More stories

  • in

    Seasonal variation in reversal learning reveals greater female cognitive flexibility in African striped mice

    Seasonal changes in weather, food availability and mice body conditionThe weather was hot and dry during summer (temperature: 24.42 ± 0.36 °C; total rainfall: 0.60 mm) and temperatures were lower and rainfall was higher during the winter months (temperature: 13.47 ± 0.45 °C; total rainfall: 39.60 mm; LM: N = 138, F = 368.4, P  More

  • in

    Urohidrosis as an overlooked cooling mechanism in long-legged birds

    1.Amat, J. A. & Masero, J. A. How Kentish plovers, Charadrius alexandrinus, cope with heat stress during incubation. Behav. Ecol. Sociobiol. 56, 26–33 (2004).Article 

    Google Scholar 
    2.du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: Implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob. Chang. Biol. 18, 3063–3070 (2012).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Cunningham, S. J., Martin, R. O. & Hockey, P. A. R. Can behaviour buffer the impacts of climate change on an arid-zone bird?. Ostrich 86, 119–126 (2015).Article 

    Google Scholar 
    4.Smit, B. et al. Behavioural responses to heat in desert birds: implications for predicting vulnerability to climate warming. Clim. Chang. Responses 3, 1–14 (2016).Article 

    Google Scholar 
    5.McNab, B.K. The Physiological Ecology of Vertebrates: A View from Energetics (Cornell University Press, 2002).6.Cunningham, S. J., Gardner, J. L. & Martin, R. O. Opportunity costs and the response of birds and mammals to climate warming. Front. Ecol. Environ. 1, 1–8. https://doi.org/10.1002/fee.2324 (2021).Article 

    Google Scholar 
    7.Wolf, B. O., Wooden, K. M. & Walsberg, G. E. The use of thermal refugia by two small desert birds. Condor 98(2), 424–428 (1996).Article 

    Google Scholar 
    8.Cook, T. R. et al. Parenting in a warming world: Thermoregulatory responses to heat stress in an endangered seabird. Conserv. Physiol. 8, 1–13 (2020).Article 

    Google Scholar 
    9.Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    10.Nilsson, J. Å. & Nord, A. Testing the heat dissipation limit theory in a breeding passerine. Proc. R. Soc. B Biol. Sci. 285, 1 (2018).
    Google Scholar 
    11.Nord, A. & Nilsson, J. Å. Heat dissipation rate constrains reproductive investment in a wild bird. Funct. Ecol. 33, 250–259 (2019).Article 

    Google Scholar 
    12.Tapper, S., Nocera, J. J. & Burness, G. Heat dissipation capacity influences reproductive performance in an aerial insectivore. J. Exp. Biol. 223, 1 (2020).
    Google Scholar 
    13.Buckley, L. B., Ehrenberger, J. C. & Angilletta, M. J. Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Funct. Ecol. 29, 1038–1047 (2015).Article 

    Google Scholar 
    14.Edwards, E. K., Mitchell, N. J. & Ridley, A. R. The impact of high temperatures on foraging behaviour and body condition in the Western Australian Magpie Cracticus tibicen dorsalis. Ostrich 86, 137–144 (2015).Article 

    Google Scholar 
    15.Thompson, M. L., Cunningham, S. J. & McKechnie, A. E. Interspecific variation in avian thermoregulatory patterns and heat dissipation behaviours in a subtropical desert. Physiol. Behav. 188, 311–323 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    16.Kemp, R. et al. Sublethal fitness costs of chronic exposure to hot weather vary between sexes in a threatened desert lark. Emu 120, 216–229 (2020).Article 

    Google Scholar 
    17.Funghi, C., McCowan, L. S. C., Schuett, W. & Griffith, S. C. High air temperatures induce temporal, spatial and social changes in the foraging behaviour of wild zebra finches. Anim. Behav. 149, 33–43 (2019).Article 

    Google Scholar 
    18.Pattinson, N. B. et al. Heat dissipation behaviour of birds in seasonally hot arid-zones: are there global patterns?. J. Avian Biol. 51, 1–11 (2020).Article 

    Google Scholar 
    19.Moyer-Horner, L., Mathewson, P. D., Jones, G. M., Kearney, M. R. & Porter, W. P. Modeling behavioral thermoregulation in a climate change sentinel. Ecol. Evol. 5, 5810–5822 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Moore, D., Stow, A. & Kearney, M. R. Under the weather?—The direct effects of climate warming on a threatened desert lizard are mediated by their activity phase and burrow system. J. Anim. Ecol. 87, 660–671 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Bladon, A. J. et al. Behavioural thermoregulation and climatic range restriction in the globally threatened ethiopian bush-crow Zavattariornis stresemanni. Ibis 161(3), 546–558. https://doi.org/10.1111/ibi.12660 (2019).Article 

    Google Scholar 
    22.Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl. Acad. Sci. USA 116, 14065–14070 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Enriquez-Urzelai, U. et al. The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. J. Anim. Ecol. 89, 1722–1734 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl. Acad. Sci. USA 114, 2283–2288 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Dawson, W. R. Evaporative losses of water by birds. Comp. Biochem. Physiol. Part A Physiol. 71, 495–509 (1982).Article 
    CAS 

    Google Scholar 
    26.Wolf, B. O. & Walsberg, G. E. Respiratory and cutaneous evaporative water loss at high environmental temperatures in a small bird. J. Exp. Biol. 199, 451–457 (1996).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    27.Calder, W. A. & Smichdt-Nielsen, K. Evaporative cooling and respiratory alkalosis in the pigeon. Proc. Natl. Acad. Sci. USA 55(4), 750–756. https://doi.org/10.1073/pnas.55.4.750 (1966).ADS 
    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    28.Bartholomew, G. A. The role of behavior in the temperature regulation of the masked booby. Condor 68, 523–535. https://doi.org/10.2307/1366261 (1966).Article 

    Google Scholar 
    29.Bryant, D. M. Heat stress in tropical birds: behavioural thermoregulation during flight. Ibis (Lond. 1859). 125, 313–323 (1983).30.Tattersall, G. J., Andrade, D. V. & Abe, A. S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science (80-. ). 325, 468–470 (2009).31.Van De Ven, T. M. F. N., Martin, R. O., Vink, T. J. F., McKechnie, A. E. & Cunningham, S. J. Regulation of heat exchange across the hornbill beak: Functional similarities with toucans?. PLoS ONE 11, 1–14 (2016).
    Google Scholar 
    32.Van Vuuren, A. K., Kemp, L. V. & McKechnie, A. E. The beak and unfeathered skin as heat radiators in the southern ground-hornbill. J. Avian Biol. 51, 1–7 (2020).
    Google Scholar 
    33.Winkler, D.W., Billerman, S.M. & Lovette, I.J. Storks (Ciconiidae), version 1.0. In Birds of the World (S. M. Billerman, B. K. Keeney, P. G. Rodewald, and T. S. Schulenberg, Editors). Cornell Lab of Ornithology (2020) https://doi.org/10.2173/bow.ciconi2.0134.Kahl, P. M. Thermoregulation in the wood stork, with special reference to the role of the legs. Physiol Zool. 36(2), 141–151 (1963).Article 

    Google Scholar 
    35.Steen, I. & Steen, J. B. The Importance of the Legs in the Thermoregulation of Birds. Acta Physiol. Scand. 63, 285–291 (1965).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    36.Hainsworth, F. R. Saliva spreading, activity and body temperature regulation in the rat. Am J Physiol. 212, 1288–1292 (1967).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Gentry, R. L. Thermoregulatory behavior of eared seals. Behaviour 46(2), 73–93. https://doi.org/10.1163/156853973×00175 (1973).Article 
    PubMed 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Sturbaum, B. A. & Riedesel, M. L. Dissipation of stored body heat by the ornate box turtle, Terrapene ornata. Comp. Biochem. Physiol. Part A Physiol. 58, 93–97 (1977).Article 

    Google Scholar 
    39.Marder, J., Porat, I., Raber, P. & Adler, J. Acid-base balance and body temperature regulation of heat stressed Psammomys obesus (Gerbillinae): The effect of bicarbonate loss via saliva spreading. Physiol Zool. 56(3), 389–396. https://doi.org/10.1086/physzool.56.3.30152603 (1983).Article 

    Google Scholar 
    40.Hatch, D. E. Energy conserving and heat dissipating mechanisms of the turkey vulture. Auk 87(1), 111–124. https://doi.org/10.2307/4083662 (1970).Article 

    Google Scholar 
    41.Cooper, J. & Siegfried, W. R. Behavioural responses of young cape gannets Sula capensis to high ambient temperatures. Mar. Behav. Physiol. 3, 211–220 (1976).Article 

    Google Scholar 
    42.Thomas, B. T. Maguari Stork Nesting: Juvenile Growth and Behavior. Auk 101, 812–823 (1984).Article 

    Google Scholar 
    43.Hancock, J.A., Kushlan, J.A. & Kahl, M.P. Storks, Ibises and Spoonbills of the World (Academic Press, 1992).44.Townsend, H., Huyvaert, K. P., Hodum, P. J. & Anderson, D. J. Nesting distributions of Galapagos boobies (Aves: Sulidae): an apparent case of amensalism. Oecologia 132, 419–427. https://doi.org/10.1007/s00442-002-0992-7 (2002).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Finkelstein, M., Kuspa, Z., Snyder, N.F. & Schmitt, N.J. California condor (Gymnogyps californianus), version 2.0. In The Birds of North America (P. G. Rodewald, Editor). Cornell Lab of Ornithology (2015). https://doi.org/10.2173/bna.61046.Czenze, Z. J. et al. Regularly drinking desert birds have greater evaporative cooling capacity and higher heat tolerance limits than non-drinking species. Funct. Ecol. 34, 1589–1600 (2020).Article 

    Google Scholar 
    47.Nudds, R. L. & Oswald, S. A. An interspecific test of Allen’s rule: Evolutionary implications for endothermic species. Evolution (N. Y). 61, 2839–2848 (2007).48.Symonds, M. R. E. & Tattersall, G. J. Geographical variation in bill size across bird species provides evidence for Allen’s rule. Am. Nat. 176, 188–197 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Galván, I., Rodríguez-Martínez, S. & Carrascal, L. M. Dark pigmentation limits thermal niche position in birds. Funct. Ecol. 32, 1531–1540 (2018).Article 

    Google Scholar 
    50.Wilman, H. et al. EltonTraits 1 . 0 : Species-level foraging attributes of the world ’ s birds and mammals. Ecology 95, 2027 (2014).51.Brooke, M. D. L. Ecological factors influencing the occurrence of ‘flash marks’ in wading birds. Funct. Ecol. 12, 339–346 (1998).Article 

    Google Scholar 
    52.Maclean, I. M. D., Mosedale, J. R. & Bennie, J. J. Microclima: An r package for modelling meso- and microclimate. Methods Ecol Evol. 10(2), 280–290. https://doi.org/10.1111/2041-210X.13093 (2019).Article 

    Google Scholar 
    53.Hadfield, A. J. Package ‘ MCMCglmm ’. https://cran.r-project.org/web/packages/MCMCglmm/ (2019)54.Jetz, W., Thomas, G.H., Joy, J.B., Hartmann, K. & Mooers, A.O. 2012. The global diversity of birds in space and time. Nature. 491(7424): 444–448 (2012). https://doi.org/10.1038/nature1163155.Revell, M.L.J. Package ‘ phytools ’ https://cran.r-project.org/web/packages/phytools/ (2020)56.Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726 (2002).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    57.Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, (2015).58.Crawley, M.J. The R Book (John Wiley & Sons, 2013).59.Barton, K. Package MuMin: Multi-model Inference https://cran.r-project.org/web/packages/MuMIn/index.html (2020).60.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    61.Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar 
    62.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2020).63.Bakken, G. S. & Angilletta, M. J. How to avoid errors when quantifying thermal environments. Funct. Ecol. 28, 96–107 (2014).Article 

    Google Scholar 
    64.van Dyk, M., Noakes, M. J. & McKechnie, A. E. Interactions between humidity and evaporative heat dissipation in a passerine bird. J. Comp. Physiol. B. 189, 299–308. https://doi.org/10.1007/s00360-019-01210-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Webster, M.D., Campbell, G.S. & King, J.R. Cutaneous resistance to water-vapor diffusion in pigeons and the role of the plumage. Physiol. Zool. 58(1): 58–70 (1985). http://www.jstor.org/stable/30161220.66.Battley, P. F., Rogers, D. I., Piersma, T. & Koolhaas, A. Behavioural evidence for heat-load problems in Great Knots in tropical Australia fuelling for long-distance flight. Emu 103, 97–103 (2003).Article 

    Google Scholar 
    67.Piersma, T. & van Gils, J.A. The Flexible Phenotype: A Body-Centered Integration of Ecology, Physiology, and Behavior (Oxford University Press, 2011).68.Fitzpatrick, M. J., Mathewson, P. D. & Porter, W. P. Validation of a mechanistic model for non-invasive study of ecological energetics in an endangered wading bird with counter-current heat exchange in its legs. PLoS ONE 10, 1–34 (2015).Article 
    CAS 

    Google Scholar 
    69.Lustick, S., Battersby, B. & Kelty, M. Effects of insolation on juvenile herring gull energetics and behavior. Ecologia. 60(4), 673–678. https://doi.org/10.2307/1936603 (1979).Article 

    Google Scholar 
    70.Ward, J. M., Blount, J. D., Ruxton, G. D. & Houston, D. C. The adaptive significance of dark plumage for birds in desert environments. Ardea 90, 311–323 (2002).
    Google Scholar 
    71.Nicolaï, M. P. J., Shawkey, M. D., Porchetta, S., Claus, R. & D’Alba, L. Exposure to UV radiance predicts repeated evolution of concealed black skin in birds. Nat. Commun. 11, (2020).72.Mitchell, D. et al. Revisiting concepts of thermal physiology: Predicting responses of mammals to climate change. J. Anim. Ecol. 87, 956–973 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Walsberg, G. E., Campbell, G. S. & King, J. R. Animal coat color and radiative heat gain: A re-evaluation. J. Comp. Physiol. B 126, 211–222 (1978).Article 

    Google Scholar 
    74.McFarland, D. J. & Baher, E. Factors affecting feather posture in the barbary dove. Anim. Behav. 16, 171–177 (1968).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    75.Hohtola, E., Rintamäki, H. & Hissa, R. Shivering and ptiloerection as complementary cold defense responses in the pigeon during sleep and wakefulness. J Comp Physiol. 136, 77–81. https://doi.org/10.1007/BF00688626 (1980).Article 

    Google Scholar 
    76.Kahl, P. M. Spread-wing postures and their possible functions in the Ciconiidae. Auk 88(4), 715–722. https://doi.org/10.2307/4083833 (1971).Article 

    Google Scholar 
    77.Dawson, T. J., Robertshaw, D. & Taylor, C. R. Sweating in the kangaroo: A cooling mechanism during exercise, but not in the heat. Am J Physiol. 227(2), 494–498. https://doi.org/10.1152/ajplegacy.1974.227.2.494 (1974).Article 
    PubMed 
    CAS 
    PubMed Central 

    Google Scholar 
    78.Hoffman, T. C. M., Walsberg, G. E. & DeNardo, D. F. Cloacal evaporation: an important and previously undescribed mechanism for avian thermoregulation. J. Exp. Biol. 210, 741–749 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Graves, G. R. Urohidrosis and tarsal color in Cathartes vultures (Aves: Cathartidae). Proc. Biol. Soc. Washingt. 132, 56–64 (2019).Article 

    Google Scholar 
    80.Torres, R. & Velando, A. Male preference for female foot colour in the socially monogamous blue-footed booby, Sula nebouxii.. Anim. Behav. 69, 59–65 (2005).Article 

    Google Scholar 
    81.López-Rull, I., Lifshitz, N., Macías Garcia, C., Graves, J. A. & Torres, R. Females of a polymorphic seabird dislike foreign-looking males. Anim. Behav. 113, 31–38 (2016).82.Gutiérrez, J. S. & Soriano-Redondo, A. Laterality in foraging phalaropes promotes phenotypically assorted groups. Behav. Ecol. 31, 1429–1435 (2021).Article 

    Google Scholar 
    83.Jarić, I. et al. iEcology: Harnessing large online resources to generate ecological insights. Trends Ecol. Evol. 35, 630–639 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Vrettos, M., Reynolds, C. & Amar, A. Malar stripe size and prominence in peregrine falcons vary positively with solar radiation: support for the solar glare hypothesis. Biol. Lett. 17, 20210116. https://doi.org/10.1098/rsbl.2021.0116 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    SNP markers reveal relationships between fruit paternity, fruit quality and distance from a cross-pollen source in avocado orchards

    1.Ashman, T.-L. et al. Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences. Ecology 85, 2408–2421 (2004).Article 

    Google Scholar 
    2.Ricketts, T. H. et al. Landscape effects on crop pollination services: Are there general patterns?. Ecol. Lett. 11, 499–515 (2008).Article 

    Google Scholar 
    3.Rollin, O. & Garibaldi, L. A. Impacts of honeybee density on crop yield: A meta-analysis. J. Appl. Ecol. 56, 1152–1163. https://doi.org/10.1111/1365-2664.13355 (2019).Article 

    Google Scholar 
    4.Bennett, J. M. et al. Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nat. Commun. 11, 3999. https://doi.org/10.1038/s41467-020-17751-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Aizen, M. A. & Harder, L. D. Expanding the limits of the pollen-limitation concept: Effects of pollen quantity and quality. Ecology 88, 271–281 (2007).Article 

    Google Scholar 
    6.Igic, B. & Kohn, J. R. The distribution of plant mating systems: Study bias against obligately outcrossing species. Evolution 60, 1098–1103 (2006).Article 

    Google Scholar 
    7.Abrol, D. P. Pollination Biology: Biodiversity and Conservation and Agricultural Production. Applied Pollination: Present Scenario 55–83 (Springer, 2012).
    Google Scholar 
    8.Frankel, R. & Galun, E. Pollination Mechanisms, Reproduction and Plant Breeding Vol. 2 (Springer Verlag, 1977).Book 

    Google Scholar 
    9.Schneider, D., Goldway, M., Rotman, N., Adato, I. & Stern, R. A. Cross-pollination improves ‘Orri’ mandarin fruit yield. Sci. Hortic. 122, 380–384 (2009).Article 

    Google Scholar 
    10.Fattahi, R., Mohammadzedeh, M. & Khadivi-Khub, A. Influence of different pollen sources on nut and kernel characteristics of hazelnut. Sci. Hortic. 173, 15–19 (2014).Article 

    Google Scholar 
    11.Żurawicz, E., Studnicki, M., Kubik, J. & Pruski, K. A careful choice of compatible pollinizers significantly improves the size of fruits in red raspberry (Rubus idaeus L.). Sci. Hortic. 235, 253–257 (2018).Article 

    Google Scholar 
    12.Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611. https://doi.org/10.1126/science.1230200 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Willcox, B. K., Aizen, M. A., Cunningham, S. A., Mayfield, M. M. & Rader, R. Deconstructing pollinator community effectiveness. Curr. Opin. Insect. Sci. 21, 98–104. https://doi.org/10.1016/j.cois.2017.05.012 (2017).Article 
    PubMed 

    Google Scholar 
    14.Richards, T. E. et al. Relationships between nut size, kernel quality, nutritional composition and levels of outcrossing in three macadamia cultivars. Plants 9, 228 (2020).CAS 
    Article 

    Google Scholar 
    15.van Nocker, S. & Gardiner, S. E. Breeding better cultivars, faster: Applications of new technologies for the rapid deployment of superior horticultural tree crops. Hortic. Res. 1, 14022. https://doi.org/10.1038/hortres.2014.22 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Isaacs, R. & Kirk, A. K. Pollination services provided to small and large highbush blueberry fields by wild and managed bees. J. Appl. Ecol. 47, 841–849 (2010).Article 

    Google Scholar 
    17.Brittain, C., Kremen, C., Garber, A. & Klein, A.-M. Pollination and plant resources change the nutritional quality of almonds for human health. PLoS ONE 9, e90082. https://doi.org/10.1371/journal.pone.0090082 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Klatt, B. K. et al. Bee pollination improves crop quality, shelf life and commercial value. Proc. R. Soc. B 281, 20132440 (2014).Article 

    Google Scholar 
    19.Crane, J. et al. in The Avocado: Botany, Production and Uses (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 200–233 (CABI, 2013).20.Duarte, P. F., Chaves, M. A., Borges, C. D. & Mendonça, C. R. B. Avocado: Characteristics, health benefits and uses. Ciênc. Rural 46, 747–754. https://doi.org/10.1590/0103-8478cr20141516 (2016).CAS 
    Article 

    Google Scholar 
    21.Dreher, M. L. & Davenport, A. J. Hass avocado composition and potential health effects. Crit. Rev. Food Sci. Nutr. 53, 738–750. https://doi.org/10.1080/10408398.2011.556759 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Araújo, R. G., Rodriguez-Jasso, R. M., Ruiz, H. A., Pintado, M. M. E. & Aguilar, C. N. Avocado by-products: Nutritional and functional properties. Trends Food Sci. Technol. 80, 51–60. https://doi.org/10.1016/j.tifs.2018.07.027 (2018).CAS 
    Article 

    Google Scholar 
    23.Lerman-Garber, I., Ichazo-Cerro, S., Zamora-González, J., Cardoso-Saldaña, G. & Posadas-Romero, C. Effect of a high-monounsaturated fat diet enriched with avocado in NIDDM patients. Diabetes Care 17, 311–315. https://doi.org/10.2337/diacare.17.4.311 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.López, L. R. et al. Monounsaturated fatty acid (avocado) rich diet for mild hypercholesterolemia. Arch. Med. Res. 27, 519–523 (1996).
    Google Scholar 
    25.Kris-Etherton, P. M. et al. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 70, 1009–1015 (1999).CAS 
    Article 

    Google Scholar 
    26.Trueman, S. J., Richards, S., McConchie, C. A. & Turnbull, C. G. N. Relationships between kernel oil content, fruit removal force and abscission in macadamia. Aust. J. Exp. Agric. 40, 859–866 (2000).Article 

    Google Scholar 
    27.Stout, A. B. A Study in Cross-Pollination of Avocados in Southern California (New York Botanical Garden, 1923).
    Google Scholar 
    28.Blanke, M. M. & Lovatt, C. J. Anatomy and transpiration of the avocado inflorescence. Ann. Bot. 71, 543–547. https://doi.org/10.1006/anbo.1993.1070 (1993).Article 

    Google Scholar 
    29.Salazar-García, S., Garner, L. C. & Lovatt, C. J. in The Avocado: Botany, Production and Uses. Reproductive Biology (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 118–167 (CABI, 2013).30.Garner, L. C. & Lovatt, C. J. The relationship between flower and fruit abscission and alternate bearing of ‘Hass’ avocado. J. Am. Soc. Hortic. Sci. 133, 3–10. https://doi.org/10.21273/jashs.133.1.3 (2008).Article 

    Google Scholar 
    31.Vithanage, V. The role of the European honeybee (Apis mellifera L.) in avocado pollination. J. Hortic. Sci. 65, 81–86. https://doi.org/10.1080/00221589.1990.11516033 (1990).Article 

    Google Scholar 
    32.Perez-Balam, J. et al. The contribution of honey bees, flies and wasps to avocado (Persea americana) pollination in southern Mexico. J. Pollinat. Ecol. 8, 42–47 (2012).Article 

    Google Scholar 
    33.Ying, Z., Davenport, T. L. R., Zhang, T., Schnell, R. J. & Tondo, C. L. Selection of highly informative microsatellite markers to identify pollen donors in “Hass” avocado orchards. Plant Mol. Biol. Rep. 27, 374–380 (2009).CAS 
    Article 

    Google Scholar 
    34.Alcaraz, M. & Hormaza, J. Influence of physical distance between cultivars on yield, outcrossing rate and selective fruit drop in avocado (Persea americana, Lauraceae). Ann. Appl. Biol. 158, 354–361 (2011).Article 

    Google Scholar 
    35.Borrone, J. W. et al. Outcrossing in Florida avocados as measured using microsatellite markers. J. Am. Soc. Hortic. Sci. 133, 255–261 (2008).Article 

    Google Scholar 
    36.Schnell, R. J. et al. Outcrossing between ‘Bacon’ pollinizers and adjacent ‘Hass’ avocado trees and the description of two new lethal mutants. HortScience 44, 1522. https://doi.org/10.21273/hortsci.44.6.1522 (2009).Article 

    Google Scholar 
    37.Degani, C., Goldring, A., Adato, I., El-Batsri, R. & Gazit, S. Pollen parent effect on outcrossing rate, yield, and fruit characteristics of `Fuerte’ avocado. HortScience 25, 471. https://doi.org/10.21273/hortsci.25.4.471 (1990).Article 

    Google Scholar 
    38.Sedgley, M. & Annells, C. M. Flowering and fruit-set response to temperature in the avocado cultivar ‘Hass’. Sci. Hortic. 14, 27–33. https://doi.org/10.1016/0304-4238(81)90075-3 (1981).Article 

    Google Scholar 
    39.Degani, C., El-Batsri, R. & Gazit, S. Outcrossing rate, yield, and selective fruit abscission in “Ettinger” and “Ardith” avocado plots. J. Am. Soc. Hortic. Sci. 122, 813–817 (1997).Article 

    Google Scholar 
    40.Ying, Z. et al. Re-evaluation of the roles of honeybees and wind on pollination in avocado. J. Hortic. Sci. Biotechnol. 84, 255–260. https://doi.org/10.1080/14620316.2009.11512513 (2009).Article 

    Google Scholar 
    41.Sapir, G. et al. Synergistic effects between bumblebees and honey bees in apple orchards increase cross pollination, seed number and fruit size. Sci. Hortic. 219, 107–117. https://doi.org/10.1016/j.scienta.2017.03.010 (2017).Article 

    Google Scholar 
    42.Stern, R., Eisikowitch, D. & Dag, A. Sequential introduction of honeybee colonies and doubling their density increases cross-pollination, fruit-set and yield in ‘Red Delicious’ apple. J. Hortic. Sci. Biotechnol. 76, 17–23. https://doi.org/10.1080/14620316.2001.11511320 (2001).Article 

    Google Scholar 
    43.Kämper, W., Trueman, S. J., Ogbourne, S. M. & Wallace, H. M. Pollination services in macadamia depend on across-orchard transport of cross pollen. J. Appl. Ecol. (under review).44.Robbertse, P. J., Coetzer, L. A., Johannsmeier, M. F., Köhne, J. S. & Morudu, T. M. Hass Yield and Fruit Size as Influenced by Pollination and Pollen Donor—A Joint Progress Report 63–67 (South African Avocado Growers’ Association Yearbook, 1996).
    Google Scholar 
    45.Araújo, E., Costa, M., Chaud-Netto, J. & Fowler, H. G. Body size and flight distance in stingless bees (Hymenoptera: Meliponini): Inference of flight range and possible ecological implications. Braz. J. Biol. 64, 563–568 (2004).Article 

    Google Scholar 
    46.Jalali-Khanabadi, B.-A., Mozaffari-Khosravi, H. & Parsaeyan, N. Effects of almond dietary supplementation on coronary heart disease lipid risk factors and serum lipid oxidation parameters in men with mild hyperlipidemia. J. Altern. Complement. Med. 16, 1279–1283 (2010).Article 

    Google Scholar 
    47.Kaiser, C. & Wolstenholme, B. N. Aspects of delayed harvest of ‘Hass’ avocado (Persea americana Mill.) fruit in a cool subtropical climate. I. Fruit lipid and fatty acid accumulation. J. Hortic. Sci. 69, 437–445. https://doi.org/10.1080/14620316.1994.11516473 (1994).CAS 
    Article 

    Google Scholar 
    48.Smil, V. Phosphorus in the environment: Natural flows and human interferences. Annu. Rev. Environ. Resour. 25, 53–88. https://doi.org/10.1146/annurev.energy.25.1.53 (2000).Article 

    Google Scholar 
    49.Bangerth, F. Calcium-related physiological disorders of plants. Annu. Rev. Phytopathol. 17, 97–122. https://doi.org/10.1146/annurev.py.17.090179.000525 (1979).CAS 
    Article 

    Google Scholar 
    50.Witney, G. W., Hofman, P. J. & Wolstenholme, B. N. Effect of cultivar, tree vigour and fruit position on calcium accumulation in avocado fruits. Sci. Hortic. 44, 269–278. https://doi.org/10.1016/0304-4238(90)90127-Z (1990).CAS 
    Article 

    Google Scholar 
    51.Matoh, T. & Kobayashi, M. Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. J. Plant Res. 111, 179–190 (1998).CAS 
    Article 

    Google Scholar 
    52.Hopkirk, G., White, A., Beever, D. J. & Forbes, S. K. Influence of postharvest temperatures and the rate of fruit ripening on internal postharvest rots and disorders of New Zealand ‘Hass’ avocado fruit. N. Z. J. Crop Hortic. Sci. 22, 305–311. https://doi.org/10.1080/01140671.1994.9513839 (1994).Article 

    Google Scholar 
    53.Meir, S. et al. Prolonged storage of `Hass’ avocado fruit using modified atmosphere packaging. Postharvest Biol. Technol. 12, 51–60. https://doi.org/10.1016/S0925-5214(97)00038-0 (1997).CAS 
    Article 

    Google Scholar 
    54.Flitsanov, U., Mizrach, A., Liberzon, A., Akerman, M. & Zauberman, G. Measurement of avocado softening at various temperatures using ultrasound. Postharvest Biol. Technol. 20, 279–286 (2000).Article 

    Google Scholar 
    55.Hofman, P. J., Bower, J. & Woolf, A. in The Avocado: Botany, Production and Uses. Harvesting, Packing, Postharvest Technology, Transport and Processing (eds. Schaffer, B., Wolstenholme, B. N. & Whiley, A. W.) 489–540 (CABI, 2013).56.McGeehan, S. L. & Naylor, D. V. Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun. Soil Sci. Plant Anal. 19, 493–505. https://doi.org/10.1080/00103628809367953 (1988).CAS 
    Article 

    Google Scholar 
    57.Rayment, G. E. & Higginson, F. R. Australian Laboratory Handbook of Soil and Water Chemical Methods (Inkata, 1992).
    Google Scholar 
    58.Munter, R. C. & Grande, R. A. in Developments in Atomic Plasma Spectrochemical Analysis. Plant Tissue and Soil Extract Analysis by ICP-Atomic Emission Spectrometry (ed. Byrnes, R. M.) 653–672 (Heyden, 1981).59.Martinie, G. D. & Schilt, A. A. Wet oxidation efficiencies of perchloric acid mixtures for various organic substances and the identities of residual matter. Anal. Chem. 48, 70–74. https://doi.org/10.1021/ac60365a032 (1976).CAS 
    Article 

    Google Scholar 
    60.Bai, S. H. et al. Nutritional quality of almond, canarium, cashew and pistachio and their oil photooxidative stability. J. Food Sci. Technol. 56, 792–798. https://doi.org/10.1007/s13197-018-3539-6 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Ivanova, N. V., Fazekas, A. J. & Hebert, P. D. N. Semi-automated, membrane-based protocol for DNA isolation from plants. Plant Mol. Biol. Rep. 26, 186–198 (2008).CAS 
    Article 

    Google Scholar 
    62.Kämper, W., Cooke, J., Trueman, S. J. & Ogbourne, S. M. Detection of single nucleotide polymorphisms (SNPs) in avocado cultivars, Persea americana (Lauraceae). Appl. Plant Sci. (submitted).63.Jordon-Thaden, I. E. et al. A basic ddRADseq two-enzyme protocol performs well with herbarium and silica-dried tissues across four genera. Appl. Plant Sci. 8, e11344–e11344. https://doi.org/10.1002/aps3.11344 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Sharon, D. et al. An integrated genetic linkage map of avocado. Theor. Appl. Genet. 95, 911–921 (1997).CAS 
    Article 

    Google Scholar 
    65.Borrone, J. W., Schnell, R. J., Violi, H. A. & Ploetz, R. C. Seventy microsatellite markers from Persea americana Miller (avocado) expressed sequence tags. Mol. Ecol. Resour. 7, 439–444 (2007).CAS 
    Article 

    Google Scholar 
    66.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2015).
    Google Scholar 
    67.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar  More

  • in

    A novel random forest approach to revealing interactions and controls on chlorophyll concentration and bacterial communities during coastal phytoplankton blooms

    1.Beardall, J. et al. Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytol. https://doi.org/10.1111/j.1469-8137.2008.02660.x (2009).Article 
    PubMed 

    Google Scholar 
    2.Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. https://doi.org/10.4319/lo.2009.54.6_part_2.2283 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Williamson, C. E., Saros, J. E. & Schindler, D. W. Sentinels of change. Science (N. Y.) https://doi.org/10.1126/science.1169443 (2009).Article 

    Google Scholar 
    4.Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science https://doi.org/10.1126/science.281.5374.237 (1998).Article 
    PubMed 

    Google Scholar 
    5.Monier, A. et al. Oceanographic structure drives the assembly processes of microbial eukaryotic communities. ISME J. https://doi.org/10.1038/ismej.2014.197 (2015).Article 
    PubMed 

    Google Scholar 
    6.Paerl, H. W. & Huisman, J. Blooms like it hot. Science (N. Y.) https://doi.org/10.1126/science.1155398 (2008).Article 

    Google Scholar 
    7.Wells, M. L. et al. Harmful algal blooms and climate change: Learning from the past and present to forecast the future. Harmful Algae https://doi.org/10.1016/j.hal.2015.07.009 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Smith, J. et al. A decade and a half of Pseudo-nitzschia spp. and domoic acid along the coast of southern California. Harmful Algae https://doi.org/10.1016/j.hal.2018.07.007 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.McCabe, R. M. et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett. https://doi.org/10.1002/2016GL070023 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Ekstrom, J. A., Moore, S. K. & Klinger, T. Examining harmful algal blooms through a disaster risk management lens: A case study of the 2015 U.S. West Coast domoic acid event. Harmful Algae https://doi.org/10.1016/j.hal.2020.101740 (2020).Article 
    PubMed 

    Google Scholar 
    11.Kudela, R. M. & Chavez, F. P. The impact of coastal runoff on ocean color during an El Niño year in Central California. Deep Sea Res. Part II Topical Stud. Oceanogr. https://doi.org/10.1016/j.dsr2.2004.04.002 (2004).Article 

    Google Scholar 
    12.Kudela, R. M., Lane, J. Q. & Cochlan, W. P. The potential role of anthropogenically derived nitrogen in the growth of harmful algae in California, USA. Harmful Algae https://doi.org/10.1016/j.hal.2008.08.019 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Fischer, A. M., Ryan, J. P., Levesque, C. & Welschmeyer, N. Characterizing estuarine plume discharge into the coastal ocean using fatty acid biomarkers and pigment analysis. Mar. Environ. Res. https://doi.org/10.1016/j.marenvres.2014.04.006 (2014).Article 
    PubMed 

    Google Scholar 
    14.Ryan, J. P. et al. Causality of an extreme harmful algal bloom in Monterey Bay, California, during the 2014–2016 northeast Pacific warm anomaly. Geophys. Res. Lett. https://doi.org/10.1002/2017GL072637 (2017).Article 

    Google Scholar 
    15.Van Meter, K. J., Basu, N. B. & Van Cappellen, P. Two centuries of nitrogen dynamics: Legacy sources and sinks in the Mississippi and Susquehanna River Basins. Global Biogeochem. Cycles https://doi.org/10.1002/2016GB005498 (2017).Article 

    Google Scholar 
    16.Conley, D. J. et al. Ecology – Controlling eutrophication: Nitrogen and phosphorus. Science https://doi.org/10.1126/science.1167755 (2009).Article 
    PubMed 

    Google Scholar 
    17.Sinha, E., Michalak, A. M. & Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science https://doi.org/10.1126/science.aan2409 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Howard, M. D. A. et al. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight. Limnol. Oceanogr. https://doi.org/10.4319/lo.2014.59.1.0285 (2014).Article 

    Google Scholar 
    19.Harvey, E. L. et al. A bacterial quorum-sensing precursor induces mortality in the marine coccolithophore, Emiliania huxleyi. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00059 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Sison-Mangus, M. P., Jiang, S., Tran, K. N. & Kudela, R. M. Host-specific adaptation governs the interaction of the marine diatom, Pseudo-nitzschia and their microbiota. ISME J. https://doi.org/10.1038/ismej.2013.138 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Skerratt, J. H., Bowman, J. P., Hallegraeff, G., James, S. & Nichols, P. D. Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps244001 (2002).Article 

    Google Scholar 
    22.Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature https://doi.org/10.1038/nature14488 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps010257 (1983).Article 

    Google Scholar 
    24.Platt, T. Concepts in biological oceanography: An interdisciplinary primer (P. A. Jumars). Limnol. Oceanogr. https://doi.org/10.4319/lo.1993.38.8.1842 (1993).Article 

    Google Scholar 
    25.Larsson, U. & Hagström, A. Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Mar. Biol. https://doi.org/10.1007/BF00398133 (1979).Article 

    Google Scholar 
    26.Bidle, K. D. & Azam, F. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature https://doi.org/10.1038/17351 (1999).Article 

    Google Scholar 
    27.Ammerman, J. W. & Azam, F. Bacterial 5’-nucleotidase in aquatic ecosystems: A novel mechanism of phosphorus regeneration. Science https://doi.org/10.1126/science.227.4692.1338 (1985).Article 
    PubMed 

    Google Scholar 
    28.Kazamia, E. et al. Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ. Microbiol. https://doi.org/10.1111/j.1462-2920.2012.02733.x (2012).Article 
    PubMed 

    Google Scholar 
    29.Sison-Mangus, M. P., Jiang, S., Kudela, R. M. & Mehic, S. Phytoplankton-associated bacterial community composition and succession during toxic diatom bloom and non-bloom events. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01433 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Anderson, C. R. et al. Scaling up from regional case studies to a global harmful algal bloom observing system. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.250 (2019).Article 

    Google Scholar 
    31.McGillicuddy, D. J. et al. GEOHAB modelling: Linking Observations to Predictions: A Workshop Report (Galway, Ireland, 2011).32.Song, W., Dolan, J. M., Cline, D. & Xiong, G. Learning-based algal bloom event recognition for oceanographic decision support system using remote sensing data. Remote Sens. https://doi.org/10.3390/rs71013564 (2015).Article 

    Google Scholar 
    33.Kwon, Y. S. et al. Developing data-driven models for quantifying Cochlodinium polykrikoides using the geostationary ocean color imager (GOCI). Int. J. Remote Sens. https://doi.org/10.1080/01431161.2017.1381354 (2018).Article 

    Google Scholar 
    34.Asnaghi, V. et al. A novel application of an adaptable modeling approach to the management of toxic microalgal bloom events in coastal areas. Harmful Algae https://doi.org/10.1016/j.hal.2017.02.003 (2017).Article 
    PubMed 

    Google Scholar 
    35.Valbi, E. et al. A model predicting the PSP toxic dinoflagellate Alexandrium minutum occurrence in the coastal waters of the NW Adriatic Sea. Sci. Rep. https://doi.org/10.1038/s41598-019-40664-w (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.El Hourany, R. et al. Phytoplankton diversity in the mediterranean sea from satellite data using self-organizing maps. J. Geophys. Res. Oceans 124, 5827–5843 (2019).Article 
    ADS 

    Google Scholar 
    37.Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).CAS 
    Article 

    Google Scholar 
    38.Ascioti, F. A., Beltrami, E., Carroll, T. O. & Wirick, C. Is there chaos in plankton dynamics?. J. Plankton Res. 15, 603–617 (1993).Article 

    Google Scholar 
    39.Basu, S., Kumbier, K., Brown, J. B. & Yu, B. Iterative random forests to discover predictive and stable high-order interactions. Proc. Natl. Acad. Sci. U.S.A. https://doi.org/10.1073/pnas.1711236115 (2018).Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    40.Breiman, L. Random forests. Mach. Learn. https://doi.org/10.1023/A:1010933404324 (2001).Article 
    MATH 

    Google Scholar 
    41.Witten, I. H., Cunningham, S., Holmes, G., McQueen, R. J. & Smith, L. A. Practical machine learning and its potential application to problems in agriculture. In Proceedings of New Zealand Computer Conference (1993).42.Lee, J. & Sison-Mangus, M. A Bayesian semiparametric regression model for joint analysis of microbiome data. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.00522 (2018).Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    43.Hirsch, R. M., Moyer, D. L. & Archfield, S. A. Weighted regressions on time, discharge, and season (WRTDS), with an application to chesapeake bay river inputs. J. Am. Water Resour. Assoc. https://doi.org/10.1111/j.1752-1688.2010.00482.x (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Shuler, K., Sison-Mangus, M. & Lee, J. Bayesian sparse multivariate regression with asymmetric nonlocal priors for microbiome data analysis. Bayesian Anal. https://doi.org/10.1214/19-ba1164 (2019).Article 
    MATH 

    Google Scholar 
    45.Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science https://doi.org/10.1126/science.1218344 (2012).Article 
    PubMed 

    Google Scholar 
    46.Klindworth, A. et al. Diversity and activity of marine bacterioplankton during a diatom bloom in the North Sea assessed by total RNA and pyrotag sequencing. Mar. Genom. https://doi.org/10.1016/j.margen.2014.08.007 (2014).Article 

    Google Scholar 
    47.Delmont, T. O., Hammar, K. M., Ducklow, H. W., Yager, P. L. & Post, A. F. Phaeocystis antarctica blooms strongly influence bacterial community structures in the Amundsen Sea polynya. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00646 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Delmont, T. O., Murat Eren, A., Vineis, J. H. & Post, A. F. Genome reconstructions indicate the partitioning of ecological functions inside a phytoplankton bloom in the Amundsen Sea, Antarctica. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01090 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Kempnich, M. W. & Sison-Mangus, M. P. Presence and abundance of bacteria with the Type VI secretion system in a coastal environment and in the global oceans. PLoS ONE 15, e0244217 (2020).CAS 
    Article 

    Google Scholar 
    50.Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 8, (2019).51.Palarea-Albaladejo, J. & Martín-Fernández, J. A. ZCompositions – R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 143, 85–96 (2015).CAS 
    Article 

    Google Scholar 
    52.van den Boogaart, K. G. & Tolosana-Delgado, R. ‘compositions’: A unified R package to analyze compositional data. Comput. Geosci. 34, 320–338 (2008).Article 
    ADS 

    Google Scholar 
    53.Heisler, J. et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae https://doi.org/10.1016/j.hal.2008.08.006 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Howarth, R. W. & Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol. Oceanogr. https://doi.org/10.4319/lo.2006.51.1_part_2.0364 (2006).Article 

    Google Scholar 
    55.Hamasaki, K. Variability in toxicity of the dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, Western Japan, as a reflection of changing environmental conditions. J. Plankton Res. https://doi.org/10.1093/plankt/23.3.271 (2001).Article 

    Google Scholar 
    56.Leong, S. C. Y., Murata, A., Nagashima, Y. & Taguchi, S. Variability in toxicity of the dinoflagellate Alexandrium tamarense in response to different nitrogen sources and concentrations. Toxicon https://doi.org/10.1016/j.toxicon.2004.01.015 (2004).Article 
    PubMed 

    Google Scholar 
    57.Howard, M. D. A., Cochlan, W. P., Ladizinsky, N. & Kudela, R. M. Nitrogenous preference of toxigenic Pseudo-nitzschia australis (Bacillariophyceae) from field and laboratory experiments. Harmful Algae https://doi.org/10.1016/j.hal.2006.06.003 (2007).Article 

    Google Scholar 
    58.Lane, J. Q., Raimondi, P. T. & Kudela, R. M. Development of a logistic regression model for the prediction of toxigenic pseudo-nitzschia blooms in monterey bay, California. Mar. Ecol. Progr. Ser. https://doi.org/10.3354/meps07999 (2009).Article 

    Google Scholar 
    59.Lecher, A. L. et al. Nutrient loading through submarine groundwater discharge and phytoplankton growth in Monterey bay, CA. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.5b00909 (2015).Article 
    PubMed 

    Google Scholar 
    60.Bakun, A. Coastal Upwelling Indices, West Coast of North America, 1946–71. (1972).61.Jacox, M. G., Edwards, C. A., Hazen, E. L. & Bograd, S. J. Coastal upwelling revisited: Ekman, Bakun, and improved upwelling indices for the U.S. West coast. J. Geophys. Res. Oceans 123, 7332–7350 (2018).Article 
    ADS 

    Google Scholar 
    62.Sawyer, A. H., David, C. H. & Famiglietti, J. S. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities. Science https://doi.org/10.1126/science.aag1058 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Sawyer, A. H., Michael, H. A. & Schroth, A. W. From soil to sea: The role of groundwater in coastal critical zone processes. Wiley Interdiscip. Rev. Water https://doi.org/10.1002/wat2.1157 (2016).Article 

    Google Scholar 
    64.Garneau, M. È. et al. Examination of the seasonal dynamics of the toxic dinoflagellate Alexandrium catenella at Redondo Beach, California, by quantitative PCR. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.06174-11 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Schiff, K. C., Allen, M. J., Zeng, E. Y. & Bay, S. M. Southern California. Seas Millenn. Environ. Eval. https://doi.org/10.1097/00006205-197605000-00010 (2000).Article 

    Google Scholar 
    66.Nelson, N. G. et al. Revealing biotic and abiotic controls of harmful algal blooms in a shallow subtropical lake through statistical machine learning. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.7b05884 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Pohlner, M. et al. The majority of active Rhodobacteraceae in marine sediments belong to uncultured genera: A molecular approach to link their distribution to environmental conditions. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00659 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Wagner-Döbler, I. & Biebl, H. Environmental biology of the marine roseobacter lineage. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev.micro.60.080805.142115 (2006).Article 
    PubMed 

    Google Scholar 
    69.Elifantz, H., Horn, G., Ayon, M., Cohen, Y. & Minz, D. Rhodobacteraceae are the key members of the microbial community of the initial biofilm formed in Eastern Mediterranean coastal seawater. FEMS Microbiol. Ecol. https://doi.org/10.1111/1574-6941.12122 (2013).Article 
    PubMed 

    Google Scholar 
    70.Needham, D. M. & Fuhrman, J. A. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat. Microbiol. https://doi.org/10.1038/nmicrobiol.2016.5 (2016).Article 
    PubMed 

    Google Scholar 
    71.Williams, T. J. et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ. Microbiol. https://doi.org/10.1111/1462-2920.12017 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Tully, B. J., Sachdeva, R., Heidelberg, K. B. & Heidelberg, J. F. Comparative genomics of planktonic Flavobacteriaceae from the Gulf of Maine using metagenomic data. Microbiome https://doi.org/10.1186/2049-2618-2-34 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Kirchman, D. L. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. https://doi.org/10.1016/S0168-6496(01)00206-9 (2002).Article 
    PubMed 

    Google Scholar 
    74.Pinhassi, J. et al. Changes in bacterioplankton composition under different phytoplankton regimens. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.70.11.6753-6766.2004 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro3326 (2014).Article 
    PubMed 

    Google Scholar 
    76.Zhou, J. et al. Microbial community structure and associations during a marine dinoflagellate bloom. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01201 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Buchan, A., González, J. M. & Moran, M. A. Overview of the marine Roseobacter lineage. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.71.10.5665-5677.2005 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Rajapitamahuni, S., Bachani, P., Sardar, R. K. & Mishra, S. Co-cultivation of siderophore-producing bacteria Idiomarina loihiensis RS14 with Chlorella variabilis ATCC 12198, evaluation of micro-algal growth, lipid, and protein content under iron starvation. J. Appl. Phycol. https://doi.org/10.1007/s10811-018-1591-2 (2019).Article 

    Google Scholar  More

  • in

    Drowning carbon sinks?

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Age estimation using methylation-sensitive high-resolution melting (MS-HRM) in both healthy felines and those with chronic kidney disease

    1.Blomqvist, L. & Sten, I. Reproductive Biology of the Snow Leopard. Panthera Books, London (1982).2.Kirkwood, T. B. & Austad, S. N. Why do we age?. Nature 408, 233–238 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Zhao, M., Klaassen, C. A. J., Lisovski, S. & Klaassen, M. The adequacy of aging techniques in vertebrates for rapid estimation of population mortality rates from age distributions. Ecol. Evol. 9, 1394–1402 (2019).Article 

    Google Scholar 
    4.Oli, M. K. & Dobson, F. S. The relative importance of life-history variables to population growth rate in mammals: Cole’s prediction revisited. Am. Nat. 161, 422–440 (2003).Article 

    Google Scholar 
    5.Mori, A. Analysis of population changes by measurement of body weight in the Koshima troop of Japanese monkeys. Primates 20, 371–397 (1979).Article 

    Google Scholar 
    6.WILkINSON, G. S. & Brunet-Rossinni, A. K. Methods for age estimation and the study of senescence in bats. In Ecological and behavioral methods for the study of bats 315–325 (Johns Hopkins University Press, 2009).
    Google Scholar 
    7.Hartman, K. L., Wittich, A., Cai, J. J., van der Meulen, F. H. & Azevedo, J. M. N. Estimating the age of Risso’s dolphins (Grampus griseus) based on skin appearance. J. Mammal. 97, 490–502 (2016).Article 

    Google Scholar 
    8.Chevallier, C., Gauthier, G. & Berteaux, D. Age estimation of live arctic foxes Vulpes lagopus based on teeth condition. Wildl. Biol. 4, 1–6 (2017).
    Google Scholar 
    9.White, P. A. et al. Age estimation of African lions Panthera leo by ratio of tooth areas. PloS One 11, e0153648 (2016).Article 

    Google Scholar 
    10.Siegal-Willott, J., Isaza, R., Johnson, R. & Blaik, M. Distal limb radiography, ossification, and growth plate closure in the juvenile Asian elephant (Elephas maximus). J. Zoo Wildl. Med. 39, 320–334 (2008).Article 

    Google Scholar 
    11.Paoli-Iseppi, D. et al. Measuring animal age with DNA methylation: From humans to wild animals. Front. Genet. 8, 106 (2017).Article 

    Google Scholar 
    12.Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, 3156 (2013).Article 

    Google Scholar 
    13.Schübeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).ADS 
    Article 

    Google Scholar 
    14.Field, A. E. et al. DNA methylation clocks in aging: Categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).CAS 
    Article 

    Google Scholar 
    15.Weidner, C. I. et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 15, 1–12 (2014).Article 

    Google Scholar 
    16.Bocklandt, S. et al. Epigenetic predictor of age. PloS One 6, e14821 (2011).17.Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960 (2017).CAS 
    Article 

    Google Scholar 
    18.Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 1–14 (2017).Article 

    Google Scholar 
    19.Thompson, M. J., vonHoldt, B., Horvath, S. & Pellegrini, M. An epigenetic aging clock for dogs and wolves. Aging (Albany NY) 9, 1055–1068 (2017).CAS 
    Article 

    Google Scholar 
    20.Lowe, R. et al. Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species. Genome Biol. 19, 22 (2018).Article 

    Google Scholar 
    21.Ito, H., Udono, T., Hirata, S. & Inoue-Murayama, M. Estimation of chimpanzee age based on DNA methylation. Sci. Rep. 8, 1–5 (2018).
    Google Scholar 
    22.Polanowski, A. M., Robbins, J., Chandler, D. & Jarman, S. N. Epigenetic estimation of age in humpback whales. Mol. Ecol. Resour. 14, 976–987 (2014).CAS 
    Article 

    Google Scholar 
    23.Wright, P. G. et al. Application of a novel molecular method to age free-living wild Bechstein’s bats. Mol. Ecol. Resour. 18, 1374–1380 (2018).CAS 
    Article 

    Google Scholar 
    24.Park, K. et al. Determining the age of cats by pulp cavity/tooth width ratio using dental radiography. J. Vet. Sci. 15, 557 (2014).Article 

    Google Scholar 
    25.Yoshimura, H. et al. The relationship between plant-eating and hair evacuation in snow leopards (Panthera uncia). PLOS ONE 15, e0236635 (2020).26.Kinoshita, K. et al. Long-term monitoring of fecal steroid hormones in female snow leopards (Panthera uncia) during pregnancy or pseudopregnancy. PLOS ONE 6, e19314 (2011).27.Li, G., Davis, B. W., Eizirik, E. & Murphy, W. J. Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res. 26, 1–11 (2016).Article 

    Google Scholar 
    28.Marino, C. L., Lascelles, B. D. X., Vaden, S. L., Gruen, M. E. & Marks, S. L. Prevalence and classification of chronic kidney disease in cats randomly selected from four age groups and in cats recruited for degenerative joint disease studies. J. Feline Med. Surg. 16, 465–472 (2014).Article 

    Google Scholar 
    29.Sparkes, A. H. et al. ISFM consensus guidelines on the diagnosis and management of feline chronic kidney disease. J. Feline Med. Surg. 18, 219–239 (2016).Article 

    Google Scholar 
    30.Hamano, Y. et al. Forensic age prediction for dead or living samples by use of methylation-sensitive high resolution melting. Leg. Med. 21, 5–10 (2016).CAS 
    Article 

    Google Scholar 
    31.Hamano, Y., Manabe, S., Morimoto, C., Fujimoto, S. & Tamaki, K. Forensic age prediction for saliva samples using methylation-sensitive high resolution melting: exploratory application for cigarette butts. Sci. Rep. 7, 10444 (2017).ADS 
    Article 

    Google Scholar 
    32.Bekaert, B., Kamalandua, A., Zapico, S. C., Van de Voorde, W. & Decorte, R. Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics 10, 922–930 (2015).Article 

    Google Scholar 
    33.Hussmann, D. & Hansen, L. L. Methylation-sensitive high resolution melting (MS-HRM). In DNA Methylation Protocols (ed. Tost, J.) vol. 1708, pp. 551–571 (Springer New York, 2018).34.Wojdacz, T. K. & Dobrovic, A. Methylation-sensitive high resolution melting (MS-HRM): A new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res. 35, e41 (2007).35.Mawlood, S. K., Dennany, L., Watson, N. & Pickard, B. S. The EpiTect methyl qPCR assay as novel age estimation method in forensic biology. Forens. Sci. Int. 264, 132–138 (2016).CAS 
    Article 

    Google Scholar 
    36.Migheli, F. et al. Comparison study of MS-HRM and pyrosequencing techniques for quantification of APC and CDKN2A gene methylation. PLOS ONE 8, e52501 (2013).37.Xiao, Z. et al. Validation of methylation-sensitive high-resolution melting (MS-HRM) for the detection of stool DNA methylation in colorectal neoplasms. Clin. Chim. Acta 431, 154–163 (2014).CAS 
    Article 

    Google Scholar 
    38.Šestáková, Š, Šálek, C. & Remešová, H. DNA methylation validation methods: A coherent review with practical comparison. Biol. Proc. Online 21, 19 (2019).Article 

    Google Scholar 
    39.Fleming, P. A., Crawford, H. M., Auckland, C. & Calver, M. C. Nine ways to score nine lives—Identifying appropriate methods to age domestic cats (Felis catus). J. Zool.40.Smyth, L. J., McKay, G. J., Maxwell, A. P. & McKnight, A. J. DNA hypermethylation and DNA hypomethylation is present at different loci in chronic kidney disease. Epigenetics 9, 366–376 (2014).CAS 
    Article 

    Google Scholar 
    41.Chen, J. et al. Elevated Klotho promoter methylation is associated with severity of chronic kidney disease. PloS One 8, e79856 (2013).42.White, J. D., Norris, J. M., Baral, R. M. & Malik, R. Naturally-occurring chronic renal disease in Australian cats: A prospective study of 184 cases. Aust. Vet. J. 84, 188–194 (2006).CAS 
    Article 

    Google Scholar 
    43.Snow Leopard Trust. Snow leopard facts/life cycle. Snow Leopard Trust http://snowleopard.org/snow-leopard-facts/life-cycle/.44.Dhingra, R., Nwanaji-Enwerem, J. C., Samet, M. & Ward-Caviness, C. K. DNA methylation age—Environmental influences, health impacts, and its role in environmental epidemiology. Curr. Environ. Health Rep. 5, 317–327 (2018).CAS 
    Article 

    Google Scholar 
    45.Lea, A. J., Altmann, J., Alberts, S. C. & Tung, J. Resource base influences genome-wide DNA methylation levels in wild baboons (Papio cynocephalus). Mol. Ecol. 25, 1681–1696 (2016).CAS 
    Article 

    Google Scholar 
    46.IRIS. IRIS Kidney—Guidelines—IRIS Staging of CKD. http://www.iris-kidney.com/guidelines/staging.html (2019).47.Spiers, H. et al. Age-associated changes in DNA methylation across multiple tissues in an inbred mouse model. Mech. Ageing Dev. 154, 20–23 (2016).CAS 
    Article 

    Google Scholar 
    48.Vignettes, C.-B. Proceedings from the 2015 Annual Meeting of the American College of Physicians, Wisconsin Chapter. WMJ (2015).49.Zhang, X. et al. Genome-wide analysis of cell-free DNA methylation profiling with MeDIP-Seq identified potential biomarkers for colorectal cancer (2021).50.MD, B., US, N. L. of M. & US, N. C. for B. I. National Center for Biotechnology Information (NCBI). https://www.ncbi.nlm.nih.gov/.51.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    Article 

    Google Scholar 
    52.Xu, C. et al. A novel strategy for forensic age prediction by DNA methylation and support vector regression model. Sci. Rep. 5, 17788 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Chang, C.-C. & Lin, C.-J. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2, 1–27 (2011).Article 

    Google Scholar 
    54.Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Coordination of root auxin with the fungus Piriformospora indica and bacterium Bacillus cereus enhances rice rhizosheath formation under soil drying

    1.Fageria N. Yield physiology of rice. J Plant Nutr. 2007;30:843–79.CAS 

    Google Scholar 
    2.Wang Z, Zhang W, Beebout S, Zhang H, Liu L, Yang J, et al. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res. 2016;193:54–69.
    Google Scholar 
    3.Zhang H, Xue Y, Wang Z, Yang J, Zhang J. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci. 2009;49:2246–60.
    Google Scholar 
    4.Bouman B, Tuong T. Field water management to save water and increase its productivity in irrigated lowland rice. Agr Water Manag. 2001;49:11–30.
    Google Scholar 
    5.Harrison M, Tardieu F, Dong Z, Messina C, Hammer G. Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob Change Biol. 2014;20:867–78.
    Google Scholar 
    6.Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016;529:84–87.CAS 
    PubMed 

    Google Scholar 
    7.Thorup-Kristensen K, Kirkegaard J. Root system-based limits to agricultural productivity and efficiency: the farming systems context. Ann Bot. 2016;118:573–92.PubMed 
    PubMed Central 

    Google Scholar 
    8.Yao F, Huang J, Cui K, Nie L, Xiang J, Liu X, et al. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Res. 2012;126:16–22.
    Google Scholar 
    9.Danin A. Plant adaptations to environmental stresses in desert dunes. In: Danin A (ed). Plants of desert dunes. (Springer, Berlin, 1996), pp 133–152.10.Pang J, Ryan M, Siddique K, Simpson R. Unwrapping the rhizosheath. Plant Soil. 2017;418:129–39.CAS 

    Google Scholar 
    11.Marasco R, Mosqueira M, Fusi M, Ramond J, Merlino G, Booth J, et al. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome. 2018;6:215.PubMed 
    PubMed Central 

    Google Scholar 
    12.Zhang Y, Du H, Gui Y, Xu F, Liu J, Zhang J, et al. Moderate water stress induces rice rhizosheath formation associated with ABA and auxin responses. J Exp Bot. 2020;71:2740–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Duell R, Peacock G. Rhizosheaths on mesophytic grasses. Crop Sci. 1985;25:880–3.
    Google Scholar 
    14.Ndour P, Gueye M, Barakat M, Ortet P, Bertrand-Huleux M, Pablo A, et al. Pearl millet genetic traits shape rhizobacterial diversity and modulate rhizosphere aggregation. Front Plant Sci. 2017;8:1288.PubMed 
    PubMed Central 

    Google Scholar 
    15.Philippot L, Raaijmakers J, Lemanceau P, van der Putten W. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013;11:789–99.CAS 
    PubMed 

    Google Scholar 
    16.Ndour P, Heulin T, Achouak W, Laplaze L, Cournac L. The rhizosheath: from desert plants adaptation to crop breeding. Plant Soil. 2020;456:1–13.CAS 

    Google Scholar 
    17.George T, Brown L, Ramsay L, White P, Newton A, Bengough A, et al. Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). N Phytol. 2014;203:195–205.CAS 

    Google Scholar 
    18.Zhang Y, Du H, Xu F, Ding Y, Gui Y, Zhang J, et al. Root-bacterial associations boost rhizosheath formation in moderately dry soil through ethylene responses. Plant Physiol. 2020;183:780–92.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Basirat M, Mousavi S, Abbaszadeh S, Ebrahimi M, Zarebanadkouki M. The rhizosheath: a potential root trait helping plants to tolerate drought stress. Plant Soil. 2019;445:565–75.CAS 

    Google Scholar 
    20.Othman A, Amer W, Fayez M, Hegazi N. Rhizosheath of sinai desert plants is a potential repository for associative diazotrophs. Microbiol Res. 2004;159:285–93.PubMed 

    Google Scholar 
    21.Haling R, Richardson A, Culvenor R, Lambers H, Simpson R. Root morphology, root-hair development and rhizosheath formation on perennial grass seedlings is influenced by soil acidity. Plant Soil. 2010;335:457–68.CAS 

    Google Scholar 
    22.Delhaize E, James R, Ryan P. Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil. N Phytol.2012;195:609–19.CAS 

    Google Scholar 
    23.Liu T, Ye N, Song T, Cao Y, Gao B, Zhang D, et al. Rhizosheath formation and involvement in foxtail millet (Setaria italica) root growth under drought stress. J Integr Plant Biol. 2019;61:449–62.PubMed 

    Google Scholar 
    24.Liu T, Chen M, Zhang Y, Zhu F, Liu Y, Tian Y, et al. Comparative metabolite profiling of two switchgrass ecotypes reveals differences in drought stress responses and rhizosheath weight. Planta. 2019;250:1355–69.CAS 
    PubMed 

    Google Scholar 
    25.Brown L, George T, Neugebauer K, White P. The rhizosheath–a potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant Soil. 2017;418:115–28.CAS 

    Google Scholar 
    26.Sirrenberg A, Göbel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, et al. Piriformospora indica affects plant growth by auxin production. Physiol Plant. 2007;131:581–9.CAS 
    PubMed 

    Google Scholar 
    27.Weiβ M, Waller F, Zuccaro A, Selosse M. Sebacinales-one thousand and one interactions with land plants. N Phytol. 2016;211:20–40.
    Google Scholar 
    28.Vadassery J, Ranf S, Drzewiecki C, Mithoer A, Mazars C, Scheel D, et al. A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J. 2009;59:193–206.CAS 
    PubMed 

    Google Scholar 
    29.Lee Y, Johnson J, Chien C, Sun C, Cai D, Lou B, et al. Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol Plant Microbe Interact. 2011;24:421–31.CAS 
    PubMed 

    Google Scholar 
    30.Dong S, Tian Z, Chen P, Senthil Kumar R, Shen C, Cai D, et al. The maturation zone is an important target of Piriformospora indica in Chinese cabbage roots. J Exp Bot. 2013;64:4529–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Rani M, Raj S, Dayaman V, Kumar M, Dua M, Johri A. Functional characterization of a hexose transporter from root endophyte Piriformospora indica. Front Microbiol. 2016;7:1083.PubMed 
    PubMed Central 

    Google Scholar 
    32.Prasad D, Verma N, Bakshi M, Narayan O, Singh A, Dua M, et al. Functional characterization of a magnesium transporter of root endophytic fungus Piriformospora indica. Front Microbiol. 2018;9:3231.PubMed 

    Google Scholar 
    33.Narayan O, Verma N, Jogawat A, Dua M, Johri A. Sulfur transfer from the endophytic fungus Serendipita indica improves maize growth and requires the sulfate transporter SiSulT. Plant Cell. 2021;33:1268–85.PubMed 

    Google Scholar 
    34.Baltruschat H, Fodor J, Harrach B, Niemcayk E, Barna B, Gullner G, et al. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. N Phytol. 2008;180:501–10.CAS 

    Google Scholar 
    35.Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, et al. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav. 2013;8:e26891.PubMed Central 

    Google Scholar 
    36.Fakhro A, Andrade-Linares D, von Bargen S, Bandte M, Buttner C, Grosch R. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza. 2010;20:191–200.PubMed 

    Google Scholar 
    37.Sarma M, Kumar V, Saharan K, Srivastava R, Sharma A, Prakash A, et al. Application of inorganic carrier-based formulations of fluorescent pseudomonads and Piriformospora indica on tomato plants and evaluation of their efficacy. J Appl Microbiol. 2011;111:456–66.CAS 
    PubMed 

    Google Scholar 
    38.Sun C, Shao Y, Vahabi K, Lu J, Bhattacharya S, Dong S, et al. The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliae infection by downregulation plant defense responses. BMC Plant Biol. 2014;14:268.PubMed 
    PubMed Central 

    Google Scholar 
    39.Abdelaziz M, Abdelsattar M, Abdeldaym E, Atia M, Mahmoud A, Saad M, et al. Piformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress. Sci Hortic. 2019;256:108532.CAS 

    Google Scholar 
    40.Zhang W, Wang J, Xu L, Wang A, Huang L, Du H, et al. Drought stress responses in maize are diminished by Piriformospora indica. Plant Signal Behav. 2017;13:e1414121.PubMed 
    PubMed Central 

    Google Scholar 
    41.Pion M, Spangenberg J, Simon A, Bindschedler S, Flury C, Chatelain A, et al. Bacterial farming by the fungus Morchella crassipes. Proc R Soc B. 2013;280:20132242.PubMed 
    PubMed Central 

    Google Scholar 
    42.Guhr A, Borken W, Spohn M, Matzner E. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. Proc Natl Acad Sci USA. 2015;112:14647–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Warmink J, Nazir R, van Elsas J. Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ Microbiol. 2009;11:300–12.CAS 
    PubMed 

    Google Scholar 
    44.Nazir R, Warmink J, Boersma H, van Elsas J. Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol. 2010;71:169–85.CAS 
    PubMed 

    Google Scholar 
    45.Wang L, Guo M, Li Y, Ruan W, Mo X, Wu Z, et al. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. J Exp Bot. 2018;69:385–97.CAS 
    PubMed 

    Google Scholar 
    46.Bütehorn B, Rhody D, Franken P. Isolation and characterization of Pitef1 encoding the translation elongation factor EF-1α of the root endophyte Piriformospora indica. Plant Biol. 2008;2:687–92.
    Google Scholar 
    47.Haling R, Brown L, Bengough A, Young I, Hallett P, White P, et al. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength. J Exp Bot. 2013;64:3711–21.CAS 
    PubMed 

    Google Scholar 
    48.Hou M, Luo F, Wu D, Zhang X, Lou M, Shen D, et al. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. N Phytol 2021;229:935–49.CAS 

    Google Scholar 
    49.Yuan J, Ruan Y, Wang B, Zhang J, Waseem R, Huang Q, et al. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants. J Agr Food Chem. 2013;61:3774–80.CAS 

    Google Scholar 
    50.Xu F, Wang K, Yuan W, Xu W, Liu S, Kronzucker H, et al. Overexpression of aquaporin OsPIP1;2 in rice improves yield by enhancing mesophyll CO2 conductance and phloem sucrose transport. J Exp Bot. 2019;70:671–81.CAS 
    PubMed 

    Google Scholar 
    51.Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488:91–95.CAS 
    PubMed 

    Google Scholar 
    52.Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One. 2012;7:e48479.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Bodenhausen N, Horton M, Bergelson J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One. 2013;8:e56329.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Schlaeppi K, Dombrowski N, Oter R, Themaat E, Schulze-Lefert P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci USA. 2014;111:585–92.CAS 
    PubMed 

    Google Scholar 
    55.Han Q, Ma Q, Chen Y, Tian B, Xu L, Bai Y, et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 2020;14:1915–28.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.PubMed 
    PubMed Central 

    Google Scholar 
    57.Edgar R. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 

    Google Scholar 
    58.Edgar R. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 

    Google Scholar 
    59.Wang Q, Garrity G, Tiedje J, Cole J. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb. 2007;73:5261–7.CAS 

    Google Scholar 
    60.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.PubMed 

    Google Scholar 
    61.Schloss P, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb. 2009;75:7537–41.CAS 

    Google Scholar 
    62.Wang B, Yuan J, Zhang J, Shen Z, Zhang M, Li R, et al. Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biol Fertil Soils. 2013;49:435–46.
    Google Scholar 
    63.Turner J, Backman P. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 1991;75:347–53.
    Google Scholar 
    64.Wei Z, Gu Y, Friman V, Kowalchuk G, Xu Y, Shen Q, et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv. 2019;5:eaaw0759.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Zhang W, Li X, Sun K, Tang M, Xu F, Zhang M, et al. Mycelial network-mediated rhizobial dispersal enhances legume nodulation. ISME J. 2020;14:1015–29.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Mela F, Fritsche K, de Boer W, van Veen J, de Graaff L, van den Berg M, et al. Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. ISME J. 2011;5:1494–504.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Berendsen R, Vismans G, Yu K, Song Y, de Jonge R, Burgman W, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Zhang J, Liu Y, Zhang N, Hu B, Jin T, Xu H, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol. 2019;37:676–84.CAS 
    PubMed 

    Google Scholar 
    69.Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA. 2005;102:13386–91.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Chen T, Nomura K, Wang X, Sohrabi R, Xu J, Yao L, et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature. 2020;580:653–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis M, et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol. 2015;17:316–31.PubMed 

    Google Scholar 
    72.Preece C, Peñuelas J. Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant Soil. 2016;409:1–17.CAS 

    Google Scholar 
    73.Bezzate S, Aymerich S, Chambert R, Czarnes S, Berge O, Heulin T. Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol. 2000;2:333–42.CAS 
    PubMed 

    Google Scholar 
    74.Alami Y, Achouak W, Marol C, Heulin T. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol. 2000;66:3393–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Berge O, Lodhi A, Brandelet G, Santaella C, Roncato M, Christen R, et al. Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol. 2009;59:367–72.CAS 
    PubMed 

    Google Scholar 
    76.Moreno-Espíndola I, Rivera-Becerril F, de Jesús F-GM, De León-González F. Role of root-hairs and hyphae in adhesion of sand particles. Soil Biol Biochem. 2007;39:2520–6.
    Google Scholar 
    77.Watt M, Mccully M, Canny M. Formation and stabilization of rhizosheaths of Zea mays L. (effect of soil water content). Plant Physiol. 1994;106:179–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Schafer P, Pfiffi S, Voll L, Zajic D, Chandler P, Waller F, et al. Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J. 2009;59:461–74.PubMed 

    Google Scholar 
    79.Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, et al. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. N Phytol. 2013;197:139–50.CAS 

    Google Scholar 
    80.Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet. 2013;45:1097–102.CAS 
    PubMed 

    Google Scholar 
    81.Luschnig C, Gaxiola R, Grisafi P, Fink G. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 1998;12:2175–87.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, et al. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 1998;17:6903–11.PubMed 
    PubMed Central 

    Google Scholar 
    83.de Boer W, Folman R, Summerbell R, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005;29:795–811.PubMed 

    Google Scholar 
    84.Hogan D, Kolter R. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science. 2002;296:2229–32.CAS 
    PubMed 

    Google Scholar 
    85.Ravnskov S, Nybroe O, Jakobsen I. Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. N Phytol. 1999;142:113–22.
    Google Scholar 
    86.Torsvik V, Øvreas L, Thingstad T. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science. 2002;296:1064–6.CAS 
    PubMed 

    Google Scholar 
    87.Wamberg C, Christensen S, Jakobsen I, Müller A, Sørensen S. The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem. 2003;35:1349–57.CAS 

    Google Scholar 
    88.van Hees P, Rosling A, Essen S, Godbold D, Jones D, Finlay R. Oxalate and ferricrocin exudation by the extrametrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. N Phytol. 2006;169:367–78.
    Google Scholar  More

  • in

    Retrieving zinc concentrations in topsoil with reflectance spectroscopy at Opencast Coal Mine sites

    1.Jiang, X., Lu, W. X., Zhao, H. Q., Yang, Q. C. & Yang, Z. P. Potential ecological risk assessment and prediction of soil heavy-metals pollution around coal gangue dump. Nat. Hazard. Earth Syst. 2, 1977–2010 (2014).
    Google Scholar 
    2.Wang, Q. & Li, R. Decline in China’s coal consumption: An evidence of peak coal or a temporary blip?. Energ. Policy 108, 696–701 (2017).Article 

    Google Scholar 
    3.Li, W. et al. Addressing the Co2 emissions of the world’s largest coal producer and consumer: Lessons from the Haishiwan coalfield, China. Energy 80, 400–413 (2015).Article 

    Google Scholar 
    4.Luo, P. et al. Water quality trend assessment in Jakarta: A rapidly growing Asian megacity. Plos One 14, e219009 (2019).
    Google Scholar 
    5.Luo, P. et al. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep. Uk. 8, 12623 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    6.Guo, B. et al. Determining the effects of socioeconomic and environmental determinants on chronic obstructive pulmonary disease (Copd) mortality using geographically and temporally weighted regression model across Xi’an During 2014–2016. Sci. Total Environ. 756, 143869 (2021).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Pei, L., Wang, X., Guo, B., Guo, H. & Yu, Y. Do air pollutants as well as meteorological factors impact corona virus disease 2019 (Covid-19)? Evidence from China based on the geographical perspective. Environ. Sci. Pollut. R. 28, 35584–35596 (2021).CAS 
    Article 

    Google Scholar 
    8.Chen, T., Chang, Q., Liu, J., Clevers, J. G. P. W. & Kooistra, L. Identification of soil heavy metals sources and improvement in spatial mapping based on soil spectral information: A Case Study in Northwest China. Sci. Total Environ. 565, 155–164 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Li, Z., Ma, Z., Kuijp, T. J. V. D., Yuan, Z. & Huang, L. A review of soil heavy metals pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 468, 843–853 (2014).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    10.Wang, L. et al. A comprehensive mitigation strategy for heavy metals contamination of farmland around mining areas—screening of low accumulated cultivars, soil remediation and risk assessment. Environ. Pollut. 245, 820–828 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Siddiqui, A. U., Jain, M. K. & Masto, R. E. Pollution evaluation, spatial distribution, and source apportionment of trace metals around coal mines soil: The Case Study of Eastern India. Environ. Sci. Pollut. R. 27, 10822–10834 (2020).Article 
    CAS 

    Google Scholar 
    12.Guo, D., Bai, Z., Shangguan, T., Shao, H. & Qiu, W. Impacts of coal mining on the aboveground vegetation and soil quality: A case study of Qinxin Coal Mine in Shanxi Province, China. Clean Soil Air Water. 39, 219–225 (2011).CAS 
    Article 

    Google Scholar 
    13.Woodworth, M. D. Frontier Boomtown Urbanism in Ordos, Inner Mongolia Autonomous Region. Cross Curr. East Asian Hist. Cult. Rev. 1, 74–101 (2012).
    Google Scholar 
    14.Zeng, X., Liu, Z., He, C., Ma, Q. & Wu, J. Quantifying Surface coal-mining patterns to promote regional sustainability in Ordos, Inner Mongolia. Sustain. Basel. 10, 1135 (2018).Article 

    Google Scholar 
    15.Bu, Q. et al. Concentrations, spatial distributions, and sources of heavy metals in surface soils of the Coal Mining City Wuhai, China. J. Chem. Ny. 2020, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    16.Hou, L., Li, X. & Li, F. Hyperspectral-based inversion of heavy metals content in the soil of coal mining areas. J. Environ. Qual. 48, 57–63 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Liu, X., Bai, Z., Zhou, W., Cao, Y. & Zhang, G. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the loess plateau, China. Ecol. Eng. 98, 228–239 (2017).Article 

    Google Scholar 
    18.Liu, X., Shi, H., Bai, Z., Zhou, W. & He, Y. Heavy metals concentrations of soils near the large opencast coal mine pits in China. Chemosphere. 244, 125360 (2019).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    19.Gabriel, et al. Amending potential of organic and industrial by-products applied to heavy metals-rich mining soils. Ecotox. Environ. Safe. 162, 581–590 (2018).Article 
    CAS 

    Google Scholar 
    20.Zhai, X. et al. Remediation of multiple heavy metals-contaminated soil through the combination of soil washing and in situ immobilization. Sci. Total Environ. 635, 92–99 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Wang, F., Gao, J. & Zha, Y. Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS J. Photogramm. 136, 73–84 (2018).Article 

    Google Scholar 
    22.Shi, T., Chen, Y., Liu, Y. & Wu, G. Visible and near-infrared reflectance spectroscopy—an alternative for monitoring soil contamination by heavy metals. J. Hazard. Mater. 265, 166–176 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Zou, B., Jiang, X., Feng, H., Tu, Y. & Tao, C. Multisource spectral-integrated estimation of cadmium concentrations in soil using a direct standardization and spiking algorithm. Sci. Total Environ. 701, 134890 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Guan, Q. et al. Source apportionment of heavy metals in agricultural soil based on Pmf: A case study in Hexi Corridor, Northwest China. Chemosphere 193, 189–197 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    25.Horta, A. et al. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. Geoderma 241, 180–209 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    26.Saqib, et al. Efficiency and surface characterization of different plant derived biochar for cadmium (Cd) mobility, bioaccessibility and bioavailability to Chinese cabbage in highly contaminated soil. Chemosphere 211, 632–639 (2018).Article 
    CAS 

    Google Scholar 
    27.Wei, L. et al. An improved gradient boosting regression tree estimation model for soil heavy metals (arsenic) pollution monitoring using hyperspectral remote sensing. Appl. Sci. Basel. 9, 1943 (2019).CAS 
    Article 

    Google Scholar 
    28.Ngole-Jeme, V. M. Heavy metals in soils along unpaved roads in south west Cameroon: Contamination levels and health risks. Ambio 3, 374–386 (2016).Article 
    CAS 

    Google Scholar 
    29.Huang, Y. et al. Heavy metals pollution and health risk assessment of agricultural soils in a typical Peri-Urban area in Southeast China. J. Environ. Manage. 207, 159–168 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Bruce, P. et al. Low-level lead exposure and mortality in Us adults: A population-based cohort study. Lancet Public Health. 3, 177–184 (2018).Article 

    Google Scholar 
    31.Harari, F. et al. Blood lead levels and decreased kidney function in a population-based cohort. Am. J. Kidney Dis. 72, 381–389 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Sun, W., Zhang, X., Sun, X., Sun, Y. & Cen, Y. Predicting Nickel concentration in soil using reflectance spectroscopy associated with organic matter and clay minerals. Geoderma 327, 25–35 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Guan, Q. et al. Prediction of heavy metals in soils of an arid area based on multi-spectral data. J. Environ. Manag. 243, 137–143 (2019).CAS 
    Article 

    Google Scholar 
    34.Lin, X. et al. Geographically weighted regression effects on soil zinc content hyperspectral modeling by applying the fractional-order differential. Remote Sens. Basel. 11, 636 (2019).ADS 
    Article 

    Google Scholar 
    35.Leenaers, H., Okx, J. P. & Burrough, P. A. Employing elevation data for efficient mapping of soil pollution on floodplains. Soil Use Manag. 6, 105–114 (2010).Article 

    Google Scholar 
    36.De Jesus, A., Zmozinski, A. V., Damin, I. C. F., Silva, M. M. & Vale, M. G. R. Determination of arsenic and cadmium in crude oil by direct sampling graphite furnace atomic absorption spectrometry. Spectrochim. Acta B 71, 86–91 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    37.Zhang, X., Sun, W., Cen, Y., Zhang, L. & Wang, N. Predicting cadmium concentration in soils using laboratory and field reflectance spectroscopy. Sci. Total Environ. 650, 321–334 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Harun, C., Mursit, T. M. & Esen, C. Simultaneous preconcentration and determination of Ni and Pb in water samples by solid-phase extraction and flame atomic absorption spectrometry. J. Aoac Int. 96, 875–879 (2013).Article 
    CAS 

    Google Scholar 
    39.Gholizadeh, A., Saberioon, M., Ben-Dor, E. & Borůvka, L. Monitoring of selected soil contaminants using proximal and remote sensing techniques: background, state-of-the-art and future perspectives. Crit. Rev. Env. Sci. Technol. 48, 243–278 (2018).CAS 
    Article 

    Google Scholar 
    40.Wei, L., Yuan, Z., Yu, M., Huang, C. & Cao, L. Estimation of arsenic content in soil based on laboratory and field reflectance spectroscopy. Sensors-Basel. 19, 3904 (2019).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    41.Chen, T., Chang, Q., Clevers, J. G. P. W. & Kooistra, L. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy. Environ. Pollut. 206, 217–226 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Liu, G. et al. Partitioning and geochemical fractions of heavy metals from geogenic and anthropogenic sources in various soil particle size fractions. Geoderma 312, 104–113 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    43.Meng, X. et al. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. 89, 102111 (2020).Article 

    Google Scholar 
    44.Hong, Y. et al. Exploring the potential of airborne hyperspectral image for estimating topsoil organic carbon: Effects of fractional-order derivative and optimal band combination algorithm. Geoderma. 365, 114228 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Hong, Y. et al. Estimating lead and zinc concentrations in Peri-Urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest. Sci. Total Environ. 651, 1969–1982 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Wang, J. et al. Prediction of low heavy metals concentrations in agricultural soils using visible and near-infrared reflectance spectroscopy. Geoderma 216, 1–9 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    47.Jiang, Q., Liu, M., Wang, J. & Liu, F. Feasibility of using visible and near-infrared reflectance spectroscopy to monitor heavy metals contaminants in Urban lake sediment. CATENA 162, 72–79 (2018).CAS 
    Article 

    Google Scholar 
    48.Khosravi, V., Doulati Ardejani, F., Yousefi, S. & Aryafar, A. Monitoring soil lead and zinc contents via combination of spectroscopy with extreme learning machine and other data mining methods. Geoderma 318, 29–41 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Cheng, H. et al. Estimating heavy metals concentrations in suburban soils with reflectance spectroscopy. Geoderma 336, 59–67 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Zhang, S. et al. Hyperspectral inversion of heavy metals content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods. Spectrochim. Acta A 211, 393–400 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Gholizadeh, A., Saberioon, M., Carmon, N., Boruvka, L. & Ben-Dor, E. Examining the performance of Paracuda-Ii data-mining engine versus selected techniques to model soil carbon from reflectance spectra. Remote Sens.-Basel. 10, 1172 (2018).ADS 
    Article 

    Google Scholar 
    52.Tian, S. et al. Hyperspectral prediction model of metals content in soil based on the genetic ant colony algorithm. Sustainability-Basel. 11, 3197 (2019).CAS 
    Article 

    Google Scholar 
    53.Xu, S., Zhao, Y., Wang, M. & Shi, X. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–Nir spectroscopy. Geoderma 310, 29–43 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    54.Tao, C. et al. A transferable spectroscopic diagnosis model for predicting arsenic contamination in soil. Sci. Total Environ. 669, 964–972 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Lu, Q. et al. Rapid inversion of heavy metals concentration in Karst grain producing areas based on hyperspectral bands associated with soil components. Microchem. J. 148, 404–411 (2019).CAS 
    Article 

    Google Scholar 
    56.Tan, K. et al. Estimation of the spatial distribution of heavy metals in agricultural soils using airborne hyperspectral imaging and random forest. J. Hazard. Mater. 382, 120987 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Chen, S. et al. Fine resolution map of top- and subsoil carbon sequestration potential in France. Sci. Total Environ. 630, 389–400 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Tan, K. et al. Estimating the distribution trend of soil heavy metals in mining area from hymap airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 401, 123288 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Mao, X., Meng, J. & Xiang, Y. Cellular automata-based model for developing land use ecological security patterns in semi-arid areas: A case study of Ordos, Inner Mongolia, China. Environ. Earth Sci. 70, 269–279 (2013).Article 

    Google Scholar 
    60.Ramirez-Lopez, L. et al. Sampling optimal calibration sets in soil infrared spectroscopy. Geoderma 226, 140–150 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    61.Liu, W., Zhao, J., Ouyang, Z., Söderlund, L. & Liu, G. Impacts of sewage irrigation on heavy metals distribution and contamination in Beijing, China. Environ. Int. 31, 805–812 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Keshavarzi, A. & Kumar, V. Ecological risk assessment and source apportionment of heavy metals contamination in agricultural soils of Northeastern Iran. Int. J. Environ. Heal. R. 29, 544–560 (2018).Article 
    CAS 

    Google Scholar 
    63.Salminen, R. et al. Geochemical mapping field manual, Espoo, Finland Geological Survey of Finland. Geol. Surv. Den. Greenl. 38, 1–20 (1998).
    Google Scholar 
    64.Sun, W., Skidmore, A. K., Wang, T. & Zhang, X. Heavy metals pollution at mine sites estimated from reflectance spectroscopy following correction for skewed data. Environ. Pollut. 252, 1117–1124 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Guo, B. et al. Ecological risk evaluation and source apportionment of heavy metals in park playgrounds: A case study in Xi’an, Shaanxi Province, a Northwest City of China. Environ. Sci. Pollut. R. 27, 24400–24412 (2020).CAS 
    Article 

    Google Scholar 
    66.Guo, B. et al. Contamination, Distribution and health riskassessment of risk elements in topsoil foramusement parks in Xi’an, China. Pol. J. Environ. Stud. 30, 601–617 (2021).CAS 
    Article 

    Google Scholar 
    67.Hong, Y. et al. Comparing laboratory and airborne hyperspectral data for the estimation and mapping of topsoil organic carbon: Feature selection coupled with random forest. Soil Tillage Res. 199, 104589 (2020).Article 

    Google Scholar 
    68.Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010).Article 

    Google Scholar 
    69.Rudnicki, W. R., Wrzesien, M. & Paja, W. All relevant feature selection methods and applications. Comput. Intell.Us. 584, 11–28 (2015).MathSciNet 

    Google Scholar 
    70.Liu, Z. et al. Estimation of soil heavy metals content using hyperspectral data. Remote Sens. Basel. 11, 1464 (2019).ADS 
    Article 

    Google Scholar 
    71.Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B. & Roger, J. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by Nir spectroscopy. Trac. Trend. Anal. Chem. 29, 1073–1081 (2010).CAS 
    Article 

    Google Scholar 
    72.Wold, S., Martens, H. & Wold, H. The multivariate calibration problem in chemistry solved by the PLS method. Lect. Notes Math. 973, 286–293 (1983).MATH 
    Article 

    Google Scholar 
    73.Shi, T., Wang, J., Chen, Y. & Wu, G. Improving the prediction of arsenic contents in agricultural soils by combining the reflectance spectroscopy of soils and rice plants. Int. J. Appl. Earth Obs. 52, 95–103 (2016).Article 

    Google Scholar 
    74.Dotto, A. C., Dalmolin, R. S. D., Caten, A. T. & Grunwald, S. A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis–Nir spectra. Geoderma 314, 262–274 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    75.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 
    Article 

    Google Scholar 
    76.Douglas, R. K. et al. Evaluation of Vis–Nir reflectance spectroscopy sensitivity to weathering for enhanced assessment of oil contaminated soils. Sci. Total Environ. 626, 1108–1120 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Guo, B. et al. Estimating socio-economic parameters via machine learning methods using Luojia1-01 Nighttime Light remotely sensed images at multiple scales of China in 2018. IEEE Access. 9, 34352–34365 (2021).Article 

    Google Scholar 
    78.Tan, K., Ma, W., Wu, F. & Du, Q. Random forest-based estimation of heavy metals concentration in agricultural soils with hyperspectral sensor data. Environ. Monit. Assess. 191, 446 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Guo, B. et al. Estimating Pm2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017. Sci. Total Environ. 778, 146288 (2021).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Ou, D. et al. Semi-supervised Dnn regression on airborne hyperspectral imagery for improved spatial soil properties prediction. Geoderma. 385, 114875 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    81.Gholizadeh, A., Žižala, D., Saberioon, M. & Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and sentinel-2 spectral imaging. Remote Sens. Environ. 218, 89–103 (2018).ADS 
    Article 

    Google Scholar 
    82.Guo, B. et al. Identifying the spatiotemporal dynamic of Pm 2.5 concentrations at multiple scales using geographically and temporally weighted regression model across China during 2015–2018. Sci. Total Environ. 751, 141765 (2021).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Guo, B. et al. Detecting spatiotemporal dynamic of regional electric consumption using Npp–Viirs Nighttime stable light data—a Case Study of Xi’an, China. IEEE Access 8, 171694–171702 (2020).Article 

    Google Scholar 
    84.Guo, B. et al. A land use regression application into simulating spatial distribution characteristics of particulate matter (Pm2.5) concentration in city of Xi’an, China. Pol. J. Environ. Stud. 29, 4065–4076 (2020).Article 

    Google Scholar 
    85.Malley, D. F. & Williams, P. C. Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter. Environ. Sci. Technol. 31, 3461–3467 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    86.Pyo, J., Hong, S. M., Kwon, Y. S., Kim, M. S. & Cho, K. H. Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil. Sci. Total Environ. 741, 140162 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Sun, W. & Zhang, X. Estimating soil zinc concentrations using reflectance spectroscopy. Int. J. Appl. Earth Obs. 58, 126–133 (2017).Article 

    Google Scholar 
    88.Chao, T. et al. A transferable spectroscopic diagnosis model for predicting arsenic contamination in soil. Sci. Total Environ. 669, 964–972 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    89.Rossel, R. A. V., Walvoort, D. J. J., McBratney, A. B., Janik, L. J. & Skjemstad, J. O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59–75 (2005).Article 
    CAS 

    Google Scholar 
    90.Rossel, R. A. V. et al. A global spectral library to characterize the world’s soil. Earth Sci. Rev. 155, 198–230 (2016).ADS 
    Article 

    Google Scholar 
    91.Chakraborty, S. et al. Development of a hybrid proximal sensing method for rapid identification of petroleum contaminated soils. Sci. Total Environ. 514, 399–408 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Boker, A., Brownell, L. & Donen, N. The Amsterdam preoperative anxiety and information scale provides a simple and reliable measure of preoperative anxiety. Can. J. Anesth. 49, 792–798 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Piñeiro, G., Perelman, S., Guerschman, J. P. & Paruelo, J. M. How to evaluate models: Observed vs. predicted or predicted vs. observed?. Ecol. Model. 216, 316–322 (2008).Article 

    Google Scholar 
    94.Douglas, R. K., Nawar, S., Alamar, M. C., Mouazen, A. M. & Coulon, F. Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using Vis–Nir spectroscopy and regression techniques. Sci. Total Environ. 616, 147–155 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    95.Ji, W., Rossel, R. A. V. & Shi, Z. Accounting for the effects of water and the environment on proximally sensed Vis–Nir soil spectra and their calibrations. Eur. J. Soil Sci. 66, 555–565 (2015).Article 

    Google Scholar 
    96.Altunkaynak, A. & Ozger, M. Comparison of discrete and continuous wavelet—Multilayer perceptron methods for daily precipitation prediction. J. Hydrol. Eng. 21, 04016014 (2016).Article 

    Google Scholar 
    97.Buddenbaum, H., Steffens, M. & Rossel, R. V. The effects of spectral pretreatments on chemometric analyses of soil profiles using laboratory imaging spectroscopy. Appl. Environ. Soil Sci. 2012, 1–12 (2012).Article 
    CAS 

    Google Scholar 
    98.Nawar, S., Buddenbaum, H., Hill, J., Kozak, J. & Mouazen, A. M. Estimating the soil clay content and organic matter by means of different calibration methods of Vis–Nir diffuse reflectance spectroscopy. Soil Till. Res. 155, 510–522 (2016).Article 

    Google Scholar 
    99.Kuang, B. & Mouazen, A. M. Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms. Eur. J. Soil Sci. 62, 629–636 (2011).CAS 
    Article 

    Google Scholar 
    100.Sipos, P., Németh, T., Kis, V. K. & Mohai, I. Association of individual soil mineral constituents and heavy metals as studied by sorption experiments and analytical electron microscopy analyses. J. Hazard. Mater. 168, 1512–1520 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    101.Rossel, R. A. V. & Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158, 46–54 (2010).ADS 
    CAS 
    Article 

    Google Scholar  More