1.Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907â913. https://doi.org/10.1038/35016000 (2000).ADSÂ
ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
2.Hewitt, G. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. 359, 183â195. https://doi.org/10.1098/rstb.2003.1388 (2004).ArticleÂ
CASÂ
Google ScholarÂ
3.Ehlers, J. & Gibbard, P. Quaternary Glaciations-Extent and Chronology: Part I: Europe Vol. 2 (Elsevier, New York, 2004).
Google ScholarÂ
4.Call, A. et al. Genetic structure and post-glacial expansion of Cornus florida L. (Cornaceae): Integrative evidence from phylogeography, population demographic history, and species distribution modeling. J. Syst. Evol. 54, 136â151. https://doi.org/10.1111/jse.12171 (2016).ArticleÂ
Google ScholarÂ
5.Jackson, S. et al. Vegetation and environment in eastern North America during the Last Glacial Maximum. Quatern. Sci. Rev. 19, 489â508. https://doi.org/10.1016/S0277-3791(99)00093-1 (2000).ADSÂ
ArticleÂ
Google ScholarÂ
6.Nadeau, S. et al. Contrasting patterns of genetic diversity across the ranges of Pinus monticola and P. strobus: A comparison between eastern and western North American postglacial colonization histories. Am. J. Bot. 102, 1342â1355. https://doi.org/10.3732/ajb.1500160 (2015).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
7.Beaulieu, J. & Simon, J. Genetic structure and variability in Pinus strobus in Quebec. Can. J. For. Res. 24, 1726â1733. https://doi.org/10.1139/x94-223 (1994).ArticleÂ
Google ScholarÂ
8.Provan, J. & Bennett, K. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564â571. https://doi.org/10.1016/j.tree.2008.06.010 (2008).ArticleÂ
PubMedÂ
Google ScholarÂ
9.Soltis, D., Morris, A., McLachlan, J., Manos, P. & Soltis, P. Comparative phylogeography of unglaciated eastern North America. Mol. Ecol. 15, 4261â4293. https://doi.org/10.1111/j.1365-294X.2006.03061.x (2006).ArticleÂ
PubMedÂ
Google ScholarÂ
10.Mee, J. & Moore, J. The ecological and evolutionary implications of microrefugia. J. Biogeogr. 41, 837â841. https://doi.org/10.1111/jbi.12254 (2014).ArticleÂ
Google ScholarÂ
11.Hoban, S. et al. Range-wide distribution of genetic diversity in the North American tree Juglans cinerea: A product of range shifts, not ecological marginality or recent population decline. Mol. Ecol. 19, 4876â4891. https://doi.org/10.1111/j.1365-294X.2010.04834.x (2010).ArticleÂ
PubMedÂ
Google ScholarÂ
12.Hampe, A. & Petit, R. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8, 461â467. https://doi.org/10.1111/j.1461-0248.2005.00739.x (2005).ArticleÂ
PubMedÂ
Google ScholarÂ
13.Excoffier, L., Foll, M. & Petit, R. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481â501. https://doi.org/10.1146/annurev.ecolsys.39.110707.173414 (2009).ArticleÂ
Google ScholarÂ
14.McLachlan, J., Clark, J. & Manos, P. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86, 2088â2098. https://doi.org/10.1890/04-1036 (2005).ArticleÂ
Google ScholarÂ
15.Bemmels, J. & Dick, C. Genomic evidence of a widespread southern distribution during the Last Glacial Maximum for two eastern North American hickory species. J. Biogeogr. 45, 1739â1750. https://doi.org/10.1111/jbi.13358 (2018).ArticleÂ
Google ScholarÂ
16.Jaramillo-Correa, J., Beaulieu, J., Khasa, D. & Bousquet, J. Inferring the past from the present phylogeographic structure of North American forest trees: Seeing the forest for the genes. Can. J. For. Res. 39, 286â307. https://doi.org/10.1139/X08-181 (2009).ArticleÂ
Google ScholarÂ
17.Eckert, C., Samis, K. & Lougheed, S. Genetic variation across speciesâ geographical ranges: The centralâmarginal hypothesis and beyond. Mol. Ecol. 17, 1170â1188. https://doi.org/10.1111/j.1365-294X.2007.03659.x (2008).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
18.Foll, M. & Gaggiotti, O. Identifying the environmental factors that determine the genetic structure of populations. Genetics 174, 875â891. https://doi.org/10.1534/genetics.106.059451 (2006).ArticleÂ
PubMedÂ
PubMed CentralÂ
CASÂ
Google ScholarÂ
19.Loveless, M. & Hamrick, J. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15, 65â95. https://doi.org/10.1146/annurev.es.15.110184.000433 (1984).ArticleÂ
Google ScholarÂ
20.Roberts, D., Werner, D., Wadl, P. & Trigiano, R. Inheritance and allelism of morphological traits in eastern redbud (Cercis canadensis L.). Hortic. Res. 2, 1â11 (2015).ArticleÂ
Google ScholarÂ
21.Couvillon, G. Cercis canadensis L. seed size influences germination rate, seedling dry matter, and seedling leaf area. HortScience 37, 206â207 (2002).ArticleÂ
Google ScholarÂ
22.Li, S. et al. Methods for breaking the dormancy of eastern redbud (Cercis canadensis) seeds. Seed Sci. Technol. 41, 27â35 (2013).ArticleÂ
Google ScholarÂ
23.Cheong, E. & Pooler, M. Micropropagation of Chinese redbud (Cercis yunnanensis) through axillary bud breaking and induction of adventitious shoots from leaf pieces. In Vitro Cell. Dev. Biol. Plant 39, 455â458 (2003).ArticleÂ
Google ScholarÂ
24.Pooler, M., Jacobs, K. & Kramer, M. Differential resistance to Botryosphaeria ribis among Cercis taxa. Plant Dis. 86, 880â882. https://doi.org/10.1094/PDIS.2002.86.8.880 (2002).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
25.Trigiano, R., Beaty, R. & Graham, E. Somatic embryogenesis from immature embryos of redbud (Cercis canadensis). Plant Cell Rep. 7, 148â150. https://doi.org/10.1007/BF00270127 (1988).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
26.Wadl, P., Trigiano, R., Werner, D., Pooler, M. & Rinehart, T. Simple sequence repeat markers from Cercis canadensis show wide cross-species transfer and use in genetic studies. J. Am. Soc. Hortic. Sci. 137, 189â201. https://doi.org/10.21273/JASHS.137.3.189 (2012).ArticleÂ
Google ScholarÂ
27.Ony, M. et al. Habitat fragmentation influences genetic diversity and differentiation: Fine-scale population structure of Cercis canadensis (eastern redbud). Ecol. Evol. 10, 3655â3670. https://doi.org/10.1002/ece3.6141 (2020).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
28.Amos, W. et al. Automated binning of microsatellite alleles: Problems and solutions. Mol. Ecol. Resour. 7, 10â14. https://doi.org/10.1111/j.1471-8286.2006.01560.x (2007).ArticleÂ
CASÂ
Google ScholarÂ
29.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).30.Kamvar, Z., Tabima, J. & GrĂźnwald, N. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
31.Kamvar, Z., Brooks, J. & GrĂźnwald, N. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front. Genet. 6, 208. https://doi.org/10.3389/fgene.2015.00208 (2015).ArticleÂ
PubMedÂ
PubMed CentralÂ
CASÂ
Google ScholarÂ
32.Tsui, C. et al. Population structure and migration pattern of a conifer pathogen, Grosmannia clavigera, as influenced by its symbiont, the mountain pine beetle. Mol. Ecol. 21, 71â86. https://doi.org/10.1111/j.1365-294X.2011.05366.x (2012).ArticleÂ
PubMedÂ
Google ScholarÂ
33.Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583â590 (1978).ArticleÂ
CASÂ
Google ScholarÂ
34.Shannon, C. E. A mathematical theory of communication. Bell System Tech. J. 27, 379â423 (1948).MathSciNetÂ
ArticleÂ
Google ScholarÂ
35.Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184â186. https://doi.org/10.1111/j.1471-8286.2004.00828.x (2005).ArticleÂ
Google ScholarÂ
36.Hurlbert, S. The nonconcept of species diversity: A critique and alternative parameters. Ecology 52, 577â586. https://doi.org/10.2307/1934145 (1971).ArticleÂ
Google ScholarÂ
37.El Mousadik, A. & Petit, R. High level of genetic differentiation for allelic richness among populations of the Argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832â839. https://doi.org/10.1007/BF00221895 (1996).ArticleÂ
PubMedÂ
Google ScholarÂ
38.Bird, C., Karl, S., Smouse, P. & Toonen, R. In Phylogeography and Population Genetics in Crustacea Vol. 19 (eds Held Christoph, Koenemann Stefan, & Schubart Christoph) pp. 31â55 (Boca Raton, FL: CRC Press, 2011).39.Meirmans, P. & Hedrick, P. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5â18. https://doi.org/10.1111/j.1755-0998.2010.02927.x (2011).ArticleÂ
PubMedÂ
Google ScholarÂ
40.Pritchard, J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945â959 (2000).ArticleÂ
CASÂ
Google ScholarÂ
41.Earl, D. & Bridgett, V. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359â361. https://doi.org/10.1007/s12686-011-9548-7 (2012).ArticleÂ
Google ScholarÂ
42.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611â2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).ArticleÂ
CASÂ
Google ScholarÂ
43.Francis, R. Pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27â32. https://doi.org/10.1111/1755-0998.12509 (2017).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
44.Becker, R. & Wilks, A. MAPS: An R Package to Drae Geographical Maps (Version package 3.3.0, 2018).45.Lemon, J. Plotrix: An R Package for Various Plotting Functions (Version R package 3.8â1, 2006).46.Bruvo, R., Michiels, N., Dâsouza, T. & Schulenburg, H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol. Ecol. 13, 2101â2106. https://doi.org/10.1111/j.1365-294X.2004.02209.x (2004).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
47.GrĂźnwald, N., Everhart, S., Knaus, B. & Kamvar, Z. Best practices for population genetic analyses. Phytopathology 107, 1000â1010. https://doi.org/10.1094/PHYTO-12-16-0425-RVW (2017).ArticleÂ
PubMedÂ
Google ScholarÂ
48.Jombart, T. & Ahmed, I. adegenet 1.3â1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070â3072. https://doi.org/10.1093/bioinformatics/btr521 (2011).ArticleÂ
PubMedÂ
PubMed CentralÂ
CASÂ
Google ScholarÂ
49.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 9. https://doi.org/10.1186/1471-2156-11-94 (2010).ArticleÂ
Google ScholarÂ
50.Cullingham, C., Cooke, J. & Coltman, D. Effects of introgression on the genetic population structure of two ecologically and economically important conifer species: Lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana). Genome 56, 577â585. https://doi.org/10.1139/gen-2013-0071 (2013).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
51.Diniz-Filho, J. et al. Mantel test in population genetics. Genet. Mol. Biol. 36, 475â485. https://doi.org/10.1590/S1415-47572013000400002 (2013).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
52.Mantel, N. The detection of disease clustering and a generalized regression approach. Can. Res. 27, 209â220 (1967).CASÂ
Google ScholarÂ
53.Vegan: Community ecology package v. R package version 2.5â3 (R package version 2.5â3). (2018).54.Excoffier, L., Smouse, P. & Quattro, J. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479â491 (1992).ArticleÂ
CASÂ
Google ScholarÂ
55.Cornuet, J., RavignĂŠ, V. & Estoup, A. Inference on population history and model checking using DNA sequence and microsatellite data with the software DIYABC (v1.0). BMC Bioinform. 11, 401â411. https://doi.org/10.1186/1471-2105-11-401 (2010).ArticleÂ
CASÂ
Google ScholarÂ
56.Cornuet, J. et al. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187â1189. https://doi.org/10.1093/bioinformatics/btt763 (2014).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
57.Dickson, J. In Silvics of North America Vol. 2 (eds Burns, R. & Honkala, B.) 266â269 (United States Department of Agriculture-Forest Service, 1990).58.Thomson, A., Dick, C. & Dayanandan, S. A similar phylogeographical structure among sympatric North American birches (Betula) is better explained by introgression than by shared biogeographical history. J. Biogeogr. 42, 339â350. https://doi.org/10.1111/jbi.12394 (2015).ArticleÂ
Google ScholarÂ
59.Petit, R. et al. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 300, 1563â1565 (2003).ADSÂ
ArticleÂ
CASÂ
Google ScholarÂ
60.David, R. & Hamann, A. Glacial refugia and modern genetic diversity of 22 western North American tree species. Proc. R. Soc. B Biol. Sci. 282, 20142903. https://doi.org/10.1098/rspb.2014.2903 (2015).ArticleÂ
Google ScholarÂ
61.Lumibao, C., Hoban, S. & McLachlan, J. Ice ages leave genetic diversity âhotspotsâ in Europe but not in Eastern North America. Ecol. Lett. 20, 1459â1468. https://doi.org/10.1111/ele.12853 (2017).ArticleÂ
PubMedÂ
Google ScholarÂ
62.Bialozyt, R., Ziegenhagen, B. & Petit, R. Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. J. Evol. Biol. 19, 12â20. https://doi.org/10.1111/j.1420-9101.2005.00995.x (2006).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
63.Petit, R. Early insights into the genetic consequences of range expansions. Heredity 106, 203â204. https://doi.org/10.1038/hdy.2010.60 (2011).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
64.Dubreuil, M. et al. Genetic effects of chronic habitat fragmentation revisited: Strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. Am. J. Bot. 97, 303â310. https://doi.org/10.3732/ajb.0900148 (2010).ArticleÂ
PubMedÂ
Google ScholarÂ
65.Hamrick, J., Godt, M. & Sherman-Broyles, S. In Population Genetics of Forest Trees Vol. 42 (eds Adams, W., Strauss, S., Copes, D. & Griffin, A) 95â124 (Springer, Dordrecht, 1992).66.Hamrick, J. & Godt, M. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 351, 1291â1298 (1996).ADSÂ
ArticleÂ
Google ScholarÂ
67.Spaulding, H. & Rieske, L. The aftermath of an invasion: Structure and composition of central appalachian hemlock forests following establishment of the hemlock woolly adelgid, Aelges tsugae. Biol. Invasions 12, 3135â3143. https://doi.org/10.1007/s10530-010-9704-0 (2010).ArticleÂ
Google ScholarÂ
68.Hadziabdic, D. et al. Analysis of genetic diversity in flowering dogwood natural stands using microsatellites: The effects of dogwood anthracnose. Genetica 138, 1047â1057. https://doi.org/10.1007/s10709-010-9490-8 (2010).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
69.Marquardt, P., Echt, C., Epperson, B. & Pubanz, D. Genetic structure, diversity, and inbreeding of eastern white pine under different management conditions. Can. J. For. Res. 37, 2652â2662 (2007).ArticleÂ
CASÂ
Google ScholarÂ
70.Potter, K. et al. Widespread inbreeding and unexpected geographic patterns of genetic variation in eastern hemlock (Tsuga canadensis), an imperiled North American conifer. Conserv. Genet. 13, 475â498. https://doi.org/10.1007/s10592-011-0301-2 (2012).ArticleÂ
Google ScholarÂ
71.Thammina, C., Kidwell-Slak, D., Lura, S. & Pooler, M. SSR markers reveal the genetic diversity of asian Cercis taxa at the US National Arboretum. HortScience 52, 498â502. https://doi.org/10.21273/hortsci11441-16 (2017).ArticleÂ
Google ScholarÂ
72.Chang, C., Bongarten, B. & Hamrick, J. Genetic structure of natural populations of black locust (Robinia pseudoacacia L.) at Coweeta, North Carolina. J. Plant Res. 111, 17â24. https://doi.org/10.1007/BF02507146.pdf (1998).ArticleÂ
Google ScholarÂ
73.Marquardt, P. & Epperson, B. Spatial and population genetic structure of microsatellites in white pine. Mol. Ecol. 13, 3305â3315. https://doi.org/10.1111/j.1365-294X.2004.02341.x (2004).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
74.Victory, E., Glaubitz, J., Rhodes-Jr, O. & Woeste, K. Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. Am. J. Bot. 93, 118â126. https://doi.org/10.3732/ajb.93.1.118 (2006).ArticleÂ
CASÂ
Google ScholarÂ
75.Hadziabdic, D. et al. Genetic diversity of flowering dogwood in the Great Smoky Mountains National Park. Tree Genet. Genomes 8, 855â871. https://doi.org/10.1007/s11295-012-0471-1 (2012).ArticleÂ
Google ScholarÂ
76.Nybom, H. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13, 1143â1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x (2004).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
77.Donselman, H. Variation in native populations of eastern redbud (Cercis canadensis L.) as influenced by geographic location [USA]. In Proceedings, of the Florida State Horticulture Society Vol. 89. 370â373 (1976).78.Dirr, M. Manual of Woody Landscape Plants: Their Identification, Ornamental Characteristics, Culture, Propagation and Uses (Stipes Publishing Co, Champaign, 1990).
Google ScholarÂ
79.Fritsch, P., Schiller, A. & Larson, K. Taxonomic implications of morphological variation in Cercis canadensis (Fabaceae) from Mexico and adjacent parts of Texas. Syst. Bot. 34, 510â520. https://doi.org/10.1600/036364409789271254 (2009).ArticleÂ
Google ScholarÂ
80.Nevo, E. et al. Drought and light anatomical adaptive leaf strategies in three woody species caused by microclimatic selection at evolution canyon, Israel. Israel J. Plant Sci. 48, 33â46 (2000).
Google ScholarÂ
81.Fritsch, P. et al. Leaf adaptations and species boundaries in North American Cercis: Implications for the evolution of dry floras. Am. J. Bot. 105, 1577â1594. https://doi.org/10.1002/ajb2.1155 (2018).ArticleÂ
PubMedÂ
Google ScholarÂ
82.Raulston, J. Redbud. Am. Nurseryman 171, 39â51 (1990).
Google ScholarÂ
83.Robertson, K. Cercis: The redbuds. Arnoldia 36, 37â49 (1976).
Google ScholarÂ
84.Davis, C., Fritsch, P., Li, J. & Donoghue, M. Phylogeny and biogeography of Cercis (Fabaceae): Evidence from nuclear ribosomal ITS and chloroplast ndhF sequence data. Syst. Bot. 27, 289â302. https://doi.org/10.1043/0363-6445-27.2.289 (2002).ArticleÂ
Google ScholarÂ
85.Hopkins, M. In Rhodora Vol. 44 (eds M Fernald, C Eatherby, L Griscom, & S Marris) 193â211 (New England Botanical Club, Inc., 1942).86.Griffin, J., Ranney, T. & Pharr, D. Heat and drought influence photosynthesis, water relations, and soluble carbohydrates of two ecotypes of redbud (Cercis canadensis). J. Am. Soc. Hortic. Sci. 129, 497â502. https://doi.org/10.21273/JASHS.129.4.0497 (2004).ArticleÂ
CASÂ
Google ScholarÂ
87.Fritsch, P. & Cruz, B. Phylogeny of Cercis based on DNA sequences of nuclear ITS and four plastid regions: Implications for transatlantic historical biogeography. Mol. Phylogenet. Evol. 62, 816â825. https://doi.org/10.1016/j.ympev.2011.11.016 (2012).ArticleÂ
PubMedÂ
Google ScholarÂ
88.Chung, M., Chung, M., Oh, G. & Epperson, B. Spatial genetic structure in a Neolitsea sericea population (Lauraceae). Heredity 85, 490â497. https://doi.org/10.1046/j.1365-2540.2000.00781.x (2000).ArticleÂ
PubMedÂ
Google ScholarÂ
89.Dean, D. et al. Analysis of genetic diversity and population structure for the native tree Viburnum rufidulum occurring in Kentucky and Tennessee. J. Am. Soc. Hortic. Sci. 140, 523â531. https://doi.org/10.21273/JASHS.140.6.523 (2015).ArticleÂ
CASÂ
Google ScholarÂ
90.Hagler, J., Mueller, S., Teuber, L., Machtley, S. & Van-Deynze, A. Foraging range of honey bees, Apis mellifera, in alfalfa seed production fields. J. Insect Sci. 11, 144. https://doi.org/10.1673/031.011.14401 (2011).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
91.Pasquet, R. et al. Long-distance pollesn flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc. Natl. Acad. Sci. 105, 13456â13461 (2008).ADSÂ
ArticleÂ
Google ScholarÂ
92.Hayden, W. Redbud seedpods hold surprises. Bull. Virginia Native Plant Soc. 32, 1â6 (2013).
Google ScholarÂ
93.Schnabel, A., Laushman, R. & Hamrick, J. Comparative genetic structure of two co-occurring tree species, Maclura pomifera (Moraceae) and Gleditsia triacanthos (Leguminosae). Heredity 67, 357â364. https://doi.org/10.1038/hdy.1991.99 (1991).ArticleÂ
Google ScholarÂ
94.Nakanishi, A., Tomaru, N., Yoshimaru, H., Manabe, T. & Yamamoto, S. Effects of seed- and pollen-mediated gene dispersal on genetic structure among Quercus salicina saplings. Heredity 102, 182â189. https://doi.org/10.1038/hdy.2008.101 (2008).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
95.Vekemans, X. & Hardy, O. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 13, 921â935. https://doi.org/10.1046/j.1365-294X.2004.02076.x (2004).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
96.Gonzales, E., Hamrick, J., Smouse, P., Trapnell, D. & Peakall, R. The impact of landscape disturbance on spatial genetic structure in the Guanacaste tree, Enterolobium cyclocarpum (Fabaceae). J. Hered. 101, 133â143. https://doi.org/10.1093/jhered/esp101 (2009).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
97.Post, D. Change in nutrient content of foods stored by eastern woodrats (Neotoma floridana). J. Mammal. 73, 835â839 (1992).ArticleÂ
Google ScholarÂ
98.Surrency, D. & Owsley, C. (ed. Natural Resources Conservation Service United States Department of Agriculture) 146 (United States Department of Agriculture, Natural Resources Conservation Service, 2001).99.Wakeland, B. & Swihart, R. Ratings of white-tailed deer preferences for woody browse in Indiana. Proceedings of the Indiana Academy of Science 118, 96â101 (2009).
Google ScholarÂ
100.Wright, V., Fleming, E. & Post, D. Survival of Rhyzopertha dominica (Coleoptera, Bostrichidae) on fruits and seeds collected from woodrat nests in Kansas. J. Kansas Entomol. Soc. 63, 344â347 (1990).
Google ScholarÂ
101.Sullivan, J. (ed. Forest Service U.S. Department of Agriculture, Rocky Mountain Research Station) (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Fire Sciences Laboratory, 1994).102.Weir, B. & Ott, J. Genetic data analysis II. Trends Genet. 13, 379 (1997).ArticleÂ
Google ScholarÂ
103.Magni, C., Ducousso, A., Caron, H., Petit, R. & Kremer, A. Chloroplast DNA variation of Quercus rubra L. in North America and comparison with other Fagaceae. Mol. Ecol. 14, 513â524. https://doi.org/10.1111/j.1365-294X.2005.02400.x (2005).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
104.Peterson, B. & Graves, W. Chloroplast phylogeography of Dirca palustris L. indicates populations near the glacial boundary at the Last Glacial Maximum in eastern North America. Journal of Biogeography 43, 314â327, doi:https://doi.org/10.1111/jbi.12621 (2016).105.Shaw, J. & Small, R. Chloroplast DNA phylogeny and phylogeography of the North American plums (Prunus subgenus Prunus section Prunocerasus, Rosaceae). Am. J. Bot. 92, 2011â2030. https://doi.org/10.3732/ajb.92.12.2011 (2005).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
106.Rowe, K., Heske, E., Brown, P. & Paige, K. Surviving the ice: Northern refugia and postglacial colonization. Proc. Natl. Acad. Sci. 101, 10355â10359 (2004).ADSÂ
ArticleÂ
CASÂ
Google ScholarÂ
107.Graignic, N., Tremblay, F. & Bergeron, Y. Influence of northern limit range on genetic diversity and structure in a widespread North American tree, sugar maple (Acer saccharum Marshall). Ecol. Evol. 8, 2766â2780. https://doi.org/10.1002/ece3.3906 (2018).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
108.Bemmels, J., Knowles, L. & Dick, C. Genomic evidence of survival near ice sheet margins for some, but not all, North American trees. Proc. Natl. Acad. Sci. 116, 8431â8436. https://doi.org/10.7302/Z2JS9NNG (2019).ArticleÂ
PubMedÂ
PubMed CentralÂ
CASÂ
Google ScholarÂ
109.Jia, H. & Steven, R. Fossil leaves and fruits of Cercis L. (Leguminosae) from the Eocene of western North America. International Journal of Plant Sciences 175, 601â612, doi:https://doi.org/10.1086/675693 (2014).110.Kraemer, M. & Favi, F. Emergence phenology of Osmia lignaria subsp lignaria (Hymenoptera: Megachilidae), its parasitoid Chrysura kyrae (Hymenoptera: Chrysididae), and bloom of Cercis canadensis. Environ. Entomol. 39, 351â358. https://doi.org/10.1603/en09242 (2010).ArticleÂ
PubMedÂ
CASÂ
Google ScholarÂ
111.USDA. Census of horticultural specialties. Volume 3 AC-12-SS-3, Washington, DC (2014). More