Global distribution of soapberries (Sapindus L.) habitats under current and future climate scenarios
1.Liu, J. et al. Research progress in Sapindus L. germplasm resources. World For. Res. 30, 15–21 (2017).
Google Scholar
2.Sun, C., Jia, L., Xi, B., Wang, L. & Weng, X. Natural variation in fatty acid composition of Sapindus spp. seed oils. Ind. Crops Prod. 102, 97–104 (2017).CAS
Article
Google Scholar
3.Liu, J. et al. Variation in fruit and seed properties and comprehensive assessment of germplasm resources of the genus Sapindus. Sci. Silva Sin. 55, 44–54 (2019).
Google Scholar
4.Xu, Y., Jia, L., Chen, Z. & Gao, Y. Advances on triterpenoid Saponin of Sapindus mukorossi. Chem. Bull. 081, 1078–1088 (2018).CAS
Google Scholar
5.Basu, A., Basu, S., Bandyopadhyay, S. & Chowdhury, R. Optimization of evaporative extraction of natural emulsifier cum surfactant from Sapindus mukorossi: Characterization and cost analysis. Ind. Crops Prod. 77, 920–931 (2015).CAS
Article
Google Scholar
6.Mukhopadhyay, S., Hashim, M. A., Sahu, J. N., Yusoff, I. & Gupta, B. S. Comparison of a plant based natural surfactant with SDS for washing of As(V) from Fe rich soil. Journal of Environmental Sciences 25 (2013).7.Mukhopadhyay, S. et al. Ammonium-based deep eutectic solvents as novel soil washing agent for lead removal. Chem. Eng. J. 294, 316–322 (2016).CAS
Article
Google Scholar
8.Mukherjee, S. et al. Optimization of pulp fibre removal by flotation using colloidal gas aphrons generated from a natural surfactant. J. Taiwan Inst. Chem. Eng. 53, 15–21 (2015).CAS
Article
Google Scholar
9.Shinobu-Mesquita, C. et al. Cellular structural changes in candida albicans caused by the hydroalcoholic extract from Sapindus saponaria L. Molecules 20, 9405–9418 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
10.Smułek, W. et al. Sapindus saponins’ impact on hydrocarbon biodegradation by bacteria strains after short- and long-term contact with pollutant. Colloids Surf. B 142, 207–213 (2016).Article
CAS
Google Scholar
11.Rodríguez-Hernández, D. et al. Highly potent anti-leishmanial derivatives of hederagenin, a triperpenoid from Sapindus saponaria L. Eur. J. Med. Chem. 124, 153–159 (2016).PubMed
Article
CAS
Google Scholar
12.Rodriguez-Hernández, D., Demuner, A. J., Barbosa, L. C. A., Csuk, R. & Heller, L. Hederagenin as a triterpene template for the development of new antitumor compounds. Eur. J. Med. Chem. 105, 57–62 (2015).PubMed
Article
CAS
Google Scholar
13.Singh, P. T. D. & Singh, M. M. Anti-Trichomonas activity of Sapindus saponins, a candidate for development as microbicidal contraceptive. J. Antimicrob. Chemother. 62, 526–534 (2008).PubMed
Article
CAS
Google Scholar
14.Muntaha, S. T. & Khan, M. N. Natural surfactant extracted from Sapindus mukurossi as an eco-friendly alternate to synthetic surfactant: A dye surfactant interaction study. J. Clean. Prod. 93, 145–150 (2015).CAS
Article
Google Scholar
15.Sun, C., Jia, L., Ye, H. O., Gao, Y. & Weng, X. Geographic variation evaluating and correlation with fatty acid composition of economic characters of Sapindus spp. fruits. J. Beijing For. Univ. 12, 73–83 (2016).
Google Scholar
16.Barry, C. & Cox, P. D. Biogeography: An Ecological and Evolutionary Approach (Blackwell, 1980).
Google Scholar
17.Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change, 95–123. http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg1_report_the_physical_science_basis.htm (2014).18.Hatfield, J. L. & Prueger, J. H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extremes 10, 4–10 (2015).Article
Google Scholar
19.Ray, R., Gururaja, K. V. & Ramchandra, T. V. Predictive distribution modeling for rare Himalayan medicinal plant Berberis aristata DC. J. Environ. Biol. 32, 725–730 (2011).PubMed
Google Scholar
20.Lawler, J. J. Climate change adaptation strategies for resource management and conservation planning. Ann. N. Y. Acad. Sci. 1162, 79–98 (2009).ADS
PubMed
Article
Google Scholar
21.Richard et al. Will plant movements keep up with climate change? Trends Ecol. Evol. (2013).22.Araújo, M. B. & Peterson, A. T. Uses and misuses of bioclimatic envelope modeling. Ecology 93, 1527–1539 (2012).PubMed
Article
Google Scholar
23.Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article
Google Scholar
24.Zhu, G., Liu, G., Bu, W. & Gao, Y. Ecological niche modeling and its applications in biodiversity conservation. Biodiv. Sci. 1, 94–102 (2013).
Google Scholar
25.Stockwell, D. & Peters, D. P. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158 (1999).Article
Google Scholar
26.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article
Google Scholar
27.Beaumont, L. J. et al. Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distribution. Ecol. Model. 186, 251–270 (2005).Article
Google Scholar
28.Liaw, A. & Wiener, M. Classification and regression by random forest. R News 23, 1–10 (2002).
Google Scholar
29.Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–814 (2008).CAS
PubMed
Article
Google Scholar
30.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article
Google Scholar
31.Li, G., Du, S. & Wen, Z. Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for introduction and cultivation at a global scale. Sci. Rep. 6, 30009 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
32.Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).Article
Google Scholar
33.Merow, C. et al. What do we gain from simplicity versus complexity in species distribution models?. Ecography 37, 1267–1281 (2014).Article
Google Scholar
34.Wang, W. et al. Assessment of potential habitat for firmiana danxiaensis, a plant species with extremely small populations in danxiashan national nature reserve based on maxent model. Scientia Silvae Sinicae (2019).35.Guo, Y., Guo, J., Shen, X., Wang, G. & Wang, T. Predicting the bioclimatic habitat suitability of Ginkgo biloba L. in China with field-test validations. Forests https://doi.org/10.3390/f10080705 (2019).Article
Google Scholar
36.Huang, Z. et al. Geographic distribution and impacts of climate change on the suitable habitats of Zingiber species in China. Ind. Crops Prod. 138, 111429 (2019).Article
Google Scholar
37.Rong, Z. et al. Modeling the effect of climate change on the potential distribution of Qinghai Spruce (Picea crassifolia Kom.) in Qilian Mountains. Forests https://doi.org/10.3390/f10010062 (2019).Article
Google Scholar
38.Mohammadi, S., Ebrahimi, E., Moghadam, M. S. & Bosso, L. Modelling current and future potential distributions of two desert jerboas under climate change in Iran. Ecol. Inform. 52, 7–13 (2019).Article
Google Scholar
39.Ramos, R. S., Kumar, L., Shabani, F. & Picanco, M. C. Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios. Agric. Syst. 173, 524–535. https://doi.org/10.1016/j.agsy.2019.03.020 (2019).Article
Google Scholar
40.Sultana, S., Baumgartner, J. B., Dominiak, B. C., Royer, J. E. & Beaumont, L. J. Impacts of climate change on high priority fruit fly species in Australia. PLoS ONE 15, e0213820 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
41.Raffini, F. et al. From nucleotides to satellite imagery: Approaches to identify and manage the invasive pathogen Xylella fastidiosa and its insect vectors in Europe. Sustainability 12, 4508 (2020).CAS
Article
Google Scholar
42.Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. https://doi.org/10.1016/j.ecolmodel.2019.108837 (2020).Article
Google Scholar
43.Sterne, T. K., Retchless, D., Allee, R. & Highfield, W. Predictive modelling of mesophotic habitats in the north-western Gulf of Mexico. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3281 (2020).Article
Google Scholar
44.Convertino, M., Annis, A. & Nardi, F. Information-theoretic portfolio decision model for optimal flood management. Environ. Model. Softw. 119, 258–274 (2019).Article
Google Scholar
45.Ardestani, E. G. & Mokhtari, A. Modeling the lumpy skin disease risk probability in central Zagros Mountains of Iran. Prev. Vet. Med. 176, 104887–104887. https://doi.org/10.1016/j.prevetmed.2020.104887 (2020).Article
PubMed
Google Scholar
46.Hanafi-Bojd, A. A., Vatandoost, H. & Yaghoobi-Ershadi, M. R. Climate change and the risk of malaria transmission in Iran. J. Med. Entomol. 57, 50–64. https://doi.org/10.1093/jme/tjz131 (2020).Article
PubMed
Google Scholar
47.Zhang, L., Jing, Z., Li, Z., Liu, Y. & Fang, S. Predictive modeling of suitable habitats for Cinnamomum Camphora (L.) presl using maxent model under climate change in China. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph16173185 (2019).Article
PubMed
PubMed Central
Google Scholar
48.Peng, L.-P. et al. Modelling environmentally suitable areas for the potential introduction and cultivation of the emerging oil crop Paeonia ostii in China. Sci. Rep. https://doi.org/10.1038/s41598-019-39449-y (2019).Article
PubMed
PubMed Central
Google Scholar
49.Li, J., Fan, G. & He, Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134141 (2020).Article
PubMed
PubMed Central
Google Scholar
50.Zhang, K., Zhang, Y. & Tao, J. Predicting the potential distribution of Paeonia veitchii (Paeoniaceae) in China by incorporating climate change into a maxent model. Forests https://doi.org/10.3390/f10020190 (2019).Article
Google Scholar
51.Sun, C. et al. Genetic structure and biogeographic divergence among Sapindus species: An inter-simple sequence repeat-based study of germplasms in China. Ind. Crops Prod. 118, 1–10 (2018).CAS
Article
Google Scholar
52.Mahar, K. S., Palni, L. M. S., Ranade, S. A., Pande, V. & Rana, T. S. Molecular analyses of genetic variation and phylogenetic relationship in Indian soap nut (Sapindus L.) and closely related taxa of the family Sapindaceae. Meta Gene, S2214540017300336 (2017).53.Li, J., Chang, H., Liu, T. & Zhang, C. The potential geographical distribution of Haloxylon across Central Asia under climate change in the 21st century. Agric. For. Meteorol. 275, 243–254. https://doi.org/10.1016/j.agrformet.2019.05.027 (2019).ADS
Article
Google Scholar
54.Prevéy, J. S., Parker, L. E., Harrington, C. A., Lamb, C. T. & Proctor, M. F. Climate change shifts in habitat suitability and phenology of huckleberry (Vaccinium membranaceum). Agric. For. Meteorol. 280, 107803 (2020).ADS
Article
Google Scholar
55.Adeyemi, T. O., Ogundipe, O. T. & Olowokudejo, J. D. Species distribution modelling of family Sapindaceae in West Africa. Int. J. Bot. 8, 45–49 (2012).Article
Google Scholar
56.Sun, C. et al. Association of fruit and seed traits of sapindus mukorossi germplasm with environmental factors in Southern China. Forests 8, 491 (2017).Article
Google Scholar
57.Sun, C. et al. Genetic diversity and association analyses of fruit traits with microsatellite ISSRs in Sapindus. J. For. Res. 30, 197–207 (2019).Article
CAS
Google Scholar
58.Gao, Y. et al. Canopy characteristics and light distribution in Sapindus mukorossi Gaertn. are influenced by crown architecture manipulation in the hilly terrain of Southeast China. Sci. Hortic. 240, 11–22 (2018).Article
Google Scholar
59.Zhang, Y.-Q. et al. Spatio-temporal effects of canopy microclimate on fruit yield and quality of Sapindus mukorossi Gaertn. Sci. Hortic. 251, 136–149 (2019).CAS
Article
Google Scholar
60.Liu, J. et al. Potential distribution and ecological characteristics of genus Sapindus in China based on MaxEnt model. Sci. Silvae Sin. 57, 1–12. https://doi.org/10.11707/j.1001-7488.20210501 (2021).Article
Google Scholar
61.Cabral, A. L., Sales, J. D. F., Barbosa, K. F., Rodrigues, A. A. & Filho, S. C. V. Dormancy breakage and germination in Sapindus saponaria L. seeds as a function of temperature and germination substrate. Semina 40, 3345–3358 (2019).CAS
Google Scholar
62.Jia, L. & Sun, C. Research progress of biodiesel tree Sapindus mukorossi. J. China Agric. Univ. 017, 191–196 (2012).
Google Scholar
63.Wei, X., Dai, T., Liu, S. & Jia, L. Effects of formula fertilization on leaf nutrient dynamics and yield of Sapindus mukorossi Gaertn. J. Nanjing For. Univ. 42, 21–28 (2018).
Google Scholar
64.Pal, A. K., Vaishnav, V., Meena, B., Pandey, N. & Rana, T. S. Adaptive fitness of Sapindus emarginatus Vahl populations towards future climatic regimes and the limiting factors of its distribution. Sci. Rep. 10, 1–11 (2020).Article
CAS
Google Scholar
65.Jayasinghe, S. L. & Kumar, L. Modeling the climate suitability of tea [Camellia sinensis(L.) O. Kuntze] in Sri Lanka in response to current and future climate change scenarios. Agric. For. Meteorol. 272–273, 102–117 (2019).ADS
Article
Google Scholar
66.He, X., Ning, X., Guo, Y. & Wei, H. Geographical distribution of Xanthoceras sorbifolia Bunge in China and predicting suitable area under the climate change scenario. Res. Agric. Modern. 40, 138–146 (2019).
Google Scholar
67.GBIF.org (13 October 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.4d9kye.68.Veloz, S. D. Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J. Biogeogr. 36, 2290–2299 (2010).Article
Google Scholar
69.Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 275, 73–77 (2014).Article
Google Scholar
70.Brown, J. L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5, 694–700. https://doi.org/10.1111/2041-210x.12200 (2014).Article
Google Scholar
71.Beckmann, M. et al. glUV: A global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 5, 372 (2014).Article
Google Scholar
72.Mao, J. F. & Wang, X. R. Distinct niche divergence characterizes the homoploid hybrid speciation of Pinus densata on the Tibetan Plateau. Am. Nat. 177(4), 424–439 (2011).ADS
PubMed
Article
Google Scholar
73.Li, G., Xu, G., Guo, K. & Du, S. Mapping the global potential geographical distribution of black locust (Robinia Pseudoacacia L.) using herbarium data and a maximum entropy model. Forests 5, 2773–2792 (2014).Article
Google Scholar
74.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article
Google Scholar
75.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article
Google Scholar
76.Phillips, S. J. Transferability, sample selection bias and background data in presence-only modelling: A response to Peterson et al. (2007). Ecography 31, 272–278 (2008).Article
Google Scholar
77.Araujo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species–climate impact models under climate change. Glob. Change Biol. 11, 1504–1513 (2005).ADS
Article
Google Scholar
78.Ikhumhen, H. O., Li, T., Lu, S. & Matomela, N. Assessment of a novel data driven habitat suitability ranking approach for Larus relictus specie using remote sensing and GIS. Ecol. Model. 432, 109221 (2020).Article
Google Scholar
79.Bosso, L., De Conno, C. & Russo, D. Modelling the risk posed by the zebra mussel Dreissena polymorpha: Italy as a case study. Environ. Manage. 60, 304–313 (2017).ADS
PubMed
Article
Google Scholar More