More stories

  • in

    Varying impact of neonicotinoid insecticide and acute bee paralysis virus across castes and colonies of black garden ants, Lasius niger (Hymenoptera: Formicidae)

    1.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. https://doi.org/10.1016/j.biocon.2020.108426 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420. https://doi.org/10.1126/science.aax9931 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253. https://doi.org/10.1038/387253a0 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Hill, D. S. The Economic Importance of Insects (Springer, 2012). https://doi.org/10.1007/978-94-011-5348-5.Book 

    Google Scholar 
    6.Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014 (2009).Article 

    Google Scholar 
    7.Neumann, P. et al. Ecosystem services, agriculture and neonicotinoids. EASAC Policy Rep. 26, 1–53 (2015).CAS 

    Google Scholar 
    8.Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of the entomofauna: a review of its drivers. Biol. Cons. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    9.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480. https://doi.org/10.1146/annurev-ento-011019-025151 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).Article 
    PubMed 

    Google Scholar 
    12.Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Chagnon, M. et al. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ. Sci. Pollut. Res. 22, 119–134. https://doi.org/10.1007/s11356-014-3277-x (2015).CAS 
    Article 

    Google Scholar 
    14.Pisa, L. W. et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 22, 68–102. https://doi.org/10.1007/s11356-014-3471-x (2015).CAS 
    Article 

    Google Scholar 
    15.Stanley, J. & Preetha, G. Pesticide Toxicity to Non-target Organisms (Springer, 2016). https://doi.org/10.1007/978-94-017-7752-0.Book 

    Google Scholar 
    16.Wood, T. J. & Goulson, D. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ. Sci. Pollut. Res. 24, 17285–17325. https://doi.org/10.1007/s11356-017-9240-x (2017).CAS 
    Article 

    Google Scholar 
    17.Humann-Guilleminot, S. et al. A nation-wide survey of neonicotinoid insecticides in agricultural land with implications for agri-environment schemes. J. Appl. Ecol. 56, 1502–1514. https://doi.org/10.1111/1365-2664.13392 (2019).CAS 
    Article 

    Google Scholar 
    18.Goulson, D. Review: an overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987. https://doi.org/10.1111/1365-2664.12111 (2013).Article 

    Google Scholar 
    19.Hilton, M. J., Jarvis, T. D. & Ricketts, D. C. The degradation rate of thiamethoxam in European field studies. Pest Manag. Sci. 72, 388–397. https://doi.org/10.1002/ps.4024 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).CAS 
    Article 

    Google Scholar 
    21.Li, Y. et al. Adsorption-desorption and degradation of insecticides clothianidin and thiamethoxam in agricultural soils. Chemosphere 207, 708–714. https://doi.org/10.1016/j.chemosphere.2018.05.139 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Nauen, R., Ebbinghaus-Kintscher, U., Salgado, V. L. & Kaussmann, M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol. 76, 55–69. https://doi.org/10.1016/S0048-3575(03)00065-8 (2003).CAS 
    Article 

    Google Scholar 
    23.Straub, L. et al. Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proc. R. Soc. B 283, 20160506. https://doi.org/10.1098/rspb.2016.0506 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Blacquiere, T., Smagghe, G., Van Gestel, C. A. & Mommaerts, V. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973–992. https://doi.org/10.1007/s10646-012-0890-7 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25Straub, L., Strobl, V. & Neumann, P. The need for an evolutionary approach to ecotoxicology. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1194-6 (2020).Article 
    PubMed 

    Google Scholar 
    26.Wilson, E. O. The Insect Societies (Harvard University Press, 1971).
    Google Scholar 
    27.Schläppi, D., Kettler, N., Straub, L., Glauser, G. & Neumann, P. Long-term effects of neonicotinoid insecticides on ants. Commun. Biol. 3, 335. https://doi.org/10.1038/s42003-020-1066-2 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Schläppi, D., Stroeymeyt, N. & Neumann, P. Unintentional effects of neonicotinoids on ants (Hymenoptera: Formicidae). Myrmecological News, in press.29Straub, L., Williams, G. R., Pettis, J., Fries, I. & Neumann, P. Superorganism resilience: eusociality and susceptibility of ecosystem service providing insects to stressors. Curr. Opin. Insect Sci. 12, 109–112. https://doi.org/10.1016/j.cois.2015.10.010 (2015).Article 

    Google Scholar 
    30.Cremer, S. Social immunity in insects. Curr. Biol. 29, R458–R463. https://doi.org/10.1016/j.cub.2019.03.035 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Straub, L. et al. From antagonism to synergism: extreme differences in stressor interactions in one species. Sci. Rep. 10, 1–8. https://doi.org/10.1038/s41598-020-61371-x (2020).CAS 
    Article 

    Google Scholar 
    32.Crall, J. D. et al. Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 362, 683–686. https://doi.org/10.1126/science.aat1598 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    33Hölldobler, B. & Wilson, E. O. The Ants (Springer, 1990). https://doi.org/10.1046/j.1420-9101.1992.5010169.x.Book 

    Google Scholar 
    34.Del Toro, I., Ribbons, R. R. & Pelini, S. L. The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecol. News 17, 133–146 (2012).
    Google Scholar 
    35.Keller, L. & Genoud, M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389, 958. https://doi.org/10.1038/40130 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    36Bird, G., Wilson, A. E., Williams, G. R. & Hardy, N. B. Parasites and pesticides act antagonistically on honey bee health. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13811 (2020).Article 

    Google Scholar 
    37.Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392. https://doi.org/10.1038/s41586-021-03787-7 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Ranjeva, S. et al. Age-specific differences in the dynamics of protective immunity to influenza. Nat. Commun. 10, 1–11. https://doi.org/10.1038/s41467-019-09652-6 (2019).CAS 
    Article 

    Google Scholar 
    39.Dahlgren, L., Johnson, R. M., Siegfried, B. D. & Ellis, M. D. Comparative toxicity of acaricides to honey bee (Hymenoptera: Apidae) workers and queens. J. Econ. Entomol. 105, 1895–1902. https://doi.org/10.1603/EC12175 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    40O’Neal, T. S., Anderson, T. D. & Wu-Smart, J. Y. Interactions between pesticides and pathogen susceptibility in honey bees. Curr. Opin. Insect Sci. 26, 57–62. https://doi.org/10.1016/j.cois.2018.01.006 (2018).Article 
    PubMed 

    Google Scholar 
    41.Feldhaar, H. & Otti, O. Pollutants and their interaction with diseases of social hymenoptera. Insects 11, 153. https://doi.org/10.3390/insects11030153 (2020).Article 
    PubMed Central 

    Google Scholar 
    42.Doublet, V., Labarussias, M., de Miranda, J. R., Moritz, R. F. & Paxton, R. J. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ. Microbiol. 17, 969–983. https://doi.org/10.1111/1462-2920.12426 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Sánchez-Bayo, F. et al. Are bee diseases linked to pesticides?—a brief review. Environ. Int. 89, 7–11. https://doi.org/10.1016/j.envint.2016.01.009 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Annoscia, D. et al. Neonicotinoid Clothianidin reduces honey bee immune response and contributes to Varroa mite proliferation. Nat. Commun. 11, 1–7. https://doi.org/10.1038/s41467-020-19715-8 (2020).CAS 
    Article 

    Google Scholar 
    45.Di Prisco, G. et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl. Acad. Sci. 110, 18466–18471. https://doi.org/10.1073/pnas.1314923110 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Coulon, M. et al. Influence of chronic exposure to thiamethoxam and chronic bee paralysis virus on winter honey bees. PLoS ONE 14, e0220703. https://doi.org/10.1371/journal.pone.0220703 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Brandt, A. et al. Immunosuppression in honeybee queens by the neonicotinoids thiacloprid and clothianidin. Sci. Rep. 7, 4673. https://doi.org/10.1038/s41598-017-04734-1 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Beaurepaire, A. et al. Diversity and global distribution of viruses of the western honey bee, Apis mellifera. Insects 11, 239. https://doi.org/10.3390/insects11040239 (2020).Article 
    PubMed Central 

    Google Scholar 
    49.Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306. https://doi.org/10.1126/science.1220941 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351, 594–597. https://doi.org/10.1126/science.aac9976 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Neumann, P., Yañez, O., Fries, I. & De Miranda, J. R. Varroa invasion and virus adaptation. Trends Parasitol. 28, 353–354. https://doi.org/10.1016/j.pt.2012.06.004 (2012).Article 
    PubMed 

    Google Scholar 
    52.Woolhouse, M. E., Haydon, D. T. & Antia, R. Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol. Evol. 20, 238–244. https://doi.org/10.1016/j.tree.2005.02.009 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.McMahon, D. P. et al. A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84, 615–624. https://doi.org/10.1111/1365-2656.12345 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Levitt, A. L. et al. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 176, 232–240. https://doi.org/10.1016/j.virusres.2013.06.013 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Tehel, A., Brown, M. J. & Paxton, R. J. Impact of managed honey bee viruses on wild bees. Curr. Opin. Virol. 19, 16–22. https://doi.org/10.1016/j.coviro.2016.06.006 (2016).Article 
    PubMed 

    Google Scholar 
    56Martin, S. J. & Brettell, L. E. Deformed wing virus in honeybees and other insects. Ann. Rev. Virol. https://doi.org/10.1146/annurev-virology-092818-015700 (2019).Article 

    Google Scholar 
    57.Schläppi, D., Lattrell, P., Yañez, O., Chejanovsky, N. & Neumann, P. Foodborne transmission of deformed wing virus to ants (Myrmica rubra). Insects 10, 394. https://doi.org/10.3390/insects10110394 (2019).Article 
    PubMed Central 

    Google Scholar 
    58.Schläppi, D., Chejanovsky, N., Yañez, O. & Neumann, P. Foodborne Transmission and clinical symptoms of honey bee viruses in ants Lasius spp. Viruses 12, 321. https://doi.org/10.3390/v12030321 (2020).Article 
    PubMed Central 

    Google Scholar 
    59.Seifert, B. Die Ameisen Mittel- und Nordeuropas (Lutra Verlags und Vertriebsgesellschaft, 2007).
    Google Scholar 
    60.Payne, A. N., Shepherd, T. F. & Rangel, J. The detection of honey bee (Apis mellifera)-associated viruses in ants. Sci. Rep. 10, 2923. https://doi.org/10.1038/s41598-020-59712-x (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Kutter, H. & Stumper R. Hermann Appel, ein leidgeadelter Entomologe (1892–1966). in Proceedings of the VI Congress of the International Union for the Study of Social Insects (eds Ernst, E., Frauchiger, L., Hauschteck-Jungen, E., Jungen, H., Leuthold, R., Maurizio, A., Ruppli, E. & Tschumi, P.), 275–279 (Organizing Committee of the VI Congress IUSSI, Bern, 1969).62.Jeschke, P., Nauen, R., Schindler, M. & Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 59, 2897–2908. https://doi.org/10.1021/jf101303g (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Limay-Rios, V. et al. Neonicotinoid insecticide residues in soil dust and associated parent soil in fields with a history of seed treatment use on crops in southwestern Ontario. Environ. Toxicol. Chem. 35, 303–310. https://doi.org/10.1002/etc.3257 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Schaafsma, A., Limay-Rios, V., Xue, Y., Smith, J. & Baute, T. Field-scale examination of neonicotinoid insecticide persistence in soil as a result of seed treatment use in commercial maize (corn) fields in southwestern Ontario. Environ. Toxicol. Chem. 35, 295–302. https://doi.org/10.1002/etc.3231 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.De Miranda, J. R., Cordoni, G. & Budge, G. The acute bee paralysis virus–Kashmir bee virus–Israeli acute paralysis virus complex. J. Invertebr. Pathol. 103, 30–47. https://doi.org/10.1016/j.jip.2009.06.014 (2010).CAS 
    Article 

    Google Scholar 
    66Decourtye, A. & Devillers, J. Ecotoxicity of neonicotinoid insecticides to bees. In Insect Nicotinic Acetylcholine Receptors (ed. Thany, S. H.) 85–95 (Springer, 2010).Chapter 

    Google Scholar 
    67.Diez, L., Lejeune, P. & Detrain, C. Keep the nest clean: survival advantages of corpse removal in ants. Biol. Let. 10, 20140306. https://doi.org/10.1098/rsbl.2014.0306 (2014).Article 

    Google Scholar 
    68.Wang, L., Zeng, L. & Chen, J. Impact of imidacloprid on new queens of imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae). Sci. Rep. 5, 17938. https://doi.org/10.1038/srep17938 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Moya-Laraño, J., Macías-Ordóñez, R., Blanckenhorn, W. U. & Fernández-Montraveta, C. Analysing body condition: mass, volume or density?. J. Anim. Ecol. 77, 1099–1108. https://doi.org/10.1111/j.1365-2656.2008.01433.x (2008).Article 
    PubMed 

    Google Scholar 
    70Knapp, M., Knappová, J. & Miller, T. Measurement of body condition in a common carabid beetle, Poecilus cupreus: a comparison of fresh weight, dry weight, and fat content. J. Insect Sci. https://doi.org/10.1673/031.013.0601 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Retschnig, G. et al. Sex-specific differences in pathogen susceptibility in honey bees (Apis mellifera). PLoS ONE 9, e85261. https://doi.org/10.1371/journal.pone.0085261 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Suchail, S., Guez, D. & Belzunces, L. P. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ. Toxicol. Chem. Int. J. 20, 2482–2486. https://doi.org/10.1002/etc.5620201113 (2001).CAS 
    Article 

    Google Scholar 
    73.Helms, K. R. & Vinson, S. B. Plant resources and colony growth in an invasive ant: the importance of honeydew-producing hemiptera in carbohydrate transfer across trophic levels. Environ. Entomol. 37, 487–493. https://doi.org/10.1093/ee/37.2.487 (2008).Article 
    PubMed 

    Google Scholar 
    74.Dornhaus, A. & Franks, N. R. Colony size affects collective decision-making in the ant Temnothorax albipennis. Insectes Soc. 53, 420–427. https://doi.org/10.1007/s00040-006-0887-4 (2006).Article 

    Google Scholar 
    75.Ruel, C., Cerda, X. & Boulay, R. Behaviour-mediated group size effect constrains reproductive decisions in a social insect. Anim. Behav. 84, 853–860. https://doi.org/10.1016/j.anbehav.2012.07.006 (2012).Article 

    Google Scholar 
    76.Sommer, K. & Hölldobler, B. Colony founding by queen association and determinants of reduction in queen number in the ant Lasius niger. Anim. Behav. 50, 287–294. https://doi.org/10.1006/anbe.1995.0244 (1995).Article 

    Google Scholar 
    77Boomsma, J., Van der Lee, G. & Van der Have, T. On the production ecology of Lasius niger (Hymenoptera: Formicidae) in successive coastal dune valleys. J. Anim. Ecol. https://doi.org/10.2307/4017 (1982).Article 

    Google Scholar 
    78.Zioni, N., Soroker, V. & Chejanovsky, N. Replication of varroa destructor virus 1 (VDV-1) and a varroa destructor virus 1–deformed wing virus recombinant (VDV-1–DWV) in the head of the honey bee. Virology 417, 106–112. https://doi.org/10.1016/j.virol.2011.05.009 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    79.Wood, T. et al. Managed honey bees as a radar for wild bee decline?. Apidologie 51, 1100–1116. https://doi.org/10.1007/s13592-020-00788-9 (2020).Article 

    Google Scholar 
    80.Stroeymeyt, N. et al. Social network plasticity decreases disease transmission in a eusocial insect. Science 362, 941–945. https://doi.org/10.1126/science.aat4793 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    81.Folt, C., Chen, C., Moore, M. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877. https://doi.org/10.4319/lo.1999.44.3_part_2.0864 (1999).ADS 
    Article 

    Google Scholar 
    82.Gennings, C. et al. A unifying concept for assessing toxicological interactions: changes in slope. Toxicol. Sci. 88, 287–297. https://doi.org/10.1093/toxsci/kfi275 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    83.Jonker, M. J., Svendsen, C., Bedaux, J. J., Bongers, M. & Kammenga, J. E. Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. Environ. Toxicol. Chem. Int. J. 24, 2701–2713. https://doi.org/10.1897/04-431R.1 (2005).CAS 
    Article 

    Google Scholar 
    84.Brühl, C. A. & Zaller, J. G. Biodiversity decline as a consequence of an inadequate environmental risk assessment of pesticides. Front. Environ. Sci. 7, 177. https://doi.org/10.3389/fenvs.2019.00177 (2019).Article 

    Google Scholar 
    85.Ortega-Calvo, J.-J. et al. From bioavailability science to regulation of organic chemicals. Environ. Sci. Technol. 49, 10255–10264. https://doi.org/10.1021/acs.est.5b02412 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    86.Dauber, J. & Wolters, V. Edge effects on ant community structure and species richness in an agricultural landscape. Biodivers. Conserv. 13, 901–915. https://doi.org/10.1023/B:BIOC.0000014460.65462.2b (2004).Article 

    Google Scholar 
    87.EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues). Scientific Opinion addressing the state of the science on risk assessment of plant protection products for non‐target arthropods. EFSA Journal 13, 3996 (2015). https://doi.org/10.2903/j.efsa.2015.399688.EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues). Scientific Opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA Journal 15, 4690. https://doi.org/10.2903/j.efsa.2017.4690 (2017).89.Organization for Economic Cooperation and Development (OECD). OECD Guidelines for the Testing of Chemicals, section 2—Effects on Biotic Systems. (OECD Publishing, 2019).90.Storck, V., Karpouzas, D. G. & Martin-Laurent, F. Towards a better pesticide policy for the European Union. Sci. Total Environ. 575, 1027–1033. https://doi.org/10.1016/j.scitotenv.2016.09.167 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    91.De Miranda, J. R. et al. Standard methods for virus research in Apis mellifera. J. Apic. Res. 52, 1–56. https://doi.org/10.3896/IBRA.1.52.4.22 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    92.Evans, J. D. et al. Standard methods for molecular research in Apis mellifera. J. Apic. Res. 52, 1–54. https://doi.org/10.3896/IBRA.1.52.4.11 (2013).CAS 
    Article 

    Google Scholar 
    93.Lowenthal, M. S., Quittman, E. & Phinney, K. W. Absolute quantification of RNA or DNA using acid hydrolysis and mass spectrometry. Anal. Chem. 91, 14569–14576. https://doi.org/10.1021/acs.analchem.9b03625 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Locke, B., Forsgren, E., Fries, I. & De Miranda, J. R. Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control. Appl. Environ. Microbiol. 78, 227–235. https://doi.org/10.1128/AEM.06094-11 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.R Development Core Team. R: A language and environment for statistical computing. R Version 3.6.3. R Foundation for Statistical Computing (Vienna, 2020). http://cran.r-project.org.96.Therneau, T. A Package for Survival Analysis in S. version 2.38 (2015). http://cran.rproject.org/package=survival97.Kutner, M. H., Nachtsheim, C. J., Neter, J. & Li, W. Applied Linear Statistical Models Vol. 5 (McGraw-Hill Irwin, 2005).
    Google Scholar 
    98.Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only anova procedures. in Proceedings of the SIGCHI conference on human factors in computing systems (eds. Tan, D., Fitzpatrick, G., Gutwin, C., Begole, B. & Kellogg, W. A.), 143–146, doi:https://doi.org/10.1145/1978942.1978963 (Association for Computing Machinery, New York, United States, 2011)99.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar  More

  • in

    Bacterial structure and dynamics in mango (Mangifera indica) orchards after long term organic and conventional treatments under subtropical ecosystem

    Bacterial strains isolation and identificationFifty six bacterial cultures were isolated from both management systems (G1 and G2) of mango orchards (rhizosphere) at CISH, Lucknow, India. Isolation of microorganisms using spread plate methods revealed that the Nutrient agar medium had the highest number of colony appearances compared to the Rose Bengal Agar medium. Microbial enumeration showed organic system enriched with higher bacterial and fungal population than conventional system (Fig. 1). From organic system, thirty seven bacteria were isolated out of which, twenty-three isolates were (G+), and fourteen were (G−). While, in the conventional system, nineteen bacteria were isolated, out of which fifteen were (G+) and four were (G−) isolates.Figure 1Comparative microbial enumeration of organic and conventional treated mango rhizosphere soil the CFU mL−1 of selected samples showing growth of fungus and bacterial populations under two different treatments i.e. organic and conventional. The results are the average of five replicates (n = 5), with bars representing standard error. Significant differences based on the analysis variance (ANOVA) are shown by different letters above the error bars, followed by the post hoc DMRT test (p ≤ 0.05) using the software SPSS.Full size imagePlant growth promotion propertiesFor plant growth promotory properties out of fifty-six bacterial isolates total, ten bacterial cultures (2, 3, 4, 8, 15, 23 and 31) from the organic system showed positive results for phosphate solubilization. In contrast, three bacterial cultures (I1, I8 and I9) from the inorganic system (conventional system) showed positive phosphate solubilization in Pikovaskya’s agar medium. For siderophore production, bacterial cultures (2, 3, 4, 8, 12 and 26) from the organic system showed positive results, while four bacterial cultures (I1, I6, I8 and I9) inorganic system showed positive results. Bacterial cultures (2, 3, 4 and 8) from the organic system showed positive results for K-solubilization, while five bacterial cultures (I1, I2, I7, I8 and I9) from the inorganic system showed positive K-solubilization. A total of ten isolates (7 from organic and 3 from the inorganic system) possessed Zn-solubilizing activity. The test isolated from the organic system showed better Zn (ZnO), Zn3 (PO4)2, and (ZnCO3) solubilization as compared to test culture isolated from the inorganic system (Supplementary S1.8).Acetylene reduction assay (ARA)Results from acetylene reduction assay showed in aerophilic condition, bacterial isolates 1, 3, 4 (from organic treated soil) and I1, I8 and I9 (conventional system) showed 134.8, 37.70, 36.73, 13.15, 16.70 and 12.87 ppm of ethylene tube−1 h−1, respectively. In case of microaerophilic condition, bacterial isolates 4, 9, I9 showed 24.17, 19.14, and 12.71 ppm ethylene, respectively. Results indicate possible use of these bacterial isolates as a bioinoculant agent for horticultural crops, especially mango and other subtropical climate fruit crops.Soil enzymatic studyThe soil enzymatic activity in the organic system (G1) showed better dehydrogenase activity than the conventional system (G2). For both methods, alkaline phosphatase almost showed similar activity (at pH 11), while in the case of acid phosphatase showed better activity in the inorganic system (G2) as compared to the organic system (G1) at pH level 6.5 (Fig. 2). The dehydrogenase enzyme oxidizes the organic matter, and it belongs to the oxidoreductase type of enzyme. In the process of respiration of soil microorganisms, the dehydrogenase enzyme facilitates the transfer of protons and electrons from the substrate to the acceptor. It was significant to observe that the dehydrogenase activity was higher in organic treated soils (0.784 µg TPF g−1 h−1) than in conventional system (0.053 µg TPF g−1 h−1).Figure 2Comparative soil enzymes activities of conventional and organic treated mango rhizosphere soil the dehydrogenase, acid phosphatase and alkaline phosphatase activities were showing in µg TPF formed g−1 of soil h−1 and µg PNP g−1 soil h−1 respectively. The results are the average of five replicates (n = 5), with bars representing standard error. Significant differences based on the analysis variance (ANOVA) are shown by different letters above the error bars, followed by the post hoc DMRT test (p ≤ 0.05) using the software SPSS.Full size imageAlpha biodiversity with samples and rarefaction curvesIn this segment, by measuring Shannon, Chao1, and observed species metrics, we analyze the microbial diversity within the samples. The chao1 metric measures the richness of the ecosystem, while the Shannon metric is the formula for calculating reported OTU abundances and accounts for both prosperity and equality. The rarefaction curve is provided in Fig. 3 for each metric. Using QIIME software, the metric measurement was done. The impact of both treatments on the microbial complexity and abundance in the sample was also revealed using the Shannon diversity Index (depicting richness and evenness) and Chao 1 representing only richness. Shannon’s diversity index of the bacterial community in the treatment (G1 and G2) was 8.06 and 8.12. The Simpson index in ecology is used to quantify biological diversity in a region, which was also nearly similar in both the treatments. Chao 1 richness estimator showed an increase in species richness. Rarefaction analysis conducted to confirm species richness revealed a difference in the number of reads and OTUs between the samples. The Rare fraction curve had a similar pattern for both samples and showed an impact on the bacterial population in the experiment (Fig. 3a–c).Figure 3Shanon (a), Chao1 (b) curves and observed species (c) obtained for the samples (G1 and G2).Full size imageBacterial diversity analysis at phyla levelTaxonomic study of the 16S rRNA gene amplicon reads yielded seven classifiable bacterial phyla. Six phyla, namely Acidobacteria, Actinobacteria, Bacteroides, Proteobacteria, Firmicutes, and Chloroflexi were dominant in both the systems. The Organically treated soil (G1) sample harbored a higher percentage of Bacteroidetes (14.55%), Actinobacteria (7.45%), and Proteobacteria (10.82%) as compared to conventional treatment (G2) 8.98%, 5.71%, and 6.64%, respectively. However, phylum Acidobacteria(13.6%), Firmicutes(4.84%), and Chloroflexi (2.56) were higher abundance in conventional treatment as compared to the organic treatment, which showed the same phyla with lesser quantity, i.e., 5.63%, 0.91%, and 0.79% respectively (Fig. 4a).Figure 4Comparative microbiome (a-phylum and b-order) analysis of organic (G1) and conventional (G2) treated mango orchards soil by using metagenomic (V3 and V4 region) approach.Full size imageDistribution of bacterial community at order levelThe bacterial orders in both systems were diversified. The most abundant orders in organic and conventional systems were Chitinophagales (Organic-11.32%, Conventional-43%), Elev-16S-573 (Organic-3.09%, Conventional-8.69%), Pedosphaerales (Organic-1.56%, Conventional-3.55%), Opitutales (Organic-2.46%, Conventional-0.27%), Chthoniobacterales (Organic-1.35%, Conventional-2.84%), Bacillales (Organic-0.91%, Conventional-4.84%) and Solibacterales (Organic-1.39%, Conventional-2.26%) (Fig. 4b).Bacterial community distribution at family levelBacterial family members were identified and enriched including Pedosphaeraceae (O-1.56%, C-3.55%), Opitutaceae (O-2.46%, C-0.27%), Chthoniobacteraceae (O-1.03%, C-2.68%), Steroidobacteraceae (O-2.05%, C-0.73%), Bacillaceae (O-0.77%, C-4.55%), Chitinophagaceae (O-10.99%, C-5.06%), and Xanthomonadaceae (O-1.39%, C-0.06%) and other families (Fig. 5a).Figure 5Comparative microbiome (a-family and b-genus) analysis of organic (G1) and conventional (G2) treated mango orchards soil by using metagenomic (V3 and V4 region) approach.Full size imageBacterial community distribution at the genus levelComparative abundance of unidentified genus in organic system were uncultured soil bacterium, Glycomyces, Chitinophaga, Lysobacter, Udaeobacter, Bacillus (not detected, 1.85%, 4.77%, 1.19%,1.03% and 0.75% respectively) whereas same genus-group were observed in conventional system with different percentage i.e., 0.11%, not detected, 0.56%, 0.04%, 2.67%, 4.54% respectively (Fig. 5b).Bacterial communities at species levelBecause most of the species were unidentified and uncultured bacterium based on relative abundance, they could not be assigned a species name in either sample. Few species are identified in both systems, like Sphingomonas sp. (O-1.57%, C-1.05%), Bacillus drentensis (O-0.25%, C-2.65%), and Chitinophaga sp. (O-4.64%, C-0.11%) (Fig. 6).Figure 6Comparative microbiome (Species) analysis of organic (G1) and conventional (G2) treated mango orchards soil by using metagenomic (V3 and V4 regions) approach.Full size imageHeat map and PCA analysisUnder long-term exposure of organic and conventional treatments, a microbial shift was observed in the rhizosphere microbiome of mango orchards. Based on percent abundance, nine different microbial genera Acidobacteria, Actinobacteria, Bacteroidetes and Proteobacteria formed Cluster I. While, Firmicutes, Chloroflexi and Opitutales were abundances in cluster II. Cluster III includes Chitinobacterales, Bacillales, Chitinophagarales and Otherales genera. Whereas cluster IV (Elev7-16S-573, Otherales, Solibacterales and Pedobacteriaceae), cluster V (Opitutaceae, Chitnobacteraceae, Bacillaceae, Chitinophagaceae and Otherales), cluster VI (Xanthomonadaceae, Uncultured soil bacterium, Candidatus-Udaeobacter, Lysobacter and Bacillus), cluster VII (Chitinophaga, Glycomyces and Other), cluster VIII (Uncultured bacterium and Others) and cluster IX (Bacillus drentensis and Others) (Fig. 7). The cluster I observed with the highest abundance was closely related to clusters II and III. Cluster IV to IX created large groups and is distantly related to cluster I to III of the microbial groups in organic and conventional systems (Fig. 7). In the organic system (G1), microbial groups like Proteobacteria, Actinobacteria, Bacteroidetes, and Opitutaceae were largely dominated and provided benefits to the mango rhizosphere in terms of nutrient availability, plant growth promotion, and protection against biotic and abiotic stress. Phylum Proteobacteria and Actinobacteria are closely linked with the rhizosphere and identified as potential PGPR. Acidobacteria and firmicutes, on the other hand, were dominated primarily by conventional systems and serve as a bio-indicator of anthropogenic stress caused by excessive chemical fertilizer application. Undefined Acidobacteria is oligotrophic in nature and considered as an indicator of low organic carbon and acidic environment. To desire higher productivity, the indiscriminate use of chemical fertilizers or pesticides in conventional systems leads to low nutrient availability, microbial shift, less PGPR, and developing the environment for Acidobacteria, Firmicutes and Chloroflexia group of microorganisms. Principal component analysis (PCA) was performed for both systems (organic-component 1; conventional-component 2). The total variables of principal component analysis were the percentage of different parameters such as alkaline phosphatase, acid phosphatase, DHA, Acetylene reduction assay (ARA1, ARA2, ARA3), and CFU mL−1 (bacteria and fungi). The results of PCA yielded two components that explained 100% of the total variance in the data and had an Eigen value of 6.1 for component 1. In contrast, 1.8 for component 2 and together they described 100% of the total variance in the data (Fig. 8). In the organic system, the loading factor with score plot indicates that component-1 is positively associated with DHA, ARA1, ARA2, alkaline phosphatase, acid phosphatase while negatively correlated with CFU ARA3 activity. Component-1 explains the 76.42% variance of the experimental data, while component-2 explains 23.58%. The second component (PC2) represents the positive association with DHA, ARA1, ARA2, ARA3 activity, and CFU while negatively correlated with alkaline phosphatase and acid phosphatase. In the conventional system, the loading factor with score plot indicates that component-1 is positively associated with single variable acid phosphatise while negatively correlated with DHA, ARA1, ARA2, ARA3, CFU, and alkaline phosphatase activity. The second component (PC2) of the conventional system showed positive association with DHA, ARA1, ARA2, ARA3 activity, and CFU, while the negative association with alkaline phosphatase and acid phosphatase.Figure 7Comparative (G1 organic and G2 conventional) heat map of dominant microbial diversity and their clusters in terms of T1 (phylum), T2 (order), T3 (family), T4 (Genus) and T5 (Species).Full size imageFigure 8PCA analysis of different parameters for organic and conventional systems.Full size image More

  • in

    The changing face of floodplains in the Mississippi River Basin detected by a 60-year land use change dataset

    1.Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-floodplain systems. In D. P. Dodge [ed.] Proceedings of the International Large River Symposium, Canadian Special Publication of Fisheries and Aquatic Sciences 106, 110-127 https://www.waterboards.ca.gov/waterrights//water_issues/programs/bay_delta/docs/cmnt081712/sldmwa/junketal1989.pdf (1989).2.Karpack, M. N., Morrison, R. R. & McManamay, R. A. Quantitative assessment of floodplain functionality using an index of integrity. Ecological Indicators 111, 106051, https://doi.org/10.1016/j.ecolind.2019.106051 (2020).Article 

    Google Scholar 
    3.Costanza, R. et al. Changes in the global value of ecosystem services. Global Environmental Change 26, 152–158, https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).Article 

    Google Scholar 
    4.Wohl, E., Lane, S. N. & Wilcox, A. C. The science and practice of river restoration. Water Resources Research 51, 5974–5997, https://doi.org/10.1002/2014WR016874 (2015).ADS 
    Article 

    Google Scholar 
    5.Hamilton, S. K. Wetlands of Large Rivers: Flood plains. Encyclopedia of Inland Waters 607-610 https://doi.org/10.1016/B978-012370626-3.00065-X (2009).6.Opperman, J. J., Luster, R., McKenney, B. A., Roberts, M. & Meadows, A. W. Ecologically functional floodplains: connectivity, flow regime, and scale. Journal of the American Water Resources Association 46, 211–226, https://doi.org/10.1111/j.1752-1688.2010.00426.x (2010).ADS 
    Article 

    Google Scholar 
    7.Waltham, N. J. et al. Lost floodplain wetland environments and efforts to restore connectivity, habitat, and water quality settings on the great barrier reef. Front. Mar. Sci. 6, 71, https://doi.org/10.3389/fmars.2019.00071 (2019).Article 

    Google Scholar 
    8.Tockner, K. & Stanford, J. A. Review of: riverine flood plains: present state and future trends. Biological Sciences Faculty Publications 29, 166 https://scholarworks.umt.edu/biosci_pubs/166 (2002).9.Erwin, K. L. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management 17, 71, https://doi.org/10.1007/s11273-008-9119-1 (2009).Article 

    Google Scholar 
    10.Johnson, K. A. et al. A benefit-cost analysis of floodplain land acquisition for US flood damage reduction. Nat Sustain 3, 56–62, https://doi.org/10.1038/s41893-019-0437-5 (2019).Article 

    Google Scholar 
    11.Quinn, N. et al. The spatial dependence of flood hazard and risk in the United States. Water Resources Research 55, 1890–1911, https://doi.org/10.1029/2018WR024205 (2019).ADS 
    Article 

    Google Scholar 
    12.Pinter, N. One step forward, two steps back on U.S. floodplains. Science 308(5719), 207–208 https://science.sciencemag.org/content/308/5719/207 (2005).13.Kousky, C. & Walls, M. Floodplain conservation as a flood mitigation strategy: examining costs and benefits. Ecological Economics 104, 119–128, https://doi.org/10.1016/j.ecolecon.2014.05.001 (2014).Article 

    Google Scholar 
    14.Tullos, D. Opinion: how to achieve better flood-risk governance in the United States. Proceedings of the National Academy of Sciences of the United States of America 115(15), 3731–3734, https://doi.org/10.1073/pnas.1722412115 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Kundzewicz, Z. W., Hegger, D. L. T., Matczak, P. & Driessen, P. P. J. Opinion: flood-risk reduction: structural measures and diverse strategies. Proceedings of the National Academy of Sciences of the United States of America 115(49), 12321–12325, https://doi.org/10.1073/pnas.1818227115 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Lambin, E. F., Geist, H. J. & Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources 28, 205–241, https://doi.org/10.1146/annurev.energy.28.050302.105459 (2003).Article 

    Google Scholar 
    17.Entwistle, N. S., Heritage, G. L., Schofield, L. A. & Williamson, R. J. Recent changes to floodplain character and functionality in England. Catena 174, 490–498, https://doi.org/10.1016/j.catena.2018.11.018 (2019).Article 

    Google Scholar 
    18.Dewan, A. M. & Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: using remote sensing to promote sustainable urbanization. Applied Geography 29, 390–401, https://doi.org/10.1016/j.apgeog.2008.12.005 (2009).Article 

    Google Scholar 
    19.Amoateng, P., Finlayson, C. M., Howard, J. & Wilson, B. Dwindling rivers and floodplains in Kumasi, Ghana: a socio-spatial analysis of the extent and trend. Applied Geography 90, 82–95, https://doi.org/10.1016/j.apgeog.2017.11.007 (2018).Article 

    Google Scholar 
    20.Rabalais, N. N., Turner, R. E. & Wiseman, W. J. Jr. Gulf of Mexico hypoxia, a.k.a. “the dead zone. Annual Review of Ecology and Systematics 33, 235–263, https://doi.org/10.1146/annurev.ecolsys.33.010802.150513 (2002).Article 

    Google Scholar 
    21.Wohl, E. An integrative conceptualization of floodplain storage. Reviews of Geophysics 59, e2020RG000724, https://doi.org/10.1029/2020RG000724 (2021).ADS 
    Article 

    Google Scholar 
    22.Scott, D. T., Gomez-Velez, J. D., Jones, C. N. & Harvey, J. W. Floodplain inundation spectrum across the United States. Nat. Commun. 10, 5194, https://doi.org/10.1038/s41467-019-13184-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Hattermann, F. F. et al. Climatological drivers of changes in flood hazard in Germany. Acta Geophysica 61, 463–477, https://doi.org/10.2478/s11600-012-0070-4 (2013).ADS 
    Article 

    Google Scholar 
    24.Mallakpour, I. & Villarini, G. The changing nature of flooding across the central United States. Nat. Clim. Change 5, 250–254, https://doi.org/10.1038/nclimate2516 (2015).ADS 
    Article 

    Google Scholar 
    25.Corvalán, C., Hales, S., McMichael, A. J., Millennium Ecosystem Assessment (Program), & World Health Organization (Eds.). Ecosystems and human well-being: Health synthesis (World Health Organization, 2005).26.Enhancing Restoration and advancing knowledge of the upper Mississippi river: a strategic plan for the upper Mississippi river restoration program 2015-2025. https://www.umesc.usgs.gov/ltrmp/documents/umrr_strategic_plan_jan2015.pdf (USGS, 2015).27.Nardi, F., Annis, A., Di Baldassarre, G., Vivoni, E. R. & Grimaldi, S. GFPLAIN250m, a global high-resolution dataset of Earth’s floodplains. Scientific Data 6, 180309, https://doi.org/10.1038/sdata.2018.309 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Sohl, T. L. et al. Modeled historical land use and land cover for the conterminous United States: 1938-1992. U.S. Geological Survey data release https://doi.org/10.5066/F7KK99RR (2018).29.Sohl, T.L. et al. Conterminous United States land cover projections – 1992 to 2100. U.S. Geological Survey data release https://doi.org/10.5066/P95AK9HP (2018).30.Leopold, L. B., & Maddock, T. The hydraulic geometry of stream channels and some physiographic implications. (U.S. Geological Survey, 1953)31.Nardi, F., Vivoni, E. R. & Grimaldi, S. Investigating a floodplain scaling relation using a hydrogeomorphic delineation method. Water Resources Research 42(9), https://doi.org/10.1029/2005WR004155 (2006).32.Di Baldassarre, G. et al. Brief communication: comparing hydrological and hydrogeomorphic paradigms for global flood hazard mapping. Nat. Hazards Earth Syst. Sci. 20, 1415–1419, https://doi.org/10.5194/nhess-20-1415-2020 (2020).ADS 
    Article 

    Google Scholar 
    33.Homer, C. et al. Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS Journal of Photogrammetry and Remote Sensing 162, 184–199, https://doi.org/10.1016/j.isprsjprs.2020.02.019 (2020).ADS 
    Article 

    Google Scholar 
    34.Yang, L. et al. A new generation of the United States national land cover database: requirements, research priorities, design, and implementation strategies. ISPRS Journal of Photogrammetry and Remote Sensing 146, 108–123, https://doi.org/10.1016/j.isprsjprs.2018.09.006 (2018).ADS 
    Article 

    Google Scholar 
    35.Jin, S. et al. Overall methodology design for the United States National Land Cover Database 2016 products. Remote Sensing 11, 2971, https://doi.org/10.3390/rs11242971 (2019).ADS 
    Article 

    Google Scholar 
    36. USDA Census of Agriculture Historical Archive http://agcensus.mannlib.cornell.edu/AgCensus/homepage.do;jsessionid=17C0132051BEB31DF79D01B0D07300F2 (US Department of Agriculture, 2007).37.Sleeter, B. M. et al. Land-cover change in the conterminous United States from 1973 to 2000. Global Environmental Change 23(4), 733–748, https://doi.org/10.1016/j.gloenvcha.2013.03.006 (2013).Article 

    Google Scholar 
    38.Cao, Y. et al. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling. Geosci. Model Dev. 10(9), 3425–3440, https://doi.org/10.5194/gmd-10-3425-2017 (2017).ADS 
    Article 

    Google Scholar 
    39.Piwowar, J. M., Ledrew, E. F. & Dudycha, D. J. Integration of spatial data in vector and raster formats in a geographic information system environment. International Journal of Geographical Information Systems 4, 429–444, https://doi.org/10.1080/02693799008941557 (2007).Article 

    Google Scholar 
    40.Croissant, C. Landscape patterns and parcel boundaries: an analysis of composition and configuration of land use and land cover in south-central Indiana. Agriculture Ecosystems and Environment 101, 219–232, https://doi.org/10.1016/j.agee.2003.09.006 (2004).Article 

    Google Scholar 
    41.LaGro Jr., J. A. Land-use Classification (Elsevier Press, 2005).42.Kutcher T. E. et al. Habitat and Land Cover Classification Scheme for the National Estuarine Research Reserve System. (National Estuarine Research Reserve System, 2008).43.Buskey, E. J. et al. in System-wide monitoring program of the national estuarine research reserve System: research and monitoring to address coastal management issues Chapter 21 (Academic Press, 2015).44.Feng, C.-C. & Flewelling, D. M. Assessment of semantic similarity between land use/land cover classification systems. Computers, Environment and Urban Systems 28(3), 229–246, https://doi.org/10.1016/S0198-9715(03)00020-6 (2004).Article 

    Google Scholar 
    45.Foufoula-Georgiou, E., Takbiri, Z., Czuba, J. A. & Schwenk, J. The change of nature and the nature of change in agricultural landscapes: Hydrologic regime shifts modulate ecological transitions. Water Resources Research 51, 6649–6671, https://doi.org/10.1002/2015WR017637 (2015).ADS 
    Article 

    Google Scholar 
    46.Biondini, M. & Kandus, P. Transition matrix analysis of land-cover change in the accretion area of the Lower Delta of the Paraná River (Argentina) reveals two succession pathways. Wetlands 26, 981–991, https://link.springer.com/article/10.1672/0277-5212(2006)26[981:TMAOLC]2.0.CO;2#citeas (2006).47.Hu, Y., Batunacun, Zhen, L. & Zhuang, D. Assessment of land-use and land-cover change in Guangxi, China. Sci Rep. 9, 2189, https://doi.org/10.1038/s41598-019-38487-w (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Liu, X. et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability 3, 564–570, https://doi.org/10.1038/s41893-020-0521-x (2020).Article 

    Google Scholar 
    49.Teferi, E., Bewket, W., Uhlenbrook, S. & Wenninger, J. Understanding recent land use and land cover dynamics in the source region of the Upper Blue Nile, Ethiopia: spatially explicit statistical modeling of systematic transitions. Agriculture, ecosystems & environment 165(15), 98–117, https://doi.org/10.1016/j.agee.2012.11.007 (2013).Article 

    Google Scholar 
    50.Yu, Z., Guo, X., Zeng, Y., Koga, M. & Vejre, H. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: the case of Fuzhou city, China. Urban forestry & urban greening 29, 113–121, https://doi.org/10.1016/j.ufug.2017.11.008 (2018).Article 

    Google Scholar 
    51.Yuan, F., Sawaya, K. E., Loeffelholz, B. C. & Bauer, M. E. Land cover classification and change analysis of the twin cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sensing of Environment 98, 317–328, https://doi.org/10.1016/j.rse.2005.08.006 (2005).ADS 
    Article 

    Google Scholar 
    52.Yuh, Y. G. et al. Effects of land cover change on great apes distribution at the Lobéké National Park and its surrounding forest management units, south-east Cameroon. A 13 year time series analysis. Sci. Rep. 9, 1445, https://doi.org/10.1038/s41598-018-36225-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Zhao, J., Yang, Y., Zhao, Q. & Zhao, Z. Effects of ecological restoration projects on changes in land cover: a case study on the Loess Plateau in China. Sci. Rep. 7, 44496, https://doi.org/10.1038/srep44496 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Rajib, A. et al. Land Use Changes in The Mississippi River Basin Floodplains: 1941 to 2000 (version 1). HydroShare https://doi.org/10.4211/hs.41a3a9a9d8e54cc68f131b9a9c6c8c54 (2021).55.Annis, A., Nardi, F., Morrison, R. R. & Castelli, F. Investigating hydrogeomorphic floodplain mapping performance with varying DTM resolution and stream order. Hydrological Sciences Journal 64(5), 525–538, https://doi.org/10.1080/02626667.2019.1591623 (2019).Article 

    Google Scholar 
    56.Dottori, F. et al. Development and evaluation of a framework for global flood hazard mapping. Advances in Water Resources 94, 87–102, https://doi.org/10.1016/j.advwatres.2016.05.002 (2016).ADS 
    Article 

    Google Scholar 
    57.Scheel, K., Morrison, R. R., Annis, A. & Nardi, F. Understanding the large-scale influence of levees on floodplain connectivity using a hydrogeomorphic approach. Journal of the American Water Resources Association 55(2), 413–429, https://doi.org/10.1111/1752-1688.12717 (2019).ADS 
    Article 

    Google Scholar 
    58. Climate Change Initiative (CCI) Land Cover products http://maps.elie.ucl.ac.be/CCI/viewer/download.php (2018).59. Land Cover CCI Product User Guide Version 2. Tech. Rep. http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (European Space Agency, 2017).60.Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3, 160018, https://doi.org/10.1038/sdata.2016.18 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Soil organic matter and clay zeta potential influence aggregation of a clayey red soil (Ultisol) under long-term fertilization

    Influence of soil organic matter on zeta potentialIn this study, the zeta potential of a clayey red soil was compared among 4 types of long-term treatments including manure, NPK + straw, NPK and CK in a subtropical climate. Generally, the manure treatment which also had the greatest concentration of SOC resulted in the highest clay zeta potential (less intense charge imbalance), while NPK + straw did not result in the second highest zeta potential as expected compared to the NPK and CK treatments. Variation in clay zeta potential among types of fertilization might be related with their different SOM content, because SOM had an influence on the zeta potentials via affecting the negative charges of soils19. The zeta potential of manure and NPK + straw treatments having high SOC agreed with earlier studies in Marchuk et al.9 that decreases of SOC via NaOH treatments decreased the negative zeta potential value9, where Claremont soil originally having high SOC (2.2%) displayed a greater degree of decline in negative zeta potential (from − 29 to − 34.9 mV) than Urrbrae having lower SOC (1.4%) (− 66.3 to − 68 mV). However, zeta potential in water dispersible clay responded to SOC contrastly in the study of Melo et al.12 , where Londrina soil with high SOC (5–20 g kg−1) displayed lower negative zeta potential values in water dispersible clay than that in Rondon soil (SOC 5 to 12 g kg−1) in subtropical Brazil.Differences of SOC effect on zeta potential in our study and other studies were probably because ionic strength in bulk solution also affected the intensity of soil charge imbalance. Generally, in tropical and subtropical Ferralsols, high amounts of SOM that was released following the breakdown of macroaggregate provided an excess of negative charges and intensified the imbalance in charge, resulting in more negative in zeta potential of clay12. In contrast to Ferralsols in Brazil, red soil (highly-weathered) in our study showed higher negative zeta potential in manure soils with higher SOM. This was because high ionic strength in bulk solution might counterbalance the negative charges from SOM, and attenuated the imbalance in charges. Hence, manure treatment which provided greater EC and Ca2+, Mg2+ concentration and possibly higher ionic strength was reasonable to allow for more charge balance and greater negative zeta potential values than other treatment.In this study, NPK + straw treatment exhibited similar negative zeta potential values as that in NPK but slightly lower than manure, probably due to the effect of SOM functional group from straw and soil solution concentration. Straw can increase the humin content as reported in the study of Sheng et al.11, and then a decrease of negative zeta potential can be induced as addition of humic acid on a Luvisol20. But the negative humic effect from straw on zeta potential was probably stronger than the positive effect from the increased bulk soil solution concentration in NPK + straw relative to NPK in Fig. 3 where increase of bulk solution concentration was found to increase the negative charge numbers and the negative zeta potential in Ultisol and Oxisol15. Therefore, our hypothesis that organic treatments decreased negative zeta potential value of soil was not supported for manure treatment, but was for NPK + straw treatment.NPK + straw’s similar effect on negative zeta potential as NPK treatment was probably also related with their similar pH values. The effect of pH on the potential of clay surfaces can be related to the amount of variable charge on the external surface of the clay particles. Negative zeta potential decreased with rising pH of the solution due to deprotonation of the functional groups on the surface of the organic matter and Fe/Aloxides in NPK + straw treated soils. An increase of soil pH (from 3.5 to 7.5) influenced zeta potential through production of more negative net surface charges on soils in subtropical Australia21,22. Therefore, the pH in our study after KCl adjustment that showed a first increase and then decrease pattern with the increase of concentration, can help to explain the bell shape pattern of negative zeta potential (first decrease and then increase). However, in our study, the pH pattern with increment of KCl concentration was different from the results in study of Yu et al.8 where a continuous decline pattern in pH of two soils (Vertisol and Ultisol) was reported when the KCl concentration increased from 10–5 to 10–1 mol L−1. This is probably because the Ultisol possessed high amount of variable charges from Fe or Al oxides, which resulted in the diffusion layer attracted more positive charged cations (i.e. K+) from bulk solution to balance the increased negative charge on the surface of colloidal particles in order to maintain the electrical neutrality of the system15. This indicated that when KCl concentration was low, between 0 and 10–2 mol L−1, part of K+ was attracted to the diffuse double layer and the remaining K+ hydration allowed for raising in soil pH. When KCl concentration was beyond 10–2 mol L−1, many Al3+ions on soil exchange site were released into solution (0.03 to 0.12 mg L−1) through K+ exchange and probably dropped soil pH (data not shown).Studies also found that the effect of SOM on zeta potential of clay also varied for soils in different climate. Yu et al.8 compared rice straw incorporation effect on two soils (Ultisol and Vertisol) and found that similar SOC content resulted in contrasting effects on surface potential of two types of soils, where surface potential of Ultisol continuously increased while firstly increased and became stable for Vertisol with increase of treated solution concentration. Different SOM effect on soil potential properties of two soils were probably associated with presence of soil variable charges in Ultisol23. SOM and Fe/Al (hydro)oxides in Ultisol carried a larger number of variable surface charges, and resulted in a strong overlapping of oppositely charged electric double layers (EDLs) between SOM and Fe/Al (hydro)oxides at low concentration8. The overlapping of oppositely charged EDLs between SOM and Fe/Al probably yielded in an increase in negative surface charge for Ultisols compared to Vertisol.Effect of SOM and zeta potential on soil aggregationIncrement in content of SOM after additions of straw or other organic treatments can improve aggregate stability6,24,25. The hydrophobic organic compounds that coated around soil particle can act as nucleus of aggregate formation and reduce the destruction effect from water infiltration26,27. The hydrophobic-C/hydrophilic-C increased from 1.04 to 1.07, from 1.22 to 1.27 for chicken manure and maize residues treatments, respectively, when soil water conditions changed from water deficiency to natural rainfall treatment28. This indicated that a small change of hydrophobic-C/hydrophilic-C might result in substantial change in soil water, which was a critical factor of aggregate development28. Xue et al.24 also reported that a small difference of aromatic percentage between tillage + straw and no tillage + straw treatments resulted in significant differences for aggregate ( > 0.25 mm). Hence, small variation in soil hydrophobic-C groups can yield in soil aggregate variation. In our study, the manure treatment, which had higher SOM and hydrophobic-C (aromatic C) while lower hydrophilic-C than other treatments, was probably reasonable to yield in its higher stability than others. In these previous studies, the positive effect of SOM on soil aggregate development was attributed to the increment in van der Waals force between soil particles. However, different from our study, Melo et al.12 reported that Londrina soil with high SOC released greater water dispersible clay (60–80%) than that in Rondon with low SOC (50–70%) after mechanical breakdown of macroaggregate. This was probably due to the repulsive force prevailing attractive force between soil particles as affected by more negative zeta potential or surface potential8.Clay zeta potential influenced the powerful electrostatic fields, soil internal forces and aggregate stability9. Decrease in negative clay zeta potential mainly yielded an increase in the soil microaggregate portion ( More

  • in

    Deforestation is the turning point for the spreading of a weedy epiphyte: an IBM approach

    1.de Wet, J. M. J. & Harlan, J. R. Weeds and domesticates: Evolution in the man-made habitat. Econ. Bot. 29(2), 99–108. https://doi.org/10.1007/BF02863309 (1975).Article 

    Google Scholar 
    2.Ceballos, G. et al. Accelerated modern human—Induced species losses: Entering the sixth mass extinction. Sci. Adv. 1(June), 1–6. https://doi.org/10.1126/sciadv.1400253 (2015).Article 

    Google Scholar 
    3.Wilcove, D. S. Nest predation in forest tracts and the decline of migratory songbirds. Ecology 66(4), 1211–1214 (1985).Article 

    Google Scholar 
    4.Airoldi, L. & Bulleri, F. Anthropogenic disturbance can determine the magnitude of opportunistic species responses on marine urban infrastructures. PLoS ONE https://doi.org/10.1371/journal.pone.0022985 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Baker, H. G. The evolution of weeds. Annu. Rev. Ecol. Syst. 5, 1–24. https://doi.org/10.2307/2096877 (1974).ADS 
    Article 

    Google Scholar 
    6.Richardson, D. M. et al. Naturalization and invasion of alien plants: Concepts and definitions. Divers. Distrib. 6, 93–107 (2008).Article 

    Google Scholar 
    7.van Etten, M. L., Conner, J. K., Chang, S. M. & Baucom, R. S. Not all weeds are created equal: A database approach uncovers differences in the sexual system of native and introduced weeds. Ecol. Evol. 7(8), 2636–2642. https://doi.org/10.1002/ece3.2820 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Booth, B. D. & Swanton, C. J. Assembly theory applied to weed communities 50th Anniversary—Invited Article Assembly theory applied to weed communities. Weed Sci. 50(3), 2–13. https://doi.org/10.1614/0043-1745(2002)050 (2002).CAS 
    Article 

    Google Scholar 
    9.Kuester, A., Conner, J. K., Culley, T. & Baucom, R. S. How weeds emerge: A taxonomic and trait-based examination using United States data. New Phytol. 202(3), 1055–1068. https://doi.org/10.1111/nph.12698 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.van Kleunen, M. et al. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110617-062654 (2018).Article 

    Google Scholar 
    11.de Bona, S. et al. Spatio-temporal dynamics of density-dependent dispersal during a population colonisation. Ecol. Lett. 22, 634–644 (2019).PubMed 
    Article 

    Google Scholar 
    12.Baker, H. G. Self-compatibility and establishment after “long-distance” dispersal. Evolution 9(3), 347. https://doi.org/10.2307/2405656 (1955).Article 

    Google Scholar 
    13.Razanajatovo, M. et al. Plants capable of selfing are more likely to become naturalized. Nat. Commun. 7, 13313. https://doi.org/10.1038/ncomms13313 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Vallejo-Marín, M., Dorken, M. E. & Barrett, S. C. H. The ecological and evolutionary consequences of clonality for plant mating. Annu. Rev. Ecol. Evol. Syst. 41(1), 193–213. https://doi.org/10.1146/annurev.ecolsys.110308.120258 (2010).Article 

    Google Scholar 
    15.Rodger, J. G., Van Kleunen, M. & Johnson, S. D. Pollinators, mates and Allee effects: The importance of self-pollination for fecundity in an invasive lily. Funct. Ecol. 27(4), 1023–1033. https://doi.org/10.1111/1365-2435.12093 (2013).Article 

    Google Scholar 
    16.Barrett, S. C. H. & Harder, L. D. The ecology of mating and its evolutionary consequences in seed plants. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110316-023021 (2017).Article 

    Google Scholar 
    17.Klimeš, L., Klimešová, J., Hendriks, R. & van Groenendael, J. Clonal plant architecture: A comparative analysis of form and function. In The Ecology and Evolution of Clonal Plants (eds De Kroon, H. & Van Groenendael, J. M.) 1–29 (Backhuys, 1997).
    Google Scholar 
    18.Barrett, S. C. H. Influences of clonality on plant sexual reproduction. Proc. Natl. Acad. Sci. 112(29), 8859–8866. https://doi.org/10.1073/pnas.1501712112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Heywood, J. S. Spatial analysis of genetic variation in plant populations. Annu. Rev. Ecol. Syst. 22, 335–355 (1991).Article 

    Google Scholar 
    20.Barrett, S. C. H. Evolution of mating systems: Outcrossing versus selfing. In The Princeton Guide to Evolution (ed. Losos, J. B.) 356–362 (Princeton University Press, 2013).
    Google Scholar 
    21.Barrett, S. C. H., Arunkumar, R. & Wright, S. I. The demography and population genomics of evolutionary transitions to self-fertilization in plants. Philos. Trans. R. Soc. B Biol. Sci. 369(1648), 20130344 (2014).Article 

    Google Scholar 
    22.Picó, F. X., Quintana-Ascencio, P. F., Mildén, M., Ehrlén, J. & Pfingsten, I. Modelling the effects of genetics and habitat on the demography of a grassland herb. Basic Appl. Ecol. 10(2), 122–130. https://doi.org/10.1016/j.baae.2008.02.006 (2009).Article 

    Google Scholar 
    23.Ellstrand, N. C. & Roose, M. L. Patterns of genotypic diversity in clonal plant species. Am. J. Bot. 74, 123–131 (1987).Article 

    Google Scholar 
    24.Loh, R., Scarano, F. R., Alves-Ferreira, M. & Salgueiro, F. Implications of clonality to population genetic structure of the nurse species Aechmea nuducaulis (L.) Griseb. (Bromeliaceae). Bot. J. Linn. Soc. 178, 329–341 (2015).Article 

    Google Scholar 
    25.Hedrick, P. W. Purging inbreeding depression and the probability of extinction: Full-sib mating. Heredity 73, 363–372. https://doi.org/10.1038/hdy.1994.183 (1994).Article 
    PubMed 

    Google Scholar 
    26.Arunkumar, R., Ness, R. W., Wright, S. I. & Barrett, S. C. H. The evolution of selfing is accompanied by reduced efficacy of selection and purging of deleterious mutations. Genetics 199(3), 817–829. https://doi.org/10.1534/genetics.114.172809 (2015).Article 
    PubMed 

    Google Scholar 
    27.Pannell, J. R. & Barrett, S. C. H. Baker’s law revisited: Reproductive assurance in a metapopulation. Evolution 52(3), 657–668. https://doi.org/10.2307/2411261 (1998).Article 
    PubMed 

    Google Scholar 
    28.Hamrick, J. L. & Trapnell, D. W. Using population genetic analyses to understand seed dispersal patterns. Acta Oecologica 37, 641–649 (2011).ADS 
    Article 

    Google Scholar 
    29.Côrtes, M. C. et al. Low plant density enhances gene dispersal in the Amazonian understory herb Heliconia acuminata. Mol. Ecol. 22, 5716–5729 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    30.Trapnell, D. W., Hamrick, J. L., Ishibashi, C. D. & Kartzinel, T. R. Genetic inference of epiphytic orchid colonization; it may only take one. Mol. Ecol. 22, 3680–3692. https://doi.org/10.1111/mec.12338 (2013).Article 
    PubMed 

    Google Scholar 
    31.Chung, M. Y. et al. Fine-scale genetic structure in populations of the spring ephemeral herb Megaleranthis saniculifolia (Ranunculaceae). Flora Morphol. Distrib. Funct. Ecol. Plants 240, 16–24 (2018).
    Google Scholar 
    32.Roberts, N. R., Dalton, P. J. & Jordan, G. J. Epiphytic ferns and bryophytes of Tasmanian tree-ferns: A comparison of diversity and composition between two host species. Austral Ecol. 30(2), 146–154. https://doi.org/10.1111/j.1442-9993.2005.01440.x (2005).Article 

    Google Scholar 
    33.Cardelús, C. L. & Chazdon, R. L. Inner-crown microenvironments of two emergent tree species in a lowland wet forest. Biotropica 37(2), 238–244. https://doi.org/10.1111/j.1744-7429.2005.00032.x (2005).Article 

    Google Scholar 
    34.Quaresma, A. C., Piedade, M. T. F., Wittmann, F. & ter Steege, H. Species richness, composition, and spatial distribution of vascular epiphytes in Amazonian black-water floodplain forests. Biodivers. Conserv. 27(8), 1981–2002. https://doi.org/10.1007/s10531-018-1520-3 (2018).Article 

    Google Scholar 
    35.Claver, F. K., Alaniz, J. R. & Caldíz, D. O. Tillandsia spp.: Epiphytic weeds of trees and bushes. For. Ecol. Manag. 6(4), 367–372. https://doi.org/10.1016/0378-1127(83)90044-0 (1983).Article 

    Google Scholar 
    36.Bartoli, C. G., Beltrano, J., Fernández, L. V. & Caldíz, D. O. Control of the epiphytic weeds Tillandsia recurvata and Tillandsia aeranthos with different herbicides. For. Ecol. Manage. 59, 289–294 (1993).Article 

    Google Scholar 
    37.Flores-Palacios, A., García-Franco, J. G. & Capistrán-Barradas, A. Biomass, phorophyte specificity and distribution of Tillandsia recurvata in a tropical semi-desert environment (Chihuahuan Desert, Mexico). Plant Ecology and Evolution 148(1), 68–75 (2015).Article 

    Google Scholar 
    38.Birge, W. I. The anatomy and some biological aspects of the “ball moss”, Tillandsia recurvata, 1–24. L. Bull. Univ. Tex. 194(20) (1911).39.Smith, L. B. & Downs, R. J. Tillandsioideae (Bromeliaceae). In Flora Neotropica Monograph 14(2), 663–1492 (1977).40.Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in speciation. Biological Journal of the Linnaean Society, 58(July), 247–276. Retrieved from papers3://publication/uuid/B9DB7D5E-D6AE-404C-BFFC-9F813345329441.McWilliams, E. Chronology of the Natural Range Expansion of Tillandsia recurvata (Bromeliaceae) in Texas. Contributions to Botany 15(2), 343–346 (1992).42.Flores-Palacios, A., Barbosa-Duchateau, C. L., Valencia-Díaz, S., Capistrán-Barradas, A. & García-Franco, J. G. Direct and indirect effects of Tillandsia recurvata on Prosopis laevigata in the Chihuahua desert scrubland of San Luis Potosi, Mexico. J. Arid Environ. 104, 88–95. https://doi.org/10.1016/j.jaridenv.2014.02.010 (2014).ADS 
    Article 

    Google Scholar 
    43.Benzing, D. H. Bromeliaceae: Profile of an Adaptive Radiation (Cambridge University Press, 2000).Book 

    Google Scholar 
    44.Benzing, D. H. Air Plants: Epiphytes and Aerial Gardens (Cornell University Press, 2012).Book 

    Google Scholar 
    45.Foster, M. D. Blueprint of the jungle as depicted by the altitude of growth of the Bromeliadswith notes on the culture of certain tropical epiphytes. Bull. N. Y. Bot. Garden 46, 9–16 (1945).
    Google Scholar 
    46.Soltis, D. E., Gilmartin, A. J., Rieseberg, L. & Gardner, S. Genetic variation in the epiphytes Tillandsia ionantha and T. recurvata (Bromeliaceae). Am. J. Bot. 74(4), 531–537 (1987).CAS 
    Article 

    Google Scholar 
    47.Orozco-Ibarrola, O. A., Flores-Hernández, P. S., Victoriano-Romero, E., Corona-López, A. M. & Flores-Palacios, A. Are breeding system and florivory associated with the abundance of Tillandsia species (Bromeliaceae)?. Bot. J. Linn. Soc. 177(1), 50–65. https://doi.org/10.1111/boj.12225 (2015).Article 

    Google Scholar 
    48.Chilpa-Galván, N. et al. Seed traits favouring dispersal and establishment of six epiphytic Tillandsia (Bromeliaceae) species. Seed Sci. Res. https://doi.org/10.1017/S0960258518000247 (2018).Article 

    Google Scholar 
    49.Southwood, T. & Kennedy, C. Trees as islands. Oikos 41(3), 359–371. https://doi.org/10.2307/3544094 (1983).Article 

    Google Scholar 
    50.Burns, K. C. Network properties of an epiphyte metacommunity. J. Ecol. 95(5), 1142–1151 (2007).Article 

    Google Scholar 
    51.Trapnell, D. W., Hamrick, J. L. & Nason, J. D. Three-dimensional fine-scale genetic structure of the neotropical epiphytic orchid, Laelia rubescens. Mol. Ecol. 13, 1111–1118 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Torres, E., Riofrío, M.-L. & Iriondo, J. M. Complex fine-scale spatial genetic structure in Epidendrum rhopalostele: an epiphytic orchid. Heredity https://doi.org/10.1038/s41437-018-0139-1 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Victoriano-Romero, E., Valencia-Díaz, A., Toledo-Hernández, V. H. & Flores-Palacios, A. Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest. PLoS ONE 12(2), e0171614 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Martins, S. E. (2009). Flora fanerogâmica do estado de São Paulo. FAPESP: Instituto de Botânica.55.Chaves, C. J. N., Dyonisio, J. C. J. C. & Rossatto, D. R. D. R. Host trait combinations drive abundance and canopy distribution of atmospheric bromeliad assemblages. AoB Plants 8(October 2015), plw010. https://doi.org/10.1093/aobpla/plw010 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Epps, C. W. & Keyghobadi, N. Landscape genetics in a changing world: Disentangling historical and contemporary influences and inferring change. Mol. Ecol. 24(24), 6021–6040. https://doi.org/10.1111/mec.13454 (2015).Article 
    PubMed 

    Google Scholar 
    57.Cushman, S. A., Shirk, A. & Landguth, E. L. Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landsc. Ecol. 27(3), 369–380. https://doi.org/10.1007/s10980-011-9693-0 (2012).Article 

    Google Scholar 
    58.Jackson, N. D. & Fahrig, L. Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landsc. Ecol. 31(5), 951–968. https://doi.org/10.1007/s10980-015-0313-2 (2016).Article 

    Google Scholar 
    59.Grimm, V. & Railsback, S. F. Individual-Based Modelling and Ecology (Princeton University Press, 2005).MATH 
    Book 

    Google Scholar 
    60.Csilléry, K., Blum, M. G. B., Gaggiotti, O. E. & François, O. Approximate Bayesian Computation (ABC) in practice. Trends Ecol. Evol. 25(7), 410–418. https://doi.org/10.1016/j.tree.2010.04.001 (2010).Article 
    PubMed 

    Google Scholar 
    61.Udupa, S. M. & Baum, M. High mutation rate and mutational bias at (TAA)n microsatellite loci in chickpea (Cicer arietinum L.). Mol. Genet. Genom. 265(6), 1097–1103. https://doi.org/10.1007/s004380100508 (2001).CAS 
    Article 

    Google Scholar 
    62.Anmarkrud, J. A., Kleven, O., Bachmann, L. & Lifjeld, J. T. Microsatellite evolution: Mutations, sequence variation, and homoplasy in the hypervariable avian microsatellite locus HrU10. BMC Evol. Biol. 8(1), 1–10. https://doi.org/10.1186/1471-2148-8-138 (2008).CAS 
    Article 

    Google Scholar 
    63.Marriage, T. N. et al. Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae). Heredity 103(4), 310–317. https://doi.org/10.1038/hdy.2009.67 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Bernal, R., Valverde, T. & Hernández-Rosas, L. Habitat preference of the epiphyte Tillandsia recurvata (Bromeliaceae) in a semi-desert environment in Central Mexico. Can. J. Bot. 83(10), 1238–1247 (2005).Article 

    Google Scholar 
    65.Chaves, C. J. & Rossatto, D. R. Unravelling intricate interactions among atmospheric bromeliads with highly overlapping niches in seasonal systems. Plant Biol. 22(2), 243–251 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Vekemans, X. & Hardy, O. J. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 13(4), 921–935. https://doi.org/10.1046/j.1365-294X.2004.02076.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Ward, S. Genetic analysis of invasive plant populations at different spatial scales. Biol. Invasions 8(3), 541–552. https://doi.org/10.1007/s10530-005-6443-8 (2006).Article 

    Google Scholar 
    68.Pettengill, J. B., Briscoe Runquist, R. D. & Moeller, D. A. Mating system divergence affects the distribution of sequence diversity within and among populations of recently diverged subspecies of Clarkia xantiana (Onagraceae). Am. J. Bot. 103(1), 99–109. https://doi.org/10.3732/ajb.1500147 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Atwater, D. Z., Fletcher, R. A., Dickinson, C. C., Paterson, A. H. & Barney, J. N. Evidence for fine-scale habitat specialization in an invasive weed. J. Plant Ecol. 11(2), 189–199. https://doi.org/10.1093/jpe/rtw124 (2018).Article 

    Google Scholar 
    70.Li, J. & Dong, M. Fine-scale clonal structure and diversity of invasive plant Mikania micrantha H.B.K. and its plant parasite Cuscuta campestris Yunker. Biol. Invasions 11(3), 687–695. https://doi.org/10.1007/s10530-008-9283-5 (2009).MathSciNet 
    Article 

    Google Scholar 
    71.Ren, M. X., Cafasso, D., Cozzolino, S. & Pinheiro, F. Extensive genetic differentiation at a small geographical scale: Reduced seed dispersal in a narrow endemic marsh orchid, Anacamptis robusta. Bot. J. Linn. Soc. 183(3), 429–438. https://doi.org/10.1093/botlinnean/bow017 (2017).Article 

    Google Scholar 
    72.Barluenga, M. et al. Fine-scale spatial genetic structure and gene dispersal in Silene latifolia. Heredity 106(1), 13–24. https://doi.org/10.1038/hdy.2010.38 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    73.Charbonneau, A. et al. Weed evolution: Genetic differentiation among wild, weedy, and crop radish. Evol. Appl. https://doi.org/10.1111/eva.12699 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Sagnard, F., Oddou-Muratorio, S., Pichot, C., Vendramin, G. G. & Fady, B. Effects of seed dispersal, adult tree and seedling density on the spatial genetic structure of regeneration at fine temporal and spatial scales. Tree Genet. Genomes 7(1), 37–48. https://doi.org/10.1007/s11295-010-0313-y (2011).Article 

    Google Scholar 
    75.Counsens, R. & Mortimer, M. Dynamics of Weed Populations (Cambridge University Press, 1995).Book 

    Google Scholar 
    76.Loreau, M. et al. Unifying sources and sinks in ecology and Earth sciences. Biol. Rev. 88, 365–379 (2013).PubMed 
    Article 

    Google Scholar 
    77.dos Santos, L. S. et al. Generalized Allee effect model. Theory Biosci. 133, 117–124 (2014).PubMed 

    Google Scholar 
    78.Spruch, L. et al. Modeling community assembly on growing habitat “islands”: A case study on trees and their vascular epiphyte communities. Theor. Ecol. 12, 1–17 (2019).Article 

    Google Scholar 
    79.Einzmann, H. J. R. & Zotz, G. “No signs of saturation”: long-term dynamics of vascular epiphyte communities in a human-modified landscape. Biodivers. Conserv. 26, 1393–1410 (2017).Article 

    Google Scholar 
    80.Belinchón, R., Harrison, P. J., Mair, L., Várkonyi, G. & Snäll, T. Local epiphyte establishment and future metapopulation dynamics in landscapes with different spatiotemporal properties. Ecology 98(3), 741–750. https://doi.org/10.1002/ecy.1686 (2017).Article 
    PubMed 

    Google Scholar 
    81.Vergara-Torres, C. A., Pacheco-Álvarez, M. C. & Flores-Palacios, A. Host preference and host limitation of vascular epiphytes in a tropical dry forest of central Mexico. J. Trop. Ecol. 26(6), 563–570. https://doi.org/10.1017/S0266467410000349 (2010).Article 

    Google Scholar 
    82.Barrett, S. C. H. & Kohn, J. R. Genetic and evolutionary consequences of small population size in plants: Implications for conservation. In Genetics and Conservation of Rare Plants (eds Falk, D. A. & Holsinge, K. E.) 3–30 (Oxford University Press, 1991).
    Google Scholar 
    83.Nathan, R., Horn, H. S., Chave, J. & Levin, S. A. Mechanistic models for tree seed dispersal by wind in dense forests and open landscapes. In Seed Dispersal and Frugivory-Ecologie, Evolution, Conservation 69–82 (2002). https://doi.org/10.1079/9780851995250.006984.Cousens, R. et al. Dispersal in Plants. A Population Perspective (Oxford University Press, 2008).Book 

    Google Scholar 
    85.Snäll, T., Ehrlén, J. & Rydin, H. Colonization-extinction dynamics of an epiphyte metapopulation in a dynamic landscape. Ecology 86(1), 106–115 (2005).Article 

    Google Scholar 
    86.Ruiz-Cordova, J. P., Toledo-Hernández, V. H. & Flores-Palacios, A. The effect of substrate abundance in the vertical stratification of bromeliad epiphytes in a tropical dry forest (Mexico). Flora Morphol. Distrib. Funct. Ecol. Plants 209(8), 375–384. https://doi.org/10.1016/j.flora.2014.06.003 (2014).Article 

    Google Scholar 
    87.Flores-Palacios, A., Bustamante-Molina, A. B., Corona-López, A. M. & Valencia-Díaz, S. Seed number, germination and longevity in wild dry forest Tillandsia species of horticultural value. Scientia Hortic. 187, 72–79 (2015).Article 

    Google Scholar 
    88.Goodman, R., & Herold, M. (2014). Why maintaining tropical forests is essential and urgent for a stable climate. Center for Global Development Working Paper, (385).89.Seymour, F. & Busch, J. Why Forests? Why Now?: The Science, Economics, and Politics of Tropical Forests and Climate Change (Brookings Institution Press, 2016).
    Google Scholar 
    90.Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507(7490), 90–93 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Tel-Zur, N., Abbo, S., Myslabodsky, D. & Mizrahi, Y. Modified CTAB procedure for DNA isolation from epiphytic cacti of genera Hylocereus and Selenicereus (Cactaceae). Plant Mol. Biol. Rep. 17, 249–254 (1999).CAS 
    Article 

    Google Scholar 
    92.Chaves, C. J. N., Aoki-Gonçalves, F., Leal, B. S. S., Rossatto, D. R. & Palma-Silva, C. Transferability of nuclear microsatellite markers to the atmospheric bromeliads Tillandsia recurvata and T. aeranthos (Bromeliaceae). Braz. J. Bot. 41, 931–935. https://doi.org/10.1007/s40415-018-0494-4 (2018).Article 

    Google Scholar 
    93.Keenan, K., Mcginnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. DiveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12067 (2013).Article 

    Google Scholar 
    94.Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Nei, M. Genetic distances between populations. Am. Nat. 106, 283–292 (1972).Article 

    Google Scholar 
    96.Edwards, A. W. F. Distance between populations on the basis of gene frequencies. Biometrics 27, 873–881 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    97.Reynolds, J. B., Weir, B. S. & Cockerham, C. C. Estimation of the coancestry coefficient: Basis for a short-term genetic distance. Genetics 105, 767–779 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ https://doi.org/10.7717/peerj.281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Paradis, E. pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491. https://doi.org/10.1007/s00424-009-0730-7 (1992).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Loiselle, B. A., Sork, V. L., Nason, J. & Graham, C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am. J. Bot. 82(11), 1420–1425 (1995).Article 

    Google Scholar 
    102.Bailleul, D., Stoeckel, S. & Arnaud-Haond, S. RClone: A package to identify MultiLocus Clonal Lineages and handle clonal data sets in r. Methods Ecol. Evol. 7(8), 966–970. https://doi.org/10.1111/2041-210X.12550 (2016).Article 

    Google Scholar 
    103.Harrison, S. et al. Beta diversity on geographic gradients in Britain. J. Anim. Ecol. 61(1), 151–158 (1992).Article 

    Google Scholar 
    104.Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88(10), 2427–2439. https://doi.org/10.1890/07-1861.1 (2007).Article 
    PubMed 

    Google Scholar 
    105.Charney, N. & Record, S. Vegetarian: Jost diversity measures for community data. https://cran.r-project.org/web/packages/vegetarian/index.html (2012). Accessed Jul 2018.106.Wilensky, U. NetLogo (Northwestern University, Center for Connected Learning and Computer-Based Modeling, 1999).
    Google Scholar 
    107.Grimm, V. et al. A standard protocol for describing individual-based and agent-based models. Ecol. Model. 198(1–2), 115–126. https://doi.org/10.1016/j.ecolmodel.2006.04.023 (2006).Article 

    Google Scholar 
    108.Grimm, V. et al. The ODD protocol: A review and first update. Ecol. Model. 221(23), 2760–2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019 (2010).Article 

    Google Scholar 
    109.Kooijman, B. & Kooijman, S. A. L. M. Dynamic Energy Budget Theory for Metabolic Organisation (Cambridge University Press, 2010).
    Google Scholar 
    110.Sibly, R. M. et al. Representing the acquisition and use of energy by individuals in agent-based models of animal populations. Methods Ecol. Evol. 4(2), 151–161 (2013).Article 

    Google Scholar 
    111.Johnston, A. S. A., Hodson, M. E., Thorbek, P., Alvarez, T. & Sibly, R. M. An energy budget agent-based model of earthworm populations and its application to study the effects of pesticides. Ecol. Model. 280, 5–17 (2014).CAS 
    Article 

    Google Scholar 
    112.van der Vaart, E., Johnston, A. S. A. & Sibly, R. M. Predicting how many animals will be where: How to build, calibrate and evaluate individual-based models. Ecol. Model. 326, 113–123 (2016).Article 

    Google Scholar 
    113.Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    114.Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).CAS 
    Article 

    Google Scholar 
    115.Csilléry, K., François, O. & Blum, M. G. abc: An R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 3(3), 475–479 (2012).Article 

    Google Scholar 
    116.Pastur, G. M., Lencinas, M. V., Cellini, J. M. & Mundo, I. Diameter growth: Can live trees decrease?. Forestry 80(1), 83–88. https://doi.org/10.1093/forestry/cpl047 (2007).Article 

    Google Scholar  More

  • in

    Plant defence to sequential attack is adapted to prevalent herbivores

    1.Karban, R. The ecology and evolution of induced responses to herbivory and how plants perceive risk. Ecol. Entomol. 45, 1–9 (2020).Article 

    Google Scholar 
    2.Heil, M. Plastic defence expression in plants. Evol. Ecol. 24, 555–569 (2010).Article 

    Google Scholar 
    3.Erb, M. & Reymond, P. Molecular interactions between plants and insect herbivores. Annu. Rev. Plant Biol. 70, 527–557 (2019).CAS 
    Article 

    Google Scholar 
    4.Ohgushi, T. Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu. Rev. Ecol. Evol. Syst. 36, 81–105 (2005).Article 

    Google Scholar 
    5.Poelman, E. H., van Loon, J. J. A., van Dam, N. M., Vet, L. E. M. & Dicke, M. Herbivore-induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack. Ecol. Entomol. 35, 240–247 (2010).Article 

    Google Scholar 
    6.Erb, M., Meldau, S. & Howe, G. A. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17, 250–259 (2012).CAS 
    Article 

    Google Scholar 
    7.Soler, R. et al. Plant-mediated facilitation between a leaf-feeding and a phloem-feeding insect in a brassicaceous plant: from insect performance to gene transcription. Funct. Ecol. 26, 156–166 (2012).Article 

    Google Scholar 
    8.Thaler, J. S., Humphrey, P. T. & Whiteman, N. K. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 17, 260–270 (2012).CAS 
    Article 

    Google Scholar 
    9.Ehrlich, P. R. & Raven, P. H. Butterflies and plants—a study in coevolution. Evolution 18, 586–608 (1964).Article 

    Google Scholar 
    10.Labandeira, C. C., Johnson, K. R. & Wilf, P. Impact of the terminal Cretaceous event on plant–insect associations. Proc. Natl Acad. Sci. USA 99, 2061–2066 (2002).CAS 
    Article 

    Google Scholar 
    11.Ramos, S. E. & Schiestl, F. P. Rapid plant evolution driven by the interaction of pollination and herbivory. Science 364, 193–196 (2019).CAS 
    Article 

    Google Scholar 
    12.Züst, T. et al. Natural enemies drive geographic variation in plant defenses. Science 338, 116–119 (2012).Article 

    Google Scholar 
    13.Agrawal, A. A. Specificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillars. Oikos 89, 493–500 (2000).Article 

    Google Scholar 
    14.Moreira, X., Abdala‐Roberts, L. & Castagneyrol, B. Interactions between plant defence signalling pathways: evidence from bioassays with insect herbivores and plant pathogens. J. Ecol. 106, 2353–2364 (2018).Article 

    Google Scholar 
    15.Voelckel, C. & Baldwin, I. T. Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivore-specific transcriptional imprints and a distinct imprint from stress combinations. Plant J. 38, 650–663 (2004).CAS 
    Article 

    Google Scholar 
    16.Caarls, L., Pieterse, C. M. J. & Van Wees, S. C. M. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front. Plant Sci. 6, 170 (2015).Article 

    Google Scholar 
    17.Proietti, S. et al. Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis. Plant Cell Environ. 41, 2342–2356 (2018).CAS 
    Article 

    Google Scholar 
    18.Davidson-Lowe, E., Szendrei, Z. & Ali, J. G. Asymmetric effects of a leaf-chewing herbivore on aphid population growth. Ecol. Entomol. 44, 81–92 (2019).Article 

    Google Scholar 
    19.Eisenring, M., Glauser, G., Meissle, M. & Romeis, J. Differential impact of herbivores from three feeding guilds on systemic secondary metabolite induction, phytohormone levels and plant-mediated herbivore interactions. J. Chem. Ecol. 44, 1178–1189 (2018).CAS 
    Article 

    Google Scholar 
    20.Züst, T. & Agrawal, A. A. Mechanisms and evolution of plant resistance to aphids. Nat. Plants 2, 15206 (2016).Article 

    Google Scholar 
    21.Ali, J. G., Agrawal, A. A. & Fox, C. Asymmetry of plant-mediated interactions between specialist aphids and caterpillars on two milkweeds. Funct. Ecol. 28, 1404–1412 (2014).Article 

    Google Scholar 
    22.Bidart-Bouzat, M. G. & Kliebenstein, D. An ecological genomic approach challenging the paradigm of differential plant responses to specialist versus generalist insect herbivores. Oecologia 167, 677–689 (2011).Article 

    Google Scholar 
    23.Ali, J. G. & Agrawal, A. A. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 17, 293–302 (2012).CAS 
    Article 

    Google Scholar 
    24.Mertens, D. et al. Predictability of biotic stress structures plant defence evolution. Trends Ecol. Evol. 36, 444–456 (2021).Article 

    Google Scholar 
    25.Appel, H. M. et al. Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores. Front. Plant Sci. 5, 20 (2014).
    Google Scholar 
    26.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    27.Connell, J. H. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35, 131–138 (1980).Article 

    Google Scholar 
    28.Barton, K. E. & Koricheva, J. The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis. Am. Nat. 175, 481–493 (2010).Article 

    Google Scholar 
    29.Barbosa, P., Letourneau, D. K. & Agrawal A. A. (eds) Insect Outbreaks Revisited (Wiley-Blackwell, 2012).30.Bischoff, A. & Trémulot, S. Differentiation and adaptation in Brassica nigra populations: interactions with related herbivores. Oecologia 165, 971–981 (2011).Article 

    Google Scholar 
    31.Schlinkert, H. et al. Plant size as determinant of species richness of herbivores, natural enemies and pollinators across 21 Brassicaceae species. PLoS ONE 10, e0135928 (2015).Article 

    Google Scholar 
    32.Snoeren, T. A. L., Broekgaarden, C. & Dicke, M. Jasmonates differentially affect interconnected signal-transduction pathways of Pieris rapae-induced defenses in Arabidopsis thaliana. Insect Sci. 18, 249–258 (2011).CAS 
    Article 

    Google Scholar 
    33.Leon-Reyes, A. et al. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232, 1423–1432 (2010).CAS 
    Article 

    Google Scholar 
    34.Broekgaarden, C., Voorrips, R. E., Dicke, M. & Vosman, B. Transcriptional responses of Brassica nigra to feeding by specialist insects of different feeding guilds. Insect Sci. 18, 259–272 (2011).CAS 
    Article 

    Google Scholar 
    35.Fernández de Bobadilla, M. et al. Insect species richness affects plant responses to multi‐herbivore attack. New Phytol. https://doi.org/10.1111/nph.17228 (2021).36.Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).Article 

    Google Scholar 
    37.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).38.Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: Linear and nonlinear mixed effects models. R package version 3.1-141 https://CRAN.R-project.org/package=nlme (2019).39.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    40.Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    41.Lenth, R. emmean: Estimated marginal means, aka least-squares means. R package version 1.2.3 https://CRAN.R-project.org/package=emmeans (2018).42.R Core Team. R: A Language and Environment for Statistical Computing version 3.2.4 (R Foundation for Statistical Computing, 2016).43.Lajeunesse, M. J. On the meta‐analysis of response ratios for studies with correlated and multi‐group designs. Ecology 92, 2049–2055 (2011).Article 

    Google Scholar  More

  • in

    Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats

    Effects of storage and technical variationWe first validated our methods by assessing the effect of storage and technical variation on microbiome composition. To quantify the effect of the two storage methods on bacterial composition in fresh samples, we performed a separate pilot study with nine faecal samples sourced from nine captive meerkats at Zurich University. Samples were immediately frozen after collection, and then either freeze-dried or kept frozen at −80 °C for seven days. Microbiome composition clustered strongly by sample identity in their beta diversity (Supplementary Fig. 1b), and storage did not significantly affect composition (Weighted Unifrac: F = 0.7, p = 0.52; Unweighted Unifrac: F = 1.0, p = 0.37). Across samples analysed in this study, storage had significant yet small effects on estimated bacterial load, with frozen samples overall having slightly lower estimated abundance (t = 7.2, p  More

  • in

    Biological activity of chitosan inducing resistance efficiency of rice (Oryza sativa L.) after treatment with fungal based chitosan

    1.Chaney, R. L., Kim, W. I., Kunhikrishnan, A., Yang, J. E. & Ok, Y. S. Integrated management strategies for arsenic and cadmium in rice paddy environments. Geoderma 270, 1–116. https://doi.org/10.1016/j.geoderma.2016.03.001 (2016).ADS 
    Article 

    Google Scholar 
    2.Nakashima, K., Yamaguchi-Shinozaki, K. & Shinozaki, K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 5, 170. https://doi.org/10.3389/fpls.2014.00170 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Senthil-Nathan, S. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front. Physiol. 4, 359. https://doi.org/10.3389/fphys.2013.00359 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Kalaivani, K., Maruthi-Kalaiselvi, M. & Senthil-Nathan, S. Seed treatment and foliar application of methyl salicylate (MeSA) as a defense mechanism in rice plants against the pathogenic bacterium, Xanthomonas oryzae pv. oryzae. Pest Biochem. Physiol. 171, 104718. https://doi.org/10.1016/j.pestbp.2020.104718 (2021).CAS 
    Article 

    Google Scholar 
    5.Das, G. & Rao, G. J. N. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front. Plant Sci. 6, 698. https://doi.org/10.3389/fpls.2015.00698 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Senthil-Nathan, S. A review of biopesticides and their mode of action against insect pests. Environ. Sustain. https://doi.org/10.1007/978-81-322-2056-5_3 (2015).Article 

    Google Scholar 
    7.Shi, W. et al. Grain yield and quality responses of tropical hybrid rice to high night-time temperature. Food Crop Res. 190, 18–25. https://doi.org/10.1016/j.fcr.2015.10.006 (2016).Article 

    Google Scholar 
    8.Farooq, M. et al. Rice direct seeding: Experiences, challenges and opportunities. Soil Till. Res. 111, 87–98. https://doi.org/10.1016/j.still.2010.10.008 (2011).Article 

    Google Scholar 
    9.Brown, J. K. M. Yield penalties of disease resistance in crops. Curr. Opin. Plant Biol. 5, 339–344. https://doi.org/10.1016/S1369-5266(02)00270-4 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Liu, H. et al. Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnol. Lett. 34, 2291–2298. https://doi.org/10.1007/s10529-012-1035-z (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Orzali, L., Corsi, B., Forni, C. & Riccinoi, L. Chitosan in agriculture: A new challenge for managing plant disease, biological activities and application of marine polysaccharides. Biol. Act. Appl. Mar. Polysaccharides. 17–36. https://doi.org/10.5772/66840 (2017).
    12.Anosheh, H. P., Sadeghi, H. & Emam, Y. Chemical priming with urea and KNO3 enhances maize hybrids (Zea mays L.) seed viability under abiotic stress. J. Crop Sci. Biotechnol. 14, 289–295. https://doi.org/10.1007/s12892-011-0039-x (2011).Article 

    Google Scholar 
    13.Hänsch, R. & Mendel, R. R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12, 259–266. https://doi.org/10.1016/j.pbi.2009.05.006 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Savvides, A., Ali, S., Tester, M. & Fotopoulos, V. Chemical priming of plants against multiple abiotic stresses: Mission possible?. Trends Plant Sci. 21, 329–340. https://doi.org/10.1016/j.tplants.2015.11.003 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Kurita, K. Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar. Biotechnol. 8, 203–226. https://doi.org/10.1007/s10126-005-0097-5 (2006).CAS 
    Article 

    Google Scholar 
    16.Hamed, I., Özogul, F. & Regenstein, J. M. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci. Technol. 48, 40–50. https://doi.org/10.1016/j.tifs.2015.11.007 (2016).CAS 
    Article 

    Google Scholar 
    17.Badawy, M. E. I. & Rabea, E. I. A. Biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int. J. Carbohydr. Chem. https://doi.org/10.1155/2011/460381 (2011).Article 

    Google Scholar 
    18.Davydova, V. N. et al. Chitosan antiviral activity: Dependence on structure and depolymerization method. Appl. Biochem. Microbiol. 47, 103–108. https://doi.org/10.1134/S0003683811010042 (2011).CAS 
    Article 

    Google Scholar 
    19.Park, B. K. & Kim, M. M. Applications of chitin and its derivatives in biological medicine. Int. J. Mol. Sci. 11, 5152–5164. https://doi.org/10.3390/ijms11125152 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Malerba, M. & Cerana, R. Chitosan effects on plant systems. Int. J. Mol. Sci. 17, 996. https://doi.org/10.3390/ijms17070996 (2016).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    21.Liu, H. et al. Progress and constraints of dry direct-seeded rice in China. J. Food Agric. Environ. 2121, 465–472 (2014).
    Google Scholar 
    22.Li, B., Wang, X., Chen, R., Huangfu, W. & Xie, G. Antibacterial activity of chitosan solution against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima. Carbohydr. Polym. 72, 287–292. https://doi.org/10.1016/j.carbpol.2007.08.012 (2008).CAS 
    Article 

    Google Scholar 
    23.Falcón-Rodríguez, A. B., Cabrera, J. C., Wégria, G., Onderwater, R. C. A., González, G., Nápoles, M. C., Costales, D., Rogers, H. J., Diosdado, E., González, S., Cabrera, G., González, L. & Wattiez, R. Practical use of oligosaccharins in agriculture. In Ist World Congress on the use of biostimulants in agriculture. Acta Hortic. 1009, 195–212 (2012).24.Yin, H. et al. Genome shuffling of Saccharomyces cerevisiae for enhanced glutathione yield and relative gene expression analysis using fluorescent quantitation reverse transcription polymerase chain reaction. J. Microbiol. Methods 127, 188–192. https://doi.org/10.1016/j.mimet.2016.06.012 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Borah, N. et al. Low energy rice stubble management through in situ decomposition. Procedia Environ. Sci. 35, 771–780. https://doi.org/10.1016/j.proenv.2016.07.092 (2016).CAS 
    Article 

    Google Scholar 
    26.Singh, R., Srivastava, M. & Shukla, A. Environmental sustainability of bioethanol production from rice straw in India: A review. Renew. Sustain. Energy Rev. 54, 202–216. https://doi.org/10.1016/j.rser.2015.10.005 (2016).CAS 
    Article 

    Google Scholar 
    27.Mrudula, S. & Murugammal, R. Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz. J. Microbiol. 42, 1119–1127. https://doi.org/10.1590/S1517-83822011000300033 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.El-Sayed, S. M. & Mahdy, M. E. Effect of chitosan on root-knot nematode, Meloidogyne javanica on tomato plants. Int. J. ChemTech Res. 7, 1985–1992 (2015).
    Google Scholar 
    29.Iriti, M. & Varoni, E. M. Chitosan-induced antiviral activity and innate immunity in plants. Environ. Sci. Pollut. Res. 22, 2935–2944. https://doi.org/10.1007/s11356-014-3571-7 (2015).CAS 
    Article 

    Google Scholar 
    30.Orzali, L. et al. Chitosan in agriculture: A new challenge for chitosan in agriculture: A new challenge for managing plant disease managing plant disease. InTech Open Publisher https://doi.org/10.5772/66840 (2017).ADS 
    Article 

    Google Scholar 
    31.Nanda, S., Mohammad, J., Reddy, S. N., Kozinski, J. A. & Dalai, A. K. Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers. Biorefinery 4, 157–191. https://doi.org/10.1007/s13399-013-0097-z (2014).CAS 
    Article 

    Google Scholar 
    32.Aggarwal, N. K., Goyal, V., Saini, A., Yadav, A. & Gupta, R. Enzymatic saccharification of pretreated rice straw by cellulases from Aspergillus niger BK01. 3 Biotech 7, 158. https://doi.org/10.1007/s13205-017-0755-0 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Fatma, H., Abd-EI-Zaher & Fadel, M. Production of bioethanol via enzymatic saccharification of rice straw by cellulase produced by Trichoderma Reesei under solid state fermentation. N. Y. Sci. J., 72–78. http://www.sciencepub.net/newyork (2010).34.Chang, A. K. T., Frias, R. R., Alvarez, L. V., Bigol, U. G. & Guzman, J. P. M. D. Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp. Biocatal. Agric. Biotechnol. 17, 189–195. https://doi.org/10.1016/j.bcab.2018.11.016 (2019).Article 

    Google Scholar 
    35.Lizárraga-Paulín, E. G., Miranda-Castro, S. P., Moreno-Martínez, E., Lara-Sagahón, A. V. & Torres-Pacheco, I. Maize seed coatings and seedling sprayings with chitosan and hydrogen peroxide: Their influence on some phenological and biochemical behaviors. J. Zhejiang Univ. Sci. B. 14, 87–96. https://doi.org/10.1631/jzus.B1200270 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Hadwiger, L. A., Fristensky, B. & Riggleman, R. C. Chitosan, a natural regulator in plant-fungal pathogen interactions, increases crop yields. Chitin Chitosan Relat. Enzymes. https://doi.org/10.1016/b978-0-12-780950-2.50024-1 (1984).Article 

    Google Scholar 
    37.Mrda, J., Crnobarac, J., Dušanić, N., Jocić, S. & Miklič, V. Germination energy as a parameter of seed quality in different sunflower genotypes. Genetika 43, 427–436. https://doi.org/10.2298/GENSR1103427M (2011).Article 

    Google Scholar 
    38.Singh, H. et al. Seed priming techniques in field crops—A review. Agric. Rev. 36, 1–14. https://doi.org/10.18805/ag.v36i4.6662 (2015).Article 

    Google Scholar 
    39.Hameed, A., Sheikh, M. A., Farooq, T., Basra, S. M. A. & Jamil, A. Chitosan priming enhances the seed germination, antioxidants, hydrolytic enzymes, soluble proteins and sugars in wheat seeds. Agrochimica LVII, 31–46 (2013).
    Google Scholar 
    40.Zhou, Y. G. et al. Effects of chitosan on some physiological activity in germinating seed of peanut. J. Peanut Sci. 31, 22–25 (2002).
    Google Scholar 
    41.Samarah, N. H., Wang, H. & Welbaum, G. E. Pepper (Capsicum annuum) seed germination and vigour following nanochitin, chitosan or hydropriming treatments. Seed Sci. Technol. 44, 1–15. https://doi.org/10.15258/sst.2016.44.3.18 (2016).Article 

    Google Scholar 
    42.Chen, J. L. & Zhao, Y. Effect of molecular weight, acid, and plasticizer on the physicochemical and antibacterial properties of β-chitosan based films. J. Food Sci. 77, E127–E136. https://doi.org/10.1111/j.1750-3841.2012.02686.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Kulikov, S. N., Chirkov, S. N., Il’ina, A. V., Lopatin, S. A. & Varlamov, V. P. Effect of the molecular weight of chitosan on its antiviral activity in plants. Appl. Biochem. Microbiol. 42, 200–203. https://doi.org/10.1134/S0003683806020165 (2006).CAS 
    Article 

    Google Scholar 
    44.El Hadrami, A., Adam, L. R., El Hadrami, I. & Daayf, F. Chitosan in plant protection. Mar. Drugs 8, 968–987. https://doi.org/10.3390/md8040968 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Orzali, L., Forni, C. & Riccioni, L. Effect of chitosan seed treatment as elicitor of resistance to Fusarium graminearum in wheat. Seed Sci. Technol. 42, 132–149. https://doi.org/10.15258/sst.2014.42.2.03 (2014).Article 

    Google Scholar 
    46.Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G. & Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromol 4, 1457–1465. https://doi.org/10.1021/bm034130m (2003).CAS 
    Article 

    Google Scholar 
    47.Wang, X., El Hadrami, A., Adam, L. R. & Daayf, F. Differential activation and suppression of potato defence responses by Phytophthora infestans isolates representing US-1 and US-8 genotypes. Plant Pathol. 57, 1026–1037. https://doi.org/10.1111/j.1365-3059.2008.01866.x (2008).CAS 
    Article 

    Google Scholar 
    48.Smits, J. P., Rinzema, A., Tramper, J., Schlösser, E. E. & Knol, W. Accurate determination of process variables in a solid-state fermentation system. Process Biochem. 31, 669–678. https://doi.org/10.1016/S0032-9592(96)00019-2 (1996).CAS 
    Article 

    Google Scholar 
    49.Kalaivani, K., Kalaiselvi, M. M. & Senthil-Nathan, S. Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Sci. Rep. 6, 1–11 (2016).Article 

    Google Scholar 
    50.Rane, K. D. & Hoover, D. G. An evaluation of alkali and acid treatments for chitosan extraction from fungi. Process Biochem. 28, 115–118 (1993).CAS 
    Article 

    Google Scholar 
    51.Crestini, C., Kovac, B. & Giovannozzi-Sermanni, G. Production of chitosan by fungi. 50, 207–210. https://doi.org/10.1002/bit.260500202 (1996).52.Khalaf, S. A. Production and characterization of fungal chitosan under solid-state fermentation conditions. Int. J. Agric. Biol. 6, 1033–1036 (2004).CAS 

    Google Scholar 
    53.Zhang, Z. T., Chen, D. H. & Chen, L. Preparation of two different serials of chitosan. J. Dong Hua Univ. Engl. Ed. 19, 36–39 (2002).
    Google Scholar 
    54.Chanthini, K. M. et al. Sustainable agronomic strategies for enhancing the yield and nutritional quality of wild tomato Solanum Lycopersicum (l) Var Cerasiforme Mill. Agronomy 9, 311 (2019).CAS 
    Article 

    Google Scholar 
    55.Ellis, R. H. & Roberts, E. H. Improved equations for the prediction of seed longevity. Ann. Bot. 45, 13–30. https://doi.org/10.1093/oxfordjournals.aob.a085797 (1980).Article 

    Google Scholar 
    56.Chanthini, K. M. et al. Biocatalysis and agricultural biotechnology Chaetomorpha antennina (Bory) Kützing derived seaweed liquid fertilizers as prospective bio-stimulant for Lycopersicon esculentum (Mill). Biocatal. Agric. Biotechnol. 20, 101190 (2019).Article 

    Google Scholar 
    57.Murray, P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C. & Yolke, R. H. Manual of clinical Microbiology 6th edn. (American Society of Microbiology Press, 1995).
    Google Scholar 
    58.French, E. R. Efficacy of five methods of inoculating potato plants with Pseudomonas solanacearum. Phytopathology 76, 1078 (1986).
    Google Scholar 
    59.Yasmin, S. et al. Biocontrol of Bacterial Leaf Blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front. Microbiol. 8, 1895. https://doi.org/10.3389/fmicb.2017.01895 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Hammerschmidt, R. & Kuć, J. Lignification as a mechanism for induced systemic resistance in cucumber. Physiol. Plant Pathol. 20, 61–71. https://doi.org/10.1016/0048-4059(82)90024-8 (1982).CAS 
    Article 

    Google Scholar 
    61.Worthington, C. C. Worthington Enzyme Manual: Enzymes and Related Biochemicals (Worthington Biochemical Corporation, 1988).
    Google Scholar  More