1.Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).ADS
CAS
PubMed
Article
Google Scholar
2.McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: Controlling for taxonomic bias in a global biodiversity indicator. PloS One 12, e0169156 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
3.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evolut. Systemat. 46, 523–549 (2015).Article
Google Scholar
4.Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).PubMed
Article
Google Scholar
5.Dobson, A. Monitoring global rates of biodiversity change: Challenges that arise in meeting the convention on biological diversity (CBD) 2010 goals. Philos. Trans. R. Soc. B Biol. Sci. 360, 229–241 (2005).Article
Google Scholar
6.Walpole, M. et al. Tracking progress toward the 2010 biodiversity target and beyond. Science 325, 1503–1504 (2009).PubMed
Article
Google Scholar
7.Butchart, S. H. et al. Global biodiversity: Indicators of recent declines. Science 1164–1168, (2010).8.Jones, J. P. et al. The why, what, and how of global biodiversity indicators beyond the 2010 target. Conserv. Biol. 25, 450–457 (2011).PubMed
Article
Google Scholar
9.Lawton, J. H. et al. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature 391, 72–76 (1998).ADS
CAS
Article
Google Scholar
10.McKinney, M. L. Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annu. Rev. Ecol. Systemat. 28, 495–516 (1997).Article
Google Scholar
11.Cardillo, M. et al. The predictability of extinction: Biological and external correlates of decline in mammals. Proc. R. Soc. Lond. B Biol. Sci. 275, 1441–1448 (2008).
Google Scholar
12.Newbold, T. et al. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. Lond. B Biol. Sci. 281, 20141371 (2014).
Google Scholar
13.on Biodiversity, I. S.-P. P. & Ecosystem Services, I. The methodological assessment report on scenarios and models of biodiversity and ecosystem services. https://doi.org/10.5281/zenodo.3235429 (2016).14.Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evolut. 3, 539–551 (2019).Article
Google Scholar
15.LPI. Living planet index database. http://www.livingplanetindex.org (2016).16.Dornelas, M. et al. Biotime: A database of biodiversity time series for the anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).PubMed
PubMed Central
Article
Google Scholar
17.Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science. 366, 339–345. https://doi.org/10.1126/science.aaw1620 (2019).ADS
CAS
Article
PubMed
Google Scholar
18.Gonzalez, A. et al. Estimating local biodiversity change: A critique of papers claiming no net loss of local diversity. Ecology 97, 1949–1960 (2016).PubMed
Article
Google Scholar
19.Purvis, A. et al. Modelling and projecting the response of local terrestrial biodiversity worldwide to land use and related pressures: The predicts project. Adv. Ecol. Res. 58, 201–241 (2018).Article
Google Scholar
20.Leung, B., Greenberg, D. A. & Green, D. M. Trends in mean growth and stability in temperate vertebrate populations. Diversity Distribut. 23, 1372–1380 (2017).Article
Google Scholar
21.Scholes, R. & Biggs, R. A biodiversity intactness index. Nature 434, 45–49 (2005).ADS
CAS
PubMed
Article
Google Scholar
22.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature. 471, 51–57 (2011).ADS
CAS
PubMed
Article
Google Scholar
23.Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).ADS
CAS
PubMed
Article
Google Scholar
24.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS
PubMed
Article
Google Scholar
25.Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).ADS
CAS
PubMed
Article
Google Scholar
26.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS
CAS
PubMed
Article
Google Scholar
27.Mace, G. M. et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change 28, 289–297 (2014).Article
Google Scholar
28.Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015).PubMed
Article
CAS
Google Scholar
29.Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article
Google Scholar
30.Mandl, N., Lehnert, M., Kessler, M. & Gradstein, S. R. A comparison of alpha and beta diversity patterns of ferns, bryophytes and macrolichens in tropical montane forests of southern ecuador. Biodiversity Conservat. 19, 2359–2369 (2010).Article
Google Scholar
31.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evolut. 31, 67–80 (2016).Article
Google Scholar
32.Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article
Google Scholar
33.Cardinale, B. J., Gonzalez, A., Allington, G. R. & Loreau, M. Is local biodiversity declining or not? A summary of the debate over analysis of species richness time trends. Biol. Conservat. 219, 175–183 (2018).Article
Google Scholar
34.Díaz, S. et al. Pervasive human-driven decline of life on earth points to the need for transformative change. Science. https://doi.org/10.1126/science.aax3100 (2019).Article
PubMed
PubMed Central
Google Scholar
35.Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? a global assessment. Science 353, 288–291 (2016).ADS
CAS
PubMed
Article
Google Scholar
36.Hudson, L. N. et al. The database of the predicts (projecting responses of ecological diversity in changing terrestrial systems) project. Ecol. Evolut. 7, 145–188 (2017).Article
Google Scholar
37.Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).ADS
CAS
PubMed
Article
Google Scholar
38.Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl. Acad. Sci. 110, E2602–E2610. https://doi.org/10.1073/pnas.1302251110 (2013).ADS
Article
PubMed
PubMed Central
Google Scholar
39.Bowler, D. E. et al. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People Nat. 2, 380–394. https://doi.org/10.1002/pan3.10071 (2020).Article
Google Scholar
40.Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).CAS
PubMed
Article
Google Scholar
41.Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. BioScience 52, 143–150 (2002).Article
Google Scholar
42.Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).ADS
CAS
PubMed
Article
Google Scholar
43.Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).ADS
CAS
PubMed
Article
Google Scholar
44.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).ADS
CAS
Article
Google Scholar
45.Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: Challenges and future directions. Remote Sens. Ecol. Conservat. 2, 122–131 (2016).Article
Google Scholar
46.Benítez-López, A., Santini, L. L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLOS Biol. 17, 1–18. https://doi.org/10.1371/journal.pbio.3000247 (2019).CAS
Article
Google Scholar
47.Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the global forest resources assessment 2015. Forest Ecol. Manag. 352, 68–77 (2015).Article
Google Scholar
48.Sloan, S. & Sayer, J. A. Forest resources assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. Forest Ecol. Manag. 352, 134–145 (2015).Article
Google Scholar
49.Smith, R. J., Muir, R. D., Walpole, M. J., Balmford, A. & Leader-Williams, N. Governance and the loss of biodiversity. Nature 426, 67 (2003).ADS
CAS
PubMed
Article
Google Scholar
50.Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73 (2017).ADS
CAS
PubMed
Article
Google Scholar
51.Xu, R. Measuring explained variation in linear mixed effects models. Stat. Med. 22, 3527–3541. https://doi.org/10.1002/sim.1572 (2003).Article
PubMed
Google Scholar
52.Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139, 10.21105/joss.03139 (2021).ADS
Google Scholar
53.Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).ADS
PubMed
Article
CAS
Google Scholar
54.Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W. & Blomqvist, L. Does the terrestrial biosphere have planetary tipping points?. Trends Ecol. Evolut. 28, 396–401 (2013).Article
Google Scholar
55.Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
56.Montoya, J. M., Donohue, I. & Pimm, S. L. Planetary boundaries for biodiversity: Implausible science, pernicious policies. Trends Ecol. Evolut. 33, 71–73. https://doi.org/10.1016/j.tree.2017.10.004 (2018).Article
Google Scholar
57.Homer-Dixon, T. Environment, Scarcity, and Violence (Princeton University Press, 2010).Book
Google Scholar
58.Murphy, G. E. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evolut. 4, 91–103 (2014).Article
Google Scholar
59.Betts, M. G. et al. Extinction filters mediate the global effects of habitat fragmentation on animals. Science 366, 1236–1239. https://doi.org/10.1126/science.aax9387 (2019) https://science.sciencemag.org/content/366/6470/1236.full.pdf.ADS
CAS
Article
PubMed
Google Scholar
60.Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).ADS
CAS
Article
Google Scholar
61.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).ADS
CAS
PubMed
Article
Google Scholar
62.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).ADS
PubMed
PubMed Central
Article
Google Scholar
63.Sloan, S., Jenkins, C. N., Joppa, L. N., Gaveau, D. L. & Laurance, W. F. Remaining natural vegetation in the global biodiversity hotspots. Biol. Conservat. 177, 12–24 (2014).Article
Google Scholar
64.Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
65.Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).ADS
PubMed
PubMed Central
Article
Google Scholar
66.Phillips, H. R., Newbold, T. & Purvis, A. Land-use effects on local biodiversity in tropical forests vary between continents. Biodiversity Conservat. 26, 2251–2270 (2017).Article
Google Scholar
67.Newbold, T. et al. Global patterns of terrestrial assemblage turnover within and among land uses. Ecography 39, 1151–1163 (2016).Article
Google Scholar
68.Rouget, M., Cowling, R., Vlok, J., Thompson, M. & Balmford, A. Getting the biodiversity intactness index right: The importance of habitat degradation data. Glob. Change Biol. 12, 2032–2036 (2006).ADS
Article
Google Scholar
69.Koh, L. P. & Wilcove, D. S. Is oil palm agriculture really destroying tropical biodiversity?. Conserv. Lett. 1, 60–64 (2008).Article
Google Scholar
70.WWF. In Living planet report 2020 (eds. Almond, R. E. A., Grooten, M., & Petersen, T) (WWF, Gland, Switzerland) (2004).71.IPBES. Summary for policymakers of the methodological assessment of scenarios and models of biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services (ed. Ferrier, S), Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, 348 (2016).72.Brauman, K. A. et al. Chapter 2.3. Status and Trends—Nature’s Contributions to People (NCP). https://doi.org/10.5281/zenodo.3832036 (2020).73.Sanderson, E. W. et al. The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 52, 891–904 (2002).Article
Google Scholar
74.Martin, P., Green, R. E. & Balmford, A. Is biodiversity as intact as we think it is?. PeerJ Preprints 7, e27575v1 (2019).
Google Scholar
75.Newbold, T., Sanchez-Ortiz, K., De Palma, A., Hill, S. L. & Purvis, A. Reply to ‘the biodiversity intactness index may underestimate losses’. Nat. Ecol. Evolut. 3, 864–865 (2019).Article
Google Scholar
76.Faith, D. P., Ferrier, S. & Williams, K. J. Getting biodiversity intactness indices right: Ensuring that ‘biodiversity’ reflects ‘diversity’. Glob. Change Biol. 14, 207–217 (2008).ADS
Article
Google Scholar
77.Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007).PubMed
PubMed Central
Article
CAS
Google Scholar
78.Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B 285, 20180792 (2018).PubMed
PubMed Central
Article
Google Scholar
79.Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evolut. 7, 7897–7908 (2017).Article
Google Scholar
80.De Chazal, J. & Rounsevell, M. D. Land-use and climate change within assessments of biodiversity change: a review. Glob. Environ. Change 19, 306–315 (2009).Article
Google Scholar
81.Schipper, A. M. et al. Projecting terrestrial biodiversity intactness with globio 4. Glob. Change Biol. 26, 760–771. https://doi.org/10.1111/gcb.14848 (2020).ADS
Article
Google Scholar
82.Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of conservation opportunity in the Brazilian amazon. Science 337, 228–232 (2012).ADS
CAS
PubMed
Article
Google Scholar
83.De Palma, A. et al. Challenges with inferring how land-use affects terrestrial biodiversity: Study design, time, space and synthesis. In Advances in Ecological Research, vol. 58, 163–199 (Elsevier, 2018).84.De Palma, A. et al. Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Sci. Rep. 6, 31153 (2016).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
85.Bicknell, J. E., Gaveau, D. L., Davies, Z. G. & Struebig, M. J. Saving logged tropical forests: Closing roads will bring immediate benefits. Front. Ecol. Environ. 13, 73–74 (2015).Article
Google Scholar
86.Laurance, W. F., Goosem, M. & Laurance, S. G. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evolut. 24, 659–669 (2009).Article
Google Scholar
87.Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. Sci. Data 4, 170001 (2017).PubMed
PubMed Central
Article
Google Scholar
88.Watermeyer, K. E. et al. Using decision science to evaluate global biodiversity indices. Conserv. Biol. 35, 492–501 (2021).89.Olsen, E. et al. Ecosystem model skill assessment. Yes we can!. PLoS One 11, e0146467 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
90.Hoskins, A. J. et al. Downscaling land-use data to provide global 30 ’ ’estimates of five land-use classes. Ecol. Evolut. 6, 3040–3055 (2016).Article
Google Scholar
91.Fulton, E. A., Blanchard, J. L., Melbourne-Thomas, J., Plagányi, É. E. & Tulloch, V. J. Where the ecological gaps remain, a modelers’ perspective. Front. Ecol. Evolut. 7, 424 (2019).Article
Google Scholar
92.Watermeyer, K. E. et al. Using decision science to evaluate global biodiversity indices. Conservat. Biol. 35, 492–501 (2021).Article
Google Scholar
93.Bradshaw, C. J., Sodhi, N. S. & Brook, B. W. Tropical turmoil: A biodiversity tragedy in progress. Front. Ecol. Environ. 7, 79–87 (2009).Article
Google Scholar
94.De Palma, A., Sanchez-Ortiz, K. & Purvis, A. Calculating the Biodiversity Intactness Index: the PREDICTS implementation (2019). This is the first release of a repository from https://github.com/adrianadepalma/BII_tutorial You can also view the document here. https://adrianadepalma.github.io/BII_tutorial/bii_example.html. https://doi.org/10.5281/zenodo.3518067.95.Hudson, L. N. et al. The predicts database: A global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evolut. 4, 4701–4735 (2014).Article
Google Scholar
96.Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article
Google Scholar
97.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS
CAS
PubMed
Article
Google Scholar
98.for International Earth Science Information Network (CIESIN) Columbia University, C. Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision of UN WPP Country Totals (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2016). (Accessed 10 November 2017).99.for International Earth Science Information Network (CIESIN) Columbia University, C. & of Georgia, I. T. O. S. I. U. Global Roads Open Access Data Set, Version 1 (gROADSv1) (NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY, 2013). (Accessed 19 January 2017).100.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article
Google Scholar
101.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article
Google Scholar
102.Crawley, M. J. The R Book (Wiley, Chichester, England, 2007).MATH
Book
Google Scholar
103.Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005).Article
Google Scholar
104.Fox, J. & Weisberg, S. An R companion to applied regression (Sage Publications, 2011).
Google Scholar
105.Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics. 857–871, (1971).106.van der Loo, M. gower: Gower’s distance (R Foundation for Statistical Computing, 2017). R package version 0.1.2. https://www.R-project.org107.Lichstein, J. W. Multiple regression on distance matrices: A multivariate spatial analysis tool. Plant Ecol. 188, 117–131 (2007).Article
Google Scholar
108.Team, R.C. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2017).
Google Scholar
109.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer New York, 2009).MATH
Book
Google Scholar
110.Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).ADS
Article
Google Scholar
111.Friedl, M. A. et al. Modis collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).ADS
Article
Google Scholar
112.Goldewijk, K. K. Three centuries of global population growth: A spatial referenced population (density) database for 1700–2000. Populat. Environ. 26, 343–367 (2005).Article
Google Scholar
113.Meijer, J. R., Huijbregts, M. A., Schotten, K. C. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018).ADS
Article
Google Scholar
114.van Asselen, S. & Verburg, P. H. Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Glob. Change Biol. 19, 3648–3667. https://doi.org/10.1111/gcb.12331 (2013).ADS
Article
Google Scholar
115.Brooks, T. M. et al. Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Sci. Data 3, 160007 (2016).PubMed
PubMed Central
Article
Google Scholar
116.World bank national accounts data, and oecd national accounts data files (2017). https://data.worldbank.org/indicator/NY.GDP.PCAP.CD117.Pinheiro, J. et al. Package ‘nlme’. Linear and Nonlinear Mixed Effects Models, version 3–1 (2017). https://CRAN.R-project.org/package=nlme118.Bivand, R., Hauke, J. & Kossowski, T. Computing the jacobian in gaussian spatial autoregressive models: An illustrated comparison of available methods. Geogr. Anal. 45, 150–179 (2013).Article
Google Scholar
119.Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, 1–36 (2015).
Google Scholar
120.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (2017). R package version 0.1.5. https://CRAN.R-project.org/package=DHARMa More