More stories

  • in

    Raptor breeding sites indicate high plant biodiversity in urban ecosystems

    1.Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed 
    Article 

    Google Scholar 
    2.Aronson, M. F. J. et al. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proc. R. Soc. B 281, 20133330 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Nielsen, A. B., Van Den Bosch, M., Maruthaveeran, S. & Van Den Bosch, C. K. Species richness in urban parks and its drivers: A review of empirical evidence. Urban Ecosyst. 17, 305–327 (2014).Article 

    Google Scholar 
    4.Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    5.Luck, G. W., Davidson, P., Boxall, D. & Smallbone, L. Relations between urban bird and plant communities and human well-being and connection to nature. Conserv. Biol. 25, 816–826 (2011).PubMed 
    Article 

    Google Scholar 
    6.Soga, M. & Gaston, K. J. Extinction of experience: the loss of human–nature interactions. Front. Ecol. Environ. 14, 94–101 (2016).Article 

    Google Scholar 
    7.Dean, J., van Dooren, K. & Weinstein, P. Does biodiversity improve mental health in urban settings?. Med. Hypotheses 76, 877–880 (2011).PubMed 
    Article 

    Google Scholar 
    8.Knight, A. T. et al. Knowing but not doing: Selecting priority conservation areas and the research-implementation gap. Conserv. Biol. 22, 610–617 (2008).PubMed 
    Article 

    Google Scholar 
    9.Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Caro, T. M. Conservation by Proxy: Indicator, Umbrella, Keystone, Flagship and Other Surrogate Species (Island Press, 2010).
    Google Scholar 
    11.Sergio, F., Newton, I. & Marchesi, L. Top predators and biodiversity. Nature 236, 192 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Burgas, D., Byholm, P. & Parkkima, T. Raptors as surrogates of biodiversity along a landscape gradient. J. Appl. Ecol. 51, 786–794 (2014).Article 

    Google Scholar 
    13.Sergio, F., Newton, I., Marchesi, L. & Pedrini, P. Ecologically justified charisma: Preservation of top predators delivers biodiversity conservation. J. Appl. Ecol. 43, 1049–1055 (2006).Article 

    Google Scholar 
    14.Sergio, F. et al. Top predators as conservation tools: Ecological rationale, assumptions, and efficacy. Annu. Rev. Ecol. Evol. Syst. 39, 1–19 (2008).Article 

    Google Scholar 
    15.Sergio, F. Raptor monitoring: Challenges and benefits. Bird Study 65, S3–S3 (2018).Article 

    Google Scholar 
    16.Millsap, B. A., Cooper, M. E. & Holroyd, G. Legal considerations. In Raptor Research and Management Techniques (eds Bird, D. M. & Bildstein, K. L.) 365–382 (Hancock House Publishers, 2007).
    Google Scholar 
    17.Maciorowski, G., Jankowiak, Ł, Sparks, T. H., Polakowski, M. & Tryjanowski, P. Biodiversity hotspots at a small scale: The importance of eagles’ nests to many other animals. Ecology 102, e03220 (2021).PubMed 
    Article 

    Google Scholar 
    18.Natsukawa, H. Raptor breeding sites as a surrogate for conserving high avian taxonomic richness and functional diversity in urban ecosystems. Ecol. Indic. 119, 106874 (2020).Article 

    Google Scholar 
    19.Natsukawa, H. Raptor breeding sites indicate high taxonomic and functional diversities of wintering birds in urban ecosystems. Urban For. Urban Green. 60, 127066 (2021).Article 

    Google Scholar 
    20.Sergio, F., Newton, I. & Marchesi, L. Top predators and biodiversity: Much debate, few data. J. Appl. Ecol. 45, 992–999 (2008).Article 

    Google Scholar 
    21.Estrada, C. G. & Rodríguez-Estrella, R. In the search of good biodiversity surrogates: Are raptors poor indicators in the Baja California Peninsula desert?. Anim. Conserv. 19, 360–368 (2016).Article 

    Google Scholar 
    22.Kenward, R. E. The Goshawk (T&A D Poyser, 2006).
    Google Scholar 
    23.Manning, A. D., Fischer, J. & Lindenmayer, D. B. Scattered trees are keystone structures–implications for conservation. Biol. Conserv. 132, 311–321 (2006).Article 

    Google Scholar 
    24.Ozanne, C. M. P. et al. Biodiversity meets the atmosphere: A global review of forest canopies. Science 301, 183–186 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Yan, Z. et al. Impervious surface area is a key predictor for urban plant diversity in a city undergone rapid urbanization. Sci. Total Environ. 650, 335–342 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Atauri, J. A., De Pablo, C. L., De Agar, P. M., Schmitz, M. F. & Pineda, F. D. Effects of management on understory diversity in the forest ecosystems of Northern Spain. Environ. Manag. 34, 819–828 (2004).Article 

    Google Scholar 
    27.Martín-Queller, E., Gil-Tena, A. & Saura, S. Species richness of woody plants in the landscapes of Central Spain: The role of management disturbances, environment and non-stationarity. J. Veg. Sci. 22, 238–250 (2011).Article 

    Google Scholar 
    28.Rodriguez, S. A., Kennedy, P. L. & Parker, T. H. Timber harvest and tree size near nests explains variation in nest site occupancy but not productivity in northern goshawks (Accipiter gentilis). For. Ecol. Manage. 374, 220–229 (2016).Article 

    Google Scholar 
    29.Rosich, J. et al. Northern Goshawk breeding sites indicate the presence of mature forest in Mediterranean pinewoods. For. Ecol. Manag. 479, 118602 (2021).Article 

    Google Scholar 
    30.Natsukawa, H., Ichinose, T. & Higuchi, H. Factors affecting breeding-site selection of Northern Goshawks at two spatial scales in urbanized areas. J. Raptor Res. 51, 417–428 (2017).Article 

    Google Scholar 
    31.Natsukawa, H. et al. Forest cover and open land drive the distribution and dynamics of the breeding sites for urban-dwelling Northern Goshawks. Urban For. Urban Green. 53, 126732 (2020).Article 

    Google Scholar 
    32.Boal, C. W. & Dykstra, C. R. Urban Raptors: Ecology and Conservation of Birds of Prey in Cities (Island Press, 2018).Book 

    Google Scholar 
    33.Burgas, D., Ovaskainen, O., Blanchet, F. G. & Byholm, P. The ghost of the hawk: Top predator shaping bird communities in space and time. Front. Ecol. Evol. 9, 638039 (2021).Article 

    Google Scholar 
    34.Byholm, P., Gunko, R., Burgas, D. & Karell, P. Losing your home: Temporal changes in forest landscape structure due to timber harvest accelerate Northern goshawk (Accipiter gentilis) nest stand losses. Ornis Fenn. 97, 1–11 (2020).
    Google Scholar 
    35.Ozaki, K. et al. A mechanistic approach to evaluation of umbrella species as conservation surrogates. Conserv. Biol. 20, 1507–1515 (2006).PubMed 
    Article 

    Google Scholar 
    36.Santangeli, A. et al. Voluntary non-monetary approaches for implementing conservation. Biol. Conserv. 197, 209–214 (2016).Article 

    Google Scholar 
    37.Kamal, S., Grodzińska-Jurczak, M. & Brown, G. Conservation on private land: A review of global strategies with a proposed classification system. J. Environ. Plan. Manage. 58, 576–597 (2015).Article 

    Google Scholar 
    38.Iwai, Y. Forestry and the Forest Industry in Japan (UBC Press, 2002).
    Google Scholar 
    39.Sirakaya, A., Cliquet, A. & Harris, J. Ecosystem services in cities: Towards the international legal protection of ecosystem services in urban environments. Ecosyst. Serv. 29, 205–212 (2018).Article 

    Google Scholar 
    40.Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).Article 

    Google Scholar 
    41.Kumar, N., Jhala, Y. V., Qureshi, Q., Gosler, A. G. & Sergio, F. Human-attacks by an urban raptor are tied to human subsidies and religious practices. Sci. Rep. 9, 1–10 (2019).
    Google Scholar 
    42.Mak, B., Francis, R.A. & Chadwick, M.A. Living in the concrete jungle: A review and socio-ecological perspective of urban raptor habitat quality in Europe. Urban Ecosyst. 21 (2021).43.Demographia. Demographia World Urban Areas, 16th annual edition. Available: http://www.demographia.com/db-worldua.pdf. Date of access February 20, 2021 (2020).44.Yang, J., Yan, P., He, R. & Song, X. Exploring land-use legacy effects on taxonomic and functional diversity of woody plants in a rapidly urbanizing landscape. Landsc. Urban Plan. 162, 92–103 (2017).Article 

    Google Scholar 
    45.Spellerberg, I. F. & Fedor, P. J. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’Index. Glob. Ecol. Biogeog. 12, 177–179 (2003).Article 

    Google Scholar 
    46.McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    47.R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).48.Oksanen, J. et al. Vegan: Community ecology package. R package version 2, 5–5 (2019).
    Google Scholar 
    49.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).50.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    51.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    52.Betts, M. G., Diamond, A. W., Forbes, G. J., Villard, M. A. & Gunn, J. S. The importance of spatial autocorrelation, extent and resolution in predicting forest bird occurrence. Ecol. Model. 191, 197–224 (2006).Article 

    Google Scholar 
    53.Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    54.Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30, 609–628 (2007).Article 

    Google Scholar 
    55.Harrell, F. E. rms: Regression Modeling Strategies. R package version 6.0–1 (2020).56.Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, 1–36 (2015).
    Google Scholar  More

  • in

    Determinizing the contributions of human activities and climate change on greening in the Beijing–Tianjin–Hebei Region, China

    1.Arora, V. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev. Geophys. https://doi.org/10.1029/2001RG000103 (2002).Article 

    Google Scholar 
    2.Lamchin, M., Park, T., Lee, J. & Lee, W. Monitoring of vegetation dynamics in the Mongolia using MODIS NDVIs and their relationship to rainfall by Natural Zone. J. Indian Soc. Remote 43, 325–337 (2014).Article 

    Google Scholar 
    3.Zhang, Y., Liu, L. Y., Liu, Y., Zhang, M. & An, C. B. Response of altitudinal vegetation belts of the Tianshan Mountains in northwestern China to climate change during 1989–2015. Sci. Rep. https://doi.org/10.1038/s41598-021-84399-z (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Piao, S. L., Wang, X. H., Park, T. & Chen, C. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 
    ADS 

    Google Scholar 
    5.Zhu, Z. C., Piao, S. L., Myneni, R. B. & Huang, M. T. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    6.Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article 

    Google Scholar 
    7.Fang, H. Y., Li, Q. Y. & Cai, Q. G. A study on the vegetation recovery and crop pattern adjustment on the Loess Plateau of China. Afr. J. Microbiol. Res. 5, 1414–1419 (2011).Article 

    Google Scholar 
    8.Jiang, C., Zhang, H. Y., Tang, Z. P. & Labzovskii, L. Evaluating the coupling effects of climate variability and vegetation restoration on ecosystems of the Loess Plateau, China. Land Use Policy 69, 134–148 (2017).Article 

    Google Scholar 
    9.Zhang, H. Y., Fan, J. W., Cao, W., Zhong, H. P. & Harris, W. Changes in multiple ecosystem services between 2000 and 2013 and their driving factors in the Grazing Withdrawal Program, China. Ecol. Eng. 116, 67–79 (2018).Article 

    Google Scholar 
    10.Liu, Y. X., Lü, Y. H., Fu, B. J., Harris, P. & Wu, L. H. Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Sci. Total Environ. 650, 1029–1040 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Wang, J. F., Zhang, T. L. & Fu, B. J. A measure of spatial stratified heterogeneity. Ecol. Indic. 67, 250–256 (2016).Article 

    Google Scholar 
    12.Jiang, Y. T., Sun, Y. J., Zhang, L. P. & Wang, X. L. Influence factor analysis of soil heavy metal Cd based on the GeoDetector. Stoch. Environ. Res. Risk Assess. 34, 921–930 (2020).Article 

    Google Scholar 
    13.Su, Y., Li, T. X., Cheng, S. K. & Wang, X. Spatial distribution exploration and driving factor identification for soil salinisation based on geodetector models in coastal area. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2020.105961 (2020).Article 

    Google Scholar 
    14.Yan, S. J., Wang, H. & Jiao, K. W. Spatiotemporal dynamic of NDVI in the Beijing–Tianjin–Hebei region based on MODIS data and quantitative attribution. J. Geo-inf. Sci. 21, 767–780 (2019).
    Google Scholar 
    15.Evans, J. & Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 57, 535–554 (2007).Article 

    Google Scholar 
    16.Wessels, K. J. et al. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 68, 271–297 (2007).Article 
    ADS 

    Google Scholar 
    17.Teng, M. J. et al. The impacts of climate changes and human activities on net primary productivity vary across an ecotone zone in Northwest China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.136691 (2020).Article 
    PubMed 

    Google Scholar 
    18.Shi, S. Y. et al. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142419 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Peng, J., Jiang, H., Liu, Q. H., Green, S. & Quine, T. Human activity vs. climate change, distinguishing dominant drivers on LAI dynamics in karst region of southwest China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144297 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Xu, D. Y., Li, C. L., Song, X. & Ren, H. Y. The dynamics of desertification in the farming-pastoral region of North China over the past 10 years and their relationship to climate change and human activity. CATENA 123, 11–22 (2014).Article 

    Google Scholar 
    21.Sun, Y. L., Yang, Y. L., Zhang, L. & Wang, Z. L. The relative roles of climate variations and human activities in vegetation change in North China. Phys. Chem. Earth 87–88, 67–78 (2015).Article 
    ADS 

    Google Scholar 
    22.Liu, B., Sun, Y. L., Wang, Z. L. & Zhao, T. B. Analysis of the vegetation cover change and the relative role of its influencing factors in North China. J. Nat. Res. 30, 12–23 (2015).
    Google Scholar 
    23.Huang, L., Zheng, Y. H. & Xiao, T. Regional differentiation of ecological conservation and its zonal suitability at the county level in China. J. Geogr. Sci. 28, 46–58 (2018).Article 

    Google Scholar 
    24.Pan, M., Chen, T. W., Huang, L. & Cao, W. Spatial and temporal variations in ecosystem services and its driving factors analysis in Jing-Jin-Ji region. Acta Ecol. Sin. 40, 5151–5167 (2020).
    Google Scholar 
    25.Zhou, Q., Zhao, X. & Wu, D. H. Impact of urbanization and climate on vegetation coverage in the Beijing–Tianjin–Hebei Region of China. Remote Sens. https://doi.org/10.3390/rs11202452 (2019).Article 

    Google Scholar 
    26.Pantazi, M., Vasilescu, A. M., Mihai, A. & Gurau, D. Statistical-mathematical processing of anthropometric foot parameters and establishing simple and multiple correlations. Part 1, statistical analysis of foot size parameters. J. Leather Footwear 17, 199–208 (2017).Article 

    Google Scholar 
    27.Krishnan, S. R., Magimai-Doss, M. & Seelamantula, C. S. A Savitzky-Golay filtering perspective of dynamic feature computation. IEEE Signal Proc. Lett. 20, 281–284 (2013).Article 
    ADS 

    Google Scholar 
    28.Li, Z., Zhang, Y., Zhu, Q. K., He, Y. M. & Yao, W. J. Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau. Geomorphology 228, 462–469 (2015).Article 
    ADS 

    Google Scholar 
    29.Chen, J., Ban, Y. F. & Li, S. N. China, Open access to Earth land-cover map. Nature 514, 434–434 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    30.Alijani, B., Mahmoudi, P. & Chogan, A. J. A study of annual and seasonal precipitation trends in Iran using a nonparametric method (Sen’s slope estimator). For. Ecol. Manag. 121, 137–146 (2012).
    Google Scholar 
    31.Rahman, A. U. & Dawood, M. Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s Slope approach. Clim. Dynam. 48, 783–797 (2017).Article 
    ADS 

    Google Scholar 
    32.Lin, X. S., Tang, J., Li, Z. Y. & Li, H. Y. Vegetation greenness modelling in response to interannual precipitation and temperature changes between 2001 and 2012 in Liao River Basin in Jilin Province, China. Springerplus https://doi.org/10.1186/s40064-016-2737-9 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Lawrance, A. J. Partial and multiple correlation for time series. Am. Stat. 33, 127–130 (1979).MATH 

    Google Scholar 
    34.Wetzels, R. & Wagenmakers, E. J. A default Bayesian hypothesis test for correlations and partial correlations. Psychon. B Rev. 19, 1057–1064 (2012).Article 

    Google Scholar 
    35.Anghelache, C., Anghel, M. G., Prodan, L., Sacala, C. & Popovici, M. Multiple linear regression model used in economic analyses. Roman. Stat. Rev. Suppl. 62, 120–127 (2014).
    Google Scholar 
    36.Miao, L. J., Liu, Q., Fraser, R., He, B. & Cui, X. F. Shifts in vegetation growth in response to multiple factors on the Mongolian Plateau from 1982 to 2011. Phys. Chem. Earth 87–88, 50–59 (2015).Article 
    ADS 

    Google Scholar 
    37.Tang, Y. Z., Shao, Q. Q., Liu, J. Y. & Zhang, H. Y. Did ecological restoration hit its mark? Monitoring and assessing ecological changes in the Grain for Green Program Region using multi-source satellite images. Remote Sens. https://doi.org/10.3390/rs11030358 (2019).Article 

    Google Scholar 
    38.Cai, D. W. et al. Contributions of ecological programs to vegetation restoration in arid and semiarid China. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abbde9 (2020).Article 

    Google Scholar 
    39.Yao, N., Huang, C. H., Yang, J., Bosch, C. & Jia, Z. Combined effects of impervious surface change and large-scale afforestation on the surface urban heat island intensity of Beijing, China based on remote sensing analysis. Remote Sens. https://doi.org/10.3390/rs12233906 (2020).Article 

    Google Scholar 
    40.Wu, Z. T., Wu, J. J., He, B., Liu, J. H. & Wang, Q. F. Drought offset ecological restoration program-induced increase in vegetation activity in the Beijing–Tianjin Sand Source Region, China. Environ. Sci. Technol. 48, 12108–12117 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    41.Yang, X. C. et al. Remote sensing monitoring of grassland vegetation growth in the Beijing–Tianjin sandstorm source project area from 2000 to 2010. Ecol. Indic. 51, 244–251 (2015).Article 

    Google Scholar 
    42.Li, X. S., Wang, H. Y., Zhou, S. F., Sun, B. & Gao, Z. H. Did ecological engineering projects have a significant effect on large-scale vegetation restoration in Beijing–Tianjin Sand Source Region, China? A remote sensing approach. Chin. Geogr. Sci. 26, 216–228 (2016).Article 

    Google Scholar 
    43.Hu, S. et al. Detecting and attributing vegetation changes in Taihang Mountain, China. J. Mt. Sci. 16, 337–350 (2019).Article 

    Google Scholar 
    44.Li, D. et al. Identification of the roles of climate factors, engineering construction, and agricultural practices in vegetation dynamics in the Lhasa River Basin, Tibetan Plateau. Remote Sens. https://doi.org/10.3390/rs12111883 (2020).Article 

    Google Scholar 
    45.Sun, H. Y. et al. Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain. Agr. Water Manag. 97, 1139–1145 (2010).Article 

    Google Scholar 
    46.Tao, Y., Li, F., Crittenden, J. C., Lu, Z. M. & Sun, X. Environmental impacts of China’s urbanization from 2000 to 2010 and management implications. Environ. Manag. 57, 498–507 (2016).Article 
    ADS 

    Google Scholar 
    47.Jia, G. J., Epstein, H. E. & Balser, A. Spatial heterogeneity of tundra vegetation response to recent temperature changes. Glob. Change Biol. 12, 42–55 (2010).Article 
    ADS 

    Google Scholar 
    48.Wen, Y. Y., Liu, X. P., Xin, Q. C. & Wu, J. Cumulative effects of climatic factors on terrestrial vegetation growth. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2018JG004751 (2019).Article 

    Google Scholar 
    49.Zhao, A. Z., Yu, Q. Y., Feng, L. L., Zhang, A. P. & Pei, T. Evaluating the cumulative and time-lag effects of drought on grassland vegetation, A case study in the Chinese Loess Plateau. J. Environ. Manag. https://doi.org/10.1016/j.jenvman.2020.110214 (2020).Article 

    Google Scholar  More

  • in

    Microbial diversity in Mediterranean sponges as revealed by metataxonomic analysis

    1.Joseph, B. & Sujatha, S. Pharmacologically important natural products from marine sponges. J. Nat. Prod. 4, 5–12 (2011).CAS 

    Google Scholar 
    2.Bergmann, W. & Feeney, R. J. Contributions to the study of marine products XXXII The nucleosides of sponges. I. J. Org. Chem. 16, 981–987 (1951).CAS 
    Article 

    Google Scholar 
    3.Munro, M. H. G., Luibrand, R. T. & Blunt, J. W. The search for antiviral and anticancer compounds from marine organisms. in Bioorganic Marine Chemistry (ed. Scheuer, P. J.) vol. 1 93–176 (Springer-Verlag, Berlin, Heidelberg, 1987).4.Fuerst, J. A. Diversity and biotechnological potential of microorganisms associated with marine sponges. Appl. Microbiol. Biotechnol. 98, 7331–7347 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Mehbub, M. F., Lei, J., Franco, C. & Zhang, W. Marine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives. Mar. Drugs 12, 4539–4577 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 26, 338–362 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Piel, J. et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. U. S. A. 101, 16222–16227 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    8.Noro, J. C., Kalaitzis, J. A. & Neilan, B. A. Bioactive natural products from Papua New Guinea marine sponges. Chem. Biodivers. 9, 2077–2095 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Schirmer, A. et al. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl. Environ. Microbiol. 71, 4840–4849 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    10.Siegl, A. & Hentschel, U. PKS and NRPS gene clusters from microbial symbiont cells of marine sponges by whole genome amplification. Environ. Microbiol. Rep. 2, 507–513 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Graça, A. P. et al. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLoS ONE 8, e78992 (2013).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    12.Santos, O. C. S. et al. Investigation of biotechnological potential of sponge-associated bacteria collected in Brazilian coast. Lett. Appl. Microbiol. 60, 140–147 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Su, P., Wang, D. X., Ding, S. X. & Zhao, J. Isolation and diversity of natural product biosynthetic genes of cultivable bacteria associated with marine sponge Mycale sp from the coast of Fujian. China. Can. J. Microbiol. 60, 217–225 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Van Soest, R. W. M. et al. World Porifera Database. http://www.marinespecies.org/porifera/. (2020).15.Bertolino, M. et al. Stability of the sponge assemblage of Mediterranean coralligenous concretions along a millennial time span. Mar. Ecol. 35, 149–158 (2014).Article 
    ADS 

    Google Scholar 
    16.Longo, C. et al. Sponges associated with coralligenous formations along the Apulian coasts. Mar. Biodivers. 48, 2151–2163 (2018).Article 

    Google Scholar 
    17.Costa, G. et al. Sponge community variation along the Apulian coasts (Otranto Strait) over a pluri-decennial time span Does water warming drive a sponge diversity increasing in the Mediterranean Sea?. J. Mar. Biol. Assoc. United Kingdom 99, 1519–1534 (2019).Article 

    Google Scholar 
    18.Bertolino, M. et al. Changes and stability of a Mediterranean hard bottom benthic community over 25 years. J. Mar. Biol. Assoc. United Kingdom 96, 341–350 (2016).Article 

    Google Scholar 
    19.Bertolino, M. et al. Have climate changes driven the diversity of a Mediterranean coralligenous sponge assemblage on a millennial timescale?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 355–363 (2017).Article 

    Google Scholar 
    20.Gerovasileiou, V. et al. New Mediterranean biodiversity records. Mediterr. Mar. Sci. 18, 355–384 (2017).Article 

    Google Scholar 
    21.Ulman, A. et al. A massive update of non-indigenous species records in Mediterranean marinas. PeerJ 2017, e3954 (2017).Article 

    Google Scholar 
    22.Costantini, M. An analysis of sponge genomes. Gene 342, 321–325 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Costantini, S. et al. Anti-inflammatory effects of a methanol extract from the marine sponge Geodia cydonium on the human breast cancer MCF-7 cell line. Mediators Inflamm. https://doi.org/10.1155/2015/204975 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Costantini, S. et al. Evaluating the effects of an organic extract from the mediterranean sponge Geodia cydonium on human breast cancer cell lines. Int. J. Mol. Sci. 18, 2112 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5, e11842 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    26.Marra, M. V. et al. Long-term turnover of the sponge fauna in Faro Lake (North-East Sicily, Mediterranean Sea). Ital. J. Zool. 83, 579–588 (2016).CAS 
    Article 

    Google Scholar 
    27.Cárdenas, P., Xavier, J. R., Reveillaud, J., Schander, C. & Rapp, H. T. Molecular phylogeny of the astrophorida (Porifera, Demospongiaep) reveals an unexpected high level of spicule homoplasy. PLoS ONE 6, e18318 (2011).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    28.Erpenbeck, D. et al. The phylogeny of halichondrid demosponges: past and present re-visited with DNA-barcoding data. Org. Divers. Evol. 12, 57–70 (2012).Article 

    Google Scholar 
    29.Abdul Wahab, M. A., Fromont, J., Whalan, S., Webster, N. & Andreakis, N. Combining morphometrics with molecular taxonomy: How different are similar foliose keratose sponges from the Australian tropics?. Mol. Phylogenet. Evol. 73, 23–39 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Wörheide, G. Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar. Biol. 148, 907–912 (2006).Article 
    CAS 

    Google Scholar 
    31.Carella, M., Agell, G., Cárdenas, P. & Uriz, M. J. Phylogenetic reassessment of antarctic tetillidae (Demospongiae, Tetractinellida) reveals new genera and genetic similarity among morphologically distinct species. PLoS ONE 11, 1–33 (2016).
    Google Scholar 
    32.Morrow, C. C. et al. Congruence between nuclear and mitochondrial genes in Demospongiae: a new hypothesis for relationships within the G4 clade (Porifera: Demospongiae). Mol. Phylogenet. Evol. 62, 174–190 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Vargas, S. et al. Diversity in a cold hot-spot: DNA-barcoding reveals patterns of evolution among Antarctic demosponges (class demospongiae, phylum Porifera). PLoS ONE 10, 1–17 (2015).
    Google Scholar 
    34.Yang, Q., Franco, C. M. M., Sorokin, S. J. & Zhang, W. Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations. Sci. Rep. 7, 1–14 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    35.Cosentino, A., Giacobbe, S. & Potoschi, A. The CSI of Faro coastal lake (Messina): a natural observatory for the incoming of marine alien species. Biol. Mar. Mediterr. 16, 132–133 (2009).
    Google Scholar 
    36.Zagami, G., Costanzo, G. & Crescenti, N. First record in Mediterranean Sea and redescription of the bentho-planktonic calanoid copepod species Pseudocyclops xiphophorus Wells, 1967. J. Mar. Syst. 55, 67–76 (2005).Article 

    Google Scholar 
    37.Zagami, G. et al. Biogeographical distribution and ecology of the planktonic copepod Oithona davisae: rapid invasion in lakes Faro and Ganzirri (central Meditteranean Sea). in Trends in copepod studies. Distribution, biology and ecology (ed. Uttieri, M.) 1–55 (Nova Science Publishers, 2017).38.Saccà, A. & Giuffrè, G. Biogeography and ecology of Rhizodomus tagatzi, a presumptive invasive tintinnid ciliate. J. Plankton Res. 35, 894–906 (2013).Article 
    CAS 

    Google Scholar 
    39.Cao, S. et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome 8, 47 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Donnarumma, L. et al. Environmental and benthic community patterns of the shallow hydrothermal area of Secca Delle Fumose (Baia, Naples, Italy). Front. Mar. Sci. 6, 1–15 (2019).Article 

    Google Scholar 
    41.Poli, A., Anzelmo, G. & Nicolaus, B. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar. Drugs 8, 1779–1802 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Shukla, P. J., Nathani, N. M. & Dave, B. P. Marine bacterial exopolysaccharides [EPSs] from extreme environments and their biotechnological applications. Int. J. Res. Biosci. 6, 20–32 (2017).
    Google Scholar 
    43.Patel, A., Matsakas, L., Rova, U. & Christakopoulos, P. A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresour. Technol. 278, 424–434 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Schultz, J. & Rosado, A. S. Extreme environments: a source of biosurfactants for biotechnological applications. Extremophiles 24, 189–206 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Gloeckner, V. et al. The HMA-LMA dichotomy revisited: An electron microscopical survey of 56 sponge species. Biol. Bull. 227, 78–88 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Erwin, P. M., Coma, R., López-Sendino, P., Serrano, E. & Ribes, M. Stable symbionts across the HMA-LMA dichotomy: Low seasonal and interannual variation in sponge-associated bacteria from taxonomically diverse hosts. FEMS Microbiol. Ecol. 91, 1–11 (2015).Article 
    CAS 

    Google Scholar 
    47.Moitinho-Silva, L. et al. The sponge microbiome project. Gigascience 6, 1–13 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Hardoim, C. C. P. & Costa, R. Temporal dynamics of prokaryotic communities in the marine sponge Sarcotragus spinosulus. Mol. Ecol. 23, 3097–3112 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Karimi, E. et al. Metagenomic binning reveals versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine sponges. FEMS Microbiol. Ecol. 94, 1–18 (2018).Article 
    CAS 

    Google Scholar 
    50.Mohamed, N. M. et al. Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges. Environ. Microbiol. 10, 75–86 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Thiel, V. & Imhoff, J. F. Phylogenetic identification of bacteria with antimicrobial activities isolated from Mediterranean sponges. Biomol. Eng. 20, 421–423 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Bibi, F., Yasir, M., Al-Sofyani, A., Naseer, M. I. & Azhar, E. I. Antimicrobial activity of bacteria from marine sponge Suberea mollis and bioactive metabolites of Vibrio sp EA348. Saudi J. Biol. Sci. 27, 1139–1147 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Thakur, A. N. et al. Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Mar. Biotechnol. 7, 245–252 (2005).CAS 
    Article 

    Google Scholar 
    54.Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Thomas, T. R. A., Kavlekar, D. P. & LokaBharathi, P. A. Marine drugs from sponge-microbe association—A review. Mar. Drugs 8, 1417–1468 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Brinkmann, C. M., Marker, A. & Kurtböke, D. I. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity 9, 40 (2017).Article 
    CAS 

    Google Scholar 
    57.Haber, M. & Ilan, M. Diversity and antibacterial activity of bacteria cultured from Mediterranean Axinella spp sponges. J. Appl. Microbiol. 116, 519–532 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Öner, Ö. et al. Cultivable sponge-associated Actinobacteria from coastal area of eastern Mediterranean Sea. Adv. Microbiol. 04, 306–316 (2014).Article 

    Google Scholar 
    59.Gonçalves, A. C. S. et al. Draft genome sequence of Vibrio sp strain Vb278, an antagonistic bacterium isolated from the marine sponge Sarcotragus spinosulus. Genome Announc. 3, 2014–2015 (2015).Article 

    Google Scholar 
    60.Cheng, C. et al. Biodiversity, anti-trypanosomal activity screening, and metabolomic profiling of actinomycetes isolated from Mediterranean sponges. PLoS ONE 10, 1–21 (2015).
    Google Scholar 
    61.Graça, A. P. et al. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Front. Microbiol. 6, 389 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    62.Kuo, J. et al. Antimicrobial activity and diversity of bacteria associated with Taiwanese marine sponge Theonella swinhoei. Ann. Microbiol. 69, 253–265 (2019).CAS 
    Article 

    Google Scholar 
    63.Liu, T. et al. Diversity and antimicrobial potential of Actinobacteria isolated from diverse marine sponges along the Beibu Gulf of the South China Sea. FEMS Microbiol. Ecol. 95, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    64.Hentschel, U. et al. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol. Ecol. 35, 305–312 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Chelossi, E., Milanese, M., Milano, A., Pronzato, R. & Riccardi, G. Characterisation and antimicrobial activity of epibiotic bacteria from Petrosia ficiformis (Porifera, Demospongiae). J. Exp. Mar. Bio. Ecol. 309, 21–33 (2004).CAS 
    Article 

    Google Scholar 
    66.Kennedy, J. et al. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from irish waters. Mar. Biotechnol. 11, 384–396 (2009).CAS 
    Article 

    Google Scholar 
    67.Penesyan, A., Marshall-Jones, Z., Holmstrom, C., Kjelleberg, S. & Egan, S. Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. FEMS Microbiol. Ecol. 69, 113–124 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Santos, O. C. S. et al. Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil. Res. Microbiol. 161, 604–612 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Flemer, B. et al. Diversity and antimicrobial activities of microbes from two Irish marine sponges, Suberites carnosus and Leucosolenia sp. J. Appl. Microbiol. 112, 289–301 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Margassery, L. M., Kennedy, J., O’Gara, F., Dobson, A. D. & Morrissey, J. P. Diversity and antibacterial activity of bacteria isolated from the coastal marine sponges Amphilectus fucorum and Eurypon major. Lett. Appl. Microbiol. 55, 2–8 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Abdelmohsen, U. R. et al. Actinomycetes from Red Sea sponges: sources for chemical and phylogenetic diversity. Mar. Drugs 12, 2771–2789 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Montalvo, N. F. & Hill, R. T. Sponge-associated bacteria are strictly maintained in two closely related but geographically distant sponge hosts. Appl. Environ. Microbiol. 77, 7207–7216 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    73.Cleary, D. F. R. et al. Compositional analysis of bacterial communities in seawater, sediment, and sponges in the Misool coral reef system. Indonesia. Mar. Biodivers. 48, 1889–1901 (2018).Article 

    Google Scholar 
    74.Bedard, D. L., Ritalahti, K. M. & Löffler, F. E. The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Appl. Environ. Microbiol. 73, 2513–2521 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    75.Taş, N., Van Eekert, M. H. A., De Vos, W. M. & Smidt, H. The little bacteria that can – Diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp in contaminated environments. Microb. Biotechnol. 3, 389–402 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Arnds, J., Knittel, K., Buck, U., Winkel, M. & Amann, R. Development of a 16S rRNA-targeted probe set for Verrucomicrobia and its application for fluorescence in situ hybridization in a humic lake. Syst. Appl. Microbiol. 33, 139–148 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Sizikov, S. et al. Characterization of sponge-associated Verrucomicrobia: microcompartment-based sugar utilization and enhanced toxin–antitoxin modules as features of host-associated Opitutales. Environ. Microbiol. 22, 4669–4688 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Cardman, Z. et al. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an Arctic fjord of Svalbard. Appl. Environ. Microbiol. 80, 3749–3756 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    79.Cabello-Yeves, P. J. et al. Reconstruction of diverse verrucomicrobial genomes from metagenome datasets of freshwater reservoirs. Front. Microbiol. 8, 2131 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.He, S. et al. Ecophysiology of freshwater Verrucomicrobia inferred from metagenome-assembled genomes. MSphere 2, e00277 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. 5, 1026–1039 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Shindo, K. et al. Diapolycopenedioic acid xylosyl esters A, B, and C, novel antioxidative glyco-C30-carotenoic acids produced by a new marine bacterium Rubritalea Squalenifaciens. J. Antibiot. (Tokyo) 61, 185–191 (2008).CAS 
    Article 

    Google Scholar 
    83.Watson, S. W., Bock, E., Valois, F. W., Waterbury, J. B. & Schlosser, U. Nitrospira marina gen. nov sp nov: a chemolithotrophic nitrite-oxidizing bacterium. Arch. Microbiol. 144, 1–7 (1986).Article 

    Google Scholar 
    84.Daims, H. & Wagner, M. Nitrospira. Trends Microbiol. 26, 462–463 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Off, S., Alawi, M. & Spieck, E. Enrichment and physiological characterization of a novel nitrospira-like bacterium obtained from a marine sponge. Appl. Environ. Microbiol. 76, 4640–4646 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    86.Feng, G., Sun, W., Zhang, F., Karthik, L. & Li, Z. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei. Sci. Rep. 6, 1–11 (2016).CAS 
    Article 

    Google Scholar 
    87.Andreo-Vidal, A., Sanchez-Amat, A. & Campillo-Brocal, J. C. The Pseudoalteromonas luteoviolacea L-amino acid oxidase with antimicrobial activity is a flavoenzyme. Mar. Drugs 16, 499 (2018).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    88.Saccà, A., Guglielmo, L. & Bruni, V. Vertical and temporal microbial community patterns in a meromictic coastal lake influenced by the Straits of Messina upwelling system. Hydrobiologia 600, 89–104 (2008).Article 

    Google Scholar 
    89.Polese, G. et al. Meiofaunal assemblages of the bay of Nisida and the environmental status of the Phlegraean area (Naples, Southern Italy). Mar. Biodivers. 48, 127–137 (2018).Article 

    Google Scholar 
    90.Gambi, M. C., Tiberti, L. & Mannino, A. M. An update of marine alien species off the Ischia Island (Tyrrhenian Sea) with a closer look at neglected invasions of Lophocladia lallemandii (Rhodophyta). Not. Sibm 75, 58–65 (2019).
    Google Scholar 
    91.Hooper, J. N. A. ‘Sponguide’. Guide to sponge collection and identification. https://www.academia.edu/34258606/SPONGE_GUIDE_GUIDE_TO_SPONGE_COLLECTION_AND_IDENTIFICATION_Version_August_2000. (2000).92.Rützler, K. Sponges in coral reefs. in Coral reefs: Research methods, monographs on oceanographic methodology (eds. Stoddart, D. R. & Johannes, R. E.) 299–313 (Paris: Unesco, 1978).93.Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Schmitt, S., Hentschel, U., Zea, S., Dandekar, T. & Wolf, M. ITS-2 and 18S rRNA gene phylogeny of Aplysinidae (Verongida, Demospongiae). J. Mol. Evol. 60, 327–336 (2005).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    95.Chombard, C., Boury-Esnault, N. & Tillier, S. Reassessment of homology of morphological characters in Tetractinellid sponges based on molecular data. Syst. Biol. 47, 351–366 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Collins, A. G. Phylogeny of medusozoa and the evolution of cnidarian life cycles. J. Evol. Biol. 15, 418–432 (2002).Article 

    Google Scholar 
    97.Dohrmann, M., Janussen, D., Reitner, J., Collins, A. G. & Wörheide, G. Phylogeny and evolution of glass sponges (Porifera, Hexactinellida). Syst. Biol. 57, 388–405 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Manuel, M. et al. Phylogeny and evolution of calcareous sponges: monophyly of calcinea and calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry. Syst. Biol. 52, 311–333 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Wörheide, G., Degnan, B., Hooper, J. & Reitner, J. Phylogeography and taxonomy of the Indo-Pacific reef cave dwelling coralline demosponge Astrosclera willeyana: new data from nuclear internal transcribed spacer sequences. Proc. 9th Int. Coral Reef Symp. 1, 339–346 (2002).100.Meyer, C. P., Geller, J. B. & Paulay, G. Fine scale endemism on coral reefs: Archipelagic differentiation in turbinid gastropods. Evolution 59, 113–125 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 
    CAS 

    Google Scholar 
    103.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.R Core Team. A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. (2020).105.Urbanek, S. & Horner, J. Cairo: R Graphics device using Cairo graphics library for creating high-quality bitmap (PNG, JPEG, TIFF), vector (PDF, SVG, PostScript) and display (X11 and Win32) output. R package version 1.5–12.2. https://cran.r-project.org/package=Cairo (2020).106.Chao, B. F. Interannual length-of-the-day variation with relation to the southern oscillation/El Nino. Geophys. Res. Lett. 11, 541–544 (1984).Article 
    ADS 

    Google Scholar 
    107.Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    108.Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, 1949).MATH 

    Google Scholar 
    109.Simpson, E. H. Measurment of diversity. Nature 163, 688 (1949).MATH 
    Article 
    ADS 

    Google Scholar  More

  • in

    Metabarcoding insights into the diet and trophic diversity of six declining farmland birds

    1.Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    2.Van Zanten, B. T. et al. European agricultural landscapes, common agricultural policy and ecosystem services: A review. Agron. Sustain. Dev. 34, 309–325 (2014).Article 

    Google Scholar 
    3.Jongman, R. H. Homogenisation and fragmentation of the European landscape: Ecological consequences and solutions. Landsc. Urban Plan. 58, 211–221 (2002).Article 

    Google Scholar 
    4.Stoate, C. et al. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 63, 337–365 (2001).CAS 
    Article 

    Google Scholar 
    5.Storkey, J., Meyer, S., Still, K. S. & Leuschner, C. The impact of agricultural intensification and land-use change on the European arable flora. Proc. R. Soc. B 279, 1421–1429 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Donald, P. F., Sanderson, F. J., Burfield, I. J. & Van Bommel, F. P. J. Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric. Ecosyst. Environ. 116, 189–196 (2006).Article 

    Google Scholar 
    7.Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188 (2003).Article 

    Google Scholar 
    8.Traba, J. & Morales, M. B. The decline of farmland birds in Spain is strongly associated to the loss of fallowland. Sci. Rep. 9, 1–6 (2019).Article 
    CAS 

    Google Scholar 
    9.Mcmahon, B. J., Giralt, D., Raurell, M., Brotons, L. & Bota, G. Identifying set-aside features for bird conservation and management in northeast Iberian pseudo-steppes. Bird Study 57, 289–300 (2010).Article 

    Google Scholar 
    10.Tarjuelo, R. et al. Living in seasonally dynamic farmland: The role of natural and semi-natural habitats in the movements and habitat selection of a declining bird. Biol. Conserv. 251, 108794 (2020).Article 

    Google Scholar 
    11.Donázar, J. A., Naveso, M. A., Tella, J. L. & Campión, D. Extensive grazing and raptors in Spain. 117–149. in Farming and Birds in Europe: The Common Agricultural Policy and Its Implications for Bird Conservation (Pain, D. J. & Pienkowski, M. W. eds.). (Academic Press, 1997).12.Santos, T. & Suárez, F. Biogeography and population trends of the Iberian steppe birds. in Ecology and Conservation of Steppe-Land Birds (Bota, G., Morales, M. B., Mañosa, S. & Camprodon, J. eds.). (Lynx Edicions, 2005).13.Tarjuelo, R., Margalida, A. & Mougeot, F. Changing the fallow paradigm: A win–win strategy for the post-2020 Common Agricultural Policy to halt farmland bird declines. J. Appl. Ecol. 57, 642–649 (2020).Article 

    Google Scholar 
    14.Wilson, J. D., Morris, A. J., Arroyo, B. E., Clark, S. C. & Bradbury, R. B. A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric. Ecosyst. Environ. 75, 13–30 (1999).Article 

    Google Scholar 
    15.Benton, T. G., Bryant, D. M., Cole, L. & Crick, H. Q. Linking agricultural practice to insect and bird populations: A historical study over three decades. J. Appl. Ecol. 39, 673–687 (2002).Article 

    Google Scholar 
    16.Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. U.S.A. 118, 2 (2021).Article 
    CAS 

    Google Scholar 
    17.Andreasen, C., Jensen, H. A. & Jensen, S. M. Decreasing diversity in the soil seed bank after 50 years in Danish arable fields. Agric. Ecosyst. Environ. 259, 61–71 (2018).Article 

    Google Scholar 
    18.Newton, I. The recent declines of farmland bird populations in Britain: An appraisal of causal factors and conservation actions. Ibis 146, 579–600 (2004).Article 

    Google Scholar 
    19.Burfield, I. J. The conservation status of steppic birds in Europe. 119–140. in Ecology and Conservation of Steppe-Land Birds (Bota, G., Morales, M. B., Mañosa, S. & Camprodon, J. eds.). (Lynx Edicions, 2005).20.Del Hoyo, J., Elliott, A., Sargatal, J. & Christie D. A. Handbook of the Birds of the World. (Lynx Edicions, 1992).21.Madroño, A., González, C. & Atienza, J. C. Libro Rojo de las Aves de España. (Dirección General para la Biodiversidad-SEO/BirdLife, 2004)22.Suárez, F., Hervás, I., Levassor, C. & Casado, M. A. La alimentación de la ganga ibérica y la ganga ortega. 215–229. in La Ganga Iberica (Pterocles alchata) y la Ganga Ortega (Pterocles orientalis) en España. Distribución, Abundancia, Biología y Conservación (Herranz, J. & Suárez, F. eds.). (Ministerio de Medio Ambiente, 1999).23.Jiguet, F. Arthropods in diet of Little Bustards Tetrax tetrax during the breeding season in western France. Bird Study 49, 105–109 (2002).Article 

    Google Scholar 
    24.Bravo, C., Ponce, C., Palacín, C. & Alonso, J. C. Diet of young Great Bustards Otis tarda in Spain: Sexual and seasonal differences. Bird Study 59, 243–251 (2012).Article 

    Google Scholar 
    25.Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Shokralla, S., Spall, J. L., Gibson, J. F. & Hajibabaei, M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21, 1794–1805 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Mougeot, F., Fernández-Tizón, M., Tarjuelo, R., Benítez-López, A. & Jiménez, J. La Ganga Ibérica y la Ganga Ortega en España, Población Reproductora en 2019 y Método de Censo. (SEO/BirdLife, 2021).28.Martin, T. E. Food as a limit on breeding birds: A life-history perspective. Annu. Rev. Ecol. Evol. Syst. 18, 453–487 (1987).Article 

    Google Scholar 
    29.Martín, C. A., Casas, F., Mougeot, F., García, J. T. & Viñuela, J. Positive interactions between vulnerable species in agrarian pseudo-steppes: Habitat use by pin-tailed sandgrouse depends on its association with the little bustard. Anim. Conserv. 13, 383–389 (2010).Article 

    Google Scholar 
    30.Bravo, C., Cuscó, F., Morales, M. & Mañosa, S. Diet composition of a declining steppe bird the Little Bustard (Tetrax tetrax) in relation to farming practices. Avian Conserv. Ecol. 12, 1 (2017).CAS 

    Google Scholar 
    31.Morse, J. G. & Hoddle, M. S. Invasion biology of thrips. Annu. Rev. Entomol. 51, 67–89 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Goldarazena, A. Orden Thysanoptera. Ide@-Sea 52, 1–20 (2015).
    Google Scholar 
    33.Ndang’ang’a, P. K., Njoroge, J. B. & Vickery, J. Quantifying the contribution of birds to the control of arthropod pests on kale, Brassica oleracea acephala, a key crop in East African highland farmland. Int. J. Pest Manag. 59, 211–216 (2013).Article 

    Google Scholar 
    34.Gunnarsson, B. Bird predation on spiders: Ecological mechanisms and evolutionary consequences. J. Arachnol. 35(509), 529 (2007).
    Google Scholar 
    35.Lee, J. H. et al. Anticancer activity of the antimicrobial peptide scolopendrasin VII derived from the centipede, Scolopendra subspinipes mutilans. J. Microbiol. Biotechnol. 25, 1275–1280 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Lima, D. B. et al. Antiparasitic effect of Dinoponera quadriceps giant ant venom. Toxicon 120, 128–132 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Whitman, D. W. et al. Antiparasitic properties of cantharidin and the blister beetle berberomeloe majalis (Coleoptera: meloidae). Toxins 11, 234 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    38.Bravo, C., Bautista, L. M., García-París, M., Blanco, G. & Alonso, J. C. Males of a strongly polygynous species consume more poisonous food than females. PLoS ONE 9, e111057 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Bolívar, P. et al. Antiparasitic effects of plant species from the diet of great bustards. Preprint. https://doi.org/10.21203/rs.3.rs-122399/v1 (2020).Article 

    Google Scholar 
    40.Boyer, A. G. et al. Seasonal variation in top-down and bottom-up processes in a grassland arthropod community. Oecologia 136, 309–316 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Palacios, F., Garzón, J. & Castroviejo, J. L. alimentación de la avutarda (Otis tarda) en España, especialmente en primavera. Ardeola 21, 347–406 (1975).
    Google Scholar 
    42.Cabodevilla, X., Gómez-Moliner, B. J. & Madeira, M. J. Simultaneous analysis of the intestinal parasites and diet through eDNA metabarcoding. Preprint. https://doi.org/10.22541/au.158531783.33894277 (2020).Article 

    Google Scholar 
    43.García de la Morena, E. L., Bota, G., Mañosa, S. & Morales, M. B. El Sisón Común en España. II Censo Nacional (2016). (SEO/BirdLife, 2018).44.Cabodevilla, X., Aebischer, N. J., Mougeot, F., Morales, M. B. & Arroyo, B. Are population changes of endangered little bustards associated with releases of red-legged partridges for hunting? A large-scale study from central Spain. Eur. J. Wildl. Res. 66, 1–10 (2020).Article 

    Google Scholar 
    45.Cuscó, F., Cardador, L., Bota, G., Morales, M. B. & Mañosa, S. Inter-individual consistency in habitat selection patterns and spatial range constraints of female little bustards during the non-breeding season. BMC Ecol. 18, 1–12 (2018).Article 

    Google Scholar 
    46.González del Portillo, D., Arroyo, B., García Simón, G. & Morales, M. B. Can current farmland landscapes feed declining steppe birds? Evaluating arthropod abundance for the endangered little bustard (Tetrax tetrax) in cereal farmland during the chick‐rearing period: Variations between habitats and localities. Ecol. Evol. 11, 3219–3238 (2021).
    47.Silva, J. P., Pinto, M. & Palmeirim, J. M. Managing landscapes for the little bustard Tetrax tetrax: Lessons from the study of winter habitat selection. Biol. Conserv. 117, 521–528 (2004).Article 

    Google Scholar 
    48.Pfiffner, L. & Luka, H. Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats. Agric. Ecosyst. Environ. 78, 215–222 (2000).Article 

    Google Scholar 
    49.Hendrickx, F. et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 44, 340–351 (2007).Article 

    Google Scholar 
    50.Tarjuelo, R., Morales, M. B., Arribas, L. & Traba, J. Abundance of weeds and seeds but not of arthropods differs between arable habitats in an extensive Mediterranean farming system. Ecol. Res. 34, 624–636 (2019).Article 

    Google Scholar 
    51.Green, R. E. The feeding ecology and survival of partridge chicks (Alectoris rufa and Perdix perdix) on arable farmland in East Anglia. J. Appl. Ecol. 1, 817–830 (1984).Article 

    Google Scholar 
    52.Palacín, C. La decadencia de la comunidad de aves de los cultivos cerealistas mediterráneos. in XV Congreso del Grupo Ibérico de Aguiluchos. https://xvcongresoaguiluchosgia.es/wp-content/uploads/2019/11/LA-DECADENCIA-DE-LA-COMUNIDAD-DE-AVES-DE-LOS-CULTIVOS-CEREALISTAS-MEDITERRÁNEOS-Carlos-Palac%C3%ADn.pdf (2019).53.Blanco-Aguiar, J. A., Virgós, E. & Villafuerte, R. Perdiz roja (Alectoris rufa). in Atlas de las Aves Reproductoras de España. 212–213 (2003).54.Rodríguez-Teijeiro, J. D., Puigcerver, M. & Gallego, S. Codorniz común. in Atlas de las Aves Reproductoras de España. 218–219 (2003).55.Andueza, A. et al. Evaluación del Impacto Económico y Social de la Caza en España. (Fundación Artemisan, 2018)56.Lane, S. J., Alonso, J. C., Alonso, J. A. & Naveso, M. A. Seasonal changes in diet and diet selection of great bustards (Otis tarda) in north-west Spain. J. Zool. 247, 201–214 (1999).Article 

    Google Scholar 
    57.QGIS Development Team. QGIS Geographic Information System. http://qgis.osgeo.org (Open Source Geospatial Foundation Project, 2018).58.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).Article 

    Google Scholar 
    59.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    Article 

    Google Scholar 
    60.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic. Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.McKnight, D. T. et al. Methods for normalizing microbiome data: An ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).Article 

    Google Scholar 
    62.Lamb, P. D. et al. How quantitative is metabarcoding: A meta-analytical approach. Mol. Ecol. 28, 420–430 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Piñol, J., Senar, M. A. & Symondson, W. O. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol. Ecol. 28, 407–419 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    64.Russo, T. et al. All is fish that comes to the net: metabarcoding for rapid fisheries catch assessment. Ecol. Appl. 31, e02273 (2021).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.González-Teuber, M., Vilo, C., Guevara-Araya, M. J., Salgado-Luarte, C. & Gianoli, E. Leaf resistance traits influence endophytic fungi colonization and community composition in a South American temperate rainforest. J. Ecol. 108, 1019–1029 (2020).Article 
    CAS 

    Google Scholar 
    66.Aliche, E. B., Talsma, W., Munnik, T. & Bouwmeester, H. J. Characterization of maize root microbiome in two different soils by minimizing plant DNA contamination in metabarcoding analysis. Biol. Fertil. Soils. 57, 731–737 (2021).CAS 
    Article 

    Google Scholar 
    67.de Groot, G. A. et al. The aerobiome uncovered: Multi-marker metabarcoding reveals potential drivers of turn-over in the full microbial community in the air. Environ. Int. 154, 106551 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Tordoni, E. et al. Integrated eDNA metabarcoding and morphological analyses assess spatio-temporal patterns of airborne fungal spores. Ecol. Indic. 121, 107032 (2021).Article 

    Google Scholar 
    69.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (R Foundation for Statistical Computing, 2019).70.Russell, V. L. Least-squares means: The R Package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
    Google Scholar 
    71.Oksanen, J. et al. Vegan: Community Ecology Package. R Package Version 2.0 (2013). More

  • in

    Variable intraspecific space use supports optimality in an apex predator

    1.Mitchell, M. S. & Powell, R. A. A mechanistic home range model for optimal use of spatially distributed resources. Ecol. Model. 177, 209–232 (2004).Article 

    Google Scholar 
    2.Horne, J. S., Garton, E. O. & Rachlow, J. L. A synoptic model of animal space use: Simultaneous estimation of home range, habitat selection, and inter/intra–specific relationships. Ecol. Model. 214, 338–348 (2008).Article 

    Google Scholar 
    3.Nathan, R. An emerging movement ecology paradigm. Proc. Natl. Acad. Sci. USA 105, 19050–19051 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Fretwell, S. D. & Lucas, H. L. J. On territorial behavior and other factors influencing habitat distribution in birds. Part 1. Theoretical development. Acta. Biotheor. 19, 16–36 (1969).Article 

    Google Scholar 
    5.Powell, R. A. Animal home ranges and territories and home range estimators. Res. Tech. Animal Ecol. Controversies Consequences. 1, 476 (2000).
    Google Scholar 
    6.Parker, G. A. & Smith, J. M. Optimality theory in evolutionary biology. Nature 348, 27 (1990).ADS 
    Article 

    Google Scholar 
    7.Hiller, T. L., Belant, J. L. & Beringer, J. Sexual size dimorphism mediates effects of spatial resource variability on American black bear space use. J. Zool. 296, 200–207 (2015).Article 

    Google Scholar 
    8.Mitchell, M. S. & Powell, R. A. Optimal use of resources structures home ranges and spatial distribution of black bears. Anim. Behav. 74, 219–230 (2007).Article 

    Google Scholar 
    9.McLoughlin, P. D. & Ferguson, S. H. A hierarchical pattern of limiting factors helps explain variation in home range size. Ecoscience 7, 123–130 (2000).Article 

    Google Scholar 
    10.Johnson, D. D., Kays, R., Blackwell, P. G. & Macdonald, D. W. Does the resource dispersion hypothesis explain group living?. Trends Ecol. Evol. 17, 563–570 (2002).Article 

    Google Scholar 
    11.Macdonald, D. W. The ecology of carnivore social behavior. Nature 301, 379–384 (1983).ADS 
    Article 

    Google Scholar 
    12.Macdonald, D. W. & Johnson, D. D. P. Patchwork planet: The resource dispersion hypothesis, society, and the ecology of life. J. Zool. 295, 75–107 (2015).Article 

    Google Scholar 
    13.Lukacs, P. M. et al. Factors influencing elk recruitment across ecotypes in the Western United States. J. Wildl. Manag. 82, 698–710 (2018).Article 

    Google Scholar 
    14.Mangipane, L. S. et al. Influences of landscape heterogeneity on home-range sizes of brown bears. Mamm. Biol. 88, 1–7 (2018).Article 

    Google Scholar 
    15.McClintic, L. F., Taylor, J. D., Jones, J. C., Singleton, R. D. & Wang, G. Effects of spatiotemporal resource heterogeneity on home range size of American beaver. J. Zool. 293, 134–141 (2014).Article 

    Google Scholar 
    16.Harestad, A. S. & Bunnel, F. L. Home range and body weight—A reevaluation. Ecology 60, 389–402 (1979).Article 

    Google Scholar 
    17.Knick, S. T. Ecology of bobcats relative to exploitation and a prey decline in southeastern Idaho. Wildl. Monogr. 108, 3–42 (1990).
    Google Scholar 
    18.Kelt, D. A. & Van Vuren, D. H. The ecology and macroecology of mammalian home range area. Am. Nat. 157, 637–645 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.McNab, B. K. Bioenergetics and the determination of home range size. Am. Nat. 97, 133–140 (1963).Article 

    Google Scholar 
    20.Dahle, B., Støen, O. G. & Swenson, J. E. Factors influencing home-range size in subadult brown bears. J. Mammal. 87, 859–865 (2006).Article 

    Google Scholar 
    21.Dahle, B. & Swenson, J. E. Home ranges in adult Scandinavian brown bears (Ursus arctos): Effect of mass, sex, reproductive category, population density and habitat type. J. Zool. 260, 329–335 (2003).Article 

    Google Scholar 
    22.Lafferty, D. J. R., Loman, Z. G., White, K. S., Morzillo, A. T. & Belant, J. L. Moose (Alces alces) hunters subsidize the scavenger community in Alaska. Polar Biol. 39, 639–647 (2016).Article 

    Google Scholar 
    23.Van Manen, F. T. et al. Primarily resident grizzly bears respond to late-season elk harvest. Ursus 2019, 1–15 (2019).Article 

    Google Scholar 
    24.Taylor, M.K. Density-dependent population regulation of black, brown and polar bears. in 9th International Conference on Bear Research and Management. International Bear Association, Missoula (1994).25.Swenson, J. E., Dahle, B. & Sandegren, F. Intraspecific predation in Scandinavian brown bears older than cubs-of-the-year. Ursus 12, 81–91 (2001).
    Google Scholar 
    26.Hilderbrand, G. V. et al. Body size and lean mass of brown bears across and within four diverse ecosystems. J. Zool. 305, 53–62 (2018).Article 

    Google Scholar 
    27.Hilderbrand, G. V. et al. The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can. J. Zool. 77, 132–138 (1999).Article 

    Google Scholar 
    28.Belant, J. L., Kielland, K., Follmann, E. H. & Adams, L. G. Interspecific resource partitioning in sympatric ursids. Ecol. Appl. 16, 2333–2343 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Belant, J. L., Griffith, B., Zhang, Y., Follmann, E. H. & Adams, L. G. Population-level resource selection by sympatric brown and American black bears in Alaska. Polar Biol. 33, 31–40 (2010).Article 

    Google Scholar 
    30.Munro, R. H. M., Nielsen, S. E., Price, M. H., Stenhouse, G. B. & Boyce, M. S. Seasonal and diel patterns of grizzly bear diet and activity in west-central Alberta. J. Mammal. 87, 1112–1121 (2006).Article 

    Google Scholar 
    31.US Fish and Wildlife Service. Izembek National Wildlife Refuge Land Exchange/Road Corridor, Draft Environmental Impact Statement (US Fish and Wildlife Service, 2018).
    Google Scholar 
    32.Svoboda, N. J. & Crye, J. R. Roosevelt Elk Management Report and Plan, Game Management Unit 8: Report Period 1 July 2013–30 June 2018, and Plan Period 1 July 2018–30 June 2023 (Alaska Department of Fish and Game, 2020).
    Google Scholar 
    33.Van Daele, M. B. et al. Salmon consumption by Kodiak brown bears (Ursus arctos middendorffi) with ecosystem management implications. Can. J. Zool. 91, 164–174 (2013).Article 

    Google Scholar 
    34.Barnes, V. The influence of salmon availability on movements and range of brown bears on Southwest Kodiak Island. Bears Biol. Manag. 8, 305–313 (1990).
    Google Scholar 
    35.Deacy, W., Leacock, W., Armstrong, J. B. & Stanford, J. A. Kodiak brown bears surf the salmon red wave: Direct evidence from GPS collared individuals. Ecology 97, 1091–1098 (2016).PubMed 
    Article 

    Google Scholar 
    36.Van Daele, L. J., Barnes, V. G. & Belant, J. L. Ecological flexibility of brown bears on Kodiak Island, Alaska. Ursus 23, 21–29 (2012).Article 

    Google Scholar 
    37.Stirling, I., Spencer, C. & Andriashek, D. Immobilization of polar bears (Ursus maritimus) with Telazol® in the Canadian Arctic. J. Wildl. Dis. 25, 159–168 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Woolf, A., Hays, H. R., Allen, W. B. & Swart, J. Immobilization of wild ungulates with etorphine HC1. J. Zoo Animal Med. 4, 16–19 (1973).Article 

    Google Scholar 
    39.Meuleman, T., Port, J. D., Stanley, T. H., Williard, K. F. & Kimball, J. Immobilization of elk and moose with carfentanil. J. Wildl. Manag. 48, 258–262 (1984).Article 

    Google Scholar 
    40.Lance, W.R. & Kenny, D.E. Thiafentanil oxalate (A3080) in nondomestic ungulate species. in Fowler’s Zoo and Wild Animal Medicine (ed. Miller and Fowler) 589–595 (W.B. Saunders, 2012).41.Garshelis, D. L. & McLaughlin, C. R. Review and evaluation of breakaway devices for bear radiocollars. Ursus 10, 459–465 (1998).
    Google Scholar 
    42.Calvert, W. & Ramsay, M. A. Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10, 449–453 (1998).
    Google Scholar 
    43.Thiemann, G. W. et al. Effects of chemical immobilization on the movement rates of free-ranging polar bears. J. Mammal. 94, 386–397 (2013).Article 

    Google Scholar 
    44.Noonan, M. J. et al. A comprehensive analysis of autocorrelation and bias in home range estimation. Ecol. Monogr. 89, e01344 (2019).Article 

    Google Scholar 
    45.Bishop, A., Brown, C., Rehberg, M., Torres, L. & Horning, M. Juvenile Steller sea lion (Eumetopias jubatus) utilization distributions in the Gulf of Alaska. Mov. Ecol. 6, 1–15 (2018).Article 

    Google Scholar 
    46.Long, R. A., Muir, J. D., Rachlow, J. L. & Kie, J. G. A comparison of two modeling approaches for evaluating wildlife-habitat relationships. J. Wildl. Manag. 73, 294–302 (2009).Article 

    Google Scholar 
    47.Fleming, M. D. & Spencer, P. A vegetative cover map for the Kodiak Archipelago Alaska (USGS, Alaska Science Center, Anchorage, 2004).
    Google Scholar 
    48.Brodeur, V., Ouellet, J. P., Courtois, R. & Fortin, D. Habitat selection by black bears in an intensively logged boreal forest. Can. J. Zool. 86, 1307–1316 (2008).Article 

    Google Scholar 
    49.Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).Article 

    Google Scholar 
    50.Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, 1963).MATH 

    Google Scholar 
    51.Smith, T. S. & Partridge, S. T. Dynamics of intertidal foraging by coastal brown bears in southwestern Alaska. J. Wildl. Manag. 68, 233–240 (2004).Article 

    Google Scholar 
    52.Zager, P. & Beecham, J. The role of American black bears and brown bears as predators on ungulates in North America. Ursus 17, 95–108 (2006).Article 

    Google Scholar 
    53.Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article 

    Google Scholar 
    54.Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: An R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).Article 

    Google Scholar 
    55.Morris, L. R., Proffitt, K. M., Asher, V. & Blackburn, J. K. Elk resource selection and implications for anthrax management in Montana. J. Wildl. Manag. 80, 235–244 (2016).Article 

    Google Scholar 
    56.Pontius, R. G. & Parmentier, B. Recommendations for using the relative operating characteristic (ROC). Landsc. Ecol. 29, 367–382 (2014).Article 

    Google Scholar 
    57.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    58.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    59.R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.60.Lewis, T. M. & Lafferty, D. J. Brown bears and wolves scavenge humpback whale carcass in Alaska. Ursus 25, 8–13 (2014).Article 

    Google Scholar 
    61.Paralikidis, N. P., Papageorgiou, N. K., Kontsiotis, V. J. & Tsiompanoudis, A. C. The dietary habits of the brown bear (Ursus arctos) in western Greece. Mamm. Biol. 75, 29–35 (2010).Article 

    Google Scholar 
    62.Sandell, M. The mating tactics and spacing patterns of solitary carnivores In Carnivore Behavior, Ecology, and Evolution (ed. Gittleman J.L.) 164–182 (Springer, 1989).63.Hilderbrand, G. V., Jenkins, S. G., Schwartz, C. C., Hanley, T. A. & Robbins, C. T. Effect of seasonal differences in dietary meat intake on changes in body mass and composition in wild and captive brown bears. Can. J. Zool. 77, 1623–1630 (1999).Article 

    Google Scholar 
    64.Milakovic, B. & Parker, K. L. Quantifying carnivory by grizzly bears in a multi-ungulate system. J. Wildl. Manag. 77, 39–47 (2013).Article 

    Google Scholar 
    65.Nieminen, M. The impact of large carnivores on the mortality of semi-domesticated reindeer (Rangifer tarandus tarandus L.) calves in Kainuu, southeastern reindeer herding region of Finland. Rangifer. 30, 79–88 (2010).Article 

    Google Scholar 
    66.Mumma, M. A. et al. Intrinsic traits of woodland caribou Rangifer tarandus caribou calves depredated by black bears Ursus americanus and coyotes Canis latrans. Wildl. Biol. 2019, 1–9 (2019).Article 

    Google Scholar 
    67.Svoboda, N. J., Belant, J. L., Beyer, D. E., Duquette, J. F. & Lederle, P. E. Carnivore space use shifts in response to seasonal resource availability. Ecosphere. 10, e02817 (2019).Article 

    Google Scholar 
    68.Ruth, T. K. et al. Large-carnivore response to recreational big-game hunting along the Yellowstone National Park and Absaroka-Beartooth Wilderness boundary. Wildl. Soc. Bull. 31, 1150–1161 (2003).
    Google Scholar 
    69.Haroldson, M. A., Schwartz, C. C., Cherry, S. & Moody, D. S. Possible effects of elk harvest on fall distribution of grizzly bears in the Greater Yellowstone Ecosystem. J. Wildl. Manag. 68, 129–137 (2004).Article 

    Google Scholar 
    70.Bastille-Rousseau, G., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J. P. Foraging strategies by omnivores: are black bears actively searching for ungulate neonates or are they simply opportunistic predators?. Ecography 34, 588–596 (2011).Article 

    Google Scholar 
    71.Gehr, B. et al. Evidence for nonconsumptive effects from a large predator in an ungulate prey?. Behav. Ecol. 29, 724–735 (2018).Article 

    Google Scholar 
    72.Hebblewhite, M., Merrill, E. H. & McDonald, T. L. Spatial decomposition of predation risk using resource selection functions: An example in a wolf–elk predator–prey system. Oikos 111, 101–111 (2005).Article 

    Google Scholar 
    73.Nielsen, S. E., Boyce, M. S. & Stenhouse, G. B. Grizzly bears and forestry: I. Selection of clearcuts by grizzly bears in west-central Alberta, Canada. For. Ecol. Manag. 199, 51–65 (2004).Article 

    Google Scholar 
    74.McLellan, B. N. Relationships between human industrial activity and grizzly bears. Bears Biol. Manag. 8, 57–64 (1990).
    Google Scholar 
    75.Sigman, M. Impacts of Clearcut Logging on the Fish and Wildlife Resources of Southeast Alaska Vol. 85 (Alaska Department of Fish and Game, 1985).
    Google Scholar 
    76.Linnell, J. D., Swenson, J. E., Andersen, R. & Barnes, B. How vulnerable are denning bears to disturbance?. Wildl. Soc. Bull. 28, 400–413 (2000).
    Google Scholar 
    77.McLellan, B. N. & Shackleton, D. M. Grizzly bears and resource-extraction industries: Effects of roads on behaviour, habitat use and demography. J. Appl. Ecol. 25, 451–460 (1988).Article 

    Google Scholar 
    78.Nielsen, S. E., Munro, R. H. M., Bainbridge, E. L., Stenhouse, G. B. & Boyce, M. S. Grizzly bears and forestry: II. Distribution of grizzly bear foods in clearcuts of west-central Alberta, Canada. For. Ecol. Manag. 199, 67–82 (2004).Article 

    Google Scholar 
    79.Nielsen, S. E., Stenhouse, G. B., Beyer, H. L., Huettmann, F. & Boyce, M. S. Can natural disturbance-based forestry rescue a declining population of grizzly bears?. Biol. Cons. 141, 2193–2207 (2008).Article 

    Google Scholar 
    80.Frank, S. C. et al. A “clearcut” case? Brown bear selection of coarse woody debris and carpenter ants on clearcuts. For. Ecol. Manage. 348, 164–173 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Hertel, A. G. et al. Bears and berries: Species-specific selective foraging on a patchily distributed food resource in a human-altered landscape. Behav. Ecol. Sociobiol. 70, 831–842 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Valeix, M., Loveridge, A. J. & Macdonald, D. W. Influence of prey dispersion on territory and group size of African lions: A test of the resource dispersion hypothesis. Ecology 93, 2490–2496 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Robbins, C. T. et al. Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos 116, 1675–1682 (2007).Article 

    Google Scholar 
    84.Ben-David, M., Titus, K. & Beier, L. R. Consumption of salmon by Alaskan brown bears: A trade-off between nutritional requirements and the risk of infanticide?. Oecologia 138, 465–474 (2004).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Smith, T. R. & Pelton, M. R. Home ranges and movements of black bears in bottomland hardwood forest in Arkansas. Int. Conf. Bear Res. Manag. 8, 213–218 (1990).
    Google Scholar 
    86.Welch, C. A., Keay, J., Kendall, K. C. & Robbins, C. T. Constraints on frugivory by bears. Ecology 78, 1105–1119 (1997).Article 

    Google Scholar 
    87.Gantchoff, M., Wang, G., Beyer, D. & Belant, J. Scale-dependent home range optimality for a solitary omnivore. Ecol. Evol. 8, 12271–12282 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Tao, Y., Börger, L. & Hastings, A. Dynamic range size analysis of territorial animals: An optimality approach. Am. Nat. 188, 460–474 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Microclimate and the vertical stratification of potential bridge vectors of mosquito‑borne viruses captured by nets and ovitraps in a central Amazonian forest bordering Manaus, Brazil

    Variation in microclimateMicroclimate at the tower varied across the daily sampling period with temperatures highest and relative humidity lowest around midday and the early afternoon hours, although the time of peak temperature and nadir humidity varied by height (Fig. 3a, b). Mean temperature was highest at ground level at 11:30 (30.0 °C) when it was on average 0.2 °C hotter than at 9 m, whereas at 5 m and 9 m, it was highest at 13:30 (29.7 °C and 30.3 °C, respectively). The inverse was true for mean relative humidity, which was lowest at ground level at 11:30 (83.8%) and lowest at 5 m and 9 m at 13:30 (80.1% and 76.4%, respectively). Both variables showed substantial overlap in means and standard errors across the sampled heights during the morning hours, before diverging in the afternoon. For comparison, we extracted microclimate data from the corresponding sampling period in the BG-Sentinel trap study15, which revealed clear differences in temperature and humidity at each height sampled (Fig. 3c, d). BG-Sentinel traps were often hung beneath the forest canopy where it was considerably cooler and more humid than at the treefall gap, particularly at ground level.Figure 3Variation in microclimate by height and collection method. (a) and (b) show the mean temperature (temp,°C) + / − 1 standard error (S.E.) and relative humidity (RH, %) + / − 1 standard error (S.E.) for net collections made at the tower between 10:00 and 15:00 in this study. (c) and (d) show corresponding data extracted from the BG-Sentinel trap study15.Full size imageCommunity composition of diurnally active, anthropophilic mosquitoesA total of 2146 adult mosquitoes representing seven genera and 34 species were collected using nets (Fig. 4a), of which 99.8% (2142/2146) were female and 99.7% (2140/2146) were identified to species level. Mosquito abundance was similar at ground level and 9 m but was slightly lower at 5 m, while species richness was higher at ground level (28 species), than at 5 m (18 species) and 9 m (22 species). Psorophora was the most abundant genus (1231 mosquitoes, 57.4% of the total catch), followed by Haemagogus (32.3%), and Sabethes (6.6%). The genera Limatus (1.4%), Culex (1.2%), Wyeomyia (1.0%), and Onirion ( 0.1 for both comparisons). A linear regression showed that, across all heights, lag to first approach decreased significantly as Hg. janthinomys abundance increased (DF = 1, F = 52.1, P  More

  • in

    Microbiomes of an oyster are shaped by metabolism and environment

    More detailed methods can be found in the supplementary material. Data from this experiment on the characterisation of the microbial community and its response to climate change has been previously published in Scanes et al.12, therefore, the present study focussed on the interaction of metabolic processes with the microbiome. We examined the links between climate change, metabolism, genotype and microbiome of the Sydney rock oyster, Saccostrea glomerata20. Nine oyster aquacultural breeding lineages (labelled as genotype-lines A–I) of S. glomerata, which are known to differ in their resilience to climate change12 were exposed to ambient and elevated temperature and PCO2 treatments. All seawater used in acclimation and experimental exposure was collected from Little Beach, Port Stephens (152°9′30.00″E, 32°42′43.03″S), filtered through canister filters to a nominal 5 µm, and stored onsite in 38,000 L polyethylene tanks as a stock of filtered seawater.Approximately 72 individual S. glomerata, from each of the nine families (A-I) were collected from intertidal leases in Cromarty Bay, Port Stephens (152° 4′0.69″E, 32°43′19.69″S). Oysters were held on private leases so a collection permit was not required. Oysters were collected in September 2019 for experiments, meaning all oysters were 22 months old when experiments began. Oysters were placed into a 2000 L fibreglass tank and maintained at 24 °C, a salinity of 35 ppt and ambient PCO2 (pH 8.18) for two weeks to acclimate to laboratory conditions. Following acclimation, oysters from each genotype-line were divided among twelve 750 L polyethylene tanks filled with 400 L of filtered seawater (5 µm) at a density of 54 oysters per tank, with each genotype-line represented by six replicate individuals. Treatments consisted of orthogonal combinations of two PCO2 concentrations (ambient [400 µatm]; elevated [1000 µatm]) and two temperature treatments (24 and 28 °C). Each combination was replicated across three tanks. Treatments were selected to represent temperatures and PCO2 concentrations predicted for 2080–2100 by the IPCC27 and reflect measured changes in estuary temperatures reported from south eastern Australia20.Once oysters were transferred to experimental tanks, the PCO2 level and temperature were steadily increased in elevated exposure tanks over one week until the experimental treatment level was reached. The elevated CO2 level was maintained using a pH negative feedback system (Aqua Medic, Aqacenta Pty Ltd, Kingsgrove, NSW, Australia; accuracy ± 0.01 pH units) bubbling food grade CO2 (BOC Australia) through a mixing chamber and into each tank, previously described in18. These PCO2 levels corresponded to a mean ambient pHNBS of (8.18 ± 0.01) and at elevated CO2 levels a mean pHNBS of (7.84 ± 0.01). Temperature was increased and then maintained using 1000 W aquarium heaters in each tank. Oysters were then exposed to their respective treatments for a further four weeks. Oysters were checked daily for mortality; no dead oysters were found in any tanks during the four-week exposure period.Haemolymph sampling for DNA extractionFollowing exposure to experimental conditions, haemolymph was taken from two replicate oysters, from each genotype-line, from each tank for microbial analysis following the methods previously described in Scanes et al.,12. This amounted to six individuals from each genotype-line, in each treatment. Each oyster was opened using an autoclave sterilised shucking knife, ensuring that the pericardial cavity was not ruptured. Excess fluid was tipped off the tissue surface and 200–300 µL of haemolymph was extracted from the pericardial cavity using a new sterile 1 mL needled syringe (Terumo Co.). Samples from two oysters were transferred to two new pre-labelled DNA/RNA free 1 mL tubes (Eppendorf Co.) and immediately frozen at − 80 °C where they were stored until DNA extraction.We used 16 s rRNA amplicon sequencing to characterise the bacterial microbiome of S. glomerata haemolymph following the methods previously described in Scanes et al.12. DNA was extracted from 216 oyster haemolymph samples (9 genotype-lines × 4 treatments × 3 replicate tanks × 2 replicate oysters per tank) using the Qiagen DNeasy Blood and Tissue Kit (Qiagen Australia, Chadstone, VIC), according to the manufacturer’s instructions. The bacterial microbiome of the oyster haemolymph was characterised with 16S rRNA amplicon sequencing, using the 341F (CCTACGGGNGGCWGCAG) and 805R (GACTACHVGGGTATCTAATCC) primer pair28 targeting the V3-V4 variable regions of the 16S rRNA gene with the following cycling conditions: 95 °C for 3 min, 25 cycles of 95 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s, and a final extension at 72 °C for 5 min. Amplicons were sequenced on the Illumina Miseq platform (2 × 300 bp) following the manufacturer’s guidelines at the Ramaciotti Centre for Genomics, University of New South Wales. Raw data files in FASTQ format were deposited in NCBI Sequence Read Archive (SRA) under Bioproject number PRJNA663356.Sequence analysisRaw demultiplexed data was processed using the Quantitative Insights into Microbial Ecology (QIIME 2 version 2019.1.0) pipeline. Briefly, paired-end sequences were imported (qiime tools import), trimmed and denoised using DADA2 (version 2019.1.0). Sequences were identified at the single nucleotide threshold (Amplicon Sequence Variants; ASV) and taxonomy was assigned using the classify-sklearn QIIME 2 feature classifier against the Silva v138 database29. Sequences identified as chloroplasts or mitochondria were also removed. Cleaned data were then rarefied at 6,500 counts per sample.Physiological analysisWe measured physiological variables relating to oyster haemolymph metabolic function. These were: extracellular pH (pHe), extracellular CO2 concentrations (PCO2e) and the whole oyster metabolic rate (MR) measured as a standardised rate of oxygen consumption. Physiological measurements were taken from two oysters from each genotype-line in each tank (methods followed that of Parker et al.16,30 and Scanes et al.18). Oysters were immediately opened without rupturing the pericardial cavity. Haemolymph samples were drawn from the interstitial fluid filling the pericardial cavity chamber of an opened oyster using a sealed 1 mL needled syringe. A 0.2 mL sample was drawn carefully to avoid aeration of the haemolymph. Half of the sample was then immediately transferred to an Eppendorf tube where pHe of the sample was measured at 20 °C using a micro pH probe (Metrohm 827 biotrode). The remaining haemolymph was transferred to a gas analyser (CIBA Corning 965) to determine total CO2 (CCO2). The micro pH probe was calibrated prior to use with NBS standards at the acclimation temperature and the gas analyser was calibrated using manufacturer guidelines. Two oysters were sampled per genotype-line in each replicate tank. Partial pressure of CO2 in haemolymph (PCO2e) was calculated from the CCO2 using the modified Henderson-Hasselbalch equation according to Heisler31,32. Metabolic rate (MR) was determined using a closed respiratory system as previously described in Parker et al.16 and Scanes et al.18. Briefly, MR was measured in two oysters per genotype-line, per tank by placing oysters in a closed 500 mL glass chamber containing filtered seawater (5 µm) set at the correct treatment conditions. Oxygen concentrations were then measured within the chamber using a fibre optic dipping probe (PreSens dipping probe DP-PSt3, AS1 Ltd, Regensburg, Germany) and recorded (15 s intervals) until the oxygen concentration had been reduced by 20%, the time taken to reduce oxygen by 20% was recorded. Oysters were removed from the chambers, opened and the tissue was dried at 70 °C for 72 h. Tissue was then weighed on an electronic balance (± 0.001 g), and MR was calculated using Eq. (1):$$MR = frac{{left[ {V_{r} times Delta {text{C}}_{W} O_{2} } right]}}{{Delta t times {text{bw}}}}$$
    (1)

    where MR is oxygen consumption normalised to 1 g of dry tissue mass (mg O2 g−1 dry tissue mass h−1), Vr is the volume of the respiratory chamber minus the volume of the oyster (L), ΔCWO2 is the change in water oxygen concentration measured (mg O2L−1), Δt is the measuring time (h), bw is the dry tissue mass (g). Equation is modified from Parker et al.16.Data analysisIt was not possible to measure all variables in each oyster, but rather three individuals were needed to fulfil one replicate set of measurements. PCO2e and pHe could be measured in the same individual however, MR and the microbiome were measured in separate individuals. This meant that measurements were taken from 6 oysters per genotype-line, per replicate tank (each measurement replicated twice). To align physiological data with microbiome data we took a conservative approach where data from PCO2e and pHe, MR and the microbiome were randomly matched to individuals from the same genotype-line and replicate tank. This gave us the best approximation and is conservative because it increased variability compared to taking all measurements from the same individual. ANOVA was used to determine the significant (n = 210; P  More

  • in

    Parental methyl-enhanced diet and in ovo corticosterone affect first generation Japanese quail (Coturnix japonica) development, behaviour and stress response

    1.Hill, W. L. Importance of prenatal nutrition to the development of a precocial chick. Dev. Psychobiol. 26, 237–249. https://doi.org/10.1002/dev.420260502 (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    2.van Emous, R. A., Kwakkel, R. P., van Krimpen, M. M., van den Brand, H. & Hendriks, W. H. Effects of growth patterns and dietary protein levels during rearing of broiler breeders on fertility, hatchability, embryonic mortality, and offspring performance. Poult. Sci. 94, 681–691. https://doi.org/10.3382/ps/pev024 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Spratt, R. S. & Leeson, S. Broiler breeder performance in response to diet protein and energy. Poult. Sci. 66, 683–693. https://doi.org/10.3382/ps.0660683 (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Walsh, T. J. & Brake, J. The effect of nutrient intake during rearing of broiler breeder females on subsequent fertility. Poult. Sci. 76, 297–305. https://doi.org/10.1093/ps/76.2.297 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Goodwin, K., Lamoreux, W. F. & Dickerson, G. E. Maternal effects in chickens: Performance of daughters from dams of differing ages. Poult. Sci. 43, 1435–1442. https://doi.org/10.3382/ps.0431435 (1964).Article 

    Google Scholar 
    6.Coakley, C. M., Staszewski, V., Herborn, K. A. & Cunningham, E. J. Factors affecting the levels of protection transferred from mother to offspring following immune challenge. Front Zool. 11, 46–46. https://doi.org/10.1186/1742-9994-11-46 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38. https://doi.org/10.1038/npp.2012.112 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev. 23, 781–783. https://doi.org/10.1101/gad.1787609 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Nelson, V. R. & Nadeau, J. H. Transgenerational genetic effects. Epigenomics 2, 797–806. https://doi.org/10.2217/epi.10.57 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Dupont, C., Armant, D. R. & Brenner, C. A. Epigenetics: Definition, mechanisms and clinical perspective. Sem. Reprod. Med. 27, 351–357. https://doi.org/10.1055/s-0029-1237423 (2009).CAS 
    Article 

    Google Scholar 
    11.Burdge, G. C., Hoile, S. P. & Lillycrop, K. A. Epigenetics: Are there implications for personalised nutrition?. Curr. Opin. Clin. Nutr. Metab. Care 15, 442–447. https://doi.org/10.1097/MCO.0b013e3283567dd2 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Anderson, O. S., Sant, K. E. & Dolinoy, D. C. Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 23, 853–859. https://doi.org/10.1016/j.jnutbio.2012.03.003 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Clare, C. E., Brassington, A. H., Kwong, W. Y. & Sinclair, K. D. One-carbon metabolism: Linking nutritional biochemistry to epigenetic programming of long-term development. Ann. Rev. Anim. Biosci. 7, 263–287. https://doi.org/10.1146/annurev-animal-020518-115206 (2019).CAS 
    Article 

    Google Scholar 
    14.Kadayifci, F. Z., Zheng, S. & Pan, Y.-X. Molecular mechanisms underlying the link between diet and DNA methylation. Int. J. Mol. Sci. 19, 4055. https://doi.org/10.3390/ijms19124055 (2018).Article 
    PubMed Central 

    Google Scholar 
    15.Waterland, R. A. & Jirtle, R. L. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20, 63–68. https://doi.org/10.1016/j.nut.2003.09.011 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Eklund, M., Bauer, E., Wamatu, J. & Mosenthin, R. Potential nutritional and physiological functions of betaine in livestock. Nutr. Res. Rev. 18, 31–48. https://doi.org/10.1079/nrr200493 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Ratriyanto, A., Indreswari, R., Dewanti, R. & Wahyuningsih, S. Egg quality of quails fed low methionine diet supplemented with betaine. IOP Conf. Ser. Earth Environ. Sci. 142, 012002. https://doi.org/10.1088/1755-1315/142/1/012002 (2018).Article 

    Google Scholar 
    18.Ratriyanto, A., Indreswari, R. & Nuhriawangsa, A. Effects of dietary protein level and betaine supplementation on nutrient digestibility and performance of Japanese quails. Braz. J. Poultry Sci. 19, 445–454 (2017).Article 

    Google Scholar 
    19.Fetterer, R. H., Augustine, P. C., Allen, P. C. & Barfield, R. C. The effect of dietary betaine on intestinal and plasma levels of betaine in uninfected and coccidia-infected broiler chicks. Parasitol. Res. 90, 343–348. https://doi.org/10.1007/s00436-003-0864-z (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Kettunen, H., Tiihonen, K., Peuranen, S., Saarinen, M. T. & Remus, J. C. Dietary betaine accumulates in the liver and intestinal tissue and stabilizes the intestinal epithelial structure in healthy and coccidia-infected broiler chicks. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 130, 759–769. https://doi.org/10.1016/s1095-6433(01)00410-x (2001).CAS 
    Article 

    Google Scholar 
    21.Ratriyanto, A., Mosenthin, R., Bauer, E. & Eklund, M. Metabolic, osmoregulatory and nutritional functions of betaine in monogastric animals. Asian-Australas J. Anim. Sci. 22, 1461–1476. https://doi.org/10.5713/ajas.2009.80659 (2009).CAS 
    Article 

    Google Scholar 
    22.Zhan, X. A., Li, J. X., Xu, Z. R. & Zhao, R. Q. Effects of methionine and betaine supplementation on growth performance, carcase composition and metabolism of lipids in male broilers. Braz. Poult. Sci. 47, 576–580. https://doi.org/10.1080/00071660600963438 (2006).CAS 
    Article 

    Google Scholar 
    23.Omer, N. A. et al. Dietary betaine improves egg-laying rate in hens through hypomethylation and glucocorticoid receptor–mediated activation of hepatic lipogenesis-related genes. Poult. Sci. 99, 3121–3132. https://doi.org/10.1016/j.psj.2020.01.017 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Maidin, M. B. M. et al. Dietary betaine reduces plasma homocysteine concentrations and improves bone strength in laying hens. Br. Poult. Sci. https://doi.org/10.1080/00071668.2021.1883550 (2021).Article 
    PubMed 

    Google Scholar 
    25.Chen, R. et al. Betaine improves the growth performance and muscle growth of partridge shank broiler chickens via altering myogenic gene expression and insulin-like growth factor-1 signaling pathway. Poult. Sci. 97, 4297–4305. https://doi.org/10.3382/ps/pey303 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Ratriyanto, A., Nuhriawangsa, A. M. P., Masykur, A., Prastowo, S. & Widyas, N. Egg production pattern of quails given diets containing different energy and protein contents. AIP Conf. Proc. 2014, 020011. https://doi.org/10.1063/1.5054415 (2018).Article 

    Google Scholar 
    27.Rao, S. V. R., Raju, M. V. L. N., Panda, A. K., Saharia, P. & Sunder, G. S. Effect of supplementing betaine on performance, carcass traits and immune responses in broiler chicken fed diets containing different concentrations of methionine. Asian-Australas J. Anim. Sci. 24, 662–669. https://doi.org/10.5713/ajas.2011.10286 (2011).CAS 
    Article 

    Google Scholar 
    28.Adkins-Regan, E., Banerjee, S. B., Correa, S. M. & Schweitzer, C. Maternal effects in quail and zebra finches: Behavior and hormones. Gen. Comp. Endocrinol. 190, 34–41. https://doi.org/10.1016/j.ygcen.2013.03.002 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Henriksen, R., Rettenbacher, S. & Groothuis, T. G. Prenatal stress in birds: Pathways, effects, function and perspectives. Neurosci. Biobehav. Rev. 35, 1484–1501. https://doi.org/10.1016/j.neubiorev.2011.04.010 (2011).Article 
    PubMed 

    Google Scholar 
    30.Peixoto, M. R. L. V., Karrow, N. A., Newman, A. & Widowski, T. M. Effects of maternal stress on measures of anxiety and fearfulness in different strains of laying hens. Front. Vet. Sci. https://doi.org/10.3389/fvets.2020.00128 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Lay, D. C. Jr. & Wilson, M. E. Development of the chicken as a model for prenatal stress. J. Anim. Sci. 80, 1954–1961. https://doi.org/10.2527/2002.8071954x (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Zhang, M. et al. Impacts of heat stress on meat quality and strategies for amelioration: A review. Int. J. Biometeorol. 64, 1613–1628. https://doi.org/10.1007/s00484-020-01929-6 (2020).ADS 
    Article 
    PubMed 

    Google Scholar 
    33.Boonstra, R. Coping with changing northern environments: The role of the stress axis in birds and mammals. Integr. Comp. Biol. 44, 95–108. https://doi.org/10.1093/icb/44.2.95 (2004).Article 
    PubMed 

    Google Scholar 
    34.Smulders, T. V. The avian hippocampal formation and the stress response. Brain Behav. Evol. 90, 81–91. https://doi.org/10.1159/000477654 (2017).Article 
    PubMed 

    Google Scholar 
    35.Wingfield, J.C. in Perspectives in Comparative Endocrinology (eds Davey, K.G., Peter, R.E. Tobe, S.S.) 520–528 (National Research Council of Canada, 1994).36.Wingfield, J. C. & Romero, L. M. Handbook of Physiology, Section 7: The Endocrine System. In Ch. Coping with the Environment: Neural and Endocrine Mechanisms Vol. 4 (eds McEwen, B. S. & Goodman, H. M.) 211–234 (Oxford University Press, 2001).
    Google Scholar 
    37.Love, O. P. & Williams, T. D. Plasticity in the adrenocortical response of a free-living vertebrate: The role of pre- and post-natal developmental stress. Horm. Behav. 54, 496–505. https://doi.org/10.1016/j.yhbeh.2008.01.006 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. Biol. Sci. 271, 847–852. https://doi.org/10.1098/rspb.2004.2680 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Martins, T. L., Roberts, M. L., Giblin, I., Huxham, R. & Evans, M. R. Speed of exploration and risk-taking behavior are linked to corticosterone titres in zebra finches. Horm. Behav. 52, 445–453. https://doi.org/10.1016/j.yhbeh.2007.06.007 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Blas, J., Bortolotti, G. R., Tella, J. L., Baos, R. & Marchant, T. A. Stress response during development predicts fitness in a wild, long lived vertebrate. Proc. Natl. Acad. Sci. U.S.A. 104, 8880–8884. https://doi.org/10.1073/pnas.0700232104 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Breuner, C. W., Greenberg, A. L. & Wingfield, J. C. Noninvasive corticosterone treatment rapidly increases activity in Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii). Gen. Comp. Endocrinol. 111, 386–394. https://doi.org/10.1006/gcen.1998.7128 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Zimmer, C., Boogert, N. J. & Spencer, K. A. Developmental programming: Cumulative effects of increased pre-hatching corticosterone levels and post-hatching unpredictable food availability on physiology and behaviour in adulthood. Horm. Behav. 64, 494–500. https://doi.org/10.1016/j.yhbeh.2013.07.002 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Morris, K. M. et al. The quail genome: Insights into social behaviour, seasonal biology and infectious disease response. BMC Biol. 18, 14. https://doi.org/10.1186/s12915-020-0743-4 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Phillips, C., Angel, R. & Ashwell, C. in XVth European Poultry Conference 548 (Dubrovnik, 2018).45.Daghir, N. J., Marion, W. W. & Balloun, S. L. Influence of dietary fat and choline on serum and egg yolk cholesterol in the laying chicken1. Poult. Sci. 39, 1459–1466. https://doi.org/10.3382/ps.0391459 (1960).CAS 
    Article 

    Google Scholar 
    46.Griffith, M., Olinde, A. J., Schexnailder, R., Davenport, R. F. & McKnight, W. F. Effect of choline, methionine and vitamin B12 on liver fat, egg production and egg weight in hens. Poult. Sci. 48, 2160–2172. https://doi.org/10.3382/ps.0482160 (1969).CAS 
    Article 

    Google Scholar 
    47.Xiao, X., Wang, Y., Liu, W., Ju, T. & Zhan, X. Effects of different methionine sources on production and reproduction performance, egg quality and serum biochemical indices of broiler breeders. Asian Australas. J. Anim. Sci. 30, 828–833. https://doi.org/10.5713/ajas.16.0404 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Min, Y. N. et al. Effects of methionine hydroxyl analog chelated zinc on laying performance, eggshell quality, eggshell mineral deposition, and activities of Zn-containing enzymes in aged laying hens. Poult. Sci. 97, 3587–3593. https://doi.org/10.3382/ps/pey203 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Woolveridge, I. & Peddie, M. J. The inhibition of androstenedione production in mature thecal cells from the ovary of the domestic hen (Gallus domesticus): Evidence for the involvement of progestins. Steroids 62, 214–220. https://doi.org/10.1016/s0039-128x(96)00209-7 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Herrick, E. H. Some influences of stilbestrol, estrone, and testosterone propionate on the genital tract of young female fowls*. Poult. Sci. 23, 65–66. https://doi.org/10.3382/ps.0230065 (1944).CAS 
    Article 

    Google Scholar 
    51.Berg, C., Holm, L., Brandt, I. & Brunström, B. Anatomical and histological changes in the oviducts of Japanese quail, Coturnix japonica, after embryonic exposure to ethynyloestradiol. Reproduction 121, 155–165. https://doi.org/10.1530/rep.0.1210155 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Ratriyanto, A., Nuhriawangsa, A.M.P., Masykur, A., Prastowo, S. & Widyas, N. Egg production pattern of quails given diets containing different energy and protein contents. 2011, 020011. https://doi.org/10.1063/1.5054415 (2018).53.Taves, M. D., Gomez-Sanchez, C. E. & Soma, K. K. Extra-adrenal glucocorticoids and mineralocorticoids: Evidence for local synthesis, regulation, and function. Am. J. Physiol.-Endocrinol. Metab. 301, E11–E24. https://doi.org/10.1152/ajpendo.00100.2011 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Dunnington, E. A. & Siegel, P. B. Age and body weight at sexual maturity in female white leghorn chickens. Poult. Sci. 63, 828–830 (1984).CAS 
    Article 

    Google Scholar 
    55.Saunderson, C. L. & Mackinlay, J. Changes in body-weight, composition and hepatic enzyme activities in response to dietary methionine, betaine and choline levels in growing chicks. Br. J. Nutr. 63, 339–349. https://doi.org/10.1079/BJN19900120 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Zaefarian, F., Abdollahi, M. R., Cowieson, A. & Ravindran, V. Avian liver: The forgotten organ. Animals 9, 63. https://doi.org/10.3390/ani9020063 (2019).Article 
    PubMed Central 

    Google Scholar 
    57.Daisley, J. N., Bromundt, V., Möstl, E. & Kotrschal, K. Enhanced yolk testosterone influences behavioral phenotype independent of sex in Japanese quail chicks Coturnix japonica. Horm. Behav. 47, 185–194. https://doi.org/10.1016/j.yhbeh.2004.09.006 (2005).CAS 
    Article 

    Google Scholar 
    58.Koolhaas, J. M. et al. Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 23, 925–935. https://doi.org/10.1016/s0149-7634(99)00026-3 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Schwabl, H. Environment modifies the testosterone levels of a female bird and its eggs. J. Exp. Zool. 276, 157–163. https://doi.org/10.1002/(sici)1097-010x(19961001)276:2%3c157::aid-jez9%3e3.0.co;2-n (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Marasco, V., Herzyk, P., Robinson, J. & Spencer, K. A. Pre- and post-natal stress programming: Developmental exposure to glucocorticoids causes long-term brain-region specific changes to transcriptome in the precocial Japanese quail. J. Neuroendocrinol. 28, 1. https://doi.org/10.1111/jne.12387 (2016).CAS 
    Article 

    Google Scholar 
    61.Satterlee, D. G. & Marin, R. H. Stressor-induced changes in open-field behavior of Japanese quail selected for contrasting adrenocortical responsiveness to immobili-zation. Poult. Sci. 85, 404–409 (2006).CAS 
    Article 

    Google Scholar 
    62.Denham, S. G. et al. Development and validation of a method for the determination of steroid profiles in chickens using LC-MS/MS (University of Edinburgh, 2019).
    Google Scholar 
    63.Gilmour, A. R., Gogel, B. J., Cullis, B. R. & Thompson, R. ASReml User Guide Release 3.0 (VSNi, 2009).
    Google Scholar  More