More stories

  • in

    Rapid transmission of respiratory infections within but not between mountain gorilla groups

    1.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science https://doi.org/10.1126/science.aax3100 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Daszak, P., Cunningham, A. A. & Hyatt, A. D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. https://doi.org/10.1016/S0001-706X(00)00179-0 (2001).Article 
    PubMed 

    Google Scholar 
    3.Brearley, G. et al. Wildlife disease prevalence in human-modified landscapes. Biol. Rev. https://doi.org/10.1111/brv.12009 (2013).Article 
    PubMed 

    Google Scholar 
    4.Magouras, I. et al. Emerging zoonotic diseases: Should we rethink the animal–human interface?. Front. Vet. Sci. https://doi.org/10.3389/fvets.2020.582743 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.American Veterinary Medical Association. One Health: A New Professional Imperative. One Health Initiative Task Force: Final Report. (2008).6.VandeWoude, S. et al. Parallel pandemics illustrate the need for One Health solutions. EcoEvoRxiv (2021).7.Köndgen, S. et al. Pandemic human viruses cause decline of endangered great apes. Curr. Biol. 18, 260–264 (2008).Article 

    Google Scholar 
    8.Sharp, P. M., Plenderleith, L. J. & Hahn, B. H. Ape origins of human malaria. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev-micro-020518-115628 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature https://doi.org/10.1038/nature09442 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Keele, B. F. Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science (80-). 313, 523–526 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Calvignac-Spencer, S., Leendertz, S. A. J., Gillespie, T. R. & Leendertz, F. H. Wild great apes as sentinels and sources of infectious disease. Clin. Microbiol. Infect. https://doi.org/10.1111/j.1469-0691.2012.03816.x (2012).Article 
    PubMed 

    Google Scholar 
    12.Ryan, S. J. & Walsh, P. D. Consequences of non-intervention for infectious disease in African great apes. PLoS One 6, e29030 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Bermejo, M. et al. Ebola outbreak killed 5000 gorillas. Science 314, 1564 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Walsh, P. D. et al. Catastrophic ape decline in western equatorial Africa. Nature 422, 611–614 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Thompson, M. E. et al. Risk factors for respiratory illness in a community of wild chimpanzees (Pan troglodytes schweinfurthii). R. Soc. Open Sci. https://doi.org/10.1098/rsos.180840 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Williams, J. M. et al. Causes of death in the Kasekela chimpanzees of Gombe National Park, Tanzania. Am. J. Primatol. https://doi.org/10.1002/ajp.20573 (2008).Article 
    PubMed 

    Google Scholar 
    17.Negrey, J. D. et al. Simultaneous outbreaks of respiratory disease in wild chimpanzees caused by distinct viruses of human origin. Emerg. Microbes Infect. https://doi.org/10.1080/22221751.2018.1563456 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Scully, E. J. et al. Lethal respiratory disease associated with human rhinovirus C in wild Chimpanzees, Uganda, 2013. Emerg. Infect. Dis. https://doi.org/10.3201/eid2402.170778 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Smith, K. F., Acevedo-Whitehouse, K. & Pedersen, A. B. The role of infectious diseases in biological conservation. Anim. Conserv. https://doi.org/10.1111/j.1469-1795.2008.00228.x (2009).Article 

    Google Scholar 
    20.Capps, B. & Lederman, Z. One health, vaccines and ebola: The opportunities for shared benefits. J. Agric. Environ. Ethics 28, 1011–1032 (2015).Article 

    Google Scholar 
    21.Leendertz, S. A. J. et al. Ebola in great apes—current knowledge, possibilities for vaccination, and implications for conservation and human health. Mamm. Rev. https://doi.org/10.1111/mam.12082 (2017).Article 

    Google Scholar 
    22.Bull, C. M., Godfrey, S. S. & Gordon, D. M. Social networks and the spread of Salmonella in a sleepy lizard population. Mol. Ecol. 21, 4386–4392 (2012).CAS 
    Article 

    Google Scholar 
    23.Vanderwaal, K. L., Atwill, E. R., Isbell, L. A. & McCowan, B. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J. Anim. Ecol. https://doi.org/10.1111/1365-2656.12137 (2014).Article 
    PubMed 

    Google Scholar 
    24.Silk, M. J. et al. Using social network measures in wildlife disease ecology, epidemiology, and management. Bioscience 67, 245–257 (2017).Article 

    Google Scholar 
    25.Craft, M. E. Infectious disease transmission and contact networks in wildlife and livestock. Philos. Trans. R Soc. Lond. Ser. B Biol. Sci. 370, 1–12 (2015).Article 

    Google Scholar 
    26.Craft, M. E. & Caillaud, D. Network models: An underutilized tool in wildlife epidemiology?. Interdiscip. Perspect. Infect. Dis. 2011, 676949 (2011).Article 

    Google Scholar 
    27.Rushmore, J. et al. Social network analysis of wild chimpanzees provides insights for predicting infectious disease risk. J. Anim. Ecol. 82, 976–986 (2013).Article 

    Google Scholar 
    28.Sandel, A. A. et al. Social network predicts exposure to respiratory infection in a wild chimpanzee group. EcoHealth https://doi.org/10.1007/s10393-020-01507-7 (2021).Article 
    PubMed Central 

    Google Scholar 
    29.Rushmore, J. et al. Network-based vaccination improves prospects for disease control in wild chimpanzees. J. R. Soc. Interface https://doi.org/10.1098/rsif.2014.0349 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Sah, P., Leu, S. T., Cross, P. C., Hudson, P. J. & Bansal, S. Unraveling the disease consequences and mechanisms of modular structure in animal social networks. Proc. Natl. Acad. Sci. 114, 4165–4170 (2017).CAS 
    Article 

    Google Scholar 
    31.Robbins, M. M. et al. Extreme conservation leads to recovery of the virunga mountain gorillas. PLoS One https://doi.org/10.1371/journal.pone.0019788 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Granjon, A. C. et al. Estimating abundance and growth rates in a wild mountain gorilla population. Anim. Conserv. https://doi.org/10.1111/acv.12559 (2020).Article 

    Google Scholar 
    33.Weber, A., Kalema-Zikusoka, G. & Stevens, N. J. Lack of rule-adherence during mountain gorilla tourism encounters in Bwindi Impenetrable National Park, Uganda, places gorillas at risk from human disease. Front. Public Health. https://doi.org/10.3389/fpubh.2020.00001 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Woodford, M. H., Butynski, T. M. & Karesh, W. B. Habituating the great apes: The disease risks. Oryx 36, 153–160 (2002).Article 

    Google Scholar 
    35.Spelman, L. H. et al. Respiratory disease in mountain gorillas (gorilla beringei beringei) in rwanda, 1990–2010: Outbreaks, clinical course, and medical management. J. Zoo Wildl. Med. https://doi.org/10.1638/2013-0014R.1 (2013).Article 
    PubMed 

    Google Scholar 
    36.Nutter, F. B., Whittier, C., Cranfield, M. R. & Lowenstine, L. J. Examining causes of death for mountain gorillas (Gorilla beringei beringei and G.b. undecided) from 1968–2004: An aid to conservation programs. In Proceedings of the Wildlife Disease Association International Conference. June 26-July 1, 2005, Cairns, Australia 200–201 (2005).37.Palacios, G. et al. Human metapneumovirus infection in wild mountain gorillas, Rwanda. Emerg. Infect. Dis. https://doi.org/10.3201/eid1704.100883 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Mazet, J. A. K. et al. Human respiratory syncytial virus detected in Mountain Gorilla respiratory outbreaks. EcoHealth https://doi.org/10.1007/s10393-020-01506-8 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Szentiks, C. A., Köndgen, S., Silinski, S., Speck, S. & Leendertz, F. H. Lethal pneumonia in a captive juvenile chimpanzee (Pan troglodytes) due to human-transmitted human respiratory syncytial virus (HRSV) and infection with Streptococcus pneumoniae. J. Med. Primatol. https://doi.org/10.1111/j.1600-0684.2009.00346.x (2009).Article 
    PubMed 

    Google Scholar 
    40.Grützmacher, K. S. et al. Codetection of respiratory syncytial virus in habituated wild western lowland gorillas and humans during a respiratory disease outbreak. EcoHealth https://doi.org/10.1007/s10393-016-1144-6 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Gryseels, S. et al. Risk of human-to-wildlife transmission of SARS-CoV-2. Mamm. Rev. https://doi.org/10.1111/mam.12225 (2021).Article 

    Google Scholar 
    42.Melin, A. D., Janiak, M. C., Marrone, F., Arora, P. S. & Higham, J. P. Comparative ACE2 variation and primate COVID-19 risk. Commun. Biol. https://doi.org/10.1038/s42003-020-01370-w (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Damas, J. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2010146117 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Caillaud, D. et al. Violent encounters between social units hinder the growth of a high-density mountain gorilla population. Sci. Adv. https://doi.org/10.1126/SCIADV.ABA0724 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Caillaud, D. et al. Gorilla susceptibility to Ebola virus: The cost of sociality. Curr. Biol. 16, 489–491 (2006).Article 

    Google Scholar 
    46.Reagan, K. J., McGeady, M. L. & Crowell, R. L. Persistence of human rhinovirus infectivity under diverse environmental conditions. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.41.3.618-620.1981 (1981).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Danon, L. et al. Networks and the epidemiology of infectious disease. Interdiscip. Perspect. Infect. Dis. 2011, 1–28 (2011).Article 

    Google Scholar 
    48.Salazar, M. F. M., Waldner, C., Stookey, J. & Bollinger, T. K. Infectious disease and grouping patterns in mule deer. PLoS One https://doi.org/10.1371/journal.pone.0150830 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Weber, N. et al. Badger social networks correlate with tuberculosis infection. Curr. Biol. https://doi.org/10.1016/j.cub.2013.09.011 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.VanderWaal, K. L., Enns, E. A., Picasso, C., Packer, C. & Craft, M. E. Evaluating empirical contact networks as potential transmission pathways for infectious diseases. J. R. Soc. Interface https://doi.org/10.1098/rsif.2016.0166 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Lambert, L. & Culley, F. J. Innate immunity to respiratory infection in early life. Front. Immunol. https://doi.org/10.3389/fimmu.2017.01570 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Jackson, G. G. et al. Susceptibility and immunity to common upper respiratory viral infections—the common cold. Ann. Intern. Med. https://doi.org/10.7326/0003-4819-53-4-719 (1960).Article 
    PubMed 

    Google Scholar 
    53.Kurvers, R. H. J. M., Krause, J., Croft, D. P., Wilson, A. D. M. & Wolf, M. The evolutionary and ecological consequences of animal social networks: Emerging issues. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2014.04.002 (2014).Article 
    PubMed 

    Google Scholar 
    54.Casimir, M. J. An analysis of gorilla nesting sites of the Mt. Kahuzi Region (Zaire). Folia Primatol. 32, 290–308 (1979).Article 

    Google Scholar 
    55.van Hamme, G., Svensson, M. S., Morcatty, T. Q., Nekaris, K.A.-I. & Nijman, V. Keep your distance: Using social media to evaluate the risk of disease transmission in gorilla ecotourism. People Nat. https://doi.org/10.1002/pan3.10187 (2021).Article 

    Google Scholar 
    56.Leendertz, F. H. & Kalema-Zikusoka, G. Vaccinate in biodiversity hotspots to protect people and wildlife from each other. Nature https://doi.org/10.1038/d41586-021-00690-z (2021).Article 
    PubMed 

    Google Scholar 
    57.Porter, A. et al. Behavioral responses around conspecific corpses in adult eastern gorillas (Gorilla beringei spp.). PeerJ https://doi.org/10.7717/peerj.6655 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Albers, P. C. H. & De Vries, H. Elo-rating as a tool in the sequential estimation of dominance strengths. Anim. Behav. https://doi.org/10.1006/anbe.2000.1571 (2001).Article 

    Google Scholar 
    59.Neumann, C. et al. Assessing dominance hierarchies: Validation and advantages of progressive evaluation with Elo-rating. Anim. Behav. https://doi.org/10.1016/j.anbehav.2011.07.016 (2011).Article 

    Google Scholar 
    60.Neumann, C. & Lars, K. EloRating: Animal dominance hierarchies by Elo rating. R Package Version 0.43. https://rdrr.io/cran/EloRating/ (2014).61.Wright, E. et al. Male body size, dominance rank and strategic use of aggression in a group-living mammal. Anim. Behav. https://doi.org/10.1016/j.anbehav.2019.03.011 (2019).Article 

    Google Scholar 
    62.Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695(5), 1–9 (2006).
    Google Scholar 
    63.Wood, S. & Scheipl, F. gamm4: Generalized additive mixed models using ‘mgcv’ and ‘lme4′. R Package Version 0.2-6. https://CRAN.R-project.org/package=gamm4 (2020).64.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. https://doi.org/10.1111/j.1467-9868.2010.00749.x (2011).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    65.Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    66.VanderWaal, K. L. k-test. GitHub Repository. https://github.com/kvanderwaal/k-test (2017).67.Calenge, C. The package ‘adehabitat’ for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. https://doi.org/10.1016/j.ecolmodel.2006.03.017 (2006).Article 

    Google Scholar  More

  • in

    Coral micro- and macro-morphological skeletal properties in response to life-long acclimatization at CO2 vents in Papua New Guinea

    1.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science (80-.) 318, 1737–1742 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Roberts, M., Hanley, N., Williams, S. & Cresswell, W. Terrestrial degradation impacts on coral reef health: Evidence from the Caribbean. Ocean Coast. Manag. 149, 52–68 (2017).Article 

    Google Scholar 
    3.Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl. Acad. Sci. 115, 1754–1759 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Ries, J. B. Skeletal mineralogy in a high-CO2 world. J. Exp. Mar. Biol. Ecol. 403, 54–64 (2011).CAS 
    Article 

    Google Scholar 
    5.Erez, J., Reynaud, S., Silverman, J., Schneider, K. & Allemand, D. Coral calcification under ocean acidification and global change. In Coral Reefs: An Ecosystem in Transition (2011). https://doi.org/10.1007/978-94-007-0114-4_10.6.Dove, S. G. et al. Future reef decalcification under a business-as-usual CO2 emission scenario. Proc. Natl. Acad. Sci. 110, 15342–15347 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Cooper, T. F., De’ath, G., Fabricius, K. E. & Lough, J. M. Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob. Chang. Biol. 14, 529–538 (2008).ADS 
    Article 

    Google Scholar 
    8.Cooper, T. F., O’Leary, R. A. & Lough, J. M. Growth of Western Australian corals in the Anthropocene. Science (80-.) 335, 593–596 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Teixidó, N. et al. Ocean acidification causes variable trait-shifts in a coral species. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15372 (2020).Article 
    PubMed 

    Google Scholar 
    10.Pandolfi, J. M. Incorporating uncertainty in predicting the future response of coral reefs to climate change. Annu. Rev. Ecol. Evol. Syst. 46, 281–303 (2015).Article 

    Google Scholar 
    11.Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).PubMed 
    Article 

    Google Scholar 
    12.Jokiel, P. L. et al. Ocean acidification and calcifying reef organisms: A mesocosm investigation. Coral Reefs 27, 473–483 (2008).ADS 
    Article 

    Google Scholar 
    13.Fantazzini, P. et al. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nat. Commun. 6, 7785 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Wittmann, A. C. & Pörtner, H.-O. Sensitivities of extant animal taxa to ocean acidification. Nat. Clim. Chang. 3, 995–1001 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Fabricius, K. E. et al. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat. Clim. Chang. 1, 165–169 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Riebesell, U. Acid test for marine biodiversity. Nature 454, 46–47 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Johnson, V. R., Russell, B. D., Fabricius, K. E., Brownlee, C. & Hall-Spencer, J. M. Temperate and tropical brown macroalgae thrive, despite decalcification, along natural CO2 gradients. Glob. Chang. Biol. https://doi.org/10.1111/j.1365-2486.2012.02716.x (2012).Article 
    PubMed 

    Google Scholar 
    19.Prada, F. et al. Ocean warming and acidification synergistically increase coral mortality. Sci. Rep. 7, 1–10 (2017).ADS 
    MathSciNet 
    Article 
    CAS 

    Google Scholar 
    20.Inoue, S., Kayanne, H., Yamamoto, S. & Kurihara, H. Spatial community shift from hard to soft corals in acidified water. Nat. Clim. Chang. 3, 683–687 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Crook, E. D., Cohen, A. L., Rebolledo-Vieyra, M., Hernandez, L. & Paytan, A. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification. Proc. Natl. Acad. Sci. 110, 11044–11049 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Teixidó, N. et al. Functional biodiversity loss along natural CO2 gradients. Nat. Commun. 9, 5149 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Strahl, J. et al. Physiological and ecological performance differs in four coral taxa at a volcanic carbon dioxide seep. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 184, 179–186 (2015).CAS 
    Article 

    Google Scholar 
    24.Fabricius, K. E., De’ath, G., Noonan, S. & Uthicke, S. Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proc. R. Soc. B Biol. Sci. 281, 20132479 (2014).CAS 
    Article 

    Google Scholar 
    25.Fabricius, K. E., Noonan, S. H. C., Abrego, D., Harrington, L. & De’ath, G. Low recruitment due to altered settlement substrata as primary constraint for coral communities under ocean acidification. Proc. R. Soc. B Biol. Sci. 284, 20171536 (2017).Article 
    CAS 

    Google Scholar 
    26.Siahainenia, L., Tuhumury, S. F., Uneputty, P. A. & Tuhumury, N. C. Survival and growth of transplanted coral reef in lagoon ecosystem of Ihamahu, Central Maluku, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 339, 012003 (2019).Article 

    Google Scholar 
    27.Horwitz, R., Hoogenboom, M. O. & Fine, M. Spatial competition dynamics between reef corals under ocean acidification. Sci. Rep. 7, 40288 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Noonan, S. H. C., Fabricius, K. E. & Humphrey, C. Symbiodinium community composition in scleractinian corals is not affected by life-long exposure to elevated carbon dioxide. PLoS ONE 8, e63985 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Caroselli, E. et al. Environmental implications of skeletal micro-density and porosity variation in two scleractinian corals. Zoology 114, 255–264 (2011).PubMed 
    Article 

    Google Scholar 
    30.Reggi, M. et al. Biomineralization in Mediterranean corals: The role of the intraskeletal organic matrix. Cryst. Growth Des. 14, 4310–4320 (2014).CAS 
    Article 

    Google Scholar 
    31.Goffredo, S. et al. The skeletal organic matrix from Mediterranean coral Balanophyllia Europaea influences calcium carbonate precipitation. PLoS ONE 6, e22338 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Goffredo, S. et al. Biomineralization control related to population density under ocean acidification. Nat. Clim. Chang. 4, 593–597 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Borgia, G. C., Brown, R. J. S. & Fantazzini, P. Uniform-penalty inversion of multiexponential decay data. J. Magn. Reson. 132, 65–77 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Bortolotti, F., Brown, R. & Fantazzini, P. UpenWin: A Software for Inversion of Multiexponential Decay Data (Windows System Alma Mater Studiorum—Università di Bologna, 2012).
    Google Scholar 
    35.Fantazzini, P. et al. A time-domain nuclear magnetic resonance study of Mediterranean scleractinian corals reveals skeletal-porosity sensitivity to environmental changes. Environ. Sci. Technol. 47, 12679–12686 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Coronado, I., Fine, M., Bosellini, F. R. & Stolarski, J. Impact of ocean acidification on crystallographic vital effect of the coral skeleton. Nat. Commun. 10, 2896 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Pokroy, B., Fitch, A. & Zolotoyabko, E. The microstructure of biogenic calcite: A view by high-resolution synchrotron powder diffraction. Adv. Mater. 18, 2363–2368 (2006).CAS 
    Article 

    Google Scholar 
    38.Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to software and statistical methods. In Plymouth (2008).39.R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018). ISBN 3-900051-07-0. http://www.R-project.org.40.Toby, B. H. & Von Dreele, R. B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).CAS 
    Article 

    Google Scholar 
    41.Jiang, H. G., Rühle, M. & Lavernia, E. J. On the applicability of the x-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials. J. Mater. Res. 14, 549–559 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Vercelloni, J. et al. Forecasting intensifying disturbance effects on coral reefs. Glob. Chang. Biol. 26, 2785–2797 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Guo, W. et al. Ocean acidification has impacted coral growth on the Great Barrier Reef. Geophys. Res. Lett. 47, 1–9 (2020).
    Google Scholar 
    44.Tambutté, E. et al. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification. Nat. Commun. 6, 7368 (2015).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Schneider, K. & Erez, J. The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol. Oceanogr. 51, 1284–1293 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Martinez, A. et al. Species-specific calcification response of Caribbean corals after 2-year transplantation to a low aragonite saturation submarine spring. Proc. Biol. Sci. 286, 20190572 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Comeau, S. et al. Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. Nat. Clim. Chang. 9, 477–483 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    48.McCulloch, M. et al. Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochim. Cosmochim. Acta 87, 21–34 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Movilla, J. et al. Differential response of two Mediterranean cold-water coral species to ocean acidification. Coral Reefs 33, 675–686 (2014).ADS 
    Article 

    Google Scholar 
    50.Kurihara, H., Takahashi, A., Reyes-Bermudez, A. & Hidaka, M. Intraspecific variation in the response of the scleractinian coral Acropora digitifera to ocean acidification. Mar. Biol. 165, 38 (2018).Article 

    Google Scholar 
    51.Barnes, D. J. & Devereux, M. J. Variations in skeletal architecture associated with density banding in the hard coral Porites. J. Exp. Mar. Biol. Ecol. 121, 37–54 (1988).Article 

    Google Scholar 
    52.Bucher, D. J., Harriott, V. J. & Roberts, L. G. Skeletal micro-density, porosity and bulk density of acroporid corals. J. Exp. Mar. Biol. Ecol. 228, 117–136 (1998).Article 

    Google Scholar 
    53.Mass, T. et al. Amorphous calcium carbonate particles form coral skeletons. Proc. Natl. Acad. Sci. 114, E7670–E7678 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Vidal-Dupiol, J. et al. Genes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals: New insights from transcriptome analysis. PLoS ONE 8, e58652 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Suggett, D. J. et al. Light availability determines susceptibility of reef building corals to ocean acidification. Coral Reefs 32, 327–337 (2013).ADS 
    Article 

    Google Scholar 
    56.Vogel, N., Meyer, F., Wild, C. & Uthicke, S. Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms. Mar. Ecol. Prog. Ser. 521, 49–61 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Tanaka, Y. et al. Nutrient availability affects the response of juvenile corals and the endosymbionts to ocean acidification. Limnol. Oceanogr. 59, 1468–1476 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Towle, E. K., Enochs, I. C. & Langdon, C. Threatened Caribbean coral is able to mitigate the adverse effects of ocean acidification on calcification by increasing feeding rate. PLoS ONE 10, e0123394 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Stolarski, J., Przeniosło, R., Mazur, M. & Brunelli, M. High-resolution synchrotron radiation studies on natural and thermally annealed scleractinian coral biominerals. J. Appl. Crystallogr. 40, 2–9 (2007).CAS 
    Article 

    Google Scholar 
    60.Maslen, E. N., Streltsov, V. A., Streltsova, N. R. & Ishizawa, N. Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3. Acta Crystallogr. Sect. B Struct. Sci. 51, 929–939 (1995).Article 

    Google Scholar 
    61.Wall, M. et al. Linking internal carbonate chemistry regulation and calcification in corals growing at a Mediterranean CO2 vent. Front. Mar. Sci. 6, 699 (2019).Article 

    Google Scholar 
    62.Wickham, H. ggplot2 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-24277-4.Book 
    MATH 

    Google Scholar  More

  • in

    Wild meat consumption in tropical forests spares a significant carbon footprint from the livestock production sector

    1.Nasi, R., Taber, A. & van Vliet, N. Empty forests, empty stomachs? Wild meat and livelihoods in the Congo and Amazon Basins. Int. For. Rev. 13, 355–368. https://doi.org/10.1505/146554811798293872 (2011).Article 

    Google Scholar 
    2.van Vliet, N. “Bushmear crisis” and “Cultural imperialism” in wildlife management? Taking value orientations into account for a more sustainable and culturally acceptable wildmeat sector. Front. Ecol. Evol. 6, 112. https://doi.org/10.3389/fevo.2018.00112 (2018).ADS 
    Article 

    Google Scholar 
    3.Nunes, A. V., Peres, C. A., Constantino, P. A. L., Santos, B. A. & Fischer, E. Irreplaceable socioeconomic value of wild meat extraction to local food security in rural Amazonia. Biol. Conserv. 236, 171–179. https://doi.org/10.1016/j.biocon.2019.05.010 (2019).Article 

    Google Scholar 
    4.Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. PNAS 113, 892–897. https://doi.org/10.1073/pnas.1516525113 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    5.Brodie, J. F. Carbon costs and bushmeat benefits of hunting in tropical forests. Ecol. Econ. 152, 22–26. https://doi.org/10.1016/j.ecolecon.2018.05.028 (2018).Article 

    Google Scholar 
    6.Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 99, 1003–1015. https://doi.org/10.1093/aob/mcl066 (2007).Article 
    PubMed 

    Google Scholar 
    7.Bunker, D. E. et al. Species loss and aboveground carbon storage in a tropical forest. Science 310, 1029–1031. https://doi.org/10.1126/science.1117682 (2005).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    8.Harrison, R. D. et al. Consequences of defaunation for a tropica tree community. Ecol. Lett. 16, 687–694. https://doi.org/10.1111/ele.12102 (2013).Article 
    PubMed 

    Google Scholar 
    9.Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105. https://doi.org/10.1126/sciadv.1501105 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    10.Sarti, F. M. et al. Beyond protein intake: Bushmeat as source of micronutrients in the Amazon. Ecol. Soc. 20, 22 (2015).Article 

    Google Scholar 
    11.Goelden, C. D. et al. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. PNAS 108, 19653–19656. https://doi.org/10.1073/pnas.1112586108 (2011).ADS 
    Article 

    Google Scholar 
    12.Fa, J. E. et al. Disentangling the relative effects of bushmeat availability on human nutrition in central Africa. Sci. Rep. 5, 8168. https://doi.org/10.1038/srep08168 (2015).Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    13.Peres, C. A. Conservation in sustainable-use tropical forest reserves. Conserv. Biol. 25(1124–1129), 2011. https://doi.org/10.1111/j.1523-1739.2011.01770.x (2011).Article 

    Google Scholar 
    14.Ohl-Schacherer, J. et al. The sustainability of subsistence hunting by Matsigenka native communities in Manu National Park, Peru. Conserv. Biol. 21, 1174–1185. https://doi.org/10.1111/j.1523-1739.2007.00759.x (2007).Article 
    PubMed 

    Google Scholar 
    15.Constantino, P. A. L. et al. Indigenous collaborative research for wildlife management in Amazonia: The case of the Kaxinawá, Acre, Brazil. Biol. Conserv. 141, 2718–2729. https://doi.org/10.1016/j.biocon.2008.08.008 (2008).Article 

    Google Scholar 
    16.Weinbaum, K. Z., Brashares, J. S., Golden, C. D. & Getz, W. M. Searching for sustainability: Are assessments of wildlife harvests behind the times?. Ecol. Lett. 16, 99–111. https://doi.org/10.1111/ele.12008 (2013).Article 
    PubMed 

    Google Scholar 
    17.Novaro, A. J., Redford, K. H. & Bodmer, R. E. Effect of hunting in source-sink systems in the Neotropics. Conserv. Biol. 14, 713–721. https://doi.org/10.1046/j.1523-1739.2000.98452.x (2000).Article 

    Google Scholar 
    18.Constantino, P. A. C., Benchimol, M. & Antunes, A. P. Designing indigenous lands in Amazonia: Securing indigenous rights and wildlife conservation through hunting management. Land Use Policy 77, 652–660. https://doi.org/10.1016/j.landusepol.2018.06.016 (2018).Article 

    Google Scholar 
    19.Kaimowitz, D. & Angelsen, A. Will livestock intensification help save Latin America’s tropical forests?. J. Sustain. For. 27, 6–24. https://doi.org/10.1080/10549810802225168 (2008).Article 

    Google Scholar 
    20.Curtis, P. G., Slat, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111. https://doi.org/10.1126/science.aau3445 (2018).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    21.De Sy, V. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004. https://doi.org/10.1088/1748-9326/10/12/124004 (2015).ADS 
    Article 

    Google Scholar 
    22.Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009. https://doi.org/10.1088/1748-9326/7/4/044009 (2012).ADS 
    Article 

    Google Scholar 
    23.Herrero, M. et al. Livestock and the environment—What have we learned in the past decade?. Annu. Rev. Environ. Resour. 40, 177–202. https://doi.org/10.1146/annurev-environ-031113-093503 (2015).Article 

    Google Scholar 
    24.Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561. https://doi.org/10.6084/m9.figshare.12248735 (2021).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    25.Steinfeld, H. et al. Livestock’s Long Shadow (FAO, 2006).
    Google Scholar 
    26.United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423) (2019).27.IPCC Climate Change 2014: Synthesis Report (eds. Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).28.Wolf, C., Ripple, W. J., Levi, T. & Peres, C. A. Eating plants and planting forests for the climate. Glob. Chang. Biol. 25, 3995–3995. https://doi.org/10.1111/gcb.14835 (2019).ADS 
    Article 
    PubMed 

    Google Scholar 
    29.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993. https://doi.org/10.1126/science.1201609 (2011).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    30.Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821. https://doi.org/10.1126/sciadv.1600821 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Maxwell, S. L. et al. Degradation and forgone removals increase the carbon imáct of intact forest loss by 626%. Sci. Adv. 5, eaax2546. https://doi.org/10.1126/sciadv.aax2546 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    32.Walker, W. S. et al. The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. PNAS 117, 3015–3025. https://doi.org/10.1073/pnas.1913321117 (2020).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    33.Angelsen, A. et al. Environmental income and rural livelihoods: A global-comparative analysis. World Dev. 64, 12–28. https://doi.org/10.1016/j.worlddev.2014.03.006 (2010).Article 

    Google Scholar 
    34.UNFCCC. Adoption of the Paris Agreement-Draft Decision-/CP.21 (United Nations Framework Convention on Climate Change, 2015).
    Google Scholar 
    35.Hinsley, A., Entwistle, A. & Pio, D. V. Does the long-term success of REDD+ also depend on biodiversity?. Oryx 49, 216–221. https://doi.org/10.1017/S0030605314000507 (2015).Article 

    Google Scholar 
    36.Krause, T. & Nielsen, M. R. Not seeing the forest for the trees: The oversight of defaunation in REDD+ and global forest governance. Forests 10, 344. https://doi.org/10.3390/f10040344 (2019).Article 

    Google Scholar 
    37.Nardoto, G. B. et al. Frozen chicken for wild fish: Nutritional transition in the Brazilian Amazon region determined by carbon and nitrogen stable isotope ratios in fingernails. Am. J. Hum. Biol. 23, 642–650. https://doi.org/10.1002/ajhb.21192 (2011).Article 
    PubMed 

    Google Scholar 
    38.Farrel, D. The Role of Poultry in Human Nutrition. Poultry Development Review (FAO, 2013).
    Google Scholar 
    39.Poulsen, J. R., Clark, C. J. & Mavah, G. Wildlife management in a logging concession in Northern Congo: Can livelihoods be maintained through sustainable hunting? In Bushmeat and Livelihoods (eds Davies, G. & Brown, D.) 140–157 (Blackwell Publishing, 2007).
    Google Scholar 
    40.Nunes, A. V., Guariento, R. D., Santos, B. A. & Fischer, E. Wild meat sharing among non-indigenous people in the Southwestern Amazon. Behv. Ecol. Sociobiol. 73, 26. https://doi.org/10.1007/s00265-018-2628-x (2019).Article 

    Google Scholar 
    41.WHO/FAO/UNU Protein and Amino Acid Requirements in Human Nutrition; Report of a joint WHO/FAO/UNU Expert Consultation, WHO Tech Rep Ser no. 935 (WHO, 2007).42.FAO. FAOSTAT Agri-Environmental Indicators, Emissions Intensities. http://www.fao.org/faostat/en/#data/EI (2019).43.Opio, C. et al. Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment (Food and Agriculture Organization of the United Nations (FAO), 2013).
    Google Scholar 
    44.Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992. https://doi.org/10.1126/science.aaq0216 (2018).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    45.ICAO. International Civil Aviation Organization. https://www.icao.int/environmental-protection/Carbonoffset/Pages/default.aspx (2016).46.Searchinger, T. D. et al. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253. https://doi.org/10.1038/s41586-018-0757-z (2018).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    47.Ministério do Meio Ambiente (MMA). Programa áreas protegidas da Amazônia ARPA-Fase II (2010).48.Arensberg, W. W. Critical Ecosystem Partnership Fund Mid-Term Review (Critical Ecosystem Partnership Fund, 2003).49.Sistema Integrado de Planejamento e Orçamento (SIOP). Cadastro de Ações. Apoio à conservação Ambiental e à Erradicação da Extrema Pobreza Bolsa Verde (Secretaria de Orçamento Federal, Ministério do Planejamento, Orçamento e Gestão, 2014).50.World Bank. State and Trends of Carbon Pricing (World Bank, 2020). https://doi.org/10.1596/978-1-4648-1586-7.51.NASA (National Aeronautics and Space Administration). NASA Administrator Statement on Moon to Mars Initiative, fy 2021 Budget. https://www.nasa.gov/press-release/nasa-administrator-statement-on-moon-to-mars-initiative-fy-2021-budget.52.Peres, C. A. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv. Biol. 15, 1490–1505. https://doi.org/10.1046/j.1523-1739.2001.01089.x (2001).Article 

    Google Scholar 
    53.Griscom, B. W. et al. Natural climate solutions. PNAS 114, 11645–11650. https://doi.org/10.1073/pnas.1710465114 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    54.Reid, H., Faulkner, L. & Weiser, A. in IIED Climate Change Working Paper (eds. Fisher, S. & Reid, H.) 3–67 (2013).55.Munang, R., Andrews, J., Alverson, K. & Mebratu, D. Harnessing ecosystem-based adaptation to address the social dimensions of climate change. Environ.: Sci. Policy Sustain. Dev. 56, 18–24. https://doi.org/10.1080/00139157.2014.861676 (2013).Article 

    Google Scholar 
    56.Woroniecki, S. Enabling environments? Examining social co-benefits of ecosystem-based adaptation to climate change in Sri Lanka. Sustainability 11, 772. https://doi.org/10.3390/su11030772 (2019).Article 

    Google Scholar 
    57.Seddon, N. et al. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 375, 20190120. https://doi.org/10.1098/rstb.2019.0120 (2020).Article 

    Google Scholar 
    58.Wilkie, D. S., Wieland, M. & Poulsen, J. R. Unsustainable vs. sustainable hunting for food in Gabon: Modeling short- and long- term gains and losses. Front. Ecol. Evol. 7, 357. https://doi.org/10.3389/fevo.2019.00357 (2019).Article 

    Google Scholar 
    59.Booth, H. et al. Assessing the impact of regulations on the use and trade of wildlife: An operational framework, with a case study on manta rays. Glob. Ecol. Conserv. 22, e00953 (2020).Article 

    Google Scholar 
    60.Dickman, A. et al. Trophy hunting bans imperil biodiversity. Science 365(6456), 874. https://doi.org/10.1126/science.aaz0735 (2019).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    61.Marrocoli, S. et al. Using wildlife indicators to facilitate wildlife monitoring in hunter-self monitoring schemes. Ecol. Indic. 105, 254–263. https://doi.org/10.1016/j.ecolind.2019.05.050 (2019).Article 

    Google Scholar 
    62.van Vliet, N. et al. Frameworks regulating hunting for meat in tropical countries leave the sectos in the limbo. Front. Ecol. Evol. 7, 1–7. https://doi.org/10.3389/fevo.2019.00280 (2019).Article 

    Google Scholar 
    63.Ronchail, J. et al. Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic oceans. Int. J. Climatol. 22, 1663–1686. https://doi.org/10.1002/joc.815 (2002).Article 

    Google Scholar 
    64.CSC. Climate Change Scenarios for the Congo Basin (Climate Service Centre Report No. 11, 2013).65.Akkermans, T., Thiery, W. & Lipzig, N. P. M. V. The regional climate impact of a realistic future deforestation scenario in the Congo Basin. J. Clim. 27, 2714–2734. https://doi.org/10.1175/JCLI-D-D13-00361.1 (2014).ADS 
    Article 

    Google Scholar 
    66.Siebert, A. Hydroclimate extrems in Africa: Variability, observations and modeled projectios. Geography 8, 351–367. https://doi.org/10.1111/gec3.12136 (2014).Article 

    Google Scholar 
    67.Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403. https://doi.org/10.5194/bg-9-3381-2012 (2012).ADS 
    Article 

    Google Scholar 
    68.Hansen, M. C. et al. High- resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    69.Mayaux, P. et al. Tropical forest cover change in the 1990s and options for future monitoring. Philos. Trans. R. Soc. B 360, 373–384. https://doi.org/10.1098/rstb.2004.1590 (2005).Article 

    Google Scholar 
    70.Zelazowski, P., Malhi, Y., Huntingford, C., Sitch, S. & Fisher, J. B. Changes in the potential distribution of humid tropical forests on a warmer planet. Philos. Trans. Soc. A 369, 137–160. https://doi.org/10.1098/rsta.2010.0238 (2011).ADS 
    Article 

    Google Scholar 
    71.Nkem, J., Idinoba, M., Brockhaus, M., Kalame, F. & Tas, A. Adaptation to Climate Change in Africa: Synergies with Biodiversity and Forest (CIFOR, 2008).
    Google Scholar 
    72.Ganzhorn, J. U., Lowry, P. P., Schatz, G. E. & Sommer, S. The biodiversity of Madagascar: One of the world’s hottest hotspots on its way out. Oryx 35, 346–348. https://doi.org/10.1046/j.1365-3008.2001.00201.x (2001).Article 

    Google Scholar 
    73.Kingdon, J. East African Mammals Vol. IIIA (Academic Press, 1977).
    Google Scholar 
    74.Dunning, J. B. CRC Handbook of Avian Body Masses 2nd edn. (CRC, 2008).
    Google Scholar 
    75.Rushton, J. et al. How important is bushmeat consumption in South America: Now and in the future?. Odi Wildl. Policy Brief. 11, 1–4 (2005).
    Google Scholar 
    76.Redford, K. H. & Robinson, J. G. The game of choice: Patterns of Indian and colonist hunting in the Neotropics. Am. Anthropol. 89, 650–667. https://doi.org/10.1525/aa.1987.89.3.02a00070 (1987).Article 

    Google Scholar 
    77.Ojasti, J. Wildlife Utilization in Latin America: Current Situation and Prospects for Sustainable Management (FAO, 1996).
    Google Scholar 
    78.Wilson, E. D., Fisher, K. H. & Garcia, P. A. Principles of Nutrition (Wiley, 1979).
    Google Scholar 
    79.Human energy requirements. Report of a Joint FAO/WHO/UNU Expert Consultation (2014).80.Soriano-Santos, J. in Handbook of Poultry Science and Technology (ed. Guerrero-Lagarreta, I.) 467–489 (2009).81.Eggleston, H. S. et al. (eds) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme (IPCC, 2006).
    Google Scholar 
    82.Carbon Pricing Leadership Coalition (CPLC). Report of the High-Level Commission on Carbon Prices (World Bank Group, 2017).
    Google Scholar 
    83.Annual Report. Ending Poverty, Investing in Opportunity (World Bank Group, 2019).
    Google Scholar 
    84.Avitabile, M. V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 22, 1406–1420. https://doi.org/10.1111/gcb.13139 (2016).ADS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    A novel random forest approach to revealing interactions and controls on chlorophyll concentration and bacterial communities during coastal phytoplankton blooms

    1.Beardall, J. et al. Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytol. https://doi.org/10.1111/j.1469-8137.2008.02660.x (2009).Article 
    PubMed 

    Google Scholar 
    2.Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. https://doi.org/10.4319/lo.2009.54.6_part_2.2283 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Williamson, C. E., Saros, J. E. & Schindler, D. W. Sentinels of change. Science (N. Y.) https://doi.org/10.1126/science.1169443 (2009).Article 

    Google Scholar 
    4.Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science https://doi.org/10.1126/science.281.5374.237 (1998).Article 
    PubMed 

    Google Scholar 
    5.Monier, A. et al. Oceanographic structure drives the assembly processes of microbial eukaryotic communities. ISME J. https://doi.org/10.1038/ismej.2014.197 (2015).Article 
    PubMed 

    Google Scholar 
    6.Paerl, H. W. & Huisman, J. Blooms like it hot. Science (N. Y.) https://doi.org/10.1126/science.1155398 (2008).Article 

    Google Scholar 
    7.Wells, M. L. et al. Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae https://doi.org/10.1016/j.hal.2015.07.009 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Smith, J. et al. A decade and a half of Pseudo-nitzschia spp. and domoic acid along the coast of southern California. Harmful Algae https://doi.org/10.1016/j.hal.2018.07.007 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.McCabe, R. M. et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett. https://doi.org/10.1002/2016GL070023 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Ekstrom, J. A., Moore, S. K. & Klinger, T. Examining harmful algal blooms through a disaster risk management lens: A case study of the 2015 U.S. West Coast domoic acid event. Harmful Algae https://doi.org/10.1016/j.hal.2020.101740 (2020).Article 
    PubMed 

    Google Scholar 
    11.Kudela, R. M. & Chavez, F. P. The impact of coastal runoff on ocean color during an El Niño year in Central California. Deep Sea Res. Part II Topical Stud. Oceanogr. https://doi.org/10.1016/j.dsr2.2004.04.002 (2004).Article 

    Google Scholar 
    12.Kudela, R. M., Lane, J. Q. & Cochlan, W. P. The potential role of anthropogenically derived nitrogen in the growth of harmful algae in California, USA. Harmful Algae https://doi.org/10.1016/j.hal.2008.08.019 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Fischer, A. M., Ryan, J. P., Levesque, C. & Welschmeyer, N. Characterizing estuarine plume discharge into the coastal ocean using fatty acid biomarkers and pigment analysis. Mar. Environ. Res. https://doi.org/10.1016/j.marenvres.2014.04.006 (2014).Article 
    PubMed 

    Google Scholar 
    14.Ryan, J. P. et al. Causality of an extreme harmful algal bloom in Monterey Bay, California, during the 2014–2016 northeast Pacific warm anomaly. Geophys. Res. Lett. https://doi.org/10.1002/2017GL072637 (2017).Article 

    Google Scholar 
    15.Van Meter, K. J., Basu, N. B. & Van Cappellen, P. Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River Basins. Global Biogeochem. Cycles https://doi.org/10.1002/2016GB005498 (2017).Article 

    Google Scholar 
    16.Conley, D. J. et al. Ecology – Controlling eutrophication: Nitrogen and phosphorus. Science https://doi.org/10.1126/science.1167755 (2009).Article 
    PubMed 

    Google Scholar 
    17.Sinha, E., Michalak, A. M. & Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science https://doi.org/10.1126/science.aan2409 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Howard, M. D. A. et al. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight. Limnol. Oceanogr. https://doi.org/10.4319/lo.2014.59.1.0285 (2014).Article 

    Google Scholar 
    19.Harvey, E. L. et al. A bacterial quorum-sensing precursor induces mortality in the marine coccolithophore, Emiliania huxleyi. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00059 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Sison-Mangus, M. P., Jiang, S., Tran, K. N. & Kudela, R. M. Host-specific adaptation governs the interaction of the marine diatom, Pseudo-nitzschia and their microbiota. ISME J. https://doi.org/10.1038/ismej.2013.138 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Skerratt, J. H., Bowman, J. P., Hallegraeff, G., James, S. & Nichols, P. D. Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps244001 (2002).Article 

    Google Scholar 
    22.Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature https://doi.org/10.1038/nature14488 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps010257 (1983).Article 

    Google Scholar 
    24.Platt, T. Concepts in biological oceanography: An interdisciplinary primer (P. A. Jumars). Limnol. Oceanogr. https://doi.org/10.4319/lo.1993.38.8.1842 (1993).Article 

    Google Scholar 
    25.Larsson, U. & Hagström, A. Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Mar. Biol. https://doi.org/10.1007/BF00398133 (1979).Article 

    Google Scholar 
    26.Bidle, K. D. & Azam, F. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature https://doi.org/10.1038/17351 (1999).Article 

    Google Scholar 
    27.Ammerman, J. W. & Azam, F. Bacterial 5’-nucleotidase in aquatic ecosystems: A novel mechanism of phosphorus regeneration. Science https://doi.org/10.1126/science.227.4692.1338 (1985).Article 
    PubMed 

    Google Scholar 
    28.Kazamia, E. et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2012.02733.x (2012).Article 
    PubMed 

    Google Scholar 
    29.Sison-Mangus, M. P., Jiang, S., Kudela, R. M. & Mehic, S. Phytoplankton-associated bacterial community composition and succession during toxic diatom bloom and non-bloom events. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01433 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Anderson, C. R. et al. Scaling up from regional case studies to a global harmful algal bloom observing system. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.250 (2019).Article 

    Google Scholar 
    31.McGillicuddy, D. J. et al. GEOHAB modelling: Linking Observations to Predictions: A Workshop Report (Galway, Ireland, 2011).32.Song, W., Dolan, J. M., Cline, D. & Xiong, G. Learning-based algal bloom event recognition for oceanographic decision support system using remote sensing data. Remote Sens. https://doi.org/10.3390/rs71013564 (2015).Article 

    Google Scholar 
    33.Kwon, Y. S. et al. Developing data-driven models for quantifying Cochlodinium polykrikoides using the geostationary ocean color imager (GOCI). Int. J. Remote Sens. https://doi.org/10.1080/01431161.2017.1381354 (2018).Article 

    Google Scholar 
    34.Asnaghi, V. et al. A novel application of an adaptable modeling approach to the management of toxic microalgal bloom events in coastal areas. Harmful Algae https://doi.org/10.1016/j.hal.2017.02.003 (2017).Article 
    PubMed 

    Google Scholar 
    35.Valbi, E. et al. A model predicting the PSP toxic dinoflagellate Alexandrium minutum occurrence in the coastal waters of the NW Adriatic Sea. Sci. Rep. https://doi.org/10.1038/s41598-019-40664-w (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.El Hourany, R. et al. Phytoplankton diversity in the mediterranean sea from satellite data using self-organizing maps. J. Geophys. Res. Oceans 124, 5827–5843 (2019).Article 
    ADS 

    Google Scholar 
    37.Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).CAS 
    Article 

    Google Scholar 
    38.Ascioti, F. A., Beltrami, E., Carroll, T. O. & Wirick, C. Is there chaos in plankton dynamics?. J. Plankton Res. 15, 603–617 (1993).Article 

    Google Scholar 
    39.Basu, S., Kumbier, K., Brown, J. B. & Yu, B. Iterative random forests to discover predictive and stable high-order interactions. Proc. Natl. Acad. Sci. U.S.A. https://doi.org/10.1073/pnas.1711236115 (2018).Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    40.Breiman, L. Random forests. Mach. Learn. https://doi.org/10.1023/A:1010933404324 (2001).Article 
    MATH 

    Google Scholar 
    41.Witten, I. H., Cunningham, S., Holmes, G., McQueen, R. J. & Smith, L. A. Practical machine learning and its potential application to problems in agriculture. In Proceedings of New Zealand Computer Conference (1993).42.Lee, J. & Sison-Mangus, M. A Bayesian semiparametric regression model for joint analysis of microbiome data. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.00522 (2018).Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    43.Hirsch, R. M., Moyer, D. L. & Archfield, S. A. Weighted regressions on time, discharge, and season (WRTDS), with an application to chesapeake bay river inputs. J. Am. Water Resour. Assoc. https://doi.org/10.1111/j.1752-1688.2010.00482.x (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Shuler, K., Sison-Mangus, M. & Lee, J. Bayesian sparse multivariate regression with asymmetric nonlocal priors for microbiome data analysis. Bayesian Anal. https://doi.org/10.1214/19-ba1164 (2019).Article 
    MATH 

    Google Scholar 
    45.Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science https://doi.org/10.1126/science.1218344 (2012).Article 
    PubMed 

    Google Scholar 
    46.Klindworth, A. et al. Diversity and activity of marine bacterioplankton during a diatom bloom in the North Sea assessed by total RNA and pyrotag sequencing. Mar. Genom. https://doi.org/10.1016/j.margen.2014.08.007 (2014).Article 

    Google Scholar 
    47.Delmont, T. O., Hammar, K. M., Ducklow, H. W., Yager, P. L. & Post, A. F. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00646 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Delmont, T. O., Murat Eren, A., Vineis, J. H. & Post, A. F. Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01090 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Kempnich, M. W. & Sison-Mangus, M. P. Presence and abundance of bacteria with the Type VI secretion system in a coastal environment and in the global oceans. PLoS ONE 15, e0244217 (2020).CAS 
    Article 

    Google Scholar 
    50.Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 8, (2019).51.Palarea-Albaladejo, J. & Martín-Fernández, J. A. ZCompositions – R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 143, 85–96 (2015).CAS 
    Article 

    Google Scholar 
    52.van den Boogaart, K. G. & Tolosana-Delgado, R. ‘compositions’: A unified R package to analyze compositional data. Comput. Geosci. 34, 320–338 (2008).Article 
    ADS 

    Google Scholar 
    53.Heisler, J. et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae https://doi.org/10.1016/j.hal.2008.08.006 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Howarth, R. W. & Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol. Oceanogr. https://doi.org/10.4319/lo.2006.51.1_part_2.0364 (2006).Article 

    Google Scholar 
    55.Hamasaki, K. Variability in toxicity of the dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, Western Japan, as a reflection of changing environmental conditions. J. Plankton Res. https://doi.org/10.1093/plankt/23.3.271 (2001).Article 

    Google Scholar 
    56.Leong, S. C. Y., Murata, A., Nagashima, Y. & Taguchi, S. Variability in toxicity of the dinoflagellate Alexandrium tamarense in response to different nitrogen sources and concentrations. Toxicon https://doi.org/10.1016/j.toxicon.2004.01.015 (2004).Article 
    PubMed 

    Google Scholar 
    57.Howard, M. D. A., Cochlan, W. P., Ladizinsky, N. & Kudela, R. M. Nitrogenous preference of toxigenic Pseudo-nitzschia australis (Bacillariophyceae) from field and laboratory experiments. Harmful Algae https://doi.org/10.1016/j.hal.2006.06.003 (2007).Article 

    Google Scholar 
    58.Lane, J. Q., Raimondi, P. T. & Kudela, R. M. Development of a logistic regression model for the prediction of toxigenic pseudo-nitzschia blooms in monterey bay, California. Mar. Ecol. Progr. Ser. https://doi.org/10.3354/meps07999 (2009).Article 

    Google Scholar 
    59.Lecher, A. L. et al. Nutrient loading through submarine groundwater discharge and phytoplankton growth in Monterey bay, CA. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.5b00909 (2015).Article 
    PubMed 

    Google Scholar 
    60.Bakun, A. Coastal Upwelling Indices, West Coast of North America, 1946–71. (1972).61.Jacox, M. G., Edwards, C. A., Hazen, E. L. & Bograd, S. J. Coastal upwelling revisited: Ekman, Bakun, and improved upwelling indices for the U.S. West coast. J. Geophys. Res. Oceans 123, 7332–7350 (2018).Article 
    ADS 

    Google Scholar 
    62.Sawyer, A. H., David, C. H. & Famiglietti, J. S. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities. Science https://doi.org/10.1126/science.aag1058 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Sawyer, A. H., Michael, H. A. & Schroth, A. W. From soil to sea: The role of groundwater in coastal critical zone processes. Wiley Interdiscip. Rev. Water https://doi.org/10.1002/wat2.1157 (2016).Article 

    Google Scholar 
    64.Garneau, M. È. et al. Examination of the seasonal dynamics of the toxic dinoflagellate Alexandrium catenella at Redondo Beach, California, by quantitative PCR. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.06174-11 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Schiff, K. C., Allen, M. J., Zeng, E. Y. & Bay, S. M. Southern California. Seas Millenn. Environ. Eval. https://doi.org/10.1097/00006205-197605000-00010 (2000).Article 

    Google Scholar 
    66.Nelson, N. G. et al. Revealing biotic and abiotic controls of harmful algal blooms in a shallow subtropical lake through statistical machine learning. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.7b05884 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Pohlner, M. et al. The majority of active Rhodobacteraceae in marine sediments belong to uncultured genera: A molecular approach to link their distribution to environmental conditions. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00659 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Wagner-Döbler, I. & Biebl, H. Environmental biology of the marine roseobacter lineage. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev.micro.60.080805.142115 (2006).Article 
    PubMed 

    Google Scholar 
    69.Elifantz, H., Horn, G., Ayon, M., Cohen, Y. & Minz, D. Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiol. Ecol. https://doi.org/10.1111/1574-6941.12122 (2013).Article 
    PubMed 

    Google Scholar 
    70.Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. https://doi.org/10.1038/nmicrobiol.2016.5 (2016).Article 
    PubMed 

    Google Scholar 
    71.Williams, T. J. et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ. Microbiol. https://doi.org/10.1111/1462-2920.12017 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Tully, B. J., Sachdeva, R., Heidelberg, K. B. & Heidelberg, J. F. Comparative genomics of planktonic Flavobacteriaceae from the Gulf of Maine using metagenomic data. Microbiome https://doi.org/10.1186/2049-2618-2-34 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Kirchman, D. L. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. https://doi.org/10.1016/S0168-6496(01)00206-9 (2002).Article 
    PubMed 

    Google Scholar 
    74.Pinhassi, J. et al. Changes in bacterioplankton composition under different phytoplankton regimens. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.70.11.6753-6766.2004 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro3326 (2014).Article 
    PubMed 

    Google Scholar 
    76.Zhou, J. et al. Microbial community structure and associations during a marine dinoflagellate bloom. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01201 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Buchan, A., González, J. M. & Moran, M. A. Overview of the marine Roseobacter lineage. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.71.10.5665-5677.2005 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Rajapitamahuni, S., Bachani, P., Sardar, R. K. & Mishra, S. Co-cultivation of siderophore-producing bacteria Idiomarina loihiensis RS14 with Chlorella variabilis ATCC 12198, evaluation of micro-algal growth, lipid, and protein content under iron starvation. J. Appl. Phycol. https://doi.org/10.1007/s10811-018-1591-2 (2019).Article 

    Google Scholar  More

  • in

    Drowning carbon sinks?

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Age estimation using methylation-sensitive high-resolution melting (MS-HRM) in both healthy felines and those with chronic kidney disease

    1.Blomqvist, L. & Sten, I. Reproductive Biology of the Snow Leopard. Panthera Books, London (1982).2.Kirkwood, T. B. & Austad, S. N. Why do we age?. Nature 408, 233–238 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Zhao, M., Klaassen, C. A. J., Lisovski, S. & Klaassen, M. The adequacy of aging techniques in vertebrates for rapid estimation of population mortality rates from age distributions. Ecol. Evol. 9, 1394–1402 (2019).Article 

    Google Scholar 
    4.Oli, M. K. & Dobson, F. S. The relative importance of life-history variables to population growth rate in mammals: Cole’s prediction revisited. Am. Nat. 161, 422–440 (2003).Article 

    Google Scholar 
    5.Mori, A. Analysis of population changes by measurement of body weight in the Koshima troop of Japanese monkeys. Primates 20, 371–397 (1979).Article 

    Google Scholar 
    6.WILkINSON, G. S. & Brunet-Rossinni, A. K. Methods for age estimation and the study of senescence in bats. In Ecological and behavioral methods for the study of bats 315–325 (Johns Hopkins University Press, 2009).
    Google Scholar 
    7.Hartman, K. L., Wittich, A., Cai, J. J., van der Meulen, F. H. & Azevedo, J. M. N. Estimating the age of Risso’s dolphins (Grampus griseus) based on skin appearance. J. Mammal. 97, 490–502 (2016).Article 

    Google Scholar 
    8.Chevallier, C., Gauthier, G. & Berteaux, D. Age estimation of live arctic foxes Vulpes lagopus based on teeth condition. Wildl. Biol. 4, 1–6 (2017).
    Google Scholar 
    9.White, P. A. et al. Age estimation of African lions Panthera leo by ratio of tooth areas. PloS One 11, e0153648 (2016).Article 

    Google Scholar 
    10.Siegal-Willott, J., Isaza, R., Johnson, R. & Blaik, M. Distal limb radiography, ossification, and growth plate closure in the juvenile Asian elephant (Elephas maximus). J. Zoo Wildl. Med. 39, 320–334 (2008).Article 

    Google Scholar 
    11.Paoli-Iseppi, D. et al. Measuring animal age with DNA methylation: From humans to wild animals. Front. Genet. 8, 106 (2017).Article 

    Google Scholar 
    12.Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, 3156 (2013).Article 

    Google Scholar 
    13.Schübeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).ADS 
    Article 

    Google Scholar 
    14.Field, A. E. et al. DNA methylation clocks in aging: Categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).CAS 
    Article 

    Google Scholar 
    15.Weidner, C. I. et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 15, 1–12 (2014).Article 

    Google Scholar 
    16.Bocklandt, S. et al. Epigenetic predictor of age. PloS One 6, e14821 (2011).17.Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960 (2017).CAS 
    Article 

    Google Scholar 
    18.Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 1–14 (2017).Article 

    Google Scholar 
    19.Thompson, M. J., vonHoldt, B., Horvath, S. & Pellegrini, M. An epigenetic aging clock for dogs and wolves. Aging (Albany NY) 9, 1055–1068 (2017).CAS 
    Article 

    Google Scholar 
    20.Lowe, R. et al. Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species. Genome Biol. 19, 22 (2018).Article 

    Google Scholar 
    21.Ito, H., Udono, T., Hirata, S. & Inoue-Murayama, M. Estimation of chimpanzee age based on DNA methylation. Sci. Rep. 8, 1–5 (2018).
    Google Scholar 
    22.Polanowski, A. M., Robbins, J., Chandler, D. & Jarman, S. N. Epigenetic estimation of age in humpback whales. Mol. Ecol. Resour. 14, 976–987 (2014).CAS 
    Article 

    Google Scholar 
    23.Wright, P. G. et al. Application of a novel molecular method to age free-living wild Bechstein’s bats. Mol. Ecol. Resour. 18, 1374–1380 (2018).CAS 
    Article 

    Google Scholar 
    24.Park, K. et al. Determining the age of cats by pulp cavity/tooth width ratio using dental radiography. J. Vet. Sci. 15, 557 (2014).Article 

    Google Scholar 
    25.Yoshimura, H. et al. The relationship between plant-eating and hair evacuation in snow leopards (Panthera uncia). PLOS ONE 15, e0236635 (2020).26.Kinoshita, K. et al. Long-term monitoring of fecal steroid hormones in female snow leopards (Panthera uncia) during pregnancy or pseudopregnancy. PLOS ONE 6, e19314 (2011).27.Li, G., Davis, B. W., Eizirik, E. & Murphy, W. J. Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res. 26, 1–11 (2016).Article 

    Google Scholar 
    28.Marino, C. L., Lascelles, B. D. X., Vaden, S. L., Gruen, M. E. & Marks, S. L. Prevalence and classification of chronic kidney disease in cats randomly selected from four age groups and in cats recruited for degenerative joint disease studies. J. Feline Med. Surg. 16, 465–472 (2014).Article 

    Google Scholar 
    29.Sparkes, A. H. et al. ISFM consensus guidelines on the diagnosis and management of feline chronic kidney disease. J. Feline Med. Surg. 18, 219–239 (2016).Article 

    Google Scholar 
    30.Hamano, Y. et al. Forensic age prediction for dead or living samples by use of methylation-sensitive high resolution melting. Leg. Med. 21, 5–10 (2016).CAS 
    Article 

    Google Scholar 
    31.Hamano, Y., Manabe, S., Morimoto, C., Fujimoto, S. & Tamaki, K. Forensic age prediction for saliva samples using methylation-sensitive high resolution melting: exploratory application for cigarette butts. Sci. Rep. 7, 10444 (2017).ADS 
    Article 

    Google Scholar 
    32.Bekaert, B., Kamalandua, A., Zapico, S. C., Van de Voorde, W. & Decorte, R. Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics 10, 922–930 (2015).Article 

    Google Scholar 
    33.Hussmann, D. & Hansen, L. L. Methylation-sensitive high resolution melting (MS-HRM). In DNA Methylation Protocols (ed. Tost, J.) vol. 1708, pp. 551–571 (Springer New York, 2018).34.Wojdacz, T. K. & Dobrovic, A. Methylation-sensitive high resolution melting (MS-HRM): A new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res. 35, e41 (2007).35.Mawlood, S. K., Dennany, L., Watson, N. & Pickard, B. S. The EpiTect methyl qPCR assay as novel age estimation method in forensic biology. Forens. Sci. Int. 264, 132–138 (2016).CAS 
    Article 

    Google Scholar 
    36.Migheli, F. et al. Comparison study of MS-HRM and pyrosequencing techniques for quantification of APC and CDKN2A gene methylation. PLOS ONE 8, e52501 (2013).37.Xiao, Z. et al. Validation of methylation-sensitive high-resolution melting (MS-HRM) for the detection of stool DNA methylation in colorectal neoplasms. Clin. Chim. Acta 431, 154–163 (2014).CAS 
    Article 

    Google Scholar 
    38.Šestáková, Š, Šálek, C. & Remešová, H. DNA methylation validation methods: A coherent review with practical comparison. Biol. Proc. Online 21, 19 (2019).Article 

    Google Scholar 
    39.Fleming, P. A., Crawford, H. M., Auckland, C. & Calver, M. C. Nine ways to score nine lives—Identifying appropriate methods to age domestic cats (Felis catus). J. Zool.40.Smyth, L. J., McKay, G. J., Maxwell, A. P. & McKnight, A. J. DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease. Epigenetics 9, 366–376 (2014).CAS 
    Article 

    Google Scholar 
    41.Chen, J. et al. Elevated Klotho promoter methylation is associated with severity of chronic kidney disease. PloS One 8, e79856 (2013).42.White, J. D., Norris, J. M., Baral, R. M. & Malik, R. Naturally-occurring chronic renal disease in Australian cats: A prospective study of 184 cases. Aust. Vet. J. 84, 188–194 (2006).CAS 
    Article 

    Google Scholar 
    43.Snow Leopard Trust. Snow leopard facts/life cycle. Snow Leopard Trust http://snowleopard.org/snow-leopard-facts/life-cycle/.44.Dhingra, R., Nwanaji-Enwerem, J. C., Samet, M. & Ward-Caviness, C. K. DNA methylation age—Environmental influences, health impacts, and its role in environmental epidemiology. Curr. Environ. Health Rep. 5, 317–327 (2018).CAS 
    Article 

    Google Scholar 
    45.Lea, A. J., Altmann, J., Alberts, S. C. & Tung, J. Resource base influences genome-wide DNA methylation levels in wild baboons (Papio cynocephalus). Mol. Ecol. 25, 1681–1696 (2016).CAS 
    Article 

    Google Scholar 
    46.IRIS. IRIS Kidney—Guidelines—IRIS Staging of CKD. http://www.iris-kidney.com/guidelines/staging.html (2019).47.Spiers, H. et al. Age-associated changes in DNA methylation across multiple tissues in an inbred mouse model. Mech. Ageing Dev. 154, 20–23 (2016).CAS 
    Article 

    Google Scholar 
    48.Vignettes, C.-B. Proceedings from the 2015 Annual Meeting of the American College of Physicians, Wisconsin Chapter. WMJ (2015).49.Zhang, X. et al. Genome-wide analysis of cell-free DNA methylation profiling with MeDIP-Seq identified potential biomarkers for colorectal cancer (2021).50.MD, B., US, N. L. of M. & US, N. C. for B. I. National Center for Biotechnology Information (NCBI). https://www.ncbi.nlm.nih.gov/.51.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    Article 

    Google Scholar 
    52.Xu, C. et al. A novel strategy for forensic age prediction by DNA methylation and support vector regression model. Sci. Rep. 5, 17788 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Chang, C.-C. & Lin, C.-J. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2, 1–27 (2011).Article 

    Google Scholar 
    54.Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Coordination of root auxin with the fungus Piriformospora indica and bacterium Bacillus cereus enhances rice rhizosheath formation under soil drying

    1.Fageria N. Yield physiology of rice. J Plant Nutr. 2007;30:843–79.CAS 

    Google Scholar 
    2.Wang Z, Zhang W, Beebout S, Zhang H, Liu L, Yang J, et al. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res. 2016;193:54–69.
    Google Scholar 
    3.Zhang H, Xue Y, Wang Z, Yang J, Zhang J. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci. 2009;49:2246–60.
    Google Scholar 
    4.Bouman B, Tuong T. Field water management to save water and increase its productivity in irrigated lowland rice. Agr Water Manag. 2001;49:11–30.
    Google Scholar 
    5.Harrison M, Tardieu F, Dong Z, Messina C, Hammer G. Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob Change Biol. 2014;20:867–78.
    Google Scholar 
    6.Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016;529:84–87.CAS 
    PubMed 

    Google Scholar 
    7.Thorup-Kristensen K, Kirkegaard J. Root system-based limits to agricultural productivity and efficiency: the farming systems context. Ann Bot. 2016;118:573–92.PubMed 
    PubMed Central 

    Google Scholar 
    8.Yao F, Huang J, Cui K, Nie L, Xiang J, Liu X, et al. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Res. 2012;126:16–22.
    Google Scholar 
    9.Danin A. Plant adaptations to environmental stresses in desert dunes. In: Danin A (ed). Plants of desert dunes. (Springer, Berlin, 1996), pp 133–152.10.Pang J, Ryan M, Siddique K, Simpson R. Unwrapping the rhizosheath. Plant Soil. 2017;418:129–39.CAS 

    Google Scholar 
    11.Marasco R, Mosqueira M, Fusi M, Ramond J, Merlino G, Booth J, et al. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome. 2018;6:215.PubMed 
    PubMed Central 

    Google Scholar 
    12.Zhang Y, Du H, Gui Y, Xu F, Liu J, Zhang J, et al. Moderate water stress induces rice rhizosheath formation associated with ABA and auxin responses. J Exp Bot. 2020;71:2740–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Duell R, Peacock G. Rhizosheaths on mesophytic grasses. Crop Sci. 1985;25:880–3.
    Google Scholar 
    14.Ndour P, Gueye M, Barakat M, Ortet P, Bertrand-Huleux M, Pablo A, et al. Pearl millet genetic traits shape rhizobacterial diversity and modulate rhizosphere aggregation. Front Plant Sci. 2017;8:1288.PubMed 
    PubMed Central 

    Google Scholar 
    15.Philippot L, Raaijmakers J, Lemanceau P, van der Putten W. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013;11:789–99.CAS 
    PubMed 

    Google Scholar 
    16.Ndour P, Heulin T, Achouak W, Laplaze L, Cournac L. The rhizosheath: from desert plants adaptation to crop breeding. Plant Soil. 2020;456:1–13.CAS 

    Google Scholar 
    17.George T, Brown L, Ramsay L, White P, Newton A, Bengough A, et al. Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). N Phytol. 2014;203:195–205.CAS 

    Google Scholar 
    18.Zhang Y, Du H, Xu F, Ding Y, Gui Y, Zhang J, et al. Root-bacterial associations boost rhizosheath formation in moderately dry soil through ethylene responses. Plant Physiol. 2020;183:780–92.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Basirat M, Mousavi S, Abbaszadeh S, Ebrahimi M, Zarebanadkouki M. The rhizosheath: a potential root trait helping plants to tolerate drought stress. Plant Soil. 2019;445:565–75.CAS 

    Google Scholar 
    20.Othman A, Amer W, Fayez M, Hegazi N. Rhizosheath of sinai desert plants is a potential repository for associative diazotrophs. Microbiol Res. 2004;159:285–93.PubMed 

    Google Scholar 
    21.Haling R, Richardson A, Culvenor R, Lambers H, Simpson R. Root morphology, root-hair development and rhizosheath formation on perennial grass seedlings is influenced by soil acidity. Plant Soil. 2010;335:457–68.CAS 

    Google Scholar 
    22.Delhaize E, James R, Ryan P. Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil. N Phytol.2012;195:609–19.CAS 

    Google Scholar 
    23.Liu T, Ye N, Song T, Cao Y, Gao B, Zhang D, et al. Rhizosheath formation and involvement in foxtail millet (Setaria italica) root growth under drought stress. J Integr Plant Biol. 2019;61:449–62.PubMed 

    Google Scholar 
    24.Liu T, Chen M, Zhang Y, Zhu F, Liu Y, Tian Y, et al. Comparative metabolite profiling of two switchgrass ecotypes reveals differences in drought stress responses and rhizosheath weight. Planta. 2019;250:1355–69.CAS 
    PubMed 

    Google Scholar 
    25.Brown L, George T, Neugebauer K, White P. The rhizosheath–a potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant Soil. 2017;418:115–28.CAS 

    Google Scholar 
    26.Sirrenberg A, Göbel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, et al. Piriformospora indica affects plant growth by auxin production. Physiol Plant. 2007;131:581–9.CAS 
    PubMed 

    Google Scholar 
    27.Weiβ M, Waller F, Zuccaro A, Selosse M. Sebacinales-one thousand and one interactions with land plants. N Phytol. 2016;211:20–40.
    Google Scholar 
    28.Vadassery J, Ranf S, Drzewiecki C, Mithoer A, Mazars C, Scheel D, et al. A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J. 2009;59:193–206.CAS 
    PubMed 

    Google Scholar 
    29.Lee Y, Johnson J, Chien C, Sun C, Cai D, Lou B, et al. Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol Plant Microbe Interact. 2011;24:421–31.CAS 
    PubMed 

    Google Scholar 
    30.Dong S, Tian Z, Chen P, Senthil Kumar R, Shen C, Cai D, et al. The maturation zone is an important target of Piriformospora indica in Chinese cabbage roots. J Exp Bot. 2013;64:4529–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Rani M, Raj S, Dayaman V, Kumar M, Dua M, Johri A. Functional characterization of a hexose transporter from root endophyte Piriformospora indica. Front Microbiol. 2016;7:1083.PubMed 
    PubMed Central 

    Google Scholar 
    32.Prasad D, Verma N, Bakshi M, Narayan O, Singh A, Dua M, et al. Functional characterization of a magnesium transporter of root endophytic fungus Piriformospora indica. Front Microbiol. 2018;9:3231.PubMed 

    Google Scholar 
    33.Narayan O, Verma N, Jogawat A, Dua M, Johri A. Sulfur transfer from the endophytic fungus Serendipita indica improves maize growth and requires the sulfate transporter SiSulT. Plant Cell. 2021;33:1268–85.PubMed 

    Google Scholar 
    34.Baltruschat H, Fodor J, Harrach B, Niemcayk E, Barna B, Gullner G, et al. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. N Phytol. 2008;180:501–10.CAS 

    Google Scholar 
    35.Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, et al. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav. 2013;8:e26891.PubMed Central 

    Google Scholar 
    36.Fakhro A, Andrade-Linares D, von Bargen S, Bandte M, Buttner C, Grosch R. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza. 2010;20:191–200.PubMed 

    Google Scholar 
    37.Sarma M, Kumar V, Saharan K, Srivastava R, Sharma A, Prakash A, et al. Application of inorganic carrier-based formulations of fluorescent pseudomonads and Piriformospora indica on tomato plants and evaluation of their efficacy. J Appl Microbiol. 2011;111:456–66.CAS 
    PubMed 

    Google Scholar 
    38.Sun C, Shao Y, Vahabi K, Lu J, Bhattacharya S, Dong S, et al. The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliae infection by downregulation plant defense responses. BMC Plant Biol. 2014;14:268.PubMed 
    PubMed Central 

    Google Scholar 
    39.Abdelaziz M, Abdelsattar M, Abdeldaym E, Atia M, Mahmoud A, Saad M, et al. Piformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress. Sci Hortic. 2019;256:108532.CAS 

    Google Scholar 
    40.Zhang W, Wang J, Xu L, Wang A, Huang L, Du H, et al. Drought stress responses in maize are diminished by Piriformospora indica. Plant Signal Behav. 2017;13:e1414121.PubMed 
    PubMed Central 

    Google Scholar 
    41.Pion M, Spangenberg J, Simon A, Bindschedler S, Flury C, Chatelain A, et al. Bacterial farming by the fungus Morchella crassipes. Proc R Soc B. 2013;280:20132242.PubMed 
    PubMed Central 

    Google Scholar 
    42.Guhr A, Borken W, Spohn M, Matzner E. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. Proc Natl Acad Sci USA. 2015;112:14647–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Warmink J, Nazir R, van Elsas J. Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ Microbiol. 2009;11:300–12.CAS 
    PubMed 

    Google Scholar 
    44.Nazir R, Warmink J, Boersma H, van Elsas J. Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol. 2010;71:169–85.CAS 
    PubMed 

    Google Scholar 
    45.Wang L, Guo M, Li Y, Ruan W, Mo X, Wu Z, et al. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. J Exp Bot. 2018;69:385–97.CAS 
    PubMed 

    Google Scholar 
    46.Bütehorn B, Rhody D, Franken P. Isolation and characterization of Pitef1 encoding the translation elongation factor EF-1α of the root endophyte Piriformospora indica. Plant Biol. 2008;2:687–92.
    Google Scholar 
    47.Haling R, Brown L, Bengough A, Young I, Hallett P, White P, et al. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength. J Exp Bot. 2013;64:3711–21.CAS 
    PubMed 

    Google Scholar 
    48.Hou M, Luo F, Wu D, Zhang X, Lou M, Shen D, et al. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. N Phytol 2021;229:935–49.CAS 

    Google Scholar 
    49.Yuan J, Ruan Y, Wang B, Zhang J, Waseem R, Huang Q, et al. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants. J Agr Food Chem. 2013;61:3774–80.CAS 

    Google Scholar 
    50.Xu F, Wang K, Yuan W, Xu W, Liu S, Kronzucker H, et al. Overexpression of aquaporin OsPIP1;2 in rice improves yield by enhancing mesophyll CO2 conductance and phloem sucrose transport. J Exp Bot. 2019;70:671–81.CAS 
    PubMed 

    Google Scholar 
    51.Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488:91–95.CAS 
    PubMed 

    Google Scholar 
    52.Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One. 2012;7:e48479.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Bodenhausen N, Horton M, Bergelson J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One. 2013;8:e56329.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Schlaeppi K, Dombrowski N, Oter R, Themaat E, Schulze-Lefert P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci USA. 2014;111:585–92.CAS 
    PubMed 

    Google Scholar 
    55.Han Q, Ma Q, Chen Y, Tian B, Xu L, Bai Y, et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 2020;14:1915–28.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.PubMed 
    PubMed Central 

    Google Scholar 
    57.Edgar R. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 

    Google Scholar 
    58.Edgar R. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 

    Google Scholar 
    59.Wang Q, Garrity G, Tiedje J, Cole J. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb. 2007;73:5261–7.CAS 

    Google Scholar 
    60.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.PubMed 

    Google Scholar 
    61.Schloss P, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb. 2009;75:7537–41.CAS 

    Google Scholar 
    62.Wang B, Yuan J, Zhang J, Shen Z, Zhang M, Li R, et al. Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biol Fertil Soils. 2013;49:435–46.
    Google Scholar 
    63.Turner J, Backman P. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 1991;75:347–53.
    Google Scholar 
    64.Wei Z, Gu Y, Friman V, Kowalchuk G, Xu Y, Shen Q, et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv. 2019;5:eaaw0759.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Zhang W, Li X, Sun K, Tang M, Xu F, Zhang M, et al. Mycelial network-mediated rhizobial dispersal enhances legume nodulation. ISME J. 2020;14:1015–29.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Mela F, Fritsche K, de Boer W, van Veen J, de Graaff L, van den Berg M, et al. Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. ISME J. 2011;5:1494–504.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Berendsen R, Vismans G, Yu K, Song Y, de Jonge R, Burgman W, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Zhang J, Liu Y, Zhang N, Hu B, Jin T, Xu H, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol. 2019;37:676–84.CAS 
    PubMed 

    Google Scholar 
    69.Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA. 2005;102:13386–91.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Chen T, Nomura K, Wang X, Sohrabi R, Xu J, Yao L, et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature. 2020;580:653–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis M, et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol. 2015;17:316–31.PubMed 

    Google Scholar 
    72.Preece C, Peñuelas J. Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant Soil. 2016;409:1–17.CAS 

    Google Scholar 
    73.Bezzate S, Aymerich S, Chambert R, Czarnes S, Berge O, Heulin T. Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol. 2000;2:333–42.CAS 
    PubMed 

    Google Scholar 
    74.Alami Y, Achouak W, Marol C, Heulin T. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol. 2000;66:3393–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Berge O, Lodhi A, Brandelet G, Santaella C, Roncato M, Christen R, et al. Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol. 2009;59:367–72.CAS 
    PubMed 

    Google Scholar 
    76.Moreno-Espíndola I, Rivera-Becerril F, de Jesús F-GM, De León-González F. Role of root-hairs and hyphae in adhesion of sand particles. Soil Biol Biochem. 2007;39:2520–6.
    Google Scholar 
    77.Watt M, Mccully M, Canny M. Formation and stabilization of rhizosheaths of Zea mays L. (effect of soil water content). Plant Physiol. 1994;106:179–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Schafer P, Pfiffi S, Voll L, Zajic D, Chandler P, Waller F, et al. Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J. 2009;59:461–74.PubMed 

    Google Scholar 
    79.Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, et al. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. N Phytol. 2013;197:139–50.CAS 

    Google Scholar 
    80.Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet. 2013;45:1097–102.CAS 
    PubMed 

    Google Scholar 
    81.Luschnig C, Gaxiola R, Grisafi P, Fink G. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 1998;12:2175–87.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, et al. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 1998;17:6903–11.PubMed 
    PubMed Central 

    Google Scholar 
    83.de Boer W, Folman R, Summerbell R, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005;29:795–811.PubMed 

    Google Scholar 
    84.Hogan D, Kolter R. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science. 2002;296:2229–32.CAS 
    PubMed 

    Google Scholar 
    85.Ravnskov S, Nybroe O, Jakobsen I. Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. N Phytol. 1999;142:113–22.
    Google Scholar 
    86.Torsvik V, Øvreas L, Thingstad T. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science. 2002;296:1064–6.CAS 
    PubMed 

    Google Scholar 
    87.Wamberg C, Christensen S, Jakobsen I, Müller A, Sørensen S. The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem. 2003;35:1349–57.CAS 

    Google Scholar 
    88.van Hees P, Rosling A, Essen S, Godbold D, Jones D, Finlay R. Oxalate and ferricrocin exudation by the extrametrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. N Phytol. 2006;169:367–78.
    Google Scholar  More

  • in

    Retrieving zinc concentrations in topsoil with reflectance spectroscopy at Opencast Coal Mine sites

    1.Jiang, X., Lu, W. X., Zhao, H. Q., Yang, Q. C. & Yang, Z. P. Potential ecological risk assessment and prediction of soil heavy-metals pollution around coal gangue dump. Nat. Hazard. Earth Syst. 2, 1977–2010 (2014).
    Google Scholar 
    2.Wang, Q. & Li, R. Decline in China’s coal consumption: An evidence of peak coal or a temporary blip?. Energ. Policy 108, 696–701 (2017).Article 

    Google Scholar 
    3.Li, W. et al. Addressing the Co2 emissions of the world’s largest coal producer and consumer: Lessons from the Haishiwan coalfield, China. Energy 80, 400–413 (2015).Article 

    Google Scholar 
    4.Luo, P. et al. Water quality trend assessment in Jakarta: A rapidly growing Asian megacity. Plos One 14, e219009 (2019).
    Google Scholar 
    5.Luo, P. et al. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep. Uk. 8, 12623 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    6.Guo, B. et al. Determining the effects of socioeconomic and environmental determinants on chronic obstructive pulmonary disease (Copd) mortality using geographically and temporally weighted regression model across Xi’an During 2014–2016. Sci. Total Environ. 756, 143869 (2021).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Pei, L., Wang, X., Guo, B., Guo, H. & Yu, Y. Do air pollutants as well as meteorological factors impact corona virus disease 2019 (Covid-19)? Evidence from China based on the geographical perspective. Environ. Sci. Pollut. R. 28, 35584–35596 (2021).CAS 
    Article 

    Google Scholar 
    8.Chen, T., Chang, Q., Liu, J., Clevers, J. G. P. W. & Kooistra, L. Identification of soil heavy metals sources and improvement in spatial mapping based on soil spectral information: A Case Study in Northwest China. Sci. Total Environ. 565, 155–164 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Li, Z., Ma, Z., Kuijp, T. J. V. D., Yuan, Z. & Huang, L. A review of soil heavy metals pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 468, 843–853 (2014).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    10.Wang, L. et al. A comprehensive mitigation strategy for heavy metals contamination of farmland around mining areas—screening of low accumulated cultivars, soil remediation and risk assessment. Environ. Pollut. 245, 820–828 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Siddiqui, A. U., Jain, M. K. & Masto, R. E. Pollution evaluation, spatial distribution, and source apportionment of trace metals around coal mines soil: The Case Study of Eastern India. Environ. Sci. Pollut. R. 27, 10822–10834 (2020).Article 
    CAS 

    Google Scholar 
    12.Guo, D., Bai, Z., Shangguan, T., Shao, H. & Qiu, W. Impacts of coal mining on the aboveground vegetation and soil quality: A case study of Qinxin Coal Mine in Shanxi Province, China. Clean Soil Air Water. 39, 219–225 (2011).CAS 
    Article 

    Google Scholar 
    13.Woodworth, M. D. Frontier Boomtown Urbanism in Ordos, Inner Mongolia Autonomous Region. Cross Curr. East Asian Hist. Cult. Rev. 1, 74–101 (2012).
    Google Scholar 
    14.Zeng, X., Liu, Z., He, C., Ma, Q. & Wu, J. Quantifying Surface coal-mining patterns to promote regional sustainability in Ordos, Inner Mongolia. Sustain. Basel. 10, 1135 (2018).Article 

    Google Scholar 
    15.Bu, Q. et al. Concentrations, spatial distributions, and sources of heavy metals in surface soils of the Coal Mining City Wuhai, China. J. Chem. Ny. 2020, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    16.Hou, L., Li, X. & Li, F. Hyperspectral-based inversion of heavy metals content in the soil of coal mining areas. J. Environ. Qual. 48, 57–63 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Liu, X., Bai, Z., Zhou, W., Cao, Y. & Zhang, G. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the loess plateau, China. Ecol. Eng. 98, 228–239 (2017).Article 

    Google Scholar 
    18.Liu, X., Shi, H., Bai, Z., Zhou, W. & He, Y. Heavy metals concentrations of soils near the large opencast coal mine pits in China. Chemosphere. 244, 125360 (2019).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    19.Gabriel, et al. Amending potential of organic and industrial by-products applied to heavy metals-rich mining soils. Ecotox. Environ. Safe. 162, 581–590 (2018).Article 
    CAS 

    Google Scholar 
    20.Zhai, X. et al. Remediation of multiple heavy metals-contaminated soil through the combination of soil washing and in situ immobilization. Sci. Total Environ. 635, 92–99 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Wang, F., Gao, J. & Zha, Y. Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS J. Photogramm. 136, 73–84 (2018).Article 

    Google Scholar 
    22.Shi, T., Chen, Y., Liu, Y. & Wu, G. Visible and near-infrared reflectance spectroscopy—an alternative for monitoring soil contamination by heavy metals. J. Hazard. Mater. 265, 166–176 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Zou, B., Jiang, X., Feng, H., Tu, Y. & Tao, C. Multisource spectral-integrated estimation of cadmium concentrations in soil using a direct standardization and spiking algorithm. Sci. Total Environ. 701, 134890 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Guan, Q. et al. Source apportionment of heavy metals in agricultural soil based on Pmf: A case study in Hexi Corridor, Northwest China. Chemosphere 193, 189–197 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    25.Horta, A. et al. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. Geoderma 241, 180–209 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    26.Saqib, et al. Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil. Chemosphere 211, 632–639 (2018).Article 
    CAS 

    Google Scholar 
    27.Wei, L. et al. An improved gradient boosting regression tree estimation model for soil heavy metals (arsenic) pollution monitoring using hyperspectral remote sensing. Appl. Sci. Basel. 9, 1943 (2019).CAS 
    Article 

    Google Scholar 
    28.Ngole-Jeme, V. M. Heavy metals in soils along unpaved roads in south west Cameroon: Contamination levels and health risks. Ambio 3, 374–386 (2016).Article 
    CAS 

    Google Scholar 
    29.Huang, Y. et al. Heavy metals pollution and health risk assessment of agricultural soils in a typical Peri-Urban area in Southeast China. J. Environ. Manage. 207, 159–168 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Bruce, P. et al. Low-level lead exposure and mortality in Us adults: A population-based cohort study. Lancet Public Health. 3, 177–184 (2018).Article 

    Google Scholar 
    31.Harari, F. et al. Blood lead levels and decreased kidney function in a population-based cohort. Am. J. Kidney Dis. 72, 381–389 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Sun, W., Zhang, X., Sun, X., Sun, Y. & Cen, Y. Predicting Nickel concentration in soil using reflectance spectroscopy associated with organic matter and clay minerals. Geoderma 327, 25–35 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Guan, Q. et al. Prediction of heavy metals in soils of an arid area based on multi-spectral data. J. Environ. Manag. 243, 137–143 (2019).CAS 
    Article 

    Google Scholar 
    34.Lin, X. et al. Geographically weighted regression effects on soil zinc content hyperspectral modeling by applying the fractional-order differential. Remote Sens. Basel. 11, 636 (2019).ADS 
    Article 

    Google Scholar 
    35.Leenaers, H., Okx, J. P. & Burrough, P. A. Employing elevation data for efficient mapping of soil pollution on floodplains. Soil Use Manag. 6, 105–114 (2010).Article 

    Google Scholar 
    36.De Jesus, A., Zmozinski, A. V., Damin, I. C. F., Silva, M. M. & Vale, M. G. R. Determination of arsenic and cadmium in crude oil by direct sampling graphite furnace atomic absorption spectrometry. Spectrochim. Acta B 71, 86–91 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    37.Zhang, X., Sun, W., Cen, Y., Zhang, L. & Wang, N. Predicting cadmium concentration in soils using laboratory and field reflectance spectroscopy. Sci. Total Environ. 650, 321–334 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Harun, C., Mursit, T. M. & Esen, C. Simultaneous preconcentration and determination of Ni and Pb in water samples by solid-phase extraction and flame atomic absorption spectrometry. J. Aoac Int. 96, 875–879 (2013).Article 
    CAS 

    Google Scholar 
    39.Gholizadeh, A., Saberioon, M., Ben-Dor, E. & Borůvka, L. Monitoring of selected soil contaminants using proximal and remote sensing techniques: background, state-of-the-art and future perspectives. Crit. Rev. Env. Sci. Technol. 48, 243–278 (2018).CAS 
    Article 

    Google Scholar 
    40.Wei, L., Yuan, Z., Yu, M., Huang, C. & Cao, L. Estimation of arsenic content in soil based on laboratory and field reflectance spectroscopy. Sensors-Basel. 19, 3904 (2019).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    41.Chen, T., Chang, Q., Clevers, J. G. P. W. & Kooistra, L. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy. Environ. Pollut. 206, 217–226 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Liu, G. et al. Partitioning and geochemical fractions of heavy metals from geogenic and anthropogenic sources in various soil particle size fractions. Geoderma 312, 104–113 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    43.Meng, X. et al. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. 89, 102111 (2020).Article 

    Google Scholar 
    44.Hong, Y. et al. Exploring the potential of airborne hyperspectral image for estimating topsoil organic carbon: Effects of fractional-order derivative and optimal band combination algorithm. Geoderma. 365, 114228 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Hong, Y. et al. Estimating lead and zinc concentrations in Peri-Urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest. Sci. Total Environ. 651, 1969–1982 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Wang, J. et al. Prediction of low heavy metals concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy. Geoderma 216, 1–9 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    47.Jiang, Q., Liu, M., Wang, J. & Liu, F. Feasibility of using visible and near-infrared reflectance spectroscopy to monitor heavy metals contaminants in Urban lake sediment. CATENA 162, 72–79 (2018).CAS 
    Article 

    Google Scholar 
    48.Khosravi, V., Doulati Ardejani, F., Yousefi, S. & Aryafar, A. Monitoring soil lead and zinc contents via combination of spectroscopy with extreme learning machine and other data mining methods. Geoderma 318, 29–41 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Cheng, H. et al. Estimating heavy metals concentrations in suburban soils with reflectance spectroscopy. Geoderma 336, 59–67 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Zhang, S. et al. Hyperspectral inversion of heavy metals content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods. Spectrochim. Acta A 211, 393–400 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Gholizadeh, A., Saberioon, M., Carmon, N., Boruvka, L. & Ben-Dor, E. Examining the performance of Paracuda-Ii data-mining engine versus selected techniques to model soil carbon from reflectance spectra. Remote Sens.-Basel. 10, 1172 (2018).ADS 
    Article 

    Google Scholar 
    52.Tian, S. et al. Hyperspectral prediction model of metals content in soil based on the genetic ant colony algorithm. Sustainability-Basel. 11, 3197 (2019).CAS 
    Article 

    Google Scholar 
    53.Xu, S., Zhao, Y., Wang, M. & Shi, X. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–Nir spectroscopy. Geoderma 310, 29–43 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    54.Tao, C. et al. A transferable spectroscopic diagnosis model for predicting arsenic contamination in soil. Sci. Total Environ. 669, 964–972 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Lu, Q. et al. Rapid inversion of heavy metals concentration in Karst grain producing areas based on hyperspectral bands associated with soil components. Microchem. J. 148, 404–411 (2019).CAS 
    Article 

    Google Scholar 
    56.Tan, K. et al. Estimation of the spatial distribution of heavy metals in agricultural soils using airborne hyperspectral imaging and random forest. J. Hazard. Mater. 382, 120987 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Chen, S. et al. Fine resolution map of top- and subsoil carbon sequestration potential in France. Sci. Total Environ. 630, 389–400 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Tan, K. et al. Estimating the distribution trend of soil heavy metals in mining area from hymap airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 401, 123288 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Mao, X., Meng, J. & Xiang, Y. Cellular automata-based model for developing land use ecological security patterns in semi-arid areas: A case study of Ordos, Inner Mongolia, China. Environ. Earth Sci. 70, 269–279 (2013).Article 

    Google Scholar 
    60.Ramirez-Lopez, L. et al. Sampling optimal calibration sets in soil infrared spectroscopy. Geoderma 226, 140–150 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    61.Liu, W., Zhao, J., Ouyang, Z., Söderlund, L. & Liu, G. Impacts of sewage irrigation on heavy metals distribution and contamination in Beijing, China. Environ. Int. 31, 805–812 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Keshavarzi, A. & Kumar, V. Ecological risk assessment and source apportionment of heavy metals contamination in agricultural soils of Northeastern Iran. Int. J. Environ. Heal. R. 29, 544–560 (2018).Article 
    CAS 

    Google Scholar 
    63.Salminen, R. et al. Geochemical mapping field manual, Espoo, Finland Geological Survey of Finland. Geol. Surv. Den. Greenl. 38, 1–20 (1998).
    Google Scholar 
    64.Sun, W., Skidmore, A. K., Wang, T. & Zhang, X. Heavy metals pollution at mine sites estimated from reflectance spectroscopy following correction for skewed data. Environ. Pollut. 252, 1117–1124 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Guo, B. et al. Ecological risk evaluation and source apportionment of heavy metals in park playgrounds: A case study in Xi’an, Shaanxi Province, a Northwest City of China. Environ. Sci. Pollut. R. 27, 24400–24412 (2020).CAS 
    Article 

    Google Scholar 
    66.Guo, B. et al. Contamination, Distribution and health riskassessment of risk elements in topsoil foramusement parks in Xi’an, China. Pol. J. Environ. Stud. 30, 601–617 (2021).CAS 
    Article 

    Google Scholar 
    67.Hong, Y. et al. Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: Feature selection coupled with random forest. Soil Tillage Res. 199, 104589 (2020).Article 

    Google Scholar 
    68.Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010).Article 

    Google Scholar 
    69.Rudnicki, W. R., Wrzesien, M. & Paja, W. All relevant feature selection methods and applications. Comput. Intell.Us. 584, 11–28 (2015).MathSciNet 

    Google Scholar 
    70.Liu, Z. et al. Estimation of soil heavy metals content using hyperspectral data. Remote Sens. Basel. 11, 1464 (2019).ADS 
    Article 

    Google Scholar 
    71.Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B. & Roger, J. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by Nir spectroscopy. Trac. Trend. Anal. Chem. 29, 1073–1081 (2010).CAS 
    Article 

    Google Scholar 
    72.Wold, S., Martens, H. & Wold, H. The multivariate calibration problem in chemistry solved by the PLS method. Lect. Notes Math. 973, 286–293 (1983).MATH 
    Article 

    Google Scholar 
    73.Shi, T., Wang, J., Chen, Y. & Wu, G. Improving the prediction of arsenic contents in agricultural soils by combining the reflectance spectroscopy of soils and rice plants. Int. J. Appl. Earth Obs. 52, 95–103 (2016).Article 

    Google Scholar 
    74.Dotto, A. C., Dalmolin, R. S. D., Caten, A. T. & Grunwald, S. A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis–Nir spectra. Geoderma 314, 262–274 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    75.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 
    Article 

    Google Scholar 
    76.Douglas, R. K. et al. Evaluation of Vis–Nir reflectance spectroscopy sensitivity to weathering for enhanced assessment of oil contaminated soils. Sci. Total Environ. 626, 1108–1120 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Guo, B. et al. Estimating socio-economic parameters via machine learning methods using Luojia1-01 Nighttime Light remotely sensed images at multiple scales of China in 2018. IEEE Access. 9, 34352–34365 (2021).Article 

    Google Scholar 
    78.Tan, K., Ma, W., Wu, F. & Du, Q. Random forest-based estimation of heavy metals concentration in agricultural soils with hyperspectral sensor data. Environ. Monit. Assess. 191, 446 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Guo, B. et al. Estimating Pm2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017. Sci. Total Environ. 778, 146288 (2021).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Ou, D. et al. Semi-supervised Dnn regression on airborne hyperspectral imagery for improved spatial soil properties prediction. Geoderma. 385, 114875 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    81.Gholizadeh, A., Žižala, D., Saberioon, M. & Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and sentinel-2 spectral imaging. Remote Sens. Environ. 218, 89–103 (2018).ADS 
    Article 

    Google Scholar 
    82.Guo, B. et al. Identifying the spatiotemporal dynamic of Pm 2.5 concentrations at multiple scales using geographically and temporally weighted regression model across China during 2015–2018. Sci. Total Environ. 751, 141765 (2021).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Guo, B. et al. Detecting spatiotemporal dynamic of regional electric consumption using Npp–Viirs Nighttime stable light data—a Case Study of Xi’an, China. IEEE Access 8, 171694–171702 (2020).Article 

    Google Scholar 
    84.Guo, B. et al. A land use regression application into simulating spatial distribution characteristics of particulate matter (Pm2.5) concentration in city of Xi’an, China. Pol. J. Environ. Stud. 29, 4065–4076 (2020).Article 

    Google Scholar 
    85.Malley, D. F. & Williams, P. C. Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter. Environ. Sci. Technol. 31, 3461–3467 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    86.Pyo, J., Hong, S. M., Kwon, Y. S., Kim, M. S. & Cho, K. H. Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil. Sci. Total Environ. 741, 140162 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Sun, W. & Zhang, X. Estimating soil zinc concentrations using reflectance spectroscopy. Int. J. Appl. Earth Obs. 58, 126–133 (2017).Article 

    Google Scholar 
    88.Chao, T. et al. A transferable spectroscopic diagnosis model for predicting arsenic contamination in soil. Sci. Total Environ. 669, 964–972 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    89.Rossel, R. A. V., Walvoort, D. J. J., McBratney, A. B., Janik, L. J. & Skjemstad, J. O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59–75 (2005).Article 
    CAS 

    Google Scholar 
    90.Rossel, R. A. V. et al. A global spectral library to characterize the world’s soil. Earth Sci. Rev. 155, 198–230 (2016).ADS 
    Article 

    Google Scholar 
    91.Chakraborty, S. et al. Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils. Sci. Total Environ. 514, 399–408 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Boker, A., Brownell, L. & Donen, N. The Amsterdam preoperative anxiety and information scale provides a simple and reliable measure of preoperative anxiety. Can. J. Anesth. 49, 792–798 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Piñeiro, G., Perelman, S., Guerschman, J. P. & Paruelo, J. M. How to evaluate models: Observed vs. predicted or predicted vs. observed?. Ecol. Model. 216, 316–322 (2008).Article 

    Google Scholar 
    94.Douglas, R. K., Nawar, S., Alamar, M. C., Mouazen, A. M. & Coulon, F. Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using Vis–Nir spectroscopy and regression techniques. Sci. Total Environ. 616, 147–155 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    95.Ji, W., Rossel, R. A. V. & Shi, Z. Accounting for the effects of water and the environment on proximally sensed Vis–Nir soil spectra and their calibrations. Eur. J. Soil Sci. 66, 555–565 (2015).Article 

    Google Scholar 
    96.Altunkaynak, A. & Ozger, M. Comparison of discrete and continuous wavelet—Multilayer perceptron methods for daily precipitation prediction. J. Hydrol. Eng. 21, 04016014 (2016).Article 

    Google Scholar 
    97.Buddenbaum, H., Steffens, M. & Rossel, R. V. The effects of spectral pretreatments on chemometric analyses of soil profiles using laboratory imaging spectroscopy. Appl. Environ. Soil Sci. 2012, 1–12 (2012).Article 
    CAS 

    Google Scholar 
    98.Nawar, S., Buddenbaum, H., Hill, J., Kozak, J. & Mouazen, A. M. Estimating the soil clay content and organic matter by means of different calibration methods of Vis–Nir diffuse reflectance spectroscopy. Soil Till. Res. 155, 510–522 (2016).Article 

    Google Scholar 
    99.Kuang, B. & Mouazen, A. M. Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms. Eur. J. Soil Sci. 62, 629–636 (2011).CAS 
    Article 

    Google Scholar 
    100.Sipos, P., Németh, T., Kis, V. K. & Mohai, I. Association of individual soil mineral constituents and heavy metals as studied by sorption experiments and analytical electron microscopy analyses. J. Hazard. Mater. 168, 1512–1520 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    101.Rossel, R. A. V. & Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158, 46–54 (2010).ADS 
    CAS 
    Article 

    Google Scholar  More