More stories

  • in

    Deforestation is the turning point for the spreading of a weedy epiphyte: an IBM approach

    1.de Wet, J. M. J. & Harlan, J. R. Weeds and domesticates: Evolution in the man-made habitat. Econ. Bot. 29(2), 99–108. https://doi.org/10.1007/BF02863309 (1975).Article 

    Google Scholar 
    2.Ceballos, G. et al. Accelerated modern human—Induced species losses: Entering the sixth mass extinction. Sci. Adv. 1(June), 1–6. https://doi.org/10.1126/sciadv.1400253 (2015).Article 

    Google Scholar 
    3.Wilcove, D. S. Nest predation in forest tracts and the decline of migratory songbirds. Ecology 66(4), 1211–1214 (1985).Article 

    Google Scholar 
    4.Airoldi, L. & Bulleri, F. Anthropogenic disturbance can determine the magnitude of opportunistic species responses on marine urban infrastructures. PLoS ONE https://doi.org/10.1371/journal.pone.0022985 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Baker, H. G. The evolution of weeds. Annu. Rev. Ecol. Syst. 5, 1–24. https://doi.org/10.2307/2096877 (1974).ADS 
    Article 

    Google Scholar 
    6.Richardson, D. M. et al. Naturalization and invasion of alien plants: Concepts and definitions. Divers. Distrib. 6, 93–107 (2008).Article 

    Google Scholar 
    7.van Etten, M. L., Conner, J. K., Chang, S. M. & Baucom, R. S. Not all weeds are created equal: A database approach uncovers differences in the sexual system of native and introduced weeds. Ecol. Evol. 7(8), 2636–2642. https://doi.org/10.1002/ece3.2820 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Booth, B. D. & Swanton, C. J. Assembly theory applied to weed communities 50th Anniversary—Invited Article Assembly theory applied to weed communities. Weed Sci. 50(3), 2–13. https://doi.org/10.1614/0043-1745(2002)050 (2002).CAS 
    Article 

    Google Scholar 
    9.Kuester, A., Conner, J. K., Culley, T. & Baucom, R. S. How weeds emerge: A taxonomic and trait-based examination using United States data. New Phytol. 202(3), 1055–1068. https://doi.org/10.1111/nph.12698 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.van Kleunen, M. et al. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110617-062654 (2018).Article 

    Google Scholar 
    11.de Bona, S. et al. Spatio-temporal dynamics of density-dependent dispersal during a population colonisation. Ecol. Lett. 22, 634–644 (2019).PubMed 
    Article 

    Google Scholar 
    12.Baker, H. G. Self-compatibility and establishment after “long-distance” dispersal. Evolution 9(3), 347. https://doi.org/10.2307/2405656 (1955).Article 

    Google Scholar 
    13.Razanajatovo, M. et al. Plants capable of selfing are more likely to become naturalized. Nat. Commun. 7, 13313. https://doi.org/10.1038/ncomms13313 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Vallejo-Marín, M., Dorken, M. E. & Barrett, S. C. H. The ecological and evolutionary consequences of clonality for plant mating. Annu. Rev. Ecol. Evol. Syst. 41(1), 193–213. https://doi.org/10.1146/annurev.ecolsys.110308.120258 (2010).Article 

    Google Scholar 
    15.Rodger, J. G., Van Kleunen, M. & Johnson, S. D. Pollinators, mates and Allee effects: The importance of self-pollination for fecundity in an invasive lily. Funct. Ecol. 27(4), 1023–1033. https://doi.org/10.1111/1365-2435.12093 (2013).Article 

    Google Scholar 
    16.Barrett, S. C. H. & Harder, L. D. The ecology of mating and its evolutionary consequences in seed plants. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110316-023021 (2017).Article 

    Google Scholar 
    17.Klimeš, L., Klimešová, J., Hendriks, R. & van Groenendael, J. Clonal plant architecture: A comparative analysis of form and function. In The Ecology and Evolution of Clonal Plants (eds De Kroon, H. & Van Groenendael, J. M.) 1–29 (Backhuys, 1997).
    Google Scholar 
    18.Barrett, S. C. H. Influences of clonality on plant sexual reproduction. Proc. Natl. Acad. Sci. 112(29), 8859–8866. https://doi.org/10.1073/pnas.1501712112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Heywood, J. S. Spatial analysis of genetic variation in plant populations. Annu. Rev. Ecol. Syst. 22, 335–355 (1991).Article 

    Google Scholar 
    20.Barrett, S. C. H. Evolution of mating systems: Outcrossing versus selfing. In The Princeton Guide to Evolution (ed. Losos, J. B.) 356–362 (Princeton University Press, 2013).
    Google Scholar 
    21.Barrett, S. C. H., Arunkumar, R. & Wright, S. I. The demography and population genomics of evolutionary transitions to self-fertilization in plants. Philos. Trans. R. Soc. B Biol. Sci. 369(1648), 20130344 (2014).Article 

    Google Scholar 
    22.Picó, F. X., Quintana-Ascencio, P. F., Mildén, M., Ehrlén, J. & Pfingsten, I. Modelling the effects of genetics and habitat on the demography of a grassland herb. Basic Appl. Ecol. 10(2), 122–130. https://doi.org/10.1016/j.baae.2008.02.006 (2009).Article 

    Google Scholar 
    23.Ellstrand, N. C. & Roose, M. L. Patterns of genotypic diversity in clonal plant species. Am. J. Bot. 74, 123–131 (1987).Article 

    Google Scholar 
    24.Loh, R., Scarano, F. R., Alves-Ferreira, M. & Salgueiro, F. Implications of clonality to population genetic structure of the nurse species Aechmea nuducaulis (L.) Griseb. (Bromeliaceae). Bot. J. Linn. Soc. 178, 329–341 (2015).Article 

    Google Scholar 
    25.Hedrick, P. W. Purging inbreeding depression and the probability of extinction: Full-sib mating. Heredity 73, 363–372. https://doi.org/10.1038/hdy.1994.183 (1994).Article 
    PubMed 

    Google Scholar 
    26.Arunkumar, R., Ness, R. W., Wright, S. I. & Barrett, S. C. H. The evolution of selfing is accompanied by reduced efficacy of selection and purging of deleterious mutations. Genetics 199(3), 817–829. https://doi.org/10.1534/genetics.114.172809 (2015).Article 
    PubMed 

    Google Scholar 
    27.Pannell, J. R. & Barrett, S. C. H. Baker’s law revisited: Reproductive assurance in a metapopulation. Evolution 52(3), 657–668. https://doi.org/10.2307/2411261 (1998).Article 
    PubMed 

    Google Scholar 
    28.Hamrick, J. L. & Trapnell, D. W. Using population genetic analyses to understand seed dispersal patterns. Acta Oecologica 37, 641–649 (2011).ADS 
    Article 

    Google Scholar 
    29.Côrtes, M. C. et al. Low plant density enhances gene dispersal in the Amazonian understory herb Heliconia acuminata. Mol. Ecol. 22, 5716–5729 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    30.Trapnell, D. W., Hamrick, J. L., Ishibashi, C. D. & Kartzinel, T. R. Genetic inference of epiphytic orchid colonization; it may only take one. Mol. Ecol. 22, 3680–3692. https://doi.org/10.1111/mec.12338 (2013).Article 
    PubMed 

    Google Scholar 
    31.Chung, M. Y. et al. Fine-scale genetic structure in populations of the spring ephemeral herb Megaleranthis saniculifolia (Ranunculaceae). Flora Morphol. Distrib. Funct. Ecol. Plants 240, 16–24 (2018).
    Google Scholar 
    32.Roberts, N. R., Dalton, P. J. & Jordan, G. J. Epiphytic ferns and bryophytes of Tasmanian tree-ferns: A comparison of diversity and composition between two host species. Austral Ecol. 30(2), 146–154. https://doi.org/10.1111/j.1442-9993.2005.01440.x (2005).Article 

    Google Scholar 
    33.Cardelús, C. L. & Chazdon, R. L. Inner-crown microenvironments of two emergent tree species in a lowland wet forest. Biotropica 37(2), 238–244. https://doi.org/10.1111/j.1744-7429.2005.00032.x (2005).Article 

    Google Scholar 
    34.Quaresma, A. C., Piedade, M. T. F., Wittmann, F. & ter Steege, H. Species richness, composition, and spatial distribution of vascular epiphytes in Amazonian black-water floodplain forests. Biodivers. Conserv. 27(8), 1981–2002. https://doi.org/10.1007/s10531-018-1520-3 (2018).Article 

    Google Scholar 
    35.Claver, F. K., Alaniz, J. R. & Caldíz, D. O. Tillandsia spp.: Epiphytic weeds of trees and bushes. For. Ecol. Manag. 6(4), 367–372. https://doi.org/10.1016/0378-1127(83)90044-0 (1983).Article 

    Google Scholar 
    36.Bartoli, C. G., Beltrano, J., Fernández, L. V. & Caldíz, D. O. Control of the epiphytic weeds Tillandsia recurvata and Tillandsia aeranthos with different herbicides. For. Ecol. Manage. 59, 289–294 (1993).Article 

    Google Scholar 
    37.Flores-Palacios, A., García-Franco, J. G. & Capistrán-Barradas, A. Biomass, phorophyte specificity and distribution of Tillandsia recurvata in a tropical semi-desert environment (Chihuahuan Desert, Mexico). Plant Ecology and Evolution 148(1), 68–75 (2015).Article 

    Google Scholar 
    38.Birge, W. I. The anatomy and some biological aspects of the “ball moss”, Tillandsia recurvata, 1–24. L. Bull. Univ. Tex. 194(20) (1911).39.Smith, L. B. & Downs, R. J. Tillandsioideae (Bromeliaceae). In Flora Neotropica Monograph 14(2), 663–1492 (1977).40.Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in speciation. Biological Journal of the Linnaean Society, 58(July), 247–276. Retrieved from papers3://publication/uuid/B9DB7D5E-D6AE-404C-BFFC-9F813345329441.McWilliams, E. Chronology of the Natural Range Expansion of Tillandsia recurvata (Bromeliaceae) in Texas. Contributions to Botany 15(2), 343–346 (1992).42.Flores-Palacios, A., Barbosa-Duchateau, C. L., Valencia-Díaz, S., Capistrán-Barradas, A. & García-Franco, J. G. Direct and indirect effects of Tillandsia recurvata on Prosopis laevigata in the Chihuahua desert scrubland of San Luis Potosi, Mexico. J. Arid Environ. 104, 88–95. https://doi.org/10.1016/j.jaridenv.2014.02.010 (2014).ADS 
    Article 

    Google Scholar 
    43.Benzing, D. H. Bromeliaceae: Profile of an Adaptive Radiation (Cambridge University Press, 2000).Book 

    Google Scholar 
    44.Benzing, D. H. Air Plants: Epiphytes and Aerial Gardens (Cornell University Press, 2012).Book 

    Google Scholar 
    45.Foster, M. D. Blueprint of the jungle as depicted by the altitude of growth of the Bromeliadswith notes on the culture of certain tropical epiphytes. Bull. N. Y. Bot. Garden 46, 9–16 (1945).
    Google Scholar 
    46.Soltis, D. E., Gilmartin, A. J., Rieseberg, L. & Gardner, S. Genetic variation in the epiphytes Tillandsia ionantha and T. recurvata (Bromeliaceae). Am. J. Bot. 74(4), 531–537 (1987).CAS 
    Article 

    Google Scholar 
    47.Orozco-Ibarrola, O. A., Flores-Hernández, P. S., Victoriano-Romero, E., Corona-López, A. M. & Flores-Palacios, A. Are breeding system and florivory associated with the abundance of Tillandsia species (Bromeliaceae)?. Bot. J. Linn. Soc. 177(1), 50–65. https://doi.org/10.1111/boj.12225 (2015).Article 

    Google Scholar 
    48.Chilpa-Galván, N. et al. Seed traits favouring dispersal and establishment of six epiphytic Tillandsia (Bromeliaceae) species. Seed Sci. Res. https://doi.org/10.1017/S0960258518000247 (2018).Article 

    Google Scholar 
    49.Southwood, T. & Kennedy, C. Trees as islands. Oikos 41(3), 359–371. https://doi.org/10.2307/3544094 (1983).Article 

    Google Scholar 
    50.Burns, K. C. Network properties of an epiphyte metacommunity. J. Ecol. 95(5), 1142–1151 (2007).Article 

    Google Scholar 
    51.Trapnell, D. W., Hamrick, J. L. & Nason, J. D. Three-dimensional fine-scale genetic structure of the neotropical epiphytic orchid, Laelia rubescens. Mol. Ecol. 13, 1111–1118 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Torres, E., Riofrío, M.-L. & Iriondo, J. M. Complex fine-scale spatial genetic structure in Epidendrum rhopalostele: an epiphytic orchid. Heredity https://doi.org/10.1038/s41437-018-0139-1 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Victoriano-Romero, E., Valencia-Díaz, A., Toledo-Hernández, V. H. & Flores-Palacios, A. Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest. PLoS ONE 12(2), e0171614 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Martins, S. E. (2009). Flora fanerogâmica do estado de São Paulo. FAPESP: Instituto de Botânica.55.Chaves, C. J. N., Dyonisio, J. C. J. C. & Rossatto, D. R. D. R. Host trait combinations drive abundance and canopy distribution of atmospheric bromeliad assemblages. AoB Plants 8(October 2015), plw010. https://doi.org/10.1093/aobpla/plw010 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Epps, C. W. & Keyghobadi, N. Landscape genetics in a changing world: Disentangling historical and contemporary influences and inferring change. Mol. Ecol. 24(24), 6021–6040. https://doi.org/10.1111/mec.13454 (2015).Article 
    PubMed 

    Google Scholar 
    57.Cushman, S. A., Shirk, A. & Landguth, E. L. Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landsc. Ecol. 27(3), 369–380. https://doi.org/10.1007/s10980-011-9693-0 (2012).Article 

    Google Scholar 
    58.Jackson, N. D. & Fahrig, L. Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landsc. Ecol. 31(5), 951–968. https://doi.org/10.1007/s10980-015-0313-2 (2016).Article 

    Google Scholar 
    59.Grimm, V. & Railsback, S. F. Individual-Based Modelling and Ecology (Princeton University Press, 2005).MATH 
    Book 

    Google Scholar 
    60.Csilléry, K., Blum, M. G. B., Gaggiotti, O. E. & François, O. Approximate Bayesian Computation (ABC) in practice. Trends Ecol. Evol. 25(7), 410–418. https://doi.org/10.1016/j.tree.2010.04.001 (2010).Article 
    PubMed 

    Google Scholar 
    61.Udupa, S. M. & Baum, M. High mutation rate and mutational bias at (TAA)n microsatellite loci in chickpea (Cicer arietinum L.). Mol. Genet. Genom. 265(6), 1097–1103. https://doi.org/10.1007/s004380100508 (2001).CAS 
    Article 

    Google Scholar 
    62.Anmarkrud, J. A., Kleven, O., Bachmann, L. & Lifjeld, J. T. Microsatellite evolution: Mutations, sequence variation, and homoplasy in the hypervariable avian microsatellite locus HrU10. BMC Evol. Biol. 8(1), 1–10. https://doi.org/10.1186/1471-2148-8-138 (2008).CAS 
    Article 

    Google Scholar 
    63.Marriage, T. N. et al. Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae). Heredity 103(4), 310–317. https://doi.org/10.1038/hdy.2009.67 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Bernal, R., Valverde, T. & Hernández-Rosas, L. Habitat preference of the epiphyte Tillandsia recurvata (Bromeliaceae) in a semi-desert environment in Central Mexico. Can. J. Bot. 83(10), 1238–1247 (2005).Article 

    Google Scholar 
    65.Chaves, C. J. & Rossatto, D. R. Unravelling intricate interactions among atmospheric bromeliads with highly overlapping niches in seasonal systems. Plant Biol. 22(2), 243–251 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Vekemans, X. & Hardy, O. J. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 13(4), 921–935. https://doi.org/10.1046/j.1365-294X.2004.02076.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Ward, S. Genetic analysis of invasive plant populations at different spatial scales. Biol. Invasions 8(3), 541–552. https://doi.org/10.1007/s10530-005-6443-8 (2006).Article 

    Google Scholar 
    68.Pettengill, J. B., Briscoe Runquist, R. D. & Moeller, D. A. Mating system divergence affects the distribution of sequence diversity within and among populations of recently diverged subspecies of Clarkia xantiana (Onagraceae). Am. J. Bot. 103(1), 99–109. https://doi.org/10.3732/ajb.1500147 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Atwater, D. Z., Fletcher, R. A., Dickinson, C. C., Paterson, A. H. & Barney, J. N. Evidence for fine-scale habitat specialization in an invasive weed. J. Plant Ecol. 11(2), 189–199. https://doi.org/10.1093/jpe/rtw124 (2018).Article 

    Google Scholar 
    70.Li, J. & Dong, M. Fine-scale clonal structure and diversity of invasive plant Mikania micrantha H.B.K. and its plant parasite Cuscuta campestris Yunker. Biol. Invasions 11(3), 687–695. https://doi.org/10.1007/s10530-008-9283-5 (2009).MathSciNet 
    Article 

    Google Scholar 
    71.Ren, M. X., Cafasso, D., Cozzolino, S. & Pinheiro, F. Extensive genetic differentiation at a small geographical scale: Reduced seed dispersal in a narrow endemic marsh orchid, Anacamptis robusta. Bot. J. Linn. Soc. 183(3), 429–438. https://doi.org/10.1093/botlinnean/bow017 (2017).Article 

    Google Scholar 
    72.Barluenga, M. et al. Fine-scale spatial genetic structure and gene dispersal in Silene latifolia. Heredity 106(1), 13–24. https://doi.org/10.1038/hdy.2010.38 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    73.Charbonneau, A. et al. Weed evolution: Genetic differentiation among wild, weedy, and crop radish. Evol. Appl. https://doi.org/10.1111/eva.12699 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Sagnard, F., Oddou-Muratorio, S., Pichot, C., Vendramin, G. G. & Fady, B. Effects of seed dispersal, adult tree and seedling density on the spatial genetic structure of regeneration at fine temporal and spatial scales. Tree Genet. Genomes 7(1), 37–48. https://doi.org/10.1007/s11295-010-0313-y (2011).Article 

    Google Scholar 
    75.Counsens, R. & Mortimer, M. Dynamics of Weed Populations (Cambridge University Press, 1995).Book 

    Google Scholar 
    76.Loreau, M. et al. Unifying sources and sinks in ecology and Earth sciences. Biol. Rev. 88, 365–379 (2013).PubMed 
    Article 

    Google Scholar 
    77.dos Santos, L. S. et al. Generalized Allee effect model. Theory Biosci. 133, 117–124 (2014).PubMed 

    Google Scholar 
    78.Spruch, L. et al. Modeling community assembly on growing habitat “islands”: A case study on trees and their vascular epiphyte communities. Theor. Ecol. 12, 1–17 (2019).Article 

    Google Scholar 
    79.Einzmann, H. J. R. & Zotz, G. “No signs of saturation”: long-term dynamics of vascular epiphyte communities in a human-modified landscape. Biodivers. Conserv. 26, 1393–1410 (2017).Article 

    Google Scholar 
    80.Belinchón, R., Harrison, P. J., Mair, L., Várkonyi, G. & Snäll, T. Local epiphyte establishment and future metapopulation dynamics in landscapes with different spatiotemporal properties. Ecology 98(3), 741–750. https://doi.org/10.1002/ecy.1686 (2017).Article 
    PubMed 

    Google Scholar 
    81.Vergara-Torres, C. A., Pacheco-Álvarez, M. C. & Flores-Palacios, A. Host preference and host limitation of vascular epiphytes in a tropical dry forest of central Mexico. J. Trop. Ecol. 26(6), 563–570. https://doi.org/10.1017/S0266467410000349 (2010).Article 

    Google Scholar 
    82.Barrett, S. C. H. & Kohn, J. R. Genetic and evolutionary consequences of small population size in plants: Implications for conservation. In Genetics and Conservation of Rare Plants (eds Falk, D. A. & Holsinge, K. E.) 3–30 (Oxford University Press, 1991).
    Google Scholar 
    83.Nathan, R., Horn, H. S., Chave, J. & Levin, S. A. Mechanistic models for tree seed dispersal by wind in dense forests and open landscapes. In Seed Dispersal and Frugivory-Ecologie, Evolution, Conservation 69–82 (2002). https://doi.org/10.1079/9780851995250.006984.Cousens, R. et al. Dispersal in Plants. A Population Perspective (Oxford University Press, 2008).Book 

    Google Scholar 
    85.Snäll, T., Ehrlén, J. & Rydin, H. Colonization-extinction dynamics of an epiphyte metapopulation in a dynamic landscape. Ecology 86(1), 106–115 (2005).Article 

    Google Scholar 
    86.Ruiz-Cordova, J. P., Toledo-Hernández, V. H. & Flores-Palacios, A. The effect of substrate abundance in the vertical stratification of bromeliad epiphytes in a tropical dry forest (Mexico). Flora Morphol. Distrib. Funct. Ecol. Plants 209(8), 375–384. https://doi.org/10.1016/j.flora.2014.06.003 (2014).Article 

    Google Scholar 
    87.Flores-Palacios, A., Bustamante-Molina, A. B., Corona-López, A. M. & Valencia-Díaz, S. Seed number, germination and longevity in wild dry forest Tillandsia species of horticultural value. Scientia Hortic. 187, 72–79 (2015).Article 

    Google Scholar 
    88.Goodman, R., & Herold, M. (2014). Why maintaining tropical forests is essential and urgent for a stable climate. Center for Global Development Working Paper, (385).89.Seymour, F. & Busch, J. Why Forests? Why Now?: The Science, Economics, and Politics of Tropical Forests and Climate Change (Brookings Institution Press, 2016).
    Google Scholar 
    90.Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507(7490), 90–93 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Tel-Zur, N., Abbo, S., Myslabodsky, D. & Mizrahi, Y. Modified CTAB procedure for DNA isolation from epiphytic cacti of genera Hylocereus and Selenicereus (Cactaceae). Plant Mol. Biol. Rep. 17, 249–254 (1999).CAS 
    Article 

    Google Scholar 
    92.Chaves, C. J. N., Aoki-Gonçalves, F., Leal, B. S. S., Rossatto, D. R. & Palma-Silva, C. Transferability of nuclear microsatellite markers to the atmospheric bromeliads Tillandsia recurvata and T. aeranthos (Bromeliaceae). Braz. J. Bot. 41, 931–935. https://doi.org/10.1007/s40415-018-0494-4 (2018).Article 

    Google Scholar 
    93.Keenan, K., Mcginnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. DiveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12067 (2013).Article 

    Google Scholar 
    94.Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Nei, M. Genetic distances between populations. Am. Nat. 106, 283–292 (1972).Article 

    Google Scholar 
    96.Edwards, A. W. F. Distance between populations on the basis of gene frequencies. Biometrics 27, 873–881 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    97.Reynolds, J. B., Weir, B. S. & Cockerham, C. C. Estimation of the coancestry coefficient: Basis for a short-term genetic distance. Genetics 105, 767–779 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ https://doi.org/10.7717/peerj.281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Paradis, E. pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491. https://doi.org/10.1007/s00424-009-0730-7 (1992).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Loiselle, B. A., Sork, V. L., Nason, J. & Graham, C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am. J. Bot. 82(11), 1420–1425 (1995).Article 

    Google Scholar 
    102.Bailleul, D., Stoeckel, S. & Arnaud-Haond, S. RClone: A package to identify MultiLocus Clonal Lineages and handle clonal data sets in r. Methods Ecol. Evol. 7(8), 966–970. https://doi.org/10.1111/2041-210X.12550 (2016).Article 

    Google Scholar 
    103.Harrison, S. et al. Beta diversity on geographic gradients in Britain. J. Anim. Ecol. 61(1), 151–158 (1992).Article 

    Google Scholar 
    104.Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88(10), 2427–2439. https://doi.org/10.1890/07-1861.1 (2007).Article 
    PubMed 

    Google Scholar 
    105.Charney, N. & Record, S. Vegetarian: Jost diversity measures for community data. https://cran.r-project.org/web/packages/vegetarian/index.html (2012). Accessed Jul 2018.106.Wilensky, U. NetLogo (Northwestern University, Center for Connected Learning and Computer-Based Modeling, 1999).
    Google Scholar 
    107.Grimm, V. et al. A standard protocol for describing individual-based and agent-based models. Ecol. Model. 198(1–2), 115–126. https://doi.org/10.1016/j.ecolmodel.2006.04.023 (2006).Article 

    Google Scholar 
    108.Grimm, V. et al. The ODD protocol: A review and first update. Ecol. Model. 221(23), 2760–2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019 (2010).Article 

    Google Scholar 
    109.Kooijman, B. & Kooijman, S. A. L. M. Dynamic Energy Budget Theory for Metabolic Organisation (Cambridge University Press, 2010).
    Google Scholar 
    110.Sibly, R. M. et al. Representing the acquisition and use of energy by individuals in agent-based models of animal populations. Methods Ecol. Evol. 4(2), 151–161 (2013).Article 

    Google Scholar 
    111.Johnston, A. S. A., Hodson, M. E., Thorbek, P., Alvarez, T. & Sibly, R. M. An energy budget agent-based model of earthworm populations and its application to study the effects of pesticides. Ecol. Model. 280, 5–17 (2014).CAS 
    Article 

    Google Scholar 
    112.van der Vaart, E., Johnston, A. S. A. & Sibly, R. M. Predicting how many animals will be where: How to build, calibrate and evaluate individual-based models. Ecol. Model. 326, 113–123 (2016).Article 

    Google Scholar 
    113.Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    114.Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).CAS 
    Article 

    Google Scholar 
    115.Csilléry, K., François, O. & Blum, M. G. abc: An R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 3(3), 475–479 (2012).Article 

    Google Scholar 
    116.Pastur, G. M., Lencinas, M. V., Cellini, J. M. & Mundo, I. Diameter growth: Can live trees decrease?. Forestry 80(1), 83–88. https://doi.org/10.1093/forestry/cpl047 (2007).Article 

    Google Scholar  More

  • in

    Plant defence to sequential attack is adapted to prevalent herbivores

    1.Karban, R. The ecology and evolution of induced responses to herbivory and how plants perceive risk. Ecol. Entomol. 45, 1–9 (2020).Article 

    Google Scholar 
    2.Heil, M. Plastic defence expression in plants. Evol. Ecol. 24, 555–569 (2010).Article 

    Google Scholar 
    3.Erb, M. & Reymond, P. Molecular interactions between plants and insect herbivores. Annu. Rev. Plant Biol. 70, 527–557 (2019).CAS 
    Article 

    Google Scholar 
    4.Ohgushi, T. Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu. Rev. Ecol. Evol. Syst. 36, 81–105 (2005).Article 

    Google Scholar 
    5.Poelman, E. H., van Loon, J. J. A., van Dam, N. M., Vet, L. E. M. & Dicke, M. Herbivore-induced plant responses in Brassica oleracea prevail over effects of constitutive resistance and result in enhanced herbivore attack. Ecol. Entomol. 35, 240–247 (2010).Article 

    Google Scholar 
    6.Erb, M., Meldau, S. & Howe, G. A. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17, 250–259 (2012).CAS 
    Article 

    Google Scholar 
    7.Soler, R. et al. Plant-mediated facilitation between a leaf-feeding and a phloem-feeding insect in a brassicaceous plant: from insect performance to gene transcription. Funct. Ecol. 26, 156–166 (2012).Article 

    Google Scholar 
    8.Thaler, J. S., Humphrey, P. T. & Whiteman, N. K. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 17, 260–270 (2012).CAS 
    Article 

    Google Scholar 
    9.Ehrlich, P. R. & Raven, P. H. Butterflies and plants—a study in coevolution. Evolution 18, 586–608 (1964).Article 

    Google Scholar 
    10.Labandeira, C. C., Johnson, K. R. & Wilf, P. Impact of the terminal Cretaceous event on plant–insect associations. Proc. Natl Acad. Sci. USA 99, 2061–2066 (2002).CAS 
    Article 

    Google Scholar 
    11.Ramos, S. E. & Schiestl, F. P. Rapid plant evolution driven by the interaction of pollination and herbivory. Science 364, 193–196 (2019).CAS 
    Article 

    Google Scholar 
    12.Züst, T. et al. Natural enemies drive geographic variation in plant defenses. Science 338, 116–119 (2012).Article 

    Google Scholar 
    13.Agrawal, A. A. Specificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillars. Oikos 89, 493–500 (2000).Article 

    Google Scholar 
    14.Moreira, X., Abdala‐Roberts, L. & Castagneyrol, B. Interactions between plant defence signalling pathways: evidence from bioassays with insect herbivores and plant pathogens. J. Ecol. 106, 2353–2364 (2018).Article 

    Google Scholar 
    15.Voelckel, C. & Baldwin, I. T. Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivore-specific transcriptional imprints and a distinct imprint from stress combinations. Plant J. 38, 650–663 (2004).CAS 
    Article 

    Google Scholar 
    16.Caarls, L., Pieterse, C. M. J. & Van Wees, S. C. M. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front. Plant Sci. 6, 170 (2015).Article 

    Google Scholar 
    17.Proietti, S. et al. Genome-wide association study reveals novel players in defense hormone crosstalk in Arabidopsis. Plant Cell Environ. 41, 2342–2356 (2018).CAS 
    Article 

    Google Scholar 
    18.Davidson-Lowe, E., Szendrei, Z. & Ali, J. G. Asymmetric effects of a leaf-chewing herbivore on aphid population growth. Ecol. Entomol. 44, 81–92 (2019).Article 

    Google Scholar 
    19.Eisenring, M., Glauser, G., Meissle, M. & Romeis, J. Differential impact of herbivores from three feeding guilds on systemic secondary metabolite induction, phytohormone levels and plant-mediated herbivore interactions. J. Chem. Ecol. 44, 1178–1189 (2018).CAS 
    Article 

    Google Scholar 
    20.Züst, T. & Agrawal, A. A. Mechanisms and evolution of plant resistance to aphids. Nat. Plants 2, 15206 (2016).Article 

    Google Scholar 
    21.Ali, J. G., Agrawal, A. A. & Fox, C. Asymmetry of plant-mediated interactions between specialist aphids and caterpillars on two milkweeds. Funct. Ecol. 28, 1404–1412 (2014).Article 

    Google Scholar 
    22.Bidart-Bouzat, M. G. & Kliebenstein, D. An ecological genomic approach challenging the paradigm of differential plant responses to specialist versus generalist insect herbivores. Oecologia 167, 677–689 (2011).Article 

    Google Scholar 
    23.Ali, J. G. & Agrawal, A. A. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 17, 293–302 (2012).CAS 
    Article 

    Google Scholar 
    24.Mertens, D. et al. Predictability of biotic stress structures plant defence evolution. Trends Ecol. Evol. 36, 444–456 (2021).Article 

    Google Scholar 
    25.Appel, H. M. et al. Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores. Front. Plant Sci. 5, 20 (2014).
    Google Scholar 
    26.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    27.Connell, J. H. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos 35, 131–138 (1980).Article 

    Google Scholar 
    28.Barton, K. E. & Koricheva, J. The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis. Am. Nat. 175, 481–493 (2010).Article 

    Google Scholar 
    29.Barbosa, P., Letourneau, D. K. & Agrawal A. A. (eds) Insect Outbreaks Revisited (Wiley-Blackwell, 2012).30.Bischoff, A. & Trémulot, S. Differentiation and adaptation in Brassica nigra populations: interactions with related herbivores. Oecologia 165, 971–981 (2011).Article 

    Google Scholar 
    31.Schlinkert, H. et al. Plant size as determinant of species richness of herbivores, natural enemies and pollinators across 21 Brassicaceae species. PLoS ONE 10, e0135928 (2015).Article 

    Google Scholar 
    32.Snoeren, T. A. L., Broekgaarden, C. & Dicke, M. Jasmonates differentially affect interconnected signal-transduction pathways of Pieris rapae-induced defenses in Arabidopsis thaliana. Insect Sci. 18, 249–258 (2011).CAS 
    Article 

    Google Scholar 
    33.Leon-Reyes, A. et al. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232, 1423–1432 (2010).CAS 
    Article 

    Google Scholar 
    34.Broekgaarden, C., Voorrips, R. E., Dicke, M. & Vosman, B. Transcriptional responses of Brassica nigra to feeding by specialist insects of different feeding guilds. Insect Sci. 18, 259–272 (2011).CAS 
    Article 

    Google Scholar 
    35.Fernández de Bobadilla, M. et al. Insect species richness affects plant responses to multi‐herbivore attack. New Phytol. https://doi.org/10.1111/nph.17228 (2021).36.Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).Article 

    Google Scholar 
    37.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).38.Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. nlme: Linear and nonlinear mixed effects models. R package version 3.1-141 https://CRAN.R-project.org/package=nlme (2019).39.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    40.Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    41.Lenth, R. emmean: Estimated marginal means, aka least-squares means. R package version 1.2.3 https://CRAN.R-project.org/package=emmeans (2018).42.R Core Team. R: A Language and Environment for Statistical Computing version 3.2.4 (R Foundation for Statistical Computing, 2016).43.Lajeunesse, M. J. On the meta‐analysis of response ratios for studies with correlated and multi‐group designs. Ecology 92, 2049–2055 (2011).Article 

    Google Scholar  More

  • in

    Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats

    Effects of storage and technical variationWe first validated our methods by assessing the effect of storage and technical variation on microbiome composition. To quantify the effect of the two storage methods on bacterial composition in fresh samples, we performed a separate pilot study with nine faecal samples sourced from nine captive meerkats at Zurich University. Samples were immediately frozen after collection, and then either freeze-dried or kept frozen at −80 °C for seven days. Microbiome composition clustered strongly by sample identity in their beta diversity (Supplementary Fig. 1b), and storage did not significantly affect composition (Weighted Unifrac: F = 0.7, p = 0.52; Unweighted Unifrac: F = 1.0, p = 0.37). Across samples analysed in this study, storage had significant yet small effects on estimated bacterial load, with frozen samples overall having slightly lower estimated abundance (t = 7.2, p  More

  • in

    Biological activity of chitosan inducing resistance efficiency of rice (Oryza sativa L.) after treatment with fungal based chitosan

    1.Chaney, R. L., Kim, W. I., Kunhikrishnan, A., Yang, J. E. & Ok, Y. S. Integrated management strategies for arsenic and cadmium in rice paddy environments. Geoderma 270, 1–116. https://doi.org/10.1016/j.geoderma.2016.03.001 (2016).ADS 
    Article 

    Google Scholar 
    2.Nakashima, K., Yamaguchi-Shinozaki, K. & Shinozaki, K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 5, 170. https://doi.org/10.3389/fpls.2014.00170 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Senthil-Nathan, S. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front. Physiol. 4, 359. https://doi.org/10.3389/fphys.2013.00359 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Kalaivani, K., Maruthi-Kalaiselvi, M. & Senthil-Nathan, S. Seed treatment and foliar application of methyl salicylate (MeSA) as a defense mechanism in rice plants against the pathogenic bacterium, Xanthomonas oryzae pv. oryzae. Pest Biochem. Physiol. 171, 104718. https://doi.org/10.1016/j.pestbp.2020.104718 (2021).CAS 
    Article 

    Google Scholar 
    5.Das, G. & Rao, G. J. N. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front. Plant Sci. 6, 698. https://doi.org/10.3389/fpls.2015.00698 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Senthil-Nathan, S. A review of biopesticides and their mode of action against insect pests. Environ. Sustain. https://doi.org/10.1007/978-81-322-2056-5_3 (2015).Article 

    Google Scholar 
    7.Shi, W. et al. Grain yield and quality responses of tropical hybrid rice to high night-time temperature. Food Crop Res. 190, 18–25. https://doi.org/10.1016/j.fcr.2015.10.006 (2016).Article 

    Google Scholar 
    8.Farooq, M. et al. Rice direct seeding: Experiences, challenges and opportunities. Soil Till. Res. 111, 87–98. https://doi.org/10.1016/j.still.2010.10.008 (2011).Article 

    Google Scholar 
    9.Brown, J. K. M. Yield penalties of disease resistance in crops. Curr. Opin. Plant Biol. 5, 339–344. https://doi.org/10.1016/S1369-5266(02)00270-4 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Liu, H. et al. Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnol. Lett. 34, 2291–2298. https://doi.org/10.1007/s10529-012-1035-z (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Orzali, L., Corsi, B., Forni, C. & Riccinoi, L. Chitosan in agriculture: A new challenge for managing plant disease, biological activities and application of marine polysaccharides. Biol. Act. Appl. Mar. Polysaccharides. 17–36. https://doi.org/10.5772/66840 (2017).
    12.Anosheh, H. P., Sadeghi, H. & Emam, Y. Chemical priming with urea and KNO3 enhances maize hybrids (Zea mays L.) seed viability under abiotic stress. J. Crop Sci. Biotechnol. 14, 289–295. https://doi.org/10.1007/s12892-011-0039-x (2011).Article 

    Google Scholar 
    13.Hänsch, R. & Mendel, R. R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12, 259–266. https://doi.org/10.1016/j.pbi.2009.05.006 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Savvides, A., Ali, S., Tester, M. & Fotopoulos, V. Chemical priming of plants against multiple abiotic stresses: Mission possible?. Trends Plant Sci. 21, 329–340. https://doi.org/10.1016/j.tplants.2015.11.003 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Kurita, K. Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar. Biotechnol. 8, 203–226. https://doi.org/10.1007/s10126-005-0097-5 (2006).CAS 
    Article 

    Google Scholar 
    16.Hamed, I., Özogul, F. & Regenstein, J. M. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci. Technol. 48, 40–50. https://doi.org/10.1016/j.tifs.2015.11.007 (2016).CAS 
    Article 

    Google Scholar 
    17.Badawy, M. E. I. & Rabea, E. I. A. Biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int. J. Carbohydr. Chem. https://doi.org/10.1155/2011/460381 (2011).Article 

    Google Scholar 
    18.Davydova, V. N. et al. Chitosan antiviral activity: Dependence on structure and depolymerization method. Appl. Biochem. Microbiol. 47, 103–108. https://doi.org/10.1134/S0003683811010042 (2011).CAS 
    Article 

    Google Scholar 
    19.Park, B. K. & Kim, M. M. Applications of chitin and its derivatives in biological medicine. Int. J. Mol. Sci. 11, 5152–5164. https://doi.org/10.3390/ijms11125152 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Malerba, M. & Cerana, R. Chitosan effects on plant systems. Int. J. Mol. Sci. 17, 996. https://doi.org/10.3390/ijms17070996 (2016).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    21.Liu, H. et al. Progress and constraints of dry direct-seeded rice in China. J. Food Agric. Environ. 2121, 465–472 (2014).
    Google Scholar 
    22.Li, B., Wang, X., Chen, R., Huangfu, W. & Xie, G. Antibacterial activity of chitosan solution against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima. Carbohydr. Polym. 72, 287–292. https://doi.org/10.1016/j.carbpol.2007.08.012 (2008).CAS 
    Article 

    Google Scholar 
    23.Falcón-Rodríguez, A. B., Cabrera, J. C., Wégria, G., Onderwater, R. C. A., González, G., Nápoles, M. C., Costales, D., Rogers, H. J., Diosdado, E., González, S., Cabrera, G., González, L. & Wattiez, R. Practical use of oligosaccharins in agriculture. In Ist World Congress on the use of biostimulants in agriculture. Acta Hortic. 1009, 195–212 (2012).24.Yin, H. et al. Genome shuffling of Saccharomyces cerevisiae for enhanced glutathione yield and relative gene expression analysis using fluorescent quantitation reverse transcription polymerase chain reaction. J. Microbiol. Methods 127, 188–192. https://doi.org/10.1016/j.mimet.2016.06.012 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Borah, N. et al. Low energy rice stubble management through in situ decomposition. Procedia Environ. Sci. 35, 771–780. https://doi.org/10.1016/j.proenv.2016.07.092 (2016).CAS 
    Article 

    Google Scholar 
    26.Singh, R., Srivastava, M. & Shukla, A. Environmental sustainability of bioethanol production from rice straw in India: A review. Renew. Sustain. Energy Rev. 54, 202–216. https://doi.org/10.1016/j.rser.2015.10.005 (2016).CAS 
    Article 

    Google Scholar 
    27.Mrudula, S. & Murugammal, R. Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz. J. Microbiol. 42, 1119–1127. https://doi.org/10.1590/S1517-83822011000300033 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.El-Sayed, S. M. & Mahdy, M. E. Effect of chitosan on root-knot nematode, Meloidogyne javanica on tomato plants. Int. J. ChemTech Res. 7, 1985–1992 (2015).
    Google Scholar 
    29.Iriti, M. & Varoni, E. M. Chitosan-induced antiviral activity and innate immunity in plants. Environ. Sci. Pollut. Res. 22, 2935–2944. https://doi.org/10.1007/s11356-014-3571-7 (2015).CAS 
    Article 

    Google Scholar 
    30.Orzali, L. et al. Chitosan in agriculture: A new challenge for chitosan in agriculture: A new challenge for managing plant disease managing plant disease. InTech Open Publisher https://doi.org/10.5772/66840 (2017).ADS 
    Article 

    Google Scholar 
    31.Nanda, S., Mohammad, J., Reddy, S. N., Kozinski, J. A. & Dalai, A. K. Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers. Biorefinery 4, 157–191. https://doi.org/10.1007/s13399-013-0097-z (2014).CAS 
    Article 

    Google Scholar 
    32.Aggarwal, N. K., Goyal, V., Saini, A., Yadav, A. & Gupta, R. Enzymatic saccharification of pretreated rice straw by cellulases from Aspergillus niger BK01. 3 Biotech 7, 158. https://doi.org/10.1007/s13205-017-0755-0 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Fatma, H., Abd-EI-Zaher & Fadel, M. Production of bioethanol via enzymatic saccharification of rice straw by cellulase produced by Trichoderma Reesei under solid state fermentation. N. Y. Sci. J., 72–78. http://www.sciencepub.net/newyork (2010).34.Chang, A. K. T., Frias, R. R., Alvarez, L. V., Bigol, U. G. & Guzman, J. P. M. D. Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp. Biocatal. Agric. Biotechnol. 17, 189–195. https://doi.org/10.1016/j.bcab.2018.11.016 (2019).Article 

    Google Scholar 
    35.Lizárraga-Paulín, E. G., Miranda-Castro, S. P., Moreno-Martínez, E., Lara-Sagahón, A. V. & Torres-Pacheco, I. Maize seed coatings and seedling sprayings with chitosan and hydrogen peroxide: Their influence on some phenological and biochemical behaviors. J. Zhejiang Univ. Sci. B. 14, 87–96. https://doi.org/10.1631/jzus.B1200270 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Hadwiger, L. A., Fristensky, B. & Riggleman, R. C. Chitosan, a natural regulator in plant-fungal pathogen interactions, increases crop yields. Chitin Chitosan Relat. Enzymes. https://doi.org/10.1016/b978-0-12-780950-2.50024-1 (1984).Article 

    Google Scholar 
    37.Mrda, J., Crnobarac, J., Dušanić, N., Jocić, S. & Miklič, V. Germination energy as a parameter of seed quality in different sunflower genotypes. Genetika 43, 427–436. https://doi.org/10.2298/GENSR1103427M (2011).Article 

    Google Scholar 
    38.Singh, H. et al. Seed priming techniques in field crops—A review. Agric. Rev. 36, 1–14. https://doi.org/10.18805/ag.v36i4.6662 (2015).Article 

    Google Scholar 
    39.Hameed, A., Sheikh, M. A., Farooq, T., Basra, S. M. A. & Jamil, A. Chitosan priming enhances the seed germination, antioxidants, hydrolytic enzymes, soluble proteins and sugars in wheat seeds. Agrochimica LVII, 31–46 (2013).
    Google Scholar 
    40.Zhou, Y. G. et al. Effects of chitosan on some physiological activity in germinating seed of peanut. J. Peanut Sci. 31, 22–25 (2002).
    Google Scholar 
    41.Samarah, N. H., Wang, H. & Welbaum, G. E. Pepper (Capsicum annuum) seed germination and vigour following nanochitin, chitosan or hydropriming treatments. Seed Sci. Technol. 44, 1–15. https://doi.org/10.15258/sst.2016.44.3.18 (2016).Article 

    Google Scholar 
    42.Chen, J. L. & Zhao, Y. Effect of molecular weight, acid, and plasticizer on the physicochemical and antibacterial properties of β-chitosan based films. J. Food Sci. 77, E127–E136. https://doi.org/10.1111/j.1750-3841.2012.02686.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Kulikov, S. N., Chirkov, S. N., Il’ina, A. V., Lopatin, S. A. & Varlamov, V. P. Effect of the molecular weight of chitosan on its antiviral activity in plants. Appl. Biochem. Microbiol. 42, 200–203. https://doi.org/10.1134/S0003683806020165 (2006).CAS 
    Article 

    Google Scholar 
    44.El Hadrami, A., Adam, L. R., El Hadrami, I. & Daayf, F. Chitosan in plant protection. Mar. Drugs 8, 968–987. https://doi.org/10.3390/md8040968 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Orzali, L., Forni, C. & Riccioni, L. Effect of chitosan seed treatment as elicitor of resistance to Fusarium graminearum in wheat. Seed Sci. Technol. 42, 132–149. https://doi.org/10.15258/sst.2014.42.2.03 (2014).Article 

    Google Scholar 
    46.Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G. & Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromol 4, 1457–1465. https://doi.org/10.1021/bm034130m (2003).CAS 
    Article 

    Google Scholar 
    47.Wang, X., El Hadrami, A., Adam, L. R. & Daayf, F. Differential activation and suppression of potato defence responses by Phytophthora infestans isolates representing US-1 and US-8 genotypes. Plant Pathol. 57, 1026–1037. https://doi.org/10.1111/j.1365-3059.2008.01866.x (2008).CAS 
    Article 

    Google Scholar 
    48.Smits, J. P., Rinzema, A., Tramper, J., Schlösser, E. E. & Knol, W. Accurate determination of process variables in a solid-state fermentation system. Process Biochem. 31, 669–678. https://doi.org/10.1016/S0032-9592(96)00019-2 (1996).CAS 
    Article 

    Google Scholar 
    49.Kalaivani, K., Kalaiselvi, M. M. & Senthil-Nathan, S. Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Sci. Rep. 6, 1–11 (2016).Article 

    Google Scholar 
    50.Rane, K. D. & Hoover, D. G. An evaluation of alkali and acid treatments for chitosan extraction from fungi. Process Biochem. 28, 115–118 (1993).CAS 
    Article 

    Google Scholar 
    51.Crestini, C., Kovac, B. & Giovannozzi-Sermanni, G. Production of chitosan by fungi. 50, 207–210. https://doi.org/10.1002/bit.260500202 (1996).52.Khalaf, S. A. Production and characterization of fungal chitosan under solid-state fermentation conditions. Int. J. Agric. Biol. 6, 1033–1036 (2004).CAS 

    Google Scholar 
    53.Zhang, Z. T., Chen, D. H. & Chen, L. Preparation of two different serials of chitosan. J. Dong Hua Univ. Engl. Ed. 19, 36–39 (2002).
    Google Scholar 
    54.Chanthini, K. M. et al. Sustainable agronomic strategies for enhancing the yield and nutritional quality of wild tomato Solanum Lycopersicum (l) Var Cerasiforme Mill. Agronomy 9, 311 (2019).CAS 
    Article 

    Google Scholar 
    55.Ellis, R. H. & Roberts, E. H. Improved equations for the prediction of seed longevity. Ann. Bot. 45, 13–30. https://doi.org/10.1093/oxfordjournals.aob.a085797 (1980).Article 

    Google Scholar 
    56.Chanthini, K. M. et al. Biocatalysis and agricultural biotechnology Chaetomorpha antennina (Bory) Kützing derived seaweed liquid fertilizers as prospective bio-stimulant for Lycopersicon esculentum (Mill). Biocatal. Agric. Biotechnol. 20, 101190 (2019).Article 

    Google Scholar 
    57.Murray, P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C. & Yolke, R. H. Manual of clinical Microbiology 6th edn. (American Society of Microbiology Press, 1995).
    Google Scholar 
    58.French, E. R. Efficacy of five methods of inoculating potato plants with Pseudomonas solanacearum. Phytopathology 76, 1078 (1986).
    Google Scholar 
    59.Yasmin, S. et al. Biocontrol of Bacterial Leaf Blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front. Microbiol. 8, 1895. https://doi.org/10.3389/fmicb.2017.01895 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Hammerschmidt, R. & Kuć, J. Lignification as a mechanism for induced systemic resistance in cucumber. Physiol. Plant Pathol. 20, 61–71. https://doi.org/10.1016/0048-4059(82)90024-8 (1982).CAS 
    Article 

    Google Scholar 
    61.Worthington, C. C. Worthington Enzyme Manual: Enzymes and Related Biochemicals (Worthington Biochemical Corporation, 1988).
    Google Scholar  More

  • in

    Seasonal activity of Dermacentor reticulatus ticks in the era of progressive climate change in eastern Poland

    1.Rubel, F. et al. Geographical distribution of Dermacentor marginatus and Dermacentor reticulatus in Europe. Ticks Tick Borne Dis. 7, 224–233 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Medlock, J. M. et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites Vectors 6, 1–11 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Jongejan, F. & Uilenberg, G. The global importance of ticks. Parasitology 129, 3–14 (2004).Article 

    Google Scholar 
    4.Földvári, G., Široký, P., Szekeres, S., Majoros, G. & Sprong, H. Dermacentor reticulatus: a vector on the rise. Parasites Vectors 9, 1–29 (2016).Article 

    Google Scholar 
    5.Ličková, M. et al. Dermacentor reticulatus is a vector of tick-borne encephalitis virus. Ticks Tick Borne Dis. 11, 101414 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Pawełczyk, A. et al. Long-term study of Borrelia and Babesia prevalence and co-infection in Ixodes ricinus and Dermacentor recticulatus ticks removed from humans in Poland, 2016–2019. Parasites Vectors 14, 1–13 (2021).Article 
    CAS 

    Google Scholar 
    7.Karbowiak, G. et al. The competition between immatures of Ixodes ricinus and Dermacentor reticulatus (Ixodida: Ixodidae) ticks for rodent hosts. J. Med. Entomol. 56, 448–452 (2018).Article 

    Google Scholar 
    8.Karbowiak, G. The occurrence of the Dermacentor reticulatus tick-its expansion to new areas and possible causes. Ann. Parasitol. 60, 37–47 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    9.Drehmann, M. et al. The Spatial Distribution of Dermacentor Ticks (Ixodidae) in Germany: Evidence of a continuing spread of Dermacentor reticulatus. Front. Vet. Sci. 7, 578220 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Sands, B. O., Bryer, K. E. & Wall, R. Climate and the seasonal abundance of the tick Dermacentor reticulatus. Med. Vet. Entomol. https://doi.org/10.1111/mve.12518 (2021).Article 
    PubMed 

    Google Scholar 
    11.Hasle, G. et al. Transport of ticks by migratory passerine birds to Norway. J. Parasitol. 95, 1342–1351 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Kjær, L. J. et al. A large-scale screening for the taiga tick, Ixodes persulcatus, and the meadow tick, Dermacentor reticulatus, in southern Scandinavia, 2016. Parasites Vectors 12, 1–4 (2019).Article 

    Google Scholar 
    13.García-Sanmartín, J., Barandika, J. F., Juste, R. A., García-Pérez, A. L. & Hurtado, A. Distribution and molecular detection of Theileria and Babesia in questing ticks from northern Spain. Med. Vet. Entomol. 22, 318–325 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Olivieri, E. et al. The southernmost foci of Dermacentor reticulatus in Italy and associated Babesia canis infection in dogs. Parasites Vectors 9, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    15.Široký, P. et al. The distribution and spreading pattern of Dermacentor reticulatus over its threshold area in the Czech Republic: How much is range of this vector expanding?. Vet. Parasitol. 183, 130–135 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Hornok, S. & Farkas, R. Influence of biotope on the distribution and peak activity of questing ixodid ticks in Hungary. Med. Vet. Entomol. 23, 41–46 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Chitimia-Dobler, L. Spatial distribution of Dermacentor reticulatus in Romania. Vet. Parasitol. 214, 219–223 (2015).PubMed 
    Article 

    Google Scholar 
    18.Akimov, I. & Nebogatkin, I. Distribution of Ticks from of the Genus Dermacentor (Acari, Ixodidae) in Ukraine. Vestnik Zoologii 45, 6 (2011).
    Google Scholar 
    19.Kiewra, D., Szymanowski, M., Czułowska, A. & Kolanek, A. The local-scale expansion of Dermacentor reticulatus ticks in Lower Silesia, SW, Poland. Ticks Tick Borne Dis. 12, 101599 (2021).PubMed 
    Article 

    Google Scholar 
    20.Dwużnik-Szarek, D. et al. Monitoring the expansion of Dermacentor reticulatus and occurrence of canine babesiosis in Poland in 2016–2018. Parasites Vectors 14, 1–18 (2021).Article 

    Google Scholar 
    21.Zając, Z., Woźniak, A. & Kulisz, J. Density of Dermacentor reticulatus ticks in eastern Poland. Int. J. Environ. Res. Public Health 17, 2814 (2020).PubMed Central 
    Article 

    Google Scholar 
    22.Ogden, N. H., Ben Beard, C., Ginsberg, H. S. & Tsao, J. I. Possible effects of climate change on ixodid ticks and the pathogens they transmit: Predictions and observations. J. Med. Entomol. 58, 1536–1545 (2020).Article 

    Google Scholar 
    23.Zając, Z., Sędzikowska, A., Maślanko, W., Woźniak, A. & Kulisz, J. Occurrence and Abundance of Dermacentor reticulatus in the habitats of the ecological corridor of the Wieprz river, eastern Poland. Insects 12, 96 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Zając, Z., Bartosik, K. & Woźniak, A. Monitoring Dermacentor reticulatus host-seeking activity in natural conditions. Insects 11, 264 (2020).PubMed Central 
    Article 

    Google Scholar 
    25.Global and European temperature—European Environment Agency. https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature/global-and-european-temperature-assessment-1. Accessed 22 July 2021.26.Średnie i sumy miesięczne. Dane meteorologiczne https://meteomodel.pl/dane/srednie-miesieczne/?imgwid=351220495&par=sndp&max_empty=2. Accessed 22 July 2021.27.Vladimirov, L. N. et al. Quantifying the Northward Spread of Ticks (Ixodida) as climate warms in Northern Russia. Atmosphere 12, 233 (2021).ADS 
    Article 

    Google Scholar 
    28.Mierzejewska, E. J., Alsarraf, M., Behnke, J. M. & Bajer, A. The effect of changes in agricultural practices on the density of Dermacentor reticulatus ticks. Vet. Parasitol. 211, 259–265 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Zając, Z., Woźniak, A. & Kulisz, J. Infestation of dairy cows by ticks Dermacentor reticulatus (Fabricius, 1794) and Ixodes ricinus (Linnaeus, 1758) in eastern Poland. Ann. Parasitol. 66, 87–96 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    30.Estrada-Peña, A. Climate, niche, ticks, and models: What they are and how we should interpret them. Parasitol. Res. 103, 87–95 (2008).Article 

    Google Scholar 
    31.Süss, J., Klaus, C., Gerstengarbe, F. W. & Werner, P. C. What makes ticks tick? Climate change, ticks, and tick-borne diseases. J. Travel Med. 15, 39–45 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Paulauskas, A. et al. New localities of Dermacentor reticulatus ticks in the Baltic countries. Ticks Tick Borne Dis. 6, 630–635 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Kubiak, K. et al. Dermacentor reticulatus ticks (Acari: Ixodidae) distribution in north-eastern Poland: An endemic area of tick-borne diseases. Exp. Appl. Acarol. 75, 289–298 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Silaghi, C., Weis, L. & Pfister, K. Dermacentor reticulatus and Babesia canis in Bavaria (Germany): A georeferenced field study with digital habitat characterization. Pathogens 9, 541 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    35.Kohn, M. et al. Dermacentor reticulatus in Berlin/Brandenburg (Germany): Activity patterns and associated pathogens. Ticks Tick Borne Dis. 10, 191–206 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Kiewra, D., Czułowska, A., Dyczko, D., Zieliński, R. & Plewa-Tutaj, K. First record of Haemaphysalis concinna (Acari: Ixodidae) in Lower Silesia, SW, Poland. Exp. Appl. Acarol. 77, 449–454 (2019).PubMed 
    Article 

    Google Scholar 
    37.Zieba, P. et al. A new locality of the Haemaphysalis concinna tick (Koch, 1844) in Poland and its role as a potential vector of infectious diseases. Ann. Parasitol. 65, 281–286 (2019).PubMed 

    Google Scholar 
    38.Gray, J. S., Dautel, H., Estrada-Peña, A., Kahl, O. & Lindgren, E. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009, 593232 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Medlock, J. M. & Leach, S. A. Effect of climate change on vector-borne disease risk in the UK. Lancet Infect. Dis. 15, 721–730 (2015).PubMed 
    Article 

    Google Scholar 
    40.Pfäffle, M., Littwin, N. & Petney, T. Host preferences of immature Dermacentor reticulatus (Acari: Ixodidae) in a forest habitat in Germany. Ticks Tick Borne Dis. 6, 508–515 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Zając, Z., Bartosik, K., Kulisz, J. & Woźniak, A. Ability of adult Dermacentor reticulatus ticks to overwinter in the temperate climate zone. Biology 9, 145 (2020).PubMed Central 
    Article 

    Google Scholar 
    42.Kiewra, D., Czułowska, A. & Lonc, E. Winter activity of Dermacentor reticulatus (Fabricius, 1794) in the newly emerging population of Lower Silesia, south-west Poland. Ticks Tick Borne Dis. 7, 1124–1127 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Buczek, A., Bartosik, K. & Zając, Z. Changes in the activity of adult stages of Dermacentor reticulatus (Ixodida: Amblyommidae) induced by weather factors in eastern Poland. Parasites Vectors 7, 245 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Hubálek, Z., Halouzka, J. & Juricova, Z. Host-seeking activity of ixodid ticks in relation to weather variables. J. Vector Ecol. 28, 159–165 (2003).PubMed 
    PubMed Central 

    Google Scholar 
    45.Bartosik, K., Wiśniowski, Ł & Buczek, A. Questing behavior of Dermacentor reticulatus adults (Acari: Amblyommidae) during diurnal activity periods in eastern Poland. J. Med. Entomol. 49, 859–864 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Buczek, A., Bartosik, K., Wisniowski, L. & Tomasiewicz, K. Changes in population abundance of adult Dermacentor reticulatus (Acari: Amblyommidae) in long-term investigations in eastern Poland. Ann. Agric. Environ. Med. 20, 269–272 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    47.Mierzejewska, E. J., Estrada-Peña, A., Alsarraf, M., Kowalec, M. & Bajer, A. Mapping of Dermacentor reticulatus expansion in Poland in 2012–2014. Ticks Tick Borne Dis. 7, 94–106 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Zając, Z. et al. Environmental determinants of the occurrence and activity of Ixodes ricinus ticks and the prevalance of tick-borne diseases in eastern Poland. Sci. Rep. 11, 15472 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Kulisz, J., Bartosik, K., Zając, Z., Woźniak, A. & Kolasa, S. Quantitative parameters of the body composition influencing host seeking behavior of Ixodes ricinus adults. Pathogens 10, 706 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Alasmari, S. & Wall, R. Metabolic rate and resource depletion in the tick Ixodes ricinus in response to temperature. Exp. Appl. Acarol. 83, 81–93 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Zajac, Z., Bartosik, K. & Buczek, A. Factors influencing the distribution and activity of Dermacentor reticulatus (F.) ticks in an anthropopressure-unaffected area in central-eastern Poland. Ann. Agric. Environ Med. 23, 270–275 (2016).PubMed 
    Article 

    Google Scholar 
    52.Bogdaszewska, Z. Range and ecology of Dermacentor reticulatus (Fabricius, 1794) in Mazuria focus. II. Seasonal activity patterns of the adults. Wiad. Parazytol. 50, 731–738 (2004).PubMed 

    Google Scholar 
    53.Razumova, I. V. The activity of Dermacentor reticulatus Fabr. (Ixodidae) ticks in nature. Med. Parasitol. Parasites Dis. 4, 8–14 (1999).
    Google Scholar 
    54.Szymański, S. Seasonal activity of Dermacentor reticulatus (Fabricius, 1794) (Acarina, Ixodidae) in Poland I. Adults. Acta Parasitol. Pol. 31, 247–255 (1987).
    Google Scholar 
    55.Hornok, S. Allochronic seasonal peak activities of Dermacentor and Haemaphysalis spp. under continental climate in Hungary. Vet. Parasitol. 163, 366–369 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Randolph, S. E. & Storey, K. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): Implications for parasite transmission. J. Med. Entomol. 36, 741–748 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Nowak-Chmura, M. Ticks (Ixodida) of Central Europe (Pedagogical University of Cracow Press, 2013).
    Google Scholar  More

  • in

    Elevated wildlife-vehicle collision rates during the COVID-19 pandemic

    Altogether, we found that, while traffic volume declined by  > 7% during the pandemic year (with a maximum monthly decline of nearly 40%), the absolute number of annual WVCs was largely unchanged. This resulted in significant increases of  > 8% in collision rates between vehicles and wildlife during the pandemic year, peaking at a  > 27% nationwide increase in April 2020. Other studies from the first several months of the pandemic documented similar transient declines in the number of WVCs when the pandemic began which then reversed in many jurisdictions as the pandemic progressed and traffic rebounded26,27. We observed a similar pattern over the first five months of the pandemic at the national scale (Fig. 2): WVCs initially declined during the pandemic in step with declines in traffic volume, but then started to increase to baseline levels at a faster rate than traffic, possibly due to behavioral lags by wildlife following traffic-mediated increases in wildlife road use. Though based on coarse-scale data, our research aligns with assertions from studies during27 and prior to the pandemic3,15,16,28,29 that the relationship between traffic volume and WVCs is non-linear.We postulate that the observed non-linear relationship between traffic volume and WVCs is the result of greater use of roads and roadsides by certain wildlife species, namely large mammals (Table S1), in response to decreasing traffic volume, as prior research has suggested3,14,15,16. This explanation is consistent with accounts of various wildlife species making increased use of human spaces during the pandemic17,20,21: with less cars on the roads, wildlife might be less deterred from roads by the noise and light pollution that accompany high traffic volumes9,10,11,20 and perceive roads as less risky, thereby increasing their willingness to attempt road crossings3,8,15,16. Beyond incidentally crossing roads while moving about the landscape8,9, wildlife might be attracted to roads for travel, mates, or other resources8,10,11. Many animals are shown to utilize roads to move efficiently across the landscape11,12, and roads and the surrounding areas are comparatively open, such that wildlife might select roads and roadsides for enhanced visibility to find mates, detect predators, or locate prey10,13. Roadsides also can provide foraging opportunities and essential nutrients for wildlife via abundant, high-quality early successional vegetation and high salt concentrations10,11. As such, decreased road traffic during the pandemic might have caused certain wildlife species to tolerate the risks associated with roads in order to access the benefits of roads and roadsides.An alternative explanation for the observed increases in collision rates is that human driving behavior, rather than animal behavior, changed during the pandemic. With fewer cars on the road, people might drive faster35, rendering it more difficult for both humans and wildlife to avoid collisions3. Preliminary studies from throughout the United States have indeed suggested changes to human driving behavior during the pandemic, with several jurisdictions reporting increased vehicle speeds35,36. Despite reported increases in vehicle speeds, however, the total number of vehicle collisions (the sum of both wildlife and non-wildlife collisions) mirrored trends in traffic volume and declined considerably during the pandemic37,38. Thus, because changes to human behavior appear to have had a minimal effect on vehicle collisions overall, it is unlikely that the observed changes in collision rates are due to increased vehicle speeds alone. Still, we cannot discount the possibility that changes to human driving behavior contributed to the patterns documented here, and future work should more explicitly test the relative effects of changes in traffic volume on both human driving behavior and wildlife space-use, as well as the resultant impacts on WVCs.A greater understanding of human driving behavior would also help explain our findings regarding changes in traffic patterns during the pandemic. Nationwide, the severity of COVID-19 restrictions accounted for a large amount of the variation in changes in monthly traffic volume (R2 = 0.968), but the severity of restrictions was less influential on changes in yearly traffic across states (Tables S3 and S4). Restrictions implemented throughout the pandemic were largely enacted for the purpose of minimizing travel, and other research has demonstrated that these restrictions were effective at reducing human mobility18,21. Our state-level findings, however, imply that it was not only the restrictions themselves that reduced travel, but possibly also the associated anxiety regarding the risk of contracting the SARS-CoV-2 virus, as has been suggested in other studies21,22,23,24; although we observed the greatest declines in traffic volume early in the pandemic (Fig. 2A) when restrictions were most stringent (Fig. S2)21, there was widespread anxiety about the risks posed by SARS-CoV-2 during this time22,23, which likely motivated people to stay home independent of restrictions24. Indeed, anxiety and risk perception might explain the relationship between traffic volume and the other covariates in our top models (Table S4). Declines in traffic were greatest in the most densely populated states (Fig. 4A) and in states that had the highest and the lowest disease burdens (Fig. 4B). The risk of SARS-CoV-2 transmission is greater in more densely populated states due to the close proximity of and frequent interactions amongst people21. As such, people may have altered their road use more in densely populated states as compared to sparsely populated ones due to differing perceptions of disease transmission risk23—though differences in infrastructure in relation to population density likely contributed to this pattern as well39. Similarly, declines in traffic volume in states with larger outbreaks of SARS-CoV-2 might have been driven by increases in the perceived risk of contracting the virus21,23. Alternatively, traffic reductions in states with low disease burdens might reflect increased compliance with stay-at-home orders, and therefore less opportunity for disease spread40,41; essentially, reductions in traffic volume might be the cause of locally low disease burdens therein, rather than a consequence. Altogether, we posit that the observed heterogeneity in traffic volume between states is, at least in part, attributed to differences in the perceived risk posed by the SARS-CoV-2 virus.Regardless of the mechanisms underlying changes in traffic volume and WVCs, our observation that the annual number of WVCs was largely unchanged despite substantive declines in traffic volume has implications for mitigating WVCs going forward. Most directly, the lack of a directional change in WVCs suggests that road traffic levels in the United States are currently such that even large decreases in traffic volume would have minimal long-term effects on the absolute number of WVCs. As such, decreasing collisions by reducing traffic volume would require even larger and longer-lasting changes in traffic than those observed during the pandemic. Since such massive and sustained reductions in traffic are unlikely4,5,6, WVCs in the United States essentially represent a fixed cost as of now, both for human society and wildlife populations. As such, these transient decreases in traffic likely provided minimal reprieve to large mammals from collision-induced mortality, in contrast to speculation that changes in human mobility during the COVID-19 pandemic had substantial positive effects for wildlife populations by freeing wildlife from the pervasive direct and indirect effects of humans17,18,19,20,26,27,42.Indeed, it is possible that short-term decreases in traffic volume might ultimately be harmful to those wildlife species that increased their road use. Although the increases in collision rates we observed at the beginning of the pandemic were rapid and corresponded to nationwide declines in traffic volume (see also26,27), collision rates remained elevated even as traffic approached baseline levels in July (Fig. 2B). If wildlife responses to changes in traffic are asymmetric (i.e., increases in wildlife road use following declines in traffic occur more rapidly than decreases in wildlife road use in response to increased traffic), then short-term declines in traffic volume might lead to net increases in the number WVCs over longer timeframes, ultimately proving detrimental to certain wildlife populations1,3. Future work should evaluate the long-term effects of the pandemic on wildlife populations, specifically with regards to collision-induced mortality17,20,26,27,42.Although the COVID-19 pandemic provided an opportunity to examine the short-term effects of transient decreases in traffic volume on WVCs, the longer-term effects of expanding human populations, greater road densities, and altogether higher traffic volumes on WVCs are less clear. Similar to the increases in wildlife road use in response to decreases in traffic volume theorized here, steady increases in traffic might reduce wildlife road use long-term3,14,15,16; since road traffic is indeed increasing through time4,5,6, we might therefore see declines in WVCs as roads become more effective at repelling wildlife1,3,14. Although these reductions in vehicle-induced wildlife mortality are welcome, this would see roads increasingly serve as barriers to animal movement and gene flow43, further fragmenting already disconnected wildlife populations8. Thus, policy makers and urban planners should invest in infrastructure such as overpasses, underpasses, and fencing that enables wildlife to cross high-traffic roads safely or directs wildlife towards low-risk areas8,9. Even substantive short-term declines in road traffic are not sufficient to mitigate wildlife-vehicle conflict on their own. More

  • in

    Improving pesticide-use data for the EU

    Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy’s Hospital, London, UKRobin Mesnage & Michael N. AntoniouCentre for Ecology, Evolution & Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UKEdward A. Straw, Mark J. F. Brown & Ellouise LeadbeaterHeartland Health Research Alliance, Port Orchard, WA, USACharles BenbrookANSES, Sophia Antipolis Laboratory, Unit of Honey Bee Pathology, Sophia Antipolis, FranceMarie-Pierre ChauzatAgricultural Economics and Policy Group, ETH Zürich, Zürich, SwitzerlandRobert FingerSchool of Life Sciences, University of Sussex, Brighton, UKDave GoulsonBC3 — Basque Centre for Climate Change, Scientific Campus of the University of Basque Country, Leioa, SpainAna López-BallesterosCentre D’Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, Villiers-en-bois, FranceNiklas MöhringInstitute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, SwitzerlandPeter NeumannSchool of Agriculture and Food Science, University College Dublin, Dublin, IrelandEdward A. Straw, Dara Stanley & Linzi J. ThompsonDepartment of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, IrelandJane C. Stout & Elena ZiogaDepartment of Ecoscience, Aarhus University, Aarhus, DenmarkChristopher J. ToppingSchool of Chemical Sciences, Glasnevin Campus, Dublin City University, Dublin, IrelandBlánaid WhiteInstitute of Zoology, University of Natural Resources and Life Sciences, Vienna, Vienna, AustriaJohann G. ZallerCorrespondence to
    Robin Mesnage or Edward A. Straw. More

  • in

    A microfluidic platform for highly parallel bite by bite profiling of mosquito-borne pathogen transmission

    Device design and fabricationVectorchips with integrated PDMS elastomer membranes were fabricated using a combination of laser patterning and soft lithography. We selected PDMS as the material of choice due to its low cost, biocompatibility, optical transparency, and chemical stability. PDMS-based devices can be fabricated using reproducible and scalable fabrication techniques26. Such devices have routinely been used for molecular analysis of small sample volumes using microfluidics27, and are compatible with molecular assays and cell cultures21,22. We used laser patterning to create open-ended arrayed compartments (3−4 mm deep) to capture saliva droplets from mosquito bites in PDMS micro-wells (Fig. 1a–d). In order to obtain ultra-thin PDMS films that the mosquito mouth parts can pierce, we utilized spin-coating of uncured PDMS over a flat silicon surface. We obtained membrane-integrated devices after plasma-induced PDMS-PDMS bonding of the laser-patterned array with the PDMS film (Fig. 1e). Detailed steps describing chip fabrication are included in the methods section below. The versatile fabrication process can provide user-defined variation in the size and density of the individual compartments. We were able to fabricate chips with hole diameters ranging from 150 μm to 1 cm (Supplementary Fig. 1) showing the scales of operation for the laser-ablation process while maintaining membrane stability. Additionally, the membrane can be easily integrated with fluidic networks for direct interfacing with mosquito bites, enabling assays involving on-chip fluid exchange (Fig. 1f). The microfluidic compartments on the chips can hold feeding media such as blood or sugar water (Fig. 1g), collect saliva during biting events, and act as isolated reaction chambers for molecular assays.Fig. 1: Fabrication of Vectorchip for collection of mosquito saliva and molecular assays.a Schematic showing the fabrication process of Vectorchip. Laser patterning was used to obtain through-holes in blocks of PDMS. A thin sacrificial layer of photoresist (Microposit™ S1813 G2, DOW Inc., USA) was spread onto a silicon wafer followed by spin-coating a thin film of PDMS on the wafer surface. The laser-patterned body of the chip was then bonded to the thin film of PDMS using plasma-activated PDMS-PDMS bonding. Membrane-bonded chips were obtained by placing the wafer in an acetone bath, where the sacrificial layer of resist was dissolved. b A PDMS block with laser-generated through-holes (diameter 250 μm). c A PDMS chip bonded to a 1.6 μm thin PDMS membrane on a 4-inch silcon wafer. d A Vectorchip with around 3000 wells (dia: 250 μm) is shown. e Chip with well diameter 1.75 mm and a visible PDMS membrane (thickness 1.6 μm). f Microfluidic channel-integrated chips with a PDMS membrane on top. g These wells can be loaded with feeding solution, reaction reagents, and can store mosquito saliva after biting assays. Wells loaded with feeding media (10% sucrose laced with blue food color) shown in the image. Scale bars represent 1 mm in (b), 5 mm in (e), and 2 mm in (f, g).Full size imageMosquito-chip interactionsNext, we examined the ability of mosquitoes to pierce through the PDMS membranes. Mosquitoes were attracted to the chips using heat as a guiding cue although several other baiting methods could be used. We placed a camera above the chip and observed stylet insertion through 1.6 μm thick PDMS membranes (Fig. 2a, Supplementary Movies 1 and 2). Abdominal engorgement in mosquitoes was observed after biting, indicating that mosquitoes can successfully feed through these membranes. Four species of mosquitoes were tested (Aedes aegypti, Aedes albopictus, Culex tarsalis, Culex quinquefasciatus) and all demonstrated successful probing and feeding through 1.6 μm thick PDMS membranes.Fig. 2: Mosquito biting on Vectorchip.a Stylet entry through a PDMS membrane for an Aedes aegypti female. b Mosquito feeding success as a function of membrane thickness for two mosquito species—Aedes aegypti and Culex tarsalis. We demonstrate that by changing the membrane thickness we can turn biting on or off. Biting off is defined as when no mosquito in the cage was able to feed from the chip in a duration of 30 min. The feeding assays were repeated at least three times (n = 3) at every given membrane thickness to confirm the ability of mosquitoes to feed through the membrane. c A Culex tarsalis female mosquito biting through a 20 μm thick PDMS membrane. d Bending of the proboscis observed for an Aedes aegypti female, indicating failure in biting through the 20 μm membrane. e Fluorescent salivary droplets expectorated by an Aedes aegypti mosquito while probing. These mosquitoes were fed on rhodamine-laced sugar water resulting in fluorescent saliva. Three salivary droplets (1, 2, and 3) are encircled. f Timelapse images show a magnified view of fluorescent salivary droplet deposition (droplets numbered 1, 2, and 3 as shown in panel (e) over a period of 4 s). Scale bars represent 500 μm in (a) and 2 mm in (c, d).Full size imageWe also examined whether the membrane thicknesses can be engineered to selectively prevent the biting of some species while letting other species feed through the barrier. We loaded the laser-patterned microfluidic compartments with blood and warmed the chips to attract mosquitoes (Supplementary Fig. 2 and Supplementary Movie 3). We considered biting to be off when none of the mosquitoes in the cage demonstrated abdominal engorgement within 30 min since the start of the experiment. Tests were performed with Aedes aegypti (~45 mosquitoes per cage) or Culex tarsalis (~25 mosquitoes per cage) while varying the thickness of the PDMS membrane from 900 nm to 100 μm. We observed significant differences in the biting ability of the two species, where complete inhibition of feeding by Aedes aegypti was observed with membrane thickness at or greater than 15 μm (Supplementary Movies 4 and 5). In contrast, complete inhibition of feeding by Culex tarsalis was only observed for membranes that were 100 μm thick (Fig. 2b). This remarkable difference in the biting capacity of these two species has not been reported earlier. While some studies have focused on understanding the biting mechanics of a single mosquito species (Aedes aegypti or Aedes albopictus)28,29, we are not aware of any study which quantifies the differences in biting strength between different species and the evolutionary or biomechanical differences involved in this variation. Evolutionary pressure on mosquitoes biting different hosts could generate great variability of biting strength in mosquito species, which may be needed to probe different skin thickness. This intriguing biomechanical phenomenon can be advantageous for deploying devices where membranes of desired thickness can act as species-selective filters, providing a means to better track highly relevant species and pathogens in the field.In order to extract molecular information from mosquito bites, we exploited the release of saliva during probing and biting events. The volume of saliva expectorated by mosquitoes in oil has been reported previously to be around 0.03 nL/min for Culex pipiens30, and 6.8 nL in approximately an hour for Aedes aegypti31 using a forced salivation method. Aedes aegypti have been estimated to salivate around 4.7 nL during blood feeding events32. We demonstrate that feeding rhodamine-labeled sugar water to mosquitoes renders their saliva fluorescent such that the release of saliva droplets can be directly visualized using fluorescence imaging (Fig. 2e and Supplementary Movie 6). Time sequences (Fig. 2f) show magnified images of three locations on a membrane surface where short probing events result in the deposition of fluorescent salivary droplets. We estimate that the volume of salivary droplets expectorated during this process is approximately 0.66 nL (Supplementary Fig. 3). This calculated mean volume is considerably lower compared to the volume associated with blood-feeding events reported earlier32; however, this discrepancy likely reflects differences between probing events such as observed in Fig. 2e, f and full feeding events as reported by Devine et al.32. The deposited salivary droplets harbor several biomarkers in the form of mosquito salivary proteins33, active pathogens, mosquito cells, and/or nucleic acids that can be used for their identification14,20,34.Distribution of bites on chipAn important consideration for molecular surveillance of mosquitoes is the granularity at which the population is sampled. Methods can range from pooling strategies with low coverage where samples are pooled together at the population scale, to the individual collection of saliva from mosquitoes while recording species identity. Vectorchip potentially provides an adjustable method between these two strategies by increasing or decreasing the density of bite wells presented to a population of mosquitoes.We first analyzed the distribution of bites on Vectorchip by tracking mosquito activity during biting assays. In order to perform sucrose biting assays for molecular diagnostics, we filled the wells with 10% sucrose, and covered the open side of the chip with a glass slide. A resistor that acts as a heat source was placed atop the glass slide and the chip-resistor assembly was placed on top of the mesh ceiling of a mosquito cage. A part of the chip (50 percent of the total chip area) was protected by paper tape such that mosquitoes could not bite into that section of the device. The area of the chip protected by tape served as negative control for the downstream molecular assays. A camera (Raspberry Pi 3 camera module V2.1) was placed on the bottom of the cage to track and record individual mosquito activity on chip (Supplementary Fig. 4). Image recognition and mosquito tracking algorithms have been described by us previously25, where we used computer vision to analyze image sequences and robustly track the presence, movement, and biting behavior of individual mosquitoes at high resolution. In this study, we have used an imaging setup where the camera is attached to the bottom of the cage (Supplementary Fig. 4a). The obtained image datasets reveal mosquito trajectories on the chip as well as areas with prolonged interactions (Fig. 3a–d, Supplementary Fig. 4, and Supplementary Movie 7). Unique trajectories are identified as movements performed by an individual mosquito while in the field of view (e.g., landing, exploration, biting, and take-off by a single mosquito would constitute a trajectory). The movement of mosquitoes on a chip is shown in Fig. 3e–g and Supplementary Fig. 4. Depending on the duration of mosquito-chip interactions, multiple trajectories do not overlap (Fig. 3e), partially overlap (Fig. 3f), or completely overlap (Fig. 3g). Trajectory plots can indicate the likelihood that a set of wells has been probed by more than one mosquito. These results indicate that by modulating the time of interaction between the mosquito population and the chip, the user can control the degree of probing experienced by the chip. As an example, a chip with no overlap between trajectories should exclusively contain wells probed by single mosquitoes. Tracking mosquito movement on chip was used to locate trajectories and thus regions with unique mosquito presence.Fig. 3: Tracking mosquito activity on chip.a Image recognition software was used to identify and track mosquitoes on the chip. Wells are highlighted in yellow. b Trajectories of mosquito movement can be plotted and indicate the overlap between different movement tracks. c Location plot of mosquitoes on the chip are indicated by red circles. Regions with overlapping red circles are darker in color. d Trajectory and location plot can be used to identify regions with individual mosquito locomotion activity as compared to regions with more crowding. e−g Varying experimental parameters (symbols indicate the duration of experiments and number of mosquitoes) can be used to obtain either individual mosquito plots or population data. Three cases are discussed with e no overlap between multiple probing trajectories, f partial overlap, and g complete overlap. h Representative image for a chip where the presence of fluorescent droplets on wells has been indicated by a red dot. i Zoomed-in fluorescent image of the same chip showing wells with single, or multiple droplets. j Number of bites per well were calculated by counting fluorescent droplets deposited on the wells after biting events. k We defined the number of mosquitoes = Nm, the number of wells = Nw, probing frequency = η, and time = t. The probability of obtaining ‘k’ bites on a well for the parameters (Nm, Nw, η, t) utilized in (h−j) has been shown. Scale bars represent 5 mm in (a−c, e−g), 2 mm in (d), and 1 mm in (i).Full size imageWhile tracking provided macro-scale information about mosquito position and activity, we also utilized the release of fluorescent salivary droplets deposited by biting mosquitoes to resolve mosquito probing events at higher resolution. We quantified the number of fluorescent spots seen in every well of the PDMS chip by using fluorescent scans of the chip before and after biting (Fig. 3h). No spots were observed in the negative control region where access was blocked to mosquitoes, while several fluorescent spots observed on the open areas of the chip indicate the wells which have been probed. The images show the presence of wells with multiple bite marks, as well as single bite marks.We further examined the design parameters used to build Vectorchip that can dictate the resolution of this sampling strategy. The primary determinants of how often a single mosquito will bite a specific well are dependent on multiple factors, including the number of mosquitoes in the cage, the time mosquitoes have access to the chip and biting behavior (e.g., frequency), and the size and number of wells on the chip. Other additional factors like the feeding media may affect the number of biting events performed by a female mosquito. In this study, we focused on sucrose as the feeding media since it is a diet source that does not inhibit polymerase chain reaction (PCR) assays. We considered a simple mathematical model to arrive at a first approximation for the distribution of bites on a chip. In this model, we made a simple assumption that mosquitoes probe the chip at a fixed frequency (η). We also assumed that mosquito bites are random and independent events, since no spatial gradients have been created on the chip. Detailed analysis of this model can be found in Supplementary Section 1.We defined the number of mosquitoes = Nm, the number of wells = Nw, and probing frequency = η, and estimated the probability (P) that a well receives k bites in given time t as (Supplementary Note 1):$$P[k]=({N}_{m}eta t)!/(k!times ({N}_{m}eta t-k)!)times 1/{N}_{w}^{k}times {(1-1/{N}_{w})}^{{N}_{m}eta t-k}$$
    (1)
    This was approximated by the form (Supplementary Note 1):$$P[k]approx {{{{{{mathrm{e}}}}}}}^{-{N}_{m}eta t/{N}_{w}}times {({N}_{m}eta t/{N}_{w})}^{k}/k!$$
    (2)
    and represents a Poisson distribution of the form,$$P[k]={{{{{{mathrm{e}}}}}}}^{-lambda }times {(lambda )}^{k}/k!$$
    (3)
    with the expected rate of events (i.e., bites per well), λ = Nmηt/Nw. Probability distributions for the expected number of bites on a well were plotted while varying the number of mosquitoes, wells, and probing frequencies (Supplementary Fig. 5). The probing frequency of Aedes aegypti mosquitoes on a parafilm membrane has been estimated previously to be in the range of 0–1 bites per min35. Supplementary Fig. 5 shows a diverse phase space where a single bite per well is the most dominant outcome, i.e., λ was less than or equal to 1, when up to 50 mosquitoes interact with a 150-well Vectorchip for 15 min—in line with our experiments. In the context of a larger number of mosquitoes interacting with the chip, increasing the number of wells can ensure that the majority of wells will not get bitten more than once. We quantified bites on wells as indicated from fluorescent droplets (Supplementary Table 1), and compared it to the analytical model (Fig. 3j, k). The fitting parameter was η = 0.1 bites per minute, which is close to the range of probing frequencies reported recently35. With water as the feeding media and parafilm as the probing membrane, Jove et al. report that the majority of tested mosquitoes showed a probing frequency below 0.5 bites per minute35. While we observe and model slightly lower probing frequencies, this difference is possible due to the change in the membrane material from parafilm to PDMS, and other differences in the setup. The methods discussed above provide multiple ways to understand mosquito−chip interactions as well as help us define parameters to obtain data at single-bite resolution.PCR diagnostics on-chipHaving established that mosquitoes can bite through the membrane and deposit salivary droplets in microwells while biting on a Vectorchip, we analyzed these bites for their DNA and RNA content. Running PCR-based nucleic acid amplification directly on individual wells establishes a low-cost assay to detect bite content in a high-throughput manner. We utilized devices with a PDMS membrane thickness of 1.6 μm and well diameter of 1.75 mm to perform molecular analysis of salivary samples; providing 145 independent reactions per chip (within a chip area of 5 cm × 2.5 cm).Detection of mosquito mitochondrial DNA (mtDNA) and RNA from viruses in saliva was performed using on-chip PCR with end-point fluorescence readout. A detailed protocol for performing PCR in Vectorchip is provided in the Methods section and Supporting Information file (Supplementary Fig. 6). We tested the efficiency of PCR amplification in Vectorchip by manually loading a known concentration of DNA and RNA into the reaction wells (Fig. 4a–c). We performed the PCR for 42 cycles and detect DNA amplification from approximately 5 DNA copies in 4 μL of reaction mix (~1 copy/μL) (Fig. 4b). Simultaneously detection of Zika virus RNA using reverse transcription-PCR (RT-PCR), was successfully demonstrated from as low as 15 RNA copies in 4 μL of reaction mix (Fig. 4c). PCR reactions were also performed in 96-well plates to test if amplification accuracy and sensitivity were similar as compared to Vectorchips. Both qPCR amplification curves and end point fluorescence information was obtained from the well plates. The 96-well plate reactions were performed in DI water and also in the presence of dried sucrose (10%) to ensure that the amplification response provided a good comparison to the Vectorchip-based reactions using manually spiked concentrations, and to test if the presence of sucrose would inhibit the reactions (see Supplementary Fig. 7a, b).Fig. 4: On-chip PCR for detection of mosquito and pathogen.The symbols indicate manually spiked assays, uninfected mosquito assays, and Zika infected mosquito assays from top to bottom. a–c A spiked assay with successful amplification of Aedes aegypti DNA and Zika RNA on chip. a Indicates wells filled with PCR mix, with ROX dye providing the background fluorescence. Fluorescent wells indicate amplification of b mosquito DNA, and c Zika RNA on chip. Assays were performed with uninfected mosquitoes where d tracking patterns were collected and demonstrate extensive translocation activity on the chip. e PCR shows detection of mosquito DNA on the chip directly from biting. f Percentage of wells available for biting on Vectorchip that display a positive PCR outcome. The PCR assay was repeated 6 times on different chips (n = 6). The false positive rate (amplification in wells that were covered by tape) was close to zero (0.23%). Assays performed with Zika infected mosquitoes indicate the presence of both g Aedes aegypti DNA and h Zika virus RNA after bites on chip. i Percentage of wells available for biting that show a positive signature for Zika RNA, mosquito DNA or both. The PCR assay was repeated 3 times on different chips (n = 3). Scale bars represent 5 mm in (a−e) and 3 mm in (g, h). Source data are provided as a Source Data file.Full size imageVectorchip provides an opportunity for tracking both pathogens in salivary bites, as well as identifying host species by detecting DNA from the host biting the well. Mosquito DNA has previously been reported in salivary droplets deposited by feeding Culex mosquitoes20. Utilizing uninfected Aedes aegypti mosquitoes, we performed PCR assays on-chip to detect the presence of mosquito DNA in deposited saliva droplets. Figure 4d, e shows the tracking data and PCR detection of mtDNA for a chip, which was placed on a cage with 75 uninfected Aedes aegypti females for 45 min. Areas highlighted in green were protected by paper tape such that mosquitoes could not probe them and serve as negative controls. The tracking data obtained from the chip indicate significant activity of the mosquitoes on-chip as represented by several overlapping trajectories. PCR data confirms that mosquito DNA indeed can be detected in probed wells. Multiple experiments indicate that a subset (3−12%, n = 6) of the wells where mosquitoes are active test positive for the presence of mosquito DNA (Fig. 4f). The rate of false positives obtained from wells not accessible to mosquitoes was very close to zero (0.23%, n = 6). In order to further validate the rate of detection of mosquito DNA on Vectorchips, we performed a biting assay using a 96 well plate loaded with agarose and covered with a parafilm membrane. Agarose gel was used as feeding media during this test, to minimize the risk of cross-contamination between wells during the peeling off of the parafilm membrane (details in “Methods” section). We recorded the tracking and DNA amplification response from uninfected mosquito bites on the well plate (Supplementary Fig. 7c, d). Approximately 15% of the wells where mosquitoes were active tested positive for mosquito DNA, which is close to the fractions observed on Vectorchips. Since mosquito DNA can only be detected in a subset of wells showing mosquito activity, this suggests that the presence of detectable levels of mosquito DNA in saliva is a noisy physiological process, likely dependent on multiple variables such as duration of feeding and time of last bite. It is furthermore important to note that our tracking algorithm only detects the presence of mosquitoes, but does not provide information regarding if a well was bitten or not.Next, we utilized the device to perform assays on infected mosquitoes, for the detection of both mosquito species and deposited pathogens. Figure 4h shows results obtained when Aedes aegypti infected with Zika virus (ZIKV)36 interacted with the chip for 20 min. We subsequently performed RT-PCR on the chip and observed that Aedes aegypti mtDNA and ZIKV RNA could be detected in 24/118 and 37/118 wells, respectively. We summarize the detection rates of mosquito DNA and ZIKV RNA for three assays performed with ZIKV-infected mosquitoes in Fig. 4i. Interestingly, not all wells positive for ZIKV RNA showed positive for mosquito DNA and vice versa, highlighting the stochastic genetic composition of bite-derived nanoliter saliva droplets. A higher fraction of wells (mean ~ 22%, n = 3) showed positive for ZIKV RNA as compared to mosquito mtDNA (mean ~ 17%, n = 3), indicating a higher prevalence of viral genomic material in mosquito saliva as compared to mosquito mtDNA. Detection of mosquito DNA and virus RNA in these assays demonstrates the capacity of this tool to identify mosquito and pathogen species directly from mosquito bites on-chip.Detection of infectious viral particles directly from bitesWhile PCR-based end-point assays are an important strategy for multiplexed detection of vectors and pathogens in various settings, they cannot determine the presence or concentration of infectious virus particles in bites. Detection of infectious pathogen load in mosquito bites is important to understand the vector competence (including potential and efficiency of pathogen transmission through bites) of mosquito-pathogen systems and its dependency on factors such as local climate37, mosquito species38, physiology39, and presence of endosymbionts (e.g., Wolbachia)40. Typical methods to measure vector competence rely on manual “forced salivation” of individual mosquitoes12, where the viral loads may differ from biting events and mosquitoes are sacrificed preventing time-course measurements. Sugar feeding on filter papers has also been utilized recently, and provides promising results towards longitudinal sampling of viral transmission by individual mosquitoes20. As compared to filter paper-based approaches, the Vectorchip uses an integrated PDMS membrane which can enable purely bite-based collection and avoid possible contamination from e.g., excretion events. Furthermore, our method improves the throughput of the assay as mosquitoes do not need to be individually housed and sampled. Finally, filter paper assays are reliant on sampling nucleic acids, and cannot perform live cell culture assays to detect infectious pathogens.We tested the potential of Vectorchip to perform focus forming assays (FFA) and detect infectious viral particles directly as a result of mosquito bites on chip (Fig. 5). Vectorchip wells were filled with cell culture media (Dulbecco’s modified eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS). The efficiency of FFA on-chip was tested using manual spiking of viral particles into Vectorchip (Supplementary Fig. 8). In order to perform biting assays, Aedes aegypti mosquitoes were infected with Mayaro virus, an emerging zoonotic pathogen that causes a dengue-like disease41. The mosquitoes were able to bite through the membrane into the wells and transfer live Mayaro viral particles directly into the cell culture medium (Fig. 5a). These viral particles then infect a monolayer of vero cells cultured on the PDMS membrane. These infections can be identified via fluorescent antibodies specific to viral envelope proteins (Fig. 5c). Each fluorescent patch (focus) is attributed to an infection resulting from a single viral particle. Foci counted on two sample chips can be seen in Fig. 5d. No foci were visible from negative control samples. The distribution of viral foci on the chips indicates the heterogeneity of infectious particle dose in mosquito bites. Figure 5 shows that the Vectorchip supports the growth of a cell monolayer on the chip and can enable the direct collection of mosquito saliva through bites in cell culture media. Antibody assays can be used to directly quantify infectious viral particles in the wells. These results demonstrate the suitability of using the Vectorchip to probe the transmission of infectious viral particles.Fig. 5: Quantifying active viral particles using focus-forming assays.Focus forming assays on Vectorchip can directly quantify the number of active viral particles in mosquito bites, without the need for isolation of individual mosquitoes and manual salivary extraction. a Image shows Aedes aegypti mosquitoes infected with Mayaro virus biting on Vectorchips filled with DMEM cell culture media. b A monolayer of vero cells was cultured on Vectorchip membrane. The formation of vero cell monolayers on membranes was verified on 5 independent chips (n = 5). c FFA performed on a Vectorchip. Symbols indicate wells in the top row which were bitten by mosquitoes with no infection (negative control), and rows of wells bitten by mosquitoes infected with Mayaro virus. The green channel shows fluorescence from an antibody against a viral envelope protein. Every green island represents infected cells likely to have resulted from an active viral particle. No active viral particles were seen in the control wells. FFA on Vectorchips was verified on 3 chips (n = 3) for both uninfected and Mayaro infected mosquitoes. d FFA formed on two chips and viral foci were counted using the antibody fluorescence. Scale bars represent 2 mm in (a), 30 μm in (b), and 100 μm in (c).Full size imageFinally, we examined if the feeding media provided in Vectorchip can enable blood meal-mimic biting behavior through the addition of phagostimulants such as ATP, while maintaining accurate molecular analysis (Supplementary Note 2). We observed that the addition of 100 μM ATP, (which is a phagostimulant and used by mosquito sensory neurons to identify blood35), to the feeding media did not impact nucleic acid amplification reactions (Supplementary Fig. 9a) (n = 3). Interestingly, mosquitoes feeding on DMEM supplemented with 10% FBS and ATP (1 mM) led to a similar or higher number of abdominal engorgements in 45 min as compared to blood meals (n = 3) (Supplementary Fig. 9b). This is reasonable as DMEM (supplemented with FBS and ATP) contains a variety of the components used by mosquito sensory neurons to identify blood at relevant concentrations (Supplementary Note 2)35). In summary, our data indicate that Vectorchip can provide physiologically relevant mosquito feeding behavior, enabling accurate assessment of vector and pathogen identity through nucleic acid amplification reactions for field surveillance, as well as on-chip assessment of transmission of infectious viral particles in bites through focus forming assays. More