More stories

  • in

    Global Protected Areas as refuges for amphibians and reptiles under climate change

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cowie, R. H., Bouchet, P. & Fontaine, B. The Sixth Mass Extinction: fact, fiction or speculation? Biol. Rev. 97, 640–663 (2022).Article 
    PubMed 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Urban, M. et al. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pincheira-Donoso, D. et al. Temporal and spatial patterns of vertebrate extinctions during the Anthropocene. Preprint at bioRxiv https://doi.org/10.1101/2022.05.05.490605 (2022).Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).Article 
    PubMed 

    Google Scholar 
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).Article 
    ADS 

    Google Scholar 
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).Article 
    ADS 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaston, K. J., Jackson, S. F., Cantú-Salazar, L. & Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 39, 93–113 (2008).Article 

    Google Scholar 
    Saout, S. L. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).Article 
    ADS 
    PubMed 

    Google Scholar 
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Araújo, M. B., Alagador, D., Cabeza, M., Noguésbravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett. 14, 484–492 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, Y., Zhang, J., Jiang, J., Nielsen, S. & He, F. Assessing the effectiveness of China’s protected areas to conserve current and future amphibian diversity. Divers. Distrib. 23, 146–157 (2017).Article 

    Google Scholar 
    Jenkins, C. N. & Joppa, L. Expansion of the global terrestrial protected area system. Biol. Conserv. 142, 2166–2174 (2009).Article 

    Google Scholar 
    Johnston, A. et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Change 3, 1055–1061 (2013).Article 
    ADS 

    Google Scholar 
    Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change-evidence from large-scale, long-term abundance data. Glob. Change Biol. 25, 304–313 (2018).Article 
    ADS 

    Google Scholar 
    Coetzee, B. W. T., Robertson, M. P., Erasmus, B. F. N., Rensburg, B. J. V. & Thuiller, W. Ensemble models predict Important Bird Areas in southern Africa will become less effective for conserving endemic birds under climate change. Glob. Ecol. Biogeogr. 18, 701–710 (2009).Article 

    Google Scholar 
    Araújo, M. B., Cabeza, M., Thuiller, W., Hannah, L. & Williams, P. H. Would climate change drive species out of reserves? An assessment of existing reserve‐selection methods. Glob. Change Biol. 10, 1618–1626 (2004).Article 
    ADS 

    Google Scholar 
    Pouzols, F. M. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).Article 
    ADS 

    Google Scholar 
    Monzn, J., Moyer-Horner, L. & Palamar, M. B. Climate change and species range dynamics in protected areas. Bioscience 61, 752–761 (2011).Article 

    Google Scholar 
    Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).Article 
    PubMed 

    Google Scholar 
    Liu, X. et al. Animal invaders threaten protected areas worldwide. Nat. Commun. 11, 2892 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carlson, C. J. et al. Climate change increases cross-species viral transmission risk. Nature 607, 555–562 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mi, C., Huettmann, F. & Guo, Y. Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii) in China for the 21st century. Peerj 4, e1630–e1630 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, G., Papeş, M., Giam, X., Cho, S.-H. & Armsworth, P. R. Are protected areas well-sited to support species in the future in a major climate refuge and corridor in the United States? Biol. Conserv. 255, 108982 (2021).Article 

    Google Scholar 
    Gutiérrez, J. A. & Duivenvoorden, J. F. Can we expect to protect threatened species in protected areas? A case study of the genus Pinus in Mexico. Rev. Mexicana Biodivers. 81, 875–882 (2010).
    Google Scholar 
    Velásquez-Tibatá, J., Salaman, P. & Graham, C. H. Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Reg. Environ. Change 13, 235–248 (2013).Article 

    Google Scholar 
    Riquelme, C. et al. Protected areas’ effectiveness under climate change: a latitudinal distribution projection of an endangered mountain ungulate along the Andes Range. Peerj 6, e5222 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bazzichetto, M. et al. Plant invasion risk: a quest for invasive species distribution modelling in managing protected areas. Ecol. Indic. 95, 311–319 (2018).Article 

    Google Scholar 
    Hannah, L. et al. Protected area needs in a changing climate. Front. Ecol. Environ. 5, 131–138 (2007).Article 

    Google Scholar 
    Cox, N. et al. A global reptile assessment highlights shared conservation needs of tetrapods. Nature 695, 285–290 (2022).Article 
    ADS 

    Google Scholar 
    IUCN. The IUCN red list of threatened species. http://www.iucnredlist.org/ (2021).Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cordier, J. M. et al. A global assessment of amphibian and reptile responses to land-use changes. Biol. Conserv. 253, 108863 (2021).Article 

    Google Scholar 
    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).Article 
    ADS 

    Google Scholar 
    Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Blaustein, A. R. & Kiesecker, J. M. Complexity in conservation: lessons from the global decline of amphibian populations. Ecol. Lett. 5, 597–608 (2002).Article 

    Google Scholar 
    Kraus, F. Impacts from invasive reptiles and amphibians. Annu. Rev. Ecol. Evol. Syst. 46, 75–97 (2015).Article 

    Google Scholar 
    Alford, R. A., Bradfield, K. S. & Richards, S. J. Global warming and amphibian losses. Nature 447, E3–E4 (2007).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hof, C., Araújo, M. B., Jetz, W. & Rahbek, C. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480, 516–519 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rohr, J. R. & Raffel, T. R. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proc. Natl Acad. Sci. USA 107, 8269–8274 (2008).Article 
    ADS 

    Google Scholar 
    Pincheira‐Donoso, D. et al. The global macroecology of brood size in amphibians reveals a predisposition of low‐fecundity species to extinction. Glob. Ecol. Biogeogr. 30, 1299–1310 (2021).Article 

    Google Scholar 
    Smith, M. A. & Green, D. M. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28, 110–128 (2005).Article 

    Google Scholar 
    Borzée, A. et al. Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander: Karsenia koreana. Sci. Rep. 9, 11838 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heller, N. E. & Zavaleta, E. S. Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol. Conserv. 142, 14–32 (2009).Article 

    Google Scholar 
    Haight, J. & Hammill, E. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 241, 108258 (2020).Article 

    Google Scholar 
    Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lawson, C. R., Bennie, J. J., Thomas, C. D., Hodgson, J. A. & Wilson, R. J. Active management of protected areas enhances metapopulation expansion under climate change. Conserv. Lett. 7, 111–118 (2014).Article 

    Google Scholar 
    Beale, C. M., Baker, N. E., Brewer, M. J. & Lennon, J. J. Protected area networks and savannah bird biodiversity in the face of climate change and land degradation. Ecol. Lett. 16, 1061–1068 (2013).Article 
    PubMed 

    Google Scholar 
    D’Amen, M. et al. Will climate change reduce the efficacy of protected areas for amphibian conservation in Italy? Biol. Conserv. 144, 989–997 (2011).Article 

    Google Scholar 
    Singh, M. Evaluating the impact of future climate and forest cover change on the ability of Southeast (SE) Asia’s protected areas to provide coverage to the habitats of threatened avian species. Ecol. Indic. 114, 106307 (2020).Article 

    Google Scholar 
    Hole, D. G. et al. Projected impacts of climate change on a continent‐wide protected area network. Ecol. Lett. 12, 420–431 (2009).Article 
    PubMed 

    Google Scholar 
    Lehikoinen, P. et al. Increasing protected area coverage mitigates climate-driven community changes. Biol. Conserv. 253, 108892 (2021).Article 

    Google Scholar 
    Araújo, M. B., Thuiller, W. & Pearson, R. G. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33, 1712–1728 (2006).Article 

    Google Scholar 
    Girardello, M., Griggio, M., Whittingham, M. J. & Rushton, S. P. Models of climate associations and distributions of amphibians in Italy. Ecol. Res. 25, 103–111 (2010).Article 

    Google Scholar 
    McMenamin, S. K., Hadly, E. A. & Wright, C. K. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl Acad. Sci. USA 105, 16988–16993 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ficetola, G. F. & Maiorano, L. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia 181, 683–693 (2016).Article 
    ADS 
    PubMed 

    Google Scholar 
    Bickford, D., Howard, S. D., Ng, D. J. J. & Sheridan, J. A. Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodivers. Conserv. 19, 1043–1062 (2010).Article 

    Google Scholar 
    Manne, L. L., Brooks, T. M. & Pimm, S. L. Relative risk of extinction of passerine birds on continents and islands. Nature 399, 258–261 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change 4, 217–221 (2014).Article 
    ADS 

    Google Scholar 
    Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature 605, 103–107 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    WWF. Tropical and Subtropical Moist Broadleaf Forest Ecoregions (World Wide Fund for Nature, 2019).Rodrigues, A. S. L. et al. Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54, 1092–1100 (2004).Article 

    Google Scholar 
    Hidasi‐Neto, J., Loyola, R. & Cianciaruso, M. V. Global and local evolutionary and ecological distinctiveness of terrestrial mammals: identifying priorities across scales. Divers. Distrib. 21, 548–559 (2015).Article 

    Google Scholar 
    Martin, J.-L., Maris, V. & Simberloff, D. S. The need to respect nature and its limits challenges society and conservation science. Proc. Natl Acad. Sci. USA 113, 6105–6112 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Czech, B., Krausman, P. & Devers, P. Economic associations among causes of species endangerment in the United States. Bioscience 50, 593–601 (2000).Article 

    Google Scholar 
    CBD. First draft of the post-2020 global biodiversity framework. https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf (2021).Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).Article 
    PubMed 

    Google Scholar 
    Ficetola, G. F. et al. An evaluation of the robustness of global amphibian range maps. J. Biogeogr. 41, 211–221 (2014).Article 

    Google Scholar 
    Aiello‐Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).Article 

    Google Scholar 
    Erfanian, M. B., Sagharyan, M., Memariani, F. & Ejtehadi, H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 11, 9159 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, J. L., Cameron, A., Yoder, A. D. & Vences, M. A necessarily complex model to explain the biogeography of the amphibians and reptiles of Madagascar. Nat. Commun. 5, 5046 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gaston, K. J. Rarity as double jeopardy. Nature 394, 229–230 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Li, X., Liu, X., Kraus, F., Tingley, R. & Li, Y. Risk of biological invasions is concentrated in biodiversity hotspots. Front. Ecol. Environ. 14, 411–417 (2016).Article 

    Google Scholar 
    Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).Article 

    Google Scholar 
    Xin, X., Wu, T. & Zhang, J. Introduction of CMIP5 experiments carried out with the climate system models of beijing climate center. Adv. Clim. Change Res. 4, 41–49 (2013).Article 

    Google Scholar 
    Voldoire, A. et al. The CNRM-CM5.1 global climate model: description and basic evaluation. Clim. Dyn. 40, 2091–2121 (2013).Article 

    Google Scholar 
    Watanabe, S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872 (2011).Article 
    ADS 

    Google Scholar 
    Mi, C. et al. Temperate and tropical lizards are vulnerable to climate warming due to increased water loss and heat stress. Proc. R. Soc. Lond. B. Biol. Sci. 289, 20221074 (2022).
    Google Scholar 
    Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).Article 

    Google Scholar 
    Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?: How to use pseudo-absences in niche modelling? Methods Ecol. Evol. 3, 327–338 (2012).Article 

    Google Scholar 
    Andrade, A. F. A., de, Velazco, S. J. E. & Júnior, P. D. M. ENMTML: an R package for a straightforward construction of complex ecological niche models. Environ. Modell. Softw. 125, 104615 (2020).Article 

    Google Scholar 
    Senay, S. D., Worner, S. P. & Ikeda, T. Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLos ONE 8, e71218 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thuiller, W. BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).Article 
    ADS 

    Google Scholar 
    Williams, J. N. et al. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 15, 565–576 (2009).Article 

    Google Scholar 
    Graham, C. H. et al. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol. 45, 239–247 (2008).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Mi, C., Huettmann, F., Guo, Y., Han, X. & Wen, L. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. Peerj 5, e2849 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Drake, J. M., Randin, C. & Guisan, A. Modelling ecological niches with support vector machines. J. Appl. Ecol. 43, 424–432 (2006).Article 

    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    McPherson, J., Jetz, W. & Rogers, D. J. The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J. Appl. Ecol. 41, 811–823 (2004).Article 

    Google Scholar 
    Wang, B. et al. Australian wheat production expected to decrease by the late 21st century. Glob. Change Biol. 24, 2403–2415 (2017).Article 
    ADS 

    Google Scholar 
    Gallardo, B. et al. Protected areas offer refuge from invasive species spreading under climate change. Glob. Change Biol. 23, 5331–5343 (2017).Article 
    ADS 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).Article 

    Google Scholar 
    UNEP-WCMC, I. and. The world database on protected areas (WDPA). https://www.protectedplanet.net/en#4_43.25_111_0 (2014).Asamoah, E. F., Beaumont, L. J. & Maina, J. M. Climate and land-use changes reduce the benefits of terrestrial protected areas. Nat. Clim. Change 11, 1105–1110 (2021).Article 
    ADS 

    Google Scholar 
    Brennan, A. et al. Functional connectivity of the world’s protected areas. Science 376, 1101–1104 (2022).You, Z. et al. Pitfall of big databases. Proc. Natl Acad. Sci. USA 115, 201813323 (2018).Article 

    Google Scholar 
    Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Albuquerque, F. & Beier, P. Rarity-weighted richness: a simple and reliable alternative to integer programming and heuristic algorithms for minimum set and maximum coverage problems in conservation planning. PLoS ONE 10, e0119905 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tang, C. Q. et al. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun. 9, 4488 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kier, G. & Barthlott, W. Measuring and mapping endemism and species richness: a new methodological approach and its application on the flora of Africa. Biodivers. Conserv 10, 1513–1529 (2001).Article 

    Google Scholar 
    Albuquerque, F. & Gregory, A. The geography of hotspots of rarity-weighted richness of birds and their coverage by Natura 2000. PLoS ONE 12, e0174179 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jennings, M. D. Gap analysis: concepts, methods, and recent results. Landsc. Ecol. 15, 5–20 (2000).Article 

    Google Scholar 
    Romero‐Muñoz, A. et al. Increasing synergistic effects of habitat destruction and hunting on mammals over three decades in the Gran Chaco. Ecography 43, 954–966 (2020).Article 

    Google Scholar 
    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Human footprint is associated with shifts in the assemblages of major vector-borne diseases

    Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl. Acad. Sci. USA 118, e2023483118 (2021).Article 
    CAS 

    Google Scholar 
    Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).Article 

    Google Scholar 
    Kuipers, K. J. J. et al. Habitat fragmentation amplifies threats from habitat loss to mammal diversity across the world’s terrestrial ecoregions. One Earth 4, 1505–1513 (2021).Article 

    Google Scholar 
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).Article 
    CAS 

    Google Scholar 
    Watson, J. E. M. & Venter, O. Mapping the continuum of humanity’s footprint on land. One Earth 1, 175–180 (2019).Article 

    Google Scholar 
    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).Article 
    CAS 

    Google Scholar 
    Glidden, C. K. et al. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Curr. Biol. 31, R1342–R1361 (2021).Article 
    CAS 

    Google Scholar 
    Grobbelaar, A. A. et al. Resurgence of yellow fever in Angola, 2015-2016. Emerg. Infect. Dis. 22, 1854–1855 (2016).Article 

    Google Scholar 
    Gubler, D. J. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 10, 100–103 (2002).Article 
    CAS 

    Google Scholar 
    Hotez, P. J. Neglected tropical diseases in the Anthropocene: the cases of Zika, Ebola, and other infections. PLoS Negl. Trop. Dis. 10, e0004648 (2016).Article 

    Google Scholar 
    Paixão, E. S., Teixeira, M. G. & Rodrigues, L. C. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob. Health 3, e000530 (2018).Article 

    Google Scholar 
    Rosenberg, R. et al. Vital signs: trends in reported vectorborne disease cases – United States and territories, 2004-2016. Morb. Mortal. Wk. Rep. 67, 496–501 (2018).Article 

    Google Scholar 
    World Malaria Report 2020: 20 Years of Global Progress and Challenges (WHO, 2020); https://apps.who.int/iris/handle/10665/337660Lambin, E. F., Tran, A., Vanwambeke, S. O., Linard, C. & Soti, V. Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int. J. Health Geogr. 9, 54 (2010).Article 

    Google Scholar 
    Shocket, M. S. et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. eLife 9, e58511 (2020).Article 
    CAS 

    Google Scholar 
    Kilpatrick, A. M. & Randolph, S. E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380, 1946–1955 (2012).Article 

    Google Scholar 
    Franklinos, L. H. V., Jones, K. E., Redding, D. W. & Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 19, e302–e312 (2019).Article 

    Google Scholar 
    Keys, P. W., Barnes, E. A. & Carter, N. H. A machine-learning approach to human footprint index estimation with applications to sustainable development. Environ. Res. Lett. 16, 044061 (2021).Article 

    Google Scholar 
    Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).Article 

    Google Scholar 
    Hill, J. E., DeVault, T. L., Wang, G. & Belant, J. L. Anthropogenic mortality in mammals increases with the human footprint. Front. Ecol. Environ. 18, 13–18 (2020).Article 

    Google Scholar 
    Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Topography and human pressure in mountain ranges alter expected species responses to climate change. Nat. Commun. 11, 1974 (2020).Article 
    CAS 

    Google Scholar 
    Su, J., Yin, H. & Kong, F. Ecological networks in response to climate change and the human footprint in the Yangtze River Delta urban agglomeration, China. Landsc. Ecol. 36, 2095–2112 (2021).Article 

    Google Scholar 
    Hansen, A. J. et al. A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests. Nat. Ecol. Evol. 4, 1377–1384 (2020).Article 

    Google Scholar 
    Dos Santos, C. V. B., da Paixão Sevá, A., Werneck, G. L. & Struchiner, C. J. Does deforestation drive visceral leishmaniasis transmission? A causal analysis. Proc. R. Soc. B 288, 20211537 (2021).Article 

    Google Scholar 
    MacDonald, A. J. & Mordecai, E. A. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc. Natl. Acad. Sci. USA 116, 22212–22218 (2019).Article 
    CAS 

    Google Scholar 
    Honório, N. A. et al. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 191–198 (2003).Article 

    Google Scholar 
    Rodrigues, N. B. et al. Brazilian Aedes aegypti as a competent vector for multiple complex arboviral coinfections. J. Infect. Dis. 224, 101–108 (2021).Article 

    Google Scholar 
    Weinstein, J. S., Leslie, T. F. & von Fricken, M. E. Spatial associations between land use and infectious disease: Zika virus in Colombia. Int. J. Environ. Res. Public Health 17, E1127 (2020).Article 

    Google Scholar 
    Heukelbach, J., Alencar, C. H., Kelvin, A. A., de Oliveira, W. K. & Pamplona de Góes Cavalcanti, L. Zika virus outbreak in Brazil. J. Infect. Dev. Countr. 10, 116–120 (2016).Article 

    Google Scholar 
    Lowe, R. et al. The Zika virus epidemic in Brazil: from discovery to future implications. Int. J. Environ. Res. Public Health 15, E96 (2018).Article 

    Google Scholar 
    Alves, M. C. G. P., de Matos, M. R., de Lourdes Reichmann, M. & Dominguez, M. H. Estimation of the dog and cat population in the State of São Paulo. Rev. Saude Publica 39, 891–897 (2005).Article 

    Google Scholar 
    Mordecai, E. A. et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).Article 

    Google Scholar 
    Gage, K. L., Burkot, T. R., Eisen, R. J. & Hayes, E. B. Climate and vectorborne diseases. Am. J. Prev. Med. 35, 436–450 (2008).Article 

    Google Scholar 
    Doenças e Agravos de Notificação – 2007 em Diante (SINAN) (DATASUS, Ministério da Saúde do Brasil, 2021); https://datasus.saude.gov.br/acesso-a-informacao/doencas-e-agravos-de-notificacao-de-2007-em-diante-sinan/SIVEP – MALÁRIA Notificação de Casos (Ministério da Saúde do Brasil, 2021); http://200.214.130.44/sivep_malaria/R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020); https://www.R-project.org/Sorichetta, A. et al. High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020. Sci. Data 2, 150045 (2015).Article 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 

    Google Scholar 
    Souza at. al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine. Remote Sens. 12, https://doi.org/10.3390/rs12172735 (2020).Fountain-Jones, N. M. et al. How to make more from exposure data? An integrated machine learning pipeline to predict pathogen exposure. J. Anim. Ecol. 88, 1447–1461 (2019).Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. Variable selection using random forests. Pattern Recogn. Lett. 31, 2225–2236 (2010).Article 

    Google Scholar 
    Wei, T. et al. Package ‘corrplot’. Statistician 56, e24 (2017).
    Google Scholar 
    Ratner, B. The correlation coefficient: its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 17, 139–142 (2009).Article 

    Google Scholar 
    Ishwaran, H. & Kogalur, U. B. Fast unified random forests for survival, regression, and classification (RF-SRC) (2019).O’Brien, R. & Ishwaran, H. A random forests quantile classifier for class imbalanced data. Pattern Recognit. 90, 232–249 (2019).Article 

    Google Scholar 
    Silge, J. & Mahoney, M. spatialsample: spatial resampling infrastructure. R version 0.2.1 (2023).Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).Article 
    CAS 

    Google Scholar 
    Weaver, S. C. & Forrester, N. L. Chikungunya: evolutionary history and recent epidemic spread. Antivir. Res. 120, 32–39 (2015).Article 
    CAS 

    Google Scholar 
    Puntasecca, C. J., King, C. H. & LaBeaud, A. D. Measuring the global burden of chikungunya and Zika viruses: a systematic review. PLoS Negl. Trop. Dis. 15, e0009055 (2021).Article 

    Google Scholar 
    Baeza, A., Santos-Vega, M., Dobson, A. P. & Pascual, M. The rise and fall of malaria under land-use change in frontier regions. Nat. Ecol. Evol. 1, 108 (2017).Article 

    Google Scholar 
    de Araújo Pedrosa, F. & de Alencar Ximenes, R. A. Sociodemographic and environmental risk factors for American cutaneous leishmaniasis (ACL) in the State of Alagoas, Brazil. Am. J. Trop. Med. Hyg. 81, 195–201 (2009).Article 

    Google Scholar 
    Gonçalves, N. V. et al. Cutaneous leishmaniasis: spatial distribution and environmental risk factors in the state of Pará, Brazilian Eastern Amazon. J. Infect. Dev. Countr. 13, 939–944 (2019).Article 

    Google Scholar 
    Leishmaniasis (Pan American Health Organization, 2022); https://www.paho.org/en/topics/leishmaniasisHarhay, M. O., Olliaro, P. L., Costa, D. L. & Costa, C. H. N. Urban parasitology: visceral leishmaniasis in Brazil. Trends Parasitol. 27, 403–409 (2011).Article 

    Google Scholar  More

  • in

    Mock community as an in situ positive control for amplicon sequencing of microbiotas from the same ecosystem

    Proctor, L. Priorities for the next 10 years of human microbiome research. Nature 569(7758), 623–625 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bahl, M. I., Bergström, A. & Licht, T. R. Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis. FEMS Microbiol. Lett. 329, 193–197 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wu, X. et al. Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments. Sci. Total Environ. 785, 147329 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Singh, B. K., Millard, P., Whiteley, A. S. & Murrell, J. C. Unravelling rhizosphere-microbial interactions: Opportunities and limitations. Trends Microbiol. 12, 386–393 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Methé, B. A. et al. A framework for human microbiome research. Nature 486, 215–221 (2012).Article 
    ADS 
    PubMed Central 

    Google Scholar 
    Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: An overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilbert, J. A., Jansson, J. K. & Knight, R. Earth microbiome project and global systems biology. mSystems 3, e00217-17 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18(11), 607–621 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569(7758), 655–662 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580(7805), 653–657 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holman, D. B. & Gzyl, K. E. A meta-analysis of the bovine gastrointestinal tract microbiota. FEMS Microbiol. Ecol. 95, 72 (2019).Article 

    Google Scholar 
    Chen, L. et al. Plant growth–promoting bacteria improve maize growth through reshaping the rhizobacterial community in low-nitrogen and low-phosphorus soil. Biol. Fertil. Soils 57, 1075–1088. https://doi.org/10.1007/S00374-021-01598-6 (2021).Article 
    CAS 

    Google Scholar 
    Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hauffe, H. C. & Barelli, C. Conserve the germs: The gut microbiota and adaptive potential. Conserv. Genet. 20(1), 19–27 (2019).Article 

    Google Scholar 
    Pollock, J., Glendinning, L., Wisedchanwet, T. & Watson, M. The madness of microbiome: Attempting to find consensus ‘best practice’ for 16S microbiome studies. Appl. Environ. Microbiol. 84(7), e02627-17 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551(7681), 457–463 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costea, P. I. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 35, 1069–1076 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tourlousse, D. M. et al. Synthetic spike-in standards for high-throughput 16S rRNA gene Amplicon sequencing. Nucleic Acids Res. 45, e23–e23 (2017).PubMed 

    Google Scholar 
    Thissen, J. B. et al. Axiom Microbiome Array, the next generation microarray for high-throughput pathogen and microbiome analysis. PLoS ONE 14, e0212045 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ducarmon, Q. R., Hornung, B. V. H., Geelen, A. R., Kuijper, E. J. & Zwittink, R. D. Toward standards in clinical microbiota studies: Comparison of three DNA extraction methods and two bioinformatic pipelines. mSystems 5, e00547-19 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ray, T. et al. The microbiome of common bedding materials before and after use on commercial dairy farms. Anim. Microbiome 4(1), 1–21 (2022).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Akhremchuk, K. V. et al. Gut microbiome of healthy people and patients with hematological malignancies in Belarus. Microbiol. Indep. Res. J. (MIR J.) 9, 18–30 (2022).Article 

    Google Scholar 
    Smets, W. et al. A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol. Biochem. 96, 145–151 (2016).Article 
    CAS 

    Google Scholar 
    Palmer, J. M., Jusino, M. A., Banik, M. T. & Lindner, D. L. Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6, e4925 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alteio, L. V. et al. A critical perspective on interpreting amplicon sequencing data in soil ecological research. Soil Biol. Biochem. 160, 108357 (2021).Article 
    CAS 

    Google Scholar 
    Stämmler, F. et al. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4, 1–13 (2016).Article 

    Google Scholar 
    Risely, A., Wilhelm, K., Clutton-Brock, T., Manser, M. B. & Sommer, S. Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats. Nat. Commun. 12(1), 1–12 (2021).Article 

    Google Scholar 
    Risely, A., et al. Gut microbiota repeatability is contingent on temporal scale and age in wild meerkats. ecoevorxiv (2022). https://doi.org/10.32942/OSF.IO/DSQFRSzóstak, N. et al. The standardisation of the approach to metagenomic human gut analysis: From sample collection to microbiome profiling. Sci. Rep. 12(1), 1–21 (2022).Article 

    Google Scholar 
    Tourlousse, D. M. et al. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res. 45, e23 (2017).PubMed 

    Google Scholar 
    Sheu, S. Y., Arun, A. B., Jiang, S. R., Young, C. C. & Chen, W. M. Allobacillus halotolerans gen. nov., sp. Nov. isolated from shrimp paste. Int. J. Syst. Evol. Microbiol. 61, 1023–1027 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Surendra, V., Bhawana, P., Suresh, K., Srinivas, T. N. R. & Anil Kumar, P. Imtechella halotolerans gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from estuarine water. Int. J. Syst. Evol. Microbiol. 62, 2624–2630 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Praeg, N. et al. The role of land management and elevation in shaping soil microbial communities: Insights from the Central European Alps. Soil Biol. Biochem. 150, 107951 (2020).Article 
    CAS 

    Google Scholar 
    Albonico, F. et al. Raw milk and fecal microbiota of commercial Alpine dairy cows varies with herd, fat content and diet. PLoS ONE 15, e0237262 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watson, S. E. et al. Global change-driven use of onshore habitat impacts polar bear faecal microbiota. ISME J. https://doi.org/10.1038/s41396-019-0480-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huebner, K. L. et al. Effects of a Saccharomyces cerevisiae fermentation product on liver abscesses, fecal microbiome, and resistome in feedlot cattle raised without antibiotics. Sci. Rep. 9(1), 1–11 (2019).Article 

    Google Scholar 
    Fan, P. et al. Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation. ISME J. 14(1), 302–317 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mtshali, K., Khumalo, Z. T. H., Kwenda, S., Arshad, I. & Thekisoe, O. M. M. Exploration and comparison of bacterial communities present in bovine faeces, milk and blood using 16S rRNA metagenomic sequencing. PLoS ONE 17, e0273799 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10(1), 5029 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pei, A. Y. et al. Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl. Environ. Microbiol. 76, 3886 (2010).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. NAR Genomics Bioinforma. 3, lqab019 (2021).Article 

    Google Scholar 
    Schirmer, M. et al. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 43, e37–e37 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McLaren, M. R., Willis, A. D. & Callahan, B. J. Consistent and correctable bias in metagenomic sequencing experiments. Elife 8, e46923 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gonzalez, J. M., Portillo, M. C., Belda-Ferre, P. & Mira, A. Amplification by PCR artificially reduces the proportion of the rare biosphere in microbial communities. PLoS ONE 7, e29973 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilbert, J. A., Jansson, J. K. & Knight, R. The earth microbiome project: Successes and aspirations. BMC Biol. 12, 1–4 (2014).Article 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108, 4516–4522 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, 1–8 (2011).Article 

    Google Scholar 
    McDonald, D. et al. American gut: An open platform for citizen science microbiome research. mSystems 3, e00031-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Illumina. IMPORTANT NOTICE This document provides information for an application for 16S Metagenomic Sequencing Library Preparation Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina MiSeq System.Teng, F. et al. Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling. Sci. Rep. 8(1), 1–12 (2018).Article 
    ADS 

    Google Scholar 
    Willis, C., Desai, D. & Laroche, J. Influence of 16S rRNA variable region on perceived diversity of marine microbial communities of the Northern North Atlantic. FEMS Microbiol. Lett. 366, fnz152 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, Z. et al. Impact of preservation method and 16S rRNA hypervariable region on gut microbiota profiling. mSystems 4, e00271-18 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanada, T. J. et al. Gut microbiota modification suppresses the development of pulmonary arterial hypertension in an SU5416/hypoxia rat model. Pulm. Circ. 10(3), 1–3. https://doi.org/10.1177/2045894020929147 (2020).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Praeg, N., Schwinghammer, L. & Illmer, P. Larix decidua and additional light affect the methane balance of forest soil and the abundance of methanogenic and methanotrophic microorganisms. FEMS Microbiol. Lett. 366, 259 (2019).Article 

    Google Scholar 
    Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551(7681), 507–511 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sanders, H. L. Marine benthic diversity: A comparative study. Am. Nat. 102, 243–282. https://doi.org/10.1086/282541 (2015).Article 

    Google Scholar 
    Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B 44, 139–160 (1982).MathSciNet 
    MATH 

    Google Scholar 
    Stanaway, I. B. et al. Human oral buccal microbiomes are associated with farmworker status and azinphos-methyl agricultural pesticide exposure. Appl. Environ. Microbiol. 83, e02149-16 (2017).Article 
    PubMed 

    Google Scholar 
    Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res. 18, 1043–1050 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Payne, M. A. et al. Horizontal and vertical transfer of oral microbial dysbiosis and periodontal disease. J. Dent. Res. 98, 1503–1510 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Karasov, T. L. et al. The relationship between microbial population size and disease in the Arabidopsis thaliana phyllosphere. bioRxiv https://doi.org/10.1101/828814 (2020).Article 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6(8), 1621–1624 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).Article 

    Google Scholar 
    Albanese, D., Fontana, P., De Filippo, C., Cavalieri, D. & Donati, C. MICCA: A complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 5(1), 1–7 (2015).Article 

    Google Scholar 
    Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv https://doi.org/10.1101/081257 (2016).Article 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. (2019).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    De Mendiburu, F. Agricolae: statistical procedures for agricultural research. R package version, 1(1). https://scholar.google.com/scholar?hl=it&as_sdt=0%2C5&q=Agricolae%3A+Statistical+Procedures+for+Agricultural+Research&btnG (2014).Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5(7), 621–628 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Metsalu, T. & Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43, W566–W570 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gloor, G. B. & Reid, G. Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data. Can. J. Microbiol. https://doi.org/10.1139/cjm-2015-082162,692-703 (2016).Article 
    PubMed 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens M. H. H., Szöcs, E. & Wagner, H. vegan: Community Ecology Package. R package version 2.5-7. 2020 (2022).Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. More

  • in

    Interannual variability in early life phenology is driven by climate and oceanic processes in two NE Atlantic flatfishes

    Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3, 1–5 (2012).
    Google Scholar 
    Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 11, 3486 (2010).Article 
    ADS 

    Google Scholar 
    Ong, J. J. L. et al. Contrasting environmental drivers of adult and Juvenile growth in a marine fish: Implications for the effects of climate change. Sci. Rep. 5, 10859 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rijnsdorp, A. D., Peck, M. A., Engelhard, G. H., Moellmann, C. & Pinnegar, J. K. Resolving the effect of climate change on fish populations. ICES J. Mar. Sci. 66(7), 1570–1583 (2009).Article 

    Google Scholar 
    Pankhurst, N. W. & Munday, P. L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62(9), 1015 (2011).Article 
    CAS 

    Google Scholar 
    Ainsworth, C. H. et al. Potential impacts of climate change on Northeast Pacific marine foodwebs and fisheries. ICES J. Mar. Sci. 68, 1217–1229 (2011).Article 

    Google Scholar 
    Morrongiello, J. R., Horn, P. L., Ó Maolagáin, C. & Sutton, P. J. H. Synergistic effects of harvest and climate drive synchronous somatic growth within key New Zealand fisheries. Glob. Change Biol. 27(7), 1470–1484 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Ottersen, G., Hjermann, D. O. & Stensenth, N. C. Changes in spawning stocks structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fish. Oceanogr. 15(3), 230–243 (2006).Article 

    Google Scholar 
    Cheung, W. W. L. & Oyinlola, M. A. Vulnerability of flatfish and their fisheries to climate change. J. Sea Res. 140, 1–10 (2018).Article 
    ADS 

    Google Scholar 
    Fedewa, E. J., Miller, J. A. & Hurst, T. P. Pre-settlement process of northern rock sole (Lepidopsetta polyxystra) in relation to interannual variability in the Gulf of Alaska. J. Sea Res. 111, 25–36 (2016).Article 
    ADS 

    Google Scholar 
    Cabral, H. N. et al. Relative importance of estuarine flatfish nurseries along the Portuguese coast. J. Sea Res. 57, 209–217 (2007).Article 
    ADS 

    Google Scholar 
    Martinho, F., van der Veer, H. W., Cabral, H. N. & Pardal, M. A. Juvenile nursery colonization patterns for the European flounder (Platichthys flesus): A latitudinal approach. J. Sea Res. 84, 61–69 (2013).Article 
    ADS 

    Google Scholar 
    Primo, A. L. et al. Contrasting links between growth and survival in the early life stages of two flatfish species. Estuar. Coast. Shelf Sci. 254, 107314 (2021).Article 

    Google Scholar 
    Vaz, A., Scarcella, G., Pardal, M. A. & Martinho, F. Water temperature gradients drive early life-history patterns of the common sole (Solea solea L.) in the Northeast Atlantic and Mediterranean. Aquat. Ecol. 53(5) (2019).Geffen, A., van der Veer, H. W. & Nash, R. The cost of metamorphosis in flatfishes. J. Sea Res. 58(1), 35–45 (2007).Article 
    ADS 

    Google Scholar 
    Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity in marine populations: Open or closed?. Science 287, 857–859 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gillanders, B. M., Black, B. A., Meekan, M. G. & Morrison, M. A. Climatic effects on the growth of a temperate reef fish from the Southern Hemisphere: a biochronological approach. Mar. Biol. 159, 1327–1333 (2012).Article 

    Google Scholar 
    Treml, E. A., Ford, J. R., Black, K. P. & Swearer, S. E. Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in the sea. Mov. Ecol. 3(1), 345 (2015).Article 

    Google Scholar 
    Gibson, R. N. Behaviour and the distribution of flatfishes. J. Sea Res. 37(1997), 241–256 (1997).Article 
    ADS 

    Google Scholar 
    Mellado-Cano, J., Barriopedro, D., García-Herrera, R., Trigo, R. M. & Hernández, A. Examining the North Atlantic Oscillation, East Atlantic Pattern, and jet variability since 1685. J. Clim. 32, 6285–6298 (2019).Article 
    ADS 

    Google Scholar 
    Tanner, S. E. et al. Marine regime shifts impact synchrony of deep-sea fish growth in the northeast Atlantic. Oikos 129(12), 1781–1794 (2020).Article 

    Google Scholar 
    Trigo, R. M., Osborn, T. J. & Corte-Real, J. M. The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms. Clim. Res. 20, 9–17 (2002).Article 

    Google Scholar 
    Leis, J. M. et al. Does fish larval dispersal differ between high and low latitudes?. Proc. R. Soc. B Biol. Sci. 280(1759), 20130327 (2013).Article 

    Google Scholar 
    Raventos, N., Torrado, H., Arthur, R., Alcoverro, T. & Macpherson, E. Temperature reduces fish dispersal as larvae grow faster to their settlement size. J. Anim. Ecol. 90(6), 1419–1432 (2021).Article 
    PubMed 

    Google Scholar 
    Santos, A. M. P. et al. Physical-biological interactions in the life history of small Pelagic Fish in the Western Iberia upwelling ecosystem. Prog. Oceanogr. 74(2), 192–209 (2007).Article 
    ADS 

    Google Scholar 
    Le Pape, O. & Bonhommeau, S. The food limitation hypothesis for juvenile marine fish. Fish Fish. 16(3), 373–398 (2015).Article 

    Google Scholar 
    Fox, C. et al. Birth-date selection in early life stage of plaice Pleuronectes platessa in the eastern Irish Sea (British Isles). Mar. Ecol. Prog. Ser. 345, 255–269 (2007).Article 
    ADS 

    Google Scholar 
    Joh, M. & Wada, A. Inter-annual and spatial difference in hatch date and settlement date distribution and planktonic larval duration in yellow striped flounder Pseudopleuronectes Herzensteini. J. Sea Res. 137, 26–34 (2018).Article 
    ADS 

    Google Scholar 
    Pinto, M. et al. Influence of oceanic and climate conditions on the early life history of European seabass Dicentrarchus labrax. Mar. Environ. Res. 169, 105362 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Morais, P., Dias, E., Babaluk, J. & Antunes, C. The migration patterns of the European flounder Platichthys flesus (Linnaeus, 1758) (Pleuronectidae, Pisces) at the southern limit of its distribution range: Ecological implications and fishery management. J. Sea Res. 65, 235–246 (2011).Article 
    ADS 

    Google Scholar 
    Lacroix, G., Maes, G. E., Bolle, L. J. & Volckaert, F. Modelling dispersal dynamics of the early life stages of a marine flatfish (Solea Solea L.). J. Sea Res. 84(C), 13–25 (2013).Article 
    ADS 

    Google Scholar 
    Tanner, S. E., Teles-Machado, A., Martinho, F., Peliz, A. & Cabral, H. N. Modelling larval dispersal Dynamics of common sole (Solea solea) along the western Iberian coast. Prog. Oceanogr. 156, 78–90 (2017).Article 
    ADS 

    Google Scholar 
    Amorim, E., Ramos, S., Elliott, M. & Bordalo, A. A. Immigration and early life stages recruitment of the European flounder (Platichthys flesus) to an estuarine nursery: The influence of environmental factors. J. Sea Res. 107(Part 1), 56–66 (2016).Article 
    ADS 

    Google Scholar 
    Vasconcelos, R. P., Reis-Santos, P., Costa, M. J. & Cabral, H. N. Connectivity between estuaries and marine environment: Integrating metrics to assess estuarine nursery function. Ecol. Indic. 11(5), 1123–1133 (2011).Article 

    Google Scholar 
    Orio, A. et al. Spatial contraction of demersal fish populations in a large marine ecosystem. J. Biogeogr. 46(3), 633–645 (2019).Article 

    Google Scholar 
    Peliz, A., Rosa, T. L., Santos, A. M. P. & Pissarra, J. L. Fronts, jets, and counter-flows in the Western Iberian upwelling system. J. Mar. Syst. 35, 61–77 (2002).Article 

    Google Scholar 
    Teles-Machado, A., Peliz, A., McWilliams, J. C., Dubert, J. & Le Cann, B. Circulation on the Northwestern Iberian Margin: Swoddies. Prog. Oceanogr 140, 116–133 (2016).Article 
    ADS 

    Google Scholar 
    Primo, A. L. et al. Colonization and nursery habitat use patterns of larval and juvenile flatfish species in a small temperate estuary. J. Sea. Res. 76(C), 126–134 (2013).Article 
    ADS 

    Google Scholar 
    Vasconcelos, R. P. et al. Evidence of estuarine nursery origin of five coastal fish species along the Portuguese coast through otolith elemental fingerprints. Estuar. Coast. Shelf Sci. 79, 317–327 (2008).Article 
    ADS 

    Google Scholar 
    du Sert, N. P. et al. The ARRIVAGE guidelines 2.0: updated guidelines for reporting animal research. J. Physiol. Lond. 598(18), 3793–3801 (2020).Article 

    Google Scholar 
    Trigo, R. M. et al. The impact of north atlantic wind and cyclone trends on European precipitation and significant wave height in the Atlantic. Ann. N. Y. Acad. Sci. 1146(1), 212–234 (2008).Article 
    ADS 
    PubMed 

    Google Scholar 
    Murase, H., Nagashima, H., Yonezaki, S., Matsukura, R. & Kitakado, T. Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of Pelagic Fish and Krill: a Case Study in Senday Bay, Japan. ICES J. Mar. Sci. 66(6), 1417–1424 (2009).Article 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73(1), 3–36 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Tanner, S. E. et al. Regional climate, primary productivity and fish biomass drive growth cariation and population resilience in a small pelagic fish. Ecol. Indic. 103, 530–541 (2019).Article 

    Google Scholar 
    Almeida, J. R., Gravato, C. & Guilermino, L. Effects of temperature in juvenile Seabass (Dicentrarchus labrax L.) biomarker responses and behaviour: implications for environmental monitoring. Estuaries Coasts 38, 45–55 (2015).Article 
    CAS 

    Google Scholar 
    Sims, D. W., Wearmouth, V. J., Genner, M. J., Southward, A. J. & Hawkins, S. J. Low-temperature-driven early spawning migration of a temperate marine fish. J. Anim. Ecol. 73(2), 333–341 (2004).Article 

    Google Scholar 
    Faria, A. M., Muha, T., Morote, R. & Chicharro, M. A. Influence of starvation on the critical swimming behaviour of the Senegalensis sole (Solea senegalensis) and its relationship with RNA/DNA ratios during ontogeny. Sci. Mar. 75(1), 87–94 (2011).Article 
    CAS 

    Google Scholar 
    Downie, A. T., Illing, B., Faria, A. M. & Rummer, J. L. Swimming performance of marine fish larvae: review of a universal trait under ecological and environmental pressure. Rev. Fish Biol. Fish. 30, 93–108 (2020).Article 

    Google Scholar 
    Durant, J. M. et al. Contrasting effects of rising temperatures on trophic interactions in marine ecosystems. Na. Sci. Rep. 9(1), 15213 (2019).Article 
    ADS 

    Google Scholar 
    Stenseth, N. C. et al. Ecological effects of climate fluctuations. Science 297(5585), 1292–1296 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Harrington, A. M., Clark, K. F. & Hamlin, H. J. Expected ocean warming conditions significantly alter the transcriptone of developing postlarval American lobsters (Homarus americanus): Implications for energetic trade-offs. Comp. Biochem. Physiol. D Genom. Proteom. 36, 100716 (2020).CAS 

    Google Scholar 
    Pörtner, H. O. & Farrell, A. P. Ecology. Physiol. Clim. Change. Sci. 322(5902), 690–692 (2008).
    Google Scholar 
    Drinkwater, K. F. et al. On the processes linking climate to ecosystem changes. J. Mar. Syst. 79, 374–388 (2010).Article 

    Google Scholar 
    Alix, M., Kjesbu, O. S. & Anderson, K. C. From Gametogenesis to spawning: How climate-driven warming affects teleost reproductive biology. J. Fish Biol. 97(3), 607–632 (2020).Article 
    PubMed 

    Google Scholar 
    Conover, D. O. & Present, T. M. C. Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes. Oceanologia 83, 316–324 (1990).ADS 

    Google Scholar 
    van de Wolfshaar, K. E., Barbut, L. & Lacroix, G. From spawning to first-year recruitment: the fate of Juvenile Sole Growth and survival under future climate conditions in the North Sea. ICES J. Mar. Sci. (2021).Cabral, H. et al. Contrasting impacts of climate change on connectivity and larval recruitment to estuarine nursery areas. Prog. Oceanogr. 196, 102608 (2011).Article 

    Google Scholar 
    Iglesias, I., Lorenzo, M. N. & Taboada, J. J. Seasonal predictability of the East Atlantic Pattern from sea surface temperatures. PLoS ONE 9(1), 86439–86448 (2014).Article 
    ADS 

    Google Scholar 
    Rodríguez-Puebla, C., Encinas, A. H., García-Casado, L. A. & Nieto, S. Trends in warm days and cold nights over the Iberian Peninsula: relationships to large-scale variables. Clim. Change 100(3), 667–684 (2010).Article 
    ADS 

    Google Scholar 
    Hurrell, J. W. & Van Loon, H. Decadal variations in climate associated with the North Atlantic oscillation. Clim. Change 36, 301–326 (1997).Article 

    Google Scholar 
    Henderson, P. A. & Seaby, R. M. The role of climate in determining the temporal variation in abundance, recruitment and growth of sole Solea solea in the Bristol Channel. JMBA 85, 197–204 (2005).
    Google Scholar 
    Rodwell, M. J., Rowell, D. P. & Folland, C. K. Oceanic forcing of the wintertime North Atlantic Oscillation and European Climate. Letters to Nature 398, 320–323 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Hurrell, J. W. Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Sci. 269, 676–679 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Avalos, M. R. et al. Comparing the foraging strategies of a seabird predator when recovering from drastic climatic event. Mar. Biol. 164, 48 (2017).Article 

    Google Scholar 
    Wang, C., Liu, H. & Lee, S. K. The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere. Atmos. Sci. Lett. 11(3), 161–168 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodrigo, F. S. Exploring combined influences of Seasonal East Atlantic (EA) and North Atlantic Oscillation (NAO) on the temperature-precipitation relationship in the Iberian Peninsula. Geosciences 11(5), 211 (2021).Article 
    ADS 

    Google Scholar 
    Alvarez, I., Gommez-Gesteira, M., Decastro, M. & Dias, J. M. Spatiotemporal evolution of upwelling regime along the western coast of the Iberian Peninsula. J. Geophys. Res. Oceans 113(C7), C07020 (2008).Article 
    ADS 

    Google Scholar 
    Demarcq, H. Trends in primary production, Sea surface temperature and wind in upwelling systems (1998–2007). Prog. Oceanogr. 83(1), 376–385 (2009).Article 
    ADS 

    Google Scholar 
    Thorrold, S. R., Latkoczy, C., Swart, P. K. & Jones, C. M. Natal homing in a marine fish metapopulation. Science 291, 297–299 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Pan-Arctic marine biodiversity and species co-occurrence patterns under recent climate

    Randelhoff, A. et al. Pan-Arctic ocean primary production constrained by turbulent nitrate fluxes. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00150 (2020).Article 

    Google Scholar 
    Wegner, C. et al. Variability in transport of terrigenous material on the shelves and the deep Arctic Ocean during the Holocene. Polar Res. https://doi.org/10.3402/polar.v%v.24964 (2015).Article 

    Google Scholar 
    Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70. https://doi.org/10.1016/j.pocean.2015.05.002 (2015).Article 
    ADS 

    Google Scholar 
    Lewis, K. M., van Dijken, G. L. & Arrigo, K. R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science 369, 198–202. https://doi.org/10.1126/science.aay8380 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mueter, F. J. et al. Possible future scenarios in the gateways to the Arctic for Subarctic and Arctic marine systems: II. Prey resources, food webs, fish, and fisheries. ICES J. Mar. Sci. 78, 3017–3045. https://doi.org/10.1093/icesjms/fsab122 (2021).Article 

    Google Scholar 
    Alabia, I. D. et al. Multiple facets of marine biodiversity in the Pacific Arctic under future climate. Sci. Total Environ. 744, 140913. https://doi.org/10.1016/j.scitotenv.2020.140913 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    CAFF. Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. (Conservation of Arctic Flora and Fauna, Akureyri, Iceland, 2013).Stafford, K. M., Farley, E. V., Ferguson, M., Kuletz, K. J. & Levine, R. Northward range expansion of subarctic upper trophic level animals into the Pacific Arctic Region. Oceanography. 35, 158–166. https://doi.org/10.5670/oceanog.2022.101 (2022).Csapó, H. K., Grabowski, M. & Węsławski, J. M. Coming home—Boreal ecosystem claims Atlantic sector of the Arctic. Sci. Total Environ. 771, 144817. https://doi.org/10.1016/j.scitotenv.2020.144817 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl. Acad. Sci. 114, 12202–12207. https://doi.org/10.1073/pnas.1706080114 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gordó-Vilaseca, C., Stephenson, F., Coll, M., Lavin, C. & Costello, M. J. Three decades of increasing fish biodiversity across the northeast Atlantic and the Arctic Ocean. Proc. Natl. Acad. Sci. 120, e2120869120. https://doi.org/10.1073/pnas.2120869120 (2023).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kalenitchenko, D., Joli, N., Potvin, M., Tremblay, J. -É. & Lovejoy, C. Biodiversity and species change in the arctic ocean: A view through the lens of nares strait. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00479 (2019).Article 

    Google Scholar 
    Michel, C. et al. Arctic Ocean outflow shelves in the changing Arctic: A review and perspectives. Prog. Oceanogr. 139, 66–88. https://doi.org/10.1016/j.pocean.2015.08.007 (2015).Article 
    ADS 

    Google Scholar 
    Ribeiro, S. et al. Vulnerability of the North Water ecosystem to climate change. Nat. Commun. 12, 4475. https://doi.org/10.1038/s41467-021-24742-0 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: Why ecological interaction networks vary through space and time. Oikos 124, 243–251. https://doi.org/10.1111/oik.01719 (2015).Article 

    Google Scholar 
    Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evolut. 4, 376–383. https://doi.org/10.1038/s41559-020-1099-4 (2020).Article 

    Google Scholar 
    Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063. https://doi.org/10.1111/ele.13525 (2020).Article 
    PubMed 

    Google Scholar 
    Michael, E. L. Marine ecology and the coefficient of association: A plea in behalf of quantitative biology. J. Ecol. 8, 54–59. https://doi.org/10.2307/2255213 (1920).Article 

    Google Scholar 
    Gotelli, N. J., Graves, G. R. & Rahbek, C. Macroecological signals of species interactions in the Danish avifauna. Proc. Natl. Acad. Sci. 107, 5030–5035. https://doi.org/10.1073/pnas.0914089107 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gotelli, N. J. & McCabe, D. J. Species co-occurrence: A meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83, 2091–2096. https://doi.org/10.1890/0012-9658(2002)083[2091:SCOAMA]2.0.CO;2 (2002).Article 

    Google Scholar 
    Ulrich, W. Species co-occurrences and neutral models: Reassessing J. M. Diamond’s Assembly Rules. Oikos 107, 603–609 (2004).Article 

    Google Scholar 
    Kraan, C., Thrush, S. F. & Dormann, C. F. Co-occurrence patterns and the large-scale spatial structure of benthic communities in seagrass meadows and bare sand. BMC Ecol. 20, 37. https://doi.org/10.1186/s12898-020-00308-4 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tulloch, A. I. T., Chadès, I. & Lindenmayer, D. B. Species co-occurrence analysis predicts management outcomes for multiple threats. Nat. Ecol. Evolut. 2, 465–474. https://doi.org/10.1038/s41559-017-0457-3 (2018).Article 

    Google Scholar 
    Drinkwater, K. F. et al. Possible future scenarios for two major Arctic Gateways connecting Subarctic and Arctic marine systems: I. Climate and physical–chemical oceanography. ICES J. Mar. Sci. 78, 3046–3065. https://doi.org/10.1093/icesjms/fsab182 (2021).Article 

    Google Scholar 
    Pilfold, N. W., McCall, A., Derocher, A. E., Lunn, N. J. & Richardson, E. Migratory response of polar bears to sea ice loss: To swim or not to swim. Ecography 40, 189–199. https://doi.org/10.1111/ecog.02109 (2017).Article 

    Google Scholar 
    Chambault, P. et al. The impact of rising sea temperatures on an Arctic top predator, the narwhal. Sci. Rep. 10, 18678. https://doi.org/10.1038/s41598-020-75658-6 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perovich, D. et al. Arctic Report Card 2020: Sea Ice. https://doi.org/10.25923/n170-9h57 (2020).Post, E. et al. Ecological dynamics across the arctic associated with recent climate change. Science 325, 1355–1358. https://doi.org/10.1126/science.1173113 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Post, E. et al. Ecological consequences of sea-ice decline. Science 341, 519–524. https://doi.org/10.1126/science.1235225 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bienhold, C. et al. Effects of sea ice retreat and ocean warming on the Laptev Sea continental slope ecosystem (1993 vs 2012). Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.1004959 (2022).Article 

    Google Scholar 
    Olafsdottir, A. H. et al. Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep Sea Res. Part II 159, 152–168. https://doi.org/10.1016/j.dsr2.2018.05.023 (2019).Article 

    Google Scholar 
    MacKenzie, B. R., Payne, M. R., Boje, J., Høyer, J. L. & Siegstad, H. A cascade of warming impacts brings bluefin tuna to Greenland waters. Glob. Change Biol. 20, 2484–2491. https://doi.org/10.1111/gcb.12597 (2014).Article 
    ADS 

    Google Scholar 
    Alabia, I. D. et al. Distribution shifts of marine taxa in the Pacific Arctic under contemporary climate changes. Divers. Distrib. 24, 1583–1597. https://doi.org/10.1111/ddi.12788 (2018).Article 

    Google Scholar 
    Stewart, D. B. & Barber, D. G. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 1–38 (Springer Netherlands, 2010).Ferland, J., Gosselin, M. & Starr, M. Environmental control of summer primary production in the Hudson Bay system: The role of stratification. J. Mar. Syst. 88, 385–400. https://doi.org/10.1016/j.jmarsys.2011.03.015 (2011).Article 

    Google Scholar 
    Peacock, E., Derocher, A. E., Lunn, N. J. & Obbard, M. E. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 93–116 (Springer Netherlands, 2010).Chambellant, M. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 137–158 (Springer Netherlands, 2010).Mallory, M. L., Gaston, A. J., Gilchrist, H. G., Robertson, G. J. & Braune, B. M. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 179–195 (Springer Netherlands, 2010).Lone, K., Hamilton, C. D., Aars, J., Lydersen, C. & Kovacs, K. M. Summer habitat selection by ringed seals (Pusa hispida) in the drifting sea ice of the northern Barents Sea. Polar Res. https://doi.org/10.33265/polar.v38.3483 (2019).Article 

    Google Scholar 
    Jackson, R. et al. Holocene polynya dynamics and their interaction with oceanic heat transport in northernmost Baffin Bay. Sci. Rep. 11, 10095. https://doi.org/10.1038/s41598-021-88517-9 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stafford, K. M. et al. Beluga whales in the western Beaufort Sea: Current state of knowledge on timing, distribution, habitat use and environmental drivers. Deep Sea Res. Part II 152, 182–194. https://doi.org/10.1016/j.dsr2.2016.11.017 (2018).Article 

    Google Scholar 
    Kuletz, K. J. et al. Seasonal spatial patterns in seabird and marine mammal distribution in the eastern Chukchi and western Beaufort seas: Identifying biologically important pelagic areas. Prog. Oceanogr. 136, 175–200. https://doi.org/10.1016/j.pocean.2015.05.012 (2015).Article 
    ADS 

    Google Scholar 
    Polyakov, I. V. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-arctic seas. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00491 (2020).Article 

    Google Scholar 
    Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677. https://doi.org/10.1038/nclimate2647 (2015).Article 
    ADS 

    Google Scholar 
    Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212. https://doi.org/10.1002/2014GL061047 (2014).Article 
    ADS 

    Google Scholar 
    Randelhoff, A. & Sundfjord, A. Short commentary on marine productivity at Arctic shelf breaks: Upwelling, advection and vertical mixing. Ocean Sci. 14, 293–300. https://doi.org/10.5194/os-14-293-2018 (2018).Article 
    ADS 

    Google Scholar 
    Bluhm, B. A. et al. The Pan-Arctic continental slope: sharp gradients of physical processes affect pelagic and benthic ecosystems. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.544386 (2020).Article 

    Google Scholar 
    Daase, M., Berge, J., Søreide, J. E. & Falk-Petersen, S. in Arctic Ecology (ed David N. Thomas) Ch. 9, 219–259 (Wiley, 2021).McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002 (2006).Article 
    PubMed 

    Google Scholar 
    Young, K. A. Asymmetric competition, habitat selection, and niche overlap in Juvenile Salmonids. Ecology 85, 134–149 (2004).Article 

    Google Scholar 
    Aguilera, M. A., Valdivia, N., Broitman, B. R., Jenkins, S. R. & Navarrete, S. A. Novel co-occurrence of functionally redundant consumers induced by range expansion alters community structure. Ecology 101, e03150. https://doi.org/10.1002/ecy.3150 (2020).Article 
    PubMed 

    Google Scholar 
    Usinowicz, J. & Levine, J. M. Species persistence under climate change: A geographical scale coexistence problem. Ecol. Lett. 21, 1589–1603. https://doi.org/10.1111/ele.13108 (2018).Article 
    PubMed 

    Google Scholar 
    Durant, J. M. et al. Contrasting effects of rising temperatures on trophic interactions in marine ecosystems. Sci. Rep. 9, 15213. https://doi.org/10.1038/s41598-019-51607-w (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Baquero, G. & Crujeiras, R. M. Can environmental constraints determine random patterns of plant species co-occurrence?. Ecol. Evol. 5, 1088–1099. https://doi.org/10.1002/ece3.1349 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bar-Massada, A. Complex relationships between species niches and environmental heterogeneity affect species co-occurrence patterns in modelled and real communities. Proc. R. Soc. B Biol. Sci. 282, 20150927. https://doi.org/10.1098/rspb.2015.0927 (2015).Article 

    Google Scholar 
    Overland, J. E., Wang, M., Walsh, J. E. & Stroeve, J. C. Future Arctic climate changes: Adaptation and mitigation time scales. Earth’s Future 2, 68–74. https://doi.org/10.1002/2013EF000162 (2014).Article 
    ADS 

    Google Scholar 
    Hirawake, T. et al. Response and biodiversity of Arctic ecosystems to environmental change: Findings from the ArCS project. Polar Sci. https://doi.org/10.1016/j.polar.2020.100533 (2020).Article 

    Google Scholar 
    Solan, M., Archambault, P., Renaud, P. E. & März, C. The changing Arctic Ocean: Consequences for biological communities, biogeochemical processes and ecosystem functioning. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378, 20200266. https://doi.org/10.1098/rsta.2020.0266 (2020).Article 
    ADS 

    Google Scholar 
    Timmermans, M.-L. & Marshall, J. Understanding Arctic Ocean circulation: A review of ocean dynamics in a changing climate. J. Geophys. Res. Oceans. 125, e2018JC014378. https://doi.org/10.1029/2018JC014378 (2020).Article 
    ADS 

    Google Scholar 
    Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1 (2007).Article 
    ADS 

    Google Scholar 
    Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M (2009).Lehodey, P., Murtugudde, R. & Senina, I. Bridging the gap from ocean models to population dynamics of large marine predators: A model of mid-trophic functional groups. Prog. Oceanogr. 84, 69–84. https://doi.org/10.1016/j.pocean.2009.09.008 (2010).Article 
    ADS 

    Google Scholar 
    Green, D. B. et al. Modelled mid-trophic pelagic prey fields improve understanding of marine predator foraging behaviour. Ecography 43, 1014–1026. https://doi.org/10.1111/ecog.04939 (2020).Article 

    Google Scholar 
    Pérez-Jorge, S. et al. Environmental drivers of large-scale movements of baleen whales in the mid-North Atlantic Ocean. Divers. Distrib. 26, 683–698. https://doi.org/10.1111/ddi.13038 (2020).Article 

    Google Scholar 
    Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545. https://doi.org/10.1111/ecog.01132 (2015).Article 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x (2012).Article 

    Google Scholar 
    Thuiller, W., Georges D., Gueguen, M., Engler, R., & Breiner, F. biomod2: Ensemble Platform for species Distribution Modeling. R package version 3.5.1. http://CRAN.R-project.org/package=biomod2 (2021). Accessed on 15 January 2022.
    Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x (2012).Article 

    Google Scholar 
    Griffith, D. M., Veech, J. A. & Marsh, C. J. cooccur: Probabilistic species co-occurrence analysis in R. J. Stat. Softw. Code Snippets 69, 1–17. https://doi.org/10.18637/jss.v069.c02 (2016).Article 

    Google Scholar 
    Veech, J. A. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260. https://doi.org/10.1111/j.1466-8238.2012.00789.x (2013).Article 

    Google Scholar 
    Abdi, A. M. et al. First assessment of the plant phenology index (PPI) for estimating gross primary productivity in African semi-arid ecosystems. Int. J. Appl. Earth Obs. Geoinf. 78, 249–260. https://doi.org/10.1016/j.jag.2019.01.018 (2019).Article 
    ADS 

    Google Scholar 
    Ban, S. S., Alidina, H. M., Okey, T. A., Gregg, R. M. & Ban, N. C. Identifying potential marine climate change Refugia: A case study in Canada’s Pacific marine ecosystems. Glob. Ecol. Conserv. 8, 41–54. https://doi.org/10.1016/j.gecco.2016.07.004 (2016).Article 

    Google Scholar 
    Alabia, I. D. et al. Marine biodiversity Refugia in a climate-sensitive subarctic shelf. Glob. Change Biol. 27, 3299–3311. https://doi.org/10.1111/gcb.15632 (2021).Article 

    Google Scholar 
    Alabia, I. D., Saitoh, S.-I., Igarashi, H., Ishikawa, Y. & Imamura, Y. Spatial habitat shifts of oceanic cephalopod (Ommastrephes bartramii) in oscillating climate. Remote Sensing. https://doi.org/10.3390/rs12030521 (2020).Article 

    Google Scholar  More

  • in

    A longer wood growing season does not lead to higher carbon sequestration

    Verkerk, P., et al. Forest products in the global bioeconomy. The role of forest products in the global bioeconomy—Enabling substitution by wood-based products and contributing to the Sustainable Development Goals (2022). https://doi.org/10.4060/cb7274enChen, J., Ter-Mikaelian, M. T., Ng, P. Q. & Colombo, S. J. Ontario’s managed forests and harvested wood products contribute to greenhouse gas mitigation from 2020 to 2100. For. Chron. 43, 269–282 (2018).
    Google Scholar 
    Howard, C., Dymond, C. C., Griess, V. C., Tolkien-Spurr, D. & van Kooten, G. C. Wood product carbon substitution benefits: A critical review of assumptions. Carbon Balance Manag. 16, 1–11 (2021).Article 

    Google Scholar 
    Eriksson, L. O. et al. Climate change mitigation through increased wood use in the European construction sector-towards an integrated modelling framework. Eur. J. For. Res. 131, 131–144 (2012).Article 

    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science (80-.) 333, 988–993 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Chuine, I. Why does phenology drive species distribution?. Philos. Trans. R. Soc. B Biol. Sci. 365, 3149–3160 (2010).Article 

    Google Scholar 
    Silvestro, R. et al. From phenology to forest management: Ecotypes selection can avoid early or late frosts, but not both. For. Ecol. Manag. 436, 21–26 (2019).Article 

    Google Scholar 
    Buttò, V., Rossi, S., Deslauriers, A. & Morin, H. Is size an issue of time? Relationship between the duration of xylem development and cell traits. Ann. Bot. 123, 1257–1265 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cartenì, F. et al. The physiological mechanisms behind the earlywood-to-latewood transition: A process-based modeling approach. Front. Plant Sci. 9, 1053 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buttò, V., Rozenberg, P., Deslauriers, A., Rossi, S. & Morin, H. Environmental and developmental factors driving xylem anatomy and micro-density in black spruce. New Phytol. 230, 957–971 (2021).Article 
    PubMed 

    Google Scholar 
    Buttó, V. et al. Regionwide temporal gradients of carbon allocation allow for shoot growth and latewood formation in boreal black spruce. Glob. Ecol. Biogeogr. 30, 1657–1670 (2021).Article 

    Google Scholar 
    Rathgeber, C. B. K. et al. Anatomical, developmental and physiological bases of tree-ring formation in relation to environmental factors. In Stable Isotopes in Tree Rings Vol. 8 (eds Siegwolf, R. T. W. et al.) 61–99 (Springer, Cham, 2022).Chapter 

    Google Scholar 
    Dória, L. C., Sonsin-Oliveira, J., Rossi, S. & Marcati, C. R. Functional trade-offs in volume allocation to xylem cell types in 75 species from the Brazilian savanna Cerrado. Ann. Bot. 130, 445–456 (2022).Article 
    PubMed 

    Google Scholar 
    Rossi, S., Cairo, E., Krause, C. & Deslauriers, A. Growth and basic wood properties of black spruce along an alti-latitudinal gradient in Quebec, Canada. Ann. For. Sci. 72, 77–87 (2015).Article 

    Google Scholar 
    Shi, J. L., Riedl, B., Deng, J., Cloutier, A. & Zhang, S. Y. Impact of log position in the tree on mechanical and physical properties of black spruce medium-density fibreboard panels. Can. J. For. Res. 37, 866–873 (2007).Article 

    Google Scholar 
    Rathgeber, C. B. K., Decoux, V. & Leban, J. M. Linking intra-tree-ring wood density variations and tracheid anatomical characteristics in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Ann. For. Sci. 63, 699–706 (2006).Article 

    Google Scholar 
    Cuny, H. E., Rathgeber, C. B. K., Frank, D., Fonti, P. & Fournier, M. Kinetics of tracheid development explain conifer tree-ring structure. New Phytol. 203, 1231–1241 (2014).Article 
    PubMed 

    Google Scholar 
    Wodzicki, T. J. & Zajaczkowski, S. Methodical problems in studies on seasonal production of cambial xylem derivatives. Acta Soc. Bot. Pol. 39, 519–520 (1970).
    Google Scholar 
    Silvestro, R. et al. Upscaling xylem phenology: Sample size matters. Ann. Bot. https://doi.org/10.1093/aob/mcac110 (2022).Article 
    PubMed 

    Google Scholar 
    Rossi, S., Girard, M. J. & Morin, H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob. Chang. Biol. 20, 2261–2271 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Gonsamo, A., Chen, J. M. & Ooi, Y. W. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. Glob. Change Biol. 24, 2117–2128 (2018).Article 
    ADS 

    Google Scholar 
    Dow, C. et al. Warm springs alter timing but not total growth of temperate deciduous trees. Nature 608, 552–557 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Oribe, Y., Funada, R. & Kubo, T. Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees Struct. Funct. 17, 185–192 (2003).Article 

    Google Scholar 
    Schrader, J. et al. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc. Natl. Acad. Sci. USA 100, 10096–10101 (2003).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deslauriers, A., Huang, J. G., Balducci, L., Beaulieu, M. & Rossi, S. The contribution of carbon and water in modulating wood formation in black spruce saplings. Plant Physiol. 170, 2072–2084 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Silvestro, R., Brasseur, S., Klisz, M., Mencuccini, M. & Rossi, S. Bioclimatic distance and performance of apical shoot extension: Disentangling the role of growth rate and duration in ecotypic differentiation. For. Ecol. Manag. 477, 118483 (2020).Article 

    Google Scholar 
    Perrin, M., Rossi, S. & Isabel, N. Synchronisms between bud and cambium phenology in black spruce: Early-flushing provenances exhibit early xylem formation. Tree Physiol. 37, 593–603 (2017).Article 
    PubMed 

    Google Scholar 
    Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y. & Funada, R. Regulation of cambial activity in relation to environmental conditions: Understanding the role of temperature in wood formation of trees. Physiol. Plant. 147, 46–54 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kagawa, A., Sugimoto, A. & Maximov, T. C. 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell Environ. 29, 1571–1584 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, J. & Beck, E. The fate and path of assimilation products in the stem of 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees 4, 16–21 (1990).Article 

    Google Scholar 
    Fu, P. L., Grießinger, J., Gebrekirstos, A., Fan, Z. X. & Bräuning, A. Earlywood and latewood stable carbon and oxygen isotope variations in two pine species in Southwestern China during the recent decades. Front. Plant Sci. 7, 2050 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anfodillo, T. et al. Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. J. Exp. Bot. 63, 837–845 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Linares, J. C., Camarero, J. J. & Carreira, J. A. Plastic responses of Abies pinsapo xylogenesis to drought and competition. Tree Physiol. 29, 1525–1536 (2009).Article 
    PubMed 

    Google Scholar 
    Rossi, S., Morin, H. & Deslauriers, A. Causes and correlations in cambium phenology: Towards an integrated framework of xylogenesis. J. Exp. Bot. 63, 2117–2126 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, X. et al. Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiol. 33, 48–56 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rathgeber, C. B. K., Rossi, S. & Bontemps, J. D. Cambial activity related to tree size in a mature silver-fir plantation. Ann. Bot. 108, 429–438 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buttò, V. et al. Comparing the cell dynamics of tree-ring formation observed in microcores and as predicted by the Vaganov-Shashkin model. Front. Plant Sci. 11, 1268 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koga, S. & Zhang, S. Y. Relationships between wood density and annual growth rate components in balsam fir (Abies balsamea). Wood Fiber Sci. 34, 146–157 (2002).CAS 

    Google Scholar 
    Messier, C. et al. Functional ecology of advance regeneration in relation to light in boreal forests. Can. J. For. Res. 29, 812–823 (1999).Article 

    Google Scholar 
    Pothier, D., Elie, J. G., Auger, I., Mailly, D. & Gaudreault, M. Spruce budworm-caused mortality to balsam fir and black spruce in pure and mixed conifer stands. For. Sci. 58, 24–33 (2012).Article 

    Google Scholar 
    Paixao, C., Krause, C., Morin, H. & Achim, A. Wood quality of black spruce and balsam fir trees defoliated by spruce budworm: A case study in the boreal forest of Quebec, Canada. For. Ecol. Manag. 437, 201–210 (2019).Article 

    Google Scholar 
    Pretzsch, H., Biber, P., Schütze, G., Kemmerer, J. & Uhl, E. Wood density reduced while wood volume growth accelerated in Central European forests since 1870. For. Ecol. Manag. 429, 589–616 (2018).Article 

    Google Scholar 
    Reyer, C. et al. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann. For. Sci. 71, 211–225 (2014).Article 

    Google Scholar 
    Fang, J. et al. Evidence for environmentally enhanced forest growth. Proc. Natl. Acad. Sci. USA 111, 9527–9532 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 1–10 (2014).Article 

    Google Scholar 
    Gao, S. et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01668-4 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soil Classification Working Group. The Canadian System of Soil Classification. (1998).Rossi, S., Anfodillo, T. & Menardi, R. Trephor: A new tool for sampling microcores from tree stems. IAWA J. 27, 89–97 (2006).Article 

    Google Scholar 
    Deslauriers, A., Morin, H. & Begin, Y. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can. J. For. Res. 33, 190–200 (2003).Article 

    Google Scholar 
    Rossi, S., Deslauriers, A. & Anfodillo, T. Assessment of cambial activity and xylogenesis by microsampling tree species: An example at the Alpine timberline. IAWA J. 27, 383–394 (2006).Article 

    Google Scholar 
    Filion, L. & Cournoyer, L. Variation in wood structure of eastern larch defoliated by the larch sawfly in subarctic Quebec, Canada. Can. J. For. Res. 25, 1263–1268 (1995).Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. (2015). More

  • in

    Larval rockfish growth and survival in response to anomalous ocean conditions

    Bindoff, N. L. et al. Changing ocean, marine ecosystems, and dependent communities. in IPCC special report on the ocean and cryosphere in a changing climate (eds. Pörtner, H.-O. et al.) (2019).Johnson, G. C. & Lyman, J. M. Warming trends increasingly dominate global ocean. Nat. Clim. Chang. 10, 757–761 (2020).ADS 

    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).PubMed 

    Google Scholar 
    Pinsky, M. L. & Mantua, N. J. Emerging adaptation approaches for climate- ready fisheries management. Oceanography 27, 146–159 (2014).
    Google Scholar 
    Bailey, K. M. & Houde, E. D. Predation on eggs and larvae of marine fishes and the recruitment problem. Adv. Mar. Biol. 25, 1–83 (1989).
    Google Scholar 
    Houde, E. D. Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fish. Bull. 87, 471–495 (1989).
    Google Scholar 
    Wang, H., Shen, S., Chen, Y.-S., Kiang, Y.-K. & Heino, M. Life histories determine divergent population trends for fishes under climate warming. Nat. Commun. 11, 1–9 (2020).
    Google Scholar 
    Llopiz, J. K. et al. Early life history and fisheries oceanography: New questions in a changing world. Oceanography 27, 26–41 (2014).
    Google Scholar 
    Lasker, R. Field criteria for survival of anchovy larvae: The relation between inshore chlorophyll maximum layers and successful first feeding. Fish. Bull. 73, 453–462 (1975).
    Google Scholar 
    Cury, P. & Roy, C. Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can. J. Fish. Aquat. Sci. 46, 670–680 (1989).
    Google Scholar 
    Iles, T. D. & Sinclair, M. Atlantic herring: Stock discreteness and abundance. Science 215, 627–633 (1982).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Houde, E. D. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17–29 (1987).ADS 

    Google Scholar 
    Searcy, S. P. & Sponaugle, S. Selective mortality during the larval – juvenile transition in two coral reef fishes. Ecology 82, 2452–2470 (2001).
    Google Scholar 
    Shima, J. S. & Findlay, A. M. Pelagic larval growth rate impacts benthic settlement and survival of a temperate reef fish. Mar. Ecol. Prog. Ser. 235, 303–309 (2002).ADS 

    Google Scholar 
    Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247(198), 201 (1990).ADS 

    Google Scholar 
    Snyder, M. A., Sloan, L., Diffenbaugh, N. & Bell, J. Future climate change and upwelling in the California Current. Geophys. Res. Lett. 30, 1823 (2003).ADS 

    Google Scholar 
    Bakun, A., Field, D. B., Redondo-Rodriguez, A. & Weeks, S. J. Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. Glob. Chang. Biol. 16, 1213–1228 (2010).ADS 

    Google Scholar 
    Bakun, A. & Nelson, C. The seasonal cycle of wind-stress curl in subtropical eastern boundary current regions. J. Phys. Oceanogr. 21, 1815–1834 (1991).ADS 

    Google Scholar 
    Shanks, A. L. & Eckert, G. L. Population persistence of California Current fishes and benthic crustaceans: A marine drift paradox. Ecol. Monogr. 75, 505–524 (2005).
    Google Scholar 
    Cushing, D. H. Plankton production and year-class strength in fish populations: An update of the match/mismatch hypothesis. Adv. Mar. Biol. 26, 249–293 (1990).
    Google Scholar 
    Carr, M. H. Habitat selection and recruitment of an assemblage of temperate zone reef fishes. J. Exp. Mar. Bio. Ecol. 146, 113–137 (1991).
    Google Scholar 
    Asch, R. G. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. Proc. Natl. Acad. Sci. U. S. A. 112, E4065–E4074 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Auth, T. D., Daly, E. A., Brodeur, R. D. & Fisher, J. L. Phenological and distributional shifts in ichthyoplankton associated with recent warming in the northeast Pacific Ocean. Glob. Chang. Biol. 24, 259–272 (2018).ADS 
    PubMed 

    Google Scholar 
    Sydeman, W. J. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science 345, 77–80 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).ADS 

    Google Scholar 
    Cavole, A. et al. Biological impacts of the 2013–2015 warm water anomaly in the Northeast Pacific: Winner, losers, and the future. Oceanography 29, 273–285 (2016).
    Google Scholar 
    Lenarz, W. H. A history of California rockfish fisheries. In Proceeding of the International Rockfish Symposium. Anchorage, Alaska, Univ. of Alaska (1987).Brodeur, R. D., Buchanan, J. C. & Emmett, R. L. Pelagic and demersal fish predators on juvenile and adult forage fishes in the northern California Current: Spatial and temporal variations. CalCOFI Rep. 55, 96–116 (2014).
    Google Scholar 
    Mills, K. L., Laidig, T., Ralston, S. & Sydeman, W. J. Diets of top predators indicate pelagic juvenile rockfish (Sebastes spp.) abundance in the California Current System. Fish. Oceanogr. 16, 273–283 (2007).
    Google Scholar 
    Santora, J. A., Schroeder, I. D., Field, J. C., Wells, B. K. & Sydeman, W. J. Spatio-temporal dynamics of ocean conditions and forage taxa reveal regional structuring of seabird-prey relationships. Ecol. Appl. 24, 1730–1747 (2014).PubMed 

    Google Scholar 
    McClatchie, S. et al. Food limitation of sea lion pups and the decline of forage off central and southern California. R. Soc. Open Sci. 3, 150628 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Love, B. M. S., Yoklavich, M. & Thorsteinson, L. The Rockfishes of the Northeast Pacific (Univ of California Press, 2002).
    Google Scholar 
    Ralston, S. & Howard, D. F. On the development of year-class stength and cohort variability in two northern California rockfishes. Fish. Bull. 93, 710–720 (1995).
    Google Scholar 
    Wells, B. K. et al. Untangling the relationships among climate, prey, and top predators in an ocean ecosystem. Mar. Ecol. Prog. Ser. 364, 15–29 (2008).ADS 

    Google Scholar 
    Zabel, R. W., Levin, P. S., Tolimieri, N. & Mantua, N. J. Interactions between climate and population density in the episodic recruitment of bocaccio, Sebastes paucispinis, a Pacific rockfish. Fish. Oceanogr. 20, 294–304 (2011).
    Google Scholar 
    Peterson, W. T. et al. Applied fisheries oceanography: Ecosystem indicators of ocean conditions inform fisheries management in the California Current. Oceanography 27, 80–89 (2014).
    Google Scholar 
    Wheeler, S. G., Anderson, T. W., Bell, T. W., Morgan, S. G. & Hobbs, J. A. Regional productivity predicts individual growth and recruitment of rockfishes in a northern California upwelling system. Limnol. Oceanogr. 62, 754–767 (2016).ADS 

    Google Scholar 
    Ralston, S., Sakuma, K. M. & Field, J. C. Interannual variation in pelagic juvenile rockfish (Sebastes spp.) abundance – going with the flow. Fish. Oceanogr. 22, 288–308 (2013).
    Google Scholar 
    Schroeder, I. D. et al. Source water variability as a driver of rockfish recruitment in the california current ecosystem: Implications for climate change and fisheries management. Can. J. Fish. Aquat. Sci. 76, 950–960 (2019).CAS 

    Google Scholar 
    Ottmann, D., Grorud-Colvert, K., Huntington, B. & Sponaugle, S. Interannual and regional variability in settlement of groundfishes to protected and fished nearshore waters of Oregon, USA. Mar. Ecol. Prog. Ser. 598, 131–145 (2018).ADS 

    Google Scholar 
    Haggarty, D. R., Lotterhos, K. E. & Shurin, J. B. Young-of-the-year recruitment does not predict the abundance of older age classes in black rockfish in Barkley Sound, British Columbia. Canada. Mar. Ecol. Prog. Ser. 574, 113–126 (2017).ADS 

    Google Scholar 
    Checkley, D. M. & Barth, J. A. Patterns and processes in the California Current System. Prog. Oceanogr. 83, 49–64 (2009).ADS 

    Google Scholar 
    Jacox, M. G. et al. Forcing of multiyear extreme ocean temperatures that impacted California Current living marine resources in 2016. Bull. Am. Meteorol. Soc. 99, S27–S33 (2018).
    Google Scholar 
    Thompson, A. R. et al. Indicators of pelagic forage community shifts in the California Current Large Marine Ecosystem, 1998–2016. Ecol. Indic. 105, 215–228 (2019).
    Google Scholar 
    Du, X. & Peterson, W. T. Phytoplankton community structure in 2011–2013 compared to the extratropical warming event of 2014–2015. Geophys. Res. Lett. 45, 1534–1540 (2018).ADS 

    Google Scholar 
    Peterson, W. T. et al. The pelagic ecosystem in the Northern California Current off Oregon during the 2014–2016 warm anomalies within the context of the past 20 years. J. Geophys. Res. Ocean. 122, 7267–7290 (2017).ADS 

    Google Scholar 
    Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 1–15 (2019).
    Google Scholar 
    Sutherland, K. R., Sorensen, H. L., Blondheim, O. N., Brodeur, R. D. & Galloway, A. W. E. Range expansion of tropical pyrosomes in the northeast Pacific Ocean. Ecology 99, 2397–2399 (2018).PubMed 

    Google Scholar 
    Brodeur, R. D., Hunsicker, M. E., Hann, A. & Miller, T. W. Effects of warming ocean conditions on feeding ecology of small pelagic fishes in a coastal upwelling ecosystem: A shift to gelatinous food sources. Mar. Ecol. Prog. Ser. 617–618, 149–163 (2019).ADS 

    Google Scholar 
    Bosley, K. L. et al. Feeding ecology of juvenile rockfishes off Oregon and Washington based on stomach content and stable isotope analyses. Mar. Biol. 161, 2381–2393 (2014).CAS 

    Google Scholar 
    Reilly, C. A., Echeverria, T. W. & Ralston, S. Interannual variation and overlap in the diets of pelagic juvenile rockfish (Genus: Sebastes) off central California. Fish. Bull. 90, 505–515 (1992).
    Google Scholar 
    Sumida, B. Y. & Moser, H. G. Food and feeding of bocaccio (Sebastes paucispinis) and comparison with Pacific hake (Merluccius productus) larvae in the California Current. Calif. Coop. Ocean. Fish. Investig. Reports 25, 112–118 (1984).
    Google Scholar 
    Auth, T. D., Brodeur, R. D., Soulen, H. L., Ciannelli, L. & Peterson, W. T. The response of fish larvae to decadal changes in environmental forcing factors off the Oregon coast. Fish. Oceanogr. 20, 314–328 (2011).
    Google Scholar 
    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 1–4 (2018).
    Google Scholar 
    Campana, S. E. Year-class strength and growth rate in young Atlantic cod Gadus morhua. Mar. Ecol. Prog. Ser. 135, 21–26 (1996).ADS 

    Google Scholar 
    Brander, K. Effects of environmental variability on growth and recruitment in cod (Gadus morhua) using a comparative approach. Oceanol. Acta 23, 485–496 (2000).
    Google Scholar 
    Sponaugle, S., Grorud-Colvert, K. & Pinkard, D. Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Mar. Ecol. Prog. Ser. 308, 1–15 (2006).ADS 

    Google Scholar 
    Grorud-Colvert, K. & Sponaugle, S. Variability in water temperature affects trait-mediated survival of a newly settled coral reef fish. Oecologia 165, 675–686 (2011).ADS 
    PubMed 

    Google Scholar 
    Boehlert, G. W. & Yoklavich, M. M. Effects of temperature, ration, and fish size on the growth of juvenile black rockfish, Sebastes melanops. Environ. Biol. Fishes 8, 17–28 (1983).
    Google Scholar 
    Chin, B., Nakagawa, M. & Yamashita, Y. Effects of feeding and temperature on survival and growth of larval black rockfish Sebastes schlegeli in rearing conditions. Aquac. Sci. 55, 619–627 (2007).
    Google Scholar 
    Woodbury, D. & Ralston, S. Interannual variation in growth rates and back-calculated birthdate distributions of pelagic juvenile rockfishes (Sebastes spp.) off the central California coast. Fish. Bull. 89, 523–533 (1991).
    Google Scholar 
    Fennie, H., Sponaugle, S., Daly, E. & Brodeur, R. Prey tell: what quillback rockfish early life history traits reveal about their survival in encounters with juvenile coho salmon. Mar. Ecol. Prog. Ser. 650, 7–18 (2020).ADS 

    Google Scholar 
    Laidig, T. E., Chess, J. R. & Howard, D. F. Relationship between abundance of juvenile rockfishes (Sebastes spp.) and environmental variables documented off northern California and potential mechanisms for the covariation. Fish. Bull. 105, 39–48 (2007).
    Google Scholar 
    Robert, D., Castonguay, M. & Fortier, L. Early growth and recruitment in Atlantic mackerel Scomber scombrus: discriminating the effects of fast growth and selection for fast growth. Mar. Ecol. Prog. Ser. 337, 209–219 (2007).ADS 

    Google Scholar 
    Hare, J. A. & Cowen, R. K. Size, growth, development, and survival of the planktonic larvae of Pomatomus saltatrix (Pisces: Pomatomidae). Ecology 78, 2415–2431 (1997).
    Google Scholar 
    Takasuka, A., Aoki, I. & Mitani, I. Evidence of growth-selective predation on larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar. Ecol. Prog. Ser. 252, 223–238 (2003).ADS 

    Google Scholar 
    Anderson, J. T. A review of size dependent survival during pre-recruit stages of fishes in relation to recruitment. J. Northwest Atl. Fish. Sci. 8, 55–66 (1988).
    Google Scholar 
    Miller, T., Crowder, L. B., Rice, J. A. & Marschall, E. A. Larval size and recruitment mechanisms in fishes: toward a conceptual framework. Can. J. Fish. Aquat. Sci. 45, 1657–1670 (1988).
    Google Scholar 
    Chambers, R. C. & Leggett, W. C. Size and age at metamorphosis in marine fishes: analysis of laboratory-reared winter flounder (Pseudopieuronectes americanus) with a review of variation in other species. Can. J. Fish. Aquat. Sci. 44, 1936–1947 (1987).
    Google Scholar 
    Kashef, N., Sogard, S., Fisher, R. & Largier, J. Ontogeny of critical swimming speeds for larval and pelagic juvenile rockfishes (Sebastes spp., family Scorpaenidae). Mar. Ecol. Prog. Ser. 500, 231–243 (2014).ADS 

    Google Scholar 
    Paradis, A. R., Pepin, P. & Brown, J. A. Vulnerability of fish eggs and larvae to predation: review of the influence of the relative size of prey and predator. Can. J. Fish. Aquat. Sci. 53, 1226–1235 (1996).
    Google Scholar 
    Purcell, J. E. Predation on fish larvae and eggs by the hydromedusa Aequorea victoria at a herring spawning ground in British Columbia. Can. J. Fish. Aquat. Sci. 46, 1415–1427 (1989).
    Google Scholar 
    McLeod, I. M. & Clark, T. D. Limited capacity for faster digestion in larval coral reef fish at an elevated temperature. PLoS ONE 11, 1–13 (2016).
    Google Scholar 
    Takahashi, M., Checkley, D. M., Litz, M. N. C., Brodeur, R. D. & Peterson, W. T. Responses in growth rate of larval northern anchovy (Engraulis mordax) to anomalous upwelling in the northern California Current. Fish. Oceanogr. 21, 393–404 (2012).
    Google Scholar 
    Team, R. C. R: A language and environment for statistical computing. (2013).Brady, R. X., Alexander, M. A., Lovenduski, N. S. & Rykaczewski, R. R. Emergent anthropogenic trends in California Current upwelling. Geophys. Res. Lett. 44, 5044–5052 (2017).ADS 

    Google Scholar 
    Peterson, W. T. & Keister, J. E. Interannual variability in copepod community composition at a coastal station in the northern California Current: A multivariate approach. Deep Res. Part II Top. Stud. Oceanogr. 50, 2499–2517 (2003).ADS 

    Google Scholar 
    Ammann, A. J. SMURFs: Standard monitoring units for the recruitment of temperate reef fishes. J. Exp. Mar. Bio. Ecol. 299, 135–154 (2004).
    Google Scholar 
    Anderson, T. W. & Carr, M. H. BINCKE: A highly efficient net for collecting reef fishes. Environ. Biol. Fishes 51, 111–115 (1998).
    Google Scholar 
    Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M. & Altman, D. G. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 160, 1577–1579 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laidig, T. E. & Adams, P. B. Methods used to identify pelagic juvenile rockfish (Genus Sebastes) occuring along the coast of central California. NOAA Technical Memorandum NMFS (1991).Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Chang. 6, 1042–1047 (2016).ADS 

    Google Scholar 
    Yoklavich, M. M. & Boehlert, G. W. Daily growth increments in otoliths of juvenile black rockfish, Sebastes melanops: An evaluation of autoradiography as a new method of validation. Fish. Bull. 85, 826–832 (1987).
    Google Scholar 
    Miller, J. A. & Shanks, A. L. Evidence for limited larval dispersal in black rockfish (Sebastes melanops): Implications for population structure and marine-reserve design. Can. J. Fish. Aquat. Sci. 61, 1723–1735 (2004).
    Google Scholar 
    Sponaugle, S. Daily otolith increments in the early stages of tropical fish. In Tropical Fish Otoliths: Information for Assessment, Management and Ecology (eds Green, B. et al.) 93–132 (Springer, 2009).
    Google Scholar 
    Laidig, T., Ralston, S. & Bence, J. R. Dynamics of growth in the early life history of shortbelly rockfish Sebastes jordani. Fish. Bull. 89, 611–621 (1991).
    Google Scholar 
    Thorrold, S. R. & Hare, J. A. Otolith applications in reef fish ecology. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed. Sale, P. F.) 243–264 (Academic Press, 2002).
    Google Scholar 
    Field, J. C., MacCall, A. D., Ralston, S., Love, M. S. & Miller, E. F. Bocaccionomics: The effectiveness of pre-recruit indices for assessment and management of bocaccio. Calif. Coop. Ocean. Fish. Investig. Reports 51, 77–90 (2010).
    Google Scholar 
    Carrascal, L. M., Galván, I. & Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).
    Google Scholar  More

  • in

    Prediction of the visit and occupy of the sika deer (Cervus nippon) during the summer season using a virtual ecological approach

    Study area and camera trapping systemThe study area included the northern region of Tochigi Prefecture, Japan (Fig. 2). In Tochigi Prefecture, 54.4% of the land was covered by forest, 19.1% was covered by agricultural land in 2019 (Tochigi Prefecture 2021, https://www.pref.tochigi.lg.jp/a03/documents/keikakusho2267.pdf, accessed on Feb. 10, 2023). The northern region of Tochigi Prefecture has a relatively large area of forest. This area was the home range of the highest density of sika deer in Tochigi Prefecture in 2021. The camera trapping system consisted of 14 cameras (model no. 6210; Ltl-Acorn, Des Moines, IA, USA) that were placed in late April 2018 at 12 sites within the forest interior with two camera sets, namely ID 10–11, and ID 12–13 in neighboring areas (Fig. 2). The 12 sites spanned 84 km from west to east and 39 km from north to south (Fig. 2). The elevation of the sites ranged from 349 to 1033 m. The cameras were set horizontally at 50 cm above the ground and were operated until late November 2018. The cameras were checked every 1 or 2 months and the batteries and memory cards were replaced when necessary. Movements of the sika deer were reordered monthly from May to November. The month of April was excluded because the cameras were placed in late April. The virtual ecological model required the presence/absence of records for validation (described below), thus the number of deer captured in the photos was not considered. Finally, the visit and occupy of sika deer were recorded at 14 sites each month.Figure 2Study area, analytical units, and locations of the camera traps.Full size imageA grid size of approximately 1 km (termed “1-km mesh” hereafter) was used a as the study unit (Fig. 2). The 1-km mesh grid system is a standard Japanese unit used for several types of statistics (https://www.stat.go.jp/english/data/mesh/02.html, accessed on Feb. 10, 2023). To determine the appropriate number of 1-km mesh grids for the simulation study, a 10-km mesh grid, which is the high-order standard Japanese unit (i.e., one 10-km mesh includes 100 1-km meshes), was divided into the minimum number of areas to cover all 14 camera sites as the simulation target area to avoid arbitrary (Fig. 2). Finally, 4200 1-km mesh areas were included for the simulation (Fig. 2).Virtual ecological modelA simple cellular automaton (CA) model can predict the visit and occupy of a target species based on candidate habitats in consideration of the proximity to food resources32. The grid was set to the same size as the unit of the predicted ranges. The model yields a theoretical number of visits (described below) to each cell, which serves as an area preference of the target species. Each cell has two parameters: cell identification (ID) and movement path vector (Fig. 3a). The cell ID indicates the spatial location of the cell within the study area. The movement path involves four variables representing the four directional vectors into adjacent cells (i.e., top, left, bottom, and right) (Fig. 3b). Each variable is a probability value (i.e., 0 to 1) independent of the other three variables that indicates the probability of movement success to the adjacent cells. In this study, the probability value was based on the proximity to availability food resources.Figure 3Basic structure of the cellular automaton model. (a) Two values are associated with each cell: the cell ID “x,” a unique ID for each cell, and the movement probability “mx” indicating four directional vectors into adjacent cells. (b) Values m1, m2, m3, and m4 indicate the probability of movement along a path of the top, left, bottom, and right cells, respectively. If all movement probability values are 0, the virtual population in this cell cannot move to any other cell. If all movement probability values are 1, the virtual population in the cell can move to all adjacent cells.Full size imageA group of sika deer was used as the unit for analysis. The model simulates the capability of movement within the target area. Thus, if a virtual population visited a neighboring cell, the number of visits to the cell is increased without disappearance of the starting cell. The virtual population moves in accordance with the movement probability values.Movement probability between cellsThe term “movement probability” is defined as the probability of movement success into an adjacent cell to the top, left, bottom, or right (Fig. 3b) with four probability values:$$ {text{Movement probability x}} = {text{mx}};({text{m}}1,;{text{m}}2,;{text{m}}3,;{text{m}}4), $$
    (1)
    where m1, m2, m3, and m4 indicate the probability of movement success into the top, left, bottom, and right cells, respectively (Fig. 3b). Since these values are independent of one another, the maximum and minimum sums of m1, m2, m3, and m4 are theoretically 4 and 0, respectively. If all probability of movement success values are 0, the sika deer population in this cell cannot move to any other cell. Moreover, if all probability of movement success values are 1, the population in the cell can move to all adjacent cells.The amount of food resources of deer was acquired from remote sensing measurements35,36. Thus, two variables were used to represent food resource availability: the kernel normalized difference vegetation index (kNDVI)41 and landscape structure (Supplementary Fig. 1).The kNDVI uses remote sensing measurements to assess the components of green vegetation41. As compared to the ordinal NDVI, which is the most widely used index of the condition of vegetation on terrestrial surfaces, the kNDVI has greater resistance to saturation, bias, and complex phenological cycles, and exhibits enhanced robustness to noise and stability across spatial and temporal scales41. The kNDVI appropriately represents the condition of vegetation to reflect the food resource availability for sika deer. The kNDVI was analyzed from the atmospherically corrected surface reflectance observed with the Landsat 8 Operational Land Imager and Thermal Infrared Sensor instruments at approximately 16-day intervals with a spatial resolution of 30 m (data collected in 2018). The mean kNDVI was calculated monthly for each 1-km mesh within the study area. The probability values (m1, m2, m3, and m4) were defined as the proximity to available food resources in a destination cell divided by the maximum value of the target area as relative values throughout the study area. These values reflect the spatial positions of the available food resources in the study area. If the food resources are continuously available, then the sika deer population tend to visit and occupy linearly.The landscape structure is defined as a mixture of forests and grasslands because previous studies suggest that the forest edge has high availability of food resources for sika deer37,38,42,43. The dataset was generated from a current vegetation map that classified the dominant plant species provided by the Biodiversity Center of Japan (Ministry of the Environment, https://www.biodic.go.jp/index_e.html, accessed on Feb. 10, 2023). The types of vegetation of the forests and grasslands were retrieved from the literature, then the original vegetation classes were re-classified44 and overlayed on the 1-km mesh map. In this study, agricultural land types were classified as grassland. For a mesh with both forests and grasslands, the probability of movement was assigned a value of 1, while a mesh with either a forest or grassland was assigned a value of 0.5, because to treat these 2 components fairly. Every mesh of the study area included either a forest or grassland.Movement simulationFirst, simulations were conducted using two independent variables: kNDVI and landscape structure. Each simulation was initiated from one cell with the month, which is referred to as a “trial.” One step is defined as one day, thus the trial conducted in May consisted of 31 steps. A previous study reported that sika deer can travel about 50 km every 2 weeks34. Thus, one step (movement of 1 km) in one day was considered a reasonable distance. Each trial was repeated for all cells i.e., all cells was used as the starting cell of “trial”. The sum of all trials is termed a “run.” Thus, each “run” consisted of n trials, where n is the number of cells in the CA field. In this study, there were 4200 cells. At each step, each attempt to visit a neighboring cell (top, left, bottom, and right) was based on movement probabilities. For each successful movement, the presence/absence value assigned to the cell was increased from 0 to 1, i.e., change from absence to presence. The next step was then initiated from any newly visited cell and the previously visited cells. Cells with high values indicated the possibility of visitation by a virtual population from several other cells. The assigned value was used as a metric of the preference of the visited cell. In this study, 100 runs were conducted each month from May to November.Second, simulations were conducted using a combination of movement-related variables with two types of combination models: kNDVI AND landscape structure and kNDVI OR landscape structure. With both the logical AND and OR models, each step has two processes: probability approach with the kNDVI and landscape structure. With the AND model, if the virtual population passes the probability of the kNDVI to move to a neighboring cell, then the probability of movement to a neighboring cell is based on the landscape structure. In the logical AND model, we used kNDVI first because that could reflect a seasonal change in the availability of food resources. With the OR model, if the virtual population passes the probability of the kNDVI, or passes that of the landscape structure, the virtual population can move to any neighboring cell.Additionally, equivalence model simulation was conducted with all probability values (m1, m2, m3, and m4) set to 0.5.Validation of the simulation results using the camera trap dataThe results of the CA model simulation were validated by the presence/absence of the monthly records of sika deer collected with the cameras. The occurrence of a visit to a camera was determined using a generalized linear model with a binomial distribution (log link) and model selection based on Akaike’s information criterion (AIC). The explanatory variable was the theoretical number of simulated visits to a 1-km cell with a camera trap. If the AIC value of the model was  > 2 points lower than that of the null model45 (i.e., with no explanatory variable), the run was considered “correct”. The data from the kNDVI, landscape structure, AND/OR, and null/equivalence models were used. The number of “correct” runs of every 100 runs with each model was calculated. Therefore, all values could theoretically be 100.Then, the predictive ability of the model was evaluated using the results considered as “correct” with the AIC. The AIC values of all runs were compared, where one simulation set used four variables. If the four models (i.e., kNDVI, landscape, AND, and OR models) were all “correct” in one run, the AIC values were compared and the lowest AIC value of the model was recorded. Notably, differences among the AIC values were not considered because the effectiveness of the model was already evaluated in the first validation procedure. Calculations for all months were conducted. Therefore, the maximum value among the four models was 100, assuming that the run was “correct” with the lowest AIC.Finally, a map was generated of the theoretical number of visits by sika deer in each month based on the best performance among the four simulations. The map included the average number of theoretical visits over 100 runs. The results considered incorrect were not excluded because in real-world applications, simulated results are not evaluated.All statistical analyses were performed using R software (ver. 4.0.2; https://www.r-project.org/, accessed on Feb. 10, 2023). More