More stories

  • in

    The giant panda is cryptic

    1.Caro, T. The adaptive significance of coloration in mammals. Bioscience 55, 125 (2005).Article 

    Google Scholar 
    2.Caro, T. The colours of extant mammals. Semin. Cell Dev. Biol. 24, 542–552 (2013).Article 

    Google Scholar 
    3.Schaller, G. B., Jinchu, H., Wenshi, P. & Jing, Z. The Giant Pandas of Wolong (University of Chicago Press, 1985). https://doi.org/10.1086/414647.Book 

    Google Scholar 
    4.Schaller, G. B. The Last Panda (University of Chicago Press, 1994).
    Google Scholar 
    5.Morris, R. & Morris, D. Men and Pandas (McGraw-Hill Book Company, 1966).
    Google Scholar 
    6.Morris, R. & Morris, D. The Giant Panda (Penguin Books, 1982).
    Google Scholar 
    7.Lazell, J. D. J. Color Patterns of the ‘Giant’ Bear (Ailuropoda melanoleuca) and the True Panda (Ailurus fulgens) (Mississippi Wildlife Federation, 1974).
    Google Scholar 
    8.Cott, H. B. Adaptive Coloration in Animals (Methuen & Co., Ltd., 1940).
    Google Scholar 
    9.Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41, 315–352 (1990).Article 

    Google Scholar 
    10.Stevens, M. & Merilaita, S. Animal camouflage: Current issues and new perspectives. Philos. Trans. R. Soc. B Biol. Sci. 364, 423–427 (2009).Article 

    Google Scholar 
    11.Caro, T., Walker, H., Rossman, Z., Hendrix, M. & Stankowich, T. Why is the giant panda black and white?. Behav. Ecol. 28, 657–667 (2017).Article 

    Google Scholar 
    12.Endler, J. A. The color of light in forests and its implications. Ecol. Monogr. 63, 1–27 (1993).Article 

    Google Scholar 
    13.Merilaita, S. Crypsis through disruptive coloration in an isopod. Proc. R. Soc. B Biol. Sci. 265, 1059–1064 (1998).Article 

    Google Scholar 
    14.Cuthill, I. C. et al. Disruptive coloration and background pattern matching. Nature 434, 72–74 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Stevens, M. & Merilaita, S. Defining disruptive coloration and distinguishing its functions. Philos. Trans. R. Soc. B Biol. Sci. 364, 481–488 (2009).Article 

    Google Scholar 
    16.Ruxton, G., Allen, W., Sherratt, T. & Speed, M. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry (Oxford University Press, 2019).
    Google Scholar 
    17.Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—A free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).Article 

    Google Scholar 
    18.van den Berg, C. P., Troscianko, J., Endler, J. A., Marshall, N. J. & Cheney, K. L. Quantitative colour pattern analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods Ecol. Evol. 11, 316–332 (2020).Article 

    Google Scholar 
    19.Troscianko, J., Skelhorn, J. & Stevens, M. Quantifying camouflage: How to predict detectability from appearance. BMC Evol. Biol. 17, 7 (2017).Article 

    Google Scholar 
    20.Caves, E. M. & Johnsen, S. AcuityView: An r package for portraying the effects of visual acuity on scenes observed by an animal. Methods Ecol. Evol. 9, 793–797 (2018).Article 

    Google Scholar 
    21.Marshall, N. J. Communication and camouflage with the same ‘bright’ colours in reef fishes. Philos. Trans. R. Soc. B Biol. Sci. 355, 1243–1248 (2000).CAS 
    Article 

    Google Scholar 
    22.Barnett, J. B., Cuthill, I. C. & Scott-Samuel, N. E. Distance-dependent aposematism and camouflage in the cinnabar moth caterpillar (Tyria jacobaeae, erebidae). R. Soc. Open Sci. 5, 171396 (2018).ADS 
    Article 

    Google Scholar 
    23.Barnett, J. B., Cuthill, I. C. & Scott-Samuel, N. E. Distance-dependent pattern blending can camouflage salient aposematic signals. Proc. R. Soc. B Biol. Sci. 284, 20170128 (2017).Article 

    Google Scholar 
    24.Stoner, C. J., Caro, T. M. & Graham, C. M. Ecological and behavioral correlates of coloration in artiodactyls: Systematic analyses of conventional hypotheses. Behav. Ecol. 14, 823–840 (2003).Article 

    Google Scholar 
    25.Caro, T., Walker, H., Santana, S. E. & Stankowich, T. The evolution of anterior coloration in carnivorans. Behav. Ecol. Sociobiol. 71, 177 (2017).Article 

    Google Scholar 
    26.Melin, A. D., Kline, D. W., Hiramatsu, C. & Caro, T. Zebra stripes through the eyes of their predators, zebras, and humans. PLoS ONE 11, e0145679 (2016).Article 

    Google Scholar 
    27.Land, M. F. & Nilsson, D.-E. Animal Eyes (Oxford University Press, 2012).Book 

    Google Scholar 
    28.Phillips, G. A. C., How, M. J., Lange, J. E., Marshall, N. J. & Cheney, K. L. Disruptive colouration in reef fish: Does matching the background reduce predation risk?. J. Exp. Biol. 220, 1962–1974 (2017).Article 

    Google Scholar 
    29.Li, Y. et al. Giant pandas can discriminate the emotions of human facial pictures. Sci. Rep. 7, 1–8 (2017).ADS 
    Article 

    Google Scholar 
    30.Stevens, M., Párraga, C. A., Cuthill, I. C., Partridge, J. C. & Troscianko, T. S. Using digital photography to study animal coloration. Biol. J. Linn. Soc. 90, 211–237 (2007).Article 

    Google Scholar 
    31.Lind, O., Milton, I., Andersson, E., Jensen, P. & Roth, L. S. V. High visual acuity revealed in dogs. PLoS ONE 12, 1–12 (2017).
    Google Scholar 
    32.Pasternak, T. & Merigan, W. H. The luminance dependence of spatial vision in the cat. Vis. Res. 21, 1333–1339 (1981).CAS 
    Article 

    Google Scholar 
    33.Clark, D. L. & Clark, R. A. Neutral point testing of color vision in the domestic cat. Exp. Eye Res. 153, 23–26 (2016).CAS 
    Article 

    Google Scholar 
    34.Caves, E. M., Brandley, N. C. & Johnsen, S. Visual acuity and the evolution of signals. Trends Ecol. Evol. 33, 1–15 (2018).Article 

    Google Scholar 
    35.Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. B Biol. Sci. 265, 351–358 (1998).CAS 
    Article 

    Google Scholar 
    36.Nokelainen, O., Brito, J. C., Scott-Samuel, N. E., Valkonen, J. K. & Boratyński, Z. Camouflage accuracy in Sahara-Sahel desert rodents. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13225 (2020).Article 
    PubMed 

    Google Scholar 
    37.Nokelainen, O., Stevens, M. & Caro, T. Colour polymorphism in the coconut crab (Birgus latro). Evol. Ecol. 32, 75–88 (2018).Article 

    Google Scholar 
    38.Nokelainen, O., Maynes, R., Mynott, S., Price, N. & Stevens, M. Improved camouflage through ontogenetic colour change confers reduced detection risk in shore crabs. Funct. Ecol. https://doi.org/10.1111/1365-2435.13280 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Computed tomography reveals hip dysplasia in the extinct Pleistocene saber-tooth cat Smilodon

    The arthritic degeneration visualized in the pathological Smilodon specimens could have arisen from one of three etiologies: traumatic, infective or degenerative arthritis. Findings on the specimens make infective or traumatic arthritis less likely. In the case of infective arthritis, the presupposition is that the animal developed typically before an insult that led to infection and subsequent obliteration of the hip joint. This assumption also holds true for the case of traumatic arthritis following an injury or fracture. However, the anatomical distortions of the right femoral head, in conjunction with the obliteration of the right acetabulum, suggest chronic changes that led to degeneration over time (Figs. 3, 4). The degeneration of the femoral head would not be expected if the degenerative change in the hip joint were due to infection or trauma, as the development of the pelvis and femur presumably would have been complete before the insult or injury occurred during the adult cat’s life.The condition of the right acetabulum and right femoral head demonstrates anatomy consistent with developmental distortion. Typically, the head of the femur develops in conjunction with the acetabulum of the pelvis16. The spherical femoral head fits into the concentric-shaped acetabulum to form a ball-and-socket joint that enables a four-legged mammal to ambulate, lie down, sit down, stand up, and generally function normally16. In developmental hip dysplasia, however, the acetabulum does not develop appropriately, and the articulation between the femoral head and acetabulum is lost. An elliptical (as opposed to concentric-shaped) acetabulum causes progressive subluxation (dislocation) of the femoral head17, which can result in coxa plana, or necrosis of the bony nucleus of the femoral head16. This subsequent coxa plana produces flattening and degeneration of the normally spherical femoral head18.Proper anatomical development and ossification of the hip joint rely on continuous and symmetrical pressure of the femoral head on the acetabulum, and dysplasia results from improper positioning of the femoral head within the acetabulum16. Dysplastic hips are characterized by pathological restructuring and accelerated remodeling of the joint in response to abnormal forces and tensions that create stress. This produces formation of new bone in some areas and resorption of bone in others, ultimately causing degenerative joint disease16. Dysplastic hips have varying degrees of deformity and malformation, but typically the acetabula are hypoplastic and deficient in various planes and dimensions (Supplementary Fig. S10).Further inspection of LACMHC 131 demonstrates anatomical changes consistent with chronic degeneration throughout the right hip joint and pelvis. The obliteration of the right innominate likely occurred over many years and progressively resulted in significant bony destruction and remodeling. These findings of a flattened femoral head in LACMHC 6963 in conjunction with a shallow acetabulum in LACMHC 131 are consistent with changes observed with mechanical instability of the hip joint and bony destruction secondary to dysplasia. Repeated subluxation events due to the dysplastic hip likely accelerated the destruction of the cartilage and joint, altering the biomechanical stresses through the joint. This increased stress along with cartilage loss likely led to a progressively hypertrophic and aberrant bone response with subchondral sclerosis and osteophyte formation in the acetabulum and pelvis. The external, anatomical deformities in these specimens are consistent with changes that have occurred over the animal’s lifespan and subsequently resulted in the gross morphology observed, with destruction of the hip joint on both the acetabular and femoral side.This type of pathology starts to impact movement at the time of first walking, although minimal pain tends to ensue at this time because of the animal’s flexibility at its early age19,20. As the joint cartilage wears out, however, bone begins to rub on bone. The resulting forces make the bone stiffer, producing osteophytes or bone spurs as well as sclerosis that manifests on CT imaging as increased bone density (Figs. 3 and 4; Supplementary Video S2; Supplementary Data S1–S2). At this point, loading the limb would cause pain, and range of motion would be limited. Therefore, the animal examined in this study would have spent as little time as possible on its right hindlimb, needing to compensate for the handicap by increasing the load on its left hindlimb. This compensation would explain the exostoses on the left ilium anterodorsal to the non-pathological acetabulum (Fig. 1; Supplementary File S1; Supplementary Video S1), indicating abnormal pulling of the quadriceps femoris muscles originating in this area.Hip dysplasia is a heritable, polygenic condition that affects a range of mammal species16, including humans17. Canine hip dysplasia (CHD) is one of the most prevalent orthopedic diseases in domestic dogs (Canis lupus familiaris)21 and is very well studied, in part because it is similar to developmental dysplasia of the human hip22. Feline hip dysplasia (FHD) has received less clinical attention than CHD, possibly because its functional impairment is less overt or because domestic cats (Felis catus) are able to compensate for the resulting lameness better than dogs20,23. The overall results of physiological changes from dysplasia are mechanical imbalance and instability in the hip joint causing displacement due to opposing forces from the acetabulum and femoral head, and osteophytes in the acetabulum to compensate for cartilage loss16.Embryologically, articular joints differentiate from skeletal mesenchyme in situ with the support of surrounding tissues that sustain mechanical and physiological forces that tend to pull on the joints16. In dogs, hip joints are normal at birth, as teratological factors and mechanical stresses that could displace the femoral head are rare at this time16. Epiphyseal ossification normally begins by 12 days of age; in dogs that eventually develop CHD, anatomical changes of the femoral head and pelvic socket begin before week three24. In dysplastic hips, the teres ligament, which is crucial for holding the femoral head in place, is too short; this produces luxation, or dislocation, of the top of the femoral head, beginning at around seven weeks16. This luxation increases throughout development, degrading the articular cartilage that surrounds the femoral head, delaying ossification of the femur and acetabulum16, and shortening the affected limb, as the femoral head becomes positioned higher in the acetabulum.In clinical reports of hip dysplasia in domestic cats, osteoarthritis (i.e., degenerative joint disease, DJD) of the hip secondary to FHD is well known19. For example, osteoarthritis was recorded in 43 of 45 (95.6%) of cats with FHD25. As well, in 5 of 13 (38.5%) cases of hip osteoarthritis with a radiographically or historically identifiable cause, hip dysplasia was pinpointed as the cause, with the remaining cases resulting from trauma or equivocal between trauma and dysplasia23. A recent study of FHD in Maine Coons—a large-bodied domestic cat breed in which hip dysplasia is known to be common—calculated a prevalence of 37.4%, finding severity to increase with age and body mass26. The same study further highlighted a genetic correlation between FHD and large body size within the Maine Coon26, inviting inquiry into how FHD impacts other breeds and non-domestic felid species across a range of body sizes.Reports of FHD in non-domestic large cats are rarer than in domestic cats. Captive snow leopards have exhibited hip dysplasia; across 14 zoos, seven cases were classified as moderate to severe, and at least two individual snow leopards needed total hip replacement before being able to breed27,28. Accounts of hip functional impairment in other captive large cats have tended to report osteoarthritis, which can be associated with FHD though may also stem from trauma and increased age29,30,31.For wild-caught large cats, the only comprehensive study of which we are aware is a survey of 386 individuals (283 wild-caught) across three felid genera mounted as exhibit skeletons in multiple North American natural history museums30. Though not focusing on hip dysplasia, the study tracked degenerative joint disease, which may be associated with dysplasia23,25. The sample recorded DJD in 9.7% of 31 tigers, 2.3% of 88 African lions, and 5.1% of 59 mountain lions (Puma concolor), and none in five other species of big cat. These frequencies are low compared to domestic cats, perhaps owing to differences in body size, diet, and lifestyle between large wild cats and domestic cats, as well as selective breeding constraining genetic variation in domestic animals. Furthermore, selection against hip dysplasia would be expected in the wild because hip dysplasia would compromise hunting19. Though this study identified instances of non-inflammatory osteoarthritis in the shoulder, elbow, and stifle joint, it found none in the hip. However, 4% of all joints afflicted by spondyloarthropathy—a form of inflammatory arthritis—included the hip30.What is the significance of Smilodon, an extinct Pleistocene predator, having the same congenital defect as living domestic cats and dogs? Previous workers have inferred social behavior from paleopathologies in fossil carnivorans ranging from the extinct Eurasian steppe lion7 to Pleistocene wolf-like canines from Italy8 and China9, interpreting signs of healing as evidence of survival after injury12. Given the severity of many injuries, authors have argued, the animal would have starved to death had it not operated within a social structure. The present hip dysplasia having manifested from a young age—hindering this animal’s ability to hunt prey and defend a home range over the course of its life—supports this assertion, although other inferences are possible.Sociality, the degree to which individuals live with conspecifics in groups32, is difficult to infer in Smilodon given that it has no living analogues or closely related taxa. Estimated to have weighed between 160 and 350 kg (3,14, this study), Smilodon was at least the size of the Amur tiger (Panthera tigris altaica), the largest living cat; some estimates reach 369 to 469 kg, placing Smilodon in the range of the largest extant ursids15,33. No living felid has Smilodon’s elongate, knife-like canines or stocky, powerful build. As well, Smilodon (of the extinct felid lineage Machairodontinae) is only distantly related to extant large felids (Felinae), introducing further uncertainty. Based on its robust morphology (e.g.,34,35) and on evidence from stable isotopes (e.g.,4), it likely stalked and ambushed prey; therefore, it may have been comparable to the African lion (Panthera leo), which has a similar hunting strategy and is the only truly social extant felid36. Yet sociality varies across felid species, including within a genus; for example, other extant pantherines like tigers (P. tigris) show incipient sociality37, while jaguars (P. onca) are solitary except for females with cubs. Social strategies also can vary within species, e.g., between sexes. For instance, African lion females are philopatric and social throughout their lives, while adult males are often nomadic and solitary until joining a gregarious pride, which itself usually lasts for only a few years38. This social variation complicates behavioral inferences based on ancestral reconstructions.Advocates of the solitary-cat hypothesis39,40 have cited Smilodon’s small relative brain size determined using endocranial casts as support for solitary behavior, because sociality exerts high cognitive demands. However, in 39 species across nine carnivoran families, larger relative brain size was found to correlate with problem-solving capabilities rather than social behavior41. Rather than analyses of overall encephalization across carnivoran families, studies of relative regional brain volume within families and species have been more informative regarding sociality42,43. In both African lions and cougars (Puma concolor, a solitary species), total relative endocranial volume was not sexually dimorphic; however, relative anterior cerebrum volume was significantly greater in female African lions than males, a difference absent in cougars38.Though regional endocranial studies have yet to be performed on Smilodon, the gregarious-cat hypothesis has drawn support from multiple lines of evidence. One is the abundance of Smilodon relative to prey at RLB10,11,34, although detractors have pointed out that some extant large cats aggregate at carcasses despite otherwise being solitary40. A full range of ages is present among RLB Smilodon; in contrast, animals interpreted to be solitary, such as the American lion Panthera atrox, are represented largely by adult individuals44. As well, the proportions of social and solitary species at RLB parallel those drawn to audio recordings of herbivore distress calls in the African savanna, suggesting that RLB Smilodon sample sizes are more consistent with it having been social rather than solitary45,46. The lack of size sexual dimorphism in Smilodon is more typical of modern solitary cats47 but could also be reflective of monogamy within a gregarious species, like modern wolves. Most relevant to the current study, the existence of healed injuries in Smilodon also has been interpreted as evidence for social behavior, with the assumption that surviving long after serious injury would be difficult if not impossible without cooperative sociality12. We now revisit this interpretation considering the novel diagnosis of hip dysplasia in this study.Smilodon’s large body size necessitated preying on megaherbivores for adequate sustenance3. To do so, like most large cats today, it would have used its hindlimbs for propulsion and acceleration48,49, a pounce behavior enabled by its morphology. Smilodon’s ratio of total forelimb to hindlimb length is greater while its ratio of tibia to femur length ranks lower than in living felids34. The shorter hindlimbs lacking the distal limb elongation in cursorial animals suggest that Smilodon was an ambush predator surpassing the ability of felids today50. Hunting large prey is dangerous51. After the initial hindlimb-powered leap, Smilodon would have grappled with its struggling prey, as evidenced by traumatic injuries in the rotator cuff and radiating from the ventral midline dorsolaterally to where the ribs articulate with the spine5. As it subdued prey with robust forelimbs35,48 under enough torque to injure the lumbar vertebrae5, Smilodon would have needed to leverage itself against the ground using its hindlimbs. Therefore, the pelvis and femur would have been critical to multiple phases of its hunting strategy.A dysplastic individual would have encountered much difficulty hunting in this manner. Yet, as evidenced by the complete fusion of its pelvic and femoral epiphyses (Figs. 1, 2) as well as its large body size (Figs. 6, 7), the individual in this study had reached adult age. (Studies of the detailed timing of epiphyseal fusion in large wild cats are lacking, but distal femoral epiphyses fuse at around the same time as or soon after proximal femoral epiphyses in domestic cats and dogs52,53. Given this, the broken distal femur likely had a fused epiphysis, as on its intact proximal end.) Limbs in African lions completely fuse between 4.5 and 5.5 years54,55,56, so it is reasonable to assume that adulthood in Smilodon likely started at around four years old. This estimate is reinforced by bone histological work quantifying at least four to seven lines of arrested growth (LAGs; one per growth year) in limb bones with fused epiphyses belonging to Smilodon fatalis from the Talara asphaltic deposits in Peru57. Some LAGs in the Talara histological specimens likely have been masked by secondary bone remodeling, which may be more extensive in larger-bodied taxa57, making these specimens possibly older than the number of visible LAGs suggest. Therefore, four years represents a likely minimum age for this individual, although it could have been much older.Ontogenetic growth patterns in teeth and bone further support inferences of sociality. In Smilodon, teeth appear to mature earlier than when sutures and long-bone epiphyses fuse, suggesting delayed weaning, prolonged juvenile dependence, and extended familial care until the adult hunting morphology—saber canines and robust limbs—was complete47. At RLB, most sampled Smilodon specimens show significant pulp cavity closure of the lower canine (14 of 19 specimens over approximately 80% closure), a sign of dental maturation58. This contrasts with RLB pantherine pulp cavities, which are more evenly distributed across the closure percentage range, suggesting that teeth mature earlier in Smilodon than in pantherines. (Other age assessments have ruled out the possibility that Smilodon juveniles were underrepresented relative to pantherines44). At Talara, age determination by dentition yields low estimates of juveniles (zero based on skulls; 8% based on dentaries), but age determination based on limb epiphyseal fusion yields higher estimates (41% juveniles)57. Histology of Talara Smilodon long bones reinforces this mismatch, as an apparent adult femur with fused epiphyses and seven LAGs was found to lack avascular and acellular subperiosteal lamellar bone57, suggesting that it had not yet finished growing. Further, prolonged parental care was interpreted in a recent description, from Pleistocene deposits in Corralito, Ecuador, of two subadult Smilodon fatalis individuals inferred to have been siblings and associated with an adult that was likely their mother59. This scenario of prolonged parental care, like that in the social African lion, would help explain how the individual in this current study survived to adulthood given its debilitating handicap.Novel application of CT visualization to an old question of paleopathology has enabled diagnosis of hip dysplasia, a lifelong condition, in an individual Smilodon fatalis saber-toothed cat. This individual was likely not the only Smilodon afflicted with hip dysplasia: multiple RLB Smilodon pelvic specimens, especially that described by Shermis11, exhibit gross morphology similar to the pathological pelvis examined in this study (Supplementary Figs. S6–S9). The individual examined in this study reached adulthood (at least four to seven years of age) but could never have hunted nor defended territory on its own, given its locomotor impairment that would have been present since infancy. As such, this individual likely survived to adulthood by association with a social group that assisted it with feeding and protection.Further conclusions are limited by the lack of a comprehensive and systematic comparative dataset comprising pathological post-crania from extant species, a persistent limitation of paleopathological studies5. Natural history museums may acquire cranial remains from zoos or similar institutions but often lack storage to accommodate postcranial skeletons, especially for large mammals. As well, while radiographic studies on domestic cats and dogs illustrate the nature of hip dysplasia, these studies tend to examine pathological bones in situ, still embedded in a muscular framework (e.g., Supplementary Fig. S10). This is opposed to the bones-only, flesh-free context of paleopathological specimens. Computed tomography and digital data may be key to building a comparative paleopathology dataset in the future.Within the scope of this study, we cannot rule out the hypothesis that the pathological animal was a scavenger and may have obtained food outside the context of a social structure. It is also possible that, regardless of its disability, its large size and fearsome canines made it a strong interference competitor. However, the pathological specimens examined here are consistent with the predominance of studies supporting a spectrum of social strategies in this extinct predator. In many extant carnivorans, sociality offers the benefits of cooperative hunting and rearing of young (e.g.,60): benefits that likely also applied to Smilodon in the late Pleistocene. As Smilodon coexisted with a rich megafaunal carnivore community including dire wolves (Aenocyon dirus), American lions (Panthera atrox), and short-faced bears (Arctodus simus), cooperative sociality may have aided its success as a predator in a crowded field. More

  • in

    Intraspecific variation in thermal tolerance differs between tropical and temperate fishes

    1.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).ADS 
    Article 

    Google Scholar 
    2.Stillman, J. H. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).CAS 
    Article 

    Google Scholar 
    3.Williams, C. M. et al. Biological impacts of thermal extremes: Mechanisms and costs of functional responses matter. Integr. Comp. Biol. 56, 73–84 (2016).Article 

    Google Scholar 
    4.Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Chang. 7, 718–722 (2017).ADS 
    Article 

    Google Scholar 
    5.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H. O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B Biol. Sci. 278, 1823–1830 (2011).Article 

    Google Scholar 
    7.Rummer, J. L. et al. Life on the edge: Thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Glob. Chang. Biol. 20, 1055–1066 (2014).ADS 
    Article 

    Google Scholar 
    8.Stuart-Smith, R. D., Edgar, G. J., Barrett, N. S., Kininmonth, S. J. & Bates, A. E. Thermal biases and vulnerability to warming in the world’s marine fauna. Nature 528, 88–92 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Bennett, S., Duarte, C. M., Marbà, N. & Wernberg, T. Integrating within-species variation in thermal physiology into climate change ecology. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180550 (2019).Article 

    Google Scholar 
    11.Comte, L. & Olden, J. D. Evolutionary and environmental determinants of freshwater fish thermal tolerance and plasticity. Glob. Chang. Biol. 23, 728–736 (2017).ADS 
    Article 

    Google Scholar 
    12.Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).Article 

    Google Scholar 
    13.Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 5, 215–225 (2015).ADS 
    Article 

    Google Scholar 
    14.Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: Implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).ADS 
    Article 

    Google Scholar 
    15.McKenzie, D. J. et al. Intraspecific variation in tolerance of warming in fishes. J. Fish Biol. 98, 1–20 (2020).

    Google Scholar 
    16.Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2017).Article 

    Google Scholar 
    17.Doyle, C. M., Leberg, P. L. & Klerks, P. L. Heritability of heat tolerance in a small livebearing fish, Heterandria formosa. Ecotoxicology 20, 535–542 (2011).CAS 
    Article 

    Google Scholar 
    18.Meffe, G. K., Weeks, S. C., Mulvey, M. & Kandl, K. L. Genetic differences in thermal tolerance of eastern mosquitofish (Gambusia holbrooki; Poeciliidae) from ambient and thermal ponds. Can. J. Fish. Aquat. Sci. 52, 2704–2711 (1995).Article 

    Google Scholar 
    19.Gradil, K. J., Garner, S. R., Wilson, C. C., Farrell, A. P. & Neff, B. D. Relationship between cardiac performance and environment across populations of Atlantic salmon (Salmo salar): A common garden experiment implicates local adaptation. Evol. Ecol. 30, 877–886 (2016).Article 

    Google Scholar 
    20.Fangue, N. A., Hofmeister, M. & Schulte, P. M. Intraspecific variation in thermal tolerance and heat shock protein gene expression in common killifish, Fundulus heteroclitus. J. Exp. Biol. 209, 2859–2872 (2006).CAS 
    Article 

    Google Scholar 
    21.Chen, Z., Farrell, A. P., Matala, A. & Narum, S. R. Mechanisms of thermal adaptation and evolutionary potential of conspecific populations to changing environments. Mol. Ecol. 27, 659–674 (2018).Article 

    Google Scholar 
    22.Chen, Z., Farrell, A. P., Matala, A., Hoffman, N. & Narum, S. R. Physiological and genomic signatures of evolutionary thermal adaptation in redband trout from extreme climates. Evol. Appl. 11, 1686–1699 (2018).CAS 
    Article 

    Google Scholar 
    23.Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).Article 

    Google Scholar 
    24.Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).Article 

    Google Scholar 
    25.Rodgers, G. G., Donelson, J. M., McCormick, M. I. & Munday, P. L. In hot water: Sustained ocean warming reduces survival of a low-latitude coral reef fish. Mar. Biol. 165, 1–10 (2018).Article 

    Google Scholar 
    26.Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Chang. 5, 61–66 (2015).ADS 
    Article 

    Google Scholar 
    27.Meffe, G. K., Weeks, S. C., Mulvey, M. & Kandl, K. L. Genetic differences in thermal tolerance of eastern mosquitofish (Gambusia holbrooki; Poeciliidae) from ambient and thermal ponds. Can. J. Fish. Aquat. Sci. 52(12), 2704–2711 (1995).Article 

    Google Scholar 
    28.Baer, C. F. & Travis, J. Direct and correlated responses to artificial selection on acute thermal stress tolerance in a livebearing fish. Evolution 54(1), 238–244 (2000).CAS 
    Article 

    Google Scholar 
    29.Klerks, P. L., Athrey, G. N. & Leberg, P. L. Response to selection for increased heat tolerance in a small fish species, with the response decreased by a population bottleneck. Front. Ecol. Evol. 7, 270 (2019).Article 

    Google Scholar 
    30.Morgan, R., Finnøen, M. H., Jensen, H., Pélabon, C. & Jutfelt, F. Low potential for evolutionary rescue from climate change in a tropical fish. Proc. R. Soc. B Biol. Sci. 117(52), 33365–33372 (2020).CAS 

    Google Scholar 
    31.Frölicher, T. L. Extreme climatic events in the ocean. In Predicting Future Oceans: Sustainability of Ocean and Human Systems Amidst Global Environmental Change (eds Cisneros-Montemayor A. M. et al.) 53–60 (2019).32.Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Chang. 3(1), 78–82 (2013).ADS 
    Article 

    Google Scholar 
    33.Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507(7493), 492–495 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Molinos, J. G. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Chang. 6(1), 83–88 (2016).ADS 
    Article 

    Google Scholar 
    35.Cox, D. K. Effects of three heating rates on the critical thermal maximum of bluegill. In Thermal Ecology (eds Gibbons, J. W. & Sharitz, R. R.) (National Technical Information Service, 1974).
    Google Scholar 
    36.Currie, S. & Schulte, P. M. Thermal stress. In The Physiology of Fishes 4th edn (eds Evans, D. H. et al.) 257–279 (CRC Press, 2014).
    Google Scholar 
    37.Grafen, A. The phlyogenetic regression. Philos. Trans. R. Soc. Lond. 326, 119–157 (1989).ADS 
    CAS 

    Google Scholar 
    38.Garland, T. Jr. & Ives, A. R. Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat. 155, 346–364 (2000).Article 

    Google Scholar 
    39.Orme, D. The caper package: comparative analysis of phylogenetics and evolution in R http://cran.r-project.org/web/packages/caper/index.html (2013).40.Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl. Acad. Sci. 112(41), 12764–12769 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Michonneau, F., Brown, J. W. & Winter, D. J. rotl: An R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).Article 

    Google Scholar 
    42.Freckleton, R. P. The seven deadly sins of comparative analysis. J. Evol. Biol. 22, 1367–1375 (2009).CAS 
    Article 

    Google Scholar  More

  • in

    Determinizing the contributions of human activities and climate change on greening in the Beijing–Tianjin–Hebei Region, China

    1.Arora, V. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Rev. Geophys. https://doi.org/10.1029/2001RG000103 (2002).Article 

    Google Scholar 
    2.Lamchin, M., Park, T., Lee, J. & Lee, W. Monitoring of vegetation dynamics in the Mongolia using MODIS NDVIs and their relationship to rainfall by Natural Zone. J. Indian Soc. Remote 43, 325–337 (2014).Article 

    Google Scholar 
    3.Zhang, Y., Liu, L. Y., Liu, Y., Zhang, M. & An, C. B. Response of altitudinal vegetation belts of the Tianshan Mountains in northwestern China to climate change during 1989–2015. Sci. Rep. https://doi.org/10.1038/s41598-021-84399-z (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Piao, S. L., Wang, X. H., Park, T. & Chen, C. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 
    ADS 

    Google Scholar 
    5.Zhu, Z. C., Piao, S. L., Myneni, R. B. & Huang, M. T. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    6.Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article 

    Google Scholar 
    7.Fang, H. Y., Li, Q. Y. & Cai, Q. G. A study on the vegetation recovery and crop pattern adjustment on the Loess Plateau of China. Afr. J. Microbiol. Res. 5, 1414–1419 (2011).Article 

    Google Scholar 
    8.Jiang, C., Zhang, H. Y., Tang, Z. P. & Labzovskii, L. Evaluating the coupling effects of climate variability and vegetation restoration on ecosystems of the Loess Plateau, China. Land Use Policy 69, 134–148 (2017).Article 

    Google Scholar 
    9.Zhang, H. Y., Fan, J. W., Cao, W., Zhong, H. P. & Harris, W. Changes in multiple ecosystem services between 2000 and 2013 and their driving factors in the Grazing Withdrawal Program, China. Ecol. Eng. 116, 67–79 (2018).Article 

    Google Scholar 
    10.Liu, Y. X., Lü, Y. H., Fu, B. J., Harris, P. & Wu, L. H. Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Sci. Total Environ. 650, 1029–1040 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Wang, J. F., Zhang, T. L. & Fu, B. J. A measure of spatial stratified heterogeneity. Ecol. Indic. 67, 250–256 (2016).Article 

    Google Scholar 
    12.Jiang, Y. T., Sun, Y. J., Zhang, L. P. & Wang, X. L. Influence factor analysis of soil heavy metal Cd based on the GeoDetector. Stoch. Environ. Res. Risk Assess. 34, 921–930 (2020).Article 

    Google Scholar 
    13.Su, Y., Li, T. X., Cheng, S. K. & Wang, X. Spatial distribution exploration and driving factor identification for soil salinisation based on geodetector models in coastal area. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2020.105961 (2020).Article 

    Google Scholar 
    14.Yan, S. J., Wang, H. & Jiao, K. W. Spatiotemporal dynamic of NDVI in the Beijing–Tianjin–Hebei region based on MODIS data and quantitative attribution. J. Geo-inf. Sci. 21, 767–780 (2019).
    Google Scholar 
    15.Evans, J. & Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 57, 535–554 (2007).Article 

    Google Scholar 
    16.Wessels, K. J. et al. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. J. Arid Environ. 68, 271–297 (2007).Article 
    ADS 

    Google Scholar 
    17.Teng, M. J. et al. The impacts of climate changes and human activities on net primary productivity vary across an ecotone zone in Northwest China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.136691 (2020).Article 
    PubMed 

    Google Scholar 
    18.Shi, S. Y. et al. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142419 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Peng, J., Jiang, H., Liu, Q. H., Green, S. & Quine, T. Human activity vs. climate change, distinguishing dominant drivers on LAI dynamics in karst region of southwest China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144297 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Xu, D. Y., Li, C. L., Song, X. & Ren, H. Y. The dynamics of desertification in the farming-pastoral region of North China over the past 10 years and their relationship to climate change and human activity. CATENA 123, 11–22 (2014).Article 

    Google Scholar 
    21.Sun, Y. L., Yang, Y. L., Zhang, L. & Wang, Z. L. The relative roles of climate variations and human activities in vegetation change in North China. Phys. Chem. Earth 87–88, 67–78 (2015).Article 
    ADS 

    Google Scholar 
    22.Liu, B., Sun, Y. L., Wang, Z. L. & Zhao, T. B. Analysis of the vegetation cover change and the relative role of its influencing factors in North China. J. Nat. Res. 30, 12–23 (2015).
    Google Scholar 
    23.Huang, L., Zheng, Y. H. & Xiao, T. Regional differentiation of ecological conservation and its zonal suitability at the county level in China. J. Geogr. Sci. 28, 46–58 (2018).Article 

    Google Scholar 
    24.Pan, M., Chen, T. W., Huang, L. & Cao, W. Spatial and temporal variations in ecosystem services and its driving factors analysis in Jing-Jin-Ji region. Acta Ecol. Sin. 40, 5151–5167 (2020).
    Google Scholar 
    25.Zhou, Q., Zhao, X. & Wu, D. H. Impact of urbanization and climate on vegetation coverage in the Beijing–Tianjin–Hebei Region of China. Remote Sens. https://doi.org/10.3390/rs11202452 (2019).Article 

    Google Scholar 
    26.Pantazi, M., Vasilescu, A. M., Mihai, A. & Gurau, D. Statistical-mathematical processing of anthropometric foot parameters and establishing simple and multiple correlations. Part 1, statistical analysis of foot size parameters. J. Leather Footwear 17, 199–208 (2017).Article 

    Google Scholar 
    27.Krishnan, S. R., Magimai-Doss, M. & Seelamantula, C. S. A Savitzky-Golay filtering perspective of dynamic feature computation. IEEE Signal Proc. Lett. 20, 281–284 (2013).Article 
    ADS 

    Google Scholar 
    28.Li, Z., Zhang, Y., Zhu, Q. K., He, Y. M. & Yao, W. J. Assessment of bank gully development and vegetation coverage on the Chinese Loess Plateau. Geomorphology 228, 462–469 (2015).Article 
    ADS 

    Google Scholar 
    29.Chen, J., Ban, Y. F. & Li, S. N. China, Open access to Earth land-cover map. Nature 514, 434–434 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    30.Alijani, B., Mahmoudi, P. & Chogan, A. J. A study of annual and seasonal precipitation trends in Iran using a nonparametric method (Sen’s slope estimator). For. Ecol. Manag. 121, 137–146 (2012).
    Google Scholar 
    31.Rahman, A. U. & Dawood, M. Spatio-statistical analysis of temperature fluctuation using Mann–Kendall and Sen’s Slope approach. Clim. Dynam. 48, 783–797 (2017).Article 
    ADS 

    Google Scholar 
    32.Lin, X. S., Tang, J., Li, Z. Y. & Li, H. Y. Vegetation greenness modelling in response to interannual precipitation and temperature changes between 2001 and 2012 in Liao River Basin in Jilin Province, China. Springerplus https://doi.org/10.1186/s40064-016-2737-9 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Lawrance, A. J. Partial and multiple correlation for time series. Am. Stat. 33, 127–130 (1979).MATH 

    Google Scholar 
    34.Wetzels, R. & Wagenmakers, E. J. A default Bayesian hypothesis test for correlations and partial correlations. Psychon. B Rev. 19, 1057–1064 (2012).Article 

    Google Scholar 
    35.Anghelache, C., Anghel, M. G., Prodan, L., Sacala, C. & Popovici, M. Multiple linear regression model used in economic analyses. Roman. Stat. Rev. Suppl. 62, 120–127 (2014).
    Google Scholar 
    36.Miao, L. J., Liu, Q., Fraser, R., He, B. & Cui, X. F. Shifts in vegetation growth in response to multiple factors on the Mongolian Plateau from 1982 to 2011. Phys. Chem. Earth 87–88, 50–59 (2015).Article 
    ADS 

    Google Scholar 
    37.Tang, Y. Z., Shao, Q. Q., Liu, J. Y. & Zhang, H. Y. Did ecological restoration hit its mark? Monitoring and assessing ecological changes in the Grain for Green Program Region using multi-source satellite images. Remote Sens. https://doi.org/10.3390/rs11030358 (2019).Article 

    Google Scholar 
    38.Cai, D. W. et al. Contributions of ecological programs to vegetation restoration in arid and semiarid China. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abbde9 (2020).Article 

    Google Scholar 
    39.Yao, N., Huang, C. H., Yang, J., Bosch, C. & Jia, Z. Combined effects of impervious surface change and large-scale afforestation on the surface urban heat island intensity of Beijing, China based on remote sensing analysis. Remote Sens. https://doi.org/10.3390/rs12233906 (2020).Article 

    Google Scholar 
    40.Wu, Z. T., Wu, J. J., He, B., Liu, J. H. & Wang, Q. F. Drought offset ecological restoration program-induced increase in vegetation activity in the Beijing–Tianjin Sand Source Region, China. Environ. Sci. Technol. 48, 12108–12117 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    41.Yang, X. C. et al. Remote sensing monitoring of grassland vegetation growth in the Beijing–Tianjin sandstorm source project area from 2000 to 2010. Ecol. Indic. 51, 244–251 (2015).Article 

    Google Scholar 
    42.Li, X. S., Wang, H. Y., Zhou, S. F., Sun, B. & Gao, Z. H. Did ecological engineering projects have a significant effect on large-scale vegetation restoration in Beijing–Tianjin Sand Source Region, China? A remote sensing approach. Chin. Geogr. Sci. 26, 216–228 (2016).Article 

    Google Scholar 
    43.Hu, S. et al. Detecting and attributing vegetation changes in Taihang Mountain, China. J. Mt. Sci. 16, 337–350 (2019).Article 

    Google Scholar 
    44.Li, D. et al. Identification of the roles of climate factors, engineering construction, and agricultural practices in vegetation dynamics in the Lhasa River Basin, Tibetan Plateau. Remote Sens. https://doi.org/10.3390/rs12111883 (2020).Article 

    Google Scholar 
    45.Sun, H. Y. et al. Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain. Agr. Water Manag. 97, 1139–1145 (2010).Article 

    Google Scholar 
    46.Tao, Y., Li, F., Crittenden, J. C., Lu, Z. M. & Sun, X. Environmental impacts of China’s urbanization from 2000 to 2010 and management implications. Environ. Manag. 57, 498–507 (2016).Article 
    ADS 

    Google Scholar 
    47.Jia, G. J., Epstein, H. E. & Balser, A. Spatial heterogeneity of tundra vegetation response to recent temperature changes. Glob. Change Biol. 12, 42–55 (2010).Article 
    ADS 

    Google Scholar 
    48.Wen, Y. Y., Liu, X. P., Xin, Q. C. & Wu, J. Cumulative effects of climatic factors on terrestrial vegetation growth. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2018JG004751 (2019).Article 

    Google Scholar 
    49.Zhao, A. Z., Yu, Q. Y., Feng, L. L., Zhang, A. P. & Pei, T. Evaluating the cumulative and time-lag effects of drought on grassland vegetation, A case study in the Chinese Loess Plateau. J. Environ. Manag. https://doi.org/10.1016/j.jenvman.2020.110214 (2020).Article 

    Google Scholar  More

  • in

    Microbial diversity in Mediterranean sponges as revealed by metataxonomic analysis

    1.Joseph, B. & Sujatha, S. Pharmacologically important natural products from marine sponges. J. Nat. Prod. 4, 5–12 (2011).CAS 

    Google Scholar 
    2.Bergmann, W. & Feeney, R. J. Contributions to the study of marine products XXXII The nucleosides of sponges. I. J. Org. Chem. 16, 981–987 (1951).CAS 
    Article 

    Google Scholar 
    3.Munro, M. H. G., Luibrand, R. T. & Blunt, J. W. The search for antiviral and anticancer compounds from marine organisms. in Bioorganic Marine Chemistry (ed. Scheuer, P. J.) vol. 1 93–176 (Springer-Verlag, Berlin, Heidelberg, 1987).4.Fuerst, J. A. Diversity and biotechnological potential of microorganisms associated with marine sponges. Appl. Microbiol. Biotechnol. 98, 7331–7347 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Mehbub, M. F., Lei, J., Franco, C. & Zhang, W. Marine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives. Mar. Drugs 12, 4539–4577 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 26, 338–362 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Piel, J. et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. U. S. A. 101, 16222–16227 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    8.Noro, J. C., Kalaitzis, J. A. & Neilan, B. A. Bioactive natural products from Papua New Guinea marine sponges. Chem. Biodivers. 9, 2077–2095 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Schirmer, A. et al. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl. Environ. Microbiol. 71, 4840–4849 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    10.Siegl, A. & Hentschel, U. PKS and NRPS gene clusters from microbial symbiont cells of marine sponges by whole genome amplification. Environ. Microbiol. Rep. 2, 507–513 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Graça, A. P. et al. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLoS ONE 8, e78992 (2013).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    12.Santos, O. C. S. et al. Investigation of biotechnological potential of sponge-associated bacteria collected in Brazilian coast. Lett. Appl. Microbiol. 60, 140–147 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Su, P., Wang, D. X., Ding, S. X. & Zhao, J. Isolation and diversity of natural product biosynthetic genes of cultivable bacteria associated with marine sponge Mycale sp from the coast of Fujian. China. Can. J. Microbiol. 60, 217–225 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Van Soest, R. W. M. et al. World Porifera Database. http://www.marinespecies.org/porifera/. (2020).15.Bertolino, M. et al. Stability of the sponge assemblage of Mediterranean coralligenous concretions along a millennial time span. Mar. Ecol. 35, 149–158 (2014).Article 
    ADS 

    Google Scholar 
    16.Longo, C. et al. Sponges associated with coralligenous formations along the Apulian coasts. Mar. Biodivers. 48, 2151–2163 (2018).Article 

    Google Scholar 
    17.Costa, G. et al. Sponge community variation along the Apulian coasts (Otranto Strait) over a pluri-decennial time span Does water warming drive a sponge diversity increasing in the Mediterranean Sea?. J. Mar. Biol. Assoc. United Kingdom 99, 1519–1534 (2019).Article 

    Google Scholar 
    18.Bertolino, M. et al. Changes and stability of a Mediterranean hard bottom benthic community over 25 years. J. Mar. Biol. Assoc. United Kingdom 96, 341–350 (2016).Article 

    Google Scholar 
    19.Bertolino, M. et al. Have climate changes driven the diversity of a Mediterranean coralligenous sponge assemblage on a millennial timescale?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 355–363 (2017).Article 

    Google Scholar 
    20.Gerovasileiou, V. et al. New Mediterranean biodiversity records. Mediterr. Mar. Sci. 18, 355–384 (2017).Article 

    Google Scholar 
    21.Ulman, A. et al. A massive update of non-indigenous species records in Mediterranean marinas. PeerJ 2017, e3954 (2017).Article 

    Google Scholar 
    22.Costantini, M. An analysis of sponge genomes. Gene 342, 321–325 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Costantini, S. et al. Anti-inflammatory effects of a methanol extract from the marine sponge Geodia cydonium on the human breast cancer MCF-7 cell line. Mediators Inflamm. https://doi.org/10.1155/2015/204975 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Costantini, S. et al. Evaluating the effects of an organic extract from the mediterranean sponge Geodia cydonium on human breast cancer cell lines. Int. J. Mol. Sci. 18, 2112 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5, e11842 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    26.Marra, M. V. et al. Long-term turnover of the sponge fauna in Faro Lake (North-East Sicily, Mediterranean Sea). Ital. J. Zool. 83, 579–588 (2016).CAS 
    Article 

    Google Scholar 
    27.Cárdenas, P., Xavier, J. R., Reveillaud, J., Schander, C. & Rapp, H. T. Molecular phylogeny of the astrophorida (Porifera, Demospongiaep) reveals an unexpected high level of spicule homoplasy. PLoS ONE 6, e18318 (2011).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    28.Erpenbeck, D. et al. The phylogeny of halichondrid demosponges: past and present re-visited with DNA-barcoding data. Org. Divers. Evol. 12, 57–70 (2012).Article 

    Google Scholar 
    29.Abdul Wahab, M. A., Fromont, J., Whalan, S., Webster, N. & Andreakis, N. Combining morphometrics with molecular taxonomy: How different are similar foliose keratose sponges from the Australian tropics?. Mol. Phylogenet. Evol. 73, 23–39 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Wörheide, G. Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar. Biol. 148, 907–912 (2006).Article 
    CAS 

    Google Scholar 
    31.Carella, M., Agell, G., Cárdenas, P. & Uriz, M. J. Phylogenetic reassessment of antarctic tetillidae (Demospongiae, Tetractinellida) reveals new genera and genetic similarity among morphologically distinct species. PLoS ONE 11, 1–33 (2016).
    Google Scholar 
    32.Morrow, C. C. et al. Congruence between nuclear and mitochondrial genes in Demospongiae: a new hypothesis for relationships within the G4 clade (Porifera: Demospongiae). Mol. Phylogenet. Evol. 62, 174–190 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Vargas, S. et al. Diversity in a cold hot-spot: DNA-barcoding reveals patterns of evolution among Antarctic demosponges (class demospongiae, phylum Porifera). PLoS ONE 10, 1–17 (2015).
    Google Scholar 
    34.Yang, Q., Franco, C. M. M., Sorokin, S. J. & Zhang, W. Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations. Sci. Rep. 7, 1–14 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    35.Cosentino, A., Giacobbe, S. & Potoschi, A. The CSI of Faro coastal lake (Messina): a natural observatory for the incoming of marine alien species. Biol. Mar. Mediterr. 16, 132–133 (2009).
    Google Scholar 
    36.Zagami, G., Costanzo, G. & Crescenti, N. First record in Mediterranean Sea and redescription of the bentho-planktonic calanoid copepod species Pseudocyclops xiphophorus Wells, 1967. J. Mar. Syst. 55, 67–76 (2005).Article 

    Google Scholar 
    37.Zagami, G. et al. Biogeographical distribution and ecology of the planktonic copepod Oithona davisae: rapid invasion in lakes Faro and Ganzirri (central Meditteranean Sea). in Trends in copepod studies. Distribution, biology and ecology (ed. Uttieri, M.) 1–55 (Nova Science Publishers, 2017).38.Saccà, A. & Giuffrè, G. Biogeography and ecology of Rhizodomus tagatzi, a presumptive invasive tintinnid ciliate. J. Plankton Res. 35, 894–906 (2013).Article 
    CAS 

    Google Scholar 
    39.Cao, S. et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome 8, 47 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Donnarumma, L. et al. Environmental and benthic community patterns of the shallow hydrothermal area of Secca Delle Fumose (Baia, Naples, Italy). Front. Mar. Sci. 6, 1–15 (2019).Article 

    Google Scholar 
    41.Poli, A., Anzelmo, G. & Nicolaus, B. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar. Drugs 8, 1779–1802 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Shukla, P. J., Nathani, N. M. & Dave, B. P. Marine bacterial exopolysaccharides [EPSs] from extreme environments and their biotechnological applications. Int. J. Res. Biosci. 6, 20–32 (2017).
    Google Scholar 
    43.Patel, A., Matsakas, L., Rova, U. & Christakopoulos, P. A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresour. Technol. 278, 424–434 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Schultz, J. & Rosado, A. S. Extreme environments: a source of biosurfactants for biotechnological applications. Extremophiles 24, 189–206 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Gloeckner, V. et al. The HMA-LMA dichotomy revisited: An electron microscopical survey of 56 sponge species. Biol. Bull. 227, 78–88 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Erwin, P. M., Coma, R., López-Sendino, P., Serrano, E. & Ribes, M. Stable symbionts across the HMA-LMA dichotomy: Low seasonal and interannual variation in sponge-associated bacteria from taxonomically diverse hosts. FEMS Microbiol. Ecol. 91, 1–11 (2015).Article 
    CAS 

    Google Scholar 
    47.Moitinho-Silva, L. et al. The sponge microbiome project. Gigascience 6, 1–13 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Hardoim, C. C. P. & Costa, R. Temporal dynamics of prokaryotic communities in the marine sponge Sarcotragus spinosulus. Mol. Ecol. 23, 3097–3112 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Karimi, E. et al. Metagenomic binning reveals versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine sponges. FEMS Microbiol. Ecol. 94, 1–18 (2018).Article 
    CAS 

    Google Scholar 
    50.Mohamed, N. M. et al. Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges. Environ. Microbiol. 10, 75–86 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Thiel, V. & Imhoff, J. F. Phylogenetic identification of bacteria with antimicrobial activities isolated from Mediterranean sponges. Biomol. Eng. 20, 421–423 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Bibi, F., Yasir, M., Al-Sofyani, A., Naseer, M. I. & Azhar, E. I. Antimicrobial activity of bacteria from marine sponge Suberea mollis and bioactive metabolites of Vibrio sp EA348. Saudi J. Biol. Sci. 27, 1139–1147 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Thakur, A. N. et al. Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Mar. Biotechnol. 7, 245–252 (2005).CAS 
    Article 

    Google Scholar 
    54.Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Thomas, T. R. A., Kavlekar, D. P. & LokaBharathi, P. A. Marine drugs from sponge-microbe association—A review. Mar. Drugs 8, 1417–1468 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Brinkmann, C. M., Marker, A. & Kurtböke, D. I. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity 9, 40 (2017).Article 
    CAS 

    Google Scholar 
    57.Haber, M. & Ilan, M. Diversity and antibacterial activity of bacteria cultured from Mediterranean Axinella spp sponges. J. Appl. Microbiol. 116, 519–532 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Öner, Ö. et al. Cultivable sponge-associated Actinobacteria from coastal area of eastern Mediterranean Sea. Adv. Microbiol. 04, 306–316 (2014).Article 

    Google Scholar 
    59.Gonçalves, A. C. S. et al. Draft genome sequence of Vibrio sp strain Vb278, an antagonistic bacterium isolated from the marine sponge Sarcotragus spinosulus. Genome Announc. 3, 2014–2015 (2015).Article 

    Google Scholar 
    60.Cheng, C. et al. Biodiversity, anti-trypanosomal activity screening, and metabolomic profiling of actinomycetes isolated from Mediterranean sponges. PLoS ONE 10, 1–21 (2015).
    Google Scholar 
    61.Graça, A. P. et al. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Front. Microbiol. 6, 389 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    62.Kuo, J. et al. Antimicrobial activity and diversity of bacteria associated with Taiwanese marine sponge Theonella swinhoei. Ann. Microbiol. 69, 253–265 (2019).CAS 
    Article 

    Google Scholar 
    63.Liu, T. et al. Diversity and antimicrobial potential of Actinobacteria isolated from diverse marine sponges along the Beibu Gulf of the South China Sea. FEMS Microbiol. Ecol. 95, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    64.Hentschel, U. et al. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol. Ecol. 35, 305–312 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Chelossi, E., Milanese, M., Milano, A., Pronzato, R. & Riccardi, G. Characterisation and antimicrobial activity of epibiotic bacteria from Petrosia ficiformis (Porifera, Demospongiae). J. Exp. Mar. Bio. Ecol. 309, 21–33 (2004).CAS 
    Article 

    Google Scholar 
    66.Kennedy, J. et al. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from irish waters. Mar. Biotechnol. 11, 384–396 (2009).CAS 
    Article 

    Google Scholar 
    67.Penesyan, A., Marshall-Jones, Z., Holmstrom, C., Kjelleberg, S. & Egan, S. Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. FEMS Microbiol. Ecol. 69, 113–124 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Santos, O. C. S. et al. Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil. Res. Microbiol. 161, 604–612 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Flemer, B. et al. Diversity and antimicrobial activities of microbes from two Irish marine sponges, Suberites carnosus and Leucosolenia sp. J. Appl. Microbiol. 112, 289–301 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Margassery, L. M., Kennedy, J., O’Gara, F., Dobson, A. D. & Morrissey, J. P. Diversity and antibacterial activity of bacteria isolated from the coastal marine sponges Amphilectus fucorum and Eurypon major. Lett. Appl. Microbiol. 55, 2–8 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Abdelmohsen, U. R. et al. Actinomycetes from Red Sea sponges: sources for chemical and phylogenetic diversity. Mar. Drugs 12, 2771–2789 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Montalvo, N. F. & Hill, R. T. Sponge-associated bacteria are strictly maintained in two closely related but geographically distant sponge hosts. Appl. Environ. Microbiol. 77, 7207–7216 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    73.Cleary, D. F. R. et al. Compositional analysis of bacterial communities in seawater, sediment, and sponges in the Misool coral reef system. Indonesia. Mar. Biodivers. 48, 1889–1901 (2018).Article 

    Google Scholar 
    74.Bedard, D. L., Ritalahti, K. M. & Löffler, F. E. The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Appl. Environ. Microbiol. 73, 2513–2521 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    75.Taş, N., Van Eekert, M. H. A., De Vos, W. M. & Smidt, H. The little bacteria that can – Diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp in contaminated environments. Microb. Biotechnol. 3, 389–402 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Arnds, J., Knittel, K., Buck, U., Winkel, M. & Amann, R. Development of a 16S rRNA-targeted probe set for Verrucomicrobia and its application for fluorescence in situ hybridization in a humic lake. Syst. Appl. Microbiol. 33, 139–148 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Sizikov, S. et al. Characterization of sponge-associated Verrucomicrobia: microcompartment-based sugar utilization and enhanced toxin–antitoxin modules as features of host-associated Opitutales. Environ. Microbiol. 22, 4669–4688 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Cardman, Z. et al. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an Arctic fjord of Svalbard. Appl. Environ. Microbiol. 80, 3749–3756 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    79.Cabello-Yeves, P. J. et al. Reconstruction of diverse verrucomicrobial genomes from metagenome datasets of freshwater reservoirs. Front. Microbiol. 8, 2131 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.He, S. et al. Ecophysiology of freshwater Verrucomicrobia inferred from metagenome-assembled genomes. MSphere 2, e00277 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. 5, 1026–1039 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Shindo, K. et al. Diapolycopenedioic acid xylosyl esters A, B, and C, novel antioxidative glyco-C30-carotenoic acids produced by a new marine bacterium Rubritalea Squalenifaciens. J. Antibiot. (Tokyo) 61, 185–191 (2008).CAS 
    Article 

    Google Scholar 
    83.Watson, S. W., Bock, E., Valois, F. W., Waterbury, J. B. & Schlosser, U. Nitrospira marina gen. nov sp nov: a chemolithotrophic nitrite-oxidizing bacterium. Arch. Microbiol. 144, 1–7 (1986).Article 

    Google Scholar 
    84.Daims, H. & Wagner, M. Nitrospira. Trends Microbiol. 26, 462–463 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Off, S., Alawi, M. & Spieck, E. Enrichment and physiological characterization of a novel nitrospira-like bacterium obtained from a marine sponge. Appl. Environ. Microbiol. 76, 4640–4646 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    86.Feng, G., Sun, W., Zhang, F., Karthik, L. & Li, Z. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei. Sci. Rep. 6, 1–11 (2016).CAS 
    Article 

    Google Scholar 
    87.Andreo-Vidal, A., Sanchez-Amat, A. & Campillo-Brocal, J. C. The Pseudoalteromonas luteoviolacea L-amino acid oxidase with antimicrobial activity is a flavoenzyme. Mar. Drugs 16, 499 (2018).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    88.Saccà, A., Guglielmo, L. & Bruni, V. Vertical and temporal microbial community patterns in a meromictic coastal lake influenced by the Straits of Messina upwelling system. Hydrobiologia 600, 89–104 (2008).Article 

    Google Scholar 
    89.Polese, G. et al. Meiofaunal assemblages of the bay of Nisida and the environmental status of the Phlegraean area (Naples, Southern Italy). Mar. Biodivers. 48, 127–137 (2018).Article 

    Google Scholar 
    90.Gambi, M. C., Tiberti, L. & Mannino, A. M. An update of marine alien species off the Ischia Island (Tyrrhenian Sea) with a closer look at neglected invasions of Lophocladia lallemandii (Rhodophyta). Not. Sibm 75, 58–65 (2019).
    Google Scholar 
    91.Hooper, J. N. A. ‘Sponguide’. Guide to sponge collection and identification. https://www.academia.edu/34258606/SPONGE_GUIDE_GUIDE_TO_SPONGE_COLLECTION_AND_IDENTIFICATION_Version_August_2000. (2000).92.Rützler, K. Sponges in coral reefs. in Coral reefs: Research methods, monographs on oceanographic methodology (eds. Stoddart, D. R. & Johannes, R. E.) 299–313 (Paris: Unesco, 1978).93.Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Schmitt, S., Hentschel, U., Zea, S., Dandekar, T. & Wolf, M. ITS-2 and 18S rRNA gene phylogeny of Aplysinidae (Verongida, Demospongiae). J. Mol. Evol. 60, 327–336 (2005).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    95.Chombard, C., Boury-Esnault, N. & Tillier, S. Reassessment of homology of morphological characters in Tetractinellid sponges based on molecular data. Syst. Biol. 47, 351–366 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Collins, A. G. Phylogeny of medusozoa and the evolution of cnidarian life cycles. J. Evol. Biol. 15, 418–432 (2002).Article 

    Google Scholar 
    97.Dohrmann, M., Janussen, D., Reitner, J., Collins, A. G. & Wörheide, G. Phylogeny and evolution of glass sponges (Porifera, Hexactinellida). Syst. Biol. 57, 388–405 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Manuel, M. et al. Phylogeny and evolution of calcareous sponges: monophyly of calcinea and calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry. Syst. Biol. 52, 311–333 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Wörheide, G., Degnan, B., Hooper, J. & Reitner, J. Phylogeography and taxonomy of the Indo-Pacific reef cave dwelling coralline demosponge Astrosclera willeyana: new data from nuclear internal transcribed spacer sequences. Proc. 9th Int. Coral Reef Symp. 1, 339–346 (2002).100.Meyer, C. P., Geller, J. B. & Paulay, G. Fine scale endemism on coral reefs: Archipelagic differentiation in turbinid gastropods. Evolution 59, 113–125 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 
    CAS 

    Google Scholar 
    103.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.R Core Team. A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. (2020).105.Urbanek, S. & Horner, J. Cairo: R Graphics device using Cairo graphics library for creating high-quality bitmap (PNG, JPEG, TIFF), vector (PDF, SVG, PostScript) and display (X11 and Win32) output. R package version 1.5–12.2. https://cran.r-project.org/package=Cairo (2020).106.Chao, B. F. Interannual length-of-the-day variation with relation to the southern oscillation/El Nino. Geophys. Res. Lett. 11, 541–544 (1984).Article 
    ADS 

    Google Scholar 
    107.Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    108.Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, 1949).MATH 

    Google Scholar 
    109.Simpson, E. H. Measurment of diversity. Nature 163, 688 (1949).MATH 
    Article 
    ADS 

    Google Scholar  More

  • in

    Symbiosis maintenance in the facultative coral, Oculina arbuscula, relies on nitrogen cycling, cell cycle modulation, and immunity

    1.Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.MeloClavijo, J., Donath, A., Serôdio, J. & Christa, G. Polymorphic adaptations in metazoans to establish and maintain photosymbioses. Biol. Rev. 93, 2006–2020 (2018).Article 

    Google Scholar 
    3.Wernegreen, J. J. Endosymbiosis. Curr. Biol. 22, 555–561 (2012).Article 
    CAS 

    Google Scholar 
    4.Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA 108, 3047–3052 (2011).ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 
    5.Schmidt, T. S. B., Raes, J. & Bork, P. The human gut microbiome: From association to modulation. Cell 172, 1198–1215 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Morgan, X. C. et al. Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease. Genome Biol. 16, 67 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Tromas, A. et al. Heart of endosymbioses: Transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses. PLoS One 7, 1–7 (2012).
    Google Scholar 
    8.Chun, C. K. et al. An annotated cDNA library of juvenile Euprymna scolopes with and without colonization by the symbiont Vibrio fischeri. BMC Genom. 7, 1–10 (2006).MathSciNet 
    Article 
    CAS 

    Google Scholar 
    9.Sørensen, M. E. S. et al. Comparison of independent evolutionary origins reveals both convergence and divergence in the metabolic mechanisms of symbiosis. Curr. Biol. 30, 328-334.e4 (2020).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    10.LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Muscatine, L. R., McCloskey, L. & Marian, E. R. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol. Oceanogr. 26, 601–611 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Anthony, K. R. N., Hoogenboom, M. O., Maynard, J. A., Grottoli, A. G. & Middlebrook, R. Energetics approach to predicting mortality risk from environmental stress: A case study of coral bleaching. Funct. Ecol. 23, 539–550 (2009).Article 

    Google Scholar 
    13.De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. 109, 17995–17999 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Davies, S. W., Marchetti, A., Ries, J. B. & Castillo, K. D. Thermal and pCO2 stress elicit divergent transcriptomic responses in a resilient coral. Front. Mar. Sci. 3, 1–15 (2016).Article 

    Google Scholar 
    16.DeSalvo, M. K., Estrada, A., Sunagawa, S. & Medina, M. Transcriptomic responses to darkness stress point to common coral bleaching mechanisms. Coral Reefs 31, 215–228 (2011).ADS 
    Article 

    Google Scholar 
    17.González-Pech, R. A., Vargas, S., Francis, W. R. & Wörheide, G. Transcriptomic resilience of the Montipora digitata holobiont to low pH. Front. Mar. Sci. 4, 1–9 (2017).Article 

    Google Scholar 
    18.Rubin, E. T. et al. Molecular mechanisms of coral persistence within highly urbanized locations in the Port of Miami, Florida. Front. Mar. Sci. 8, 8695236 (2021).Article 

    Google Scholar 
    19.Hawkins, T. D., Krueger, T., Wilkinson, S. P., Fisher, P. L. & Davy, S. K. Antioxidant responses to heat and light stress differ with habitat in a common reef coral. Coral Reefs 34, 1229–1241 (2015).ADS 
    Article 

    Google Scholar 
    20.Agostini, S., Fujimura, H., Hayashi, H. & Fujita, K. Mitochondrial electron transport activity and metabolism of experimentally bleached hermatypic corals. J. Exp. Mar. Biol. Ecol. 475, 100–107 (2016).CAS 
    Article 

    Google Scholar 
    21.Gardner, S. G. et al. Dismutase and glutathione as stress response indicators in three corals under short-term hyposalinity stress. Proc. R. Soc. B 283, 20152418 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Kenkel, C. & Matz, M. V. Gene expression plasticity as a mechanism of adaptation to a variable environment. Nat. Ecol. Evol. 1, 0014 (2016).Article 

    Google Scholar 
    23.Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl. Acad. Sci. 110, 1387–1392 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Hashimoto, K., Shibuno, T., Murayama-Kayano, E., Tanaka, H. & Kayano, T. Isolation and characterization of stress-responsive genes from the scleractinian coral Pocillopora damicornis. Coral Reefs 23, 485–491 (2004).
    Google Scholar 
    25.Rosic, N. N., Pernice, M., Dove, S., Dunn, S. & Hoegh-Guldberg, O. Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: Possible implications for coral bleaching. Cell Stress Chaperones 16, 69–80 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Meyer, E., Aglyamova, G. V. & Matz, M. V. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol. Ecol. 20, 3599–3616 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Mansour, T. A., Rosenthal, J. J. C., Brown, C. T. & Roberson, L. M. Transcriptome of the Caribbean stony coral Porites astreoides from three developmental stages. GigaScience 5, 33 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Polato, N. R., Altman, N. S. & Baums, I. B. Variation in the transcriptional response of threatened coral larvae to elevated temperatures. Mol. Ecol. 22, 1366–1382 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Paxton, C. W., Davy, S. K. & Weis, V. M. Stress and death of cnidarian host cells play a role in cnidarian bleaching. J. Exp. Biol. 216, 2813–2820 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    30.Matthews, J. L. et al. Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proc. Natl. Acad. Sci. USA 114, 13194–13199 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Jacobovitz, M. R. et al. Dinoflagellate symbionts escape vomocytosis by host cell immune suppression. Nat. Microbiol. 6, 769–782 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Mitchelmore, C. L., Ringwood, A. H. & Weis, V. M. Differential accumulation of cadmium and changes in glutathione levels as a function of symbiotic state in the sea anemone Anthopleura elegantissima. J. Exp. Mar. Biol. Ecol. 284, 71–85 (2003).CAS 
    Article 

    Google Scholar 
    33.Dunn, S. R., Pernice, M., Green, K., Hoegh-Guldberg, O. & Dove, S. G. Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: Are the batteries of the reef going to run out?. PLoS One 7, 25 (2012).
    Google Scholar 
    34.Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Tivey, T. R., Parkinson, J. E. & Weis, V. M. Host and symbiont cell cycle coordination is mediated by symbiotic state, nutrition, and partner identity in a model cnidarian-dinoflagellate symbiosis. MBio 11, 25 (2020).Article 

    Google Scholar 
    36.Tivey, T. R. et al. N-linked surface glycan biosynthesis, composition, inhibition, and function in cnidarian-dinoflagellate symbiosis. Mircobial Ecol. 80, 223–236 (2020).CAS 
    Article 

    Google Scholar 
    37.Parkinson, J. E. et al. Subtle differences in symbiont cell surface glycan profiles do not explain species-specific colonization rates in a model cnidarian-algal symbiosis. Front. Microbiol. 9, 842 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Mansfield, K. M. et al. Transcription factor NF-κB is modulated by symbiotic status in a sea anemone model of cnidarian bleaching. Sci. Rep. 7, 1–14 (2017).CAS 
    Article 

    Google Scholar 
    39.Madin, J. S. et al. The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Sci. Data 3, 160017 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Dimond, J. & Carrington, E. Temporal variation in the symbiosis and growth of the temperate scleractinian coral Astrangia poculata. Mar. Ecol. Prog. Ser. 348, 161–172 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Sharp, K. H., Pratte, Z. A., Kerwin, A. H., Rotjan, R. D. & Stewart, F. J. Season, but not symbiont state, drives microbiome structure in the temperate coral Astrangia poculata. Microbiome 5, 120 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Dimond, J. & Carrington, E. Symbiosis regulation in a facultatively symbiotic temperate coral: Zooxanthellae division and expulsion. Coral Reefs 27, 601–604 (2008).ADS 
    Article 

    Google Scholar 
    43.Burmester, E. M., Finnerty, J. R., Kaufman, L. & Rotjan, R. D. Temperature and symbiosis affect lesion recovery in experimentally wounded, facultatively symbiotic temperate corals. Mar. Ecol. Prog. Ser. 570, 87–99 (2017).ADS 
    Article 

    Google Scholar 
    44.Wuitchik, D. M. et al. Characterizing environmental stress responses of aposymbiotic Astrangia poculata to divergent thermal challenges. Mol. Ecol. https://doi.org/10.1111/mec.16108 (2021).Article 
    PubMed 

    Google Scholar 
    45.Schoepf, V. et al. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PloS One 8, e75049 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Lajeunesse, T. C., Parkinson, J. E. & Reimer, J. D. A genetics-based description of Symbiodinium minutum sp. Nov. and S. psygmophilum sp. Nov. (dinophyceae), two dinoflagellates symbiotic with cnidaria. J. Phycol. 48, 1380–1391 (2012).PubMed 
    Article 

    Google Scholar 
    47.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Pimentel, H., Bray, N. L., Puente, S., Melsted, P. & Pachter, L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat. Methods 14, 687–690 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Harrison, P. L. Sexual reproduction of scleractinian corals. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 59–85 (Springer, 2011).Chapter 

    Google Scholar 
    51.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Jombart, T. & Ahmed, I. adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Kauffmann, A., Gentleman, R. & Huber, W. arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics 25, 415–416 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    58.Oksanen, J. et al. vegan: Community Ecology Package. (2020).59.Kolde, R. pheatmap: Pretty Heatmaps. (2019).60.Wright, R. M., Aglyamova, G. V., Meyer, E. & Matz, M. V. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genom. 16, 1–12 (2015).CAS 
    Article 

    Google Scholar 
    61.Cui, G. et al. Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLoS Genet. 15, 1–19 (2019).CAS 
    Article 

    Google Scholar 
    62.Burns, J. A., Zhang, H., Hill, E., Kim, E. & Kerney, R. Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis. Elife 6, 1–32 (2017).Article 

    Google Scholar 
    63.Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Shinzato, C., Inoue, M. & Kusakabe, M. A snapshot of a coral “Holobiont”: A transcriptome assembly of the scleractinian coral, porites, captures a wide variety of genes from both the host and symbiotic zooxanthellae. PLoS One 9, e85182 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Maor-Landaw, K., van Oppen, M. J. H. & McFadden, G. I. Symbiotic lifestyle triggers drastic changes in the gene expression of the algal endosymbiont Breviolum minutum (Symbiodiniaceae). Ecol. Evol. https://doi.org/10.1002/ece3.5910 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Davies, S. W. Understanding Coral Dispersal. PhD Thesis, The University of Texas at Austin (2014).68.Simona, F., Zhang, H. & Voolstra, C. R. Evidence for a role of protein phosphorylation in the maintenance of the cnidarian–algal symbiosis. Mol. Ecol. 28, 5373–5386 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Xiang, T. et al. Symbiont population control by host-symbiont metabolic interaction in Symbiodiniaceae-cnidarian associations. Nat. Commun. 11, 1–9 (2020).ADS 
    CAS 

    Google Scholar 
    70.Bernard, S. M. & Habash, D. Z. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol. 182, 608–620 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Konishi, N. et al. Contributions of two cytosolic glutamine synthetase isozymes to ammonium assimilation in Arabidopsis roots. J. Exp. Bot. 68, 613–625 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Lee, R. W., Robinson, J. J. & Cavanaugh, C. M. Pathways of inorganic nitrogen assimilation in chemoautotrophic bacteria-marine invertebrate symbioses: Expression of host and symbiont glutamine synthetase. J. Exp. Biol. 202, 289–300 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Kim, D., Minhas, B. F., Li-Byarlay, H. & Hansen, A. K. Key transport and ammonia recycling genes involved in aphid symbiosis respond to host–plant specialization. Genes Genomes Genet. 8, 2433–2443 (2018).CAS 

    Google Scholar 
    74.Lin, M. F., Takahashi, S., Forêt, S., Davy, S. K. & Miller, D. J. Transcriptomic analyses highlight the likely metabolic consequences of colonization of a cnidarian host by native or non-native Symbiodinium species. Biology Open 8, 1–11 (2019).
    Google Scholar 
    75.Su, Y., Zhou, Z. & Yu, X. Possible roles of glutamine synthetase in responding to environmental changes in a scleractinian coral. Mol. Biol. Rep. 45, 2115–2124 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Hamada, M. et al. Metabolic co-dependence drives the evolutionarily ancient Hydra-Chlorella symbiosis. Elife 7, 1–37 (2018).Article 

    Google Scholar 
    77.Hall, C. et al. Freshwater sponge hosts and their green algae symbionts: A tractable model to understand intracellular symbiosis. PeerJ 9, 1–28 (2021).
    Google Scholar 
    78.Mao, M. & Bennett, G. M. Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria. ISME J. 14, 1384–1395 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Fam, R. R. S. et al. Molecular characterization of a novel algal glutamine synthetase (GS) and an algal glutamate synthase (GOGAT) from the colorful outer mantle of the giant clam, Tridacna squamosa, and the putative GS-GOGAT cycle in its symbiotic zooxanthellae. Gene 656, 40–52 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Gates, R. D., Hoegh-Guldberg, O., McFall-Ngai, M. J., Bil, K. Y. & Muscatine, L. Free amino acids exhibit anthozoan “host factor” activity: They induce the release of photosynthate from symbiotic dinoflagellates in vitro. Proc. Natl. Acad. Sci. 92, 7430–7434 (1995).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Perland, E., Bagchi, S., Klaesson, A. & Fredriksson, R. Characteristics of 29 novel atypical solute carriers of major facilitator superfamily type: Evolutionary conservation, predicted structure and neuronal co-expression. Open Biol. 7, 25 (2017).Article 
    CAS 

    Google Scholar 
    82.Kenkel, C. D., Meyer, E. & Matz, M. V. Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Mol. Ecol. 22, 4322–4334 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Yuyama, I., Ishikawa, M., Nozawa, M., Yoshida, M. & Ikeo, K. Transcriptomic changes with increasing algal symbiont reveal the detailed process underlying establishment of coral-algal symbiosis. Sci. Rep. 8, 1–11 (2018).CAS 
    Article 

    Google Scholar 
    84.Rodriguez-Lanetty, M., Phillips, W. S. & Weis, V. M. Transcriptome analysis of a cnidarian-dinoflagellate mutualism reveals complex modulation of host gene expression. BMC Genom. 7, 1–11 (2006).Article 
    CAS 

    Google Scholar 
    85.Xu, X. et al. Specific structure and unique function define the hemicentin. Cell Biosci. 3, 27 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Smith, T. E. & Moran, N. A. Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera. Proc. Natl. Acad. Sci. USA 117, 2113–2121 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Sun, Y. et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. 35, 600–604 (2015).CAS 
    Article 

    Google Scholar 
    88.Lisovsky, M., Itoh, K. & Sokol, S. Y. Frizzled receptors activate a novel JNK-dependent pathway that may lead to apoptosis. Curr. Biol. 12, 53–58 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Jiang, X. & Wang, X. Cytochrome c-mediated apoptosis. Annu. Rev. Biochem. 73, 87–106 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Detournay, O. & Weis, V. M. Role of the sphingosine rheostat in the regulation of cnidarian-dinoflagellate symbioses. Biol. Bull. 221, 261–269 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Wolfowicz, I. et al. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci. Rep. 6, 1–12 (2016).Article 
    CAS 

    Google Scholar 
    92.Weis, V. M. Cell biology of coral symbiosis: Foundational study can inform solutions to the coral reef crisis. Integr. Comp. Biol. 59, 845–855 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Mansfield, K. M. et al. Varied effects of algal symbionts on transcription factor NF-kB in a sea anemone and a coral: Possible roles in symbiosis and thermotolerance. bioRxiv 5444, 25 (2019).
    Google Scholar 
    94.Zuliani-Alvarez, L. et al. Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers. Nat. Commun. 8, 25 (2017).Article 
    CAS 

    Google Scholar 
    95.Piccinini, A. M. & Midwood, K. S. Endogenous control of immunity against infection: Tenascin-C regulates TLR4-mediated inflammation via microRNA-155. Cell Rep. 2, 914–926 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Thompson, J. R., Rivera, H. E., Closek, C. J. & Medina, M. Microbes in the coral holobiont: Partners through evolution, development, and ecological interactions. Front. Cell. Infect. Microbiol. 4, 1–20 (2014).
    Google Scholar 
    97.Maynard, J. et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat. Clim. Change 5, 688–694 (2015).ADS 
    Article 

    Google Scholar 
    98.Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A. & González-Barrios, F. J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 2019, 25 (2019).
    Google Scholar 
    99.Walton, C. J., Hayes, N. K. & Gilliam, D. S. Impacts of a regional, multi-year, multi-species coral disease outbreak in Southeast Florida. Front. Mar. Sci. 5, 1–14 (2018).Article 

    Google Scholar 
    100.Weil, E., Hernández-Delgado, E. A., Gonzalez, M., Williams, S. & Figuerola, M. Spread of the new coral disease “SCTLD” into the Caribbean: Implications for Puerto Rico. Reef Encounter 34, 38–43 (2019).
    Google Scholar 
    101.Rippe, J. P., Kriefall, N. G., Davies, S. W. & Castillo, K. D. Differential disease incidence and mortality of inner and outer reef corals of the upper Florida Keys in association with a white syndrome outbreak. Bull. Mar. Sci. 95, 305–316 (2019).Article 

    Google Scholar 
    102.DeFilippo, L., Burmester, E. M., Kaufman, L. & Rotjan, R. D. Patterns of surface lesion recovery in the Northern Star Coral, Astrangia poculata. J. Exp. Mar. Biol. Ecol. 481, 15–24 (2016).Article 

    Google Scholar 
    103.Leydet, K. P. & Hellberg, M. E. The invasive coral Oculina patagonica has not been recently introduced to the Mediterranean from the western Atlantic. BMC Evol. Biol. 15, 79 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Leydet, K. P. & Hellberg, M. E. Discordant coral–symbiont structuring: Factors shaping geographical variation of Symbiodinium communities in a facultative zooxanthellate coral genus, Oculina. Coral Reefs 35, 583–595 (2016).ADS 
    Article 

    Google Scholar  More

  • in

    Approaching mercury distribution in burial environment using PLS-R modelling

    1.Evers, D. The effects of methylmercury on wildlife: A comprehensive review and approach for interpretation. In Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 181–194 (Elsevier, 2018). https://doi.org/10.1016/B978-0-12-809665-9.09985-7.Chapter 

    Google Scholar 
    2.Morel, F. M. M., Kraepiel, A. M. L. & Amyot, M. The chemical cycle and bioaccumulation of mercury. Ann. Rev. Ecol. Syst. 29, 543–566 (1998).Article 

    Google Scholar 
    3.Pushie, M. J., Pickering, I. J., Korbas, M., Hackett, M. J. & George, G. N. Elemental and chemically specific X-ray fluorescence imaging of biological systems. Chem. Rev. 114, 8499–8541 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.WHO. Exposure to Mercury: a Major Public Health Concern. (2007).5.Berlin, M., Zalups, R. K. & Fowler, B. A. Chapter 46—Mercury. In Handbook on the Toxicology of Metals (Fourth Edition) (eds Nordberg, G. F. et al.) 1013–1075 (Academic Press, Cambridge, 2015). https://doi.org/10.1016/B978-0-444-59453-2.00046-9.Chapter 

    Google Scholar 
    6.Clarkson, T. W. The Toxicology of mercury. Crit. Rev. Clin. Lab. Sci. 34, 369–403 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Abass, K. et al. Quantitative estimation of mercury intake by toxicokinetic modelling based on total mercury levels in humans. Environ. Int. 114, 1–11 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Liu, G., Cai, Y., O’Driscoll, N., Feng, X. & Jiang, G. Overview of mercury in the environment. In Environmental Chemistry and Toxicology of Mercury (eds Liu, G. et al.) 1–12 (Wiley, 2011). https://doi.org/10.1002/9781118146644.ch1.Chapter 

    Google Scholar 
    9.García, F., Ortega, A., Domingo, J. L. & Corbella, J. Accumulation of metals in autopsy tissues of subjects living in Tarragona county, Spain. J. Environ. Sci. Health Part A 36, 1767–1786 (2001).Article 

    Google Scholar 
    10.Clarkson, T. W. & Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36, 609–662 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Holmes, P., James, K. A. F. & Levy, L. S. Is low-level environmental mercury exposure of concern to human health?. Sci. Total Environ. 408, 171–182 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Pasetto, R., Martin-Olmedo, P., Martuzzi, M. & Iavarone, I. Exploring available options in characterising the health impact of industrially contaminated sites. Ann. Ist Super Sanita 52, 476–482 (2016).PubMed 

    Google Scholar 
    13.Álvarez-Fernández, N., Martínez Cortizas, A. & López-Costas, O. Atmospheric mercury pollution deciphered through archaeological bones. J. Archaeol. Sci. 119, 105159 (2020).Article 
    CAS 

    Google Scholar 
    14.Cooke, C. A., Martínez-Cortizas, A., Bindler, R. & Sexauer Gustin, M. Environmental archives of atmospheric Hg deposition—A review. Sci. Total Environ. 709, 134800 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Leblanc, M., Morales, J. A., Borrego, J. & Elbaz-Poulichet, F. 4,500-year-old mining pollution in southwestern Spain: Long-term implications for modern mining pollution. Econ. Geol. 95, 655–662 (2000).CAS 

    Google Scholar 
    16.Cooke, C. A., Balcom, P. H., Biester, H. & Wolfe, A. P. Over three millennia of mercury pollution in the Peruvian Andes. PNAS 106, 8830–8834 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Hunt Ortiz, M. A., Consuegra, S., Díaz del Río, P., Hurtado Pérez, V. & Montero Ruiz, I. Neolithic and Chalcolithic –VI to III millennia BC– use of cinnabar (HgS) in the Iberian Peninsula: analytical identification and lead isotope data for an early mineral exploitation of the Almadén (Ciudad Real, Spain) mining district. (2011).18.Martı́nez-Cortizas, A., Pontevedra-Pombal, X., Garcı́a-Rodeja, E., Nóvoa-Muñoz, J. C. & Shotyk, W. Mercury in a Spanish peat bog: Archive of climate change and atmospheric metal deposition. Science 284, 939–942 (1999).19.Martínez Cortizas, A., Peiteado Varela, E., Bindler, R., Biester, H. & Cheburkin, A. Reconstructing historical Pb and Hg pollution in NW Spain using multiple cores from the Chao de Lamoso bog (Xistral Mountains). Geochimica et Cosmochimica Acta 82, 68–78 (2012).20.López-Costas, O. et al. Human bones tell the story of atmospheric mercury and lead exposure at the edge of Roman World. Sci. Total Environ. 710, 136319 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    21.Hedges, R. E. M. Bone diagenesis: an overview of processes. Archaeometry 44, 319–328 (2002).CAS 
    Article 

    Google Scholar 
    22.Yamada, M. et al. Accumulation of mercury in excavated bones of two natives in Japan. Sci. Total Environ. 162, 253–256 (1995).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Emslie, S. D. et al. Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar. Sci. Rep. 5, 14679 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Alexandrovskaya, E. & Alexandrovskiy, A. Radiocarbon data and anthropochemistry of ancient Moscow. Geochronometria 24, 87–95 (2005).
    Google Scholar 
    25.Ávila, A., Mansilla, J., Bosch, P. & Pijoan, C. Cinnabar in mesoamerica: poisoning or mortuary ritual?. J. Archaeol. Sci. 49, 48–56 (2014).Article 
    CAS 

    Google Scholar 
    26.Bocca, B. et al. Metals in bones of the middle-aged inhabitants of Sardinia island (Italy) to assess nutrition and environmental exposure. Environ. Sci. Pollut. Res. 25, 8404–8414 (2018).CAS 
    Article 

    Google Scholar 
    27.Cervini-Silva, J., Muñoz, M. de L., Palacios, E., Ufer, K. & Kaufhold, S. Natural incorporation of mercury in bone. J. Trace Elements Med. Biol. 67, 126797 (2021).28.Cervini-Silva, J., Muñoz, M. de L., Palacios, E., Jimenez-Lopez, J. C. & Romano-Pacheco, A. Ageing and preservation of HgS-enriched ancient human remains deposited in confinement. J. Archaeol. Sci.: Rep. 18, 562–567 (2018).29.Cervini-Silva, J. et al. Cinnabar-preserved bone structures from primary osteogenesis and fungal signatures in ancient human remains. Geomicrobiol. J. 30, 566–577 (2013).CAS 
    Article 

    Google Scholar 
    30.Emslie, S. D. et al. Mercury in archaeological human bone: biogenic or diagenetic?. J. Archaeol. Sci. 108, 104969 (2019).CAS 
    Article 

    Google Scholar 
    31.Kepa, M. et al. Analysis of mercury levels in historical bone material from syphilitic subjects–pilot studies (short report). Anthropol. Anz. 69, 367–377 (2012).PubMed 
    Article 

    Google Scholar 
    32.Ochoa-Lugo, M. et al. The effect of depositional conditions on mineral transformation, chemical composition, and preservation of organic material in archaeological Hg-enriched bone remains. J. Archaeol. Sci.: Rep. 15, 213–218 (2017).
    Google Scholar 
    33.Panova, T. D., Dmitriev, AYu., Borzakov, S. B. & Hramco, C. Analysis of arsenic and mercury content in human remains of the 16th and 17th centuries from Moscow Kremlin necropolises by neutron activation analysis at the IREN facility and the IBR-2 reactor FLNP JINR. Phys. Part. Nuclei Lett. 15, 127–134 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Rasmussen, K. L. et al. Investigations of the relics and altar materials relating to the apostles St James and St Philip at the Basilica dei Santi XII Apostoli in Rome. Herit. Sci. 9, 14 (2021).CAS 
    Article 

    Google Scholar 
    35.Rasmussen, K. L. et al. Comparison of trace element chemistry in human bones interred in two private chapels attached to Franciscan friaries in Italy and Denmark: An investigation of social stratification in two medieval and post-medieval societies. Heritage Sci. 8, 65 (2020).CAS 
    Article 

    Google Scholar 
    36.Rasmussen, K. L. et al. On the distribution of trace element concentrations in multiple bone elements in 10 Danish medieval and post-medieval individuals. Am. J. Phys. Anthropol. 162, 90–102 (2017).Article 

    Google Scholar 
    37.Rasmussen, K. L., Skytte, L., Jensen, A. J. & Boldsen, J. L. Comparison of mercury and lead levels in the bones of rural and urban populations in Southern Denmark and Northern Germany during the Middle Ages. J. Archaeol. Sci.: Rep. 3, 358–370 (2015).
    Google Scholar 
    38.Rasmussen, K. L. et al. Was he murdered or was he not?—Part I: Analyses of mercury in the remains of Tycho Brahe. Archaeometry 55, 1187–1195 (2013).CAS 
    Article 

    Google Scholar 
    39.Rasmussen, K. L. et al. The distribution of mercury and other trace elements in the bones of two human individuals from medieval Denmark—The chemical life history hypothesis. Herit. Sci. 1, 10 (2013).Article 
    CAS 

    Google Scholar 
    40.Torino, M. et al. Convento di San Francesco a Folloni: The function of a Medieval Franciscan Friary seen through the burials. Herit. Sci. 3, 27 (2015).Article 
    CAS 

    Google Scholar 
    41.Walser, J. W., Kristjánsdóttir, S., Gowland, R. & Desnica, N. Volcanoes, medicine, and monasticism: Investigating mercury exposure in medieval Iceland. Int. J. Osteoarchaeol. 29, 48–61 (2019).Article 

    Google Scholar 
    42.Rasmussen, K. L. et al. Mercury levels in Danish Medieval human bones. J. Archaeol. Sci. 35, 2295–2306 (2008).Article 

    Google Scholar 
    43.Armesto, A. G. et al. Total mercury distribution among soil aggregate size fractions in a temperate forest podzol. Span. J. Soil Sci. 8(1), 57–73 (2018).
    Google Scholar 
    44.do Valle, C. M., Santana, G. P., Augusti, R., Egreja Filho, F. B. & Windmöller, C. C. Speciation and quantification of mercury in Oxisol, Ultisol, and Spodosol from Amazon (Manaus, Brazil). Chemosphere 58, 779–792 (2005).45.Fiorentino, J. C., Enzweiler, J. & Angélica, R. S. Geochemistry of mercury along a soil profile compared to other elements and to the parental rock: Evidence of external input. Water Air Soil Pollut. 221, 63–75 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Roulet, M. et al. The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós River Valley, Pará state, Brazil1The present investigation is part of an ongoing study, the CARUSO project (IDRC-UFPa-UQAM), initiated to determine the sources, fate, and health effects of MeHg in the Lower Tapajós area.1. Sci. Total Environ. 223, 1–24 (1998).47.Qin, F. et al. Evaluation of trace elements and identification of pollution sources in particle size fractions of soil from iron ore areas along the Chao River. J. Geochem. Expl. 138, 33–49 (2014).CAS 
    Article 

    Google Scholar 
    48.Acosta, J. A., Martínez-Martínez, S., Faz, A. & Arocena, J. Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials. Geoderma 161, 30–42 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Janaway, R. C., Percival, S. L. & Wilson, A. S. Decomposition of Human Remains. In Microbiology and Aging: Clinical Manifestations (ed. Percival, S. L.) 313–334 (Humana Press, London, 2009). https://doi.org/10.1007/978-1-59745-327-1_14.Chapter 

    Google Scholar 
    50.Obrist, D., Johnson, D. W. & Lindberg, S. E. Mercury concentrations and pools in four Sierra Nevada forest sites, and relationships to organic carbon and nitrogen. Biogeosciences 6, 765–777 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Schuster, E. The behavior of mercury in the soil with special emphasis on complexation and adsorption processes—A review of the literature. Water Air Soil Pollut. 56, 667–680 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Taboada, T., Cortizas, A. M., García, C. & García-Rodeja, E. Particle-size fractionation of titanium and zirconium during weathering and pedogenesis of granitic rocks in NW Spain. Geoderma 131, 218–236 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Babuśka-Roczniak, M. et al. Occurrence of mercury in the knee joint tissues. Pol. Ann. Med. 28, 39–44 (2021).
    Google Scholar 
    54.Domingo, J. L., García, F., Nadal, M. & Schuhmacher, M. Autopsy tissues as biological monitors of human exposure to environmental pollutants. A case study: Concentrations of metals and PCDD/Fs in subjects living near a hazardous waste incinerator. Environ. Res. 154, 269–274 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.López-Costas, O., Lantes-Suárez, Ó. & Martínez Cortizas, A. Chemical compositional changes in archaeological human bones due to diagenesis: Type of bone vs soil environment. J. Archaeol. Sci. 67, 43–51 (2016).56.Taboada, T., Martínez Cortizas, A., García, C. & García-Rodeja, E. Uranium and thorium in weathering and pedogenetic profiles developed on granitic rocks from NW Spain. Sci. Total Environ. 356, 192–206 (2006).57.Windmöller, C. C., Durão, W. A., de Oliveira, A. & do Valle, C. M. The redox processes in Hg-contaminated soils from Descoberto (Minas Gerais, Brazil): Implications for the mercury cycle. Ecotoxicol. Environ. Saf. 112, 201–211 (2015).58.Blanco Freijeiro, A., Fusté Ara, M. & García Alén, A. La necrópolis galaico-romana de La Lanzada (Noalla, Pontevedra) II. Cuadernos de estudios gallegos 22, 5–23 (1967).59.Blanco Freijeiro, A., Fusté Ara, M. & García Alén, A. La necrópolis galaico-romana de La Lanzada (Noalla, Pontevedra). Cuadernos de estudios gallegos 16, 141–158 (1961).60.Kaal, J., López-Costas, O. & Martínez Cortizas, A. Diagenetic effects on pyrolysis fingerprints of extracted collagen in archaeological human bones from NW Spain, as determined by pyrolysis-GC-MS. J. Archaeol. Sci. 65, 1–10 (2016).61.López Costas, O. Antropología de los restos óseos humanos de Galicia: estudio de la población romana y medieval gallega. (Universidad de Granada, 2012).62.López-Costas, O. Taphonomy and burial context of the Roman/post-Roman funerary areas (2nd to 6th centuries AD) of A Lanzada, NW Spain. Estudos do Quaternário/Quaternary Studies 55–67 (2015) https://doi.org/10.30893/eq.v0i12.111.63.López-Costas, O. & Müldner, G. Fringes of the empire: Diet and cultural change at the Roman to post-Roman transition in NW Iberia. Am. J. Phys. Anthropol. 161, 141–154 (2016).PubMed 
    Article 

    Google Scholar 
    64.García López, Z., López Costas, O. & Martínez Cortizas, A. Análisis de sedimentos asociados a restos humanos de la Necrópolis de A Lanzada y Adro Vello (Pontevedra). (2019).65.Rodríguez Martínez, R. M. Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra). Fase II. (2017).66.Brickley, M. & McKinley, J. I. Determination of sex from archaeological skeletal material and assessment of parturition. in Guidelines to the Standards for Recording Human Remains. 23–25 (BABAO, Dept. of Archaeology, University of Southampton. Institute of Field Archaeologist, University of Reading, 2004).67.López Costas, O. et al. Informe final: Estudio de esqueletos humanos y de secuencias edafo-sedimentárias del yacimiento de A Lanzada. En: Rodríguez Martínez, R.M., 2017. Informe valorativo da intervención arqueolóxica para a recuperación patrimonial do xacemento de A Lanzada (Sanxenxo, Pontevedra). Fase II. (2017).68.Cheburkin, A. K. & Shotyk, W. Determination of trace elements in aqueous solutions using the EMMA miniprobe XRF analyzer. X-Ray Spectrom. 28, 379–383 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    69.Cheburkin, A. K. & Shotyk, W. High-sensitivity XRF analyzer (OLIVIA) using a multi-crystal pyrographite assembly to reduce the continuous background. X-Ray Spectrom. 28, 145–148 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemometrics Intell. Lab. Syst. 58, 109–130 (2001).CAS 
    Article 

    Google Scholar 
    71.Martín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Model-based replacement of rounded zeros in compositional data: Classical and robust approaches. Comput. Stat. Data Anal. 56, 2688–2704 (2012).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    72.Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. & Barceló-Vidal, C. Isometric logratio transformations for compositional data analysis. Mathe. Geol. 35, 279–300 (2003).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    73.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).74.Filzmoser, P., Hron, K. & Templ, M. Applied Compositional Data Analysis. With Worked Examples (Springer, 2018).MATH 
    Book 

    Google Scholar 
    75.Garrett, R. G. rgr: Applied Geochemistry EDA. (2018).76.Bertrand, F. & Maumy-Bertrand, M. Partial Least Squares Regression for Generalized Linear Models. (2019).77.Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. (2020).78.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    79.Punta A Lanzada, O Grove (Galicia, Spain) 42°25′44.61″N 8°52′29.31″W elev 16 m eye alt 585m. Google Earth. Jully 18, 2020. March 20, 2021. https://bit.ly/3FwpZrE.80.A Lanzada site (Galicia, Spain) 42°25′44.64″N 8°52″29.42″W elev 16m eye alt 549m. Google Earth. Jully 18, 2020. October 12, 2021. https://bit.ly/3BBqxKy. More

  • in

    The effects of low pH on the taste and amino acid composition of tiger shrimp

    1.Pachauri, R. K. et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).2.International Geosphere Biosphere Programme (IGBP). Ocean acidification summary for policymakers (2013).3.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 
    Article 

    Google Scholar 
    4.Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 1–7. https://doi.org/10.1038/s41559-017-0084 (2017).CAS 
    Article 

    Google Scholar 
    5.Dupont, S., Hall, E., Calosi, P. & Lundve, B. First evidence of altered sensory quality in a shellfish exposed to decreased pH relevant to ocean acidification. J. Shellfish Res. 33, 857–861 (2014).Article 

    Google Scholar 
    6.Lemasson, A. J. et al. Sensory qualities of oysters unaltered by a short exposure to combined elevated pCO2 and temperature. Front. Mar. Sci. 4, 352. https://doi.org/10.3389/fmars.2017.00352 (2017).Article 

    Google Scholar 
    7.San Martin, V. A. et al. Linking social preferences and ocean acidification impacts in mussel aquaculture. Sci. Rep. 9, 1–9 (2019).ADS 

    Google Scholar 
    8.Shahidi, F. & Cadwallader, K. R. Flavor and lipid chemistry of seafoods: an overview (1997).9.Nelson, G. et al. An amino acid taste receptor. Nature 416, 199–202 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Guillen, J. et al. Global seafood consumption footprint. Ambio 48(2), 111–122 (2019).Article 

    Google Scholar 
    11.FAO. The state of world fisheries and aquaculture. Contributing to food security and nutrition for all. FAO, Rome (2016).12.FAO. The state of world fisheries and aquaculture—sustainability in action (2020).13.Gerland, P. et al. World population stabilization unlikely this century. Science 346(6206), 234–237 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Minh, N. P., Nhi, T. T. Y., Hiep, P. T. H., Nhan, D. T. & Anh, S. T. Quality characteristics of dried salted black tiger shrimp (Penaeus monodon) affected by different pre-treatment and drying variables. J. Pharm. Sci. Res. 11, 1377–1381 (2019).CAS 

    Google Scholar 
    15.FAO. The state of food and agriculture (1980).16.Solms, J. Taste of amino acids, peptides, and proteins. J. Agric. Food Chem. 17(4), 686–688 (1969).CAS 
    Article 

    Google Scholar 
    17.Jiro, K., Akira, S. & Akimitsu, K. The contribution of peptides and amino acids to the taste of foodstuffs. J. Agric. Food Chem. 17(4), 689–695 (1969).Article 

    Google Scholar 
    18.Schiffman, S. S., Sennewald, K. & Gagnon, J. Comparison of taste qualities and thresholds of D-and L-amino acids. Physiol. Behav. 27(1), 51–59 (1981).CAS 
    Article 

    Google Scholar 
    19.Kawai, M., Sekine-Hayakawa, Y., Okiyama, A. & Ninomiya, Y. Gustatory sensation of L- and D-amino acids in humans. Amino Acids 43, 2349–2358 (2012).CAS 
    Article 

    Google Scholar 
    20.Dissanayake, A., Clough, R., Spicer, J. I. & Jones, M. B. Effects of hypercapnia on acid–base balance and osmo-/iono-regulation in prawns (Decapoda: Palaemonidae). Aquat. Biol. 11, 27–36 (2010).Article 

    Google Scholar 
    21.Ries, J., Choen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Liu, Y. W., Sutton, J. N., Ries, J. B. & Eagle, R. A. Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. Sci. Adv. 6, eaax1314 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Corteel, M. et al. Moult cycle of laboratory-raised Penaeus (Litopenaeus) vannamei and P. monodon. Aquac. Int. 20, 13–18 (2011).Article 

    Google Scholar 
    24.Taylor, J. R., Gilleard, J. M., Allen, M. C. & Deheyn, D. D. Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica. Sci. Rep. 5, 10608 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    25.McLean, E. L., Katenka, N. V. & Seibel, B. A. Decreased growth and increased shell disease in early benthic phase Homarus americanus in response to elevated CO2. Mar. Ecol. Prog. Ser. 596, 113–126 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Chen, S. M. & Chen, J. C. Effect of low pH on the acid-base balance, osmolality and ion concentrations of giant freshwater prawn Macrobrachium rosenbergii. J. Fish. Soc. Taiwan 30, 227–239 (2003).
    Google Scholar 
    27.Kurihara, H., Matsui, M., Furukawa, H., Hayashi, M. & Ishimatsu, A. Long-term effects of predicted future seawater CO2 conditions on the survival and growth of the marine shrimp Palaemon pacificus. J. Exp. Mar. Biol. Ecol. 367, 41–46 (2008).CAS 
    Article 

    Google Scholar 
    28.Findlay, H. S., Kendall, M. A., Spicer, J. I. & Widdicombe, S. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar. Ecol. Prog. Ser. 389, 193–202 (2009).ADS 
    Article 

    Google Scholar 
    29.Cameron, J. N. & Iwama, G. K. Compensation of progressive hypercapnia in channel catfish and blue crabs. J. Exp. Biol. 133, 183–197 (1987).Article 

    Google Scholar 
    30.Pane, E. F. & Barry, J. P. Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar. Ecol. Prog. Ser. 334, 1–9 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Lowder, K. B., Allen, M. C., Day, J. M. D., Deheyn, D. D. & Taylor, J. R. A. Assessment of ocean acidification and warming on the growth, calcification, and biophotonics of a California grass shrimp. ICES J. Mar. Sci. 74, 1150–1158 (2017).Article 

    Google Scholar 
    32.Pörtner, H. O., Langenbunh, M. & Reipschläger, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr. 60, 705–718 (2004).Article 

    Google Scholar 
    33.Dissanayake, A. & Ishimatsu, A. Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeide). ICES J. Mar. Sci. 68, 1147–1154 (2011).Article 

    Google Scholar 
    34.Pan, L. Q., Zhang, L. J. & Liu, H. Y. Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae. Aquaculture 273, 711–720 (2007).CAS 
    Article 

    Google Scholar 
    35.Rathburn, C. K. et al. Transcriptomic responses of juvenile Pacific whiteleg shrimp, Litopenaeus vannamei, to hypoxia and hypercapnic hypoxia. Physiol. Genomics 45, 794–807 (2013).CAS 
    Article 

    Google Scholar 
    36.Yu, Q. R. et al. Growth and health responses to a long-term pH stress in Pacific white shrimp Litopenaeus vannamei. Aquacul. Rep. 16, 100280 (2020).Article 

    Google Scholar 
    37.Chen, J. C., Chen, C. T. & Cheng, S. Y. Nitrogen excretion and changes of hemocyanin, protein and free amino acid levels in the hemolymph of Penaeus monodon exposed to different concentrations of ambient ammonia-N at different salinity levels. Mar. Ecol. Prog. Ser. 110, 85–94 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Dayal, J. S., Ambasankar, K., Rajendran, R., Rajaram, V. & Muralidhar, M. Effect of abiotic salinity stress on haemolymph metabolic profiles in cultured tiger shrimp Penaeus monodon. Int. J. Bio-resour. Stress Manag. 4, 339–343 (2013).
    Google Scholar 
    39.Ardo, Y. Flavour formation by amino acid catabolism. Biotechnol. Adv. 24, 238–242 (2006).CAS 
    Article 

    Google Scholar 
    40.Engström-Öst, J. et al. Eco-physiological responses of copepods and pteropods to ocean warming and acidification. Sci. Rep. 9, 4748 (2019).ADS 
    Article 

    Google Scholar 
    41.Liao, H. et al. Impact of ocean acidification on the energy metabolism and antioxidant responses of the Yesso scallop (Patinopecten yessoensis). Front. Physiol. 27, 1967 (2019).Article 

    Google Scholar 
    42.Richard, L. et al. The effect of choline and cystine on the utilisation of methionine for protein accretion, remethylation and trans-sulfuration in juvenile shrimp Penaeus monodon. Br. J. Nutr. 28, 825–835 (2011).Article 

    Google Scholar 
    43.Peng, B., Huang, R. & Zhou, X. oxidation resistance of the sulfur amino acids: methionine and cysteine. Biomed. Res. Int. 2017, 9584932 (2017).
    Google Scholar 
    44.DeVries, M. S. et al. Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions. Sci. Rep. 6, 38637 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Dupont, S. & Thorndyke, M. C. Impact of CO2-driven ocean acidification on invertebrates early life-history—What we know, what we need to know and what we can do. Biogeosci. Discuss. 6, 3109–3131 (2009).ADS 
    Article 

    Google Scholar 
    46.Weerathunga, V. V. et al. Impacts of pH on the fitness and immune system of pacific white shrimp. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.748837 (2021).Article 

    Google Scholar 
    47.Fuller, P. L. et al. Invasion of Asian tiger shrimp, Penaeus monodon Fabricius, 1798, in the western north Atlantic and Gulf of Mexico. Aquat. Invasions 9, 59–70 (2014).Article 

    Google Scholar 
    48.Lewis, E. & Wallace, D. Program developed for CO2 system calculations (Environmental System Science Data Infrastructure for a Virtual Ecosystem, 1998).49.Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A Oceanogr. Res. Pap. 34, 1733–1743 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    50.AOAC. Method 991.42 & 993.19. Official methods of analysis (16th ed.). Washington, DC: Association of Official Analytical Chemists (1995).51.Motoh, H. Biology and ecology of Penaeus monodon. Iloilo City, Philippines. Aquaculture Department, Southeast Asian Fisheries Development Center (1985).52.Mayor, D. J., Matthews, C., Cook, K., Zuur, A. F. & Hay, S. CO2-induced acidification affects hatching success in Calanus finmarchicus. Mar. Ecol. Prog. Ser. 350, 91–97 (2007). More