Replicated, urban-driven exposure to metallic trace elements in two passerines
1.Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, 8327 (2017).Article
CAS
Google Scholar
2.Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. U.S.A. 114, 8951–8956 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
3.Alberti, M., Marzluff, J. & Hunt, V. M. Urban driven phenotypic changes: Empirical observations and theoretical implications for eco-evolutionary feedback. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160029 (2017).Article
Google Scholar
4.Chamberlain, D. E. et al. Avian productivity in urban landscapes: A review and meta-analysis. Ibis 151, 1–18 (2009).Article
Google Scholar
5.Miles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi-South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. Mol. Ecol. 28, 4138–4151 (2019).PubMed
Article
Google Scholar
6.Lowry, H., Lill, A. & Wong, B. B. M. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).PubMed
Article
Google Scholar
7.McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article
Google Scholar
8.Devictor, V., Julliard, R., Couvet, D., Lee, A. & Jiguet, F. Functional homogenization effect of urbanization on bird communities. Conserv. Biol. 21, 741–751 (2007).PubMed
Article
Google Scholar
9.McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article
Google Scholar
10.Salmón, P., Watson, H., Nord, A. & Isaksson, C. Effects of the urban environment on oxidative stress in early life: Insights from a cross-fostering experiment. Integr. Comp. Biol. https://doi.org/10.1093/icb/icy099 (2018).Article
PubMed
PubMed Central
Google Scholar
11.Chatelain, M., Drobniak, S. M. & Szulkin, M. The association between stressors and telomeres in non-human vertebrates: A meta-analysis. Ecol. Lett. 23, 381–398 (2020).PubMed
Article
PubMed Central
Google Scholar
12.Seress, G. & Liker, A. Habitat urbanization and its effects on birds. Acta Zool. Acad. Sci. Hung. 61, 373–408 (2015).Article
Google Scholar
13.Isaksson, C. Impact of urbanization on birds. In Bird Species (ed. Tietze, D. T.) 235–257 (Springer, 2018).Chapter
Google Scholar
14.Ouyang, J. Q. et al. A new framework for urban ecology: An integration of proximate and ultimate responses to anthropogenic change. Integr. Comp. Biol. https://doi.org/10.1093/icb/icy110 (2018).Article
PubMed
PubMed Central
Google Scholar
15.Meillère, A. et al. Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula). Sci. Total Environ. 566–567, 93–101 (2016).ADS
PubMed
Article
CAS
Google Scholar
16.Chatelain, M. et al. Urban metal pollution explains variation in reproductive outputs in great tits and blue tits. Sci. Total Environ. 776, 145966 (2021).ADS
CAS
Article
Google Scholar
17.Santangelo, J. S. et al. Urban environments as a framework to study parallel evolution. In Urban Evolutionary Biology (eds Szulkin, M. et al.) 36–53 (Oxford University Press, 2020).Chapter
Google Scholar
18.Rivkin, L. R. et al. A roadmap for urban evolutionary ecology. Evol. Appl. 12, 384–398 (2019).PubMed
Article
Google Scholar
19.Szulkin, M., Garroway, C. J., Corsini, M., Kotarba, A. Z. & Dominoni, D. How to quantify urbanisation when testing for urban evolution? In Urban Evolutionary Biology (eds Szulkin, M. et al.) (Oxford University Press, 2020).Chapter
Google Scholar
20.McDonnell, M. J. & Pickett, S. T. A. Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology 71, 1232–1237 (1990).Article
Google Scholar
21.Bai, X. et al. Linking urbanization and the environment: Conceptual and empirical advances. Annu. Rev. Environ. Resour. 42, 215–240 (2017).Article
Google Scholar
22.Boyd, R. S. Heavy metal pollutants and chemical ecology: Exploring new frontiers. J. Chem. Ecol. 36, 46–58 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
23.Dauwe, T., Janssens, E., Pinxten, R. & Eens, M. The reproductive success and quality of blue tits (Parus caeruleus) in a heavy metal pollution gradient. Environ. Pollut. 136, 243–251 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
24.Eeva, T., Ahola, M. & Lehikoinen, E. Breeding performance of blue tits (Cyanistes caeruleus) and great tits (Parus major) in a heavy metal polluted area. Environ. Pollut. 157, 3126–3131 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
25.Stauffer, J., Panda, B., Eeva, T., Rainio, M. & Ilmonen, P. Telomere damage and redox status alterations in free-living passerines exposed to metals. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2016.09.131 (2016).Article
PubMed
PubMed Central
Google Scholar
26.Fritsch, C., Jankowiak, Ł & Wysocki, D. Exposure to Pb impairs breeding success and is associated with longer lifespan in urban European blackbirds. Sci. Rep. 9, 486 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
27.Nriagu, J. O. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279, 409–411 (1979).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
28.Duan, J. & Tan, J. Atmospheric heavy metals and arsenic in China: Situation, sources and control policies. Atmos. Environ. 74, 93–101 (2013).ADS
CAS
Article
Google Scholar
29.Celik, E., Durmus, A., Adizel, O. & Nergiz Uyar, H. A bibliometric analysis: What do we know about metals(loids) accumulation in wild birds? Environ. Sci. Pollut. Res. 28, 10302–10334 (2021).CAS
Article
Google Scholar
30.Bichet, C. et al. Urbanization, trace metal pollution, and malaria prevalence in the house sparrow. PLoS ONE 8, e53866 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
31.Gragnaniello, S. et al. Sparrows as possible heavy-metal biomonitors of polluted environments. Bull. Environ. Contam. Toxicol. 66, 719–726 (2001).CAS
PubMed
Article
Google Scholar
32.Hofer, C., Gallagher, F. J. & Holzapfel, C. Metal accumulation and performance of nestlings of passerine bird species at an urban brownfield site. Environ. Pollut. 158, 1207–1213 (2010).CAS
PubMed
Article
Google Scholar
33.Nam, D.-H. & Lee, D.-P. Monitoring for Pb and Cd pollution using feral pigeons in rural, urban, and industrial environments of Korea. Sci. Total Environ. 357, 288–295 (2006).ADS
CAS
PubMed
Article
Google Scholar
34.Roux, K. E. & Marra, P. P. The presence and impact of environmental lead in passerine birds along an urban to rural land use gradient. Arch. Environ. Contam. Toxicol. 53, 261–268 (2007).CAS
PubMed
Article
Google Scholar
35.Scheifler, R. et al. Lead concentrations in feathers and blood of common blackbirds (Turdus merula) and in earthworms inhabiting unpolluted and moderately polluted urban areas. Sci. Total Environ. 371, 197–205 (2006).ADS
CAS
PubMed
Article
Google Scholar
36.Manjula, M., Mohanraj, R. & Devi, M. P. Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India. Environ. Monit. Assess. 187, 267 (2015).PubMed
Article
CAS
Google Scholar
37.Zarrintab, M. & Mirzaei, R. Tissue distribution and oral exposure risk assessment of heavy metals in an urban bird: Magpie from Central Iran. Environ. Sci. Pollut. Res. 25, 17118–17127 (2018).CAS
Article
Google Scholar
38.Binkowski, ŁJ. & Meissner, W. Levels of metals in blood samples from Mallards (Anas platyrhynchos) from urban areas in Poland. Environ. Pollut. 178, 336–342 (2013).CAS
PubMed
Article
Google Scholar
39.Orłowski, G. et al. Residues of chromium, nickel, cadmium and lead in rook Corvus frugilegus eggshells from urban and rural areas of Poland. Sci. Total Environ. 490, 1057–1064 (2014).ADS
PubMed
Article
CAS
Google Scholar
40.Kekkonen, J., Hanski, I. K., Väisänen, R. A. & Brommer, J. E. Levels of heavy metals in house sparrows (Passer domesticus) from urban and rural habitats of southern Finland. Ornis Fennica 89, 91 (2012).
Google Scholar
41.Jaspers, V. L. B., Covaci, A., Herzke, D., Eulaers, I. & Eens, M. Bird feathers as a biomonitor for environmental pollutants: Prospects and pitfalls. TrAC Trends Anal. Chem. https://doi.org/10.1016/j.trac.2019.05.019 (2019).Article
Google Scholar
42.Dijkstra, L. & Poelman, H. Cities in Europe: The new OECD-EC definition. Reg. Focus 16, 1–3 (2012).
Google Scholar
43.Svensson, L. Identification Guide to European Passerines (British Trust for Ornithology, 1992).
Google Scholar
44.Jenni, L. & Winkler, R. Moult and Ageing of European Passerines (Academic Press, 1994).
Google Scholar
45.Greenwood, P. J., Harvey, P. H. & Perrins, C. M. The role of dispersal in the great tit (Parus major): The causes, consequences and heritability of natal dispersal. J. Anim. Ecol. 48, 123 (1979).Article
Google Scholar
46.Harvey, P. H., Greenwood, P. J. & Perrins, C. M. Breeding area fidelity of great tits (Parus major). J. Anim. Ecol. 48, 305 (1979).Article
Google Scholar
47.Ortego, J., García-Navas, V., Ferrer, E. S. & Sanz, J. J. Genetic structure reflects natal dispersal movements at different spatial scales in the blue tit, Cyanistes caeruleus. Anim. Behav. 82, 131–137 (2011).Article
Google Scholar
48.Tufto, J., Ringsby, T., Dhondt, A. A., Adriaensen, F. & Matthysen, E. A parametric model for estimation of dispersal patterns applied to five passerine spatially structured populations. Am. Nat. 165, E13–E26 (2005).PubMed
Article
Google Scholar
49.Miles, L. S., Carlen, E. J., Winchell, K. M. & Johnson, M. T. J. Urban evolution comes into its own: Emerging themes and future directions of a burgeoning field. Evol. Appl. 14, 3–11 (2021).PubMed
Article
Google Scholar
50.Moll, R. J. et al. What does urbanization actually mean? A framework for urban metrics in wildlife research. J. Appl. Ecol. 56, 1289–1300 (2019).Article
Google Scholar
51.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).52.Lee, L. & Helsel, D. Statistical analysis of water-quality data containing multiple detection limits: S-language software for regression on order statistics. Comput. Geosci. 31, 1241–1248 (2005).ADS
CAS
Article
Google Scholar
53.Salgado, C. M., Azevedo, C., Proença, H., Vieira, S. M. Noise versus outliers. In Secondary Analysis of Electronic Health Records, 163–183 (ed MIT Critical Data) (Springer, 2016).Chapter
Google Scholar
54.Betts, M. M. The food of titmice in Oak Woodland. J. Anim. Ecol. 24, 282 (1955).Article
Google Scholar
55.Newton, I. & Brockie, K. The Migration Ecology of Birds (Elsevier/Acad. Press, 2008).
Google Scholar
56.Greenwood, P. J. & Harvey, P. H. The natal and breeding dispersal of birds. Annu. Rev. Ecol. Syst. 13, 1–21 (1982).Article
Google Scholar
57.Sakamoto, Y., Ishiguro, M. & Kitagawa, G. Akaike Information Criterion Statistics Vol. 81 (D. Reidel, 1986).MATH
Google Scholar
58.Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).Article
Google Scholar
59.Grömping, U. Relative importance for linear regression in R : The package relaimpo. J. Stat. Softw. https://doi.org/10.18637/jss.v017.i01 (2006).Article
Google Scholar
60.Pacyna, E. G. et al. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Sci. Total Environ. 370, 147–156 (2006).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
61.Frantz, A. et al. Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale. Environ. Pollut. 168, 23–28 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Eens, M., Pinxten, R., Verheyen, R. F., Blust, R. & Bervoets, L. Great and blue tits as indicators of heavy metal contamination in terrestrial ecosystems. Ecotoxicol. Environ. Saf. 44, 81–85 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
63.Dauwe, T. et al. Great and blue tit feathers as biomonitors for heavy metal pollution. Ecol. Indic. 1, 227–234 (2002).CAS
Article
Google Scholar
64.Janssens, E., Dauwe, T., Bervoets, L. & Eens, M. Heavy metals and selenium in feathers of great tits (Parus major) along a pollution gradient. Environ. Toxicol. Chem. 20, 2815–2820 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
65.Burger, J. Metals in avian feathers: bioindicators of environmental pollution. Rev. Environ. Contam. Toxicol. 5, 203–311 (1993).
Google Scholar
66.Chatelain, M., Gasparini, J., Jacquin, L. & Frantz, A. The adaptive function of melanin-based plumage coloration to trace metals. Biol. Lett. 10, 20140164–20140164 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
67.Bańbura, M. et al. Egg size variation in blue tits Cyanistes caeruleus and great tits Parus major in relation to habitat differences in snail abundance. Acta Ornithol. 45, 121–129 (2010).Article
Google Scholar
68.Scheuhammer, A. M. Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds. Environ. Pollut. 94, 337–343 (1996).CAS
PubMed
Article
PubMed Central
Google Scholar
69.Dauwe, T., Snoeijs, T., Bervoets, L., Blust, R. & Eens, M. Calcium availability influences lead accumulation in a passerine bird. Anim. Biol. 56, 289–298 (2006).Article
Google Scholar
70.Snoeijs, T. et al. The combined effect of lead exposure and high or low dietary calcium on health and immunocompetence in the zebra finch. Environ. Pollut. 134, 123–132 (2005).CAS
PubMed
Article
Google Scholar
71.McCabe, E. B. Age and sensitivity to lead toxicity: A review. Environ. Health Perspect. 29, 29–33 (1979).CAS
PubMed
PubMed Central
Article
Google Scholar
72.Chatelain, M., Gasparini, J. & Frantz, A. Do trace metals select for darker birds in urban areas? An experimental exposure to lead and zinc. Glob. Change Biol. 22, 2380 (2016).ADS
Article
Google Scholar
73.Chatelain, M., Gasparini, J. & Frantz, A. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia). Ecotoxicology. https://doi.org/10.1007/s10646-016-1610-5 (2016).Article
PubMed
Google Scholar
74.Chatelain, M., Frantz, A., Gasparini, J. & Leclaire, S. Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon. J. Avian Biol. https://doi.org/10.1111/jav.00857 (2015).Article
Google Scholar
75.Chatelain, M., Pessato, A., Frantz, A., Gasparini, J. & Leclaire, S. Do trace metals influence visual signals? Effects of trace metals on iridescent and melanic feather colouration in the feral pigeon. Oikos. https://doi.org/10.1111/oik.04262 (2017).Article
Google Scholar
76.Watson, H., Videvall, E., Andersson, M. N. & Isaksson, C. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 7, 44180 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
77.Harris, S. E. & Munshi-South, J. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol. Ecol. https://doi.org/10.1101/038141 (2017).Article
PubMed
PubMed Central
Google Scholar
78.Koivula, M. J. & Eeva, T. Metal-related oxidative stress in birds. Environ. Pollut. 158, 2359–2370 (2010).CAS
PubMed
Article
Google Scholar
79.Korashy, H. M. et al. Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metal exposure. Environ. Pollut. 221, 64–74 (2017).CAS
PubMed
Article
Google Scholar
80.Ghalambor, C. K., McKAY, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).Article
Google Scholar
81.Garcia, C. M., Suárez-Rodríguez, M. & López-Rull, I. Becoming citizens: Avian adaptations to urban life. In Ecology and Conservation of Birds in Urban Environments (eds Murgui, E. & Hedblom, M.) 91–112 (Springer, 2017).Chapter
Google Scholar
82.Goiran, C., Bustamante, P. & Shine, R. Industrial Melanism in the Seasnake Emydocephalus annulatus. Curr. Biol. 27, 2510–2513 (2017).CAS
PubMed
Article
Google Scholar
83.Obukhova, N. Polymorphism and phene geography of the blue rock pigeon in Europe. Russ. J. Genet. 43, 492–501 (2007).CAS
Article
Google Scholar
84.Jacquin, L. et al. A potential role for parasites in the maintenance of color polymorphism in urban birds. Oecologia 173, 1089–1099 (2013).ADS
CAS
PubMed
Article
Google Scholar
85.Gomes, W. R. et al. Polymorphisms of genes related to metabolism of lead (Pb) are associated with the metal body burden and with biomarkers of oxidative stress. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 836, 42–46 (2018).PubMed
Article
Google Scholar
86.Sekovanić, A., Jurasović, J. & Piasek, M. Metallothionein 2A gene polymorphisms in relation to diseases and trace element levels in humans. Arch. Ind. Hyg. Toxicol. 71, 27–47 (2020).
Google Scholar More