More stories

  • in

    General decline in the diversity of the airborne microbiota under future climatic scenarios

    1.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, 9214 (2017).Article 

    Google Scholar 
    2.Creamean, J. M. et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western US. Science 339, 1572–1578 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Hervàs, A., Camarero, L., Reche, I. & Casamayor, E. O. Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environ. Microbiol. 11, 1612–1623 (2009).Article 

    Google Scholar 
    4.Barberán, A. et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl. Acad. Sci. 112, 5756–5761 (2015).ADS 
    Article 

    Google Scholar 
    5.Brown, J. K. & Hovmøller, M. S. Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297, 537–541 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Mazar, Y., Cytryn, E., Erel, Y. & Rudich, Y. Effect of dust storms on the atmospheric microbiome in the Eastern Mediterranean. Environ. Sci. Technol. 50, 4194–4202 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Griffin, E. A. & Carson, W. P. The ecology and natural history of foliar bacteria with a focus on tropical forests and agroecosystems. Bot. Rev. 81, 105–149 (2015).Article 

    Google Scholar 
    8.Guerrieri, R. et al. Partitioning between atmospheric deposition and canopy microbial nitrification into throughfall nitrate fluxes in a Mediterranean forest. J. Ecol. 108, 626–640 (2020).CAS 
    Article 

    Google Scholar 
    9.Fröhlich-Nowoisky, J. et al. Bioaerosols in the earth system: Climate, health, and ecosystem interactions. Atmos. Res. 182, 346–376 (2016).Article 

    Google Scholar 
    10.Hutchins, D. A. et al. Climate change microbiology—Problems and perspectives. Nat. Rev. Microbiol. 17, 391–396 (2019).CAS 
    Article 

    Google Scholar 
    11.Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).CAS 
    Article 

    Google Scholar 
    12.Cavicchioli, R. et al. Scientists’ warning to humanity: Microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).CAS 
    Article 

    Google Scholar 
    13.Tipton, L. et al. Fungal aerobiota are not affected by time nor environment over a 13-y time series at the Mauna Loa Observatory. Proc. Natl. Acad. Sci. 116, 25728–25733 (2019).CAS 
    Article 

    Google Scholar 
    14.Cáliz, J., Triadó-Margarit, X., Camarero, L. & Casamayor, E. O. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Proc. Natl. Acad. Sci. 115, 12229–12234 (2018).ADS 
    Article 

    Google Scholar 
    15.Brągoszewska, E. & Pastuszka, J. S. Influence of meteorological factors on the level and characteristics of culturable bacteria in the air in Gliwice, Upper Silesia (Poland). Aerobiologia 34, 241–255. https://doi.org/10.1007/s10453-018-9510-1 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Ruíz-Gil, T. et al. Airborne bacterial communities of outdoor environments and their associated influencing factors. Environ. Int. 145, 106156 (2020).Article 

    Google Scholar 
    17.Titos, G. et al. Retrieval of aerosol properties from ceilometer and photometer measurements: Long-term evaluation with in situ data and statistical analysis at Montsec (southern Pyrenees). Atmos. Meas. Tech. 12, 3255–3267 (2019).CAS 
    Article 

    Google Scholar 
    18.Camarero, L., Bacardit, M., de Diego, A. & Arana, G. Decadal trends in atmospheric deposition in a high elevation station: Effects of climate and pollution on the long-range flux of metals and trace elements over SW Europe. Atmos. Environ. 167, 542–552 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Triadó-Margarit, X., Caliz, J., Reche, I. & Casamayor, E. O. High similarity in bacterial bioaerosol compositions between the free troposphere and atmospheric depositions collected at high-elevation mountains. Atmos. Environ. 203, 79–86 (2019).ADS 
    Article 

    Google Scholar 
    20.Els, N. et al. Microbial composition in seasonal time series of free tropospheric air and precipitation reveals community separation. Aerobiologia 35, 671–701 (2019).Article 

    Google Scholar 
    21.Reche, I., D’Orta, G., Mladenov, N., Winget, D. M. & Suttle, C. A. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 12, 1154–1162 (2018).CAS 
    Article 

    Google Scholar 
    22.Triadó-Margarit, X., Cáliz, J. & Casamayor, E. O. A long-term atmospheric baseline for intercontinental exchange of airborne pathogens. Environment International., ENVINT-D-21-01147R1 (2021).23.Barberán, A., Henley, J., Fierer, N. & Casamayor, E. O. Structure, inter-annual recurrence, and global-scale connectivity of airborne microbial communities. Sci. Total Environ. 47, 187–195 (2014).ADS 
    Article 

    Google Scholar 
    24.Ontiveros, V. J., Capitán, J. A., Casamayor, E. O. & Alonso, D. The characteristic time of ecological communities. Ecology 102(2), e03247 (2021).Article 

    Google Scholar 
    25.Alonso, D., Pinyol-Gallemí, A., Alcoverro, T. & Arthur, R. Fish community reassembly after a coral mass mortality: Higher trophic groups are subject to increased rates of extinction. Ecol. Lett. 18, 451–461 (2015).Article 

    Google Scholar 
    26.Ontiveros, V. J., Capitán, J. A., Arthur, R., Casamayor, E. O. & Alonso, D. Colonization and extinction rates estimated from temporal dynamics of ecological communities: The island r package. Methods Ecol. Evol. 10, 1108–1117 (2019).Article 

    Google Scholar 
    27.OPCC-CTP. Le changement climatique dans les Pyrénées: impacts, vulnérabilités et adaptation. Bases de connaissances pour la future stratégie d’adaptation au changement climatique dans les Pyrénées. ISBN: 978-84-09-06268-3. https://www.opcc-ctp.org/sites/default/files/documentacion/opcc-informe-fr-print.pdf (2018).28.Chudobova, D. et al. Effects of stratospheric conditions on the viability, metabolism and proteome of prokaryotic cells. Atmosphere 6, 1290–1306 (2015).ADS 
    Article 

    Google Scholar 
    29.Elbert, W., Taylor, P., Andreae, M. & Pöschl, U. Contribution of fungi to primary biogenic aerosols in the atmosphere: Wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos. Chem. Phys. 7, 4569–4588 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Bowers, R. M., McCubbin, I. B., Hallar, A. G. & Fierer, N. Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos. Environ. 50, 41–49 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Tonkin, J. D., Bogan, M. T., Bonada, N., Rios-Touma, B. & Lytle, D. A. Seasonality and predictability shape temporal species diversity. Ecology 98, 1201–1216 (2017).Article 

    Google Scholar 
    32.Delort, A. M. et al. Microbial Ecology of Extreme Environments 215–245 (Springer, 2017).Book 

    Google Scholar 
    33.Catalan, J. et al. High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 25, 551–584 (2006).
    Google Scholar 
    34.Ruiz-González, C., Niño-García, J. P. & del Giorgio, P. A. Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol. Lett. 18, 1198–1206 (2015).Article 

    Google Scholar 
    35.Maignien, L., DeForce, E. A., Chafee, M. E., Eren, A. M. & Simmons, S. L. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. MBio 5, e00682 (2014).Article 

    Google Scholar 
    36.Hellberg, R. S. & Chu, E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review. Crit. Rev. Microbiol. 42, 548–572 (2016).Article 

    Google Scholar 
    37.Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).Article 

    Google Scholar  More

  • in

    Humans in the upstream can exacerbate climate change impacts on water birds’ habitat in the downstream

    1.Bindoff, N. L. et al. Observations: Oceanic climate change and sea level. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 385–432 (Cambridge University Press, 2007).
    Google Scholar 
    2.IPCC. Climate Change 2001: Synthesis Report 397 (IPCC, 2001).
    Google Scholar 
    3.IPCC Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pachauri, R. & Meyer, L.) (IPCC, 2014).
    Google Scholar 
    4.Ye, L. & Grimm, N. B. Modelling potential impacts of climate change on water and nitrate export from a mid-sized, semiarid watershed in the US Southwest. Clim. Change 120(1–2), 419–431 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Zhao, A., Zhu, X., Liu, X., Pan, Y. & Zuo, D. Impacts of land use change and climate variability on green and blue water resources in the Weihe River Basin of northwest China. CATENA 137, 318–327 (2016).Article 

    Google Scholar 
    6.Langerwisch, F., Václavík, T., von Bloh, W., Vetter, T. & Thonicke, K. Combined effects of climate and land-use change on the provision of ecosystem services in rice agro-ecosystems. Environ. Res. Lett. 13(1), 015003 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    7.Gordon, L. J., Peterson, G. D. & Bennett, E. M. Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol. Evol. 23(4), 211–219 (2008).PubMed 
    Article 

    Google Scholar 
    8.Barry, R. G. The cryosphere—Past, present, and future: A review of the frozen water resources of the world. Polar Geogr. 34(4), 219–227 (2011).Article 

    Google Scholar 
    9.El-Khoury, A. et al. Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin. J. Environ. Manag. 151, 76–86 (2015).CAS 
    Article 

    Google Scholar 
    10.Van der Pol, T. D., Van Ierland, E. C., Gabbert, S., Weikard, H. P. & Hendrix, E. M. T. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change. J. Environ. Manag. 154, 40–47 (2015).Article 

    Google Scholar 
    11.Wu, Y., Liu, S., Sohl, T. L. & Young, C. J. Projecting the land cover change and its environmental impacts in the Cedar River Basin in the Midwestern United States. Environ. Res. Lett. 8(2), 024025 (2013).ADS 
    Article 

    Google Scholar 
    12.Zhou, F. et al. Hydrological response to urbanization at different spatio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. J. Hydrol. 485, 113–125 (2013).ADS 
    Article 

    Google Scholar 
    13.Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319(5860), 169–172 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Munia, H. A., Guillaume, J. H., Mirumachi, N., Wada, Y. & Kummu, M. How downstream sub-basins depend on upstream inflows to avoid scarcity: Typology and global analysis of transboundary rivers. Hydrol. Earth Syst. Sci. 22(5), 2795–2809 (2018).ADS 
    Article 

    Google Scholar 
    15.Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320(5882), 1444–1449 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    16.National Research Council. Informing an Effective Response to Climate Change (National Academies Press, 2011).
    Google Scholar 
    17.Uchida, Y. & Hayashi, T. Effects of hydrogeological and climate change on the subsurface thermal regime in the Sendai Plain. Phys. Earth Planet. Inter. 152(4), 292–304 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Hua, F. et al. Opportunities for biodiversity gains under the world’s largest reforestation program. Nat Commun. 7(1), 1–11 (2016).ADS 

    Google Scholar 
    19.Penna, D., Borga, M., Aronica, G. T., Brigandì, G. & Tarolli, P. T. infuence of grid resolution on the prediction of natural and road related shallow landslides. Hydrol. Earth Syst. Sci. 18, 2127–2139 (2014).ADS 
    Article 

    Google Scholar 
    20.Fu, Q., Li, B., Hou, Y., Bi, X. & Zhang, X. Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China. Sci. Total Environ. 607, 633–646 (2017).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    21.Giuliani, M., Li, Y., Castelletti, A. & Gandolfi, C. A coupled human-natural systems analysis of irrigated agriculture under changing climate. Water Resour. Res. 52(9), 6928–6947 (2016).ADS 
    Article 

    Google Scholar 
    22.Wilson, R. R. et al. Relative influences of climate change and human activity on the onshore distribution of polar bears. Biol. Conserv. 214, 288–294 (2017).Article 

    Google Scholar 
    23.Mukul, S. A. et al. Combined effects of climate change and sea-level rise project dramatic habitat loss of the globally endangered Bengal tiger in the Bangladesh Sundarbans. Sci. Total Environ. 663, 830–840 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Flynn, D. F. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12(1), 22–33 (2009).PubMed 
    Article 

    Google Scholar 
    25.Bregman, T. P. et al. Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. Proc. R. Soc. B Biol. Sci. 283, 20161289 (2016).Article 

    Google Scholar 
    26.Peres, C. A. & Palacios, E. Basin-wide effects of game harvest on vertebrate population densities in Amazonian forests: Implications for animal-mediated seed dispersal. Biotropica 39, 304–315 (2007).Article 

    Google Scholar 
    27.Bender, I. M. et al. Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Sci. Rep. 9(1), 1–12 (2019).CAS 
    Article 

    Google Scholar 
    28.Al-Faraj, F. A. & Scholz, M. Impact of upstream anthropogenic river regulation on downstream water availability in transboundary river watersheds. Int. J. Water Resour. Dev. 515(31), 28–49 (2015).Article 

    Google Scholar 
    29.Drieschova, A., Giordano, M. & Fischhendler, I. Governance mechanisms to address flow variability in water treaties. Glob. Environ. Change 18, 285–295 (2008).Article 

    Google Scholar 
    30.Beck, L., Bernauer, T., Siegfried, T. & Böhmelt, T. Implications of hydro-political dependency for international water cooperation and conflict: Insights from new data. Polit. Geogr. 42, 23–33 (2014).Article 

    Google Scholar 
    31.Maleki, S. et al. Human and climate effects on the Hamoun wetlands. Weather Clim. Soc. 11, 609–622 (2019).ADS 
    Article 

    Google Scholar 
    32.Goes, B. J. M., Howarth, S. E., Wardlaw, R. B., Hancock, I. R. & Parajuli, U. N. Integrated water resources management in an insecure river basin: A case study of Helmand River Basin, Afghanistan. Int. J. Water Resour. Dev. 32(1), 3–25 (2016).Article 

    Google Scholar 
    33.Lua, D. & Weng, Q. Extraction of urban impervious surfaces from an IKONOS image. Int. J. Remote Sens. 30, 1297–1311 (2009).Article 

    Google Scholar 
    34.Dong, Z. Y. et al. Spatial decision analysis on wetlands restoration in the lower reaches of Songhua River (LRSR), Northeast China, based on remote sensing and GIS. Int. J. Environ. Res. 8(3), 849–860 (2014).
    Google Scholar 
    35.Ramsar. The List of Wetlands of International Importance 54 (Ramsar, 2016).
    Google Scholar 
    36.Lumbroso, D. The development of a flood forecasting system for the Sistan plain in Iran. In International Conference on Innovation Advances and Implementation of Flood Forecasting Technology, 17 to 19 October 2005 (2005).37.Scheraga, J. D., Ebi, K. L., Furlow, J. & Moreno, A. R. From science to policy: Developing responses to climate change. In Climate Change and Human Health: Risks and Responses Vol. 237 (eds McMichael, A. J. et al. et al.) 266 (World Health Organization/World Meteorological Organization/United Nations Environment Programme, 2003).
    Google Scholar 
    38.FAO. Analysis on Water Availability and Uses in Afghanistan River Basins. AFG/3402 FPT (2015).39.Langerwisch, F., Václavík, T., von Bloh, W., Vetter, T. & Thonicke, K. Combined effects of climate and land-use change on the provision of ecosystem services in rice agro-ecosystems. Int. J. Environ. Res. 13(1), 015003 (2017).
    Google Scholar 
    40.Scullion, J. J., Vogt, K. A., Sienkiewicz, A., Gmur, S. J. & Trujillo, C. Assessing the influence of land-cover change and conflicting land-use authorizations on ecosystem conversion on the forest frontier of Madre de Dios, Peru. Biol. Conserv. 171, 247–258 (2014).Article 

    Google Scholar 
    41.National Research Council. Informing an Effective Response to Climate Change 346 (National Academies Press, 2010).
    Google Scholar 
    42.United Nations Development Programme (UNDP). Restoration and Sustainable Use of the Shared Sistan Basin (2005).43.Maleki, S. et al. Habitat mapping as a tool for water birds’ conservation planning in an arid zone wetland: The case study Hamun wetland. Ecol. Eng. 95, 594–603 (2016).Article 

    Google Scholar 
    44.Alavi Panah, S. K. The Applications of Remote Sensing in the Earth Sciences (University of Tehran, 2003).
    Google Scholar 
    45.Shamohammadi, Z. & Maleki, S. The Life of Hamun 250 (Jahad Daneshgahi, 2011).
    Google Scholar 
    46.Bigdeli, B., Samadzadegan, F. & Reinartz, P. A multiple SVM system for classification of hyperspectral remote sensing data. J. Indian Soc. Remote 41, 763–776 (2013).Article 

    Google Scholar 
    47.Bousbih, S. et al. Potential of sentinel-1 radar data for the assessment of soil and cereal cover parameters. Sensors 17, 2617 (2017).ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    48.Gregory, R. D., Gibbons, D. W. & Donald, P. F. Bird census and survey techniques. In Bird Ecology and Conservation; A Handbook of Techniques (Sutherland, W. J. & Newton I. Et Green, R. E., eds.) 17–56 (Oxford University Press, 2004).49.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Mod. 190(3–4), 231–259 (2006).Article 

    Google Scholar 
    50.Young, N., Carter, L. & Evabgelista, P. A Maxent Model v3.3.3e Tutorial (arcgis v10) (Natural Resource Ecology Laboratory at Colorado State University and the National Institute of Invasive Species Science, 2011).
    Google Scholar  More

  • in

    Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001–2012

    1.Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: Controlling for taxonomic bias in a global biodiversity indicator. PloS One 12, e0169156 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evolut. Systemat. 46, 523–549 (2015).Article 

    Google Scholar 
    4.Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).PubMed 
    Article 

    Google Scholar 
    5.Dobson, A. Monitoring global rates of biodiversity change: Challenges that arise in meeting the convention on biological diversity (CBD) 2010 goals. Philos. Trans. R. Soc. B Biol. Sci. 360, 229–241 (2005).Article 

    Google Scholar 
    6.Walpole, M. et al. Tracking progress toward the 2010 biodiversity target and beyond. Science 325, 1503–1504 (2009).PubMed 
    Article 

    Google Scholar 
    7.Butchart, S. H. et al. Global biodiversity: Indicators of recent declines. Science 1164–1168, (2010).8.Jones, J. P. et al. The why, what, and how of global biodiversity indicators beyond the 2010 target. Conserv. Biol. 25, 450–457 (2011).PubMed 
    Article 

    Google Scholar 
    9.Lawton, J. H. et al. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391, 72–76 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    10.McKinney, M. L. Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annu. Rev. Ecol. Systemat. 28, 495–516 (1997).Article 

    Google Scholar 
    11.Cardillo, M. et al. The predictability of extinction: Biological and external correlates of decline in mammals. Proc. R. Soc. Lond. B Biol. Sci. 275, 1441–1448 (2008).
    Google Scholar 
    12.Newbold, T. et al. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. Lond. B Biol. Sci. 281, 20141371 (2014).
    Google Scholar 
    13.on Biodiversity, I. S.-P. P. & Ecosystem Services, I. The methodological assessment report on scenarios and models of biodiversity and ecosystem services. https://doi.org/10.5281/zenodo.3235429 (2016).14.Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evolut. 3, 539–551 (2019).Article 

    Google Scholar 
    15.LPI. Living planet index database. http://www.livingplanetindex.org (2016).16.Dornelas, M. et al. Biotime: A database of biodiversity time series for the anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science. 366, 339–345. https://doi.org/10.1126/science.aaw1620 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Gonzalez, A. et al. Estimating local biodiversity change: A critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).PubMed 
    Article 

    Google Scholar 
    19.Purvis, A. et al. Modelling and projecting the response of local terrestrial biodiversity worldwide to land use and related pressures: The predicts project. Adv. Ecol. Res. 58, 201–241 (2018).Article 

    Google Scholar 
    20.Leung, B., Greenberg, D. A. & Green, D. M. Trends in mean growth and stability in temperate vertebrate populations. Diversity Distribut. 23, 1372–1380 (2017).Article 

    Google Scholar 
    21.Scholes, R. & Biggs, R. A biodiversity intactness index. Nature 434, 45–49 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature. 471, 51–57 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Mace, G. M. et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change 28, 289–297 (2014).Article 

    Google Scholar 
    28.Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    29.Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    30.Mandl, N., Lehnert, M., Kessler, M. & Gradstein, S. R. A comparison of alpha and beta diversity patterns of ferns, bryophytes and macrolichens in tropical montane forests of southern ecuador. Biodiversity Conservat. 19, 2359–2369 (2010).Article 

    Google Scholar 
    31.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evolut. 31, 67–80 (2016).Article 

    Google Scholar 
    32.Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article 

    Google Scholar 
    33.Cardinale, B. J., Gonzalez, A., Allington, G. R. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conservat. 219, 175–183 (2018).Article 

    Google Scholar 
    34.Díaz, S. et al. Pervasive human-driven decline of life on earth points to the need for transformative change. Science. https://doi.org/10.1126/science.aax3100 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? a global assessment. Science 353, 288–291 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Hudson, L. N. et al. The database of the predicts (projecting responses of ecological diversity in changing terrestrial systems) project. Ecol. Evolut. 7, 145–188 (2017).Article 

    Google Scholar 
    37.Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl. Acad. Sci. 110, E2602–E2610. https://doi.org/10.1073/pnas.1302251110 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Bowler, D. E. et al. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People Nat. 2, 380–394. https://doi.org/10.1002/pan3.10071 (2020).Article 

    Google Scholar 
    40.Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience 52, 143–150 (2002).Article 

    Google Scholar 
    42.Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: Challenges and future directions. Remote Sens. Ecol. Conservat. 2, 122–131 (2016).Article 

    Google Scholar 
    46.Benítez-López, A., Santini, L. L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLOS Biol. 17, 1–18. https://doi.org/10.1371/journal.pbio.3000247 (2019).CAS 
    Article 

    Google Scholar 
    47.Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the global forest resources assessment 2015. Forest Ecol. Manag. 352, 68–77 (2015).Article 

    Google Scholar 
    48.Sloan, S. & Sayer, J. A. Forest resources assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. Forest Ecol. Manag. 352, 134–145 (2015).Article 

    Google Scholar 
    49.Smith, R. J., Muir, R. D., Walpole, M. J., Balmford, A. & Leader-Williams, N. Governance and the loss of biodiversity. Nature 426, 67 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Xu, R. Measuring explained variation in linear mixed effects models. Stat. Med. 22, 3527–3541. https://doi.org/10.1002/sim.1572 (2003).Article 
    PubMed 

    Google Scholar 
    52.Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139, 10.21105/joss.03139 (2021).ADS 

    Google Scholar 
    53.Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    54.Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W. & Blomqvist, L. Does the terrestrial biosphere have planetary tipping points?. Trends Ecol. Evolut. 28, 396–401 (2013).Article 

    Google Scholar 
    55.Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Montoya, J. M., Donohue, I. & Pimm, S. L. Planetary boundaries for biodiversity: Implausible science, pernicious policies. Trends Ecol. Evolut. 33, 71–73. https://doi.org/10.1016/j.tree.2017.10.004 (2018).Article 

    Google Scholar 
    57.Homer-Dixon, T. Environment, Scarcity, and Violence (Princeton University Press, 2010).Book 

    Google Scholar 
    58.Murphy, G. E. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evolut. 4, 91–103 (2014).Article 

    Google Scholar 
    59.Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239. https://doi.org/10.1126/science.aax9387 (2019) https://science.sciencemag.org/content/366/6470/1236.full.pdf.ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Sloan, S., Jenkins, C. N., Joppa, L. N., Gaveau, D. L. & Laurance, W. F. Remaining natural vegetation in the global biodiversity hotspots. Biol. Conservat. 177, 12–24 (2014).Article 

    Google Scholar 
    64.Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Phillips, H. R., Newbold, T. & Purvis, A. Land-use effects on local biodiversity in tropical forests vary between continents. Biodiversity Conservat. 26, 2251–2270 (2017).Article 

    Google Scholar 
    67.Newbold, T. et al. Global patterns of terrestrial assemblage turnover within and among land uses. Ecography 39, 1151–1163 (2016).Article 

    Google Scholar 
    68.Rouget, M., Cowling, R., Vlok, J., Thompson, M. & Balmford, A. Getting the biodiversity intactness index right: The importance of habitat degradation data. Glob. Change Biol. 12, 2032–2036 (2006).ADS 
    Article 

    Google Scholar 
    69.Koh, L. P. & Wilcove, D. S. Is oil palm agriculture really destroying tropical biodiversity?. Conserv. Lett. 1, 60–64 (2008).Article 

    Google Scholar 
    70.WWF. In Living planet report 2020 (eds. Almond, R. E. A., Grooten, M., & Petersen, T) (WWF, Gland, Switzerland) (2004).71.IPBES. Summary for policymakers of the methodological assessment of scenarios and models of biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services (ed. Ferrier, S), Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, 348 (2016).72.Brauman, K. A. et al. Chapter 2.3. Status and Trends—Nature’s Contributions to People (NCP). https://doi.org/10.5281/zenodo.3832036 (2020).73.Sanderson, E. W. et al. The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 52, 891–904 (2002).Article 

    Google Scholar 
    74.Martin, P., Green, R. E. & Balmford, A. Is biodiversity as intact as we think it is?. PeerJ Preprints 7, e27575v1 (2019).
    Google Scholar 
    75.Newbold, T., Sanchez-Ortiz, K., De Palma, A., Hill, S. L. & Purvis, A. Reply to ‘the biodiversity intactness index may underestimate losses’. Nat. Ecol. Evolut. 3, 864–865 (2019).Article 

    Google Scholar 
    76.Faith, D. P., Ferrier, S. & Williams, K. J. Getting biodiversity intactness indices right: Ensuring that ‘biodiversity’ reflects ‘diversity’. Glob. Change Biol. 14, 207–217 (2008).ADS 
    Article 

    Google Scholar 
    77.Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    78.Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B 285, 20180792 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evolut. 7, 7897–7908 (2017).Article 

    Google Scholar 
    80.De Chazal, J. & Rounsevell, M. D. Land-use and climate change within assessments of biodiversity change: a review. Glob. Environ. Change 19, 306–315 (2009).Article 

    Google Scholar 
    81.Schipper, A. M. et al. Projecting terrestrial biodiversity intactness with globio 4. Glob. Change Biol. 26, 760–771. https://doi.org/10.1111/gcb.14848 (2020).ADS 
    Article 

    Google Scholar 
    82.Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of conservation opportunity in the Brazilian amazon. Science 337, 228–232 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    83.De Palma, A. et al. Challenges with inferring how land-use affects terrestrial biodiversity: Study design, time, space and synthesis. In Advances in Ecological Research, vol. 58, 163–199 (Elsevier, 2018).84.De Palma, A. et al. Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Sci. Rep. 6, 31153 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    85.Bicknell, J. E., Gaveau, D. L., Davies, Z. G. & Struebig, M. J. Saving logged tropical forests: Closing roads will bring immediate benefits. Front. Ecol. Environ. 13, 73–74 (2015).Article 

    Google Scholar 
    86.Laurance, W. F., Goosem, M. & Laurance, S. G. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evolut. 24, 659–669 (2009).Article 

    Google Scholar 
    87.Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Sci. Data 4, 170001 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Watermeyer, K. E. et al. Using decision science to evaluate global biodiversity indices. Conserv. Biol. 35, 492–501 (2021).89.Olsen, E. et al. Ecosystem model skill assessment. Yes we can!. PLoS One 11, e0146467 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    90.Hoskins, A. J. et al. Downscaling land-use data to provide global 30 ’ ’estimates of five land-use classes. Ecol. Evolut. 6, 3040–3055 (2016).Article 

    Google Scholar 
    91.Fulton, E. A., Blanchard, J. L., Melbourne-Thomas, J., Plagányi, É. E. & Tulloch, V. J. Where the ecological gaps remain, a modelers’ perspective. Front. Ecol. Evolut. 7, 424 (2019).Article 

    Google Scholar 
    92.Watermeyer, K. E. et al. Using decision science to evaluate global biodiversity indices. Conservat. Biol. 35, 492–501 (2021).Article 

    Google Scholar 
    93.Bradshaw, C. J., Sodhi, N. S. & Brook, B. W. Tropical turmoil: A biodiversity tragedy in progress. Front. Ecol. Environ. 7, 79–87 (2009).Article 

    Google Scholar 
    94.De Palma, A., Sanchez-Ortiz, K. & Purvis, A. Calculating the Biodiversity Intactness Index: the PREDICTS implementation (2019). This is the first release of a repository from https://github.com/adrianadepalma/BII_tutorial You can also view the document here. https://adrianadepalma.github.io/BII_tutorial/bii_example.html. https://doi.org/10.5281/zenodo.3518067.95.Hudson, L. N. et al. The predicts database: A global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evolut. 4, 4701–4735 (2014).Article 

    Google Scholar 
    96.Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    97.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    98.for International Earth Science Information Network (CIESIN) Columbia University, C. Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision of UN WPP Country Totals (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2016). (Accessed 10 November 2017).99.for International Earth Science Information Network (CIESIN) Columbia University, C. & of Georgia, I. T. O. S. I. U. Global Roads Open Access Data Set, Version 1 (gROADSv1) (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2013). (Accessed 19 January 2017).100.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    101.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    102.Crawley, M. J. The R Book (Wiley, Chichester, England, 2007).MATH 
    Book 

    Google Scholar 
    103.Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005).Article 

    Google Scholar 
    104.Fox, J. & Weisberg, S. An R companion to applied regression (Sage Publications, 2011).
    Google Scholar 
    105.Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics. 857–871, (1971).106.van der Loo, M. gower: Gower’s distance (R Foundation for Statistical Computing, 2017). R package version 0.1.2. https://www.R-project.org107.Lichstein, J. W. Multiple regression on distance matrices: A multivariate spatial analysis tool. Plant Ecol. 188, 117–131 (2007).Article 

    Google Scholar 
    108.Team, R.C. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2017).
    Google Scholar 
    109.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer New York, 2009).MATH 
    Book 

    Google Scholar 
    110.Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).ADS 
    Article 

    Google Scholar 
    111.Friedl, M. A. et al. Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).ADS 
    Article 

    Google Scholar 
    112.Goldewijk, K. K. Three centuries of global population growth: A spatial referenced population (density) database for 1700–2000. Populat. Environ. 26, 343–367 (2005).Article 

    Google Scholar 
    113.Meijer, J. R., Huijbregts, M. A., Schotten, K. C. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).ADS 
    Article 

    Google Scholar 
    114.van Asselen, S. & Verburg, P. H. Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Glob. Change Biol. 19, 3648–3667. https://doi.org/10.1111/gcb.12331 (2013).ADS 
    Article 

    Google Scholar 
    115.Brooks, T. M. et al. Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Sci. Data 3, 160007 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.World bank national accounts data, and oecd national accounts data files (2017). https://data.worldbank.org/indicator/NY.GDP.PCAP.CD117.Pinheiro, J. et al. Package ‘nlme’. Linear and Nonlinear Mixed Effects Models, version 3–1 (2017). https://CRAN.R-project.org/package=nlme118.Bivand, R., Hauke, J. & Kossowski, T. Computing the jacobian in gaussian spatial autoregressive models: An illustrated comparison of available methods. Geogr. Anal. 45, 150–179 (2013).Article 

    Google Scholar 
    119.Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, 1–36 (2015).
    Google Scholar 
    120.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (2017). R package version 0.1.5. https://CRAN.R-project.org/package=DHARMa More

  • in

    Hysteresis of heavy metals uptake induced in Taraxacum officinale by thiuram

    1.Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 4, 177–187 (2013).
    Google Scholar 
    2.Jamshidi-Kia, F., Lorigooini, Z. & Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed. Pharmacol. 7(1), 1–7 (2018).Article 

    Google Scholar 
    3.Yuan, H., Ma, Q., Ye, L. & Piao, G. The traditional medicine and modern medicine from natural products. Molecules 21, 559–577 (2016).Article 
    CAS 

    Google Scholar 
    4.Ali, H., Khan, E. & Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 1–14 (2019).5.Jedrejek, D. et al. Comparative phytochemical, cytotoxicity, antioxidant and haemostatic studies of Taraxacum officinale root preparations. Food Chem. Toxicol. 126, 233–247 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.British Hebal Medicine Association, Available from: http://www.bhma.info.7.Kabata-Pendias, A. & Pendias, H. Trace Elements in Soils and Plants 3rd edn. (CRC Press, 2001).
    Google Scholar 
    8.Petrova, S., Yurukova, L. & Velcheva, I. Taraxacum officinale as a biomonitor of metals and toxic elements (Plovdiv, Bulgaria). Bul. J. Agric. Sci. 19, 241–247 (2013).
    Google Scholar 
    9.Kano, N. et al. Study on the behavior and removal of cadmium and zinc using Taraxacum officinale and gazania under the application of biodegradable chelating agents. Appl. Sci. 11, 1557–1574 (2021).CAS 
    Article 

    Google Scholar 
    10.Hammammi, H. et al. Weeds ability to phytoremediate cadmium-contaminated soil. Intern. J. Phyt. 18(1), 48–53 (2016).Article 
    CAS 

    Google Scholar 
    11.Spychalski, G. Determinations of growing herbs in Polish agriculture. Herba polonica 59(4), 6–18 (2013).Article 

    Google Scholar 
    12.Różański, L. Vademecum of pesticides 97/98. Agra-Enviro Lab. (1998).13.Rajeswara, R. B. R. et al. Cultivation Technology for Economically Important Medicinal Plants in Advances in Medicinal Plants, ed. Reddy K.J, Bahadur B., Bhadraiah B., Rao M. L. N., Universities Press (2015).14.Agro-techniques of selected medicinal plants, National Medicinal Plants Board, India, (2008).15.Almeida, F., Rodrigues, M. L. & Coelho, C. The still underestimated problem of fungal diseases worldwide. Front. Microbiol. 10, 1–5 (2019).Article 

    Google Scholar 
    16.Bruni, R., Bellardi, M. G. & Parrella, G. Change in chemical composition of sweet basil (Ocimum basilicum L.) essential oil caused by alfalfa mosaic virus. J. Phytopat. 164, 202–206 (2016).CAS 
    Article 

    Google Scholar 
    17.Damalas, C. A. & Koutroubas, S. D. Farmers’ exposure to pesticides: Toxicity types and ways of prevention. Toxics 4, 1–10 (2016).PubMed Central 
    Article 

    Google Scholar 
    18.Lazo, C. R., Miller, G. W. Thiram, Encyclopedia of Toxicology (Third Edition), Wexler P, US National Library of Medicine, MD, USA, pp. 558–559 (Bethesda 2014).19.Dias, M. C. Phytotoxicity: An overview of the physiological responses of plants exposed to fungicides. J. Botany 2012, 1–4 (2012).Article 
    CAS 

    Google Scholar 
    20.Gupta, B., Rani, M. & Kumar, R. Degradation of thiram in water, soil and plants: A study by high-performance liquid chromatography. Biomed. Chromat. 26, 69–75 (2012).Article 
    CAS 

    Google Scholar 
    21.Sá da Silva, V. A. et al. Electrochemical evaluation of pollutants in the environment: Interaction between the metal Ions Zn(II) and Cu(II) with the fungicide thiram in billings dam. Electroanalysis 32, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    22.Filipe, O. M. S., Costa, C. A. E., Vidal, M. M. & Santos, E. B. H. Influence of soil copper content on the kinetics of thiram adsorption and on thiram leachability from soils. Chemosphere 90, 432–440 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Adamczyk-Szabela, D., Romanowska-Duda, Z., Lisowska, K. & Wolf, W. M. Heavy metal uptake by Herbs. V. metal accumulation and physiological effects induced by thiuram in Ocimum basilicum L. Water Air Soil Pollut. 228, 334 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Oliva, J. et al. Disappearance of six pesticides in fresh and processed zucchini, bioavailability and health risk assessment. Food Chem. 229, 172–177 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Adamczyk-Szabela, D., Lisowska, K., Romanowska-Duda, Z. & Wolf, W. M. Associated effects of cadmium and copper alter the heavy metals uptake by Melissa Offcinalis. Molecules 24, 2458 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    26.Adamczyk-Szabela, D., Lisowska, K., Romanowska-Duda, Z. & Wolf, W. M. Combined cadmium-zinc interactions alter manganese, lead, copper uptake by Melissa officinalis. Sci. Rep. 10, 1675–1686 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.PN-ISO 10390:1997. Agricultural Chemical Analysis of the Soil. Determination of pH. 1997. Available from accessed 20 April 2019; http://sklep.pkn.pl/pn-iso-10390-1997p.html.28.ASTM D2974-00, 2000. Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. Method D 2974–00; American Society for Testing and Materials: West Conshohocken, PA, USA.29.Schumacher, B. A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments (United States Environmental Protection Agency Environmental Sciences Division National Exposure Research Laboratory, 2002).
    Google Scholar 
    30.PN-R-04024:1997 Chemical and agricultural analysis of soil – Determination of available phosphorus, potassium, magnesium and manganese in organic soils, accessed 25 April 2017; http://sklep.pkn.pl/pn-r-04024–1997p.html.31.Sherif, A. M., Elhussein, A. A. & Osman, A. G. Biodegradation of fungicide thiram (TMTD) in soil under laboratory conditions. Am. J. Biotech. Mol. Sci. 1(2), 57–68 (2011).Article 

    Google Scholar 
    32.Adamczyk-Szabela, D., Markiewicz, J. & Wolf, W. M. Heavy metal uptake by herbs. IV. Influence of soil pH on the content of heavy metals in Valeriana offcinalis L. Water Air Soil Pollut. 226, 106–114 (2015).33.Dybczyński, R. et al. Preparation and preliminary certification of two new Polish CRMs for inorganic trace analysis. J. Radioanal. Nuc. Chem. 259, 409–413 (2004).Article 

    Google Scholar 
    34.Piotrowski, K., Romanowska-Duda, Z. B. & Grzesik, M. How Biojodis and cyanobacteria alleviate the negative influence of predicted environmental constraints on growth and physiological activity of corn plants. Pol. J. Environ. Stud. 25, 741–751 (2016).CAS 
    Article 

    Google Scholar 
    35.Kalaji, M. H. et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 122, 121–127 (2016).Article 
    CAS 

    Google Scholar 
    36.Mantzos, N. et al. QuEChERS and solid phase extraction methods for the determination of energy crop pesticides in soil, plant and runoff water matrices. Int. J. Eviron. Anal. Chem. 93(15), 1566–1584 (2013).CAS 
    Article 

    Google Scholar 
    37.Goodson, D. Z. Mathematical Methods for Physical and Analytical Chemistry (Wiley, 2011).MATH 
    Book 

    Google Scholar 
    38.Razali, N. M. & Wah, Y. B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model Anal. 2, 21–33 (2011).
    Google Scholar 
    39.Bordens, K. S. & Abbott, B. B. Research Design and Methods: A Process Approach 8th edn, 432–450 (McGraw-Hill, 2011).
    Google Scholar 
    40.Galal, T. M. & Shehata, H. S. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol. Ind. 48, 244–251 (2015).CAS 
    Article 

    Google Scholar 
    41.Liu, K. et al. Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxi. Environ. Saf. 113, 207–213 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Shi, G. R. & Cai, Q. S. Photosynthetic and anatomic responses of peanut leaves to zinc stress. Biolog. Plantarum 53(2), 391–394 (2009).CAS 
    Article 

    Google Scholar 
    43.Testiati, E. et al. Trace metal and metalloid contamination levels in soils and two native plant species of a former industrial site: Evaluation of the phytostabilization potential. J. Hazard Mat. 248–249, 131–141 (2013).Article 
    CAS 

    Google Scholar 
    44.Xiao, R. et al. Fractionation, transfer and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronsequence of reclamation in estuary of China. Sci. Total Environ. 517, 66–75 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Wang, S., Zhao, Y., Guo, J. & Zhou, L. Effects of Cd, Cu and Zn on Ricinus communis L. Growth in single element or co-contaminated soils: Pot experiments. Ecolog. Eng. 90, 347–351 (2016).Article 

    Google Scholar 
    46.IUSS Working Group WRB World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103. (FAO)47.Regulation of the Minister of Environment 01.08.2016. Journal of Laws of Poland, Item 139548.Antsotegi-Uskola, M., Markina-Iñarrairaegui, A. & Ugalde, U. New insights into copper homeostasis in filamentous fungi. Int. Microbiol. 23, 65–73 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Kabata-Pendias, A. & Pendias, H. Biogeochemistry of Trace Elements (PWN, 1999).
    Google Scholar 
    50.Emamverdian, A., Ding, Y., Mokhberdoran, F. & Xie, Y. Heavy metal stress and some mechanisms of plant defense response. The Sci. World J. 1–18 (2015).51.Maznah, Z., Halimah, M. & Ismaill, B. S. Evaluation of the persistence and leaching behaviour of thiram fungicide in soil, water and oil palm leaves. Bull. Environ. Contam. Toxicol. 100, 677–682 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Thomas, K. The environmental fate and behaviour of antifouling paint booster biocides: A review. Biofouling 17, 73–86 (2001).CAS 
    Article 

    Google Scholar 
    53.EPA. United States Environmental Protection Agency (EPA, 2004).
    Google Scholar 
    54.Gomes de Melo, B. A., Motta, F. L. & Santana, M. H. A. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C. 62, 967–974 (2016).Article 
    CAS 

    Google Scholar 
    55.Gupta, B., Rani, M., Kumar, R. & Dureja, P. Identification of degradation products of thiram in water, soil and plants using LC-MS technique. J. Environ. Sci. Health, Part B 47, 823–831 (2012).CAS 
    Article 

    Google Scholar 
    56.Adamczyk, D. The effect of thiuram on the uptake of lead and copper by Melissa officinalis. Environ. Eng. Sci. 23, 610–614 (2006).CAS 
    Article 

    Google Scholar 
    57.Adamczyk, D. & Jankiewicz, B. The effect of thiuram on the uptake of copper, zinc and manganese by Valeriana officinalis L. Pol. J. Environ. Stud. 17(5), 823–826 (2008).CAS 

    Google Scholar 
    58.Singh, N., Gupta, V. K., Kumar, A. & Sharma, B. Synergistic effects of heavy metals and pesticides in living systems. Front. Chem. 5(70), 1–9 (2017).
    Google Scholar 
    59.Skiba, E., Adamczyk-Szabela, D. & Wolf, W. M. Metal-based nanoparticles’ interactions with plants. In Plant Responses to Nanomaterials Recent Interventions, and Physiological and Biochemical Responses (eds Singh, V. P. et al.) 145–169 (Springer, 2021).Chapter 

    Google Scholar 
    60.Glebov, E. M., Grivin, V. P., Plyusnin, V. F. & Udaltsov, A. V. Manganese(II) complexes with diethylamine in aqueous solutions. J. Struct. Chem. 47, 476–483 (2006).CAS 
    Article 

    Google Scholar 
    61.Liaoa, Y., Zhanga, S. & Dryfe, R. Electroless copper plating using dimethylamine borane as reductant. Particuology 10, 487–491 (2012).Article 
    CAS 

    Google Scholar 
    62.Alejandro, S., Höller, S., Meier, B. & Peiter, E. Manganese in plants: From acquisition to subcellular allocation. Front. Plant Sci. 26, 1–23 (2020).
    Google Scholar 
    63.Yruela, I. Transition metals in plant photosynthesis. Metallomics 5, 1090–1109 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Yüzbaşıoğlu, E. & Dalyan, E. Salicylic acid alleviates thiram toxicity by modulating antioxidant enzyme capacity and pesticide detoxification systems in the tomato (Solanum lycopersicum Mill.). Plant Physiol. Biochem. 135, 322–330 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    65.Beauchamp, R. O. et al. A critical review of the literature on carbon disulfide toxicity. CRC Crit. Rev. Toxicol. 11, 169–278 (1983).CAS 
    Article 

    Google Scholar 
    66.Norton, R., Mikkelsen, R. & Jensen, T. Sulfur for plant nutrition. Better Crops 97, 10–12 (2013).
    Google Scholar 
    67.Abdallah, M. et al. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L. J. Exp. Bot. 61, 2635–2646 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Positive effects of COVID-19 lockdown on river water quality: evidence from River Damodar, India

    Study areaThe important river Damodar (563 km) originates from Khamarpat hill under Palamau district of Jharkhand state (India). It flows toward east direction and ultimately it joins with river Bhagirathi-Hooghly in West Bengal. Upper and middle parts of the river basin have rich diversity of minerals and standard quality coal reserve of Gondwana formations. Abundant supply of fresh river water with high mineral and energy resources attracts many large, medium and small-scale industries since historical time. River Damodar is the principal supplier of water resource to drinking, industrial and domestic purpose in its catchment area. Therefore, such favourable environment attracts huge population along with industrial integration in this area. The present study area is bounded by 23° 28′ 28.7″ N to 23° 40′ 52.5″ N and 86° 49′ 26.8″ E to 87° 18′ 42.4″ E and 65.37 km river stretch has been selected for the study. In this section high, agglomeration of industries and allied human works intensively developed along the riverside. Many iron and steel plants, thermal power plant, sponge iron factory, chemical industries, coal mining fields and urban centres have been developed through the evolution of time. As a result, huge untreated waste (solid/ liquid), hot water, coal dust and urban effluents are being regularly discharged to the riverbed through various connecting channels which are locally called nallas (Fig. 1)10,11.Figure 1source QGIS 3.16 software (https://qgis.org/en/site/forusers/download.html).Location map of the study stretch of a tropical river Damodar (India). The diagram is prepared by openFull size imageSample collection and data analysisWater samples were collected from eleven discharged points of industrial effluents on main riverbed. First, samples were taken on December 2019 (pre-lockdown/ normal period), again second, samples were collected in June, 2020 (during lockdown) to assess the changes on river water quality due to temporarily closing of industries. Third, samples were obtained in November, 2020 (after unlock phase) to get clear idea about effects of industries on the river water quality. Samples were obtained from 0.5 m below the surface water level within 5 m influencing radius zone. Pre cleaned polyethylene bottles (500 ml) were used for the collection of five subsamples from each sampling site and mixed up to get a bulk contain (1 l). All samples were carried properly for further analysis in laboratory. Sample containers were labelled as S1, S2, S3… to S11 for properly identification (Fig. 1). Total 20 parameters were analysed from each sample of each period. Important parameters such as pH, electrical conductivity (EC), total dissolved solids (TDS), turbidity, magnesium (Mg2+), calcium (Ca2+), chloride (Cl-), sulphate (SO42–), nitrates (NO3−), Biological Oxygen Demand (BOD), Dissolved Oxygen (DO), zinc (Zn2+), cadmium (Cd2+), lead (Pb2+), nickel (Ni2+), chromium (Cr), iron (Fe2+), chlorophyll a (Chla), total phosphorus (TP), and Secchi disk depth (Sd) have been considered. Consequently, pH and EC were measured at the sampling sites using Thermo probe, Hanna HI9811-5 potable meters respectively. DO was determined through Winkler’s method at the sampling spot immediately28. EC denoted by microsiemens per centimetre. TDS was determined following the procedure given by Hem (1991). Turbidity was denoted by Nephelometric Turbidity Unit (NTU’s). All cation, anions, BOD and DO were expressed in mg/l while all heavy metals, TP and Chla denoted as microgram/l. All other physico-chemical parameters and heavy metals were analysed by standard procedure which was prescribed by American Public Health Association (APHA)29. Chla and total phosphorus were estimated following APHA29 standard procedures. Secchi disk (Sd) with 8 in. diameter and attached cord in disk centre was used for depth measurement and expressed in meters at the maximum limit of depth where disk was seen from the above into the water.Modified water quality index (MWQI)MWQI of the 33-sample water was conducted for 11 sample sites by important water quality parameters namely pH, TDS, EC, turbidity, Mg2+, Ca2+, Cl-, SO42–, NO3–, BOD and DO. We considered 11 variables per sample in the index. The calculation of MWQI was conducted following the method of Vasistha and Ganguly30.At first, pre defined weightage was assigned for each selected parameter. The weightage of each parameter was obtained from previous literatures. After that, relative weight of each parameter was derived by the formula.$$ RW = AW/sumlimits_{i = 1}^{n} {AW} $$
    (1)
    where RW is relative weight of each parameter, AW is assigned weight obtained from past literature (AW of pH = 1, TDS = 1.79, EC = 1.78, turbidity = 1.09, Ca2+  = 0.8, Mg2+  = 0.72, Cl– = 1.28, SO42– = 1.60, NO3– = 2.32, BOD = 1.72, DO = 2.85) and n is total number of parameters considered for analysis.Second, quality assessment (Qi) of each parameter was obtained following the formula.$$ Q_{i} = (C_{i} times S_{i} ) times 100 $$
    (2)
    where Ci is concentration of particular parameter in sample water, Si is standard permissible limit of each parameter as suggested by BIS31 and WHO31 (Table 1).Table 1 Descriptive statistics of twenty variables of physio chemical, heavy metals and biological parameters in three period.Full size tableQi for pH and DO was obtained through some modification of Eq. (1.2) because optimum concentration of these two parameters are little different from others. The optimum value of pH and DO is considered as 7.0 and 14.6 mg/l (100% saturation at 23 °C), respectively32. Thus, Qi for these two parameters were performed using the formula.$$ Q_{i} = (frac{{C_{i} – V_{i} }}{{S_{i} – V_{i} }}) times 100 $$
    (3)
    where Vi denotes optimum values of pH and DO.Third, in this step sub index (SIi) was calculated for each considered parameter by multiplication of relative weight (RW) with quality assessment (Qi) value of each parameter using formula below.$$ SI_{i} = RW times Q_{i} $$
    (4)
    At last, MWQI was obtained for each sample site by summation of SIi of each parameter as below:$$ MWQI = sumlimits_{i = 1}^{n} {SI_{i} } $$
    (5)
    Water quality (based on MWQI values) has been categorised into 5 classes such as excellent (≤ 50), good (50–100), poor (100–200), very poor (200–300) and unfit for drinking (≥ 300) as suggested by BIS31 (IS:10500).Heavy metal index (HMI)Analysis of heavy metal index was done using 6 parameters as Cd2+, Zn2+, Cr, Pb2+, Ni2+, and Fe2+. Calculation was conducted through this formula33.$$ Wi = K/Si $$
    (6)
    where Wi suggests weightage of ith parameter, K means constant value (1), Si means standard value of ith parameter as per BIS31, and WHO32. In the next step, sub index calculation (Qi) was done through this formula.$$ Qi = sumlimits_{i = 1}^{n} {frac{Mi}{{Si}}} times 100 $$
    (7)
    where Mi is the value of heavy metal concentration in sample water, Si is maximum limit of permissible of ith parameter in µg/l according to BIS31 and WHO32 (Table 1). At last, HPI was calculated using this formula which is given below.$$ HPI = frac{{sumlimits_{i = 1}^{n} {WiQi} }}{{sumlimits_{i = 1}^{n} {Wi} }} $$
    (8)
    where n indicates total number of parameters used for calculation of HPI. HPI can be classified into five categories such as excellent (0–25), good (26–50), poor (51–75), very poor (75–100) and unfit for drinking ( > 100).Potential ecological risk (RI)To assess the environmental response of heavy metal contamination, a new index was applied from sedimentological perspective and it was proposed by Hakanson33. In this method, effects of heavy metals on environment and possibilities to ecological risk can be determined by a single contamination coefficient, toxic response coefficient of heavy metals and comprehensive contamination of metals for any aquatic or soil environment using this formula34.$$ C_{f}^{i} = C_{s}^{i} /C_{n}^{i} ,;c = sumlimits_{i = 1}^{n} {C_{f}^{i} } $$
    (9)
    $$ E_{r}^{i} = T_{r}^{i} times C_{f}^{i} ,;RI = sumlimits_{i = 1}^{m} {E_{r}^{i} } $$
    (10)
    where Csi specifies heavy metal contamination value, Cni indicates reference value of heavy metals, C stands for degree of contamination by toxic heavy metals, Eri represents ecological risk factor of any single substance, Tri indicates ‘Toxic- response’ of any particular metal and RI denotes potential ecological risk index of all measured toxic metals. In this study, reference value of heavy metals was taken from standard preindustrial values of heavy metals as Cd = 1.0, Pb = 70, Cr = 90 and Zn = 175. Toxic response of heavy metals was used as follows: Cd = 30, Pb = 5, Cr = 2 and Zn = 1 (Hakanson33). Values of RI can be classified into four categories such as Practically uncontaminated ( 600).Trophic State Index (TSI)Trophic status of river was identified by Trophic State Index (TSI) considering three parameters such as Secchi disk depth (Sd), Chlorophyll-a (Chla), Total phosphorus (TP). Trophic State Index (TSI) was calculated by Carlson method35.$$ TS(Sd) = 60.0 – 14.41 times Ln(Sd) $$
    (11)
    $$ TS(TP) = 14.42 times Ln(TP) + 4.15 $$
    (12)
    $$ TS(Chla) = 30.6 + 9.81 times Ln(Chla) $$
    (13)
    $$ {text{TSI }}left( {text{Trophic State Index}} right) = left[ {TS(Sd) + TS(TP) + TS(Chla)} right]/3 $$
    (14)
    Values of TSI were classified into seven categories such as low oligotrophic ( 80).Statistical and spatial analysisA meta analysis such as descriptive statistics, Pearson correlation coefficient, analysis of variance (ANOVA test), principal component analysis (PCA) of all physico-chemical parameters, biological and heavy metals were applied to quantify the significant changes in three phases using least significant difference (LSD) at 0.05 level. All statistical analysis has been performed using SPSS 20 and MS-excel software while R programming language v. R 4.1.1 is used only for diagrammatic presentation. Inverse Distance Weightage (IDW) technique was performed on QGIS v.3.16 software for revealing spatial variation of water quality in three periods on the basis of different indexing method. More

  • in

    The effect of periodic disturbances and carrying capacity on the significance of selection and drift in complex bacterial communities

    Predicting community responses to ecosystem changes is essential for improving ecosystem management. From an industrial perspective, we are dependent on stable microbial communities that perform well. Moreover, we live in a time where humans create disturbances at various levels in natural ecosystems. It is therefore important to comprehend the consequences of our activity. To predict the community response to external forces, we need to understand how different ecosystems affect the community assembly processes.We aimed to fill the knowledge gap on how carrying capacity and periodical disturbances affect the community assembly. It has previously been shown that the carrying capacity affects the community composition [46]. However, its effect on the assembly processes has remained unclear. Ecosystems with a lower carrying capacity support lower community size. Because the outcome of drift is density-dependent [6], communities with a low carrying capacity should have more populations vulnerable to drifting to extinction. However, our five-times difference in carrying capacity between cultivation regimes did not result in apparent differences in community assembly. The only exception was for the disturbed communities in Period 2, where the low carrying capacity regime (UDL) indicated a stronger influence of selection than the high (UDH; Fig. 4b). This observation was surprising as we hypothesised that drift might be more pronounced in systems with lower carrying capacity. In conclusion, the minor effects of carrying capacity observed for the replicate similarity rate for the undisturbed communities suggest that the effect of carrying capacity should be investigated further, including larger differences in carrying capacity.The effect of the disturbance regime on the microbial community assembly was more evident. The disturbance we investigated was a substantial dilution of the microcosm’s inoculum. The dilution has two significant effects: the community size is reduced, and the concentration of resources increases strongly for the remaining individuals. These two changes are relevant in natural and human-created ecosystems, where resource supply vary due to natural processes (e.g. patchiness and floods) and human activity (e.g. eutrophication and saprobiation).Investigating the temporal community composition through ordinations can reveal overall successional trajectories [47]. We found that whereas the PCoA ordinations indicated an overall deterministic trajectory for the undisturbed communities, the replicate similarity rate indicated that drift dominated the community assembly. This was evident for the microcosms starting with undisturbed culture conditions (UD Δµ  > 0; Fig. 5). However, the results were less evident for the communities going from disturbed to undisturbed conditions (DU) as the replicate similarity rate was around zero. Nonetheless, there was an apparent decrease in the replicate similarity rate when going from disturbed (Δµ 1.1 × 10−2) to undisturbed conditions (Δµ 5 × 10–4).The strength and unique feature of our experiment is the crossed design of the disturbance regimes. This crossing considerably increases the robustness of the conclusions drawn from the data. First, during the first period, all microcosms were inoculated with the same community, but in the second period, the twelve communities had assembled individually for 28 days. We could therefore investigate the effects of our experimental variables on drift and selection with different starting conditions. The temporal trends in the data were found to be independent of the starting condition, substantially increasing the strength of our conclusion.Second, subjecting the communities to the opposite disturbance regime in Period 2 supports that we had stable attractors in our systems. An attractor is a point or a trajectory in the state space of a dynamical system. If the attractor is locally stable, the system will tend to evolve toward it from a wide range of starting conditions and stay close to it even if slightly disturbed [48]. We observed locally stable attractors based on the disturbance regime and thus one stationary phase for each disturbance regime. Some ecological systems show dramatic regime shifts between alternative stationary states in response to changes in an external driver [49]. Such systems typically exhibit hysteresis in the sense that they will not return directly to the original state by an opposite change in the driver. We found that community composition was reversible and dependent on the disturbance regime, as highlighted by the Bray–Curtis ordinations (Fig. 4). This reversibility indicates that the community changes we observed were not catastrophic bifurcations or regime shifts and that it is unlikely that the systems contain multiple stationary states within the same disturbance regime. We think this gives strong support for assuming that drift is the main driver for divergence in the community composition and that selection towards alternative attractors probably plays a minor role. Thus, we can conclude that shifting from a disturbed to an undisturbed ecosystem increased the contribution of drift. Our observations corroborate other investigations of bioreactors [15, 50] and simulations [51] that report that stochasticity is fundamental for the assembly of communities. However, the finding that drift was important for structuring the undisturbed microcosms was unexpected.In dispersal-limited communities where resources are supplied continuously, such as in the undisturbed communities examined here, the selective process competition has been hypothesised to be high [7]. However, our experimental environment offered little variation in the resources provided, as the medium provided was the same throughout the experiment. This may have led to populations becoming “ecologically equivalent”, meaning that their fitness difference was too small to result in competitive exclusion on the time scale of our experiment [5, 52]. Under these assumptions, community assembly is similar to the neutral model in which the growth rates of the community members are comparable [53].During disturbances, we found that selection dominated community assembly. Our results support Zhou et al. hypothesis stating that determinism should increase due to biomass loss in dispersal-limited communities [24]. However, they oppose their other hypothesis stating that nutrient inputs should increase stochasticity [24], making low abundant populations vulnerable to local extinction [6, 7]. During the disturbances, the Sørensen similarity between replicates was stable or increasing, indicating that the periodical disturbance did not result in the extinction of low abundant populations. Instead, it appears that the dilution removed competition for some time, resulting in a phase where all populations got “a piece of the cake”. Several studies have observed increased stochasticity as a result of increased resource availability [7, 11, 24, 26]. However, we found that disturbances resulting in periods with exponential growth due to density-independent loss of individuals and high resource input suppressed the effect of stochastic processes. This exponential growth period without competition would enable more populations to stay above the detection limits of the 16S-rDNA-sequencing method.More OTUs were enriched under the disturbed regime than under the undisturbed. During the disturbance, the microcosms were diluted ~2 day−1, whereas the dilution factor was 1 day−1 during the undisturbed regime. We cannot assume steady-state in the disturbed microcosms, but it was interesting to see a substantial increase in the abundance of OTUs classified as Gammaproteobacteria. Gammaproteobacteria include many opportunists [54] that appeared to exploit the resource surplus following the disturbance. This opportunistic lifestyle fits within the r- and K-strategist framework [55].Organisms with high maximum growth rates but low competitive abilities are classified as r-strategists. These r-strategists are superior in environments where the biomass is below the carrying capacity. On the other hand, K-strategists are successful in competitive environments due to their high substrate affinity and resource specialisation [56]. Based on the taxonomic responses, it appears as disturbances in the form of dilutions selected for r-strategists, whereas the undisturbed regime selected for K-strategists. The r-strategists selected for during the disturbance periods included genera such as Vibrio and Colwellia [57], and the genus Vibrio includes many pathogenic strains [58]. Thus, our findings may have implications for land-based aquaculture systems where conditions favouring r-strategists is linked to high mortality and reduced viability of fish [56].The DeSeq2 results pose some new questions regarding the link between phylogeny and niche fitness. Generally, ecologists assume that closely related taxa have similar niches, as they have a common evolutionary history and, thus, similar physiology [59, 60]. For example, here, OTUs belonging to Gammaproteobacteria co-occurred when the environment was disturbed. However, for other classes such as Alphaproteobacteria and Flavobacteria, the OTUs responded differently to the disturbance regimes, despite belonging to the same class. This lack of phylogenetically coherent response indicates that the paradigm of correlation between phylogeny and niche requires further studies.This study was performed on complex marine microbial communities cultivated under controlled experimental conditions. We found that undisturbed environments enhanced the contribution of drift on community assembly and that disturbances increased the effect of selection. These observations might be different in more diverse ecosystems such as soils or the human gut. In such ecosystems, the microbes are more closely associated with, for example, soil particles or attached to the gut lining. It has been shown that the biofilm-associated and planktonic microbial communities have different community compositions [61]. Consequently, the community assembly processes may be affected differently by environmental fluctuations. Our experimental variables should therefore be tested in other ecosystem settings to verify our conclusions.To our knowledge, this study is the first to experimentally estimate the effect of periodical disturbances and carrying capacity on community assembly in dispersal-limited ecosystems. We observed that carrying capacity had little effect on community assembly and that undisturbed communities were structured more by drift than disturbed systems dominated by selection. Using an experimental crossover design for the disturbance regime, we showed that these observations were independent of the initial community composition. Our experiment illustrates that cultivating complex natural microbial communities under lab conditions allowed us to test ecologically relevant system variables and draw robust conclusions. More

  • in

    Species richness and β-diversity patterns of macrolichens along elevation gradients across the Himalayan Arc

    1.Lomolino, M. V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).Article 

    Google Scholar 
    2.Bruun, H. H. et al. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 17, 37–46 (2006).Article 

    Google Scholar 
    3.Rubio-Salcedo, M., Psomas, A., Prieto, M., Zimmermann, N. E. & Martínez, I. Case study of the implications of climate change for lichen diversity and distributions. Biodivers. Conserv. 26, 1121–1141 (2017).Article 

    Google Scholar 
    4.Zhou, Y. et al. The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecol. Evol. 9, 4495–4503 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Ohdo, T. & Takahashi, K. Plant species richness and community assembly along gradients of elevation and soil nitrogen availability. AoB Plants 12, plaa014 (2020).6.Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8, 224–239 (2005).Article 

    Google Scholar 
    7.Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Vetaas, O. R. & Grytnes, J. A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr. 11, 291–301 (2002).Article 

    Google Scholar 
    9.Grytnes, J. A. Ecological interpretations of the mid-domain effect. Ecol. Lett. 6, 883–888 (2003).Article 

    Google Scholar 
    10.Colwell, R. K., Rahbek, C. & Gotelli, N. J. The mid-domain effect and species richness patterns: what have we learned so far?. Am. Nat. 163, E1–E23 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S., Lora, A. & Chytrý, M. Beta-diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography 41, 1038–1048 (2018).Article 

    Google Scholar 
    12.Qian, H., Ricklefs, R. E. & White, P. S. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol. Lett. 8, 15–22 (2005).Article 

    Google Scholar 
    13.Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).Article 

    Google Scholar 
    14.Ulrich, W., Almeida-Neto, M. & Gotelli, N. J. A consumer’s guide to nestedness analysis. Oikos 118, 3–17 (2009).Article 

    Google Scholar 
    15.Soininen, J., Heino, J. & Wang, J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27, 96–109 (2018).Article 

    Google Scholar 
    16.Jacquemyn, H., Honnay, O. & Pailler, T. Range size variation, nestedness and species turnover of orchid species along an altitudinal gradient on Réunion Island: implications for conservation. Biol. Cons. 136, 388–397 (2007).Article 

    Google Scholar 
    17.Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Contrasting species and functional beta diversity in montane ant assemblages. J. Biogeogr. 42, 1776–1786 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Paknia, O. & Sh, H. R. Geographical patterns of species richness and beta diversity of Larentiinae moths (Lepidoptera: Geometridae) in two temperate biodiversity hotspots. J. Insect Conserv. 19, 729–739 (2015).Article 

    Google Scholar 
    19.Nunes, C. A., Braga, R. F., Figueira, J. E. C., Neves, F. d. S. & Fernandes, G. W. Dung beetles along a tropical altitudinal gradient: Environmental filtering on taxonomic and functional diversity. PLoS ONE 11, e0157442 (2016).20.Zhou, G. et al. Effects of livestock grazing on grassland carbon storage and release override impacts associated with global climate change. Glob. Change Biol. 25, 1119–1132 (2019).ADS 
    Article 

    Google Scholar 
    21.Sun, Y., Bossdorf, O., Grados, R. D., Liao, Z. & Müller-Schärer, H. Rapid genomic and phenotypic change in response to climate warming in a widespread plant invader. Glob. Change Biol. 26, 6511–6522 (2020).ADS 
    Article 

    Google Scholar 
    22.Chander, H. & Sapna, D. Sanjna. Species diversity of lichens in Balh Valley of Himachal Pradesh, North Western Himalaya. J. Biol. Chem. Chronicles 5, 32–40 (2019).23.Negi, H. R. On the patterns of abundance and diversity of macrolichens of Chopta-Tunganath in the Garhwal Himalaya. J. Biosci. 25, 367–378 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Pinokiyo, A., Singh, K. P. & Singh, J. S. Diversity and distribution of lichens in relation to altitude within a protected biodiversity hot spot, north-east India. Lichenologist 40, 47–62 (2008).Article 

    Google Scholar 
    25.Kumar, J. et al. Elevational controls of lichen communities in Zanskar valley, Ladakh, a Trans Himalayan cold desert. Trop. Plant Res. 1, 48–54 (2014).
    Google Scholar 
    26.Rashmi, S. & Rajkumar, H. Diversity of Lichens along Elevational Gradients in Forest Ranges of Chamarajanagar District, Karnataka State. Int. J. Sci. Res. Biol. Sci. 6, 1 (2019).27.Shukla, V., Upreti, D. K. & Bajpai, R. Lichens to Biomonitor the Environment. (Springer, 2014).28.Man-Rong, H. & Wei, G. Altitudinal gradients of lichen species richness in Tibet, China. PDR 34, 2–8 (2012).
    Google Scholar 
    29.Wolf, J. H. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Ann. Missouri Bot. Gard. 928–960 (1993).30.Pirintsos, S., Diamantopoulos, J. & Stamou, G. Analysis of the distribution of epiphytic lichens within homogeneous Fagus sylvatica stands along an altitudinal gradient (Mount Olympos, Greece). Vegetatio 116, 33–40 (1995).
    Google Scholar 
    31.Grytnes, J. A., Heegaard, E. & Ihlen, P. G. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecol. 29, 241–246 (2006).ADS 
    Article 

    Google Scholar 
    32.Vittoz, P. et al. Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot. Helv. 120, 139–149 (2010).Article 

    Google Scholar 
    33.Bässler, C. et al. Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography 39, 689–698 (2016).Article 

    Google Scholar 
    34.Rai, H., Khare, R., Upreti, D. K. & Nayaka, S. Terricolous Lichens in India 1–16 (Springer, 2014).35.Awasthi, D. D. Key to the Microlichens of India, Nepal and Sri Lanka. (J. Cramer, 1991).36.Sipman, H. J. Survey of Lepraria species with lobed thallus margins in the tropics. Herzogia 17, 23–35 (2004).
    Google Scholar 
    37.Awasthi, D. D. A Compendium of the Macrolichens from India, Nepal and Sri Lank. (Bishen Singh Mahendra Pal Sin, 2007).38.Singh, K. P. & Sinha, G. P. Indian Lichens: An Annotated Checklis. (Botanical Survey of Ind, 2010).39.Sinha, G., Nayaka, S. & Joseph, S. Additions to the checklist of Indian lichens after 2010. Cryptogam Biodivers. Assess. Spec. 197, 206 (2018).
    Google Scholar 
    40.Hsieh, T., Ma, K. & Chao, A. A Quick Introduction to iNEXT via Examples. http://chao.stat.nthu.edu.tw/wordpress (2016).41.Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R. & O’Hara, R.B. et al. Vegan: Community Ecology Package. R package version 2.5-7. http://CRAN.R-project.org/package=vegan (2015).42.Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).Article 

    Google Scholar 
    43.Fontana, V. et al. Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Sci. Rep. 10, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    44.Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    45.Rathore, L., Attri, S. & Jaswal, A. State level climate change trends in India. India Meteorol. Dept. 25, 02 (2013).
    Google Scholar 
    46.Goni, R., Raina, A. K., Magotra, R. & Sharma, N. Lichen flora of Jammu and Kashmir State, India: An updated checklist. Trop. Plant Res. 2, 64–71 (2015).
    Google Scholar 
    47.Sinha, G. & Ram, T. Lichen diversity in Sikkim. In Biodiversity of Sikkim: Exploring and Conserving a Global Hotspot. 13–28. (Department of Information and Public Relations, Government of Sikkim, 2011).48.Mishra, G. K. & Upreti, D. K. Diversity and distribution of macro-lichen in Kumaun Himalaya, Uttarakhand. Int. J. Adv. Res. 4, 912–925 (2016).
    Google Scholar 
    49.Rai, H., Upreti, D. & Gupta, R. K. Diversity and distribution of terricolous lichens as indicator of habitat heterogeneity and grazing induced trampling in a temperate-alpine shrub and meadow. Biodivers. Conserv. 21, 97–113 (2012).Article 

    Google Scholar 
    50.Thell, A. et al. A review of the lichen family Parmeliaceae–history, phylogeny and current taxonomy. Nord. J. Bot. 30, 641–664 (2012).Article 

    Google Scholar 
    51.Cannon, P. F. & Kirk, P. M. Fungal Families of the World. (Cabi, 2007).52.Baniya, C. B., Solhøy, T., Gauslaa, Y. & Palmer, M. W. The elevation gradient of lichen species richness in Nepal. Lichenologist 42, 83–96 (2010).53.Rai, H., Khare, R., Baniya, C. B., Upreti, D. K. & Gupta, R. K. Elevational gradients of terricolous lichen species richness in the Western Himalaya. Biodivers. Conserv. 24, 1155–1174 (2015).Article 

    Google Scholar 
    54.Grytnes, J. A. & Vetaas, O. R. Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am. Nat. 159, 294–304 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Kluge, J. et al. Elevational seed plants richness patterns in Bhutan, Eastern Himalaya. J. Biogeogr. 44, 1711–1722 (2017).Article 

    Google Scholar 
    56.Bhattarai, K. R., Vetaas, O. R. & Grytnes, J. A. Fern species richness along a central Himalayan elevational gradient, Nepal. J. Biogeogr. 31, 389–400 (2004).Article 

    Google Scholar 
    57.Grau, O., Grytnes, J. A. & Birks, H. A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. J. Biogeogr. 34, 1907–1915 (2007).Article 

    Google Scholar 
    58.McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. eLS (2010).59.Gauslaa, Y. et al. Size-dependent growth of two old-growth associated macrolichen species. New Phytol. 181, 683–692 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Nautiyal, M., Nautiyal, B. & Prakash, V. Effect of grazing and climatic changes on alpine vegetation of Tungnath, Garhwal Himalaya, India. Environmentalist 24, 125–134 (2004).Article 

    Google Scholar 
    61.McCain, C. M. The mid-domain effect applied to elevational gradients: Species richness of small mammals in Costa Rica. J. Biogeogr. 31, 19–31 (2004).Article 

    Google Scholar 
    62.Baniya, C. B. Species Richness Patterns in Space and Time in the Himalayan Area. https://hdl.handle.net/1956/3861 (2010).63.Baniya, C. B., Solhøy, T., Gauslaa, Y. & Palmer, M. W. Richness and composition of vascular plants and cryptogams along a high elevational gradient on Buddha Mountain, Central Tibet. Folia Geobot. 47, 135–151 (2012).Article 

    Google Scholar 
    64.da Silva, P. G., Lobo, J. M., Hensen, M. C., Vaz-de-Mello, F. Z. & Hernández, M. I. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Divers. Distrib. 24, 1277–1290 (2018).Article 

    Google Scholar 
    65.Si, X., Baselga, A. & Ding, P. Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS ONE 10, e0127692 (2015).66.Nanda, S. A., Reshi, Z. A., Ul-haq, M., Lone, A. & Mir, S. A. Taxonomic and functional plant diversity patterns along an elevational gradient through treeline ecotone in Kashmir. Trop. Ecol. 59, 211–224 (2018).
    Google Scholar 
    67.Boet, O., Arnan, X. & Retana, J. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLoS ONE 15, e0228625 (2020). More

  • in

    Kleptoplast distribution, photosynthetic efficiency and sequestration mechanisms in intertidal benthic foraminifera

    1.Schiebel R. Planktic foraminiferal sedimentation and the marine calcite budget. Glob Biogeochem Cycl. 2002;16:1–21.Article 
    CAS 

    Google Scholar 
    2.Lampitt RS, Salter I, John D. Radiolaria: major exporters of organic carbon to the deep ocean. Glob Biogeochem Cycl. 2009;23:GB1010.Article 
    CAS 

    Google Scholar 
    3.Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MSM, Op den Camp HJM, et al. Evidence for complete denitrification in a benthic foraminifer. Nature. 2006;443:93–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Piña-Ochoa E, Hogslund S, Geslin E, Cedhagen T, Revsbech NP, Nielsen LP, et al. Widespread occurrence of nitrate storage and denitrification among foraminifera and gromiida. Proc Natl Acad Sci USA. 2010;107:1148–53.PubMed 
    Article 

    Google Scholar 
    5.Jauffrais T, LeKieffre C, Schweizer M, Geslin E, Metzger E, Bernhard JM, et al. Kleptoplastidic benthic foraminifera from aphotic habitats: insights into assimilation of inorganic C, N and S studied with sub-cellular resolution. Environ Microbiol. 2019;21:125–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Delaca TE, Karl DM, Lipps JH. Direct use of dissolved organic-carbon by agglutinated benthic foraminifera. Nature. 1981;289:287–9.CAS 
    Article 

    Google Scholar 
    7.Moodley L, Boschker HTS, Middelburg JJ, Pel R, Herman PMJ, de Deckere E, et al. Ecological significance of benthic foraminifera: C-13 labelling experiments. Mar Ecol Prog Ser. 2000;202:289–95.Article 

    Google Scholar 
    8.LeKieffre C, Jauffrais T, Geslin E, Jesus B, Bernhard JM, Giovani ME, et al. Inorganic carbon and nitrogen assimilation in cellular compartments of a benthic kleptoplastic foraminifer. Sci Rep. 2018;8:1–12.CAS 
    Article 

    Google Scholar 
    9.Tsuchiya M, Chikaraishi Y, Nomaki H, Sasaki Y, Tame A, Uematsu K, et al. Compound-specific isotope analysis of benthic foraminifer amino acids suggests microhabitat variability in rocky-shore environments. Ecol Evol. 2018;8:8380–95.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Glock N, Roy AS, Romero D, Wein T, Weissenbach J, Revsbech NP, et al. Metabolic preference of nitrate over oxygen as an electron acceptor in foraminifera from the Peruvian oxygen minimum zone. Proc Natl Acad Sci USA. 2019;116:2860–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Woehle C, Roy AS, Glock N, Wein T, Weissenbach J, Rosenstiel P, et al. A novel eukaryotic denitrification pathway in foraminifera. Curr Biol. 2018;28:1–8.Article 
    CAS 

    Google Scholar 
    12.Gooday A. Meiofaunal foraminiferans from the bathyal porcupine seabight (northeast Atlantic): size structure, standing stock, taxonomic composition, species diversity and vertical distribution in the sediment. Deep-Sea Res Part A Oceanogr Res Pap. 1986;33:1345–73.Article 

    Google Scholar 
    13.Pascal P-Y, Dupuy C, Richard P, Mallet C, Telet EAC, Niquilb N. Seasonal variation in consumption of benthic bacteria by meio- and macrofauna in an intertidal mudflat. Limnol Oceanogr. 2009;54:1048–59.CAS 
    Article 

    Google Scholar 
    14.Jauffrais T, LeKieffre C, Schweizer M, Jesus B, Metzger E, Geslin E. Response of a kleptoplastidic foraminifer to heterotrophic starvation: photosynthesis and lipid droplet biogenesis. FEMS Microbiol Ecol. 2019;95:fiz046.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Grzymski J, Schofield OM, Falkowski PG, Bernhard JM. The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol Oceanogr. 2002;47:1569–80.CAS 
    Article 

    Google Scholar 
    16.Pillet L, de Vargas C, Pawlowski J. Molecular identification of sequestered diatom chloroplasts and kleptoplastidy in foraminifera. Protist. 2011;162:394–404.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Cesbron F, Geslin E, Le Kieffre C, Jauffrais T, Nardelli MP, Langlet D, et al. Sequestered chloroplasts in the benthic foraminifer Haynesina germanica: cellular organization, oxygen fluxes and potential ecological implications. J Foraminifer Res. 2017;47:268–78.Article 

    Google Scholar 
    18.Jauffrais T, Jesus B, Metzger E, Mouget JL, Jorissen F, Geslin E. Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida). Biogeosciences. 2016;13:2715–26.Article 

    Google Scholar 
    19.Lopez E. Algal chloroplasts in the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability and persistence. Mar Biol. 1979;53:201–11.CAS 
    Article 

    Google Scholar 
    20.Clark KB, Jensen KR, Stirts HM. Survey for functional kleptoplasty among West Atlantic Ascoglossa (=Sacoglossa) (Mollusca: Opisthobranchia). Veliger. 1990;33:339–45.
    Google Scholar 
    21.Rumpho ME, Dastoor F, Manhart J, Lee J. The kleptoplast. In: Wise RR, Hoober JK, editors. The structure and function of plastids. 23. New York: Advances in Photosynthesis and Respiration; 2006. p. 451–73.Chapter 

    Google Scholar 
    22.Jesus B, Ventura P, Calado G. Behaviour and a functional xanthophyll cycle enhance photo-regulation mechanisms in the solar-powered sea slug Elysia timida (Risso, 1818). J Exp Mar Biol Ecol. 2010;395:98–105.CAS 
    Article 

    Google Scholar 
    23.Hansen PJ, Fenchel T. The bloom-forming ciliate Mesodinium rubrum harbours a single permanent endosymbiont. Mar Biol Res. 2006;2:169–77.Article 

    Google Scholar 
    24.Hansen PJ, Ojamäe K, Berge T, Trampe EC, Nielsen LT, Lips I, et al. Photoregulation in a kleptochloroplastidic dinoflagellate Dinophysis acuta. Front Microbiol. 2016;7:1–11.
    Google Scholar 
    25.Decelle J, Colin S, Foster RA. Photosymbiosis in Marine Planktonic Protists. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F, editors. Marine Protists. Tokyo: Springer; 2015. p. 465–500.Chapter 

    Google Scholar 
    26.Stoecker DK, Johnson MD, deVargas C, Not F. Acquired phototrophy in aquatic protists. Aquat Micro Ecol. 2009;57:279–310.Article 

    Google Scholar 
    27.Rumpho ME, Summer EJ, Manhart JR. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol. 2000;123:29–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Park MG, Park JS, Kim M, Yih W. Plastids dynamics during survival of Dinophysis caudate without its ciliate prey. J Phycol. 2008;44:1154–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Alexander SP, Banner FT. The functional relationship between skeleton and cytoplasm in Haynesina germanica (Ehrenberg). J Foraminifer Res. 1984;14:159–70.Article 

    Google Scholar 
    30.Bernhard JM, Alve E. Survival, ATP pool, and ultrastructural characterization of benthic foraminifera from Drammens fjord (Norway): Response to anoxia. Mar Micropaleontol. 1996;28:5–17.Article 

    Google Scholar 
    31.Bernhard JM, Bowser SS. Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth Sci Rev. 1999;46:149–65.CAS 
    Article 

    Google Scholar 
    32.Bernhard JM, Buck KR, Farmer MA, Bowser SS. The Santa Barbara Basin is a symbiosis oasis. Nature. 2000;403:77–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Correia MJ, Lee JJ. Chloroplast retention by Elphidium excavatum (Terquem). Is it a selective process? Symbiosis. 2000;29:343–55.
    Google Scholar 
    34.Lee JJ, Lanners E, Ter Kuile B. The retention of chloroplasts by the foraminifera Elphidium crispum. Symbiosis. 1988;5:45–60.CAS 

    Google Scholar 
    35.Cedhagen T. Retention of chloroplasts and bathymetric distribution in the sublittoral foraminiferan Nonionellina labradorica. Ophelia. 1991;33:17–30.Article 

    Google Scholar 
    36.Correia MJ, Lee JJ. Fine structure of the plastids retained by the foraminifer Elphidium excavatum (Terquem). Symbiosis. 2002;32:15–26.
    Google Scholar 
    37.Correia MJ, Lee JJ. How long do the plastids retained by Elphidium excavatum (Terquem) last in their host? Symbiosis. 2002;32:27–37.
    Google Scholar 
    38.Goldstein ST, Bernhard JM, Richardson EA. Chloroplast sequestration in the foraminifer Haynesina germanica: application of high pressure freezing and freeze substitution. Microsc Microanal. 2004;10:1458–9.Article 

    Google Scholar 
    39.Jauffrais T, LeKieffre C, Koho KA, Tsuchiya M, Schweizer M, Bernhard JM, et al. Ultrastructure and distribution of kleptoplasts in benthic foraminifera from shallow-water (photic) habitats. Mar Micropaleontol. 2018;138:46–62.Article 

    Google Scholar 
    40.Tsuchiya M, Toyofuku T, Uematsu K, Brüchert V, Collen J, Yamamoto H, et al. Cytologic and genetic characteristics of endobiotic bacteria and kleptoplasts of Virgulinella fragilis (Foraminifera). J Euk Microbiol. 2015;62:454–69.PubMed 
    Article 

    Google Scholar 
    41.Tsuchiya M, Miyawaki S, Oguri K, Toyofuku T, Tame A, Uematsu K, et al. Acquisition, Maintenance, and Ecological Roles of Kleptoplasts in Planoglabratella opercularis (Foraminifera, Rhizaria). Front Mar Sci. 2020;7:585.Article 

    Google Scholar 
    42.Jauffrais T, Jesus B, Méléder V, Geslin E. Functional xanthophyll cycle and pigment content of a kleptoplastic benthic foraminifer: Haynesina germanica. PLOS ONE. 2017;12:e0172678.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Austin HA, Austin WE, Paterson DM. Extracellular cracking and content removal of the benthic diatom Pleurosigma angulatum (Quekett) by the benthic foraminifera Haynesina germanica (Ehrenberg). Mar Micropaleontol. 2005;57:68–73.Article 

    Google Scholar 
    44.Green BJ, Li WY, Manhart JR, Fox TC, Summer EJ, Kennedy RA, et al. Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus. Plant Physiol. 2000;124:331–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Nagai S, Nitshitani G, Tomaru Y, Sakiyama S, Kamiyama T. Predation by the toxic dinoflagellate Dinophysis fortii on the ciliate Myrionecta rubra and observation of sequestration of ciliate chloroplasts. J Phycol. 2008;44:909–22.PubMed 
    Article 

    Google Scholar 
    46.Shi LX, Theg SM. The chloroplast protein import system: From algae to trees. Biochim Biophys Acta. 2013;1833:314–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.de Vries J, Habicht J, Woehle C, Huang C, Christa G, Waegele H, et al. Is ftsH the key to plastid longevity in sacoglossan slugs? Genome Biol Evol. 2013;5:2540–8.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Cruz S, Cartaxana P, Newcomer R, Dionísio G, Calado R, Serôdio J, et al. Photoprotection in sequestered plastids of sea slugs and respective algal sources. Sci Rep. 2015;5:1–8.
    Google Scholar 
    49.Cartaxana P, Morelli L, Jesus B, Calado G, Calado R, Cruz S. The photon menace: kleptoplast protection in the photosynthetic sea slug Elysia timida. J Exp Biol. 2019;222:jeb202580.PubMed 
    Article 

    Google Scholar 
    50.Petrou K, Ralph P, Nielsen D. A novel mechanism for host-mediated photoprotection in endosymbiotic foraminifera. ISME J. 2017;11:453–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Darling KF, Schweizer M, Knudsen KL, Evans KM, Bird C, Roberts A, et al. The genetic diversity, phylogeography and morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic. Mar Micropaleontol. 2016;129:1–23.Article 

    Google Scholar 
    52.Kühl M, Polerecky L. Functional and structural imaging of aquatic phototrophic microbial communities and symbioses. Aquat Microb Ecol. 2008;53:99–118.53.Rouse JW, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the great plains with ERTS. Proc Third ERTS Symp. 1973;1:309–17.
    Google Scholar 
    54.Barillé L, Mouget JL, Méléder V, Rosa P, Jesus B. Spectral response of benthic diatoms with different sediment backgrounds. Remote Sens Environ. 2011;115:1034–42.Article 

    Google Scholar 
    55.Kazemipour F, Launeau P, Méléder V. Microphytobenthos biomass mapping using the optical model of diatom biofilms: application to hyperspectral images of Bourgneuf Bay. Remote Sens Environ. 2012;127:1–13.Article 

    Google Scholar 
    56.Meleder V, Barille L, Launeau P, Carrere V, Rince Y. Spectrometric constraint in analysis of benthic diatom biomass using monospecific cultures. Remote Sens Environ. 2003;88:386–400.Article 

    Google Scholar 
    57.Serôdio J, Pereira S, Furtado J, Silva R, Coelho H, Calado R. In vivo quantification of kleptoplastic chlorophyll a content in the “solar-powered” sea slug Elysia viridis using optical methods: spectral reflectance analysis and PAM fluorometry. Photochem Photobiol Sci. 2010;9:68–77.PubMed 
    Article 

    Google Scholar 
    58.Jesus B, Mouget J-L, Perkins RG. Detection of diatom xanthophyll cycle using spectral reflectance. J Phycol. 2008;44:1349–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Jesus B, Rosa P, Mouget JL, Méléder V, Launeau P, Barillé L. Spectral-radiometric analysis of taxonomically mixed microphytobenthic biofilms. Remote Sens Environ. 2014;140:196–205.Article 

    Google Scholar 
    60.Louchard EM, Reid RP, Stephens CF, Davis CO, Leathers RA, Downes TV, et al. Derivative analysis of absorption features in hyperspectral remote sensing data of carbonate sediments. Opt Express. 2002;10:1573–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Perkins RG, Williamson CJ, Brodie J, Barillé L, Launeau P, Lavaud J, et al. Microspatial variability in community structure and photophysiology of calcified macroalgal microbiomes revealed by coupling of hyperspectral and high-resolution fluorescence imaging. Sci Rep. 2016;6:1–14.Article 
    CAS 

    Google Scholar 
    62.Trampe E, Kolbowski J, Schreiber U, Kühl M. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging. Mar Biol. 2011;158:1667–75.CAS 
    Article 

    Google Scholar 
    63.Ralph PJ, Schreiber U, Gademann R, Kühl M, Larkum AWD. Coral photobiology studied with a new imaging pulse imaging pulse amplitude modulated fluorometer. J Phycol. 2005;41:335–42.Article 

    Google Scholar 
    64.Platt T, Gallegos CL, Harrison WG. Photoinhibition of photosynthesis in natural assemblages of marine phytoplancton. J Mar Res. 1980;38:687–701.
    Google Scholar 
    65.Kühl M, Glud RN, Borum J, Roberts R, Rysgaard S. Photosynthetic performance of surface associated algae below sea ice as measured with a pulse amplitude modulated (PAM) fluorometer and O2 microsensors. Mar Ecol Progr Ser S. 2001;223:1–14.Article 

    Google Scholar 
    66.Harrison WG, Platt T. Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar Biol. 1986;5:153–64.Article 

    Google Scholar 
    67.Elzhov TV, Mullen KM, Spiess A-N, Bolker B minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. 2016 R package version 1.2-1. https://CRAN.R-project.org/package=minpack.lm.68.LeKieffre C, Spangenberg JE, Mabilleau G, Escrig S, Meibom A, Geslin E. Surviving anoxia in marine sediments: the metabolic response of ubiquitous benthic foraminifera (Ammonia tepida). PLOS ONE. 2017;12:e0177604.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Bernhard JM. Distinguishing live from dead foraminifera: Methods review and proper applications. Micropaleontol. 2000;46:38–46.
    Google Scholar 
    70.Nomaki H, Bernhard JM, Ishida A, Tsuchiya M, Uematsu K, Tame A, et al. Intracellular isotope localization in Ammonia sp. (Foraminifera) of oxygen-depleted environments: results of nitrate and sulfate labeling experiments. Front Microbiol. 2016;7:1–12.Article 

    Google Scholar 
    71.Eaton JW, Moss B. Estimation of numbers and pigment content in epipelic algal populations. Limnol Oceanogr. 1966;11:584–95.Article 

    Google Scholar 
    72.Schneider CA, Rasband WS, Eliceiri K. NIH Image to ImageJ: 25 years of image analysis. Nat Meth. 2012;9:671–5.CAS 
    Article 

    Google Scholar 
    73.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing 2017, Vienna, Austria. URL https://www.R-project.org/.74.Schneider LK, Anestis K, Mansour J, Anschütz AA, Gypens N, Hansen PJ, et al. A dataset on trophic modes of aquatic protists. Biodivers Data J. 2020;8:e56648.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Banner FT, Culver SJ. Quaternary Haynesina n. gen. and paleogene Protelphidium Haynes; their morphology, affinities and distribution. J Foraminifer Res. 1978;8:177–207.Article 

    Google Scholar 
    76.Hansen HJ, Lykke-Andersen AL. Wall structure and classification of fossil and recent elphidiid and nonionid Foraminifera. Foss Strat. 1976;10:1–37.
    Google Scholar 
    77.Hottinger L, Reiss Z, Langer M. Spiral canals of some Elphidiidae. Micropaleontol. 2001;47:5–34.
    Google Scholar 
    78.Lee J. On a piece of chalk – Update. J Euk Microbiol. 1993;40:395–410.CAS 
    Article 

    Google Scholar 
    79.Passarelli C, Meziane T, Thiney N, Boeuf D, Jesus B, et al. Seasonal variations of the composition of microbial biofilms in sandy tidal flats: Focus of fatty acids, pigments and exopolymers. Estuar Coast Shelf Sci. 2015;153:29–37.CAS 
    Article 

    Google Scholar 
    80.Jauffrais T, Drouet S, Turpin V, Méléder V, Jesus B, Cognie B, et al. Growth and biochemical composition of a microphytobenthic diatom (Entomoneis paludosa) exposed to shorebird (Calidris alpina) droppings. J Exp Mar Biol Ecol. 2015;469:83–92.CAS 
    Article 

    Google Scholar 
    81.Jauffrais T, Jesus B, Méléder V, Turpin V, Russo ADAPG, Raimbault P, et al. Physiological and photophysiological responses of the benthic diatom Entomoneis paludosa (Bacillariophyceae) to dissolved inorganic and organic nitrogen in culture. Mar Biol. 2016;163:1–14.CAS 
    Article 

    Google Scholar 
    82.Meleder V, Laviale M, Jesus B, Mouget JL, Lavaud J, Kazemipour F, et al. In vivo estimation of pigment composition and optical absorption cross-section by spectroradiometry in four aquatic photosynthetic micro-organisms. J Photochem Photobio B-Biol. 2013;129:115–24.CAS 
    Article 

    Google Scholar 
    83.Knight R, Mantoura RFC. Chlorophyll and carotenoid pigments in foraminifera and their symbiotic algae: analysis by high performance liquid chromatography. Mar Ecol Prog Ser. 1985;23:241–9.CAS 
    Article 

    Google Scholar 
    84.Ralph PJ, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot. 2005;82:222–37.CAS 
    Article 

    Google Scholar 
    85.Olaizola M, Yamamoto HY. Short term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros muelleri (Bacillariophyceae). J Phycol. 1994;30:606–12.CAS 
    Article 

    Google Scholar 
    86.Lavaud J, Rousseau B, Etienne A-L. General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J Phycol. 2004;40:130–7.Article 

    Google Scholar 
    87.Ventura P, Calado G, Jesus B. Photosynthetic efficiency and kleptoplast pigment diversity in the sea slug Thuridilla hopei (Vérany, 1853). J Exp Mar Biol Ecol. 2013;441:105–9.CAS 
    Article 

    Google Scholar 
    88.Martin R, Walther P, Tomaschko KH. Variable retention of kleptoplast membranes in cells of sacoglossan sea slugs: plastids with extended, shortened and non-retained durations. Zoomorphology. 2015;134:523–9.Article 

    Google Scholar 
    89.Bird C, Schweizer M, Roberts A, Austin WEN, Knudsen KL, Evans KM, et al. The genetic diversity, morphology, biogeography, and taxonomic designations of Ammonia (Foraminifera) in the Northeast Atlantic. Mar Micropaleontol. 2020;155:101726.Article 

    Google Scholar  More