More stories

  • in

    Ecological sustainability and high-quality development of the Yellow River Delta in China based on the improved ecological footprint model

    Traditional ecological footprint consumption accountsTo truly reflect the ecological footprint and ecological carrying capacity of Dongying city, according to the lifestyle and consumption of Dongying city and with reference to Shandong Province Statistical Yearbook and Dongying City Statistical Yearbook, the biologically productive land is divided into arable land, forestland, grassland, water, construction land and fossil energy land, and the main consumption items of each category are shown in Fig. 3.Figure 3Traditional ecological footprint consumption accounts in Dongying city. This paper uses the carbon footprint to improve the fossil energy footprint of the traditional ecological footprint.Full size imageNPP-based correction of ecological footprint parametersThe 30 m land use of the study area was resampled to 500 m, consistent with the resolution of MOD17A3H after pre-processing with MRT and other tools. Correction of ecological footprint parameter factors in Dongying City for 2015, 2018 and 2020 based on the annual average NPP of vegetation (Table 1). This method is faster and more accurate than other methods, and the implementation of NPP calculations from the vegetation light energy use efficiency (LUE) framework to correct ecological footprint parameters is more applicable and accurate than other methods.Table 1 Average annual net primary productivity per land type in the Yellow River Delta.Full size tableYield factorThe formula for calculating the yield factor for arable land in the Yellow River Delta refers to NFA 2016:$$left{ {begin{array}{*{20}c} {Y_{j1} = frac{{Sigma A_{W} }}{{Sigma A_{N} }}} \ {A_{N} = frac{{P_{N} }}{{Y_{N} }}} \ {A_{W} = frac{{P_{N} }}{{Y_{W} }}} \ end{array} } right.$$
    (1)
    In Eq. (1), ({Y}_{j1}) is the yield factor of the arable land in the study area, ({A}_{N}) is the harvested area ( culture area ) of agricultural products of category (N) in the study area, ({A}_{W}) is the area required to produce an equivalent amount of this type of agricultural product based on the world average yield, ({P}_{N}) is the production of agricultural products of category (N) under the region, ({Y}_{N}) is the average yield of agricultural products of category (N) under the region, and ({Y}_{W}) is the world average production of a category of agricultural products.The NPP products from MODIS supported by remote sensing were used as the base data to correct the yield factors of woodlands and grasslands in the study area under the ecological footprint model.$$Y_{{{text{j}}2}} = overline{{NPP_{local} }} /overline{{NPP_{global} }}$$
    (2)
    In Eq. (2), ({Y}_{mathrm{j}2}) is the yield factor for woodland and grassland in the study area, ({NPP}_{local}) is the average annual net primary productivity of woodland and grassland in the study area in the corresponding year, and ({NPP}_{global}) is the global average NPP of woodland and grassland in the corresponding year, referring to Amthor et al.24.In addition, most of the land for construction comes from cropland, so the yield factor for construction land is the same as that for cropland25. The yield factors for the watershed were derived from the Wackernagel and Rees26 study.Balancing factorThe NPP model for provincial hectares was applied to the municipal scale. Among them, the NPP of four biologically productive lands, namely cropland, woodland, grassland and water, was weighted and summed to obtain the annual average NPP within the city area.$$overline{NPP} = frac{{mathop sum nolimits_{j} left( {A_{j} times NPP_{j} } right)}}{{mathop sum nolimits_{j} A_{j} }}$$
    (3)
    In Eq. (3), (overline{NPP }) is the average net primary productivity of arable land, forestland, grassland and water in Dongying, ({A}_{j}) is the area of land in category (j), and ({NPP}_{j}) is the average annual NPP of productive land in category (j).Balancing factors for arable land, woodland, grassland and water in the Yellow River Delta.$$R_{j} = frac{{NPP_{j} }}{{overline{NPP} }}$$
    (4)
    In Eq. (4), ({R}_{j}) is a balancing factor.The sites for construction are located in areas suitable for agricultural cultivation or directly occupy arable land, so the potential ecological productivity of urban construction land is the same as that of arable land, and therefore the equilibrium factor for construction land is equal to that of arable land27.Ecological footprint principles and improvementsEcological footprint modelEcological footprint model includes ecological footprint, ecological carrying capacity and ecological deficit. As the study area is within the city limits and the statistics have their own characteristics, adjustments have been made to the methodology for calculating the national ecological footprint accounts28. Based on the biological consumption account, the ecological footprint can be calculated for any land use type.$$EF = frac{P}{{Y_{N} }} times R_{j} times Y_{j}$$
    (5)
    In Eq. (5), (P) is the number of biologically productive land harvesting consumption items in a category, and ({Y}_{N}) is the average production of consumption Item (N) in the region. The ecological footprint of the construction land is measured based on the area of human infrastructure land and is equal to its ecological carrying capacity.Ecological carrying capacity is the determination of the maximum carrying capacity of an ecosystem for human activity, expressed as the sum of the biologically productive land area available in an area.$$EC = N times ec = N times sum left( {a_{j} times R_{j} times Y_{j} } right)$$
    (6)
    In Eq. (6), (EC) is the ecological carrying capacity per capita, and ({a}_{j}) is the per capita area of biologically productive land of category j in the region. According to the recommendations of the World Commission on Environment and Development, 12% of the ecological carrying capacity should also be deducted for biodiversity conservation. The population figures for the study area were obtained from the statistical yearbook and the seventh national census data. According to the recommendations of the World Commission on Environment and Development, 12% of the ecological carrying capacity should also be deducted for biodiversity conservation.An ecological deficit is the interpolation of the ecological footprint and ecological carrying capacity.$$ED = EF – EC$$
    (7)
    When (ED >0) indicates an ecological deficit, the ecological environment has exceeded the carrying capacity. Conversely, when (ED More

  • in

    Subsistence of early anatomically modern humans in Europe as evidenced in the Protoaurignacian occupations of Fumane Cave, Italy

    Nigst, P. R. et al. Early modern human settlement of Europe north of the alps occurred 43,500 years ago in a cold steppe-type environment. Proc. Natl. Acad. Sci. U.S.A. 111, 14394–14399 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pederzani, S. et al. Subarctic climate for the earliest Homo sapiens in Europe. Sci. Adv. 7, 1–11 (2021).Article 

    Google Scholar 
    Shao, Y. et al. Human-existence probability of the Aurignacian techno-complex under extreme climate conditions. Quat. Sci. Rev. 263, 106995 (2021).Article 

    Google Scholar 
    Slimak, L. et al. Modern human incursion into Neanderthal territories 54,000 years ago at Mandrin, France. Sci. Adv. 8, 1 (2022).Article 

    Google Scholar 
    Fewlass, H. et al. A 14C chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro Cave, Bulgaria. Nat. Ecol. Evol. 4, 794–801 (2020).Article 
    PubMed 

    Google Scholar 
    Hublin, J. J. et al. Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 581, 299–302 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Benazzi, S. et al. Early dispersal of modern humans in Europe and implications for Neanderthal behaviour. Nature 479, 525–528 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Benazzi, S. et al. The makers of the Protoaurignacian and implications for Neandertal extinction. Science 348, 793–796 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cortés-Sánchez, M. et al. An early Aurignacian arrival in southwestern Europe. Nat. Ecol. Evol. 3, 207–212 (2019).Article 
    PubMed 

    Google Scholar 
    Vidal-Cordasco, M., Ocio, D., Hickler, T. & Marín-Arroyo, A. B. Publisher Correction: Ecosystem productivity affected the spatiotemporal disappearance of Neanderthals in Iberia. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01917-6 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, R. E. et al. The chronology of the earliest Upper Palaeolithic in northern Iberia: New insights from L’Arbreda, Labeko Koba and La Viña. J. Hum. Evol. 69, 91–109 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hublin, J. J. The modern human colonization of western Eurasia: When and where? Quat. Sci. Rev. 118, 194–210 (2015).Article 
    ADS 

    Google Scholar 
    Hublin, J. J. The earliest modern human colonization of Europe. Proc. Natl. Acad. Sci. U.S.A. 109, 13471–13472 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marín-Arroyo, A. B. & Sanz-Royo, A. What Neanderthals and AMH ate: Reassessment of the subsistence across the Middle-Upper Palaeolithic transition in the Vasco-Cantabrian region of SW Europe. J. Quat. Sci. 37, 320–334 (2022).Article 

    Google Scholar 
    Semal, P. et al. New data on the late Neandertals: Direct dating of the Belgian Spy fossils. Am. J. Phys. Anthropol. 138, 421–428 (2009).Article 
    PubMed 

    Google Scholar 
    Welker, F. et al. Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc. Natl. Acad. Sci. 113, 11162–11167 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zilhão, J. Chronostratigraphy of the Middle-to-Upper Paleolithic transition in the Iberian Peninsula. Pyrenae Rev. Prehist. i Antig. la Mediter. Occident. 37, 7–84 (2006).
    Google Scholar 
    Vanhaeren, M. & d’Errico, F. Aurignacian ethno-linguistic geography of Europe revealed by personal ornaments. J. Archaeol. Sci. 33, 1105–1128 (2006).Article 

    Google Scholar 
    Higham, T. et al. Testing models for the beginnings of the Aurignacian and the advent of figurative art and music: The radiocarbon chronology of Geißenklösterle. J. Hum. Evol. 62, 664–676 (2012).Article 
    PubMed 

    Google Scholar 
    Broglio, A. et al. L’art aurignacien dans la décoration de la Grotte de Fumane. Anthropologie 113, 753–761 (2009).Article 

    Google Scholar 
    Conard, N. J. Palaeolithic ivory sculptures from southwestern Germany and the origins of figurative art. Nature 426, 830–832 (2003).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Conard, N. J. A female figurine from the basal Aurignacian of Hohle Fels Cave in southwestern Germany. Nature 459, 248–252 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bourrillon, R. et al. A new Aurignacian engraving from Abri Blanchard, France: Implications for understanding Aurignacian graphic expression in Western and Central Europe. Quat. Int. 491, 46–64 (2018).Article 

    Google Scholar 
    Tejero, J. M. & Grimaldi, S. Assessing bone and antler exploitation at Riparo Mochi (Balzi Rossi, Italy): Implications for the characterization of the Aurignacian in South-western Europe. J. Archaeol. Sci. 61, 59–77 (2015).Article 

    Google Scholar 
    Tejero, J. M. Spanish aurignacian projectile points: An example of the First European Paleolithic hunting weapons in osseous materials. In Osseous Projectile Weaponry Towards an Understanding of Pleistocene Cultural Variability (ed. Langley, M. C.) 55–70 (Springer, 2017).
    Google Scholar 
    Kitagawa, K. & Conard, N. J. Split-based points from the Swabian Jura highlight Aurignacian regional signatures. PLoS ONE 15(11), e0239865 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Floss, H., Hoyer, C. T., Heckel, C. & Tartar, É. The Aurignacian in Southern Burgundy. Palethnologie 7, 1–22 (2015).
    Google Scholar 
    Tartar, É. Origin and development of Aurignacian Osseous Technology in Western Europe: A review of current knowledge. Palethnologie 7, 1–20 (2015).
    Google Scholar 
    Bar-Yosef, O. Neanderthals and modern humans: A different interpretation. In When Neanderthals and Modern Humans Met (ed. Conard, N. J.) 467–482 (Kerns Verlag, 2006).
    Google Scholar 
    Flas, D. Les pointes foliacées et les changements techniques autour de la transitiondu Paléolithiquemoyen au supérieur dans leNord-Ouest de l’Europe. In (eds Toussaint, M. & Di Modica, K. S. P.) 261–276 (ERAUL 128, 2011).Nigst, P. R. The Early Upper Palaeolithic of the Middle Danube Region—Human Evolution (Leiden University, 2012).
    Google Scholar 
    Tsanova, T. Les débuts du Paléolithique supérieur dans l’Est des Balkans. Réflexion à partir de l’étude taphonomique et techno-économique des ensembles lithiques des sites de Bacho Kiro (couche 11), Temnata (couches VI et 4) et Kozarnika (niveau VII) (2008).Bosch, M. D. et al. New chronology for Ksâr ’Akil (Lebanon) supports Levantine route of modern human dispersal into Europe. Proc. Natl. Acad. Sci. U.S.A. 112, 7683–7688 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chu, W. et al. Aurignacian dynamics in Southeastern Europe based on spatial analysis, sediment geochemistry, raw materials, lithic analysis, and use-wear from Românești-Dumbrăvița. Sci. Rep. 12, 14152 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Conard, N. J. The timing of cultural innovations and the dispersal of modern humans in Europe. Terra Nostra 6, 82–94 (2002).
    Google Scholar 
    Davies, W. Re-evaluating the Aurignacian as an Expression of Modern Human Mobility and Dispersal. (eds. Mellars P, Boyle K, Bar-Yosef O, S. C.) (2001).Mellars, P. A new radiocarbon revolution and the dispersal of modern humans in Eurasia. Nature 439, 931–935 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mellars, P. Archeology and the dispersal of modern humans in Europe: Deconstructing the ‘Aurignacian’. Evol. Anthropol. 15, 167–182 (2006).Article 

    Google Scholar 
    Szmidt, C. C., Normand, C., Burr, G. S., Hodgins, G. W. L. & LaMotta, S. AMS 14C dating the Protoaurignacian/Early Aurignacian of Isturitz, France. Implications for Neanderthal-modern human interaction and the timing of technical and cultural innovations in Europe. J. Archaeol. Sci. 37, 758–768 (2010).Article 

    Google Scholar 
    Conard, N. J. & Bolus, M. Radiocarbon dating the appearance of modern humans and timing of cultural innovations in Europe: New results and new challenges. J. Hum. Evol. 44, 331–371 (2003).Article 
    PubMed 

    Google Scholar 
    Douka, K., Grimaldi, S., Boschian, G., del Lucchese, A. & Higham, T. F. G. A new chronostratigraphic framework for the Upper Palaeolithic of Riparo Mochi (Italy). J. Hum. Evol. 62, 286–299 (2012).Article 
    PubMed 

    Google Scholar 
    Davies, W. & Hedges, R. E. M. Dating a type site: Fitting Szeleta Cave into its regional chronometric context. Praehistoria 9–10, 35–45 (2009).
    Google Scholar 
    Davies, W., White, D., Lewis, M. & Stringer, C. Evaluating the transitional mosaic: Frameworks of change from Neanderthals to Homo sapiens in eastern Europe. Quat. Sci. Rev. 118, 211–242 (2015).Article 
    ADS 

    Google Scholar 
    Marín-Arroyo, A. B. et al. Chronological reassessment of the Middle to Upper Paleolithic transition and Early Upper Paleolithic cultures in Cantabrian Spain. PLoS ONE 13, 1–20 (2018).
    Google Scholar 
    Barshay-Szmidt, C., Normand, C., Flas, D. & Soulier, M. C. Radiocarbon dating the Aurignacian sequence at Isturitz (France): Implications for the timing and development of the Protoaurignacian and Early Aurignacian in western Europe. J. Archaeol. Sci. Rep. 17, 809–838 (2018).
    Google Scholar 
    Wood, R. et al. El Castillo (Cantabria, northern Iberia) and the Transitional Aurignacian: Using radiocarbon dating to assess site taphonomy. Quat. Int. 474, 56–70 (2018).Article 

    Google Scholar 
    Chu, W. The danube corridor hypothesis and the carpathian basin: Geological, environmental and archaeological approaches to characterizing aurignacian dynamics. J. World Prehist. 31, 117–178 (2018).Article 

    Google Scholar 
    Falcucci, A., Conard, N. J. & Peresani, M. Breaking through the aquitaine frame: A re-evaluation on the significance of regional variants during the Aurignacian as seen from a key record in southern Europe. J. Anthropol. Sci. 98, 99–140 (2020).PubMed 

    Google Scholar 
    Banks, W. E., d’Errico, F. & Zilhão, J. Human-climate interaction during the Early Upper Paleolithic: Testing the hypothesis of an adaptive shift between the Proto-Aurignacian and the Early Aurignacian. J. Hum. Evol. 64, 39–55 (2013).Article 
    PubMed 

    Google Scholar 
    Badino, F. et al. An overview of Alpine and Mediterranean palaeogeography, terrestrial ecosystems and climate history during MIS 3 with focus on the Middle to Upper Palaeolithic transition. Quat. Int. 551, 7–28 (2020).Article 

    Google Scholar 
    Bataille, G. & Conard, N. J. Blade and bladelet production at Hohle Fels Cave, AH IV in the Swabian Jura and its importance for characterizing the technological variability of the Aurignacian in Central Europe. PLoS ONE 13, 1–47 (2018).Article 

    Google Scholar 
    Higham, T., Wood, R., Moreau, L., Conard, N. & Ramsey, C. B. Comments on ‘Human-climate interaction during the early Upper Paleolithic: Testing the hypothesis of an adaptive shift between the Proto-Aurignacian and the Early Aurignacian’ by Banks et al.. J. Hum. Evol. 65, 806–809 (2013).Article 
    PubMed 

    Google Scholar 
    Teyssandier, N. & Zilhão, J. On the entity and antiquity of the Aurignacian at Willendorf (Austria): Implications for modern human emergence in Europe. J. Paleolit. Archaeol. 1, 107–138 (2018).Article 

    Google Scholar 
    Discamps, E., Jaubert, J. & Bachellerie, F. Human choices and environmental constraints: Deciphering the variability of large game procurement from Mousterian to Aurignacian times (MIS 5–3) in southwestern France. Quat. Sci. Rev. 30, 2755–2775 (2011).Article 
    ADS 

    Google Scholar 
    Kuhn, S. L. & Stiner, M. C. What’s a mother to do? The division of labor among Neandertals and modern humans in Eurasia. Curr. Anthropol. 47, 953–980 (2006).Article 

    Google Scholar 
    Starkovich, B. M. Intensification of small game resources at Klissoura Cave 1 (Peloponnese, Greece) from the Middle Paleolithic to Mesolithic. Quat. Int. 264, 17–31 (2012).Article 

    Google Scholar 
    Stiner, M. Prey choice, site occupation intensity & economic diversity in the Middle–early Upper Palaeolithic at the Üçağizli Caves. Turkey. Before Farm. 3, 1–20 (2009).
    Google Scholar 
    Yravedra Saínz de los Terreros, J., Gómez-Castanedo, A., Aramendi-Picado, J., Montes-Barquín, R. & Sanguino-González, J. Neanderthal and Homo sapiens subsistence strategies in the Cantabrian region of northern Spain. Archaeol. Anthropol. Sci. 8, 779–803 (2016).Article 

    Google Scholar 
    Bertacchi, A., Starkovich, B. M. & Conard, N. J. The Zooarchaeology of Sirgenstein Cave: A Middle and Upper Paleolithic site in the Swabian Jura, SW Germany. J. Paleolit. Archaeol. 4, 7 (2021).Article 

    Google Scholar 
    Boscato, P. & Crezzini, J. Middle-Upper Palaeolithic transition in Southern Italy: Uluzzian macromammals from Grotta del Cavallo (Apulia). Quat. Int. 252, 90–98 (2012).Article 

    Google Scholar 
    Grayson, D. K. & Delpech, F. The large mammals of Roc de Combe (Lot, France): The Châtelperronian and Aurignacian assemblages. J. Anthropol. Archaeol. 27, 338–362 (2008).Article 

    Google Scholar 
    Morin, E. et al. New evidence of broader diets for archaic Homo populations in the northwestern Mediterranean. Sci. Adv. 5, 1–12 (2019).Article 

    Google Scholar 
    Münzel, S. & Conard, N. J. Change and continuity in subsistence during the Middle and Upper Palaeolithic in the Ach Valley of Swabia (South-west Germany). Int. J. Osteoarchaeol. 14, 225–243 (2004).Article 

    Google Scholar 
    Rendu, W. et al. Subsistence strategy changes during the Middle to Upper Paleolithic transition reveals specific adaptations of Human Populations to their environment. Sci. Rep. 9, 1–11 (2019).Article 
    ADS 

    Google Scholar 
    Romandini, M. et al. Macromammal and bird assemblages across the late Middle to Upper Palaeolithic transition in Italy: An extended zooarchaeological review. Quat. Int. 551, 188–223 (2020).Article 

    Google Scholar 
    Starkovich, B. M. Paleolithic subsistence strategies and changes in site use at Klissoura Cave 1 (Peloponnese, Greece). J. Hum. Evol. 111, 63–84 (2017).Article 
    PubMed 

    Google Scholar 
    Peresani, M. Inspecting human evolution from a cave Late Neanderthals and early sapiens at Grotta di Fumane: Present state and outlook. J. Anthropol. Sci. 100, 71–107 (2022).PubMed 

    Google Scholar 
    Jarvis, A. et al. Hole-Filled Seamless SRTM Data V4. https://srtm.csi.cgiar.org (International Centre for Tropical Agriculture (CIAT), 2008).Delpiano, D., Heasley, K. & Peresani, M. Assessing Neanderthal land use and lithic raw material management in discoid technology. J. Anthropol. Sci. 96, 89–110 (2018).PubMed 

    Google Scholar 
    Marcazzan, D., Ligouis, B., Duches, R. & Conard, N. J. Middle and Upper Paleolithic occupations of Fumane Cave (Italy): A geoarchaeological investigation of the anthropogenic features. J. Antropol. Sci. 100, 1–26 (2022).
    Google Scholar 
    Douka, K. et al. On the chronology of the Uluzzian. J. Hum. Evol. 68, 1–13 (2014).Article 
    PubMed 

    Google Scholar 
    Peresani, M., Cristiani, E. & Romandini, M. The Uluzzian technology of Grotta di Fumane and its implication for reconstructing cultural dynamics in the Middle-Upper Palaeolithic transition of Western Eurasia. J. Hum. Evol. 91, 36–56 (2016).Article 
    PubMed 

    Google Scholar 
    Peresani, M., Bertola, S., Delpiano, D., Benazzi, S. & Romandini, M. The Uluzzian in the north of Italy: Insights around the new evidence at Riparo Broion. Archaeol. Anthropol. Sci. 11, 3503–3536 (2019).Article 

    Google Scholar 
    Aleo, A., Duches, R., Falcucci, A., Rots, V. & Peresani, M. Scraping hide in the early Upper Paleolithic: Insights into the life and function of the Protoaurignacian endscrapers at Fumane Cave. Archaeol. Anthropol. Sci. 13, 1 (2021).Article 

    Google Scholar 
    Falcucci, A., Conard, N. J. & Peresani, M. A critical assessment of the Protoaurignacian lithic technology at Fumane Cave and its implications for the definition of the earliest Aurignacian. PLoS ONE 12, 1–43 (2017).Article 

    Google Scholar 
    Falcucci, A. & Peresani, M. A pre-Heinrich Event 3 assemblage at Fumane Cave and its contribution for understanding the beginning of the Gravettian in Italy. Quartär 66, 135–154 (2019).
    Google Scholar 
    Higham, T. European Middle and Upper Palaeolithic radiocarbon dates are often older than they look. Antiquity 85, 235–249 (2011).Article 

    Google Scholar 
    Higham, T. et al. Problems with radiocarbon dating the Middle to Upper Palaeolithic transition in Italy. Quat. Sci. Rev. 28, 1257–1267 (2009).Article 
    ADS 

    Google Scholar 
    Cassoli, P. F. & Tagliacozzo, A. Considerazioni paleontologiche, paleoecologiche e archeologiche sui micromammiferi e gli uccelli dei livelli del Pleistocene Superiore del Riparo di Fumane (Vr) (Scavi 1988–91). Bollettino del Museo Civico di Storia Naturale di Verona 18, 349–445 (1994).
    Google Scholar 
    Broglio, A., De Stefani, M., Tagliacozzo, A., Gurioli, F. & Facciolo, A. Aurignacian dwelling structures, hunting strategies and seasonality in the Fumane Cave (Lessini Mountains). In Kostenki and the Early Upper Paleolithic of Eurasia: General Trends, Local Developments (eds Vasilev, S. A. et al.) 263–268 (Nestor-Historia, 2006).
    Google Scholar 
    Bertola, S. et al. Le territoire des chasseurs aurignaciens dans les Préalpes de la Vénétie: l’exemple de la Grotte de Fumane. In Le Concept de Territoires dans le Paléolithique Supérieur Européen (eds Djindjian, F. et al.) (BAR Intemational Series, 2009).
    Google Scholar 
    Jéquier, C., Livraghi, A., Romandini, M. & Peresani, M. Same but different: 20,000 years of bone retouchers from northern Italy. A diachronologic approach from neanderthals to anatomically modern humans. In The Origins of Bone Tool Technologies (eds Hutson, J. M. et al.) 269–285 (Verlag des Römisch-Germanischen Zentralmuseums, 2018).
    Google Scholar 
    Marín-Arroyo, A. B. A comparative study of analytic techniques for skeletal part profile interpretation at El Mirón Cave (Cantabria, Spain). Archaeofauna 18, 79–98 (2009).
    Google Scholar 
    Romandini, M. Analisi archeozoologica, tafonomica, paleontologica e spaziale dei livelli Uluzziani e tardo-Musteriani della Grotta di Fumane (VR). Variazioni e continuità strategico-comportamentali umane in Italia Nord Occidentale: i casi di Grotta del Col della Stria. Dip. di Biol. ed Evol. PhD thesis 505 (2012).Marean, C. W., Abe, Y., Nilssen, P. J. & Stone, E. C. Estimating the minimum number of skeletal elements (MNE) in zooarchaeology: A review and a new image-analysis GIS approach. Am. Antiq. 66, 333–348 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stiner, M. C. The use of mortality patterns in archaeological studies of hominid predatory adaptations. J. Anthropol. Archaeol. 9, 305–351 (1990).Article 

    Google Scholar 
    Marín-Arroyo, A. B. & Morales, M. R. G. Comportamiento económico de los últimos cazadores-recolectores y primeras evidencias de domesticación en el occidente de asturias. La cueva de mazaculos II. Trab. Prehist. 66, 47–74 (2009).Article 

    Google Scholar 
    Simpson, E. H. Measurement of diversity. Nature 163, 688 (1949).Article 
    ADS 
    MATH 

    Google Scholar 
    Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).Book 

    Google Scholar 
    Marín-Arroyo, A. B. The use of optimal foraging theory to estimate Late Glacial site catchment areas from a central place: The case of eastern Cantabria, Spain. J. Anthropol. Archaeol. 28, 27–36 (2009).Article 

    Google Scholar 
    Azorit, C. Guía para la determinación de la edad del ciervo ibérico (Cervus elaphus hispanicus) a través de su dentición: Revisión metodológica y técnicas de elección. An. la Real Acad. Ciencias Vet. Andalucía Orient. 24, 235–264 (2011).
    Google Scholar 
    Mariezkurrena, K. Contribución al conocimiento del desarrollo de la dentición y el esqueleto poscraneal de Cervus elaphus. Munibe 35, 149–202 (1983).
    Google Scholar 
    Tomé, C. & Vigne, J. D. Roe deer (Capreolus capreolus) age at death estimates: New methods and modern reference data for tooth eruption and wear, and for epiphyseal fusion. Archaeofauna 12, 157–173 (2003).
    Google Scholar 
    Couturier, M. A. J. Le bouquetin des Alpes: Capra aegagrus ibex ibex L. (Impr. Allier, 1962).
    Google Scholar 
    Habermehl, K.-H. Die Altersbeurteilung beim weiblichen Steinwild (Capra ibex ibex L.) anhand der Skelettentwicklung. Anat. Histol. Embryol. J. Vet. Med. Ser. C 21, 193–198 (1992).Article 
    CAS 

    Google Scholar 
    Pflieger, R. H. P. Le chamois, son identification et sa vie (Grand Gibier, 1982).
    Google Scholar 
    Binford, L. R. Nunamiut Etnoarchaeology (Academic Press, 1978).
    Google Scholar 
    Metcalfe, D. & Jones, K. T. A reconsideration of animal body-part utility indices. Am. Antiq. 53, 486–504 (1988).Article 

    Google Scholar 
    Morin, E. & Ready, E. Foraging goals and transport decisions in western Europe during the Paleolithic and Early Holocene. In Zooarchaeology and Modern Human Origins. Vertebrate Paleobiology and Paleoanthropology (eds Clark, J. L. & Speth, J. D.) 227–269 (Springer, 2013).
    Google Scholar 
    Lam, Y. M., Chen, X. & Pearson, O. M. Intertaxonomic variability in patterns of bone density and the differential representation of bovid, cervid, and equid elements in the archaeological record. Am. Antiq. 64, 343–362 (1999).Article 

    Google Scholar 
    Morin, E. Fat composition and Nunamiut decision-making: A new look at the marrow and bone grease indices. J. Archaeol. Sci. 34, 69–82 (2007).Article 

    Google Scholar 
    Marín-Arroyo, A. B. & Ocio, D. Disentangling faunal skeletal profiles. A new probabilistic framework. Hist. Biol. 30, 720–729 (2018).Article 

    Google Scholar 
    Rogers, A. R. On the value of soft bones in faunal analysis. J. Archaeol. Sci. 27, 635–639 (2000).Article 

    Google Scholar 
    Rogers, A. R. Analysis of bone counts by maximum likelihood. J. Archaeol. Sci. 27, 111–125 (2000).Article 

    Google Scholar 
    Marín-Arroyo, A. B., Ocio, D., Vidal-Cordasco, M. & Vettese, D. BaSkePro: Bayesian Model to Archaeological Faunal Skeletal Profiles. R package version 0.1.0. https://CRAN.R-project.org/package=BaSkePro (2022).Binford, L. R. Bones Ancient Men and Modern Myths (Bones (Elsevier, 1981).
    Google Scholar 
    Galán, A. B. & Domínguez-Rodrigo, M. An experimental study of the anatomical distribution of cut marks created by filleting and disarticulation on long bone ends. Archaeometry 55, 1132–1149 (2013).Article 

    Google Scholar 
    Nilssen, P. J. An Actualistic Butchery Study in South Africa and Its Implications for Reconstructing Hominid Strategies of Carcass Acquisition and Butchery in the Upper Pleistocene and Plio-Pleistocene (University of Cape Town, 2000).
    Google Scholar 
    Capaldo, S. D. & Blumenschine, R. J. A quantitative diagnosis of notches made by hammerstone percussion and carnivore gnawing on bovid long bones. Am. Antiq. 59, 724–748 (1994).Article 

    Google Scholar 
    Pickering, T. R. & Egeland, C. P. Experimental patterns of hammerstone percussion damage on bones: Implications for inferences of carcass processing by humans. J. Archaeol. Sci. 33, 459–469 (2006).Article 

    Google Scholar 
    Bunn, H. T. Archaeological evidence for meat-eating by Plio-Pleistocene hominids from Koobi Fora and Olduvai Gorge. Nature 291, 574–577 (1981).Article 
    ADS 

    Google Scholar 
    Villa, P. & Mahieu, E. Breakage patterns of human long bones. J. Hum. Evol. 21, 27–48 (1991).Article 

    Google Scholar 
    Blumenschine, R. J. & Selvaggio, M. M. Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature 333, 763–765 (1988).Article 
    ADS 

    Google Scholar 
    Galán, A. B., Rodríguez, M., de Juana, S. & Domínguez-Rodrigo, M. A new experimental study on percussion marks and notches and their bearing on the interpretation of hammerstone-broken faunal assemblages. J. Archaeol. Sci. 36, 776–784 (2009).Article 

    Google Scholar 
    Pickering, T. R. et al. Taphonomy of ungulate ribs and the consumption of meat and bone by 1.2-million-year-old hominins at Olduvai Gorge, Tanzania. J. Archaeol. Sci. 40, 1295–1309 (2013).Article 

    Google Scholar 
    Vettese, D. et al. Towards an understanding of hominin marrow extraction strategies: A proposal for a percussion mark terminology. Archaeol. Anthropol. Sci. 12, 8 (2020).Article 

    Google Scholar 
    Vettese, D. et al. A way to break bones? The weight of intuitiveness. PLoS ONE 16, 0259136 (2021).Article 

    Google Scholar 
    Coil, R., Yezzi-Woodley, K. & Tappen, M. Comparisons of impact flakes derived from hyena and hammerstone long bone breakage. J. Archaeol. Sci. 120, 105167 (2020).Article 

    Google Scholar 
    Stiner, M. C., Kuhn, S. L., Weiner, S. & Bar-Yosef, O. Differential burning, recrystallization, and fragmentation of archaeological bone. J. Archaeol. Sci. 22, 223–237 (1995).Article 

    Google Scholar 
    Mallye, J. B. et al. The Mousterian bone retouchers of Noisetier Cave: Experimentation and identification of marks. J. Archaeol. Sci. 39, 1131–1142 (2012).Article 

    Google Scholar 
    Blumenschine, R. J. Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. J. Hum. Evol. 29, 21–51 (1995).Article 

    Google Scholar 
    Domínguez-Rodrigo, M. & Piqueras, A. The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours. J. Archaeol. Sci. 30, 1385–1391 (2003).Article 

    Google Scholar 
    Domínguez-Rodrigo, M. & Barba, R. New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: The carnivore-hominid-carnivore hypothesis falsified. J. Hum. Evol. 50, 170–194 (2006).Article 
    PubMed 

    Google Scholar 
    Behrensmeyer, A. K. Taphonomic and écologie information from bone weathering. Paleobiology 4, 150–162 (1978).Article 

    Google Scholar 
    Fisher, J. W. Bone surface modifications in zooarchaeology. J. Archaeol. Method Theory 2, 7–68 (1995).Article 

    Google Scholar 
    Lyman, R. L. Vertebrate Taphonomy (Cambridge University Press, 1994).Book 

    Google Scholar 
    Shipman, P. Life History of a Fossil: An Introduction to Taphonomy and Paleoecology (Harvard University Press, 1981).
    Google Scholar 
    Marín-Arroyo, A. B. et al. Archaeological implications of human-derived manganese coatings: A study of blackened bones in El Mirón Cave, Cantabrian Spain. J. Archaeol. Sci. 35, 801–813 (2008).Article 

    Google Scholar 
    Marín-Arroyo, A. B., Landete-Ruiz, M. D., Seva-Román, R. & Lewis, M. D. Manganese coating of the Tabun faunal assemblage: Implications for modern human behaviour in the Levantine Middle Palaeolithic. Quat. Int. 330, 10–18 (2014).Article 

    Google Scholar 
    Blasco, R., Rosell, J., Fernández Peris, J., Cáceres, I. & Vergès, J. M. A new element of trampling: An experimental application on the Level XII faunal record of Bolomor Cave (Valencia, Spain). J. Archaeol. Sci. 35, 1605–1618 (2008).Article 

    Google Scholar 
    Domínguez-Rodrigo, M., de Juana, S., Galán, A. B. & Rodríguez, M. A new protocol to differentiate trampling marks from butchery cut marks. J. Archaeol. Sci. 36, 2643–2654 (2009).Article 

    Google Scholar 
    Hickler, T., Prentice, I. C., Smith, B., Sykes, M. T. & Zaehle, S. Implementing plant hydraulic architecture within the LPJ dynamic global vegetation model. Glob. Ecol. Biogeogr. 15, 567–577 (2006).Article 

    Google Scholar 
    Zampieri, D. Segmentation and linkage of the Lessini Mountains normal faults, Southern Alps, Italy. Tectonophysics 319, 19–31 (2000).Article 
    ADS 

    Google Scholar 
    Castiglioni, G. B. et al. The loess deposits in the Lessini plateau. In The Loess in Northern and Central Italy: A Loess Basin Between the Alps and the Mediterranean Region (ed. Cremaschi, M.) 41–59 (Centro di Studio per la Stratigrafia e Petrografia delle Alpi Centrali, 1990).
    Google Scholar 
    Sauro, U. Il paesaggio degli alti Lessini. Studio Geomofologico (Museo Civico di Storia Naturale, 1973).
    Google Scholar 
    Castiglioni, G. B. et al. Geomorphological Map of Po Plain, Scale 1:250,000 (1997).Fontana, A., Mozzi, P. & Marchetti, M. Alluvial fans and megafans along the southern side of the Alps. Sediment. Geol. 301, 150–171 (2014).Article 
    ADS 

    Google Scholar 
    Holechek, J. L., Pieper, R. D. & Herbel, C. H. Range Management Principles and Practices 3rd edn. (Prentice-Hall, 1998).
    Google Scholar 
    Imhoff, M. L. et al. Global patterns in human consumption of net primary production. Nature 429, 870–873 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).Article 
    ADS 

    Google Scholar 
    Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).Article 
    ADS 

    Google Scholar 
    Githumbi, E. N. et al. Pollen, people and place: Multidisciplinary perspectives on ecosystem change at Amboseli, Kenya. Front. Earth Sci. 5, 113 (2018).Article 
    ADS 

    Google Scholar 
    Allen, J. R. M. et al. Global vegetation patterns of the past 140,000 years. J. Biogeogr. 47, 2073–2090 (2020).Article 

    Google Scholar 
    Armstrong, E., Hopcroft, P. O. & Valdes, P. J. A simulated Northern Hemisphere terrestrial climate dataset for the past 60,000 years. Sci. Data 6, 1–16 (2019).Article 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 1–18 (2020).Article 

    Google Scholar 
    Adam, M., Weitzel, N. & Rehfeld, K. Identifying global-scale patterns of vegetation change during the last deglaciation from paleoclimate networks. Paleoceanogr. Paleoclimatol. 36, 1 (2021).Article 

    Google Scholar 
    Beyer, R., Krapp, M. & Manica, A. An empirical evaluation of bias correction methods for palaeoclimate simulations. Clim. Past 16, 1493–1508 (2020).Article 

    Google Scholar 
    Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).Article 
    ADS 
    PubMed 

    Google Scholar 
    Zobler, L. A World Soil File for Global Climate Modelling. NASA Technical Memorandum 87802 (1986).Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).Article 

    Google Scholar 
    Reimer, P. J. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).Article 
    CAS 

    Google Scholar 
    Andersen, K. K. et al. The Greenland ice core chronology 2005, 15–42 ka. Part 1: Constructing the time scale. Quat. Sci. Rev. 25, 3246–3257 (2006).Article 
    ADS 

    Google Scholar 
    Svensson, A. et al. A 60,000 year Greenland stratigraphic ice core chronology. Clim. Past 4, 47–57 (2008).Article 

    Google Scholar 
    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).Article 
    ADS 

    Google Scholar 
    Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512, 306–309 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Romandini, M., Nannini, N., Tagliacozzo, A. & Peresani, M. The ungulate assemblage from layer A9 at Grotta di Fumane, Italy: A zooarchaeological contribution to the reconstruction of Neanderthal ecology. Quat. Int. 337, 11–27 (2014).Article 

    Google Scholar 
    Tagliacozzo, A., Romandini, M., Fiore, I., Gala, M. & Peresani, M. 2013. Animal exploitation strategies during the Uluzzian at Grotta di Fumane (Verona, Italy). In Zooarchaeology and Modern Human Origins. Vertebrate Paleobiology and Paleoanthropology (eds Clark, J. & Speth, J.) 129–150 (Springer, 2013).
    Google Scholar 
    Terlato, G., Livraghi, A., Romandini, M. & Peresani, M. Large bovids on the Neanderthal menu: Exploitation of Bison priscus and Bos primigenius in northeastern Italy. J. Archaeol. Sci. Rep. 25, 129–143 (2019).
    Google Scholar 
    Peresani, M., Fiore, I., Gala, M., Romandini, M. & Tagliacozzo, A. Late Neandertals and the intentional removal of feathers as evidenced from bird bone taphonomy at Fumane Cave 44 ky B.P., Italy. Proc. Natl. Acad. Sci. U.S.A. 108, 3888–3893 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fiore, I. et al. From feathers to food: Reconstructing the complete exploitation of avifaunal resources by Neanderthals at Fumane cave, unit A9. Quat. Int. 421, 134–153 (2016).Article 

    Google Scholar 
    Romandini, M. et al. Neanderthal scraping and manual handling of raptors wing bones: Evidence from Fumane Cave. Experimental activities and comparison. Quat. Int. 421, 154–172 (2016).Article 

    Google Scholar 
    López-García, J. M., dalla Valle, C., Cremaschi, M. & Peresani, M. Reconstruction of the Neanderthal and Modern Human landscape and climate from the Fumane cave sequence (Verona, Italy) using small-mammal assemblages. Quat. Sci. Rev. 128, 1–13 (2015).Article 
    ADS 

    Google Scholar 
    Maspero, A. Ricostruzione del paesaggio vegetale attorno alla grotta di Fumane durante il Paleolitico. Annu. Stor. della Valpolicella 18, 19–26 (1998).
    Google Scholar 
    Malerba, G. & Giacobini, G. Analisi delle tracce di macellazione in un sito Paleolitico. L’esempio del Riparo di Fumane (Valpolicella, Verona). In Atti del: “I° Convegno Nazionale di Archeozoologia”, Rovigo 5–7 marzo 1993 97–108 (1995).Fritz, S. A. et al. Twenty-million-year relationship between mammalian diversity and primary productivity. Proc. Natl. Acad. Sci. 113, 10908–10913 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morris, R. J. Community ecology: How green is the arctic Tundra? Curr. Biol. 18, R256–R258 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Holt, B. et al. The Middle-Upper Paleolithic transition in Northwest Italy: New evidence from Riparo Bombrini (Balzi Rossi, Liguria, Italy). Quat. Int. 508, 142–152 (2019).Article 

    Google Scholar 
    Pothier Bouchard, G., Riel-Salvatore, J., Negrino, F. & Buckley, M. Archaeozoological, taphonomic and ZooMS insights into the Protoaurignacian faunal record from Riparo Bombrini. Quat. Int. https://doi.org/10.1016/j.quaint.2020.01.007 (2020).Article 

    Google Scholar 
    Riel-Salvatore, J. & Negrino, F. Proto-Aurignacian Lithic technology, mobility, and human niche construction: A case study from Riparo Bombrini, Italy. In Lithic Technological Organization and Paleoenvironmental Change, Studies in Human Ecology and Adaptation (eds Robinson, E. & Sellet, F.) (Springer, 2018).
    Google Scholar 
    Riel-Salvatore, J. & Negrino, F. Human adaptations to climatic change in Liguria across the Middle-Upper Paleolithic transition. J. Quat. Sci. 33, 313–322 (2018).Article 

    Google Scholar 
    Grimaldi, S., Porraz, G. & Santaniello, F. Raw material procurement and land use in the northern Mediterranean Arc: Insight from the first Proto-Aurignacian of Riparo Mochi (Balzi Rossi, Italy). Quartar 61, 113–127 (2014).
    Google Scholar 
    Alaique, F. Risultati preliminari dell’analisi dei resti faunistici rinvenuti nei livelli del Paleolitico superiore di Riparo Mochi (Balzi Rossi): Scavi 1995–1996. In Atti Del 2°Convegno Nazionale Di Archeozoologia (Asti, 1997) (eds Malerba, G. et al.) 125–130 (Abaco Edizioni, 2000).
    Google Scholar 
    Staubwasser, M. et al. Impact of climate change on the transition of Neanderthals to modern humans in Europe. Proc. Natl. Acad. Sci. 115, 9116–9121 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Columbu, A. et al. Speleothem record attests to stable environmental conditions during Neanderthal–modern human turnover in southern Italy. Nat. Ecol. Evol. 4, 1188–1195 (2020).Article 
    PubMed 

    Google Scholar 
    Müller, U. C. et al. The role of climate in the spread of modern humans into Europe. Quat. Sci. Rev. 30, 273–279 (2011).Article 
    ADS 

    Google Scholar  More

  • in

    Benthic jellyfish act as suction pumps to facilitate release of interstitial porewater

    The upside-down jellyfish, Cassiopea sp. produces several hydrodynamic effects capable of altering the ecosystem which it inhabits. Not only do Cassiopea produce feeding currents capable of turning over the water column above them several times per hour3, they are also capable of releasing interstitial porewater from the benthos5. The rate of porewater release, on the order of mL h−13, is capable of increasing water column NH4 levels by almost 30% under certain conditions3. In this study, we investigated two hypothetical mechanisms for this porewater release, and found that a combination of the morphology of the bell and the pulsing behavior of the jellyfish was responsible for releasing porewater from directly below the bell via a suction-pumping mechanism.The Bernoulli hypothesis4, a low-pressure zone surrounding the animal due to a velocity gradient between the substrate boundary and the incurrent flow of the Cassiopea sp. feeding current, predicted porewater release from the substrate surface surrounding the perimeter of the animal. While porewater is entrained from the perimeter of the bell into the feeding current4 lateral expulsion of porewater due to the suction pump mechanism would produce a visually similar flow of porewater. A horizontal flow of water does occur near the bottom1, but this flow is restricted to a narrow region near the bell and velocities were low compared to the vertical excurrent jet (Fig. 4). To test the effect of Bernoulli’s principle, we measured the effect on porewater release rates of an impermeable ring-shaped barrier surrounding the animal in order to inhibit benthic-pelagic fluid flux other than directly under the animal (Fig. 2A) using labeled fluorescein per the methods of Durieux et al.3, which were adapted from those of Jantzen et al.5 (Fig. 2). If the Bernoulli mechanism contributed to porewater liberation this treatment should have reduced the porewater release rate, but the release rates observed were not significantly different from the control treatment (2.23 mL h−1 ± 1.27 s.d., Fig. 2D).The suction pumping hypothesis5, a mechanism using the exumbrellar cavity as a suction pump that draws porewater vertically upward beneath the bell and then expels it laterally, would expect to see the majority of porewater released from directly under the bell of Cassiopea sp. This mechanism is supported by bell morphology5 and the appearance of deep porewater at the benthic surface of the exumbrellar cavity5. In our, an impermeable disk was placed underneath the animal to obstruct the flow predicted by the suction pump hypothesis (Fig. 2B). Additionally, we made a 6 mm perforation in the bells of the jellyfish to interfere with the ability to form the sub-ambient pressure in the exumbrellar space necessary for suction pumping to occur (Fig. 2C). Both treatments resulted in a significant decrease in porewater liberation, with flows indistinguishable from the absence of any animal (Fig. 2D), supporting the suction-pumping hypothesis.Since the suction pumping mechanism requires pressure fluctuations in the exumbrellar space, we also directly measured the water pressure below the jellyfish. The initiation of the power stroke of bell pulsation coincides with a sudden decrease in water pressure in the exumbrellar space (Fig. 3A,B) of a mean magnitude of 43.4 Pa (± 13.6 s.d.). These pressure fluctuations appear to be unaffected by animal size (Fig. 3D,E), although the rate of porewater release is known to scale with bell diameter3. Note that the muscles responsible for bell contraction in Cassiopea sp. are roughly 2-dimensional sheets13 with a thickness of one cell14 and therefore the cross-sectional area also does not scale with diameter. Our experiments were performed on smooth acrylic rather than sand, so that the conditions here were optimal for the formation of a tight seal with the bottom. However, the magnitude of this difference is likely to be small, as Cassiopea sp. produce copious amounts of mucus, which can compensate for small-scale surface roughness. In addition, the duration of each individual bell pulse is short1, so given the fine pore size of a sand or mud substrate, it is unlikely that subambient pressure would have the opportunity to dissipate enough to affect the high suction impulse produced.While not statistically significant, bell perforation did lead to data suggesting a decrease in exumbrellar pressure fluctuations (Fig. 3C), which could explain the reduction in porewater release observed (Fig. 2C). The fact that some pressure fluctuation was seen despite a complete lack of porewater release suggests that a minimum magnitude of pressure fluctuation might be necessary for suction pumping to occur. Furthermore, the effect may have been reduced by the ability of injured Cassiopea to produce copious amounts of mucus, which could have acted to minimize the impact of bell perforation. These parallel lines of reasoning firmly suggest that suction-pumping is, in fact, the dominant mechanism by which Cassiopea sp. release porewater.The suction-pumping mechanism for the release of porewater has broad-ranging ecological implications. Release rates should increase additively with population density, and the rate of bell pulsation should correlate with the rate of porewater liberation. The additive relationship to population density is important, since Cassiopea can occur at high densities of up to 100 animals m−23. Furthermore, while the Bernoulli mechanism predicted that interstitial water movement would be limited to the upper layers of the benthos, the suction pump mechanism has the potential to release porewater from deeper sediment strata. This deep flushing should expand the oxygen penetration depth downward, affecting factors such as respiration and sediment stability15. Given the fact that Cassiopea are capable of moving along the substrate5,16 this also means that the oxygen penetration depth is likely to fluctuate over time, favoring organisms that are able to adapt their metabolism or are able to relocate themselves17.Given that porewater at the field site in Long Key, Florida, from which the animals in this study were collected, has mean ammonium concentrations of 72 μM, 160 times higher than the surrounding water column11, any benthic-pelagic coupling mechanisms in this habitat could alter nitrogen dynamics, especially given the fact that many marine primary producers preferentially take up ammonium, the most reduced state of nitrogen available, as a nitrogen source18. Cassiopea sp. animal size and population densities are known to correlate with anthropogenic disturbances, and it is suggested that this is due to an increase in nutrient availability in these areas6. In addition to prey capture, Cassiopea sp. could be supplementing their nitrogen demand through the release of nutrient-rich interstitial porewater, from which Cassiopea sp. can directly absorb ammonium and other nutrients such as phosphate and trace metals5. In fact, jellyfish presence significantly reduced porewater ammonium levels near the animal5, suggesting that nutrient-rich porewater was replaced by down-welling low-nutrient surface water. The observed benthic locomotion of Cassiopea5,16 may be a mechanism to avoid remaining in locations where they have depleted this nutrient resource3. It has been reported that Cassiopea sp. affect benthic nutrient transport on a more general level, increasing ammonium uptake and decreasing nitrate uptake of the bottom sediments19. Water column nutrient levels also varied significantly between presence and absence of Cassiopea sp., and also between light and dark treatments in the presence of Cassiopea sp.20. The addition of jellyfish increased the efflux of ammonium from the benthos during the dark treatments, but reduced ammonium concentrations in the water column during light treatments20. It is entirely possible that absorption of nutrients by Cassiopea sp.5 in order to meet daytime metabolic demand resulted in the animals reducing water column ammonium concentrations in these experiments20.In addition, Cassiopea sp. have been shown to increase spatial heterogeneity of interstitial oxygen and nutrient fluxes20, making it comparable to other biogenic processes like bioturbation. Bioturbation typically oxygenates the upper layers of substrate, increasing the nitrification zone21, and also increases 3-dimensional heterogeneity of oxygen and nutrient concentrations, allowing for more complex nutrient dynamics21. The transport of interstitial porewater from specific regions under individual jellyfish could well produce a similar effect. The porewater release rates can also be compared to that of abiotic processes, such as wind-wave driven flow over sediment wave ripples, which have been shown to liberate porewater at rates of up to 140 L m−2 day−1, or three orders of magnitude greater than diffusion alone, on shallow, exposed coastlines such as beaches22. Environmental mixing would be lower in the sheltered mangrove habitats where Cassiopea sp. are found, since at our study site wind wave height was reduced from 5.4 cm in the bay to 0.07 cm in the mangroves3. In these coastal habitats, the sediment often acts as a nutrient sink, causing certain nutrients to become limiting to primary producers. Some fringe mangrove forests along coastlines in both Florida and Belize have been shown to be N-limited, for example23,24. If these nutrients are then released back into the water column, they potentially increase primary productivity in the system occupied by Cassiopea sp. Depending on the system, this could either increase production or cause eutrophication, potentially altering productivity on a local or regional scale, as has been observed when nutrients are released from the benthos by winds25 or bioturbation26.The mechanics of suction-pumping also imply that interstitial porewater release rate will correlate with bell pulse rate. Pulse rate correlates with water temperature (Fig. 5B), which would suggest that Cassiopea sp. can release greater quantities of nutrient-rich porewater during the summer months. This was confirmed by a recent study on the related species, Cassiopea medusa from Lake Macquarie, Australia8. By extension, our model suggests that pulsing, and therefore porewater release, should cease entirely below 18ºC. In fact, at our site in Lido Key, population densities of Cassiopea sp. declined rapidly once water temperatures dropped this low (Fig. 6). This same temperature of 18 °C was determined independently to be the threshold at which Cassiopea sp. polyp feeding was inhibited10. As such, it is likely that winter minimum temperatures of 18ºC represent a limiting condition on Cassiopea sp. range expansion. Studies on Cassiopea medusa, suggested thermal stress and bell degradation at 16 °C8. As global climates warm, we can expect both a poleward shift of Cassiopea sp. Range9,27 and an increase in transport rates of porewater and its associated benthic nutrients throughout this range, leading to increased productivity, and potentially exacerbating eutrophication in some regions.We determined that a suction-pumping mechanism is responsible for the interstitial porewater release by Cassiopea, suggesting that release rates are independent of population density, but affected by pulse rate. The potential role of bell pulse rate was investigated further, and we found correlations between bell pulse rate and both animal size and water temperature. As a result, we expect that porewater liberation would demonstrate seasonal variations, with lower rates during the winter and reaching a maximum during the summer months. Cassiopea are able to release nutrient-rich porewater in the shallow quiescent habitats they inhabit, and through their feeding current mix these nutrients throughout the water column. Since this effect varies seasonally, it is likely that further study will show that these jellyfish are responsible for a complex system of nutrient dynamics in their ecosystem. More

  • in

    Genetic structuring and invasion status of the perennial Ambrosia psilostachya (Asteraceae) in Europe

    Van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–101 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).Article 
    PubMed 

    Google Scholar 
    Fried, G., Chauvel, B., Reynaud, P. & Sache, I. Decreases in crop production by non-native weeds, pests, and pathogens. In Impact of Biological Invasions on Ecosystem Services (ed. Vilà, M.) 83–101 (Springer, 2017).Chapter 

    Google Scholar 
    Nentwig, W., Mebs, D. & Vilà, M. Impact of non-native animals and plants on human health. In Impact of Biological Invasions on Ecosystem Services (ed. Vilà, M.) 277–293 (Springer, 2017).Chapter 

    Google Scholar 
    Smith, M., Cecchi, L., Skjøth, C. A., Karrer, G. & Šikoparija, B. Common ragweed: A threat to environmental health in Europe. Environ. Int. 61, 115–126 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Strother, J. L. Ambrosia L. in Flora of North America, Vol. 21 efloras.org. http://www.efloras.org/florataxon.aspx?flora_id=1&taxon_id=101325 (2007). Accessed 10 August 2022.Oswalt, M. L. & Marshall, G. D. Ragweed as an example of worldwide allergen expansion. All. Asth. Clin. Immun. 4, 130–135 (2008).Article 

    Google Scholar 
    Payne, W. W. Biosystematic studies of four widespread weedy species of ragweeds, Ambrosia: Compositae. PhD Thesis, University of Michigan (1962).Burbach, G. J. et al. Ragweed sensitization in Europe—GA(2)LEN study suggests increasing prevalence. Allergy 64, 664–665 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ghosh, B. et al. Immunological and molecular characterization of Amb P V allergens from Ambrosia psilostachya (western ragweed) pollen. J. Immunol. 152, 2882–2889 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Karrer, G. et al. Ambrosia in Europe. Habitus, Leaves, Seeds, 6 European Ragweed Species. Comparison of traits. EU-COST-Action FA-1203 ‘Sustainable management of Ambrosia artemisiifolia in Europe’. http://internationalragweedsociety.org/smarter/wp-content/uploads/6AmbrosiaSpecies.pdf (2016). Accessed 10 August 2022.Essl, F. et al. Biological flora of the British Isles: Ambrosia artemisiifolia L.. J. Ecol. 103, 1069–1098 (2015).Article 

    Google Scholar 
    Payne, W. W. A re-evaluation of the genus Ambrosia (Compositae). J. Arnold Arbor. 45, 401–438 (1964).Article 

    Google Scholar 
    Müller-Schärer, H. et al. Cross-fertilizing weed science and plant invasion science. Basic Appl. Ecol. 33, 1–13 (2018).Article 

    Google Scholar 
    Chapman, D. S. et al. Modelling the introduction and spread of non-native species: International trade and climate change drive ragweed invasion. Glob. Change Biol. 22, 3067–3079 (2016).Article 
    ADS 

    Google Scholar 
    Mang, T., Essl, F., Moser, D. & Dullinger, S. Climate warming drives invasion history of Ambrosia artemisiifolia in central Europe. Preslia 90, 59–81 (2018).Article 

    Google Scholar 
    Liu, X.-L. et al. The current and future potential geographical distribution of common ragweed, Ambrosia artemisiifolia in China. Pak. J. Bot. 53, 167–172 (2021).ADS 

    Google Scholar 
    Allard, H. A. The North American ragweeds and their occurrence in other parts of the world. Science 98, 292–293 (1943).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Greuter, W. Compositae (pro parte majore) in Compositae. Euro+Med Plantbase – the information resource for Euro-Mediterranean plant diversity (ed. Greuter, W. & Raab-Straube, E. von) https://europlusmed.org/cdm_dataportal/taxon/76610e67-b2d4-4aef-a785-c4555af5b150 (Accessed 22 August 2022).Abramova, L. M. Expansion of invasive alien plant species in the Republic of Bashkortostan, the Southern Urals: Analysis of causes and ecological consequences. Russ. J. Ecol. 43, 352–357 (2012).Article 

    Google Scholar 
    Montagnani, C., Gentili, R., Smith, M., Guarino, M. F. & Citterio, S. The worldwide spread, success, and impact of ragweed (Ambrosia spp.). Crit. Rev. Plant. Sci. 36, 139–178 (2017).Article 

    Google Scholar 
    Vermeire, L. T. & Gillen, R. L. Western ragweed effects on herbaceous standing crop in Great Plains grasslands. J. Range Manag. 53, 335–341 (2000).Article 

    Google Scholar 
    Reece, P. E., Brummer, J. E., Northup, B. K., Koehler, A. E. & Moser, L. E. Interactions among western ragweed and other sandhills species after drought. J. Range Manag. 57, 583–589 (2000).Article 

    Google Scholar 
    Wagner, W. H. & Beals, T. F. Perennial ragweeds (Ambrosia) in Michigan, with description of a new, intermediate Taxon. Rhodora 60, 177–204 (1958).
    Google Scholar 
    Hansen, A. Ambrosia L. In Flora Europaea Vol. 4 (eds Tutin, T. G. et al.) (Cambridge University Press, 1976).
    Google Scholar 
    Sell, P. & Murrell, G. Flora of Great Britain and Ireland, Campanulaceae–Asteraceae Vol. 4, 513–514 (Cambridge University Press, 2006). Book 

    Google Scholar 
    Pignatti, S. Flora d’Italia Vol. 3 (Edagricola, 1982).
    Google Scholar 
    Amor Morales, À., Navarro Andrés, F. & Sánchez Anta, M. Datos corológicos y morfológicos de las especies del género Ambrosia L. (Compositae) presentes en la Península Ibérica. Bot. Complut. 36, 85–96 (2012).Article 

    Google Scholar 
    Karrer, G. Ambrosia. In Flora d’Italia 2nd edn, Vol. 3 (eds Guarino, R. & La Rosa, M.) 808–810 (Edagricola, 2018).
    Google Scholar 
    Rich, T. C. G. Ragweeds (Ambrosia L.) in Britain. Grana 33, 38–43 (1994).Article 

    Google Scholar 
    Chauvel, B., Fried, G., Monty, A., Rossi, J. P. & Le Bourgeois, T. Analyse de Risques Relative à L’ambroisie à Épis Lisses (Ambrosia Psilostachya DC.) et Élaboration de Recommandation De gestion (ANSES, 2017).
    Google Scholar 
    Lawalreé, A. Les Ambrosia adventices en Europe occidentale. Bull. Jard. Botan. l’Etat Bruxelles 18, 305–315 (1947).Article 

    Google Scholar 
    Karrer, G. Interessante Gefäßpflanzenfunde aus Österreich, 1. Neilreichia 12, 183–187 (2021).
    Google Scholar 
    Bassett, I. J. & Crompton, C. W. The biology of Canadian weeds. 11. Ambrosia artemisiifolia L. and A. psilostachya DC. Can. J. Plant Sci. 55, 463–476 (1975).Article 

    Google Scholar 
    Djemaa, S. Caractérisation de la banque de graines de l’Ambroisie à épis lisses Ambrosia psilostachya DC (Asteraceae) et moyens de contrôle de cette espèce envahissante et allergène (Rapport de stage de Master 1 – Université de Montpellier 2 – Master IEGB, 2014).Chun, Y. J., Le Corre, V. & Bretagnolle, F. Adaptive divergence for a fitness-related trait among invasive Ambrosia artemisiifolia populations in France. Mol. Ecol. 20, 1378–1388 (2011).Article 
    PubMed 

    Google Scholar 
    Genton, B. J. et al. Isolation of five polymorphic microsatellite loci in the invasive weed Ambrosia artemisiifolia (Asteraceae) using an enrichment protocol. Mol. Ecol. Notes 5, 381–383. https://doi.org/10.1111/j.1365-294X.2005.02750.x (2005).Article 
    CAS 

    Google Scholar 
    Genton, B. J., Shykoff, J. A. & Giraud, T. High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol. Ecol. 14, 4275–4285 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gaudeul, M., Giraud, T., Kiss, L. & Shykoff, J. A. Nuclear and chloroplast microsatellites show multiple introductions in the worldwide invasion history of common Ragweed Ambrosia artemisiifolia. PLoS One 6, e17658. https://doi.org/10.1371/journal.pone.0017658 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chun, Y. J., Fumanal, B., Laitung, B. & Bretagnolle, F. Gene flow and population admixture as the primary post-invasion processes in common ragweed (Ambrosia artemisiifolia) populations in France. New Phytol. 185, 1100–1107 (2010).Article 
    PubMed 

    Google Scholar 
    Gladieux, P. et al. Distinct invasion sources of common ragweed (Ambrosia artemisiifolia) in Eastern and Western Europe. Biol. Invasions 13, 933–944 (2010).Article 

    Google Scholar 
    Li, X.-M., Liao, W.-J., Wolfe, L. M. & Zhang, D.-Y. No evolutionary shift in the mating system of North American Ambrosia artemisiifolia (Asteraceae) following its introduction to China. PLoS One 7(2), e31935. https://doi.org/10.1371/journal.pone.0031935 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kočiš Tubić, N., Djan, M., Veličković, N., Anačkov, G. & Obreht, D. Microsatellite DNA variation within and among invasive populations of Ambrosia artemisiifolia from the southern Pannonian Plain. Weed Res. 55, 268–277 (2015).Article 

    Google Scholar 
    Ciappetta, S. et al. Invasion of Ambrosia artemisiifolia in Italy: Assessment via analysis of genetic variability and herbarium data. Flora 223, 106–113 (2016).Article 

    Google Scholar 
    Meyer, L. et al. New gSSr and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species. PLoS One 12(5), e0176197. https://doi.org/10.1371/journal.pone.0176197 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Boheemen, L. A. et al. Multiple introductions, admixture and bridgehead invasion characterize the introduction history of Ambrosia artemisiifolia in Europe and Australia. Mol. Ecol. 26, 5421–5434 (2017).Article 
    PubMed 

    Google Scholar 
    Kropf, M., Huppenberger, A. S. & Karrer, G. Genetic structuring and diversity patterns along rivers—Local invasion history of Ambrosia artemisiifolia (Asteraceae) along the Danube River in Vienna (Austria) shows non-linear pattern. Weed Res. 58, 131–140 (2018).Article 
    CAS 

    Google Scholar 
    Sun, Y. & Roderick, G. K. Rapid evolution of invasive traits facilitates the invasion of common ragweed Ambrosia artemisiifolia. J. Ecol. 107, 2673–2687 (2019).Article 

    Google Scholar 
    Li, F. et al. Patterns of genetic variation reflect multiple introductions and pre-admixture sources of common ragweed (Ambrosia artemisiifolia) in China. Biol. Invasions 21, 2191–2209 (2019).Article 

    Google Scholar 
    Payne, W. W., Raven, P. H. & Kyhos, D. W. Chromosome numbers in Compositae. IV. Ambrosieae. Am. J. Bot. 51, 419–424 (1964).Article 

    Google Scholar 
    Miller, H. E., Mabry, T. J., Turner, B. L. & Payne, W. W. Infraspecific variation of sesquiterpene lactones in Ambrosia psilostachya (Compositae). Am. J. Bot. 55, 316–324 (1968).Article 
    CAS 

    Google Scholar 
    Del Amo Rodriguez, S. & Gomez-Pompa, A. Variability in Ambrosia cumanensis (Compositae). Syst. Bot. 1, 363–372 (1976).Article 

    Google Scholar 
    Grünwald, N. J., Everhart, S. E., Knaus, B. J. & Kamvar, Z. N. Best practices for population genetic analyses. Phytopathology 107, 1000–1010 (2017).Article 
    PubMed 

    Google Scholar 
    Arnaud-Haond, S., Stoeckel, S. & Bailleul, D. New insights into the population genetics of partially clonal organisms: When seagrass data meet theoretical expectations. Mol. Ecol. 29, 3248–3260 (2020).Article 
    PubMed 

    Google Scholar 
    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watkinson, A. & Powell, J. Seedling recruitment and the maintenance of clonal diversity in plant populations—A computer simulation of Ranunculus repens. J. Ecol. 81, 707–717 (1993).Article 

    Google Scholar 
    Balloux, F., Lehmann, L. & de Meeus, T. The population genetics of clonal and partially clonal diploids. Genetics 164, 1635–1644 (2003).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: A r package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonin, A. et al. How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 13, 3261–3273 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Guretzky, J., Anderson, A. & Fehmi, J. Grazing and military vehicle effects on grassland soils and vegetation. Great Plains Res. 16, 51–61 (2006).
    Google Scholar 
    Vitalos, M. & Karrer, G. Dispersal of Ambrosia artemisiifolia seeds along roads: the contribution of traffic and mowing machines. NeoBiota 8, 53–60 (2009).
    Google Scholar 
    Karrer, G. Das österreichische Ragweed Projekt—übertragbare Erfahrungen. The Austrian Ragweed Project—Experiences and Generalisations. Julius-Kühn-Archiv 445, 27–33 (2014).
    Google Scholar 
    Lemke, A., Buchholz, S., Kowarik, I., Starfinger, U. & von der Lippe, M. Interaction of traffic intensity and habitat features shape invasion dynamics of an invasive alien species (Ambrosia artemisiifolia) in a regional road network. NeoBiota 64, 155–175 (2021).Article 

    Google Scholar 
    Orlić, M., Gačić, M. & La Violette, P. E. The currents and circulation of the Adriatic Sea. Oceanol. Acta 15, 109–124 (1992).
    Google Scholar 
    Fumanal, B., Chauvel, B., Sabatier, A. & Bretagnolle, F. Variability and cryptic heteromorphism of Ambrosia artemisiifolia seeds: What consequences for its invasion in France?. Ann. Bot. 100, 305–313 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    González, L. et al. An Atlantic Odissey: The fate of invading propagules across the coastline of the Iberian Peninsula. In 15th Ecology and Management of Alien Plant Invasions (EMAPi) Book of Abstracts: Integrating Research, Management and Policy (eds Pyšek, P. et al.) 24 (Institute of Botany, Czech Academy of Sciences, 2019).
    Google Scholar 
    Ward, S. Genetic analysis of invasive plant populations at different spatial scales. Biol. Invasions 8, 541–552 (2006).Article 

    Google Scholar 
    Halkett, F., Simon, J.-C. & Balloux, F. Tackling the population genetics of clonal and partially clonal organisms. Trends Ecol. Evol. 20, 194–201 (2005).Article 
    PubMed 

    Google Scholar 
    Kočiš Tubić, N., Djan, M., Veličković, N., Anačkov, G. & Obreht, D. Gradual loss of genetic diversity of Ambrosia artemisiifolia L. populations in the invaded range of central Serbia. Genetika 46, 255–268 (2014).Article 

    Google Scholar 
    Suehs, C. M., Affre, L. & Médail, F. Invasion dynamics of two alien Carpobrotus (Aizoaceae) taxa on a Mediterranean island: I. Genetic diversity and introgression. Heredity 92, 31–40 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stoeckel, S. et al. Heterozygote excess in a self-incompatible and partially clonal forest tree species—Prunus avium L. Mol. Ecol. 15, 2109–2118 (2005).Article 

    Google Scholar 
    Balloux, F. Heterozygote excess in small populations and the heterozygote-excess effective population size. Evolution 58, 1891–1900 (2004).PubMed 

    Google Scholar 
    Hansson, B. & Westerberg, L. On the correlation between heterozygosity and fitness in natural populations. Mol. Ecol. 11, 2467–2474 (2002).Article 
    PubMed 

    Google Scholar 
    Hewitt, A., Rymer, P., Holford, P., Morris, E. C. & Renshaw, A. Evidence for clonality, breeding system, genetic diversity and genetic structure in large and small populations of Melaleuca deanei (Myrtaceae). Aust. J. Bot. 67, 36–45 (2019).Article 

    Google Scholar 
    Dlugosch, K. M. & Parker, I. M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17, 431–449 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Novak, S. J. & Mack, R. N. Genetic bottlenecks in alien plant species: influences of mating systems and introduction dynamics. In Species Invasions: Insights into Ecology, Evolution, and Biogeography (eds Sax, D. F. et al.) 201–228 (Sinauer Associates, 2005).
    Google Scholar 
    Karnkowski, W. Pest Risk Analysis and Pest Risk Assessment for the territory of the Republic of Poland (as PRA area) on Ambrosia spp., updated version. (Torun, 2001).Karrer, G. et al. Ausbreitungsbiologie und Management einer extrem allergenen, eingeschleppten Pflanze – Wege und Ursachen der Ausbreitung von Ragweed (Ambrosia artemisiifolia) sowie Möglichkeiten seiner Bekämpfung. (Final Report, BMLFUW, Vienna, Austria). https://dafne.at/projekte/ragweed (2011). Accessed 10 August 2022.Honnay, O. & Jacquemyn, H. A meta-analysis of the relation between mating system, growth form and genotypic diversity in clonal plant species. Evol. Ecol. 22, 299–312 (2008).Article 

    Google Scholar 
    Vallejo-Marín, M., Dorken, M. E. & Barrett, S. C. H. The ecological and evolutionary consequences of clonality for plants mating. Annu. Rev. Ecol. Syst. 41, 193–213 (2010).Article 

    Google Scholar 
    McKey, D., Elias, M., Pujol, B. & Duputiè, A. The evolutionary ecology of clonally propagated domesticated plants. New Phytol. 186, 318–332 (2010).Article 
    PubMed 

    Google Scholar 
    WFO Ambrosia psilostachya DC. http://www.worldfloraonline.org/taxon/wfo-0000137200 (accessed 21 July 2022).Tomasello, S., Stuessy, T. F., Oberprieler, C. & Heubl, G. Ragweeds and relatives: Molecular phylogenetics of Ambrosiinae (Asteraceae). Mol. Phylogenet. Evol. 130, 104–114 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Délye, C., Matéjicek, A. & Gasquez, J. PCR-based detection of resistance to Acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest Manag. Sci. 58, 474–478 (2002).Article 
    PubMed 

    Google Scholar 
    Adamack, A. T. & Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).Article 

    Google Scholar 
    Brookfield, J. F. Y. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5, 453–455 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Harper, J. L. Population Biology of Plants (Academic Press, 1977).
    Google Scholar 
    Lambertini, C. et al. Genetic diversity in three invasive clonal aquatic species in New Zealand. BMC Genet. 11(52), 1–18. https://doi.org/10.1186/1471-2156-11-52 (2010).Article 
    CAS 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, A. H. D., Feldman, M. W. & Nevo, E. Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96, 523–536 (1980).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).Article 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kropf, M., Comes, H. P. & Kadereit, J. W. An AFLP clock for the absolute dating of shallow-time evolutionary history based on the intraspecific divergence of southwestern European alpine plant species. Mol. Ecol. 18, 697–708 (2009).Article 
    PubMed 

    Google Scholar 
    Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292 (1972).Article 

    Google Scholar 
    Jombart, T. adegenet: A r package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).Book 
    MATH 

    Google Scholar 
    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diversity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).Article 

    Google Scholar 
    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Pathways to sustainable plastics

    OECD Global Plastics Outlook. Economic drivers, Environmental Impacts and Policy Options (OECD, 2022).Jambeck, J. R. et al. Science 347, 768–771 (2015).Article 
    CAS 

    Google Scholar 
    Bachmann, M. et al. Nat. Sustain. https://doi.org/10.1038/s41893-022-01054-9 (2023).Article 

    Google Scholar 
    Rockström, J. et al. Nature 461, 472–475 (2009).Article 

    Google Scholar 
    Bjørn, A. et al. Environ. Res. Lett. 15, 083001 (2020).Article 

    Google Scholar 
    van den Berg, N. J. et al. Clim. Change 162, 1805–1822 (2020).Article 

    Google Scholar 
    Bjørn, A. et al. Curr. Clim. Change Rep. 8, 53–69 (2022).Article 

    Google Scholar 
    Ryberg, M. W. et al. Ecol. Indic. 88, 250–262 (2018).Article 

    Google Scholar 
    Bunsen, J. et al. Ecol. Indic. 121, 107022 (2021).Article 

    Google Scholar 
    Persson, L. et al. Environ. Sci. Technol. 56, 1510–1521 (2022).Article 
    CAS 

    Google Scholar 
    Ryberg, M. W. et al. J. Clean. Prod. 276, 123287 (2020).Article 

    Google Scholar  More

  • in

    Land loss due to human-altered sediment budget in the Mississippi River Delta

    Day, J. W. et al. Pattern and process of land loss in the Mississippi Delta: a spatial and temporal analysis of wetland habitat change. Estuaries 23, 425–438 (2000).Article 

    Google Scholar 
    Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).Article 
    CAS 

    Google Scholar 
    Higgins, S., Overeem, I., Tanaka, A. & Syvitski, J. P. Land subsidence at aquaculture facilities in the Yellow River delta, China. Geophys. Res. Lett. 40, 3898–3902 (2013).Article 

    Google Scholar 
    Giosan, L., Syvitski, J., Constantinescu, S. & Day, J. Climate change: protect the world’s deltas. Nature 516, 31–33 (2014).Couvillion, B. R., Beck, H., Schoolmaster, D. & Fischer, M. Land Area Change in Coastal Louisiana (1932 to 2016) (USGS, 2017); https://doi.org/10.3133/sim3381Corthell, E. L. The delta of the Mississippi River. Natl Geogr. Mag. 12, 351–354 (1897).
    Google Scholar 
    Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2, 488–491 (2009).Article 
    CAS 

    Google Scholar 
    Gagliano, S. M., Meyer-Arendt, K. J. & Wicker, K. M. Land Loss in the Mississippi River Deltaic Plain. Gulf Coast Assoc. Geol. Soc. Trans. 31, 295–300 (1981).Day, J. W., Clark, H. C., Chang, C., Hunter, R. & Norman, C. R. Life cycle of oil and gas fields in the Mississippi River Delta: a review. Water 12, 1492 (2020).Article 
    CAS 

    Google Scholar 
    Morton, R., Bernier, J., Barras, J. & Ferina, N. Rapid Subsidence and Historical Wetland Loss in the Mississippi Delta Plain: Likely Causes and Future Implications (USGS, 2005).Kolker, A. S., Allison, M. A. & Hameed, S. An evaluation of subsidence rates and sea‐level variability in the northern Gulf of Mexico. Geophys. Res. Lett. 38, L21404 (2011).Roy, S., Robeson, S. M., Ortiz, A. C. & Edmonds, D. A. Spatial and temporal patterns of land loss in the Lower Mississippi River Delta from 1983 to 2016. Remote Sens. Environ. 250, 112046 (2020).Sanks, K. M., Shaw, J. B. & Naithani, K. Field-based estimate of the sediment deficit in coastal Louisiana. J. Geophys. Res. Earth Surf. 125, e2019JF005389 (2020).Article 

    Google Scholar 
    Jankowski, K. L., Törnqvist, T. E. & Fernandes, A. M. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nat. Commun. 8, 14792 (2017).Article 
    CAS 

    Google Scholar 
    Turner, R. E. & McClenachan, G. Reversing wetland death from 35,000 cuts: opportunities to restore Louisiana’s dredged canals. PLoS ONE 13, e0207717 (2018).Article 

    Google Scholar 
    Falcini, F. et al. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation. Nat. Geosci. 5, 803–807 (2012).Chamberlain, E. L., Törnqvist, T. E., Shen, Z., Mauz, B. & Wallinga, J. Anatomy of Mississippi Delta growth and its implications for coastal restoration. Sci. Adv. 4, eaar4740 (2018).Article 

    Google Scholar 
    Roberts, H. H. Dynamic changes of the Holocene Mississippi River delta plain: the delta cycle. J. Coast. Res. 13, 605–627 (1997).
    Google Scholar 
    Siverd, C. G. et al. Coastal Louisiana landscape and storm surge evolution: 1850–2110. Clim. Change 157, 445–468 (2019).Article 

    Google Scholar 
    Tweel, A. W. & Turner, R. E. Watershed land use and river engineering drive wetland formation and loss in the Mississippi River birdfoot delta. Limnol. Oceanogr. 57, 18–28 (2012).Article 

    Google Scholar 
    Shen, Z. et al. Episodic overbank deposition as a dominant mechanism of floodplain and delta-plain aggradation. Geology 43, 875–878 (2015).Article 

    Google Scholar 
    Frederikse, T. et al. The causes of sea-level rise since 1900. Nature 584, 393–397 (2020).Article 
    CAS 

    Google Scholar 
    Meade, R. H. & Moody, J. A. Causes for the decline of suspended‐sediment discharge in the Mississippi River system, 1940–2007. Hydrol. Process. 24, 35–49 (2010).
    Google Scholar 
    Xu, K., Bentley, S. J., Day, J. W. & Freeman, A. M. A review of sediment diversion in the Mississippi River Deltaic Plain. Estuar. Coast. Shelf Sci. 225, 106241 (2019).Article 

    Google Scholar 
    Vogel, H. D. Report on control of floods of the Lower Mississippi River, Annex no. 5, Basic data Mississippi River. House Doc. 798, 61–137 (1930).Craig, N. J., Turner, R. E. & Day, J. W. Land loss in coastal Louisiana (U.S.A.). Environ. Manage. 3, 133–144 (1979).Article 

    Google Scholar 
    Ko, J.-Y. & Day, J. W. A review of ecological impacts of oil and gas development on coastal ecosystems in the Mississippi Delta. Ocean Coast. Manage. 47, 597–623 (2004).Article 

    Google Scholar 
    Penland, S., Beall, A. D., Britsch, L. D. & Jeffress, W. S. Geologic classification of coastal land loss between 1932 and 1990 in the Mississippi River Delta Plain, Southeastern Louisiana. Gulf Coast Assoc. Geol. Soc. Trans. 52, 799–807 (2002).
    Google Scholar 
    Turner, R. Coastal wetland subsidence arising from local hydrologic manipulations. Estuaries 27, 265–272 (2004).Article 

    Google Scholar 
    Nienhuis, J. H., Törnqvist, T. E. & Erkens, G. Altered surface hydrology as a potential mechanism for subsidence in coastal Louisiana. Proc. IAHS 382, 333–337 (2020).Morton, R. A., Bernier, J. C. & Barras, J. A. Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA. Environ. Geol. 50, 261–274 (2006).Karegar, M. A., Dixon, T. H. & Malservisi, R. A three-dimensional surface velocity field for the Mississippi Delta: implications for coastal restoration and flood potential. Geology 43, 519–522 (2015).Article 

    Google Scholar 
    Gambolati, G. & Teatini, P. Geomechanics of subsurface water withdrawal and injection. Water Resour. Res. 51, 3922–3955 (2015).Article 

    Google Scholar 
    Chang, C., Mallman, E. & Zoback, M. Time-dependent subsidence associated with drainage-induced compaction in Gulf of Mexico shales bounding a severely depleted gas reservoir. AAPG Bull. 98, 1145–1159 (2014).Article 

    Google Scholar 
    Guzy, A. & Malinowska, A. A. State of the art and recent advancements in the modelling of land subsidence induced by groundwater withdrawal. Water 12, 2051 (2020).Article 

    Google Scholar 
    Ortiz, A. C., Roy, S. & Edmonds, D. A. Land loss by pond expansion on the Mississippi River Delta Plain. Geophys. Res. Lett. 44, 3635–3642 (2017).Article 

    Google Scholar 
    Mariotti, G. Revisiting salt marsh resilience to sea level rise: are ponds responsible for permanent land loss? J. Geophys. Res. Earth Surf. 121, 1391–1407 (2016).Article 

    Google Scholar 
    Louisiana’s Comprehensive Master Plan for a Sustainable Coast. Coastal Protection and Restoration Authority https://coastal.la.gov/wp-content/uploads/2023/01/230105_CPRA_MP-Draft_Final-for-web_spreads-main.pdf (2023).Siverd, C. G. et al. Hydrodynamic storm surge model simplification via application of land to water isopleths in coastal Louisiana. Coast. Eng. 137, 28–42 (2018).Article 

    Google Scholar 
    Twilley, R. R. et al. Co-evolution of wetland landscapes, flooding, and human settlement in the Mississippi River Delta Plain. Sustain. Sci. https://doi.org/10.1007/s11625-016-0374-4 (2016).Edmonds, D. A. et al. in Treatise on Geomorphology 2nd edn (ed. Shroder, J. F.) 110–140 (Academic Press, 2022).Xu, K., Harris, C. K., Hetland, R. D. & Kaihatu, J. M. Dispersal of Mississippi and Atchafalaya sediment on the Texas–Louisiana shelf: model estimates for the year 1993. Cont. Shelf Res. 31, 1558–1575 (2011).Article 

    Google Scholar 
    Baptist, M. et al. On inducing equations for vegetation resistance. J. Hydraul. Res. 45, 435–450 (2007).Article 

    Google Scholar 
    Hopkinson, C. S., Morris, J. T., Fagherazzi, S., Wollheim, W. M. & Raymond, P. A. Lateral marsh edge erosion as a source of sediments for vertical marsh accretion. J. Geophys. Res. Biogeosci. 123, 2444–2465 (2018).Article 
    CAS 

    Google Scholar 
    Danielson, J. et al. Topobathymetric Model of the Northern Gulf of Mexico, 1885 to 2021 (USGS, 2022); https://doi.org/10.5066/P99JULDNBomer, E. J. et al. Deltaic morphodynamics and stratigraphic evolution of Middle Barataria Bay and Middle Breton Sound regions, Louisiana, USA: implications for river-sediment diversions. Estuar. Coast. Shelf Sci. 224, 20–33 (2019).Article 
    CAS 

    Google Scholar 
    Wolinsky, M., Edmonds, D. A., Martin, J. M. & Paola, C. Delta allometry: growth laws for river deltas. Geophys. Res. Lett. 37, L21403 (2010).Article 

    Google Scholar 
    Mariotti, G., Elsey-Quirk, T., Bruno, G. & Valentine, K. Mud-associated organic matter and its direct and indirect role in marsh organic matter accumulation and vertical accretion. Limnol. Oceanogr. 65, 2627–2641 (2020).Article 
    CAS 

    Google Scholar  More

  • in

    Orbit-to-ground framework to decode and predict biosignature patterns in terrestrial analogues

    Des Marais, D. J. The biogeochemistry of hypersaline microbial mats. Adv. Microb. Ecol. 14, 251–274 (1995).Article 

    Google Scholar 
    Belnap, J., Welter, J., Grimm, N., Barger, N. & Ludwig, J. Linkages between microbial and hydrologic processes in arid and semiarid watersheds. Ecology 86, 298–307 (2005).Article 

    Google Scholar 
    Houghton, J. et al. Spatial variability in photosynthetic and heterotrophic activity drives locale δ13Corg fluctuations and carbonate precipitation in hypersaline microbial mats. Geobiology 12, 557–574 (2014).Article 

    Google Scholar 
    Allwood, A., Walter, M., Burch, I. & Kamber, B. 3.43 billion-year-old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem-scale insights to early life on Earth. Precambrian Res. 158, 198–227 (2007).Article 
    ADS 

    Google Scholar 
    Al-Najjar, M. et al. Spatial patterns and links between microbial community composition and function in cyanobacterial mats. Front. Microbiol. 5, 406 (2014).Article 

    Google Scholar 
    Warren-Rhodes, K., Dungan, J., Piatek, J. & McKay, C. Ecology and spatial pattern of cyanobacterial island patches in the Atacama Desert. J. Geophys. Res. Biogeosciences 112, G04S15 (2007).Article 

    Google Scholar 
    Allwood, A., Walter, M., Kamber, B., Marshall, C. & Burch, I. Stromatolite reef from the early Archaean era of Australia. Nature 441, 714–718 (2006).Article 
    ADS 

    Google Scholar 
    Meslier, V. et al. Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ. Microbiol. 20, 1765–1781 (2018).Article 

    Google Scholar 
    Finstad, K. et al. Microbial community structure and the persistence of cyanobacterial populations in salt crusts of the hyperarid Atacama Desert from genome-resolved metagenomics. Front. Microbiol. 8, 1435 (2017).Article 

    Google Scholar 
    Wilhelm, M. et al. Constraints on the metabolic activity of microorganisms in Atacama surface soils inferred from refractory biomarkers: Implications for Martian habitability and biomarker detection. Astrobiology 18, 955–966 (2018).Dillon, J. et al. Spatial and temporal variability in a stratified microbial mat community. FEMS Microbiol. Ecol. 68, 46–58 (2009).Article 

    Google Scholar 
    Rillig, M. & Antonovics, J. Microbial biospherics: the experimental study of ecosystem function and evolution. Proc. Natl Acad. Sci. USA 116, 11093–11098 (2019).Article 
    ADS 

    Google Scholar 
    Sephton, M. & Carter, J. The chances of detecting life on Mars. Planet. Space Sci. 112, 15–22 (2015).Article 
    ADS 

    Google Scholar 
    Naveh, Z., & Lieberman, A. S. Landscape Ecology: Theory and Application (Springer, 2013).Mony, C., Vandenkoornhuyse, P., Bohannan, B. J. M., Peay, K. & Leibold, M. A. A landscape of opportunities for microbial ecology research. Front. Microbiol. 11, 2964 (2020).Article 

    Google Scholar 
    Summons, R. et al. Preservation of Martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology 11, 157–181 (2011).Article 
    ADS 

    Google Scholar 
    Farmer, J. & Des Marais, D. J. Exploring for a record of ancient Martian life. J. Geophys. Res. 104, 26,977–26,995 (1999).Article 
    ADS 

    Google Scholar 
    Stoker et al. We should search for extant life on Mars in this decade. Bull. AAS 53 (2021); https://doi.org/10.3847/25c2cfeb.36ef5e33Jakowsky, B. et al. Mars, the nearest habitable world—a comprehensive program for future Mars exploration. Bull. AAS 53 (2021); https://doi.org/10.3847/25c2cfeb.e5222017Hinman, N. et al. Surface morphologies in a Mars analog Ca sulfate salar, High Andes, Northern Chile. Front. Astron. Space Sci. 8, 797591 (2022).Article 

    Google Scholar 
    Cabrol, N. et al. Record solar UV irradiance in the tropical Andes. Front. Environ. Sci. 2, 19 (2014).Article 

    Google Scholar 
    Phillips, M.S. et al. Planetary mapping using Deep Learning: a method to evaluate feature identification confidence applied to habitats in Mars-analogue terrain. Astrobiology 23 (2023).Wierzchos, J. et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 6, 934 (2015).Article 

    Google Scholar 
    Lynch, K. et al. Near-infrared spectroscopy of lacustrine sediments in the Great Salt Lake Desert: an analog study for Martian paleolake basins. J. Geophys. Res. Planets 120, 599–623 (2015).Article 
    ADS 

    Google Scholar 
    El-Maarry, M., Pommerol, A. & Thomas, N. Analysis of polygonal cracking patterns in chloride-bearing terrains of Mars: indicators of ancient playa settings. J. Geophys. Res. 113, 2263–2278 (2013).Article 

    Google Scholar 
    Onstott, T. et al. Paleo-rock-hosted life on Earth and the search on Mars: a review and strategy for exploration. Astrobiology 19, 1230–1262 (2019).Article 
    ADS 

    Google Scholar 
    Davila, A. & Schulze-Makuch, D. The last possible outposts for life on Mars. Astrobiology 16, 159–168 (2016).Article 
    ADS 

    Google Scholar 
    Osterloo, M. M. et al. Geologic context of proposed chloride-bearing materials on Mars. J. Geophys. Res. 115, E10012 (2010).Article 
    ADS 

    Google Scholar 
    Flauhaut, J., Martinot, M., Bishop, J.L., Davies, G.R. & Potts, N.J. Remote sensing and in situ mineralogic survey of the Chilean salars: an analog to Mars evaporate deposits? Icarus 282, 152–173 (2017).Bosak, T., Moore, K., Gong, J. & Grotzinger, J. Searching for biosignatures in sedimentary rocks from early Earth and Mars. Nat. Rev. Earth Environ. 2, 490–506 (2021).Article 
    ADS 

    Google Scholar 
    Balci, N. et al. Biotic and abiotic imprints on Mg-rich stromatolites: lessons from Lake Salda, SW Turkey. Geomicrobiol. J. 37, 401–425 (2020).Article 

    Google Scholar 
    Williams, A., Buck, B., Soukup, D. & Merkler, D. Geomorphic controls on biological soil crust distribution: a conceptual model from the Mojave Desert (USA). Geomorphology 195, 99–109 (2013).Article 
    ADS 

    Google Scholar 
    Warren, J. Evaporites: a Geological Compendium 2nd edn (Springer, 2016).Wierzchos, J. et al. Microbial colonization of Ca sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Geobiology 9, 44–60 (2010).Article 

    Google Scholar 
    Robinson, C. K. et al. Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert. Environ. Microbiol. 17, 299–315 (2013).Article 

    Google Scholar 
    Jørgesen, B. & Des Marais, D. Optical properties of benthic photosynthetic communities: fiber-optic studies of cyanobacterial mats. Limnol. Oceanogr. 33, 99–113 (1988).Article 
    ADS 

    Google Scholar 
    Szynkiewicz, A., Moore, C., Glamoclija, M., Bustos, D. & Pratt, L. Origin of coarsely crystalline gypsum domes in a saline playa environment at the White Sands National Monument, New Mexico. J. Geophys. Res. 115, F02021 (2010).Article 
    ADS 

    Google Scholar 
    Walker, J., Spear, J. & Pace, N. Geobiology of a microbial endolithic community in the Yellowstone geothermal environment. Nature 434, 1011–1013 (2005).Article 
    ADS 

    Google Scholar 
    Rasuk, M. et al. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama Desert. Microb. Ecol. 68, 483–494 (2014).Article 

    Google Scholar 
    Chen, L., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. Semantic image segmentation with deep convolutional nets and fully connected CRFs. Preprint at arXiv https://arxiv.org/abs/1412.7062 (2014).Chan, M. et al. Exploring, mapping and data management integration of habitable environments in astrobiology. Frontiers in Microbiology 10, 147 (2019).Farmer, J. in From Habitability to Life on Mars 1–12 (Elsevier, 2018).Hays, L. et al. Biosignature preservation and detection in Mars analog environments. Astrobiology 17, 363–400 (2017).Article 
    ADS 

    Google Scholar 
    Fairen, A. et al. Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. Astrobiology 10, 821 (2010).Article 
    ADS 

    Google Scholar 
    Green, J. et al. Call for a framework for reporting evidence for life beyond Earth. Nature 598, 575–579 (2021).Article 
    ADS 

    Google Scholar 
    He, K., Xiangyu, Z., Shaoqing, R. & Jian, S. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In 2015 IEEE International Conference on Computer Vision (ICCV) 1026–1034 (IEEE, 2015).Adams, J. B. & Filice, A. L. Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. J. Geophys. Res. 72, 5705–5715 (1967).National Academies of Sciences, Engineering & Medicine. Origins, Worlds and Life: a Decadal Strategy for Planetary Science and Astrobiology 2023–2032 (National Academies Press, 2022).Rodríguez Albornoz, C. Geology and Controls on Microbiota of the Salar de Pajonales (7.209.000–7.226.500 N.–510.000–530.000 E), Antofagasta, Northern Chile. Master’s thesis, Univ. Católica del Norte Antofagasta (2018).Naranjo, J., Villa, V. & Venegas, C. Geology of the Salar de Pajonales Area and Cerro Moño. Antofagasta and Atacama Regions (Geological Maps of Chile Basic Geology Series No. 153 (1: 100.000), National Geological Service, Geology and Mining Subsection, 2013).Schween, J., Hoffmeister, D. & Löhnert, U. Filling the observational gap in the Atacama Desert with a new network of climate stations. Glob. Planet. Chang. 184, 103034 (2020).Gutiérrez, F. & Cooper, A. Surface morphology of gypsum karst. Treatise Geomorphol. 6, 425–437 (2013).Article 

    Google Scholar 
    Bishop, J. L. et al. Spectral properties of Ca-sulfates: gypsum, bassanite and anhydrite. Am. Mineral. 99, 2105–2115 (2014).Article 
    ADS 

    Google Scholar 
    Green, A., Berman, M., Switzer, P. & Craig, M. D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 26, 65–74 (1988).Article 
    ADS 

    Google Scholar 
    Davis, W., Pater, I. & McKay, C. P. Rain infiltration and crust formation in the extreme arid zone of the Atacama Desert, Chile. Planet. Space Sci. 58, 616–622 (2010).Article 
    ADS 

    Google Scholar 
    McKay, C. P. et al. Temperature and moisture conditions for life in the extreme arid region of the Atacama Desert: four years of observation including the El Niño of 1997–1998. Astrobiology 3, 393–406 (2003).Article 
    ADS 

    Google Scholar 
    Warren-Rhodes, K., Rhodes, K., Liu, S., Zhou, P. & McKay, C. Nanoclimate environment of cyanobacterial communities in China’s hot and cold hyperarid deserts. J. Geophys. Res. 112, G01016 (2007).Article 
    ADS 

    Google Scholar 
    Warren-Rhodes, K. et al. Physical ecology of hypolithic communities in the central Namib Desert: the role of fog, rain, rock habitat and light. J. Geophys. Res. 118, 1451–1460 (2013).Article 

    Google Scholar 
    Lange, O., Kilian, E. & Ziegler, H. Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue–green algae as phycobionts. Oecologia 71, 104–110 (1986).Article 
    ADS 

    Google Scholar 
    Lange, O. L., Meyer, A. & Büdel, B. Net photosynthesis activation of a desiccated cyanobacterium without liquid water in high air humidity alone. Experiments with a Microcoleus sociatus isolated from a desert soil crust. Funct. Ecol. 8, 52–57 (1994).Article 

    Google Scholar 
    Palmer, R. & Friedmann, E. I. Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microb. Ecol. 18, 111–118 (1990).Article 

    Google Scholar 
    Potts, M. & Friedmann, E. Effects of water stress on cryptoendolithic cyanobacteria from hot desert rocks. Arch. Microbiol. 130, 267–271 (1981).Article 

    Google Scholar 
    Tracy, C. et al. Microclimate and limits to photosynthesis in a diverse community of hypolithic cyanobacteria in northern Australia. Environ. Microbiol. 12, 592–607 (2010).Article 

    Google Scholar 
    Azúa-Bustos, A. et al. Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Microb. Ecol. 51, 568–581 (2011).Article 

    Google Scholar 
    Rull, F. et al. ExoMars Raman Laser Spectrometer for ExoMars. Proc. SPIE 8152, 81520J (2011).Kontoyannis, C. G., Orkoula, M. & Koutsoukos, P. Quantitative analysis of sulphated calcium carbonates using Raman spectrometry and X-ray powder diffraction. Analyst 122, 33–38 (1997).Lopez-Reyes, G. et al. Analysis of the scientific capabilities of the ExoMars Raman Laser Spectrometer Instrument. Eur. J. Mineral. 25, 721–733 (2013).Hunt, G. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 42, 501–513 (1977).Article 
    ADS 

    Google Scholar 
    Bishop, J. L. in Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces (eds Bishop, J. L. et al.) 68–101 (Cambridge Univ. Press, 2019).Morris, R. V. et al. Evidence for pigmentary hematite on Mars based on optical, magnetic and Mössbauer studies of superparamagnetic (nanocrystalline) hematite. J. Geophys. Res. 94, 2760–2778 (1989).Article 
    ADS 

    Google Scholar 
    Bishop, J. L., Pieters, C. M. & Burns, R. G. Reflectance and Mössbauer spectroscopy of ferrihydrite–montmorillonite assemblages as Mars soil analog materials. Geochim. Cosmochim. Acta 57, 4583–4595 (1993).Article 
    ADS 

    Google Scholar 
    Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).Article 

    Google Scholar 
    Underwood, A. J., Chapman, M. G. & Connell, S. D. Observations in ecology: you can’t make progress on processes without understanding the patterns. J. Exp. Mar. Biol. Ecol. 250, 97–115 (2000).Article 

    Google Scholar 
    Turner, M. G. Landscape ecology: the effect of pattern on process. Annu. Rev. Ecol. Syst. 20, 171–197 (1989).Article 

    Google Scholar 
    Turner, M. G., Gardner, R. H. & O’Neill, R. V. Landscape Ecology in Theory and Practice (Springer, 2001).Wiens, J. A., Chr, N., Van Horne, B. & Ims, R. A. Ecological mechanisms and landscape ecology. Oikos 66, 369–380 (1993).Article 

    Google Scholar 
    Urban, D., O’Neill, R. & Shugart, H. Landscape ecology. BioScience 37, 119–127 (1987).Article 

    Google Scholar 
    Underwood, A. J. et al. Experiments in Ecology: their Logical Design and Interpretation using Analysis of Variance (Cambridge Univ. Press, 1997).Quinn, G. P., & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge Univ. Press, 2002).Neyman, J. & Pearson, E. S. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. R. Soc. Lond. A 231, 289–337 (1933).Article 
    ADS 
    MATH 

    Google Scholar 
    Zar, J. H. Biostatistical Analysis 5th edn (Prentice-Hall/Pearson, 2010).Ripley, B. D. Journal of the Royal Statistical Society Series B (Methodological) 39, 172-212 (1977).Royle, J. A. & Nichols, J. D. Estimating abundance from repeated presence–absence data or point counts. Ecology 84, 777–790 (2003).Article 

    Google Scholar 
    Krebs, C. Ecological Methodology 2nd edn (Addison-Wesley, 1999).Warren-Rhodes, K., Dungan, J., Piatek, J. & McKay, C. Ecology and spatial pattern of cyanobacterial community island patches in the Atacama Desert. J. Geophys. Res. 112, G04S15 (2007).Article 

    Google Scholar 
    Belnap, J., Phillips, S., Witwicki, D. & Miller, M. Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts. J. Arid Environ. 72, 1257–1264 (2008).Article 
    ADS 

    Google Scholar 
    Warren-Rhodes, K. et al. Hypolithic cyanobacteria, dry limit of photosynthesis, and microbial ecology in the hyperarid Atacama Desert. Microb. Ecol. 52, 389–398 (2006).Article 

    Google Scholar 
    Yingst, R. et al. Is a linear or a walkabout protocol more efficient when using a rover to choose biologically relevant samples in a small region of interest? Astrobiology 20, 327–347 (2020).Article 
    ADS 

    Google Scholar 
    Shen, J., Wyness, A., Claire, M. & Zerkle, A. Spatial variability of microbial communities and salt distributions across a latitudinal gradient in the Atacama Desert. Microb. Ecol. 82, 442–458 (2021).Article 

    Google Scholar 
    Barrett, J. et al. Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology 85, 3105–3118 (2004).Article 

    Google Scholar 
    Pointing, S. B. et al. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl Acad. Sci. USA 106, 19964–19969 (2009).Article 
    ADS 

    Google Scholar 
    Chiodini, R. et al. Microbial population differentials between mucosal and submucosal intestinal tissues in advanced Crohn’s disease of the ileum. PloS ONE 10, e0134382 (2015).Article 

    Google Scholar 
    Rivas, L. A. et al. A 200-antibody microarray biochip for environmental monitoring: searching for universal microbial biomarkers through immunoprofiling. Anal. Chem. 80, 7970–7979 (2008).Article 

    Google Scholar 
    Sanchez-Garcia, L. et al. Microbial biomarker transition in high-altitude sinter mounds from El Tatio (Chile) through different stages of hydrothermal activity. Front. Microbiol. 9, 3350 (2019).Article 

    Google Scholar 
    Parro, V. et al. SOLID3, a multiplex antibody microarray-based optical sensor instrument for in situ life detection in planetary exploration. Astrobiology 11, 15–28 (2011).Article 
    ADS 

    Google Scholar 
    Parro, V. et al. A microbial oasis in the hypersaline Atacama subsurface discovered by a life detector chip: implications for the search for life on Mars. Astrobiology 11, 969–996 (2011).Article 
    ADS 

    Google Scholar 
    Blanco, Y., Moreno-Paz, M., Aguirre, J. & Parro, V. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) Ch. 159 (Springer, 2017).Moreno-Paz, M. et al. Detecting nonvolatile life and nonlife-derived organics in a carbonaceous chrondrite analogue with a new multiplex immunoassay and its relevance for planetary exploration. Astrobiology 18, 1041–1056 (2018).Article 
    ADS 

    Google Scholar 
    Ekwealor, J. & Fisher, K. Life under quartz: hypolithic mosses in the Mojave Desert. PLoS ONE 15, e0235928 (2020).Article 

    Google Scholar 
    Williams, A., Buck, B. & Beyene, M. Biological soil crusts in the Mojave Desert, USA: micromorphology and pedogenesis. Soil Sci. Soc. Am. 76, 1685–1695 (2012).Article 

    Google Scholar 
    Archer, S. et al. Endolithic microbial diversity in sandstone and granite from the McMurdo Dry Valleys, Antarctica. Polar Biol. 40, 997–1006 (2017).Article 

    Google Scholar 
    Noffke, N., Gerdes, G., Klenke, T. & Krumbein, W. Microbially induced sedimentary structures—a new category within the classification of primary sedimentary structures. J. Sediment. Res. 71, 649–656 (2001).Article 
    ADS 

    Google Scholar 
    Fierer, N. & Jackson, R. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).Article 
    ADS 

    Google Scholar 
    Caruso, T. et al. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J. 5, 1406–1413 (2011).Article 

    Google Scholar 
    Valverde et al. Prokaryotic community structure and metabolisms in shallow subsurface of Atacama Desert playas and alluvial fans after heavy rains: repairing and preparing for next dry period. Front. Microbiol. 10, 1641 (2019).Article 

    Google Scholar 
    Sun, H. Endolithic microbial life in extreme cold climate: snow is required, but perhaps less is more. Biology 2, 693–701 (2013).Maier, S. et al. Photoautotrophic organisms control microbial abundance, diversity and physiology in different types of biological soil crusts. ISME J. 12, 1032–1046 (2018).Article 

    Google Scholar 
    Roldan, M., Ascaso, C. & Weirzchos, J. Fluorescent fingerprint of endolithic phototrophic cyanobacteria living within halite rocks in the Atacama Desert. Appl. Environ. Microbiol. 80, 2998–3006 (2014).Article 
    ADS 

    Google Scholar 
    Cockell, C. et al. 0.25 Ga salt deposits preserve geological signatures of habitable conditions and ancient lipids. Astrobiology 20, 864–877 (2019).Article 
    ADS 

    Google Scholar 
    Ripley, B. D. Spatial Statistics (Wiley, 1981).Gelfand, A. E., Diggle, P., Guttorp, P., & Fuentes, M. (eds) Handbook of Spatial Statistics (CRC Press, 2010).Dixon, P. M. in Encyclopedia of Environmetrics, 1796-1803 (Wiley, 2006).Baddeley, A., Rubak, E. & Turner, R. Spatial point patterns: methodology and applications with R. J. Stat. Softw. 75, 2 (2016).Wood, S. Generalized Additive Models: an Introduction with R Ch 3–5 (Chapman and Hall/CRC, 2006).Simon, R. & Wood, N. GAMS in practice: mgcv. In Generalized Additive Models: an Introduction with R 2nd ed (eds Blitzstein, J., Faraway, J., Tanner, M. & Zidek, J.) Ch 7 (Chapman and Hall/CRC, 2017).Fang, X. & Chan, K.-S. Generalized Additive Models with Spatio-temporal Data (Univ. Iowa); https://stat.uiowa.edu/sites/stat.uiowa.edu/files/techrep/tr396.pdfLeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).Article 

    Google Scholar 
    Roberts, M. et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3, 199–217 (2021).Article 

    Google Scholar 
    Shelhamer, E., Long J. & Darrell, T. Fully convolutional networks for semantic segmentation. Preprint at arXiv https://arxiv.org/abs/1605.06211 (2016).Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. Preprint at arXiv https://arxiv.org/abs/1506.02142 (2016).Bishop, J. L. & Murad, E. in Volcano–Ice Interactions on Earth and Mars (eds Smellie, J. L. & Chapman, M. G.) 357–370 (Special Publication No. 202, Geological Society, 2002).Buzgar, N., Buzatu, A. & Sanislav, I. V. The Raman study of certain sulfates. An. Stiintificie Univ. Al. I. Cuza IASI Geol. 55, 5–23 (2009).Jehlicka, J., Edwards, H. & Oren, A. Raman spectroscopy of microbial pigments. Appl. Environ. Microbiol. 80, 3286–3295 (2013). More