More stories

  • in

    Diversity of life history and population connectivity of threadfin fish Eleutheronema tetradactylum along the coastal waters of Southern China

    Jones, J. B., Arkhipkin, A. I., Marriott, A. L. & Pierce, G. J. Using statolith elemental signatures to confirm ontogenetic migrations of the squid Doryteuthis gahi around the Falkland Islands (Southwest Atlantic). Chemi. Geol. 481, 85–94. https://doi.org/10.1016/j.chemgeo.2018.01.034 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Wright, P. J., Regnier, T., Gibb, F. M., Augley, J. & Devalla, S. Assessing the role of ontogenetic movement in maintaining population structure in fish using otolith microchemistry. Ecol. Evol. 8, 7907–7920. https://doi.org/10.1002/ece3.4186 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hobbs, J. A., Lewis, L. S., Willmes, M., Denney, C. & Bush, E. Complex life histories discovered in a critically endangered fish. Sci. Rep. 9, 16772. https://doi.org/10.1038/s41598-019-52273-8 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryan, D., Wogerbauer, C. & Roche, W. K. Otolith microchemistry to investigate nursery site fidelity and connectivity of juvenile European sea bass in Ireland. Mar. Ecol. Prog. Ser. MFCav2 https://doi.org/10.3354/meps14185 (2022).Article 

    Google Scholar 
    Sabetian, A. et al. Fish nearshore habitat-use patterns as ecological indicators of nursery quality. Ecol. Indic. 131, 108225. https://doi.org/10.1016/j.ecolind.2021.108225 (2021).Article 

    Google Scholar 
    Nelson, T. R., Hightower, C. L., Coogan, J., Walther, B. D. & Powers, S. P. Patterns and consequences of life history diversity in salinity exposure of an estuarine dependent fish. Environ. Biol. Fish. 104, 419–436. https://doi.org/10.1007/s10641-021-01080-0 (2021).Article 

    Google Scholar 
    Russell, A., Taylor, M. D., Barnes, T. C., Johnson, D. D. & Gillanders, B. M. Habitat transitions by a large coastal sciaenid across life history stages, resolved using otolith chemistry. Mar. Environ. Res. 176, 105614. https://doi.org/10.1016/j.marenvres.2022.105614 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moore, J. W., Yeakel, J. D., Peard, D., Lough, J. & Beere, M. Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds. J. Anim. Ecol. 83, 1035–1046. https://doi.org/10.1111/1365-2656.12212 (2014).Article 
    PubMed 

    Google Scholar 
    Moore, B. R. & Simpfendorfer, C. A. Assessing connectivity of a tropical estuarine teleost through otolith elemental profiles. Mar. Ecol. Prog. Ser. 501, 225–238 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Pan, X. et al. Population connectivity in a highly migratory fish, Japanese Spanish mackerel (Scomberomorus niphonius), along the Chinese coast, implications from otolith chemistry. Fish. Res. 231, 105690. https://doi.org/10.1016/j.fishres.2020.105690 (2020).Article 

    Google Scholar 
    Delerue-Ricard, S. et al. Extensive larval dispersal and restricted movement of juveniles on the nursery grounds of sole in the Southern North Sea. J. Sea Res. 155, 101822. https://doi.org/10.1016/j.seares.2019.101822 (2019).Article 

    Google Scholar 
    Hoey, J. A. et al. Using multiple natural tags provides evidence for extensive larval dispersal across space and through time in summer flounder. Mol. Ecol. 29, 1421–1435. https://doi.org/10.1111/mec.15414 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Campana, S. E. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Thomas, O. R., Ganio, K., Roberts, B. R. & Swearer, S. E. Trace element-protein interactions in endolymph from the inner ear of fish: Implications for environmental reconstructions using fish otolith chemistry. Metallomics 9, 239–249. https://doi.org/10.1039/c6mt00189k (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Doubleday, Z. A., Harris, H. H., Izzo, C. & Gillanders, B. M. Strontium randomly substituting for calcium in fish otolith aragonite. Anal. Chem. 86, 865–869. https://doi.org/10.1021/ac4034278 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Izzo, C., Doubleday, Z. A. & Gillanders, B. M. Where do elements bind within the otoliths of fish?. Mar. Freshwater Res. 67, 1072–1076. https://doi.org/10.1071/mf15064 (2016).Article 
    CAS 

    Google Scholar 
    Clarke, L. M., Gillanders, B., Thorrold, S. R. & Conover, D. O. Population differences in otolith chemistry have a genetic basis in Menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/f10-147 (2011).Article 
    CAS 

    Google Scholar 
    Sturrock, A. M. et al. Quantifying physiological influences on otolith microchemistry. Methods in Ecology and Evolution 6(7), 806–816 (2015).Article 

    Google Scholar 
    Hamer, P. et al. Atypical correlation of otolith strontium : calcium and barium : calcium across a marine–freshwater life history transition of a diadromous fish. Mar. Freshwater Res. 66, 411–419. https://doi.org/10.1071/mf14001 (2015).Article 
    CAS 

    Google Scholar 
    Izzo, C., Reis-Santos, P. & Gillanders, B. M. Otolith chemistry does not just reflect environmental conditions: A meta-analytic evaluation. Fish Fish. 19, 441–454. https://doi.org/10.1111/faf.12264 (2018).Article 

    Google Scholar 
    Motomura, H. Threadfins of the World (family Polynemidae). An Annotated and Illustrated Catalogue of Polynemid Species Known to Date 117 (FAO, 2004).
    Google Scholar 
    Huang, C. T. et al. Bioeconomic evaluation of Eleutheronema tetradactylum farming: A case study in Taiwan. Fish. Sci. 88, 437–447. https://doi.org/10.1007/s12562-022-01591-4 (2022).Article 
    CAS 

    Google Scholar 
    Shihab, I. et al. Histological profiling of gonads depicting protandrous hermaphroditism in Eleutheronema tetradactylum. J. Fish. Biol. 90, 2402–2411. https://doi.org/10.1111/jfb.13324 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Presti, P., Johnson, G. D. & Datovo, A. Anatomy and evolution of the pectoral filaments of threadfins (Polynemidae). Sci. Rep. 10, 1–5. https://doi.org/10.1038/s41598-020-74896-y (2020).Article 
    CAS 

    Google Scholar 
    Alshari, N. F. M. A. H. et al. Metabarcoding of fish larvae in the merbok river reveals species diversity and distribution along its mangrove environment. Zool. Stud. 60, e76. https://doi.org/10.6620/ZS.2021.60-76 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tobin, A. J., Mapleston, A., Harry, A. V. & Espinoza, M. Big fish in shallow water; use of an intertidal surf-zone habitat by large-bodied teleosts and elasmobranchs in tropical northern Australia. Environ. Biol. Fish. 97, 821–838. https://doi.org/10.1007/s10641-013-0182-y (2013).Article 

    Google Scholar 
    Adkins, M. E., Simpfendorfer, C. A. & Tobin, A. J. Large tropical fishes and their use of the nearshore littoral, intertidal and subtidal habitat mosaic. Mar. Freshwater Res. 67, 1534–1545. https://doi.org/10.1071/mf14339 (2016).Article 

    Google Scholar 
    Xuan, Z. et al. Otolith microchemistry reveals different environmental histories for two endangered fourfinger threadfin species. Mar. Ecol. Prog. Ser. 700, 161–178 (2022).Article 
    ADS 

    Google Scholar 
    Condini, M. V. et al. Prolonged estuarine habitat use by dusky grouper Epinephelus marginatus at subtropical latitudes revealed by otolith microchemistry. Endanger. Species Res. 29, 271–277 (2016).Article 

    Google Scholar 
    Teichert, N. et al. A multi-approach study to reveal eel life-history traits in an obstructed catchment before dam removal. Hydrobiologia 849, 1885–1903. https://doi.org/10.1007/s10750-022-04833-9 (2022).Article 

    Google Scholar 
    Wang, J., Sun, P. & Yin, F. Low mtDNA Cytb diversity and shallow population structure of Eleutheronema tetradactylum in the East China Sea and the South China Sea. Biochem. Syst. Ecol. 55, 268–274. https://doi.org/10.1016/j.bse.2014.03.026 (2014).Article 
    CAS 

    Google Scholar 
    Du, J. et al. Connectivity of fish assemblages along the mangrove-seagrass-coral reef continuum in Wenchang, China. Acta Oceanol. Sin. 39, 43–52. https://doi.org/10.1007/s13131-019-1490-7 (2020).Article 

    Google Scholar 
    Pember, M. B., Newman, S.J., Hesp, S.A., Young, G.C., Skepper, C.L., Hall, N.G. & Potter, I.C. Biological parameters for managing the fisheries for Blue and King Threadfin Salmons, Estuary Rockcod, Malabar Grouper and Mangrove Jack in north-western Australia. Fisheries Research and Development Corporation. (2005).Zheng, Q., Fang, G. & Song, Y. T. Introduction to special section: Dynamics and Circulation of the Yellow, East, and South China Seas. J. Geophys. Res. https://doi.org/10.1029/2005jc003261 (2006).Article 

    Google Scholar 
    Zhang, P. et al. Spatiotemporal variation, speciation, and transport flux of TDP in Leizhou Peninsula coastal waters, South China Sea. Mar. Pollut. Bull. 167, 112284. https://doi.org/10.1016/j.marpolbul.2021.112284 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stewart, J., Hughes, J. M., Stanley, C. & Fowler, A. M. The influence of rainfall on recruitment success and commercial catch for the large sciaenid, Argyrosomus japonicus, in eastern Australia. Mar. Environ. Res. 157, 104924. https://doi.org/10.1016/j.marenvres.2020.104924 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alber, M. A conceptual model of estuarine freshwater inflow management. Estuaries 25, 1246–1261. https://doi.org/10.1007/BF02692222 (2002).Article 

    Google Scholar 
    Possamai, B. et al. Freshwater inflow variability affects the relative importance of allochthonous sources for estuarine fishes. Estuar. Coast. 43, 880–893. https://doi.org/10.1007/s12237-019-00693-0 (2020).Article 

    Google Scholar 
    Halliday, I. A., Robins, J. B., Mayer, D. G., Staunton-Smith, J. & Sellin, M. J. Effects of freshwater flow on the year-class strength of a non-diadromous estuarine finfish, king threadfin (Polydactylus macrochir), in a dry-tropical estuary. Mar. Freshwater Res. 59, 157–164. https://doi.org/10.1071/MF07077 (2008).Article 

    Google Scholar 
    Muñoz Sabater, J. ERA5-Land monthly averaged data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). doi:https://doi.org/10.24381/cds.68d2bb30 (2023).Xiao, J. et al. Molecular phylogenetic and morphometric analysis of population structure and demography of endangered threadfin fish Eleutheronema from Indo-Pacific waters. Sci. Rep. 12, 3455. https://doi.org/10.1038/s41598-022-07342-w (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mischel, S. A., Mertz-Kraus, R., Jochum, K. P. & Scholz, D. TERMITE: An R script for fast reduction of laser ablation inductively coupled plasma mass spectrometry data and its application to trace element measurements. Rapid Commun. Mass Sp. 31, 1079–1087. https://doi.org/10.1002/rcm.7895 (2017).Article 
    CAS 

    Google Scholar 
    Butcher, D. J. Recent advances in the determination of calcium and its use as an internal standard in environmental samples: Fundamentals and applications. Appl. Spectrosc. Rev. 55, 60–75. https://doi.org/10.1080/05704928.2019.1570520 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Vignon, M. Extracting environmental histories from sclerochronological structures—Recursive partitioning as a mean to explore multi-elemental composition of fish otolith. Ecol. Inform. 30, 159–169. https://doi.org/10.1016/j.ecoinf.2015.10.002 (2015).Article 

    Google Scholar 
    Vivancos, A. et al. Hydrological connectivity drives longitudinal movement of endangered endemic Chilean darter Percilia irwini (Eigenmann, 1927). J. Fish. Biol. 98, 33–43. https://doi.org/10.1111/jfb.14554 (2021).Article 
    PubMed 

    Google Scholar 
    R Core Team, R: A language and environment for statistical computing. (2013).Hegg, J. C. & Kennedy, B. P. Let’s do the time warp again: non-linear time series matching as a tool for sequentially structured data in ecology. Ecosphere 12, e03742. https://doi.org/10.1002/ecs2.3742 (2021).Article 

    Google Scholar 
    Zhong, L., Wang, M., Li, D., Tang, S. & Chen, X. Mitochondrial genome of Eleutheronema rhadinum with an additional non-coding region and novel insights into the phylogenetics. Front. Mar. Sci. 8, 746598 (2021).Article 

    Google Scholar 
    Leis, J. M., Piola, R. F., Hay, A. C., Wen, C. & Kan, K.-P. Ontogeny of behaviour relevant to dispersal and connectivity in the larvae of two non-reef demersal, tropical fish species. Mar. Freshwater Res. 60, 211–223 (2009).Article 

    Google Scholar 
    Nelson, T. R., DeVries, D. R. & Wright, R. A. Salinity and temperature effects on element incorporation of gulf killifish Fundulus grandis otoliths. Estuar. Coast. 41, 1164–1177. https://doi.org/10.1007/s12237-017-0341-z (2018).Article 
    CAS 

    Google Scholar 
    Nelson, T. R. & Powers, S. P. Elemental concentrations of water and otoliths as salinity proxies in a Northern Gulf of Mexico estuary. Estuar. Coast. 43, 843–864. https://doi.org/10.1007/s12237-019-00686-z (2020).Article 
    CAS 

    Google Scholar 
    Breine, J. J., Lambeens, I., Maes, Y., De Bruyn, A. & Galle, L. First record of the fourfinger threadfin, Eleutheronema tetradactylum (Shaw, 1804) in Belgium. Estuar. Coast. Shelf Sci. 187, 28–30. https://doi.org/10.1016/j.ecss.2016.12.025 (2017).Article 
    ADS 

    Google Scholar 
    Pan, X. et al. Combining otolith elemental signatures with multivariate analytical models to verify the migratory pattern of Japanese Spanish mackerel (Scomberomorus niphonius) in the southern Yellow Sea. Acta Oceanol. Sin. 39, 54–64. https://doi.org/10.1007/s13131-020-1606-0 (2021).Article 

    Google Scholar 
    Miller, J. A. Effects of water temperature and barium concentration on otolith composition along a salinity gradient: Implications for migratory reconstructions. J. Exp. Mar. Biol. Ecol. 405, 42–52. https://doi.org/10.1016/j.jembe.2011.05.017 (2011).Article 
    CAS 

    Google Scholar 
    Yokouchi, K. et al. Time lag of the response on the otolith strontium/calcium ratios of the Japanese eel, Anguilla japonica to changes in strontium/calcium ratios of ambient water. Environ. Biol. Fish. 92, 469–478. https://doi.org/10.1007/s10641-011-9864-5 (2011).Article 

    Google Scholar 
    Wheeler, S. G., Russell, A. D., Fehrenbacher, J. S. & Morgan, S. G. Evaluating chemical signatures in a coastal upwelling region to reconstruct water mass associations of settlement-stage rockfishes. Mar. Ecol. Prog. Ser. 550, 191–206. https://doi.org/10.3354/meps11704 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Lin, P., Hu, J., Zheng, Q., Sun, Z. & Zhu, J. Observation of summertime upwelling off the eastern and northeastern coasts of Hainan Island, China. Ocean Dyn. 66, 387–399. https://doi.org/10.1007/s10236-016-0934-2 (2016).Article 
    ADS 

    Google Scholar 
    Liu, W. et al. Dissolved barium as a tracer of Kuroshio incursion in the Kuroshio region east of Taiwan Island and the adjacent East China Sea. Sci. China Earth Sci. 60, 1356–1367. https://doi.org/10.1007/s11430-016-9039-7 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Able, K. W. A re-examination of fish estuarine dependence: Evidence for connectivity between estuarine and ocean habitats. Estuar. Coast. Shelf Sci. 64, 5–17. https://doi.org/10.1016/j.ecss.2005.02.002 (2005).Article 
    ADS 

    Google Scholar 
    Whitfield, A. K. Littoral habitats as major nursery areas for fish species in estuaries: A reinforcement of the reduced predation paradigm. Mar. Ecol. Prog. Ser. 649, 219–234. https://doi.org/10.3354/meps13459 (2020).Article 

    Google Scholar 
    Acha, E. M., Simionato, C. G., Carozza, C. & Mianzan, H. Climate-induced year-class fluctuations of whitemouth croaker Micropogonias furnieri (Pisces, Sciaenidae) in the Río de la Plata estuary, Argentina-Uruguay. Fish. Oceanogr. 21, 58–77. https://doi.org/10.1111/j.1365-2419.2011.00609.x (2012).Article 

    Google Scholar 
    Schilling, H. T. et al. Evaluating estuarine nursery use and life history patterns of Pomatomus saltatrix in eastern Australia. Mar. Ecol. Prog. Ser. 598, 187–199. https://doi.org/10.3354/meps12495 (2018).Article 
    ADS 

    Google Scholar 
    Menezes, R. et al. Habitat use plasticity by the dog snapper (Lutjanus jocu) across the Abrolhos Bank shelf, eastern Brazil, inferred from otolith chemistry. Estuar. Coast. Shelf Sci. 263, 107637. https://doi.org/10.1016/j.ecss.2021.107637 (2021).Article 
    CAS 

    Google Scholar 
    Santos, R. O. et al. Linking bonefish (Albula vulpes) populations to nearshore estuarine habitats using an otolith microchemistry approach. Environ. Biol. Fish. 102, 267–283. https://doi.org/10.1007/s10641-018-0839-7 (2019).Article 

    Google Scholar 
    Pinceel, T. et al. An empirical confirmation of diversified bet hedging as a survival strategy in unpredictably varying environments. Ecology 102, e03496. https://doi.org/10.1002/ecy.3496 (2021).Article 
    PubMed 

    Google Scholar 
    Wang, V. H., White, J. W., Arnott, S. A. & Scharf, F. S. Population connectivity of southern flounder in the US South Atlantic revealed by otolith chemical analysis. Mar. Ecol. Prog. Ser. 596, 165–179 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Gillson, J., Scandol, J. & Suthers, I. Estuarine gillnet fishery catch rates decline during drought in eastern Australia. Fish. Res. 99, 26–37. https://doi.org/10.1016/j.fishres.2009.04.007 (2009).Article 

    Google Scholar 
    Pritt, J. J., Roseman, E. F. & O’Brien, T. P. Mechanisms driving recruitment variability in fish: Comparisons between the Laurentian Great Lakes and marine systems. ICES J. Mar. Sci. 71, 2252–2267. https://doi.org/10.1093/icesjms/fsu080 (2014).Article 

    Google Scholar 
    Mai, A. C. G. et al. High plasticity in habitat use of Lycengraulis grossidens (Clupeiformes, Engraulididae). Estuar. Coast. Shelf Sci. 141, 17–25. https://doi.org/10.1016/j.ecss.2014.01.014 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Horne, J. B., Momigliano, P., Welch, D. J., Newman, S. J. & Van Herwerden, L. Limited ecological population connectivity suggests low demands on self-recruitment in a tropical inshore marine fish (Eleutheronema tetradactylum: Polynemidae). Mol. Ecol. 20, 2291–2306. https://doi.org/10.1111/j.1365-294X.2011.05097.x (2011).Article 
    PubMed 

    Google Scholar 
    Newman, S. J. et al. Stock structure of blue threadfin Eleutheronema tetradactylum across northern Australia as inferred from stable isotopes in sagittal otolith carbonate. Fish. Manag. Ecol. 18, 246–257. https://doi.org/10.1111/j.1365-2400.2010.00780.x (2011).Article 

    Google Scholar 
    Ballagh, A. C., Welch, D. J., Newman, S. J., Allsop, Q. & Stapley, J. M. Stock structure of the blue threadfin (Eleutheronema tetradactylum) across northern Australia derived from life-history characteristics. Fish. Res. 121–122, 63–72. https://doi.org/10.1016/j.fishres.2012.01.011 (2012).Article 

    Google Scholar 
    Moore, B. R. et al. Stock structure of blue threadfin Eleutheronema tetradactylum across northern Australia, as indicated by parasites. J. Fish. Biol. 78, 923–936. https://doi.org/10.1111/j.1095-8649.2011.02917.x (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    McGuigan, C. J., Schlenker, L. S., Stieglitz, J. D., Benetti, D. D. & Grosell, M. Quantifying the effects of pop-up satellite archival tags on the swimming performance and behavior of young-adult mahi-mahi (Coryphaena hippurus). Can. J. Fish. Aquat. Sci. 78, 32–39. https://doi.org/10.1139/cjfas-2020-0030 (2020).Article 

    Google Scholar 
    Macdonald, J. I., Drysdale, R. N., Witt, R., Cságoly, Z. & Marteinsdóttir, G. Isolating the influence of ontogeny helps predict island-wide variability in fish otolith chemistry. Rev. Fish Biol. Fisheries 30, 173–202. https://doi.org/10.1007/s11160-019-09591-x (2019).Article 

    Google Scholar 
    Grammer, G. L. et al. Coupling biogeochemical tracers with fish growth reveals physiological and environmental controls on otolith chemistry. Ecol. Monogr. 87, 487–507. https://doi.org/10.1002/ecm.1264 (2017).Article 

    Google Scholar  More

  • in

    Population trends of striped hyena (Hyaena hyaena) in Israel for the past five decades

    Kruuk, H. Feeding and social behaviour of the striped hyaena (Hyaena vulgaris). East Afr. Wildl. J. 14, 91–111 (1976).Article 

    Google Scholar 
    Wanger A.P. Behavioral ecology of the striped hyena (Hyaena hyaena) . Diss. Montana State University-Bozeman, College of Letters & Science (2006).AbiSaid, M. & Dloniak, S.M.D. Hyaena hyaena. The IUCN Red List of Threatened Species 2015: e.T10274A45195080 (2015).Abi-Said, M. R. & Abi-Said, D. M. Distribution of the striped hyena (Hyaena hyaena syriaca Matius, 1882) (Carnivora: Hyaenidae) in urban and rural areas of Lebanon. Zool. Middle East 42, 3–1 (2007).Article 

    Google Scholar 
    Al Younis, J. S. Hyaenas in Eastern Jordan. IUCN Hyaena Spec. Group Newsl. 6, 2–3 (1993).
    Google Scholar 
    Qarqaz, M. A., Abu Baker, M. A. & Amr, Z. S. Status and ecology of the Striped Hyena, Hyaena hyaena, in Jordan. Zool. Middle East 33, 87–92 (2004).Article 

    Google Scholar 
    Bhandari, S., Youlatos, D., Thapamagar, T. & Bhusal, D. R. Shrinking striped hyena (Hyaena hyaena Linnaeus, 1758) distribution in Nepal. Eur. J. Wildl. Res. 67, 1–4 (2021).Article 

    Google Scholar 
    Mendelssohn, H. Mass destruction of bird-life by secondary poisoning from insecticides and rodenticides. Atlantic Nat. 17, 247–248 (1962).
    Google Scholar 
    Mendelssohn, H. The impact of pesticides on bird life in Israel. Bull. Int. Council Bird Preserv. 11, 75–104 (1972).
    Google Scholar 
    Hadad, E., Kosicki, J. Z. & Yosef R. Spatial modeling of road collisions of striped hyena (Hyaena hyaena) in Israel. Ecol. Res.Ilani, G. Hyaenas in Israel. Israel Land Nat. 10–18 (1975).Tristram, H. B. The land of Israel: A journal of travels in palestine. Society for Promoting Christian Knowledge, London. 657 pp (1866).Schmitz, E. J. Wird Palästina wieder jüdisch werden?. Das Heilige Land 54, 92–95 (1910).
    Google Scholar 
    Schmitz, E. J. Kampf mit einem Leoparden. Das Heilige Land 56, 23–27 (1912).
    Google Scholar 
    Hadad, E. The persecution of the striped hyaena by humans. Teva HaDvarim 258, 68–78 (2017).
    Google Scholar 
    Hadad, E. 2021. Israel a heaven and a haven for striped hyaenas. Teva HaDvarim 310, 52–63 (2021).Ilani, G. Zoogeographic survey of carnivores in Israel (Golan, Judea and Samaria, Sinai). Pp. 84—94 Unpublished Internal report, Israel Nature Reserves Authority (1979).Skinner, J. D. & Ilani, G. The striped hyaena Hyaena hyaena of the Judean and Negev Deserts and a comparison with the brown hyaena H. brunnea. Israel J. Zool. 28, 229–232 (2013).
    Google Scholar 
    van Aarde, R. J., Skinner, J. D., Knight, M. H. & Skinner, D. C. Range use by a striped hyaena (Hyaena hyaena) in the Negev desert. J. Zool. 216, 575–577 (1988).
    Google Scholar 
    Dolev, A. & Pervolutzky, A. Endangered species in Israel. Red list of threatened species. Pp. 257 Hyaena hyaena (Linnaeus 1758). Nature & Parks Authority and SPNI, Keter Publishers, Jerusalem (2002).Hadad, E. Striped hyaenas in Israel. Teva HaDvarim 232, 3–14 (2015).
    Google Scholar 
    Albada, I. M. Primary survey of the striped hyena, Hyaena hyaena, (Linnaeus, 1758) (Carnivora:Hyaenidae) status in the West Bank Governorates, Palestine. Glob. Scholast. Res. J. Mulitidiscip. 1, 39–44 (2015).
    Google Scholar 
    Handal, E. N., Qumsiehm, G. H., Hammash, S. Y. & Qumsiyeh, M. B. Status and conservation of the striped hyena (Hyaena hyaena) in the occupied Palestinian Territories (West Bank). Jordan J. Nat. History 6, 11–18 (2019).
    Google Scholar 
    Knape, J. Decomposing trends in Swedish bird populations using generalized additive mixed models. J. Appl. Ecol. 53, 1852–1861 (2016).Article 

    Google Scholar 
    Wood, S. N. Generalized additive models: An introduction with R 2nd edn. (Chapman & Hall/CRC, 2017).Book 
    MATH 

    Google Scholar 
    Mills L.S. Conservation of wildlife populations. Demography, genetics, and management. Second Edition. Wiley–Blackwell, Oxford (2013).Rieger, I. Hyaena hyaena. Mammalian Species 150, 1–5. The American Society of Mammalogists (1981).Hofer, H. & Mills, M.G.L. Worldwide distribution of Hyaenas. In: M.G.L. Mills and H. Hofer (eds), Hyaenas. Status survey and conservation action plan, pp. 39–63. IUCN/SSC Hyaena Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK (1998a).Hofer, H. & Mills, M.G.L. Population size, threats and conservation status of hyaenas. In: M.G.L. Mills and H. Hofer (eds) Hyaenas. Status Survey and Conservation Action Plan, pp. 64–79. IUCN/SSC Hyaena Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK (1998b).Bar-Ziv, E., Picardi, S., Kaplan, A., Avgar, T. & Berger-Tal, O. Sex differences dictate the movement patterns of Striped Hyenas, Hyaena hyaena, in a human-dominated landscape. Front. Ecol. Evol. 10, 897132 (2022).Article 

    Google Scholar 
    Shamon, H., Sorek, M., Dan, H. & Shapira, I. A large carnivore in a rapidly changing environment: occurrence and density of the striped hyaena hyaena hyaena in Israel. The 54th Israel Zoological Society Conference, Tel Aviv University, Ramat Aviv (2017).Shamoon, H. & Shapira, I. Limiting factors of Striped Hyaena, Hyaena hyaena, distribution and densities across climatic and geographical gradients (Mammalia: Carnivora). Zool. Middle East 65, 189–200 (2019).Article 

    Google Scholar 
    Yom-Tov, Y. Body sizes of carnivores commensal with humans increased over past 50 years. Funct. Ecol. 17, 323–327 (2003).Article 

    Google Scholar 
    Monchot, H. & Mashkour, M. Hyenas around the city (Kashan, Iran). J. Taphon. 8, 17–32 (2010).
    Google Scholar 
    Panda, D. et al. High striped hyena density suggests coexistence with humans in an agricultural landscape Rajasthan. PLoS ONE 17, e0266832 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mendelssohn, H. & Yom-Tov, Y. A report of birds and mammals which have increased their distribution and abundance in Israel due to human activity. Isr. J. Zool. 45, 35–47 (1998).
    Google Scholar 
    Meretsky, V. J. & Mannan, R. W. Supplemental feeding regimes for Egyptian vultures in the Negev Desert Israel. J. Wildl. Manag. 63, 107–115 (1999).Article 

    Google Scholar 
    Mallon, D. & Budd, K. (eds). Regional red list status of carnivores in the Arabian Peninsula. Cambridge, UK and Gland Switzerland: IUCN, and Sharjah, UAE: Environment and Protected Areas Authority vi+49pp (2011).Jaffa, N. A. B. K-P. S. The Arabian striped Hyena (Hyaena hyaena sultana Pocock, 1934) (Carnivora: Hyaenidae) in the Kingdom of Saudi Arabia. Gazelle Palestin. Biol. Bull. 185, 1–39 (2020).
    Google Scholar 
    Cogal, M., Ilemin, Y. & Sozen, M. Status and distribution of the Striped Hyaena, Hyaena hyaena, in Turkey: An updated assessment (Carnivora: Mammalia). Turk. J. Zool. 45, 131–141 (2021).Article 

    Google Scholar 
    Almasieh, K., Mohammadi, A. & Alvandi, R. Identifying core habitats and corridors of a near threatened carnivore, striped hyaena (Hyaena hyaena) in southwestern Iran. Sci. Rep. 12, 3425 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tourani, M., Moqanaki, E. M. & Kiabi, B. H. Vulnerability of striped hyaenas, Hyaena hyaena, in a human-dominated landscape of Central Iran. Zool. Middle East 56, 133–136 (2012).Article 

    Google Scholar 
    Bhandari, S. et al. Climate change threatens striped hyena (Hyaena hyaena) distribution in Nepal. Mammal Res. 67, 433–443 (2022).Article 

    Google Scholar 
    Tichon, J., Gilchrist, J. S., Rotem, R., Ward, P. & Spiegel, O. Social interactions in striped hyena inferred from camera trap data: Is it more social than previously thought?. Curr. Zool. 66, 345–353 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dean, W. R. J., Seymour, C. L., Joseph, G. S. & Foord, S. H. A review of the impacts of roads on wildlife in semi-arid regions. Diversity 11, 81 (2019).Article 

    Google Scholar 
    Landau, Y., Abu-Rabiya, A., Avlegon, A. & Abu-Siam, S. Seasonl grazing of livestock by Beduin in KKL forests: Developments from 2009 to 2014. Forests 15, 30–39 (2015).
    Google Scholar 
    Jacobson, A. P. et al. Leopard (Panthera pardus) status, distribution, and the research efforts across its range. PeerJ 4, e1974 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lazagabaster, I. A. et al. Changes in the large carnivore community structure of the Judean Desert in connection to Holocene human settlement dynamics. Sci. Rep. 11, 3548 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lazagabaster, I. A. et al. Cave paleozoology in the Judean Desert: assembling records of Holocene mammal communities. J. Quarten. Sci. 37, 651–663 (2022).Article 

    Google Scholar 
    Davidson, A., Malkinson, D. & Shanas, U. Wild boar foraging and risk perception—variation among urban, natural, and agricultural areas. J. Mammal. 20, 1–11 (2022).
    Google Scholar 
    Panda, D. et al. Competitive interactions with dominant carnivores affect carrion acquisition of striped hyena in a semi-arid landscape of Rajasthan India. Mammal Res. https://doi.org/10.1007/s13364-022-00663-1 (2022).Article 

    Google Scholar 
    Mandal, D., Basak, K., Mishra, R. P., Kaul, R. & Mondal, K. Staus of leopard Panthera pardus and striped hyena Hyaena hyaena and their prey in Achanakmar Tiger Reserve, Central Inida. J. Zool. Stud. 4, 34–41 (2017).
    Google Scholar 
    Alam, M. S., Khan, J. A. & Pathak, B. J. Striped hyena (Hyaena hyaena) status and factors affecting its distribution in the Gir National Park and Sanctuary India. Folia Zool. 64, 32–39 (2015).Article 

    Google Scholar 
    Singh, P., Gopalaswamy, A. M. & Karanth, K. U. Factors influencing densities of striped hyenas (Hyaena hyaena) in arid regions of India. J. Mammol. 91, 1152–1159 (2010).Article 

    Google Scholar 
    Handal, E. N., Amr, Z. S., Basha, W. S. & Qumsiyeh, M. B. Illegal trade in wildlife vertebrate species in the West Bank Palestine. J. Asia-Pac. Biodivers. 14, 636–639 (2021).Article 

    Google Scholar 
    Kumbhojkar, S., Yosef, R., Benedetti, Y. & Morelli, F. Human-leopard (Panthera pardus fusca) co-existence in Jhalana Forest Reserve India. Sustainability 11, 3912 (2019).Article 

    Google Scholar 
    Bhandari, S., Bhusal, D. R., Psaralexi, M. & Sgardelis, S. Habitat preference indicators for striped hyena (Hyaena hyaena) in Nepal. Glob. Ecol. Conserv. 27, e01619 (2021).Article 

    Google Scholar  More

  • in

    Simultaneous sulfate and nitrate reduction in coastal sediments

    Boudreau BP, Huettel M, Forster S, Jahnke RA, McLachlan A, Middelburg JJ, et al. Permeable marine sediments: Overturning an old paradigm. Eos, Trans Am Geophys Union. 2001;82:133–6.Article 

    Google Scholar 
    Cook PL, Wenzhöfer F, Rysgaard S, Galaktionov OS, Meysman FJ, Eyre BD, et al. Quantification of denitrification in permeable sediments: Insights from a two‐dimensional simulation analysis and experimental data. Limnol Oceanogr Methods. 2006;4:294–307.Article 
    CAS 

    Google Scholar 
    Evrard V, Glud RN, Cook PL. The kinetics of denitrification in permeable sediments. Biogeochemistry. 2013;113:563–72.Article 

    Google Scholar 
    Huettel M, Berg P, Kostka JE. Benthic exchange and biogeochemical cycling in permeable sediments. Ann Rev Marine Sci. 2014;6:23–51.Article 

    Google Scholar 
    Rao AMF, McCarthy MJ, Gardner WS, Jahnke RA. Respiration and denitrification in permeable continental shelf deposits on the South Atlantic Bight: Rates of carbon and nitrogen cycling from sediment column experiments. Continental Shelf Res. 2007;27:1801–19.Article 

    Google Scholar 
    Billerbeck M, Werner U, Polerecky L, Walpersdorf E, de Beer D, Huettel M Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Marine Ecol Progr Series. 2006;326:61–76.Jansen S, Walpersdorf E, Werner U, Billerbeck M, Böttcher ME, de Beer D. Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediment. Ocean Dyn. 2009;59:317–32.Article 

    Google Scholar 
    de Beer D, Wenzhöfer F, Ferdelman TG, Boehme SE, Huettel M, van Beusekom JEE, et al. Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Rømø Basin, Wadden Sea. Limnol Oceanogr. 2005;50:113–27.Article 

    Google Scholar 
    Gao H, Matyka M, Liu B, Khalili A, Kostka JE, Collins G, et al. Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea. Limnol Oceanogr. 2012;57:185–98.Article 
    CAS 

    Google Scholar 
    Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G, et al. Aerobic denitrification in permeable Wadden Sea sediments. ISME J. 2009;4:417.Article 
    PubMed 

    Google Scholar 
    Elliott AH, Brooks NH. Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resour Res. 1997;33:123–36.Article 
    CAS 

    Google Scholar 
    Precht E, Huettel M. Advective pore‐water exchange driven by surface gravity waves and its ecological implications. Limnol Oceanogr. 2003;48:1674–84.Article 

    Google Scholar 
    Ahmerkamp S, Marchant HK, Peng C, Probandt D, Littmann S, Kuypers MM, et al. The effect of sediment grain properties and porewater flow on microbial abundance and respiration in permeable sediments. Sci Rep. 2020;10:1–12.Article 

    Google Scholar 
    Ahmerkamp S, Winter C, Krämer K, Beer DD, Janssen F, Friedrich J, et al. Regulation of benthic oxygen fluxes in permeable sediments of the coastal ocean. Limnol Oceanogr. 2017;62:1935–54.Article 
    CAS 

    Google Scholar 
    Cardenas MB, Wilson JL Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resour Res. 2007;43:W08412.Santos IR, Eyre BD, Huettel M. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuarine, Coastal Shelf Sci. 2012;98:1–15.Article 

    Google Scholar 
    Probandt D, Eickhorst T, Ellrott A, Amann R, Knittel K. Microbial life on a sand grain: from bulk sediment to single grains. ISME J. 2018;12:623–33.Article 
    PubMed 

    Google Scholar 
    Marchant HK, Ahmerkamp S, Lavik G, Tegetmeyer HE, Graf J, Klatt JM, et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 2017;11:1799.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marchant HK, Holtappels M, Lavik G, Ahmerkamp S, Winter C, Kuypers MMM. Coupled nitrification–denitrification leads to extensive N loss in subtidal permeable sediments. Limnol Oceanogr. 2016;61:1033–48.Article 

    Google Scholar 
    Marchant HK, Tegetmeyer HE, Ahmerkamp S, Holtappels M, Lavik G, Graf J, et al. Metabolic specialization of denitrifiers in permeable sediments controls N2O emissions. Environ Microbiol. 2018;20:4486–502.Article 
    CAS 
    PubMed 

    Google Scholar 
    Laverman AM, Pallud C, Abell J, Van, Cappellen P. Comparative survey of potential nitrate and sulfate reduction rates in aquatic sediments. Geochimica et Cosmochimica Acta. 2012;77:474–88.Article 
    CAS 

    Google Scholar 
    Fenchel T, Jørgensen B. Detritus food chains of aquatic ecosystems: the role of bacteria. Adv Microb Ecol. 1977;1:1–58.Article 
    CAS 

    Google Scholar 
    Canfield DE, Kristensen E, Thamdrup B Aquatic Geomicrobiology: Elsevier Science; 2005.Froelich PN, Klinkhammer G, Bender ML, Luedtke N, Heath GR, Cullen D, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et cosmochimica Acta. 1979;43:1075–90.Article 
    CAS 

    Google Scholar 
    Eckford RE, Fedorak PM. Chemical and microbiological changes in laboratory incubations of nitrate amendment “sour” produced waters from three western Canadian oil fields. J Ind Microbiol Biotechnol. 2002;29:243–54.Article 
    CAS 
    PubMed 

    Google Scholar 
    Grigoryan AA, Cornish SL, Buziak B, Lin S, Cavallaro A, Arensdorf JJ, et al. Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Appl Environ Microbiol. 2008;74:4324.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hubert C, Nemati M, Jenneman G, Voordouw G. Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite. Biotechnol Progr. 2003;19:338–45.Article 
    CAS 

    Google Scholar 
    Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G. Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ Microbiol. 2003;5:607–17.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wolfe BM, Lui SM, Cowan JA. Desulfoviridin, a multimeric-dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough) Purification, characterization, kinetics and EPR studies. Eur J Biochem. 1994;223:79–89.Article 
    CAS 
    PubMed 

    Google Scholar 
    Fossing H, Gallardo VA, Jørgensen BB, Hüttel M, Nielsen LP, Schulz H, et al. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature. 1995;374:713–15.Article 
    CAS 

    Google Scholar 
    Jørgensen BB. Big sulfur bacteria. ISME J. 2010;4:1083.Article 
    PubMed 

    Google Scholar 
    Marzocchi U, Trojan D, Larsen S, Louise Meyer R, Peter Revsbech N, Schramm A, et al. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. ISME J. 2014;8:1682.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Londry KL, Suflita JM. Use of nitrate to control sulfide generation by sulfate-reducing bacteria associated with oily waste. J Ind Microbiol Biotechnol. 1999;22:582–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    McInerney MJ, Bhupathiraju VK, Sublette KL. Evaluation of a microbial method to reduce hydrogen sulfide levels in a porous rock biofilm. J Ind Microbiol. 1992;11:53–8.Article 
    CAS 

    Google Scholar 
    Schwermer CU, Ferdelman TG, Stief P, Gieseke A, Rezakhani N, Van Rijn J, et al. Effect of nitrate on sulfur transformations in sulfidogenic sludge of a marine aquaculture biofilter. FEMS Microbiol Ecol. 2010;72:476–84.Article 
    CAS 
    PubMed 

    Google Scholar 
    Thamdrup B, Fossing H, Jørgensen BB. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochimica et Cosmochimica Acta. 1994;58:5115–29.Article 
    CAS 

    Google Scholar 
    Al-Raei AM, Bosselmann K, Böttcher ME, Hespenheide B, Tauber F. Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter. Ocean Dyn. 2009;59:351–70.Article 

    Google Scholar 
    Dyksma S, Pjevac P, Ovanesov K, Mussmann M. Evidence for H2 consumption by uncultured Desulfobacterales in coastal sediments. Environ Microbiol. 2018;20:450–61.Article 
    CAS 
    PubMed 

    Google Scholar 
    Musat N, Werner U, Knittel K, Kolb S, Dodenhof T, van Beusekom JEE, et al. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea. Syst Appl Microbiol. 2006;29:333–48.Article 
    PubMed 

    Google Scholar 
    Mußmann M, Ishii K, Rabus R, Amann R. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol. 2005;7:405–18.Article 
    PubMed 

    Google Scholar 
    Dyksma S, Lenk S, Sawicka JE, Mußmann M. Uncultured gammaproteobacteria and desulfobacteraceae account for major acetate assimilation in a coastal marine sediment. Front Microbiol. 2018;9:3124Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen J, Hanke A, Tegetmeyer HE, Kattelmann I, Sharma R, Hamann E, et al. Impacts of chemical gradients on microbial community structure. ISME J. 2017;11:920.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saad S, Bhatnagar S, Tegetmeyer HE, Geelhoed JS, Strous M, Ruff SE. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate‐reducing benthic microbial populations. Environ Microbiol. 2017;19:4866–81.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brunet RC, Garcia-Gil LJ. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments. FEMS Microbiol Ecol. 1996;21:131–8.Article 
    CAS 

    Google Scholar 
    Murphy AE, Bulseco AN, Ackerman R, Vineis JH, Bowen JL. Sulphide addition favours respiratory ammonification (DNRA) over complete denitrification and alters the active microbial community in salt marsh sediments. Environ Microbiol. 2020;22:2124–39.Article 
    CAS 
    PubMed 

    Google Scholar 
    Krekeler D, Cypionka H. The preferred electron acceptor of Desulfovibrio desulfuricans CSN. FEMS Microbiol Ecol. 1995;17:271–7.Article 
    CAS 

    Google Scholar 
    Seitz H-J, Cypionka H. Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch Microbiol. 1986;146:63–7.Article 
    CAS 

    Google Scholar 
    Dalsgaard T, Bak F. Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microbiol. 1994;60:291–7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marietou A. Nitrate reduction in sulfate-reducing bacteria. FEMS Microbiol Lett. 2016;363:fnw155.Article 
    PubMed 

    Google Scholar 
    Marietou A, Griffiths L, Cole J. Preferential reduction of the thermodynamically less favorable electron acceptor, sulfate, by a nitrate-reducing strain of the sulfate-reducing bacterium Desulfovibrio desulfuricans 27774. J Bacteriol. 2009;191:882–889.Article 
    CAS 
    PubMed 

    Google Scholar 
    Korte HL, Saini A, Trotter VV, Butland GP, Arkin AP, Wall JD. Independence of nitrate and nitrite inhibition of Desulfovibrio vulgaris Hildenborough and use of nitrite as a substrate for growth. Environ Sci Technol. 2015;49:924–931.Article 
    CAS 
    PubMed 

    Google Scholar 
    Pereira IA, LeGall J, Xavier AV, Teixeira M. Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. Biochimica et Biophysica Acta (BBA)-Protein Struct Mol Enzymol. 2000;1481:119–130.Article 
    CAS 

    Google Scholar 
    Werner U, Billerbeck M, Polerecky L, Franke U, Huettel M, van Beusekom JEE, et al. Spatial and temporal patterns of mineralization rates and oxygen distribution in a permeable intertidal sand flat (Sylt, Germany). Limnol Oceanogr. 2006;51:2549–63.Article 
    CAS 

    Google Scholar 
    Marchant HK, Lavik G, Holtappels M, Kuypers MMM. The fate of nitrate in intertidal permeable sediments. PLOS ONE. 2014;9:e104517.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Canfield DE. Reactive iron in marine sediments. Geochimica et cosmochimica acta. 1989;53:619–632.Article 
    CAS 
    PubMed 

    Google Scholar 
    Billerbeck M, Werner U, Bosselmann K, Walpersdorf E, Huettel M. Nutrient release from an exposed intertidal sand flat. Marine Ecol Progr Series. 2006;316:35–51.Article 
    CAS 

    Google Scholar 
    Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, et al. A cryptic sulfur cycle in oxygen-minimum–zone waters off the Chilean Coast. Science. 2010;330:1375.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jørgensen BB, Findlay AJ, Pellerin A. The biogeochemical sulfur cycle of marine sediments. Front Microbiol. 2019;10:849.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nemati M, Mazutinec TJ, Jenneman GE, Voordouw G. Control of biogenic H2S production with nitrite and molybdate. J Ind Microbiol Biotechnol. 2001;26:350–355.Article 
    CAS 
    PubMed 

    Google Scholar 
    Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G. Physiological and Gene Expression Analysis of Inhibition of Desulfovibrio vulgaris Hildenborough by Nitrite. J Bacteriol. 2004;186:7944–7950.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Behrendt A, de Beer D, Stief P. Vertical activity distribution of dissimilatory nitrate reduction in coastal marine sediments. Biogeosciences. 2013;10:7509–23.Article 

    Google Scholar 
    Findlay AJ, Pellerin A, Laufer K, Jørgensen BB. Quantification of sulphide oxidation rates in marine sediment. Geochimica et Cosmochimica Acta. 2020;280:441–52.Article 
    CAS 

    Google Scholar 
    Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evolut Microbiol. 2020;70:5972–6016.Article 
    CAS 

    Google Scholar 
    Dyksma S, Bischof K, Fuchs BM, Hoffmann K, Meier D, Meyerdierks A, et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 2016;10:1939–1953.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lenk S, Arnds J, Zerjatke K, Musat N, Amann R, Mußmann M. Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environ Microbiol. 2011;13:758–774.Article 
    CAS 
    PubMed 

    Google Scholar 
    An S, Gardner W S. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Marine Ecol Progr Series. 2002;237:41–50.Article 
    CAS 

    Google Scholar 
    Wankel SD, Ziebis W, Buchwald C, Charoenpong C, de Beer D, Dentinger J, et al. Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments. Nat Commun. 2017;8:15595.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moura I, Bursakov S, Costa C, Moura JJ. Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe. 1997;3:279–290.Article 
    CAS 
    PubMed 

    Google Scholar 
    Song G, Liu S, Zhang J, Zhu Z, Zhang G, Marchant HK, et al. Response of benthic nitrogen cycling to estuarine hypoxia. Limnol Oceanogr. 2021;66:652–66.Article 
    CAS 

    Google Scholar 
    Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA. Denitrification: ecological niches, competition and survival. Antonie van Leeuwenhoek. 1983;48:569–583.Article 

    Google Scholar 
    Strohm TO, Griffin B, Zumft WG, Schink B. Growth yields in bacterial denitrification and nitrate ammonification. Appl Environ Microbiol. 2007;73:1420–1424.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rütting T, Boeckx P, Müller C, Klemedtsson L. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences. 2011;8:1779–91.Article 

    Google Scholar 
    Røy H, Lee JS, Jansen S, de Beer D. Tide-driven deep pore-water flow in intertidal sand flats. Limnol Oceanogr. 2008;53:1521–30.Article 

    Google Scholar 
    Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters 1. Limnol Oceanogr. 1969;14:454–458.Article 
    CAS 

    Google Scholar 
    Viollier E, Inglett P, Hunter K, Roychoudhury A, Van, Cappellen P. The ferrozine method revisited: Fe (II)/Fe (III) determination in natural waters. Appl Geochem. 2000;15:785–90.Article 
    CAS 

    Google Scholar 
    Røy H, Weber HS, Tarpgaard IH, Ferdelman TG, Jørgensen BB. Determination of dissimilatory sulfate reduction rates in marine sediment via radioactive 35S tracer. Limnol Oceanogr Methods. 2014;12:196–211.Article 

    Google Scholar 
    García-Robledo E, Corzo A, Papaspyrou S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Marine Chem. 2014;162:30–36.Article 

    Google Scholar 
    Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5:62–71.Article 
    CAS 
    PubMed 

    Google Scholar 
    Holtappels M, Lavik G, Jensen MM, Kuypers MMM Chapter ten – 15N-Labeling Experiments to Dissect the Contributions of Heterotrophic Denitrification and Anammox to Nitrogen Removal in the OMZ Waters of the Ocean. In: Klotz MG, editor. Methods in Enzymology. 486: Academic Press; 2011. p. 223-251.Preisler A, De Beer D, Lichtschlag A, Lavik G, Boetius A, Jørgensen BB. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment.ISME J. 2007;1:341–353.Article 
    CAS 
    PubMed 

    Google Scholar 
    Warembourg FR 5 – Nitrogen fixation in soil and plant systems. In: Knowles R, Blackburn TH, editors. Nitrogen Isotope Techniques. San Diego: Academic Press; 1993. p. 127-156.Orellana LH, Rodriguez-R LM, Konstantinidis KT. ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores. Nucleic Acids Res. 2016;45:e14–e14.PubMed Central 

    Google Scholar 
    Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018;12:1715–28.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watanabe T, Kojima H, Fukui M. Identity of major sulfur-cycle prokaryotes in freshwater lake ecosystems revealed by a comprehensive phylogenetic study of the dissimilatory adenylylsulfate reductase. Sci Rep. 2016;6:36262.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Preparation of aluminium-hydroxide-modified diatomite and its fluoride adsorption mechanism

    Scanning electron microscopy and energy spectrum analysisThe SEM images show the morphological structures of DA and Al-DA before and after adsorption (Fig. 1). DA and Al-DA have disk-like microstructures29 with sur-faces containing both large and small pores, that is, DA and Al-DA have unique multi-level pore structures. The main component of DA and Al-DA is silica, which has a large specific surface area, good thermal stability, and is a natural green material for use as a water treatment agent with a porous structure31. The micrographs show that before adsorption, the DA surface is smooth with a distinct pore structure, whereas modification with aluminium hydroxide makes DA coarse and loose because of the formation of amorphous aluminium hydroxide colloids32. After adsorption, the surface pore structure is covered over for DA and completely covered over for Al-DA, which indicates that F− reacts with Al3+ to form nanoscale precipitates22. The results of the EDS analysis (Fig. 2) show that the content of elemental Al increased from 3.96 to 12.74% after DA was modified with aluminium hydroxide, indicating that Al adhered effectively to the modified DA surface. After adsorption, the content of elemental Al decreased from 3.96 to 1.36% for DA and from 12.74 to 2.03% for Al-DA, which fully confirmed that fluorine preferentially combined with Al to form aluminium precipitates during adsorption, thereby decreasing the Al content.Figure 1SEM images of DA and Al-DA before and after adsorption. (A) Before DA adsorption. (B) After DA adsorption. (C) Before Al-DA adsorption. (D) After Al-DA adsorption.Full size imageFigure 2EDS graphs of DA and Al-DA before and after adsorption. (A) Before DA adsorption. (B) After DA adsorption. (C) Before Al-DA adsorption. (D) After Al-DA adsorption.Full size imageXRD analysisThe surface mineral composition and crystallinity of the materials before and after adsorption were analyzed by XRD (Fig. 3). In the DA and Al-DA patterns, the wide diffraction peaks at approximately 22.0°, 26.0°, and 50.0° mainly correspond to amorphous SiO2, and the diffraction peak at approximately 35° mainly corresponds to amorphous Al2O3, indicating that the material is polycrystalline29. It has been re-ported that amorphous materials may be good adsorbents because of a large specific surface area and numerous active sites33. Many Al(OH)3 peaks and NaCl peaks appear in the XRD pattern of Al-DA, indicating the successful modification of DA by aluminium hydroxide. After adsorption, Na3AlF6 peaks appear in the DA pattern, and Na3AlF6 and AlF3 peaks appear in the Al-DA pattern, whereas the characteristic peaks of NaCl are absent in the Al-DA pattern, which indicates the participation of NaCl in the adsorption process. It has been demonstrated that in the presence of excess sodium fluoride in the reaction solution, the generated aluminium fluoride combines with sodium fluoride to form a NaAlF4 intermediate, which is subsequently converted to cryolite complexes by further adsorption of sodium fluoride34. This result confirms the XRD mapping results.Figure 3XRD patterns of DA and Al-DA before and after adsorption.Full size imageInfrared analysisFigure 4 shows the FTIR spectra of DA and Al-DA before and after adsorption: peaks at 3418, 1635, 1096, 791, and 538 cm−1 appear in the spectrum of DA spectrum before adsorption, and peaks at 3630, 3449, 1637, 1094, 913, 793, and 538 cm−1, appear in the Al-DA spectrum before adsorption. The strong and broad band centered at 3418 cm−1 is due to the stretching vibration of the adsorbed water hydroxyl group (O–H) and the surface hydroxyl group, the vibrational peak at approximately 1635 cm−1 is probably from bound water or the surface hydroxyl group; the peaks at 1096 cm−1 and 538 cm−1 correspond to siloxane groups (Si–O–Si–) and an Al–O absorption band, respectively; and the strong oscillations at 791 cm−1 may be attributed to inorganic Al salts35,36,37. The original absorption peak in the DA spectrum is shifted in the spectrum of DA modified with aluminium hydroxide, confirming the successful modification of DA. The shift of the band at 3418 cm−1 in the DA spectrum to a higher frequency at 3623 cm−1 in the DA spectrum after fluoride absorption is caused by fluoride bonding and has been previously reported38. Another noticeable change in the spectra of DA and Al-DA before and after adsorption is the increase or decrease in the intensity of bending vibrations of specific peaks because the highly electronegative fluoride may have an inductive effect on the respective groups that leads to a blueshift, and the formation of hydrogen bonds leads to a redshift and broadening of the spectral band. The shifts and changes of these peaks indicate the interaction of fluoride with the respective groups29. The new peak at approximately 1170 cm−1 in the spectra of DA and Al-DA with adsorbed fluoride may be due to the formation of Al-F bonds6. The IR spectra show that the formation of a new bonding electronic structure by surface complexation with F− is one of the main mechanisms for the adsorption of F−.Figure 4FTIR spectra of DA and Al-DA before and after adsorption.Full size imageZeta potential analysisThe zeta potential of the material surface plays a very key role in the adsorption process, which reflects the surface charge properties of the material under different pH conditions, and also reflects the surface properties of the material. To obtain the zero charge point of the material, we studied the potential change of the material under different pH values. The results are shown in Fig. 5. In the range of pH 3–11, the zeta potential of the two adsorbents decreased linearly with the increase in pH, and the pHzpc of DA and Al-DA were 9.84 and 10.61, respectively. When pH  More

  • in

    Vole outbreaks may induce a tularemia disease pit that prevents Iberian hare population recovery in NW Spain

    Study siteOur study site is in an intensive agricultural landscape in NW Spain known as “Tierra de Campos”, which occupies part of three out of nine provinces of Castilla-y-León region (Palencia, Valladolid, and Zamora). This area is considered the main “hot-spot” of tularemia in Spain and Southern Europe16 and is characterized by higher-than-average vole abundances during outbreaks17.Iberian hare abundance indexYearly occurrence of vole outbreaks in NW Spain between 1996 and 2020 (i.e., 1997, 1998, 2007, 2008, 2014, 2019) were identified based on reports in the news (historical reconstruction18) and more recently (from 2009 onward) using common vole abundance indices obtained from live-trapping monitoring (i.e.4,19).To study the Iberian hare population trends we used regional hunting statistics available from the regional government (Junta de Castilla-y-León, CAZDATA Project, https://medioambiente.jcyl.es/web/es/caza-pesca/cazdata-banco-datos-actividad.html [Cited 2022 Sep 23]), which included hunting records as well as the number of hunting licences from 1974 to 2020. We used the number of hunted hares divided by the number of hunting licences each year as an abundance index for hares in “Tierra de Campos” (compiling data from the provinces of Palencia, Zamora and Valladolid). CAZDATA Project is an initiative proposed by the Hunting Federation of Castilla y León, which has the support of the regional government and, more importantly, the commitment of almost 60% of the hunting societies in the community to implement a system for monitoring hunting activity. Since this information is gathered by hunters for the benefit of the hunting activity, we are confidence on its reliability to carry out the present study.
    Francisella tularensis prevalence in Iberian haresWe compiled data on F. tularensis prevalence in Iberian hares from 2007 to 2016 using previously published information from a passive surveillance program carried out by the “Regional Network of Epidemiological Surveillance” (Red de Vigilancia Epidemiológica de la Dirección General de Salud Pública) of Castilla-y-León region20. This provided us with information on hare tularemia prevalence (amount of positives/number of screened individual) each year within the three provinces from “Tierra de Campos”.Statistical analysesTo study Iberian hare population trends, we calculated an index of yearly hare population instantaneous growth rate (PGR) using the hunting bag data (hare abundance index) from 1996 to 2020. Hare PGR was calculated as follows:$$PGR= lnleft(frac{{AI}_{t}}{{AI}_{t+1}}right)$$where ln stands for natural logarithm, AIt is Iberian hare abundance index on year t. and AIt+1 is the Iberian hare abundance index on year t + 1. PGRs were estimated yearly from 1996 to 2019. This dependent variable was fitted to a Generalized Linear Mixed Model using the glmmTMB function (GLMMTMB, package glmmTMB21) and a gaussian family distribution and identity link function. The categorical variable vole outbreak year (i.e., with two levels: years with (1) or without vole outbreak (0), hereafter “Vole”) and “Province” (i.e., with three levels: Palencia, Valladolid and Zamora), and their interaction were used as explanatory variables. “Year” of sampling was included as a random factor (i.e., 1996–2019). Significance of the fixed effects in the models was calculated with Type II tests using the function Anova in the car package22. We previously checked the model for overdispersion and distribution fitting using function simulateResiduals (package DHARMa23, simulations = 999). The variable PGR expresses the change between year t and t + 1. We included AI at t as a covariate in the model, in order to take into account density-dependence in hare PGR (the extent to which the abundance changes in between year t and t + 1 depends on the abundance during year t). For this to make biological sense, we rescaled the covariable AI so that it has mean equal to zero. Thus, the effect of the other predictor variables in the model (i.e., “Vole” and “Province”) was interpreted as the effect that these variables have on PGR when the abundance value is at 0. Thus, the effect of “Vole” and “Province” on PGR will be obtained by the mean value of abundance.We assessed the effect of vole outbreak years on the Iberian hare’s population PGR by running a multiple Pearson correlation (function ggscatter) between PGR and AI, considering both, PGR for all the years of the study period (i.e., 1996–2019) and only those years where vole outbreaks were detected (i.e., 1997, 1998, 2007, 2008, 2014, 2019).Finally, we tested for difference in the prevalence of F. tularensis on Iberian hare’s during years with or without vole outbreaks using a GLMMTMB21 with a binomial family distribution and a logit link function, where prevalence of F. tularensis in hares was the dependent variable, and “Vole” outbreak years and “Province” (i.e. Palencia, Valladolid and Zamora) were the responses variables. In this case, the variable “Vole” outbreak years included three levels (i.e. 0 = no vole outbreak, 1 = vole outbreak year, 2 = one year after vole outbreak), to assess if F. tularensis prevalence in hare also persist one year after a vole outbreak. “Year” of sampling was included as a random factor (i.e., 2007–2016). Due to the limited sample size, we did not include the interaction between “Vole” and “Province” to not overfit the model. We also previously checked the model for overdispersion and distribution fitting using function simulateResiduals (package DHARMa23, simulations = 999). All analysis were carried out using the R statistical computing environment24. More

  • in

    Climate, landscape, and life history jointly predict multidecadal community mosquito phenology

    Visser, M. E. & Holleman, L. J. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc. Biol. Sci. 268, 289–294 (2001).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duchenne, F. et al. Phenological shifts alter the seasonal structure of pollinator assemblages in Europe. Nat. Ecol. Evol. 4, 115–121 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bartomeus, I. et al. Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc. Natl. Acad. Sci. U. S. A. 108, 20645–20649 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).Article 

    Google Scholar 
    Organization, W. H. et al. Global vector control response 2017–2030. In Global Vector Control Response 2017–2030 (2017).Reisen, W. K. et al. Effects of warm winter temperature on the abundance and gonotrophic activity of Culex (Diptera: Culicidae) in California. J. Med. Entomol. 47, 230–237 (2010).Article 
    PubMed 

    Google Scholar 
    Denlinger, D. L. & Armbruster, P. A. Mosquito diapause. Annu. Rev. Entomol. 59, 73–93 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mullen, G. R. & Durden, L. A. Medical and Veterinary Entomology. (Academic Press, 2009).Messenger, P. S. Bioclimatic studies with insects. Annu. Rev. Entomol. 4, 183–206 (1959).Article 

    Google Scholar 
    Hard, J. J., Bradshaw, W. E. & Holzapfel, C. M. The genetic basis of photoperiodism and its evolutionary divergence among populations of the pitcher-plant mosquito, Wyeomyia smithii. Am. Nat. 142, 457–473 (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Danilevskii, A. S. et al. Photoperiodism and seasonal development of insects. In Photoperiodism and Seasonal Development of Insects (1965).Nietschke, B. S., Magarey, R. D., Borchert, D. M., Calvin, D. D. & Jones, E. A developmental database to support insect phenology models. Crop Prot. 26, 1444–1448 (2007).Article 

    Google Scholar 
    Vinogradova, E. B. Diapause in aquatic insects, with emphasis on mosquitoes. In Diapause in Aquatic Invertebrates Theory and Human Use (eds. Alekseev, V. R., de Stasio, B. T. & Gilbert, J. J.) 83–113 (Springer Netherlands, 2007).Chown, S. L. & Terblanche, J. S. Physiological diversity in insects: Ecological and evolutionary contexts. Adv. Insect Phys. 33, 50–152 (2006).Article 

    Google Scholar 
    Belitz, M. W. et al. Climate drivers of adult insect activity are conditioned by life history traits. Ecol. Lett. 24, 2687–2699 (2021).Article 
    PubMed 

    Google Scholar 
    Townroe, S. & Callaghan, A. British container breeding mosquitoes: The impact of urbanisation and climate change on community composition and phenology. PLoS ONE 9, e95325 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westby, K. M., Adalsteinsson, S. A., Biro, E. G., Beckermann, A. J. & Medley, K. A. Aedes albopictus populations and larval habitat characteristics across the landscape: Significant differences exist between urban and rural land use types. Insects 12, 196 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, D., Stucky, B. J., Deck, J., Baiser, B. & Guralnick, R. P. The effect of urbanization on plant phenology depends on regional temperature. Nat. Ecol. Evol. 3, 1661–1667 (2019).Article 
    PubMed 

    Google Scholar 
    Diniz, D. F. A., de Albuquerque, C. M. R., Oliva, L. O., de Melo-Santos, M. A. V. & Ayres, C. F. J. Diapause and quiescence: Dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasit. Vectors 10, 310 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rund, S. S. C., Moise, I. K., Beier, J. C. & Martinez, M. E. Rescuing troves of hidden ecological data to tackle emerging mosquito-borne diseases. J. Am. Mosq. Control Assoc. 35, 75–83 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dewitz, J., U.S. Geological Survey. National Land Cover Database (NLCD) 2019 Products (ver. 2. 0, June 2021): U.S. Geological Survey data release (ver. 2. 0, June 2021): U.S. Geological Survey data release.Woodring, J. et al. Diapause, transovarial transmission, and filial infection rates in geographic strains of La Crosse virus-infected Aedes triseriatus. Am. J. Trop. Med. Hyg. 58, 587–588 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ellwood, E. R. et al. Disentangling the paradox of insect phenology: Are temporal trends reflecting the response to warming?. Oecologia 168, 1161–1171 (2012).Article 
    ADS 
    PubMed 

    Google Scholar 
    Degaetano, A. T. Meteorological effects on adult mosquito (Culex) populations in metropolitan New Jersey. Int. J. Biometeorol. 49, 345–353 (2005).Article 
    ADS 
    PubMed 

    Google Scholar 
    Su, T., Webb, J. P., Meyer, R. P. & Mulla, M. S. Spatial and temporal distribution of mosquitoes in underground storm drain systems in Orange County, California. J. Vector Ecol. 28, 79–89 (2003).PubMed 

    Google Scholar 
    Harbison, J. E., Henry, M., Xamplas, C. & Dugas, L. R. Evaluation of Culex pipiens populations in a residential area with a high density of catch basins in a suburb of Chicago, Illinois. J. Am. Mosq. Control Assoc. 30, 228–230 (2014).Article 
    PubMed 

    Google Scholar 
    Wang, X. et al. Impact of underground storm drain systems on larval ecology of Culex and Aedes species in urban environments of Southern California. Sci. Rep. 11, 12667 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geery, P. R. & Holub, R. E. Seasonal abundance and control of Culex spp. in catch basins in Illinois. J. Am. Mosq. Control Assoc. 5, 537–540 (1989).CAS 
    PubMed 

    Google Scholar 
    Nelms, B. M., Macedo, P. A., Kothera, L., Savage, H. M. & Reisen, W. K. Overwintering biology of Culex (Diptera: Culicidae) mosquitoes in the Sacramento Valley of California. J. Med. Entomol. 50, 773–790 (2013).Article 
    PubMed 

    Google Scholar 
    Becker, N. et al. Mosquitoes and Their Control (Springer, 2010).Book 

    Google Scholar 
    Bartlett-Healy, K., Crans, W. & Gaugler, R. Temporal and spatial synchrony of Culex territans (Diptera: Culicidae) with their amphibian hosts. J. Med. Entomol. 45, 1031–1038 (2008).Article 
    PubMed 

    Google Scholar 
    Reeves, L. E. et al. Identification of Uranotaenia sapphirina as a specialist of annelids broadens known mosquito host use patterns. Commun. Biol. 1, 92 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burkett-Cadena, N. D. et al. Host reproductive phenology drives seasonal patterns of host use in mosquitoes. PLoS One 6, e17681 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Strien, A. J., Plantenga, W. F., Soldaat, L. L., van Swaay, C. A. M. & Wallisdevries, M. F. Bias in phenology assessments based on first appearance data of butterflies. Oecologia 156, 227–235 (2008).Article 
    ADS 
    PubMed 

    Google Scholar 
    Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giraldo-Calderón, G. I. et al. Vectorbase.org updates: Bioinformatic resources for invertebrate vectors of human pathogens and related organisms. Curr. Opin. Insect Sci. 50, 100860 (2022).Article 
    PubMed 

    Google Scholar 
    Wickham, François, Henry & Müller. dplyr: A grammar of data manipulation. R package version 0.4.Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).Article 

    Google Scholar 
    Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).Article 

    Google Scholar 
    Johnson, M. climateR: climateR. R package version 0.1.0. https://github.com/mikejohnson51/climateR.Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 
    ADS 

    Google Scholar 
    Schmucki, R., Harrower, C. A. & Dennis, E. B.. rbms: Computing generalised abundance indices for butterfly monitoring count data. R package version.Belitz, M. W., Larsen, E. A., Shirey, V., Li, D. & Guralnick, R. P. Phenological research based on natural history collections: Practical guidelines and a lepidopteran case study. Funct. Ecol. https://doi.org/10.1111/1365-2435.14173 (2022).Article 

    Google Scholar 
    Larsen, E. A., Belitz, M. W., Guralnick, R. P. & Ries, L. Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data. Sci. Rep. 12, 13370 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models Usinglme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression. (SAGE Publications, 2018).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).Article 
    ADS 

    Google Scholar 
    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lüdecke, D. sjPlot: Data visualization for statistics in social science. R package version. More

  • in

    Interpreting random forest analysis of ecological models to move from prediction to explanation

    Random forest: feature importance and interactivityOur random forests produced highly accurate predictions of local stability when trained on model output from the full dataset (e.g., AUC = 0.998 across all 5 parameters, see Fig. 2A) and all tested subsets. Running random forests on the full results set with all five parameters as predictors indicated both demographic and trophic rates were important to understanding resultant model stability. Moreover, results reveal that whether in multi-stage (red line; Fig. 2A) or single stage herbivory (e.g., ({a}_{2}) = 0, ({a}_{F}) ≥ 0; blue line Fig. 2A), parameters’ contribution to predictive power is related to their interactivity with other parameters (blue line; Fig. 2A). Note, a similar analysis with ({a}_{2})  > 0 and ({a}_{F}) = 0 is not possible because this type of herbivory is always stable.This interactivity was apparent in our attempts to understand how our specific parameters affected the behavior of our model in Eq. (1) via studying their effects as features in driving random forest predictions. Initial investigations into individual feature effects revealed that the effect of any single feature (parameter) on trophic dynamics could change substantially based on the values of our other features (parameters). Specifically, the average marginal effects (e.g., PD plots; Fig. S3) on simulation dynamics belied a high degree of variability in feature effects throughout the simulation data (e.g., ICE plots; Fig. S3).Breaking down results into further subsets of set specific attack rates with varying demographic rates revealed that this variability in feature effects was largely based on the changes in feature importance and effect over different allocations of herbivory on ontogenetic stages. This breakdown affected the relationship between importance and interactivity (Fig. 2A) such that it was inconsistent but still visible in aggregate across our simulation parameters (Fig. 2B,C). Figure 2D–F depict how different allocations and intensity of herbivory across plant ontogeny change the influence of each demographic parameter in driving model stability.Given how the influence of plant demographic rates over model behavior changed across trophic allocation (Fig. 2D–F), we first focused in depth analysis on variable demographic rates across static allocations of herbivore attack rates. By limiting the number of varying features, we use multivariate analysis to develop a fuller understanding of dynamics in subsections of the data which functioned as a scaffolding for further investigation. Specifically, we took a hierarchical approach, first developing an understanding of single-stage herbivory as a basis to study single-stage dominant herbivory (Fig. 3), which then leads us to a better overall understanding of our system’s dynamics across all trophic rates.Figure 3Interactive feature effects on model behavior. Across different herbivory allocations, partial dependence (PD) plots (A,C,E) show interactive effects between maturation rates on categorical simulation stability. Threshold plots (B,D,F) extend this analysis to include gradations of seed production rates. (A,B) Herbivory allocation ({a}_{F}) = 1.0 and ({a}_{2}) = 0.0. (A) Partial dependence plot shows probability of stability across all values of ({r}_{F}). (B) Threshold plot shows the location of the threshold between stable and unstable dynamics in {({g}_{12}),({g}_{2F})} parameter space as a function of seed production levels (({r}_{F})). (C,D) Herbivory allocation ({a}_{F}) = 0.2 and ({a}_{2}) = 1.0. (C) Partial dependence plot shows probability of stability across all values of ({r}_{F}). (D) Threshold plot shows the location of the threshold between stable and unstable dynamics in {({g}_{12}), ({g}_{2F})} parameter space as a function of seed production levels (({r}_{F})). (E,F) Herbivory allocation ({a}_{F}) = 1.0 and ({a}_{2}) = 0.2. (E) Partial dependence plot shows probability of stability across all values of ({r}_{F}). (F) Threshold plot shows the location of the threshold between stable and unstable dynamics in {({g}_{12}), ({g}_{2F})} parameter space as a function of seed production levels (({r}_{F})).Full size imageSingle stage consumptionIn the case of the seedling-only herbivore (({S}_{2}); via ({a}_{2})  > 0 and ({a}_{F}) = 0), all simulations produced stable trophic dynamics. This occurs because density loss in the seedling stage means more juveniles never reach maturity and reproduce themselves19. This essentially reduces the effective reproduction rate, limits the reproductive plant density, and decreases resources available to the herbivore (similar to lowering intrinsic reproduction in the classic Lotka–Volterra model). In fact, seedling herbivory only induced oscillations at higher handling times, a common effect of high handling time (results not shown).On the other hand, concentrating consumption on the fecund stage ((F)) can induce both stable and oscillating trajectories (Fig. S4). Consumption of (F) does not induce the same regulation of reproductive potential that stabilizes under seedling-only consumption, and so is vulnerable to boom/bust populations cycles. We chose the two most consistently important (Fig. 2B) and interactive (Fig. 2C and Fig. S5) parameters, ({g}_{12}) and ({g}_{2F}), in order to search for dominant effects on model behavior and their interactions. These parameters functioned as focal axes for our two-dimensional PD plots36. These PD plots depict the estimates of marginal effect of each parameter on random forest predictions, which in this case is categorical stability (Fig. 3A). We can see that stability estimates are increased by lowering either or both per-capita germination and/or maturation rates (({g}_{12}) and ({g}_{2F})). Demographically, reduced maturation rates shift the ratio of plant population density across its ontogeny, creating a larger juvenile population shielded from consumer pressure. Trophically, this restricts resources for the herbivore, thereby limiting losses in plant density due to herbivory (({theta }_{F})) relative to the overall plant density.This mechanism is so influential in determining trophic dynamics, its effect on stability is statistically detectable pre-simulation via equilibrium values. Losses in plant density due to herbivory are labeled under brackets in Eq. (1) as ({theta }_{F}) and ({theta }_{2}), which we can represent as ({theta }_{F}^{*}) and ({theta }_{2}^{*}) at equilibria. Relative to overall plant density we can define a ratio for plants of consumptive losses to total density (L:D ratio) such that:$$mathrm{L}:mathrm{D ratio}=({theta }_{F}^{*}+ {theta }_{2}^{*})/({S}_{1}^{*} +{S}_{2}^{*}+{F}^{*}).$$
    (2)
    When applied as a predictor variable on the same adult-herbivory subsection presented in Fig. 3A via a simple linear regression, we can see that L:D ratio alone explains ~ 45% of the variance of the maximum eigenvalue in simple linear models (F-statistic: 4578 on 1 and 5598 DF, p-value:  More

  • in

    The terrestrial isopod symbiont ‘Candidatus Hepatincola porcellionum’ is a potential nutrient scavenger related to Holosporales symbionts of protists

    McCutcheon JP, Boyd BM, Dale C. The life of an insect endosymbiont from the cradle to the grave. Curr Biol. 2019;29:R485–95.Article 
    CAS 
    PubMed 

    Google Scholar 
    McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2012;10:13–26.Article 
    CAS 

    Google Scholar 
    Latorre A, Manzano-Marin A. Dissecting genome reduction and trait loss in insect endosymbionts. Ann N Y Acad Sci. 2017;1389:52–75.Article 
    PubMed 

    Google Scholar 
    Salje J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat Rev Microbiol. 2021;19:375–90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, et al. Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe. 2021;29:879–93.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pilgrim J, Thongprem P, Davison HR, Siozios S, Baylis M, Zakharov EV, et al. Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. Gigascience. 2021;10:giab021.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pilgrim J, Ander M, Garros C, Baylis M, Hurst GDD, Siozios S. Torix group Rickettsia are widespread in Culicoides biting midges (Diptera: Ceratopogonidae), reach high frequency and carry unique genomic features. Environ Microbiol. 2017;19:4238–55.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horn M, Fritsche TR, Gautom RK, Schleifer KH, Wagner M. Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environ Microbiol. 1999;1:357–67.Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulz F, Lagkouvardos I, Wascher F, Aistleitner K, Kostanjsek R, Horn M. Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae. ISME J. 2014;8:1634–44.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schulz F, Martijn J, Wascher F, Lagkouvardos I, Kostanjsek R, Ettema TJ, et al. A Rickettsiales symbiont of amoebae with ancient features. Environ Microbiol. 2016;18:2326–42.Article 
    CAS 
    PubMed 

    Google Scholar 
    Hess S, Suthaus A, Melkonian M. “Candidatus Finniella” (Rickettsiales, Alphaproteobacteria), Novel Endosymbionts of Viridiraptorid Amoeboflagellates (Cercozoa, Rhizaria). Appl Environ Microbiol. 2016;82:659–70.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castelli M, Sabaneyeva E, Lanzoni O, Lebedeva N, Floriano AM, Gaiarsa S, et al. Deianiraea, an extracellular bacterium associated with the ciliate Paramecium, suggests an alternative scenario for the evolution of Rickettsiales. ISME J. 2019;13:2280–94.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Floriano AM, Castelli M, Krenek S, Berendonk TU, Bazzocchi C, Petroni G, et al. The genome sequence of “Candidatus Fokinia solitaria”: insights on reductive evolution in Rickettsiales. Genome Biol Evol. 2018;10:1120–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    George EE, Husnik F, Tashyreva D, Prokopchuk G, Horak A, Kwong WK, et al. Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr Biol. 2020;30:925–33.e3.Article 
    CAS 
    PubMed 

    Google Scholar 
    Midha S, Rigden DJ, Siozios S, Hurst GDD, Jackson AP. Bodo saltans (Kinetoplastida) is dependent on a novel Paracaedibacter-like endosymbiont that possesses multiple putative toxin-antitoxin systems. ISME J. 2021;15:1680–94.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castelli M, Lanzoni O, Giovannini M, Lebedeva N, Gammuto L, Sassera D, et al. ‘Candidatus Gromoviella agglomerans’, a novel intracellular Holosporaceae parasite of the ciliate Paramecium showing marked genome reduction. Environ Microbiol Rep. 2022;14:34–49.Article 
    CAS 
    PubMed 

    Google Scholar 
    Klinges JG, Rosales SM, McMinds R, Shaver EC, Shantz AA, Peters EC, et al. Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov. ISME J. 2019;13:2938–53.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kroer P, Kjeldsen KU, Nyengaard JR, Schramm A, Funch P. A novel extracellular gut symbiont in the marine worm Priapulus caudatus (Priapulida) reveals an Alphaproteobacterial symbiont clade of the ecdysozoa. Front Microbiol. 2016;7:539.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yurchenko T, Sevcikova T, Pribyl P, El Karkouri K, Klimes V, Amaral R, et al. A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria. ISME J. 2018;12:2163–75.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferla MP, Thrash JC, Giovannoni SJ, Patrick WM. New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS ONE. 2013;8:e83383.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Szokoli F, Castelli M, Sabaneyeva E, Schrallhammer M, Krenek S, Doak TG, et al. Disentangling the taxonomy of Rickettsiales and description of two novel symbionts (“Candidatus Bealeia paramacronuclearis” and “Candidatus Fokinia cryptica”) sharing the cytoplasm of the ciliate protist Paramecium biaurelia. Appl Environ Microbiol. 2016;82:7236–47.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Munoz-Gomez SA, Hess S, Burger G, Lang BF, Susko E, Slamovits CH, et al. An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. eLife. 2019;8:e42535.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sassera D, Beninati T, Bandi C, Bouman EA, Sacchi L, Fabbi M, et al. ‘Candidatus Midichloria mitochondrii’, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. Int J Syst Evol Microbiol. 2006;56:2535–40.Article 
    CAS 
    PubMed 

    Google Scholar 
    Fokin SI, Görtz HD, Diversity of Holospora bacteria in Paramecium and their characterization. In: Fujishima M, editor. Endosymbionts in Paramecium. Microbiology Monographs, vol 12. Berlin: Springer; 2009. https://doi.org/10.1007/978-3-540-92677-1_7.Min CK, Yang JS, Kim S, Choi MS, Kim IS, Cho NH. Genome-based construction of the metabolic pathways of Orientia tsutsugamushi and comparative analysis within the Rickettsiales order. Comp Funct Genomics. 2008;2008:623145.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garushyants SK, Beliavskaia AY, Malko DB, Logacheva MD, Rautian MS, Gelfand MS. Comparative genomic analysis of Holospora spp., intranuclear symbionts of paramecia. Front Microbiol. 2018;9:738.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boscaro V, Fokin SI, Schrallhammer M, Schweikert M, Petroni G. Revised systematics of Holospora-like bacteria and characterization of “Candidatus Gortzia infectiva”, a novel macronuclear symbiont of Paramecium jenningsi. Microb Ecol. 2013;65:255–67.Article 
    CAS 
    PubMed 

    Google Scholar 
    Serra V, Fokin SI, Castelli M, Basuri CK, Nitla V, Verni F, et al. “Candidatus Gortzia shahrazadis”, a novel endosymbiont of Paramecium multimicronucleatum and a revision of the biogeographical distribution of Holospora-like bacteria. Front Microbiol. 2016;7:1704.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takeshita K, Yamada T, Kawahara Y, Narihiro T, Ito M, Kamagata Y, et al. Tripartite symbiosis of an anaerobic scuticociliate with two hydrogenosome-associated endosymbionts, a Holospora-related Alphaproteobacterium and a Methanogenic Archaeon. Appl Environ Microbiol. 2019;85:e00854–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang Y, Brune A, Zimmer M. Bacterial symbionts in the hepatopancreas of isopods: diversity and environmental transmission. FEMS Microbiol Ecol. 2007;61:141–52.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang Y, Stingl U, Anton-Erxleben F, Zimmer M, Brune A. ‘Candidatus Hepatincola porcellionum’ gen. nov., sp. nov., a new, stalk-forming lineage of Rickettsiales colonizing the midgut glands of a terrestrial isopod. Arch Microbiol. 2004;181:299–304.Article 
    CAS 
    PubMed 

    Google Scholar 
    Fraune S, Zimmer M. Host-specificity of environmentally transmitted Mycoplasma-like isopod symbionts. Environ Microbiol. 2008;10:2497–504.Article 
    CAS 
    PubMed 

    Google Scholar 
    Dittmer J, Lesobre J, Moumen B, Bouchon D. Host origin and tissue microhabitat shaping the microbiota of the terrestrial isopod Armadillidium vulgare. FEMS Microbiol Ecol. 2016;92:fiw063.Article 
    PubMed 

    Google Scholar 
    Zimmer M, Topp W. Microorganisms and cellulose digestion in the gut of the woodlouse Porcellio scaber. J Chem Ecol. 1998;24:1397–408.Article 
    CAS 

    Google Scholar 
    Zimmer M, Danko JP, Pennings SC, Danford AR, Ziegler A, Uglow RF, et al. Hepatopancreatic endosymbionts in coastal isopods (Crustacea: Isopoda), and their contribution to digestion. Mar Biol. 2001;138:955–63.Article 

    Google Scholar 
    Bouchon D, Zimmer M, Dittmer J. The terrestrial isopod microbiome: an all-in-one toolbox for animal-microbe interactions of ecological relevance. Front Microbiol. 2016;7:1472.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dittmer J, Beltran-Bech S, Lesobre J, Raimond M, Johnson M, Bouchon D. Host tissues as microhabitats for Wolbachia and quantitative insights into the bacterial community in terrestrial isopods. Mol Ecol. 2014;23:2619–35.Article 
    CAS 
    PubMed 

    Google Scholar 
    Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12:733–5.Article 
    CAS 
    PubMed 

    Google Scholar 
    Vaser R, Sovic I, Nagarajan N, Sikic M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–46.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol. 2022;18:e1009802.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bredon M, Dittmer J, Noel C, Moumen B, Bouchon D. Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate. Microbiome. 2018;6:162.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bredon M, Herran B, Bertaux J, Greve P, Moumen B, Bouchon D. Isopod holobionts as promising models for lignocellulose degradation. Biotechnol Biofuels. 2020;13:49.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics. 2020;70:e102.Article 
    CAS 
    PubMed 

    Google Scholar 
    Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Badawi M, Moumen B, Giraud I, Greve P, Cordaux R. Investigating the molecular genetic basis of cytoplasmic sex determination caused by Wolbachia endosymbionts in terrestrial isopods. Genes. 2018;9:290.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom. 2017;3:e000132.PubMed 
    PubMed Central 

    Google Scholar 
    Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods. 2020;17:1103–10.Article 
    CAS 
    PubMed 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49:D412–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Marchler-Bauer A, Bryant SH. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32:W327–31.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.Article 
    CAS 
    PubMed 

    Google Scholar 
    Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012;28:464–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.Article 
    CAS 
    PubMed 

    Google Scholar 
    Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS, et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol. 2021;6:3–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cantalapiedra CP, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.Article 
    CAS 
    PubMed 

    Google Scholar 
    Abby SS, Cury J, Guglielmini J, Neron B, Touchon M, Rocha EP. Identification of protein secretion systems in bacterial genomes. Sci Rep. 2016;6:23080.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teufel F, Almagro Armenteros JJ, Johansen AR, Gislason MH, Pihl SI, Tsirigos KD, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. 2022;40:1023–5.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elbourne LD, Tetu SG, Hassan KA, Paulsen IT. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 2017;45:D320–4.Article 
    CAS 
    PubMed 

    Google Scholar 
    Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021;49:W29–35.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5.Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016;65:997–1008.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schrallhammer M, Castelli M, Petroni G. Phylogenetic relationships among endosymbiotic R-body producer: bacteria providing their host the killer trait. Syst Appl Microbiol. 2018;41:213–20.Article 
    PubMed 

    Google Scholar 
    Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, et al. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev. 2015;39:47–80.CAS 
    PubMed 

    Google Scholar  More