biogeography meets the reality of a severely transformed landscape. J. Veg. Sci. https://doi.org/10.1111/jvs.12930 (2020).Article 

    Google Scholar 
    24.Deák, B. et al. Cultural monuments and nature conservation: A review of the role of kurgans in the conservation and restoration of steppe vegetation. Biodivers. Conserv. 25(12), 2473–2490. https://doi.org/10.1007/s10531-016-1081-2 (2016).Article 

    Google Scholar 
    25.Dembicz, I. et al. Isolation and patch size drive specialist plant species density within steppe islands: A case study of kurgans in southern Ukraine. Biodivers. Conserv. 25(12), 2289–2307. https://doi.org/10.1007/s10531-016-1077-y (2016).Article 

    Google Scholar 
    26.Tóth, C. A. et al. Iron age burial mounds as refugia for steppe specialist plants and invertebrates: Case study from the Zsolca mounds (NE Hungary). Hacquetia 18(2), 195–206. https://doi.org/10.2478/hacq-2019-0009 (2019).Article 

    Google Scholar 
    27.Lisetskii, F. N., Goleusov, P. V., Moysiyenko, I. I. & Sudnik-Wójcikowska, B. Microzonal distribution of soils and plants along the catenas of mound structures. Contemp. Probl. Ecol. 7(3), 282–293. https://doi.org/10.1134/S1995425514030111 (2014).Article 

    Google Scholar 
    28.Deák, B. et al. The effects of micro-habitats and grazing intensity on the vegetation of burial mounds in the Kazakh steppes. Plant Ecol. Divers. 10(5–6), 509–520. https://doi.org/10.1080/17550874.2018.1430871 (2017).Article 

    Google Scholar 
    29.Marcolin, F., Lakatos, T., Gallé, R. & Batáry, P. Fragment connectivity shapes bird communities through functional trait filtering in two types of grasslands. Glob. Ecol. Conserv. 28, e01687. https://doi.org/10.1016/j.gecco.2021.e01687 (2021).Article 

    Google Scholar 
    30.Crist, T. O. Biodiversity, species interactions, and functional roles of ants (Hymenoptera: Formicidae) in fragmented landscapes: A review. Myrmecol. News. 12, 3–13 (2009).
    Google Scholar 
    31.Sobrinho, T. G., Schoereder, J. H., Sperber, C. F. & Madureira, M. S. Does fragmentation alter species composition in ant communities (Hymenoptera: Formicidae)?. Sociobiology 42, 329–342 (2003).
    Google Scholar 
    32.Underwood, E. C. & Fisher, B. L. The role of ants in conservation monitoring: If, when, and how. Biol. Conserv. 132(2), 166–182. https://doi.org/10.1016/j.biocon.2006.03.022 (2006).Article 

    Google Scholar 
    33.Hölldobler, B. & Wilson, E. O. The Ants 732 (Belknap of Harvard University Press, 1990).Book 

    Google Scholar 
    34.Konečná, et al. Anthills as habitat islands in a sea of temperate pasture. Biodivers. Conserv. 30, 1–19. https://doi.org/10.1007/s10531-021-02134-6 (2021).Article 

    Google Scholar 
    35.Philpott, S. M., Perfecto, I., Armbrecht, I. & Parr, C. L. Ant diversity and function in disturbed and changing habitats. In Ant Ecology (eds Lach, L. et al.) 37–156 (Oxford University Press, 2010).
    Google Scholar 
    36.Stadler, B. & Dixon, T. Mutualism Ants and Their Insect Partners (Cambridge University Press, 2008).Book 

    Google Scholar 
    37.Frouz, J. & Jilková, V. The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecol. News 11(11), 191–199 (2008).
    Google Scholar 
    38.Folgarait, P. J. Ant biodiversity and its relationship to ecosystem functioning: A review. Biodivers. Conserv. 7(9), 1221–1244. https://doi.org/10.1023/A:1008891901953 (1998).Article 

    Google Scholar 
    39.Azcárate, F. M., Alameda-Martín, A., Escudero, A. & Sánchez, A. M. Ant communities resist even in small and isolated gypsum habitat remnants in a Mediterranean agroecosystem. Front. Ecol. Evol. 9, 33. https://doi.org/10.3389/fevo.2021.619215 (2021).Article 

    Google Scholar 
    40.Bátori, Z. et al. Karst dolines provide diverse microhabitats for different functional groups in multiple phyla. Sci. Rep. 9(1), 1–13. https://doi.org/10.1038/s41598-019-43603-x (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Hoffmann, B. D. & Andersen, A. N. Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral. Ecol. 28(4), 444–464. https://doi.org/10.1046/j.1442-9993.2003.01301.x (2003).Article 

    Google Scholar 
    42.Csősz, S. et al. The myrmecofauna (Hymenoptera: Formicidae) of Hungary: Survey of ant species with an annotated synonymic inventory. Insects 12(1), 78. https://doi.org/10.3390/insects12010078 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Dröse, W., Podgaiski, L. R., Dias, C. F. & Mendonca, M. D. S. Jr. Local and regional drivers of ant communities in forest-grassland ecotones in South Brazil: A taxonomic and phylogenetic approach. PLoS ONE 14(4), e0215310. https://doi.org/10.1371/journal.pone.0215310 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Bátori, Z. et al. Managing climate change microrefugia for vascular plants in forested karst landscapes. For. Ecol. Manag. 496, 119446. https://doi.org/10.1016/j.foreco.2021.119446 (2021).Article 

    Google Scholar 
    45.Mata, L. et al. Conserving herbivorous and predatory insects in urban green spaces. Sci. Rep. 7, 40970. https://doi.org/10.1038/srep40970 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.King, J. R., Warren, R. J., Maynard, D. S. & Bradford, M. A. Ants: Ecology and impacts in Dead Wood. In Saproxylic Insects. Zoological Monographs Vol. 1 (ed. Ulyshen, M.) (Springer, 2018).
    Google Scholar 
    47.Tölgyesi, C. et al. Underground deserts below fertility islands? Woody species desiccate lower soil layers in sandy drylands. Ecography 43, 848–859. https://doi.org/10.1111/ecog.04906 (2020).Article 

    Google Scholar 
    48.Vítková, M., Müllerová, J., Sádlo, J., Pergl, J. & Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. Forest Ecol. Manag. 384, 287–302. https://doi.org/10.1016/j.foreco.2016.10.057 (2017).Article 

    Google Scholar 
    49.Pacheco, R., Vasconcelos, H. L., Groc, S., Camacho, G. P. & Frizzo, T. L. The importance of remnants of natural vegetation for maintaining ant diversity in Brazilian agricultural landscapes. Biodivers. Conserv. 22, 983–997. https://doi.org/10.1007/s10531-013-0463-y (2013).Article 

    Google Scholar 
    50.Pihlgren, A., Lenoir, L. & Dahms, H. Ant and plant species richness in relation to grazing, fertilisation and topography. J. Nat. Conserv. 18(2), 118–125. https://doi.org/10.1016/j.jnc.2009.06.002 (2010).Article 

    Google Scholar 
    51.Bátori, Z. et al. Karstic microrefugia host functionally specific ant assemblages. Front. Ecol. Evol. 8, 482. https://doi.org/10.3389/fevo.2020.613738 (2020).Article 

    Google Scholar 
    52.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 (2017).Article 

    Google Scholar 
    53.Seifert, B. The Ants of Central and North Europe 408( – lutra Verlags – und Vertriebsgesellschaft, 2018).54.Czechowski, W., Radchenko, A., Czechowska, W. & Vepsäläinen, K. The Ants of Poland with Reference to the Myrmecofauna of Europe 496 (Natura optima dux Foundation, 2012).55.EOTR (Uniform National Mapping System of Hungary) 1:10,000 Scale Topographic Maps. FÖMI (Institute of Geodesy, Cartography and Remote Sensing).56.Ministry of Agriculture. Ökoszisztéma Alaptérkép és Adatmodell Kialakítása. (Ecosystem Basemap and Datamodel Design). https://doi.org/10.34811/osz.alapterkep (2019).57.Lanan, M. Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae). Myrmecol. News 20, 53 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    58.QGIS Development Team. QGIS Geographic Information System, Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2020).59.Faraway, J. J. Linear Models with R 2nd edn. (Chapman and Hall/CRC, London, 2014).MATH 

    Google Scholar 
    60.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-3. (R Foundation for Statistical Computing, 2016).61.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1), 299–305. https://doi.org/10.1890/08-2244.1 (2010).Article 
    PubMed 

    Google Scholar 
    62.Galipaud, M., Gillingham, M. A. & Dechaume-Moncharmont, F. X. A farewell to the sum of Akaike weights: The benefits of alternative metrics for variable importance estimations in model selection. Methods Ecol. Evol. 8(12), 1668–1678. https://doi.org/10.1111/2041-210X.12835 (2017).Article 

    Google Scholar 
    63.Hegyi, G. & Garamszegi, L. Z. Using information theory as a substitute for stepwise regression in ecology and behavior. Behav. Ecol. Sociobiol. 65(1), 69–76. https://doi.org/10.1007/s00265-010-1036-7 (2011).Article 

    Google Scholar 
    64.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/. More

  • in

    Dimethyl sulfide mediates microbial predator–prey interactions between zooplankton and algae in the ocean

    1.Simó, R. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol. Evol. 16, 287–294 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987).CAS 
    Article 

    Google Scholar 
    3.Wang, S., Maltrud, M. E., Burrows, S. M., Elliott, S. M. & Cameron-Smith, P. Impacts of shifts in phytoplankton community on clouds and climate via the sulfur cycle. Glob. Biogeochem. Cycles 32, 1005–1026 (2018).Article 
    CAS 

    Google Scholar 
    4.Wolfe, G. V., Steinke, M. & Kirst, G. O. Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897 (1997).CAS 
    Article 

    Google Scholar 
    5.Seymour, J., Simó, R., Ahmed, T. & Stocker, R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329, 342–345 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Alcolombri, U. et al. Identification of the algal dimethyl sulfide-releasing enzyme: a missing link in the marine sulfur cycle. Science 348, 1466–1469 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Alcolombri, U., Lei, L., Meltzer, D., Vardi, A. & Tawfik, D. S. Assigning the algal source of dimethylsulfide using a selective lyase inhibitor. ACS Chem. Biol. 12, 41–46 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Kettle, A. J. & Andreae, M. O. Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J. Geophys. Res. Atmos. 105, 26793–26808 (2000).CAS 
    Article 

    Google Scholar 
    9.Carpenter, L. J., Archer, S. D. & Beale, R. Ocean–atmosphere trace gas exchange. Chem. Soc. Rev. 41, 6473–6506 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Franklin, D. J., Steinke, M., Young, J., Probert, I. & Malin, G. Dimethylsulphoniopropionate (DMSP), DMSP-lyase activity (DLA) and dimethylsulphide (DMS) in 10 species of coccolithophore. Mar. Ecol. Prog. Ser. 410, 13–23 (2010).CAS 
    Article 

    Google Scholar 
    11.Keller, M. D. Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biol. Oceanogr. 6, 375–382 (1989).
    Google Scholar 
    12.Curson, A. R. J. et al. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nat. Microbiol. 3, 430–439 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Sunda, W., Kieber, D. J., Kiene, R. P. & Huntsman, S. An antioxidant function for DMSP and DMS in marine algae. Nature 418, 317–320 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Kirst, G. O. in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (eds Kiene, R. P. et al.) 121−129 (Springer, 1996).15.Darroch, L. et al. Effect of short-term light- and UV-stress on DMSP, DMS, and DMSP lyase activity in Emiliania huxleyi. Aquat. Microb. Ecol. 74, 173–185 (2015).16.Barak-Gavish, N. et al. Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. Sci. Adv. 4, eaau5716 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Garcés, E., Alacid, E., Reñé, A., Petrou, K. & Simó, R. Host-released dimethylsulphide activates the dinoflagellate parasitoid Parvilucifera sinerae. ISME J. 7, 1065–1068 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Steinke, M., Stefels, J. & Stamhuis, E. Dimethyl sulfide triggers search behavior in copepods. Limnol. Oceanogr. 51, 1925–1930 (2006).CAS 
    Article 

    Google Scholar 
    20.Breckels, M., Bode, N., Codling, E. & Steinke, M. Effect of grazing-mediated dimethyl sulfide (DMS) production on the swimming behavior of the copepod Calanus helgolandicus. Mar. Drugs 11, 2486 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Procter, J., Hopkins, F. E., Fileman, E. S. & Lindeque, P. K. Smells good enough to eat: dimethyl sulfide (DMS) enhances copepod ingestion of microplastics. Mar. Pollut. Bull. 138, 1–6 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Foretich, M. A., Paris, C. B., Grosell, M., Stieglitz, J. D. & Benetti, D. D. Dimethyl sulfide is a chemical attractant for reef fish larvae. Sci. Rep. 7, 2498 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Savoca, M. S. & Nevitt, G. A. Evidence that dimethyl sulfide facilitates a tritrophic mutualism between marine primary producers and top predators. Proc. Natl Acad. Sci. USA 111, 4157–4161 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Wright, K. L. B., Pichegru, L. & Ryan, P. G. Penguins are attracted to dimethyl sulphide at sea. J. Exp. Biol. 214, 2509–2511 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Owen, K. et al. Natural dimethyl sulfide gradients would lead marine predators to higher prey biomass. Commun. Biol. 4, 149 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Wolfe, G. V. & Steinke, M. Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnol. Oceanogr. 41, 1151–1160 (1996).CAS 
    Article 

    Google Scholar 
    27.Simó, R. et al. The quantitative role of microzooplankton grazing in dimethylsulfide (DMS) production in the NW Mediterranean. Biogeochemistry 141, 125–142 (2018).Article 

    Google Scholar 
    28.Evans, C., Kadner, S. V. & Darroch, L. J. The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: an Emiliania huxleyi culture study. Limnol. Oceanogr. 52, 1036–1045 (2007).Article 

    Google Scholar 
    29.Kiene, R. P. Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Appl. Environ. Microbiol. 56, 3292–3297 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Bullock, H. A., Luo, H. & Whitman, W. B. Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00637 (2017).31.Strom, S. et al. Chemical defense in the microplankton I: feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi. Limnol. Oceanogr. 48, 217–229 (2003).CAS 
    Article 

    Google Scholar 
    32.Calbet, A. & Landry, M. R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49, 51–57 (2004).CAS 
    Article 

    Google Scholar 
    33.Schmoker, C., Hernández-León, S. & Calbet, A. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35, 691–706 (2013).Article 

    Google Scholar 
    34.Steinke, M., Wolfe, G. V. & Kirst, G. O. Partial characterisation of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi. Mar. Ecol. 175, 215–225 (1998).CAS 
    Article 

    Google Scholar 
    35.Breckels, M. N., Roberts, E. C., Archer, S. D., Malin, G. & Steinke, M. The role of dissolved infochemicals in mediating predator–prey interactions in the heterotrophic dinoflagellate Oxyrrhis marina. J. Plankton Res. 33, 629–639 (2011).Article 

    Google Scholar 
    36.Saló, V., Simó, R., Vila-Costa, M. & Calbet, A. Sulfur assimilation by Oxyrrhis marina feeding on a 35S-DMSP-labelled prey. Environ. Microbiol. 11, 3063–3072 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Raina, J. B. et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6, e23008 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Franklin, D. J. et al. Identification of senescence and death in Emiliania huxleyi and Thalassiosira pseudonana: cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnol. Oceanogr. 57, 305–317 (2012).CAS 
    Article 

    Google Scholar 
    39.Kettles, N. L., Kopriva, S. & Malin, G. Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen. PLoS ONE 9, e94795 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Poulsen, N., Chesley, P. M. & Kröger, N. Molecular genetic manipulation of the diatom Thalassiosira pseudonana (bacillariophyceae). J. Phycol. 42, 1059–1065 (2006).Article 

    Google Scholar 
    41.Armbrust, E. V. et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl Acad. Sci. USA 113, E1516–E1525 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Apt, K. E. et al. In vivo characterization of diatom multipartite plastid targeting signals. J. Cell Sci. 115, 4061–4069 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.McParland, E. L., Wright, A., Art, K., He, M. & Levine, N. M. Evidence for contrasting roles of dimethylsulfoniopropionate production in Emiliania huxleyi and Thalassiosira oceanica. New Phytol. 226, 396–409 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Olson, M. B. & Strom, S. L. Phytoplankton growth, microzooplankton herbivory and community structure in the southeast Bering Sea: insight into the formation and temporal persistence of an Emiliania huxleyi bloom. Deep-Sea Res. II 49, 5969–5990 (2002).CAS 
    Article 

    Google Scholar 
    47.Challenger, F. & Simpson, M. I. Studies on biological methylation; a precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata; dimethyl-2-carboxyethylsulphonium hydroxide and its salts. J. Chem. Soc. 3, 1591–1597 (1948).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Haas, P. The liberation of methyl sulphide by seaweed. Biochem. J. 29, 1297–1299 (1935).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Stefels, J. & Dijkhuizen, L. Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae). Mar. Ecol. 131, 307–313 (1996).CAS 
    Article 

    Google Scholar 
    50.Wolfe, G. V., Sherr, E. B. & Sherr, B. F. Release and consumption of DMSP from Emiliania huxleyi during grazing by Oxyrrhis marina. Mar. Ecol. 111, 111–119 (1994).CAS 
    Article 

    Google Scholar 
    51.Reisch, C. R., Moran, M. A. & Whitman, W. B. Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front. Microbiol. 2, 172 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.von Dassow, P. et al. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biol. 10, R114 (2009).Article 
    CAS 

    Google Scholar 
    53.Strom, S., Wolfe, G., Slajer, A., Lambert, S. & Clough, J. Chemical defense in the microplankton II: inhibition of protist feeding by β-dimethylsulfoniopropionate (DMSP). Limnol. Oceanogr. 48, 230–237 (2003).CAS 
    Article 

    Google Scholar 
    54.Li, W. Eat-me signals: keys to molecular phagocyte biology and “appetite” control. J. Cell. Physiol. 227, 1291–1297 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Tyssebotn, I. M. B. et al. Concentrations, biological uptake, and respiration of dissolved acrylate and dimethylsulfoxide in the northern Gulf of Mexico. Limnol. Oceanogr. 62, 1198–1218 (2017).Article 

    Google Scholar 
    56.Curson, A. R. J., Todd, J. D., Sullivan, M. J. & Johnston, A. W. B. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat. Rev. Microbiol. 9, 849–859 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Spiese, C. E., Le, T., Zimmer, R. L. & Kieber, D. J. Dimethylsulfide membrane permeability, cellular concentrations and implications for physiological functions in marine algae. J. Plankton Res. 38, 41–54 (2015).Article 
    CAS 

    Google Scholar 
    58.Hatton, A. D., Shenoy, D. M., Hart, M. C., Mogg, A. & Green, D. H. Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea. Biogeochemistry 110, 131–146 (2012).CAS 
    Article 

    Google Scholar 
    59.Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Endres, C. S. & Lohmann, K. J. Perception of dimethyl sulfide (DMS) by loggerhead sea turtles: a possible mechanism for locating high-productivity oceanic regions for foraging. J. Exp. Biol. 215, 3535–3538 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Savoca, M. S. Chemoattraction to dimethyl sulfide links the sulfur, iron, and carbon cycles in high-latitude oceans. Biogeochemistry 138, 1–21 (2018).CAS 
    Article 

    Google Scholar 
    62.Steinke, M., Malin, G. & Liss, P. Trophic interactions in the sea: an ecological role for climate relevant volatiles? J. Phycol. 38, 630–638 (2002).CAS 
    Article 

    Google Scholar 
    63.Pohnert, G., Steinke, M. & Tollrian, R. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Lewis, N. et al. Grazing-induced production of DMS can stabilize food-web dynamics and promote the formation of phytoplankton blooms in a multitrophic plankton model. Biogeochemistry 110, 303–313 (2012).CAS 
    Article 

    Google Scholar 
    65.Lewis, N. D., Breckels, M. N., Steinke, M. & Codling, E. A. Role of infochemical mediated zooplankton grazing in a phytoplankton competition model. Ecol. Complex. 16, 41–50 (2013).Article 

    Google Scholar 
    66.Hansen, F. C., Reckermann, M., Breteler, W. C. M. K. & Riegman, R. Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments. Mar. Ecol. Prog. Ser. 102, 51–57 (1993).Article 

    Google Scholar 
    67.Levasseur, M. et al. Production of DMSP and DMS during a mesocosm study of an Emiliania huxleyi bloom: influence of bacteria and Calanus finmarchicus grazing. Mar. Biol. 126, 609–618 (1996).CAS 
    Article 

    Google Scholar 
    68.Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 8, 229–239 (1962).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. https://doi.org/10.3354/ame01753 (2015).71.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Frost, B. W. Effects of size and concentration of food particles on the feeding and behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17, 805–815 (1972).Article 

    Google Scholar 
    75.Johnson, M. D., Michelle, R. & Stoecker, D. K. Microzooplankton grazing on Prorocentrum minimum and Karlodinium micrum in Chesapeake Bay. Limnol. Oceanogr. 48, 238–248 (2003).Article 

    Google Scholar 
    76.Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Piredda, R. et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw200 (2017).78.Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Slamovits, C. H., Saldarriaga, J. F., Larocque, A. & Keeling, P. J. The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes. J. Mol. Biol. 372, 356–368 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Untergasser, A. et al. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, W71–W74 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Dagg, M. J., Jackson, G. A. & Checkley, D. M. The distribution and vertical flux of fecal pellets from large zooplankton in Monterey Bay and coastal California. Deep-Sea Res. I 94, 72–86 (2014).Article 

    Google Scholar  More

  • in

    Heterotrophic bacterial diazotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering most of the sunlit ocean

    1.Boyd PW. Toward quantifying the response of the oceans’ biological pump to climate change. Front Mar Sci. 2015. https://doi.org/10.3389/fmars.2015.00077.2.Charlson RJ, Lovelock JE, Andreae MO, Warren SG. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature. 1987;326:655–61.CAS 
    Article 

    Google Scholar 
    3.Falkowski PG, Barber RT, Smetacek V. Biogeochemical controls and feedbacks on ocean primary production. Science (80-). 1998;281:200–6.CAS 
    Article 

    Google Scholar 
    4.Arrigo KR. Marine microorganisms and global nutrient cycles. Nature. 2005;437:349–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Sanders R, Henson SA, Koski M, De La Rocha CL, Painter SC, Poulton AJ, et al. The biological carbon pump in the North Atlantic. Prog Oceanogr e-pub print. 2014. https://doi.org/10.1016/j.pocean.2014.05.005.Article 

    Google Scholar 
    6.De Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015. https://doi.org/10.1126/science.1261605.7.Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, et al. Processes and patterns of oceanic nutrient limitation. Nat Geosci. 2013;6:701–10.CAS 
    Article 

    Google Scholar 
    8.Tyrrell T. The relative influences of nitrogen and phosohorus on oceanic primary production. Nature. 1999;400:525–31.CAS 
    Article 

    Google Scholar 
    9.Dos Santos PC, Fang Z, Mason SW, Setubal JC, Dixon R. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics. 2012;13:162.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Zehr JP, Capone DG. Changing perspectives in marine nitrogen fixation. Science. 2020. https://doi.org/10.1126/science.aay9514.11.Zehr JP, Jenkins BD, Short SM, Steward GF. Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Env Microbiol. 2003;5:539–54.CAS 
    Article 

    Google Scholar 
    12.Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, et al. Nitrogen cycles: Past, present, and future. Biogeochemistry. 2004. https://doi.org/10.1007/s10533-004-0370-0.13.Carpenter EJ, Capone DG, Rueter JG. Marine pelagic cyanobacteria: trichodesmium and other diazotrophs. Boston: Kluwer Academic Publishers; 1992.14.Carpenter EJ, Romans K. Major role of the cyanobacterium trichodesmium in nutrient cycling in the north atlantic ocean. Science. 1991;254:1356–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Karl D, Letelier R, Tupas L, Dore J, Christian J, Hebel D. The role of nitrogen fixation in biogeochemical cycling in the subtropical North Pacific Ocean. Nature. 1997;388:533–8.CAS 
    Article 

    Google Scholar 
    16.Capone DG. Trichodesmium, a globally significant marine cyanobacterium. Science (80-). 1997;276:1221–9.CAS 
    Article 

    Google Scholar 
    17.Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, et al. Phosphonate utilization by the globally important marine diazotroph. Trichodesmium Nat. 2006;439:68–71.CAS 
    Article 

    Google Scholar 
    18.Pierella Karlusich JJ, Pelletier E, Lombard F, Carsique M, Dvorak E, Colin S, et al. Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. Nat Commun 2021 121. 2021;12:1–18.
    Google Scholar 
    19.Gómez F, Furuya K, Takeda S. Distribution of the cyanobacterium Richelia intracellularis as an epiphyte of the diatom Chaetoceros compressus in the western Pacific Ocean. J Plankton Res. 2005. https://doi.org/10.1093/plankt/fbi007.20.Hilton JA, Foster RA, James Tripp H, Carter BJ, Zehr JP, Villareal TA. Genomic deletions disrupt nitrogen metabolism pathways of a cyanobacterial diatom symbiont. Nat Commun. 2013. https://doi.org/10.1038/ncomms2748.21.Martínez-Pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol 2016. https://doi.org/10.1038/nmicrobiol.2016.163.Article 
    PubMed 

    Google Scholar 
    22.Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA, Niazi F, et al. Metabolic streamlining in an open-ocean nitrogen-fixing cyanobacterium. Nature. 2010;464:90–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, et al. (2010). Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science (80-). https://doi.org/10.1126/science.1185468.24.Montoya JP, Holl CM, Zehr JP, Hansen A, Villareal TA, Capone DG (2004). High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature. https://doi.org/10.1038/nature02824.25.Church MJ, Short CM, Jenkins BD, Karl DM, Zehr JP. Temporal patterns of nitrogenase gene (nifH) expression in the oligotrophic North Pacific Ocean. Appl Environ Microbiol. 2005;71:5362–70.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Church MJ, Björkman KM, Karl DM, Saito MA, Zehr JP. Regional distributions of nitrogen-fixing bacteria in the Pacific Ocean. Limnol Oceanogr. 2008;53:63–77.CAS 
    Article 

    Google Scholar 
    27.Zehr JP, Montoya JP, Jenkins BD, Hewson I, Mondragon E, Short CM, et al. Experiments linking nitrogenase gene expression to nitrogen fixation in the North Pacific subtropical gyre. Limnology and Oceanography. 2007;52:169–83.CAS 
    Article 

    Google Scholar 
    28.Fong AA, Karl DM, Lukas R, Letelier RM, Zehr JP, Church MJ. Nitrogen fixation in an anticyclonic eddy in the oligotrophic North Pacific Ocean. ISME J. 2008;2:663–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Moisander PH, Beinart RA, Voss M, Zehr JP. Diversity and abundance of diazotrophic microorganisms in the South China Sea during intermonsoon. ISME J. 2008;251:954–67.Article 
    CAS 

    Google Scholar 
    30.Man-Aharonovich D, Kress N, Zeev EB, Berman-Frank I, Béjà O. Molecular ecology of nifH genes and transcripts in the eastern Mediterranean Sea. Environ Microbiol. 2007;9:2354–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Benavides M, Moisander PH, Daley MC, Bode A, Arístegui J (2016). Longitudinal variability of diazotroph abundances in the subtropical North Atlantic Ocean. J Plankton Res. https://doi.org/10.1093/plankt/fbv121.32.Langlois RJ, LaRoche J, Raab PA (2005). Diazotrophic diversity and distribution in the tropical and subtropical Atlantic Ocean. Appl Environ Microbiol. https://doi.org/10.1128/AEM.71.12.7910-7919.2005.33.Bombar D, Paerl RW, Riemann L. Marine non-cyanobacterial diazotrophs: moving beyond molecular detection. Trends Microbiol. 2016;24:916–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Farnelid H, Andersson AF, Bertilsson S, Al-Soud WA, Hansen LH, Sørensen S, et al. Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria. PLoS One 6. 2011. https://doi.org/10.1371/journal.pone.0019223.35.Riemann L, Farnelid H, Steward GF. Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity and regulation in marine waters. Aquat Micro Ecol. 2010;61:235–47.Article 

    Google Scholar 
    36.Moisander PH, Benavides M, Bonnet S, Berman-Frank I, White AE, Riemann L. Chasing after non-cyanobacterial nitrogen fixation in marine pelagic environments. Front Microbiol. 2017. https://doi.org/10.3389/fmicb.2017.01736.37.Moreira-Coello V, Mouriño-Carballido B, Marañón E, Fernández-Carrera A, Bode A, Sintes E, et al. Temporal variability of diazotroph community composition in the upwelling region off NW Iberia. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-39586-4.38.Luo YW, Doney SC, Anderson LA, Benavides M, Berman-Frank I, Bode A, et al. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates. Earth Syst Sci Data. 2012. https://doi.org/10.5194/essd-4-47-2012.39.Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee ST, Rappé MS, et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol. 2018;3:804–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh HJ, Cuenca M, et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell. 2019. https://doi.org/10.1016/j.cell.2019.10.014.41.Sunagawa S, Acinas SG, Bork P, Bowler C, Eveillard D, Gorsky G, et al. Tara Oceans: towards global ocean ecosystems biology. Nat Rev Microbiol. 2020;18:428–45CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Delmont TO, Gaia M, Hinsinger DD, Fremont P, Fernandez Guerra A, Murat et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages revealed by genome-resolved metagenomics. bioRxiv. 2020. 2020.10.15.341214.43.Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS, et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol 2020;6:3–6.Article 
    CAS 

    Google Scholar 
    45.Gaby JC, Buckley DH (2012). A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS One. https://doi.org/10.1371/journal.pone.0042149.46.Turk-Kubo KA, Karamchandani M, Capone DG, Zehr JP. The paradox of marine heterotrophic nitrogen fixation: abundances of heterotrophic diazotrophs do not account for nitrogen fixation rates in the Eastern Tropical South Pacific. Environ Microbiol. 2014;16:3095–114.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Zehr JP, Turner PJ. Nitrogen fixation: nitrogenase genes and gene expression. METHODS Microbiol. 2001;30:271–86.CAS 
    Article 

    Google Scholar 
    48.Galperin MY, Wolf YI, Makarova KS, Vera Alvarez R, Landsman D, Koonin EV. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 2021. https://doi.org/10.1093/nar/gkaa1018.49.Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/btz859.50.Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017. https://doi.org/10.1093/nar/gkw1092.51.Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci Data 2015 21. 2015;2:1–16.
    Google Scholar 
    52.Farnelid H, Tarangkoon W, Hansen G, Hansen PJ, Riemann L. Putative N2-fixing heterotrophic bacteria associated with dinoflagellate-cyanobacteria consortia in the low-nitrogen Indian Ocean. Aquat Microb Ecol. 2010. https://doi.org/10.3354/ame01440.53.Farnelid H, Turk-Kubo K, Ploug H, Ossolinski JE, Collins JR, Van Mooy BAS, et al. Diverse diazotrophs are present on sinking particles in the North Pacific Subtropical Gyre. ISME J. 2019. https://doi.org/10.1038/s41396-018-0259-x.54.Foster RA, Carpenter EJ, Bergman B. Unicellular cyanobionts in open ocean dinoflagellates, radiolarians, and tintinnids: ultrastructural characterization and immuno-localization of phycoerythrin and nitrogenase. J Phycol. 2006. https://doi.org/10.1111/j.1529-8817.2006.00206.x.55.Scavotto RE, Dziallas C, Bentzon-Tilia M, Riemann L, Moisander PH. Nitrogen-fixing bacteria associated with copepods in coastal waters of the North Atlantic Ocean. Environ Microbiol. 2015. https://doi.org/10.1111/1462-2920.12777.56.Zani S, Mellon MT, Collier JL, Zehr JP. Expression of nifH genes in natural microbial assemblages in Lake George, New York, detected by reverse transcriptase PCR. Appl Environ Microbiol. 2000;66:3119–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Geisler E, Bogler A, Rahav E, Bar-Zeev E. Direct Detection of Heterotrophic Diazotrophs Associated with Planktonic Aggregates. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-45505-4.58.Martínez-Pérez C, Mohr W, Schwedt A, Dürschlag J, Callbeck CM, Schunck H, et al. Metabolic versatility of a novel N2-fixing Alphaproteobacterium isolated from a marine oxygen minimum zone. Environ Microbiol. 2018. https://doi.org/10.1111/1462-2920.14008.59.Rahav E, Bar-Zeev E, Ohayon S, Elifantz H, Belkin N, Herut B, et al. Dinitrogen fixation in aphotic oxygenated marine environments. Front Microbiol. 2013. https://doi.org/10.3389/fmicb.2013.00227.60.Bentzon-Tilia M, Severin I, Hansen LH, Riemann L. Genomics and ecophysiology of heterotrophic nitrogen-fixing bacteria isolated from estuarine surface water. MBio 6. 2015. https://doi.org/10.1128/mBio.00929-15.61.Cornejo-Castillo FM, Zehr JP. Intriguing size distribution of the uncultured and globally widespread marine non-cyanobacterial diazotroph Gamma-A. ISME J. 2021. https://doi.org/10.1038/s41396-020-00765-1.62.Carradec Q, Pelletier E, Da Silva C, Alberti A, Seeleuthner Y, Blanc-Mathieu R, et al. A global ocean atlas of eukaryotic genes. Nat Commun. 2018. https://doi.org/10.1038/s41467-017-02342-1.63.Güell M, Yus E, Lluch-Senar M, Serrano L. Bacterial transcriptomics: what is beyond the RNA horiz-ome? Nat Rev Microbiol. 2011. https://doi.org/10.1038/nrmicro2620.64.Cornejo-Castillo FM, Cabello AM, Salazar G, Sánchez-Baracaldo P, Lima-Mendez G, Hingamp P, et al. Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. Nat Commun. 2016. https://doi.org/10.1038/ncomms11071.65.Needoba JA, Foster RA, Sakamoto C, Zehr JP, Johnson KS. Nitrogen fixation by unicellular diazotrophic cyanobacteria in the temperate oligotrophic North Pacific Ocean. Limnol Oceanogr. 2007. https://doi.org/10.4319/lo.2007.52.4.1317.66.Foster RA, Paytan A, Zehr JP. Seasonality of N2 fixation and nifH gene diversity in the Gulf of Aqaba (Red Sea). Limnol Oceanogr. 2009. https://doi.org/10.4319/lo.2009.54.1.0219.67.Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, Vaulot D, et al. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science. 2012;337:1546–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Zehr JP, Waterbury JB, Turner PJ, Montoya JP, Omoregie E, Steward GF, et al. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature. 2001;412:635–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Ohki K, Zehr JP, Fujita Y. Trichodesmium: establishment of culture and characteristics of N2- fixation. Mar pelagic cyanobacteria. 1992. https://doi.org/10.1007/978-94-015-7977-3_20.70.Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2014;31:1674–6.Article 
    CAS 

    Google Scholar 
    71.Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    72.Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Delmont TO, Eren AM. Identifying contamination with advanced visualization and analysis practices: metagenomic approaches for eukaryotic genome assemblies. PeerJ. 2016;4:e1839.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Delcher AL, Phillippy A, Carlton J, Salzberg SL. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 2002;30:2478–83.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/btz848.80.Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer ELL. The Pfam protein families database. Nucleic Acids Res. 2000;28:263–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Zdobnov EM, Apweiler R. InterProScan – an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001;17:847–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucleic Acids Res. 2003;31:371–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    Article 

    Google Scholar 
    85.Darling AE, Jospin G, Lowe E, Matsen FA, Bik HM, Eisen JA. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ. 2014;2:e243.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Price MN, Dehal PS, Arkin AP. FastTree 2 — Approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Multivariate trait analysis reveals diatom plasticity constrained to a reduced set of biological axes

    Culture maintenance and growthTwelve strains of Thalassiosira spp. were obtained from the Provasoli-Guillard National Centre of Marine Phytoplankton (NCMA, https://ncma.bigelow.org/), and one strain from the Australian National Culture Collection, representing 7 species in total (Supplementary Table 1). Cultures were maintained in polystyrene tissue culture flasks in artificial seawater with f/2 media [37] at 20 °C, with 60 µmolm−2s−1 of light on a 12:12 light cycle.Three strains originally identified as Thalassiosira sp. in the NCMA collection were further classified to the species level using sequencing of the ITS2 gene region (Supplementary Table 1): CCMP1055 as T. auguste-lineata (84.64% similarity; [38]) and CCMP2929 as T. weisflogii (98.37% similarity to Strain 1587 used in our study; [39]). Strain CCMP1059 was tentatively identified as Cyclotella striata (94.17% identity match to clone ZX28-3-40; [40]) also from order Thalassiosirales, but this assignment requires further investigation.Experimental set upExperimental cultures (200 mL) were grown in 250 mL polystyrene tissue culture flasks in triplicate, at a starting concentration of 2500 cells ml−1. All 13 strains were grown in a “standard” environment (identical to maintenance conditions) with 9 phenotypic traits measured to describe the initial trait-scape. Five strains (1010, 1059, 2929, 3264, and 3367) were grown in two additional environments in triplicate: a high temperature and light treatment (HT: 30 °C, 200 µmol photons m−2s−1 of light, 12:12 light:dark), and a low nutrient treatment (LN: f/400 media with an adjusted N:P ratio of 10:1 achieved by reducing the nitrate concentration from 4.4 to 1.8 µM, 60 µmol photons m−2s−1 of light, 12:12 light:dark). Cultures for the two additional treatments were inoculated with 10,000 cells ml−1 (LN) and 5,000 cells ml−1 (HT) in anticipation of limited growth.Growth was tracked daily using in vivo fluorescence as a proxy for cell density [41]. One mL aliquots of experimental cultures were measured for chlorophyll-a fluorescence using a plate reader (TECAN Infinite M1000 Pro, Männedorf, Switzerland) using 455/680 nm excitation/emission spectra. Phenotypic traits were measured at mid-late exponential phase, assessed by visually examining in vivo fluorescence growth curves. In the case of the low nutrient treatment, where growth was limited to 3–5 days, cultures were harvested in early stationary phase. Duration of growth for each experiment is summarised in Supplementary Table 2.Phenotypic trait measurement methodsPhenotypic traits were selected to capture different commonly measured base physiological functions, and to include traits that are used in biogeochemical models. We also selected traits that demonstrated independence and orthogonality (i.e., not all co-varying), based on pilot studies, in order to successfully define the multivariate trait-scape [42].Growth rateGrowth rates for each time step were calculated from the daily in vivo fluorescence measurements according to the calculation:$$mu = frac{{{{{{{{{mathrm{ln}}}}}}}}left( {F_2} right)-{{{{{{{mathrm{ln}}}}}}}}left( {F_1} right)}}{{t_2 – t_1}}$$Maximum growth rates were determined by the average growth over 2–4 consecutive steps depending on the duration of exponential growth.Flow cytometry traitsFor flow cytometry trait measures (growth rate, size, chlorophyll a content, lipid content), 1 mL aliquots of experimental culture were fixed with EM grade paraformaldehyde (0.8% final concentration, Electron Microscopy Sciences, Ft Washington, PA) in 1.6 mL cryopreservation tubes (CryoPure, Sarstedt), frozen in liquid nitrogen, then stored at −80 °C prior to analysis. All measures were performed using a Cytoflex LX (Beckman Coulter, CA, USA).Cell counts and sizeCell counts were done by gating the diatom population using chlorophyll a (488 nm excitation, 690/50 nm detector) and forward scatter channel thresholds. Cell size was estimated using forward scatter values calibrated against spherical beads (2, 4, 6, 10, 15 µM diameters; Invitrogen, CA). This resulted in a conversion equation of equivalent spherical diameter (ESD) = (FSC + 194636)/75775, which was used to assess relative changes in cell size [43].Chlorophyll a contentChlorophyll a (Chl-a) fluorescence of the gated diatom population was quantified using 488 nm excitation, 690/50 nm detection. A standard bead (Cytoflex Daily QC Fluorospheres; Beckman Coulter) was used to calibrate the performance of the instrument and ensure comparable measures across samples. Chlorophyll values were divided by ESD to account for cell size differences.Side scatter/granularitySide scatter is an indicator of the internal complexity of a cell or “granularity”. This trait is measured in tandem with other flow cytometry measures and was included as a phenotypic trait. The interpretation of this trait is not straight forward, but is independent of other flow cytometry traits measured and has been used in other flow cytometry studies of microalgae [44]. This trait was divided by ESD to account for cell size differences.Neutral lipidsRelative neutral lipid content was determined using the fluorescent stain BODIPY™ 505/515 (Thermo Fisher, MA, USA) which is commonly used to assess neutral lipid content in phytoplankton [45,46,47]. Background fluorescence (488 nm excitation, 525/40 nm detector) of PFA-fixed cells was measured in tandem with the size, chlorophyll a, and side scatter. After this, 10 µL of BODIPY stain (2 mg mL−1 in DMSO) was added to each sample, resulting in a final BODIPY concentration of 2 μg mL−1. Samples were incubated for 10 min in the dark before being read again on the flow cytometer. Neutral lipid content was defined as the difference in median fluorescence per cell between the pre- and post-stained sample. This value was then divided by the ESD size to account for size-related effects.Photophysiological traitsPhotophysiological measures were taken by conducting a rapid light curve [48] with a water PAM (Water-PAM; Walz GmbH, Effeltrich, Germany) using 1 mL of experimental culture diluted in artificial seawater. The rapid light curve protocol exposes the culture to 8 steps of increasing irradiance for 10 seconds each, measuring the photophysiological response at each step. Maximum electron transport rate (ETRmax), Ik (half saturation irradience), and alpha (the photosynthetic rate during the light-limited linear region) were calculated using the regression fit function in the PAM WinControl software. Photophysiology measurements were taken between 4–5 h after the start of the photoperiod.Reactive oxygen speciesThe development of reactive oxygen species (ROS) was measured using the fluorescent probe 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA; Thermo Fisher, MA, USA) which has been used in a number of phytoplankton studies [49,50,51]. Two 1 mL aliquots of experimental culture were transferred to a 48 well tissue culture plate; 2 µL of stain (2.5 mg mL−1 H2DCFDA was made in DMSO) was added to one aliquot, with the other acting as a blank. The plates were sealed (Breathe-Easy, Diversified Biotech) and incubated in the dark at growth temperature (20 or 30 °C) for 2 h. Incubation was done in the dark because of the effects of light on the dye itself, therefore the effects of the excess light treatment were not captured in this trait. Fluorescence of H2DCFDA was read using a plate reader with 488 nm excitation 525 nm emission (TECAN Infinite M1000 Pro, Männedorf, Switzerland). ROS concentration was estimated as the difference in fluorescence units per cell between the stained and unstained aliquots of each culture. This metric was also divided by ESD size to account for size effects.Taxonomic confirmation of strainsDNA from stock cultures (10 mL) was extracted using a DNeasy PowerSoil kit (QIAGEN Inc., CA, USA) and checked for quality with a NanopDrop™ 2000 (ThermoFIsher Scientific, MA, USA), before amplification and sequencing at the Australian Genome Research Facility (AGRF, Sydney, Australia). PCR conditions and primers used were those developed by Chappell et al. [52] for the ITS region: forward primer: 5ʹ-RCGAAYTGCAGAACCTCG-3ʹ, reverse primer: 5ʹ-TACTYAATCTGAGATYCA-3ʹ.Bioinformatics processing was conducted using Geneious Prime (Version 2020.0.5; Biomatters Ltd.). Strain sequences were compared to GenBank using the BLAST function to confirm species identity. Nucleotide sequences were aligned using the MUSCLE alignment [53], followed by Bayesian inference analysis using MrBayes [54] to generate a phylogenetic tree. The out-group for the tree was a strain of Chaetoceros atlanticus isolate TPV2 1146 obtained from GenBank. Percentage similarity between strains according to the alignment was used as a metric of genetic relatedness.Statistical analysisWe assessed the multivariate phenotypes for the Thalassiosira strains using principal component analysis (PCA). The input variables were the 9 independent trait measurements made on each replicate culture (n = 36, 3 biological replicates per strain). Trait data was standardized (mean = 0, SD = 1) for each trait prior to PCA analysis to account for differences in the units and scale of measurements. The resulting PCA plot was defined as the ‘trait-scape’.Hierarchical clustering analysis was performed on the 9-trait dataset used to assess similarity in multivariate phenotypes between each replicate for each strain (n = 3 per strain).To compare genetic vs. phenotypic similarity, percentage similarity between strains was correlated against the distance between strain centroids (multivariate means) within the trait-scape. Distances between multivariate means (centroids) were calculated using the equation:$${{{{{{{mathrm{distance}}}}}}}} = sqrt {left( {{{{{{{{mathrm{{Delta}}}}}}}PC}}1.{{{{{{{mathrm{a}}}}}}}}} right)^2,+,left( {{{{{{{{mathrm{{Delta}}}}}}}PC}}2.{{{{{{{mathrm{b}}}}}}}}} right)^2}$$ΔPC1 is the difference in PC1 co-ordinates between the two strains, a is the % variance explained by PC1, ΔPC2 is the difference in PC2 co-ordinates between the two strains, b is the % variance explained by PC2.To assess whether a trait-scape generated using fewer input traits (4 rather than 9) was representative of the full, 9-trait plot, we conducted PCA using 4 input traits, and then assessed whether the inter-strain distances (distances between centroids) within the plot were correlated using linear regression. This provided a quantitative assessment of whether the strains were in the same relative positions to each other within the trait-scape.Covariation of traitsTo compare the pairwise relationships between traits across the strains, correlation matrices were made using data collected in the standard environment, and for the HT and LN environments.Phenotypic plasticityThe change in phenotypes in the new environments were assessed firstly by conducting PCA on the full dataset, including trait data from the 13 strains grown in the standard environment, plus the 5 strains grown in the two additional environments. This generated an “expanded trait-scape”. In addition, correlation matrices were generated for the new environments’ trait dataset to assess differences in trait-trait relationships between the ‘standard’ and “expanded” datasets.Relative changes in trait values for each trait in the new environments were calculated as follows:$$ {{{{{{{mathrm{Relative}}}}}}}},{{{{{{{mathrm{change}}}}}}}} \ = frac{{{{{{{{{mathrm{trait}}}}}}}},{{{{{{{mathrm{value}}}}}}}},{{{{{{{mathrm{new}}}}}}}},{{{{{{{mathrm{environment}}}}}}}} – overline {{{{{{{mathrm{x}}}}}}}} ,,{{{{{{{mathrm{trait}}}}}}}},{{{{{{{mathrm{value}}}}}}}},{{{{{{{mathrm{standard}}}}}}}},{{{{{{{mathrm{environment}}}}}}}}}}{{overline {{{{{{{mathrm{x}}}}}}}} ,,{{{{{{{mathrm{trait}}}}}}}},{{{{{{{mathrm{value}}}}}}}},{{{{{{{mathrm{standard}}}}}}}},{{{{{{{mathrm{environment}}}}}}}}}}$$We used PCA to assess whether the relative changes in trait values were consistent between strains in the two different environments. i.e., was the relative change in whole phenotype consistent. If the changes were consistent across strains, we expected to see clustering in the PCA based on treatment.Statistical softwareStatistical analyses were performed in R [55], Matlab, and Microsoft Excel. Hierarchical clustering analysis with multiscale bootstrap resampling (1000 replicates) on trait values from biological replicates was done with the ‘pvclust’ package in R [56] using Euclidean distance and the average (UPGMA) method. Principal component analysis was used to generate the multivariate trait-scape was done using the “vegan package” in R [57]. The contributions of each trait to the PC axes (loadings) were extracted using the “factoextra” package in R [58]. Trait correlation matrices were generated using the “corrplot” package in R [59]. More