More stories

  • in

    Ecological opportunity and adaptive radiations reveal eco-evolutionary perspectives on community structure in competitive communities

    1.Urban, M. C. & Skelly, D. K. Evolving metacommunities: Toward an evolutionary perspective on metacommunities. Ecology 87, 1616–1626 (2006).Article 

    Google Scholar 
    2.Cortez, M. H. & Ellner, S. P. Understanding rapid evolution in predator-prey interactions using the theory of fast-slow dynamical systems. Am. Nat. 176, E109–E127. https://doi.org/10.1086/656485 (2010).Article 
    PubMed 

    Google Scholar 
    3.Ellner, S. P., Geber, M. A. & Hairston, N. G. Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecol. Lett. 14, 603–614. https://doi.org/10.1111/j.1461-0248.2011.01616.x (2011).Article 
    PubMed 

    Google Scholar 
    4.Yoder, J. B. et al. Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23, 1581–1596. https://doi.org/10.1111/j.1420-9101.2010.02029.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639. https://doi.org/10.1086/652433 (2010).Article 
    PubMed 

    Google Scholar 
    6.Meyer, J. R. & Kassen, R. The effects of competition and predation on diversification in a model adaptive radiation. Nature 446, 432–435. https://doi.org/10.1038/nature05599 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47(47), 507–532. https://doi.org/10.1146/annurev-ecolsys-121415-032254 (2016).Article 

    Google Scholar 
    8.Keller, I. & Seehausen, O. Thermal adaptation and ecological speciation. Mol. Ecol. 21, 782–799. https://doi.org/10.1111/j.1365-294X.2011.05397.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Schluter, D., Price, T. D. & Grant, P. R. ecological character displacement in Darwin Finches. Science 227, 1056–1059. https://doi.org/10.1126/science.227.4690.1056 (1985).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Munkemuller, T. & Gallien, L. VirtualCom: A simulation model for eco-evolutionary community assembly and invasion. Methods Ecol. Evol. 6, 735–743. https://doi.org/10.1111/2041-210x.12364 (2015).Article 

    Google Scholar 
    11.Munoz, F. et al. ecolottery: Simulating and assessing community assembly with environmental filtering and neutral dynamics in R. Methods Ecol. Evol. 9, 693–703. https://doi.org/10.1111/2041-210x.12918 (2018).Article 

    Google Scholar 
    12.Ruffley, M., Peterson, K., Week, B., Tank, D. C. & Harmon, L. J. Identifying models of trait-mediated community assembly using random forests and approximate Bayesian computation. Ecol. Evol. 9, 13218–13230. https://doi.org/10.1002/ece3.5773 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.van der Plas, F. et al. A new modeling approach estimates the relative importance of different community assembly processes. Ecology 96, 1502–1515. https://doi.org/10.1890/14-0454.1 (2015).Article 

    Google Scholar 
    14.Stegen, J. C. et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 7, 2069–2079. https://doi.org/10.1038/ismej.2013.93 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354–357 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Geritz, S. A. H., Kisdi, E., Meszena, G. & Metz, J. A. J. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57 (1998).Article 

    Google Scholar 
    17.Vellend, M. Conceptual synthesis in community ecology. Q. R. Biol. 85, 183–206 (2010).Article 

    Google Scholar 
    18.Urban, M. C. et al. The evolutionary ecology of metacommunities. Trends Ecol. Evol. 23, 311–317 (2008).Article 

    Google Scholar 
    19.Pausas, J. G. & Verdu, M. The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60, 614–625. https://doi.org/10.1525/bio.2010.60.8.7 (2010).Article 

    Google Scholar 
    20.Mouquet, N. et al. Ecophylogenetics: Advances and perspectives. Biol. Rev. 87, 769–785. https://doi.org/10.1111/j.1469-185X.2012.00224.x (2012).Article 
    PubMed 

    Google Scholar 
    21.Kraft, N. J. B., Cornwell, W. K., Webb, C. O. & Ackerly, D. D. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am. Nat. 170, 271–283. https://doi.org/10.1086/519400 (2007).Article 
    PubMed 

    Google Scholar 
    22.Wilson, J. B., Weiher, E. & Keddy, P. Assembly Rules in Plant Communities (Cambridge University Press, 1999).Book 

    Google Scholar 
    23.MacArthur, R. H. & Levins, R. Limiting similarity convergence and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).Article 

    Google Scholar 
    24.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505. https://doi.org/10.1146/annurev.ecolysis.33.010802.150448 (2002).Article 

    Google Scholar 
    25.Pontarp, M., Brännström, A. & Petchey, O. L. Inferring community assembly processes from macroscopic patterns using dynamic eco-evolutionary models and Approximate Bayesian Computation (ABC). Methods Ecol. Evol. 10, 450–460. https://doi.org/10.1111/2041-210x.13129 (2019).Article 

    Google Scholar 
    26.Mittelbach, G. G. & Schemske, D. W. Ecological and evolutionary perspectives on community assembly. Trends Ecol. Evol. 30, 241–247. https://doi.org/10.1016/j.tree.2015.02.008 (2015).Article 
    PubMed 

    Google Scholar 
    27.Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715. https://doi.org/10.1111/j.1461-0248.2009.01314.x (2009).Article 
    PubMed 

    Google Scholar 
    28.Pontarp, M. & Petchey, O. L. Ecological opportunity and predator–prey interactions: Linking eco-evolutionary processes and diversification in adaptive radiations. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2017.2550 (2018).Article 

    Google Scholar 
    29.Seehausen, O. African cichlid fish: A model system in adaptive radiation research. Proc. R. Soc. B Biol. Sci. 273, 1987–1998. https://doi.org/10.1098/rspb.2006.3539 (2006).Article 

    Google Scholar 
    30.Schluter, D. The Ecology of Adaptive Radiation (Columbia University Press, 2000).
    Google Scholar 
    31.Nosil, P. Ecological Speciation (Oxford University Press, 2012).Book 

    Google Scholar 
    32.Christiansen, F. B. & Loeschcke, V. Evolution and intraspecific exploitative competition I. One-locus theory for small additive gene effects. Theor. Popul. Biol. 18, 297–313 (1980).MathSciNet 
    Article 

    Google Scholar 
    33.Brown, J. S. & Vincent, T. L. A theory for the evolutionary game. Theor. Popul. Biol. 31, 140–166 (1987).MathSciNet 
    Article 

    Google Scholar 
    34.Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264. https://doi.org/10.1038/Nature01274 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236. https://doi.org/10.1111/j.1461-0248.2006.00978.x (2006).Article 
    PubMed 

    Google Scholar 
    36.Leyequien, E., de Boer, W. F. & Cleef, A. Influence of body size on coexistence of bird species. Ecol. Res. 22, 735–741. https://doi.org/10.1007/s11284-006-0311-6 (2007).Article 

    Google Scholar 
    37.Yvon-Durocher, G. et al. Across ecosystem comparisons of size structure: Methods, approaches and prospects. Oikos 120, 550–563. https://doi.org/10.1111/j.1600-0706.2010.18863.x (2011).Article 

    Google Scholar 
    38.Rudolf, V. H. W. Seasonal shifts in predator body size diversity and trophic interactions in size-structured predator-prey systems. J. Anim. Ecol. 81, 524–532. https://doi.org/10.1111/j.1365-2656.2011.01935.x (2012).Article 
    PubMed 

    Google Scholar 
    39.DeLong, J. P. & Vasseur, D. A. A dynamic explanation of size-density scaling in carnivores. Ecology 93, 470–476 (2012).Article 

    Google Scholar 
    40.DeLong, J. P. & Vasseur, D. A. Size-density scaling in protists and the links between consumer-resource interaction parameters. J. Anim. Ecol. 81, 1193–1201. https://doi.org/10.1111/j.1365-2656.2012.02013.x (2012).Article 
    PubMed 

    Google Scholar 
    41.Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x (2007).Article 

    Google Scholar 
    42.Pontarp, M., Ripa, J. & Lundberg, P. On the origin of phylogenetic structure in competitive metacommunities. Evol. Ecol. Res. 14, 269–284 (2012).
    Google Scholar 
    43.Pontarp, M., Ripa, J. & Lundberg, P. The biogeography of adaptive radiations and the geographic overlap of sister species. Am. Nat. 186, 565–581 (2015).Article 

    Google Scholar 
    44.Barabás, G., Pigolotti, S., Gyllenberg, M., Dieckmann, U. & Meszéna, G. Continuous coexistence or discrete species? A new review of an old question. (2012).45.Brännström, A. et al. Modelling the ecology and evolution of communities: A review of past achievements, current efforts, and future promises. Evol. Ecol. Res. 14, 601–625 (2012).
    Google Scholar 
    46.Emerson, B. C. & Gillespie, R. G. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23, 619–630 (2008).Article 

    Google Scholar 
    47.Vamosi, S. M., Heard, S. B., Vamosi, J. C. & Webb, C. O. Emerging patterns in the comparative analysis of phylogenetic community structure. Mol. Ecol. 18, 572–592. https://doi.org/10.1111/j.1365-294X.2008.04001.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Sjödin, H., Ripa, J. & Lundberg, P. Principles of niche expansion. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2018.2603 (2018).Article 

    Google Scholar 
    49.Ackermann, M. & Doebeli, M. Evolution of niche width and adaptive diversification. Evolution 58, 2599–2612 (2004).Article 

    Google Scholar 
    50.Urban, M. C. & De Meester, L. Community monopolization: Local adaptation enhances priority effects in an evolving metacommunity. Proc. R. Soc. B. Biol. Sci. 276, 4129–4138 (2009).Article 

    Google Scholar 
    51.Urban, M. C., De Meester, L., Vellend, M., Stoks, R. & Vanoverbeke, J. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective. Evol. Appl. 5, 154–167. https://doi.org/10.1111/j.1752-4571.2011.00208.x (2012).Article 
    PubMed 

    Google Scholar 
    52.Pontarp, M. & Wiens, J. J. The origin of species richness patterns along environmental gradients: Uniting explanations based on time, diversification rate and carrying capacity. J. Biogeogr. 44, 722–735. https://doi.org/10.1111/jbi.12896 (2017).Article 

    Google Scholar 
    53.Pontarp, M. & Petchey, O. L. Community trait overdispersion due to trophic interactions: Concerns for assembly process inference. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2016.1602 (2016).Article 

    Google Scholar 
    54.Pontarp, M. et al. The latitudinal diversity gradient: Novel understanding through mechanistic eco-evolutionary. Trends Ecol. Evol. 34, 211–223. https://doi.org/10.1016/j.tree.2018.11.009 (2019).Article 
    PubMed 

    Google Scholar 
    55.Case, T. J. An Illustrated Guide to Theoretical Ecology (Oxford University Press, Inc, 2000).
    Google Scholar 
    56.Barabas, G., Michalska-Smith, M. J. & Allesina, S. The effect of intra- and interspecific competition on coexistence in multispecies communities. Am. Nat. 188, E1–E12. https://doi.org/10.1086/686901 (2016).Article 
    PubMed 

    Google Scholar 
    57.Heinz, S. K., Mazzucco, R. & Dieckmann, U. Speciation and the evolution of dispersal along environmental gradients. Evol. Ecol. 23, 53–70. https://doi.org/10.1007/s10682-008-9251-7 (2009).Article 

    Google Scholar 
    58.Metz, J. A. J., Nisbet, R. M. & Geritz, S. A. H. How should we define fitness for general ecolgical scenarios. Trends Ecol. Evol. 7, 198–202. https://doi.org/10.1016/0169-5347(92)90073-k (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Doebeli, M. & Dieckmann, U. Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am. Nat. 156, S77–S101. https://doi.org/10.1086/303417 (2000).Article 
    PubMed 

    Google Scholar 
    60.Ito, H. C. & Dieckmann, U. A new mechanism for recurrent adaptive Radiations. Am. Nat. 170, E96–E111. https://doi.org/10.1086/521229 (2007).Article 
    PubMed 

    Google Scholar 
    61.Cressman, R. et al. Unlimited niche packing in a Lotka-Volterra competition game. Theor. Popul. Biol. 116, 1–17 (2017).Article 

    Google Scholar 
    62.Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100. https://doi.org/10.1093/bioinformatics/btn358 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Harmon-Threatt, A. N. & Ackerly, D. D. Filtering across spatial scales: Phylogeny, biogeography and community structure in bumble bees. PLoS ONE https://doi.org/10.1371/journal.pone.0060446 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Pybus, O. G. & Harvey, P. H. Testing macro-evolutionary models using incomplete molecular phylogenies. Proc. R. Soc. B Biol. Sci. 267, 2267–2272. https://doi.org/10.1098/rspb.2000.1278 (2000).CAS 
    Article 

    Google Scholar  More

  • in

    The Simrad EK60 echosounder dataset from the Malaspina circumnavigation

    Figure 1 presents the track of the eight-month cruise, and Table 1 provides the detail of the legs and dates. On a routine basis R/V Hesperides sailed at an average speed of 11 knots from around 3 pm to 4 am (local time). The vessel arrived on station at around 4 am daily to carry out sampling operations at a fixed point for about 11 hours.Fig. 1Cruise track and integrated backscatter at different stations (NASC, daytime 200 to 1000 m).Full size imageTable 1 Dates and starting points of the 7 legs of the Malaspina cruise.Full size tableAcoustic measurements were carried out continuously using a Simrad EK60 echosounder), operating at 38 and 120 kHz (7° beamwidth transducers) with a ping rate of 0.5 Hz. Unfortunately, the 120 kHz failed during the first leg of the cruise and only 38 kHz data were collected. Echosounder observations were recorded down to 1000 m depth. The echosounder files are in the proprietary Simrad raw format and can be read by various softwares (e.g., LSSS, Echoview, Sonar5, MATECHO, ESP3, echopype, pyEcholab). GPS locations and calibration constants are imbedded in each file.Additionally, daytime data integrated over 2 m vertical bins from 200 to 1000 m depth are provided as Nautical Area Scattering Coefficient (NASC). Each “voxel” is the average of all cleaned and validated data recorded over that depth range, in a time period starting 8 hours before the start of the station (defined as start of the CTD cast) and ending 8 hours after the start of the station, with only data recorded in the period between 1 hour after local sunrise and 1 hour prior to local sunset accepted (i.e., during local daytime hours, but removing crepuscular periods when vertical migration of biota is strong). The relatively long interval over which data were accepted around each station was chosen since the station sampling resulted in noisy acoustic data,, a long interval was therefore chosen to ensure valid data on all stations.Finally, summaries of per station daytime and nighttime acoustic data (omitting data recorded within 1 hour of sunrise and sunset) are provided. The data fields in this file are station date, latitude and longitude, and per day and night average NASC 200–1000 m, average NASC 0–1000, weighted mean depth (WMD) of NASC 200–1000 m, migration amplitude, NASC day-to-night ratio and migration ratio. More

  • in

    Geographical drivers and climate-linked dynamics of Lassa fever in Nigeria

    We analyse weekly reported counts of suspected and confirmed human cases and deaths attributed to LF (as defined in Supplementary Table 1), between 1 January 2012 and 30 December 2019, from across the entire of Nigeria. The weekly counts were reported from 774 LGAs in 36 Federal states and the Federal Capital Territory, under Integrated Disease Surveillance and Response (IDSR) protocols, and collated by the NCDC. All suspected cases, confirmed cases and deaths from notifiable infectious diseases (including viral haemorrhagic fevers; VHFs) are reported weekly to the LGA Disease Surveillance and Notification Officer (DSNO) and State Epidemiologist (SE). IDSR routine data on priority diseases are collected from inpatient and outpatient registers in health facilities, and forwarded to each LGA’s DSNO using SMS or paper form. Subsequently, individual LGA DSNOs collate and forward the data to their respective SE, also by SMS and paper form, for weekly and monthly reporting respectively to NCDC. From mid-2017 onwards, data entry in 18 states has been conducted using a mobile phone-based electronic reporting system called mSERS, with the data entered using a customised Excel spreadsheet that is used to manually key into NCDC-compatible spreadsheets. Data from this surveillance regime (WERs) were collated by epidemiologists at NCDC throughout the period 2012 to March 2018 (Supplementary Fig. 1).Throughout the study period, within-country LF surveillance and response has been strengthened under NCDC coordination2,20,33. LGAs are now required to notify immediately any suspected case to the state-level, which in turn reports to NCDC within 24 h, and also sends a cumulative weekly report of all reported cases. A dedicated, multi-sectoral NCDC LF TWG was set up in 2016 with the responsibility of coordinating all LF preparedness and response activities across states. Further capacity building occurred in 2017 to 2019, with the opening of three additional LF diagnostic laboratories in Abuja (Federal Capital Territory), Abakaliki (Ebonyi state) and Owo (Ondo state) (to a total of five; Fig. 2) and the rollout of intensive country-wide training on surveillance, clinical case management and diagnosis. We note that, due to the rapid expansion in a test capacity, the definition of a suspected case in our data has subtly changed over the surveillance period: from 2012 to 2016, suspected cases include probable cases that were not lab-tested, whereas from 2017 to 2019, all suspected cases were tested and confirmed to be negative.In addition to the WERs data, since 2017 LF case reporting data has also been collated by the LF TWG and used to inform the weekly NCDC LF Situation Reports (SitRep data; https://ncdc.gov.ng/diseases/sitreps). This regime includes post hoc follow-ups to ensure more accurate case counts, so our analyses use WER-derived case data from 2012 to 2016, and SitRep-derived case data from 2017 to 2019 (see Fig. 1 for full time series). A visual comparison of the data from each separate time series, including the overlap period (2017 to March 2018) is provided in Supplementary Fig. 1, and all statistical models considered random intercepts for the different surveillance regimes. Where other studies of recent Nigeria LF incidence have been more spatially and temporally restricted34,35, the extended monitoring period and fine spatial granularity of these data provide the opportunity for a detailed empirical perspective on the local drivers of LF at a country-wide scale and their relationship to changes in reporting effort.Recent trends in LF surveillance in NigeriaWe visualised temporal and seasonal trends in suspected and confirmed LF cases within and between years, for both surveillance datasets. Weekly case counts were aggregated to country-level and visualised as both annual case accumulation curves, and aggregated weekly case totals (Fig. 1 and Supplementary Fig. 1). We also mapped annual counts of suspected and confirmed cases across Nigeria at the LGA-level to examine spatial changes in reporting over the surveillance period (Fig. 2). State and LGA shapefiles used for modelling and mapping were obtained from Humanitarian Data Exchange under a CC-BY-IGO license (https://data.humdata.org/dataset/nga-administrative-boundaries).Analyses of aggregated district data are sensitive to differences in scale and shape of aggregation (the modifiable areal unit problem; MAUP36), and LGA geographical areas in Nigeria are highly skewed and vary over >3 orders of magnitude (median 713 km2, mean 1175 km2, range 4–11,255 km2). We therefore also aggregated all LGAs across Nigeria into 130 composite districts with a more even distribution of geographical areas, using distance-based hierarchical clustering on LGA centroids (implemented using hclust in R), with the constraint that each new cluster must contain only LGAs from within the same state (to preserve potentially important state-level differences in surveillance regime). Weekly and annual suspected and confirmed LF case totals were then calculated for each aggregated district. We used these spatially aggregated districts to test for the effects of scale on spatial drivers of LF occurrence and incidence.Statistical analysisWe analysed the full case time series (Fig. 1) to characterise the spatiotemporal incidence and drivers of LF in Nigeria, while controlling for year-on-year increases and expansions of surveillance effort. We firstly modelled annual LF occurrence and incidence at a country-wide scale, to identify the spatial, climatic and socio-ecological correlates of disease risk across Nigeria. Secondly, we modelled seasonal and temporal trends in weekly LF incidence within hyperendemic areas in the north and south of Nigeria, to identify the seasonal climatic conditions associated with LF risk dynamics and evaluate the scope for forecasting. All data processing and modelling was conducted in R v.3.4.1 with the packages R-INLA v.20.03.1737, raster v.3.4.1338 and velox v0.2.039. Statistical modelling was conducted using hierarchical regression in a Bayesian inference framework (integrated nested Laplace approximation (INLA)), which provides fast, stable and accurate posterior approximation for complex, spatially and temporally-structured regression models37,40, and has been shown to outperform alternative methods for modelling environmental phenomena with evidence of spatially biased reporting41.Processing climatic and socio-ecological covariatesWe collated geospatial data on socio-ecological and climatic factors that are hypothesised to influence either M. natalensis distribution and population ecology (rainfall, temperature and vegetation patterns), frequency and mode of human–rodent contact (poverty and improved housing prevalence), both of the above (agricultural and urban land cover) or likelihood of LF reporting (travel time to nearest laboratory with LF diagnostic capacity and travel time to nearest hospital). For each LGA we extracted the mean value for each covariate across the LGA polygon. The full suite of covariates tested across all analyses, data sources and associated hypotheses are described in Supplementary Table 5.We collated climate data spanning the full monitoring period and up until the date of analysis (July 2011 to January 2021). We obtained daily precipitation rasters for Africa42 from the Climate Hazards Infrared Precipitation with Stations (CHIRPS) project; this dataset is based on combining sparse weather station data with satellite observations and interpolation techniques, and is designed to support hydrologic forecasts in areas with poor weather station coverage (such as tropical West Africa)42. A recent study ground-truthing against weather station data showed that CHIRPS provides greater overall accuracy than other gridded precipitation products in Nigeria43. Air temperature daily minimum and maximum rasters were obtained from NOAA and were also averaged to calculate daily mean temperature. EVI, a measure of vegetation quality, was obtained from processing 16-day composite layers from NASA (National Aeronautics and Space Administration) (excluding all grid cells with unreliable observations due to cloud cover and linearly interpolating between observations to give daily values; Supplementary Table 5).We derived several spatial bioclimatic variables to capture conditions across the full monitoring period (Jan 2012 to Dec 2019): mean precipitation of the driest annual month, mean precipitation of the wettest annual month, precipitation seasonality (coefficient of variation), annual mean air temperature, air temperature seasonality, annual mean EVI and EVI seasonality. We also calculated monthly total precipitation, 3-month SPI44, average daily mean (Tmean), minimum (Tmin) and maximum (Tmax) temperature and EVI variables at sequential time lags prior to reporting week for seasonal modelling (described below in Temporal drivers). SPI is a standardised measure of drought or wetness conditions relative to the historical average conditions for a given period of the year. SPI was calculated within a rolling 3-month window across the full 40-year historical CHIRPS rainfall time series (1981–2020) using the R package SPEI v.1.744.We accessed annual human population rasters at 100 m resolution from WorldPop. We accessed the proportion of the population living in poverty in 2010 ( More

  • in

    Genetic diversity may help evolutionary rescue in a clonal endemic plant species of Western Himalaya

    1.Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, 6332 (2017).Article 
    CAS 

    Google Scholar 
    3.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Wiens, J. J., Litvinenko, Y., Harris, L. & Jezkova, T. Rapid niche shifts in introduced species can be a million times faster than changes among native species and ten times faster than climate change. J. Biogeogr. 46, 2115–2125 (2019).Article 

    Google Scholar 
    5.Estrada, A., Morales-Castilla, I., Caplat, P. & Early, R. Usefulness of species traits in predicting range shifts. Trends Ecol. Evol. 31, 190–203 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: A review and meta-analysis. Global Chang. Biol. 23, 4094–4105 (2017).ADS 
    Article 

    Google Scholar 
    7.Winkler, E. & Fischer, M. The role of vegetative spread and seed dispersal for optimal life histories of clonal plants: A simulation study. In Ecology and Evolutionary Biology of Clonal Plants 59–79 (Springer, 2002).8.Neiman, M., Meirmans, S. & Meirmans, P. What can asexual lineage age tell us about the maintenance of sex?. Ann. N. Y. Acad. Sci. 1168, 185–200 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Steffen, W. et al. Trajectories of the earth system in the anthropocene. PNAS 115, 8252–8259 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: Biodiversity conservation in a changing climate. Science 332, 53–58 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Bell, G. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).Article 

    Google Scholar 
    14.Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (Mal) adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).Article 

    Google Scholar 
    15.Barrett, R. D. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Lai, Y. T. et al. Standing genetic variation as the predominant source for adaptation of a songbird. PNAS 116, 2152–2157 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Bonin, A. et al. How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 13, 3261–3273 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Honnay, O. & Jacquemyn, H. A meta-analysis of the relation between mating system, growth form and genotypic diversity in clonal plant species. Evol. Ecol. 22, 299–312 (2008).Article 

    Google Scholar 
    19.Arnaud-Haond, S. et al. Assessing genetic diversity in clonal organisms: Low diversity or low resolution? Combining power and cost efficiency in selecting markers. J. Hered. 96, 434–440 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Wolfe, A. D. & Liston, A. Contributions of PCR-based methods to plant systematics and evolutionary biology. In Molecular systematics of plants II 43–86 (Springer, 1998).21.Nicolè, S. et al. Biodiversity studies in Phaseolus species by DNA barcoding. Genome 54, 529–545 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Baldwin, B. G. et al. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann. Mo. Bot. Gard. 1, 247–277 (1995).Article 

    Google Scholar 
    23.Álvarez, I. J. F. W. & Wendel, J. F. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. 29, 417–434 (2003).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    24.Choudhary, N. et al. Insight into the origin of common bean (Phaseolus vulgaris L.) grown in the state of Jammu and Kashmir of North-Western Himalayas. Genet. Resour. Crop Evol. 65, 963–977 (2018).Article 

    Google Scholar 
    25.Doh, E. J., Kim, J. H., Oh, S. E. & Lee, G. Identification and monitoring of Korean medicines derived from Cinnamomum spp. by using ITS and DNA marker. Genes Genom. 39, 101–109 (2017).CAS 
    Article 

    Google Scholar 
    26.Singh, S. K., Meghwal, P. R., Pathak, R., Bhatt, R. K. & Gautam, R. Assessment of genetic diversity among Indian jujube varieties based on nuclear ribosomal DNA and RAPD polymorphism. Agric. Res. 3, 218–228 (2014).CAS 
    Article 

    Google Scholar 
    27.Urbatsch, L. E., Baldwin, B. G. & Donoghue, M. J. Phylogeny of the coneflowers and relatives (Heliantheae: Asteraceae) based on nuclear rDNA internal transcribed spacer (ITS) sequences and chlorplast DNA restriction site data. Syst. Bot. 1, 539–565 (2000).Article 

    Google Scholar 
    28.Eriksson, T. & Donoghue, M. J. Phylogenetic relationships of Sambucus and Adoxa (Adoxoideae, Adoxaceae) based on nuclear ribosomal ITS sequences and preliminary morphological data. Syst. Bot. 1, 555–573 (1997).Article 

    Google Scholar 
    29.Ferrero, V. et al. Global patterns of reproductive and cytotype diversity in an invasive clonal plant. Biol. Invasions 3, 1–13 (2020).
    Google Scholar 
    30.Hamrick, J. L. & Godt, M. J. Allozyme diversity in plant species. In Plant Population Genetics, Breeding and Genetic Resources 44–64 (Sinauer Associates Inc, 1989).31.Lee, C. E. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17, 386–391 (2002).Article 

    Google Scholar 
    32.Crooks, J. A. Lag times and exotic species: The ecology and management of biological invasions in slow-motion1. Ecoscience 12, 316–329 (2005).Article 

    Google Scholar 
    33.Peakall, R. & Beattie, A. J. The genetic consequences of worker ant pollination in a self-compatible, clonal orchid. Evolution 45, 1837–1848 (1991).PubMed 

    Google Scholar 
    34.Sydes, M. A. & Peakall, R. O. D. Extensive clonality in the endangered shrub Haloragodendron lucasii (Haloragaceae) revealed by allozymes and RAPDs. Mol. Ecol. 7, 87–93 (1998).Article 

    Google Scholar 
    35.Brzosko, E., Wróblewska, A., Tałałaj, I. & Wasilewska, E. Genetic diversity of Cypripedium calceolus in Poland. Plant Syst. Evol. 295, 83–96 (2011).Article 

    Google Scholar 
    36.Guerra-García, A., Golubov, J. & Mandujano, M. C. Invasion of Kalanchoe by clonal spread. Biol. Invasions 17, 1615–1622 (2015).Article 

    Google Scholar 
    37.Ellstrand, N. C. & Roose, M. L. Patterns of genotypic diversity in clonal plant species. Am. J. Bot. 74, 123–131 (1987).Article 

    Google Scholar 
    38.Chung, M. G. & Epperson, B. K. Spatial genetic structure of clonal and sexual reproduction in populations of Adenophora grandiflora (Campanulaceae). Evolution 53, 1068–1078 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Stehlik, I. & Holderegger, R. Spatial genetic structure and clonal diversity of Anemone nemorosa in late successional deciduous woodlands of Central Europe. J. Ecol. 88, 424–435 (2000).Article 

    Google Scholar 
    40.Kudoh, H., Shibaike, H., Takasu, H., Whigham, D. F. & Kawano, S. Genet structure and determinants of clonal structure in a temperate deciduous woodland herb, Uvularia perfoliata. J. Ecol. 87, 244–257 (1999).Article 

    Google Scholar 
    41.Pornon, A., Escaravage, N., Thomas, P. & Taberlet, P. Dynamics of genotypic structure in clonal Rhododendron ferrugineum (Ericaceae) populations. Mol. Ecol. 9, 1099–1111 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Brzosko, E., Wróblewska, A. & Ratkiewicz, M. Spatial genetic structure and clonal diversity of island populations of lady’s slipper (Cypripedium calceolus) from the Biebrza National Park (northeast Poland). Mol. Ecol. 11, 2499–2509 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Smith, A. L. et al. Global gene flow releases invasive plants from environmental constraints on genetic diversity. PNAS 117, 4218–4227 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Dong, M. E. I., Lu, B. R., Zhang, H. B., Chen, J. K. & Li, B. O. Role of sexual reproduction in the spread of an invasive clonal plant Solidago canadensis revealed using intersimple sequence repeat markers. Plant Species Biol. 21, 13–18 (2006).Article 

    Google Scholar 
    45.You, W., Fan, S., Yu, D., Xie, D. & Liu, C. An invasive clonal plant benefits from clonal integration more than a co-occurring native plant in nutrient-patchy and competitive environments. PLoS ONE 9, e97246 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Silvertown, J. The evolutionary maintenance of sexual reproduction: Evidence from the ecological distribution of asexual reproduction in clonal plants. Int. J. Plant Sci. 169, 157–168 (2008).Article 

    Google Scholar 
    47.Vallejo-Marín, M., Dorken, M. E. & Barrett, S. C. The ecological and evolutionary consequences of clonality for plant mating. Annu. Rev. Ecol. Evol. Syst. 41, 193–213 (2010).Article 

    Google Scholar 
    48.Uesugi, A., Baker, D. J., de Silva, N., Nurkowski, K. & Hodgins, K. A. A lack of genetically compatible mates constrains the spread of an invasive weed. New Phytol. 226, 1864–1872 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Allendorf, F. W. & Lundquist, L. L. Introduction: Population biology, evolution, and control of invasive species. Conserv. Biol. 1, 24–30 (2003).Article 

    Google Scholar 
    50.Pluess, A. R. & Stöcklin, J. Population genetic diversity of the clonal plant Geum reptans (Rosaceae) in the Swiss Alps. Am. J. Bot. 91, 2013–2021 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Bialozyt, R., Ziegenhagen, B. & Petit, R. J. Contrasting effects of long distance seed dispersal on genetic diversity during range expansion. J. Evol. Biol. 19, 12–20 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. Propagule pressure: A null model for biological invasions. Biol. Invasions 8, 1023–1037 (2006).Article 

    Google Scholar 
    53.Roman, J. & Darling, J. A. Paradox lost: Genetic diversity and the success of aquatic invasions. Trends Ecol. Evol. 22, 454–464 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Dlugosch, K. M. & Parker, I. M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 17, 431–449 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Shirk, R. Y., Hamrick, J. L., Zhang, C. & Qiang, S. Patterns of genetic diversity reveal multiple introductions and recurrent founder effects during range expansion in invasive populations of Geranium carolinianum (Geraniaceae). Heredity 112, 497–507 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Nobarinezhad, M. H., Challagundla, L. & Wallace, L. E. Small-scale population connectivity and genetic structure in Canada thistle (Cirsium arvense). Int. J. Plant Sci. 181, 473–484 (2020).Article 

    Google Scholar 
    57.Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Evol. Syst. 32, 305–332 (2001).Article 

    Google Scholar 
    58.Maron, J. L., Vilà, M., Bommarco, R., Elmendorf, S. & Beardsley, P. Rapid evolution of an invasive plant. Ecol. Monogr. 74, 261–280 (2004).Article 

    Google Scholar 
    59.Bossdorf, O. et al. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144, 1–11 (2005).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Montague, J. L., Barrett, S. C. H. & Eckert, C. G. Re-establishment of clinal variation in flowering time among introduced populations of purple loosestrife (Lythrum salicaria, Lythraceae). J. Evol. Biol. 21, 234–245 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Prentis, P. J., Wilson, J. R., Dormontt, E. E., Richardson, D. M. & Lowe, A. J. Adaptive evolution in invasive species. Trends Plant Sci. 13, 288–294 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Colautti, R. I., Maron, J. L. & Barrett, S. C. Common garden comparisons of native and introduced plant populations: Latitudinal clines can obscure evolutionary inferences. Evol. Appl. 2, 187–199 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Colautti, R. I., Eckert, C. G. & Barrett, S. C. Evolutionary constraints on adaptive evolution during range expansion in an invasive plant. Proc. Roy. Soc. B 277, 1799–1806 (2010).Article 

    Google Scholar 
    64.Barrett, S. C., Colautti, R. I. & Eckert, C. G. Plant reproductive systems and evolution during biological invasion. Mol. Ecol. 17, 373–383 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Pappert, R. A., Hamrick, J. L. & Donovan, L. A. Genetic variation in Pueraria lobata (Fabaceae), an introduced, clonal, invasive plant of the southeastern United States. Am. J. Bot. 87, 1240–1245 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Duchoslav, M. & Staňková, H. Population genetic structure and clonal diversity of Allium oleraceum (Amaryllidaceae), a polyploid geophyte with common asexual but variable sexual reproduction. Folia Geobot. 50, 123–136 (2015).Article 

    Google Scholar 
    67.Nevo, E. Genetic variation in natural populations: Patterns and theory. Theor. Popul. Biol. 13, 121–177 (1978).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Gargiulo, R., Ilves, A., Kaart, T., Fay, M. F. & Kull, T. High genetic diversity in a threatened clonal species, Cypripedium calceolus (Orchidaceae), enables long-term stability of the species in different biogeographical regions in Estonia. Bot. J. Linn. Soc. 186, 560–571 (2018).Article 

    Google Scholar 
    69.Xia, L., Geng, Q. & An, S. Rapid genetic divergence of an invasive species, Spartina alterniflora, in China. Front. Genet. 11, 284 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Rosenthal, D. M., Ramakrishnan, A. P. & Cruzan, M. B. Evidence for multiple sources of invasion and intraspecific hybridization in Brachypodium sylvaticum (Hudson) Beauv, North America. Mol. Ecol. 17, 4657–4669 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Lembicz, M. et al. Microsatellite identification of ramet genotypes in a clonal plant with phalanx growth: The case of Cirsium rivulare (Asteraceae). Flora 206, 792–798 (2011).Article 

    Google Scholar 
    72.Young, A., Boyle, T. & Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11, 413–418 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Lucardi, R. D., Wallace, L. E. & Ervin, G. N. Patterns of genetic diversity in highly invasive species: Cogongrass (Imperata cylindrica) expansion in the invaded range of the southern United States (US). Plants 9, 423 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    74.Barbosa, C., Trevisan, R., Estevinho, T. F., Castellani, T. T. & Silva-Pereira, V. Multiple introductions and efficient propagule dispersion can lead to high genetic variability in an invasive clonal species. Biol. Invasions 21, 3427–3438 (2019).Article 

    Google Scholar 
    75.Hutchinson, J. Notes on the Indian species of Sambucus. Bull. Misc. Inf. 1909, 191–193 (1909).
    Google Scholar 
    76.Acharya, J. & Mukherjee, A. An account of Sambucus L. in the Himalayan regions of India. Indian J. Life Sci. 4, 77–84 (2014).
    Google Scholar 
    77.Rodgers, W. A. & Panwar, S. H. Biogeographical Classification of India (New Forest, 1988).
    Google Scholar 
    78.Shafiq, M. U., Rasool, R., Ahmed, P. & Dimri, A. P. Temperature and precipitation trends in Kashmir Valley, North Western Himalayas. Theor. Appl. Climatol. 135, 293–304 (2019).ADS 
    Article 

    Google Scholar 
    79.Clarke, J. B. & Tobutt, K. R. Development of microsatellite primers and two multiplex polymerase chain reactions for the common elder (Sambucus nigra). Mol. Ecol. Notes 6, 453–455 (2006).CAS 
    Article 

    Google Scholar 
    80.DARwin software v. 6.0. http://darwin.cirad.fr/darwin (2006).81.Gascuel, O. Concerning the NJ algorithm and its unweighted version, UNJ. Math. Hierarchies Biol. 37, 149–171 (1997).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    82.Peakall, R. O. D. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    83.Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292 (1972).Article 

    Google Scholar 
    84.Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Anderson, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D. & Sorrells, M. E. Optimizing parental selection for genetic linkage maps. Genome 36, 181–186 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Pritchard, J. K., Wen, X. & Falush, D. Documentation for STRUCTURE Software, Version 2.3 (University of Chicago, 2010).
    Google Scholar 
    87.Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    88.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Sneath, P. H. & Sokal, R. R. Numerical Taxonomy. The Principles and Practice of Numerical Classification (W.H. Freeman and Company, 1973).MATH 

    Google Scholar 
    94.Saitou, N. & Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).CAS 

    Google Scholar 
    95.Tamura, K., Nei, M. & Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. PNAS 101, 11030–11035 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series 95–98 (Information Retrieval Ltd., c1979–c2000 1999).98.Hall, T., Biosciences, I. & Carlsbad, C. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2, 60–61 (2011).
    Google Scholar  More

  • in

    Aphids harbouring different endosymbionts exhibit differences in cuticular hydrocarbon profiles that can be recognized by ant mutualists

    1.Gibbs, A. G. & Rajpurohit, S. Cuticular lipids and water balance. in Insect hydrocarbons: biology, biochemistry, and chemical ecology 100–120 (Cambridge University Press Cambridge, UK, 2010). https://doi.org/10.1017/CBO9780511711909.0072.Pedrini, N., Ortiz-Urquiza, A., Zhang, S. & Keyhani, N. O. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction. Front. Microbiol. 4, 24 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Howard, R. W. & Blomquist, G. J. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50, 371–393 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Lang, C. & Menzel, F. Lasius niger ants discriminate aphids based on their cuticular hydrocarbons. Anim. Behav. 82, 1245–1254 (2011).Article 

    Google Scholar 
    5.Sakata, I., Hayashi, M. & Nakamuta, K. Tetramorium tsushimae ants use methyl branched hydrocarbons of aphids for partner recognition. J. Chem. Ecol. 43, 966–970 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Salazar, A. et al. Aggressive mimicry coexists with mutualism in an aphid. Proc. Natl. Acad. Sci. 112, 1101–1106 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Endo, S. & Itino, T. The aphid-tending ant Lasius fuji exhibits reduced aggression toward aphids marked with ant cuticular hydrocarbons. Popul. Ecol. 54, 405–410 (2012).Article 

    Google Scholar 
    8.Endo, S. & Itino, T. Myrmecophilous aphids produce cuticular hydrocarbons that resemble those of their tending ants. Popul. Ecol. 55, 27–34 (2013).Article 

    Google Scholar 
    9.Stadler, B. & Dixon, A. F. G. Ecology and evolution of aphid-ant interactions. Annu. Rev. Ecol. Evol. Syst. 36, 345–372 (2005).Article 

    Google Scholar 
    10.Schillewaert, S. et al. The influence of facultative endosymbionts on honeydew carbohydrate and amino acid composition of the black bean aphid Aphis fabae. Physiol. Entomol. 42, 125–133 (2017).CAS 
    Article 

    Google Scholar 
    11.Oliver, K. M., Degnan, P. H., Burke, G. R. & Moran, N. A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55, 247–266 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Douglas, A. E. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17–37 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Montllor, C. B., Maxmen, A. & Purcell, A. H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189–195 (2002).Article 

    Google Scholar 
    14.Russell, J. A. & Moran, N. A. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc. R. Soc. B Biol. Sci. 273, 603–610 (2005).Article 

    Google Scholar 
    15.Wagner, S. M. et al. Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct. Ecol. 29, 1402–1410 (2015).Article 

    Google Scholar 
    16.Scarborough, C. L., Ferrari, J. & Godfray, H. C. J. Aphid protected from pathogen by endosymbiont. Science 310, 1781 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Łukasik, P., van Asch, M., Guo, H., Ferrari, J. & Godfray, H. C. J. Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol. Lett. 16, 214–218 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl. Acad. Sci. 100, 1803–1807 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Vorburger, C., Gehrer, L. & Rodriguez, P. A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol. Lett. 6, 109–111 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Vorburger, C. & Gouskov, A. Only helpful when required: a longevity cost of harbouring defensive symbionts. J. Evol. Biol. 24, 1611–1617 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Vorburger, C., Ganesanandamoorthy, P. & Kwiatkowski, M. Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecol. Evol. 3, 706–713 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Gwynn, D. M., Callaghan, A., Gorham, J., Walters, K. F. A. & Fellowes, M. D. E. Resistance is costly: trade-offs between immunity, fecundity and survival in the pea aphid. Proc. R. Soc. B Biol. Sci. 272, 1803–1808 (2005).CAS 
    Article 

    Google Scholar 
    23.Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. R. Soc. B Biol. Sci. 275, 293–299 (2008).Article 

    Google Scholar 
    24.Wernegreen, J. J. Genome evolution in bacterial endosymbionts of insects. Nat. Rev. Genet. 3, 850–861 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Degnan, P. H., Yu, Y., Sisneros, N., Wing, R. A. & Moran, N. A. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc. Natl. Acad. Sci. 106, 9063–9068 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Ankrah, N. Y. D., Luan, J. & Douglas, A. E. Cooperative metabolism in a three-partner insect-bacterial symbiosis revealed by metabolic modeling. J. Bacteriol. 199, e00872-e916 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Herren, J. K. et al. Insect endosymbiont proliferation is limited by lipid availability. Elife 3, e02964 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Hamilton, R. J. Waxes: Chemistry, Molecular Biology and Functions (Insect Waxes. Oily Press, 1995).
    Google Scholar 
    29.Blailock, T. T., Blomquist, G. J. & Jackson, L. L. Biosynthesis of 2-methylalkanes in the crickets: Nemobiusfasciatus and Grylluspennsylvanicus. Biochem. Biophys. Res. Commun. 68, 841–849 (1976).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Engl, T. et al. Effect of antibiotic treatment and gamma-irradiation on cuticular hydrocarbon profiles and mate choice in tsetse flies (Glossina m. morsitans). BMC Microbiol. 18, 145 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Engl, T. et al. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol. Ecol. 27, 2095–2108 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Schneider, D. I. et al. Symbiont-driven male mating success in the Neotropical Drosophila paulistorum superspecies. Behav. Genet. 49, 83–98 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.de Souza, D. J., Devers, S. & Lenoir, A. Blochmannia endosymbionts and their host, the ant Camponotus fellah: cuticular hydrocarbons and melanization. C. R. Biol. 334, 737–741 (2011).Article 
    CAS 

    Google Scholar 
    34.Richard, F.-J. Symbiotic bacteria influence the odor and mating preference of their hosts. Front. Ecol. Evol. 5, 143 (2017).Article 

    Google Scholar 
    35.Fischer, M. K. & Shingleton, A. W. Host plant and ants influence the honeydew sugar composition of aphids. Funct. Ecol. 15, 544–550 (2001).Article 

    Google Scholar 
    36.Yao, I. & Akimoto, S. Ant attendance changes the sugar composition of the honeydew of the drepanosiphid aphid Tuberculatus quercicola. Oecologia 128, 36–43 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Yao, I. & Akimoto, S. Flexibility in the composition and concentration of amino acids in honeydew of the drepanosiphid aphid Tuberculatus quercicola. Ecol. Entomol. 27, 745–752 (2002).Article 

    Google Scholar 
    38.Offenberg, J. Balancing between mutualism and exploitation: the symbiotic interaction between Lasius ants and aphids. Behav. Ecol. Sociobiol. 49, 304–310 (2001).Article 

    Google Scholar 
    39.Stadler, B. & Dixon, A. F. G. Ant attendance in aphids: why different degrees of myrmecophily?. Ecol. Entomol. 24, 363–369 (1999).Article 

    Google Scholar 
    40.Vantaux, A., Van den Ende, W., Billen, J. & Wenseleers, T. Large interclone differences in melezitose secretion in the facultatively ant-tended black bean aphid Aphis fabae. J. Insect. Physiol. 57, 1614–1621 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Moran, N. A., Russell, J. A., Koga, R. & Fukatsu, T. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl. Environ. Microbiol. 71, 3302–3310 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Molloy, J. C., Sommer, U., Viant, M. R. & Sinkins, S. P. Wolbachia modulates lipid metabolism in Aedes albopictus mosquito cells. Appl. Environ. Microbiol. 82, 3109–3120 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Paredes, J. C., Herren, J. K., Schüpfer, F. & Lemaitre, B. The role of lipid competition for endosymbiont-mediated protection against parasitoid wasps in Drosophila. MBio 7, e01006-e1016 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Chung, H. & Carroll, S. B. Wax, sex and the origin of species: dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37, 822–830 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Bos, N. et al. Learning and perceptual similarity among cuticular hydrocarbons in ants. J. Insect Physiol. 58, 138–146 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.van Wilgenburg, E. et al. Learning and discrimination of cuticular hydrocarbons in a social insect. Biol. Lett. 8, 17–20 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Oberhauser, F. B., Koch, A. & Czaczkes, T. J. Small differences in learning speed for different food qualities can drive efficient collective foraging in ant colonies. Behav. Ecol. Sociobiol. 72, 164 (2018).Article 

    Google Scholar 
    48.Erickson, D. M., Wood, E. A., Oliver, K. M., Billick, I. & Abbot, P. The effect of ants on the population dynamics of a protective symbiont of aphids, Hamiltonella defensa. Ann. Entomol. Soc. Am. 105, 447–453 (2012).Article 

    Google Scholar 
    49.Schmidt, M. H. et al. Relative importance of predators and parasitoids for cereal aphid control. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 270, 1905–1909 (2003).Article 

    Google Scholar 
    50.Łukasik, P., Dawid, M. A., Ferrari, J. & Godfray, H. C. J. The diversity and fitness effects of infection with facultative endosymbionts in the grain aphid, Sitobion avenae. Oecologia 173, 985–996 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Oliver, K. M. et al. Parasitic wasp responses to symbiont-based defense in aphids. BMC Biol. 10, 11 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Dennis, A. B., Patel, V., Oliver, K. M. & Vorburger, C. Parasitoid gene expression changes after adaptation to symbiont-protected hosts. Evolution 71, 2599–2617 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Guo, J. et al. Nine facultative endosymbionts in aphids, a review. J. Asia. Pac. Entomol. 20, 794–801 (2017).Article 

    Google Scholar 
    54.Vorburger, C., Sandrock, C., Gouskov, A., Castañeda, L. E. & Ferrari, J. Genotypic variation and the role of defensive endosymbionts in an all-parthenogenetic host–parasitoid interaction. Evol. Int. J. Org. Evol. 63, 1439–1450 (2009).Article 

    Google Scholar 
    55.Carlson, D. A., Bernier, U. R. & Sutton, B. D. Elution patterns from capillary GC for methyl-branched alkanes. J. Chem. Ecol. 24, 1845–1865 (1998).CAS 
    Article 

    Google Scholar 
    56.Katritzky, A. R., Chen, K., Maran, U. & Carlson, D. A. QSPR correlation and predictions of GC retention indexes for methyl-branched hydrocarbons produced by insects. Anal. Chem. 72, 101–109 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.R Core Team. R: A Language and Environment for Statistical Computing. (2019).58.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley Statsref. Stat. Ref. https://doi.org/10.1002/9781118445112.stat07841 (2014).Article 

    Google Scholar 
    61.Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing?. Ecol. Monogr. 83, 557–574 (2013).Article 

    Google Scholar 
    62.Arbizu, P. M. pairwiseAdonis: Pairwise Multilevel Comparison using Adonis (2017).63.Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47–e47 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    A question of the sexes

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    UAV reveals substantial but heterogeneous effects of herbivores on Arctic vegetation

    1.Atkins, J. L. et al. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364, 173–177 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Schmitz, O. J. Herbivory from individuals to ecosystems. Annu. Rev. Ecol. Evol. Syst. 39, 133–152 (2008).Article 

    Google Scholar 
    5.Adler, P., Raff, D. & Lauenroth, W. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 128, 465–479 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Olff, H. & Ritchie, M. E. Effects of herbivores on grassland plant diversity. Trends Ecol. Evol. 13, 261–265 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Weeber, J., Hempson, G. P. & February, E. C. Large herbivore conservation in a changing world: Surface water provision and adaptability allow wildebeest to persist after collapse of long-range movements. Glob. Change Biol. 26, 2841–2853 (2020).ADS 
    Article 

    Google Scholar 
    8.Senft, R. L., Rittenhouse, L. R. & Woodmansee, R. G. Factors influencing patterns of cattle grazing behavior on shortgrass steepe. Rangel. Ecol. Manag. Range Manag. Arch. 38, 82–87 (1985).
    Google Scholar 
    9.McNaughton, S. J., Banyikwa, F. F. & McNaughton, M. M. Promotion of the cycling of diet-enhancing nutrients by African grazers. Science 278, 1798–1800 (1997).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Olofsson, J., De Mazancourt, C. & Crawley, M. J. Spatial heterogeneity and plant species richness at different spatial scales under rabbit grazing. Oecologia 156, 825–834 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Oksanen, L., Fretwell, S. D., Arruda, J. & Niemela, P. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118, 240–261 (1981).Article 

    Google Scholar 
    13.Oksanen, T. et al. The impact of thermal seasonality on terrestrial endotherm food web dynamics: A revision of the Exploitation Ecosystem Hypothesis. Ecography 43, 1859–1877 (2020).Article 

    Google Scholar 
    14.Fine, P. V. et al. The growth–defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87, S150–S162 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    16.Oliver, T., Roy, D. B., Hill, J. K., Brereton, T. & Thomas, C. D. Heterogeneous landscapes promote population stability. Ecol. Lett. 13, 473–484 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Siewert, M. B. & Olofsson, J. Scale-dependency of Arctic ecosystem properties revealed by UAV. Environ. Res. Lett. 15, 094030 (2020).ADS 
    Article 

    Google Scholar 
    18.Siewert, M. B. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: A case study in a sub-Arctic peatland environment. Biogeosciences 15, 1663–1682 (2018).ADS 
    Article 

    Google Scholar 
    19.Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Newton, E. J., Pond, B. A., Brown, G. S., Abraham, K. F. & Schaefer, J. A. Remote sensing reveals long-term effects of caribou on tundra vegetation. Polar Biol. 37, 715–725 (2014).Article 

    Google Scholar 
    21.Eklundh, L., Johansson, T. & Solberg, S. Mapping insect defoliation in Scots pine with MODIS time-series data. Remote Sens. Environ. 113, 1566–1573 (2009).ADS 
    Article 

    Google Scholar 
    22.Ehrich, D. et al. Documenting lemming population change in the Arctic: Can we detect trends?. Ambio https://doi.org/10.1007/s13280-019-01198-7 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Olofsson, J., Tømmervik, H. & Callaghan, T. V. Vole and lemming activity observed from space. Nat. Clim. Change 2, 880–883 (2012).ADS 
    Article 

    Google Scholar 
    24.Hambäck, P. A., Schneider, M. & Oksanen, T. Winter herbivory by voles during a population peak: The relative importance of local factors and landscape pattern. J. Anim. Ecol. 67, 544–553 (1998).Article 

    Google Scholar 
    25.Siewert, M. B. et al. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution: Ecosystem carbon in taiga and tundra. J. Geophys. Res. Biogeosciences 120, 1973–1994 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Virtanen, T. & Ek, M. The fragmented nature of tundra landscape. Int. J. Appl. Earth Obs. Geoinf. 27(Part A), 4–12 (2014).ADS 
    Article 

    Google Scholar 
    27.Siewert, M. B., Lantuit, H., Richter, A. & Hugelius, G. Permafrost causes unique fine-scale spatial variability across tundra soils. Glob. Biogeochem. Cycles 35, e2020GB006659 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Koh, L. P. & Wich, S. A. Dawn of drone ecology: Low-cost autonomous aerial vehicles for conservation. Trop. Conserv. Sci. 5, 121–132 (2012).Article 

    Google Scholar 
    29.Assmann, J. J., Kerby, J. T., Cunliffe, A. M. & Myers-Smith, I. H. Vegetation monitoring using multispectral sensors—best practices and lessons learned from high latitudes. J. Unmanned Veh. Syst. 7, 54–75 (2018).Article 

    Google Scholar 
    30.Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933 (2001).Article 

    Google Scholar 
    31.Barrio, I. C. et al. Herbivory network: An international, collaborative effort to study herbivory in Arctic and alpine ecosystems. Polar Sci. 10, 297–302 (2016).ADS 
    Article 

    Google Scholar 
    32.Siewert, M. B., Hugelius, G., Heim, B. & Faucherre, S. Landscape controls and vertical variability of soil organic carbon storage in permafrost-affected soils of the Lena River Delta. CATENA 147, 725–741 (2016).CAS 
    Article 

    Google Scholar 
    33.Olofsson, J. et al. Long-term experiments reveal strong interactions between lemmings and plants in the fennoscandian highland tundra. Ecosystems 17, 606–615 (2014).Article 

    Google Scholar 
    34.Virtanen, R., Parviainen, J. & Henttonen, H. Winter grazing by the Norwegian lemming (Lemmus lemmus) at Kilpisjärvi (NW Finnish Lapland) during a moderate population peak. Ann. Zool. Fenn. 39, 335–341 (2002).
    Google Scholar 
    35.Johnson, D. R. et al. Exclusion of brown lemmings reduces vascular plant cover and biomass in Arctic coastal tundra: resampling of a 50 $mathplus$ year herbivore exclosure experiment near Barrow, Alaska. Environ. Res. Lett. 6, 045507 (2011).Article 

    Google Scholar 
    36.Petit Bon, M. et al. Interactions between winter and summer herbivory affect spatial and temporal plant nutrient dynamics in tundra grassland communities. Oikos 129, 1229–1242 (2020).CAS 
    Article 

    Google Scholar 
    37.Virtanen, R., Henttonen, H. & Laine, K. Lemming grazing and structure of a snowbed plant community: A long-term experiment at Kilpisjärvi, Finnish Lapland. Oikos 79, 155–166 (1997).Article 

    Google Scholar 
    38.Domine, F. et al. Snow physical properties may be a significant determinant of lemming population dynamics in the high Arctic. Arct. Sci. 4, 813–826 (2018).Article 

    Google Scholar 
    39.Aunapuu, M. et al. Spatial patterns and dynamic responses of arctic food webs corroborate the exploitation ecosystems hypothesis (EEH). Am. Nat. 171, 249–262 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Hoset, K. S., Kyrö, K., Oksanen, T., Oksanen, L. & Olofsson, J. Spatial variation in vegetation damage relative to primary productivity, small rodent abundance and predation. Ecography 37, 894–901 (2014).Article 

    Google Scholar 
    41.Hoset, K. S. et al. Changes in the spatial configuration and strength of trophic control across a productivity gradient during a massive rodent outbreak. Ecosystems 20, 1421–1435 (2017).Article 

    Google Scholar 
    42.Lindén, E., Gough, L. & Olofsson, J. Large and small herbivores have strong effects on tundra vegetation in Scandinavia and Alaska. Ecol. Evol. 11, 12141–12152 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Fulton, E. A., Blanchard, J. L., Melbourne-Thomas, J., Plagányi, É. E. & Tulloch, V. J. D. Where the ecological gaps remain, a Modelers’ perspective. Front. Ecol. Evol. 7, 424 (2019).Article 

    Google Scholar 
    44.Owen-Smith, N., Fryxell, J. M. & Merrill, E. H. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philos. Trans. R. Soc. B Biol. Sci. 365, 2267–2278 (2010).CAS 
    Article 

    Google Scholar 
    45.Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).ADS 
    Article 

    Google Scholar 
    46.Street, L. E., Shaver, G. R., Williams, M. & Van Wijk, M. T. What is the relationship between changes in canopy leaf area and changes in photosynthetic CO2 flux in arctic ecosystems?. J. Ecol. 95, 139–150 (2007).Article 

    Google Scholar 
    47.Morris, D. W., Dupuch, A. & Halliday, W. D. Climate-induced habitat selection predicts future evolutionary strategies of lemmings. Evol. Ecol. Res. 14, 689–705 (2012).
    Google Scholar 
    48.Kausrud, K. L. et al. Linking climate change to lemming cycles. Nature 456, 93–97 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Cunliffe, A. M., Assmann, J. J., Daskalova, G., Kerby, J. T. & Myers-Smith, I. H. Aboveground biomass corresponds strongly with drone-derived canopy height but weakly with greenness (NDVI) in a shrub tundra landscape. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aba470 (2020).Article 

    Google Scholar 
    50.Myllymäki, A., Paasikallio, A., Pankakoski, E. & Kanervo, V. Removal experiments on small quadrats as a means of rapid assessment of the abundance of small mammals. Ann. Zool. Fenn. 8, 177–185 (1971).
    Google Scholar 
    51.Inglada, J. & Christophe, E. The Orfeo Toolbox remote sensing image processing software. In 2009 IEEE International Geoscience and Remote Sensing Symposium vol. 4 IV–733 (IEEE, 2009).52.Leutner, B., Horning, N., Schwalb-Willmann, J. & Hijmans, R. J. RStoolbox: Tools for remote sensing data analysis. R Package Version 026 7, 1991–2007 (2019).
    Google Scholar 
    53.Conrad, O. et al. System for automated geoscientific analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 8, 1991–2007 (2015).ADS 
    Article 

    Google Scholar 
    54.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 
    Article 

    Google Scholar 
    55.Hussain, M., Chen, D., Cheng, A., Wei, H. & Stanley, D. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 80, 91–106 (2013).ADS 
    Article 

    Google Scholar 
    56.Tewkesbury, A. P., Comber, A. J., Tate, N. J., Lamb, A. & Fisher, P. F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 160, 1–14 (2015).ADS 
    Article 

    Google Scholar 
    57.Hijmans, R. J. et al. raster: Geographic Data Analysis and Modeling. (2020).58.Pebesma, E. & Graeler, B. gstat: Spatial and Spatio-Temporal Geostatistical Modelling, Prediction and Simulation. (2020).59.Fortin, M.-J. & Dale, M. R. T. Spatial Autocorrelation. In The SAGE Handbook of Spatial Analysis 88–103 (SAGE Publications, Ltd, 2009). https://doi.org/10.4135/9780857020130.n6.60.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).61.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2020). http://qgis.osgeo.org. Accessed 12 Sept 2020 More

  • in

    Tracking forest loss and fragmentation between 1930 and 2020 in Asian elephant (Elephas maximus) range in Nepal

    1.Lambin, E. F. et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 11, 261–269 (2001).Article 

    Google Scholar 
    2.Lawler, J. J. et al. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 111, 7492–7497 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Bongaarts, J. IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services. Population and Development Review vol. 45 (2019).4.Pardini, R. OBSOLETE: Fragmentation and habitat loss. Ref. Modul. Earth Syst. Environ. Sci. 2, 10–11. https://doi.org/10.1016/b978-0-12-409548-9.09824-9 (2018).Article 

    Google Scholar 
    5.Anthony, B. & Wasambo, J. Human-wildlife conflict study report. Human Wildl. Confl. Stud. Rep. 2, 55 (2009).
    Google Scholar 
    6.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article 

    Google Scholar 
    7.Collinge, S. K. Ecological consequences of habitat fragmentation: Implications for landscape architecture and planning. Landsc. Urban Plan. 36, 59–77 (1996).Article 

    Google Scholar 
    8.Pierri-Daunt, A. B. & Tanaka, M. O. Assessing habitat fragmentation on marine epifaunal macroinvertebrate communities: An experimental approach. Landsc. Ecol. 29, 17–28 (2014).Article 

    Google Scholar 
    9.Fahrig, L. et al. Is habitat fragmentation bad for biodiversity?. Biol. Conserv. 230, 179–186 (2019).Article 

    Google Scholar 
    10.Bustamante, R. O., Serey, I. A. & Pickett, S. T. A. Forest fragmentation, plant regeneration and invasion processes across edges in Central Chile. In How Landscapes Change Ecological Studies (Analysis and Synthesis), 162 (eds Bradshaw, G. A. & Marquet, P. A.) 145–160 (Springer, 2003).
    Google Scholar 
    11.Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 1–6 (2015).Article 
    CAS 

    Google Scholar 
    12.Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Symes, W. S., Edwards, D. P., Miettinen, J., Rheindt, F. E. & Carrasco, L. R. Combined impacts of deforestation and wildlife trade on tropical biodiversity are severely underestimated. Nat. Commun. 9, 20 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    14.Singh, S. et al. Modeling the spatial dynamics of deforestation and fragmentation using multi-layer perceptron neural network and landscape fragmentation tool. Ecol. Eng. 99, 543–551 (2017).Article 

    Google Scholar 
    15.Bustamante, R. O. & Simonetti, J. A. Is Pinus radiata invading the native vegetation in Central Chile? Demographic responses in a fragmented forest. Biol. Invas. 7, 243–249 (2005).Article 

    Google Scholar 
    16.Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl. Acad. Sci. USA 114, 10678–10683 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Cardillo, M. et al. Evolution: Multiple causes of high extinction risk in large mammal species. Science (80–) 309, 1239–1241 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Woodroffe, R., Thirgood, S. & Rabinowitz, A. People and Wildlife: Conflict or Coexistence (Cambridge University Press, 2005).Book 

    Google Scholar 
    19.Goswami, V. R. et al. Community-managed forests and wildlife-friendly agriculture play a subsidiary but not substitutive role to protected areas for the endangered Asian elephant. Biol. Conserv. 177, 74–81 (2014).Article 

    Google Scholar 
    20.Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O. & Brashares, J. S. Accelerated human population growth at protected area edges. Science (80–) 321, 123–126 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Shaffer, L. J., Khadka, K. K., Van Den Hoek, J. & Naithani, K. J. Human-elephant conflict: A review of current management strategies and future directions. Front. Ecol. Evol. 6, 58 (2019).Article 

    Google Scholar 
    22.Desai, A. A. & Riddle, H. S. Human–Elephant Conflict in Asia. (2015).23.Thouless, C. R. et al. African elephant status report 2016: An update from the African elephant database. Occasional paper series of the IUCN Species Survival Commission. IUCN Species Survical Commun. 4, 309 (2016).
    Google Scholar 
    24.Leimgruber, P. et al. Fragmentation of Asia’s remaining wildlands: Implications for Asian elephant conservation. Anim. Conserv. 6, 347–359 (2003).Article 

    Google Scholar 
    25.Koirala, R. K., Raubenheimer, D., Aryal, A., Pathak, M. L. & Ji, W. Feeding preferences of the Asian elephant (Elephas maximus) in Nepal. BMC Ecol. 16, 1–9 (2016).Article 

    Google Scholar 
    26.Sukumar, R. A brief review of the status, distribution and biology of wild Asian elephants Elephas maximus. Int. Zoo Yearb. 40, 1–8 (2006).Article 

    Google Scholar 
    27.Baskaran, N. Ranging and Resource Use by Asian elephant in Nilgiri Biosphere Reserve Southern India. (1998).28.Branco, P. S. et al. Determinants of elephant foraging behaviour in a coupled human-natural system: Is brown the new green?. J. Anim. Ecol. 88, 780–792 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Fernando, P. et al. Ranging behavior of the Asian elephant in Sri Lanka. Mamm. Biol. 73, 2–13 (2008).Article 

    Google Scholar 
    30.Naha, D. et al. Landscape predictors of human–leopard conflicts within multi-use areas of the Himalayan region. Sci. Rep. 10, 20 (2020).Article 
    CAS 

    Google Scholar 
    31.DNPWC. The Elephant Conservation Action Plan for Nepal. (2009).32.Ram, A. K. Status distribution and habitat use by Asian elephants in Nepal. (2020).33.ten Velde, P. A Status Report of Nepal’s Wild Elephant Population. (1997).34.Ram, A. K. et al. Patterns and determinants of Elephant attacks on humans in Nepal. Ecol. Evol. 11, 11639–11650. https://doi.org/10.1002/ece3.7796 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Wikramanayake, E. et al. Designing a conservation landscape for tigers in human-dominated environments. Conserv. Biol. 18, 839–844 (2004).Article 

    Google Scholar 
    36.Smith, J. L. D. & Mishra, H. R. Status and distribution of Asian elephants in Central Nepal. Oryx 26, 10–14 (1992).Article 

    Google Scholar 
    37.Shrestha, M. N., Shrestha, K. . & Dhakal, T. R. Hatti byabasthapan yojana tarujma pratibedan (Report on Planning for Elephant Management). Kathmandu: Janchbujh kendra bibhag raj durbar (Department Investigation Center, Nepali Royal Palace (in Nepali version). (HMGN palace investigation centre, Principal Secretariat of His Majesty King, Royal Palace, Kathmandu, Nepal (in Nepali version), 1985).38.Kharel, F. R. The challenge of managing domesticated Asian elephants in Nepal. in Giants on our Hands (Proceedings of the international workshop on the domesticated Asian elehant) 103–103 (FAO Regional Office for Asia and the Pacific of United Nations, Maliwan Mansion Phra Atit Road, Bangkok 10200 Thailand, 2002).39.Gee, E. P. Report on a Survey of Rhinoceros Area of Nepal, prepared for the survival service commission of the International Union for the Conservation of Nature and Natural resources. (1959).40.MoFSC. Strategy and Action Plan 2015–2025 for Terai Arc landscape, Nepal. (2015).41.Subedi, N. et al. Progress Report on Faunal Biodiversity Assessment in Chure Range of Nepal. (President Chure-Terai Madhesh Conservation Development Board and National Trust for Nature Conservation, Khumaltar, Lalitpur, 2021).42.DFRS. State of Nepal’s Forests. Forest Resource Assessment (FRA) Nepal, Department of Forest Research and Survey (DFRS). Kathmandu, Nepal. (Ministry of Forest and Soil Conservation, Nepal, 2015). 978-9937-8896-3-6.43.Reddy, C. S. et al. Assessment and monitoring of deforestation and forest fragmentation in South Asia since the 1930s. Glob. Planet. Change 161, 132–148 (2018).ADS 
    Article 

    Google Scholar 
    44.Reddy, S. C. et al. Quantifying nationwide land cover and historical changes in forests of Nepal (1930–2014): Implications on forest fragmentation. Biodivers. Conserv. 27, 91–107 (2018).Article 

    Google Scholar 
    45.Aulestia, M. J. S. Understanding land use and land cover dynamics in the Chure region of Nepal: Integrating physiographic, socio-economic and policy drivers. (2019).46.Laurie, A. The Ecology and Behaviour of the Greater One-Horned Rhinoceros, a dissertation submitted to the University of Cambridge for the degree of Doctor of Philosophy. Behaviour (1978).47.Rimal, S., Adhikari, H. & Tripathi, S. Habitat suitability and threat analysis of Greater One-horned Rhinoceros Rhinoceros unicornis Linnaeus, 1758 (Mammalia: Perissodactyla: Rhinocerotidae) in Rautahat District, Nepal. J. Threat. Taxa 10, 11999–12007 (2018).Article 

    Google Scholar 
    48.Peh, K. S. H. Invasive species in Southeast Asia: The knowledge so far. Biodivers. Conserv. 19, 1083–1099 (2010).Article 

    Google Scholar 
    49.Lamichhane, B. R. et al. Using interviews and biological sign surveys to infer seasonal use of forested and agricultural portions of a human-dominated landscape by Asian elephants in Nepal. Ethol. Ecol. Evol. 30, 331–347 (2018).Article 

    Google Scholar 
    50.Acharya, K. P., Paudel, P. K., Neupane, P. R. & Köhl, M. Human-wildlife conflicts in Nepal: Patterns of human fatalities and injuries caused by large mammals. PLoS One 11, 1–18 (2016).
    Google Scholar 
    51.Carter, N. H., Shrestha, B. K., Karki, J. B., Pradhan, N. M. B. & Liu, J. Coexistence between wildlife and humans at fine spatial scales. Proc. Natl. Acad. Sci. USA 109, 15360–15365 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Choudhury, A. Human-Elephant conflicts in northeast India. Hum. Dimens. Wildl. 9, 261–270 (2004).Article 

    Google Scholar 
    53.Reddy, C. S., Sreelekshmi, S., Jha, C. S. & Dadhwal, V. K. National assessment of forest fragmentation in India: Landscape indices as measures of the effects of fragmentation and forest cover change. Ecol. Eng. 60, 453–464 (2013).Article 

    Google Scholar 
    54.Puyravaud, J. P. Standardizing the calculation of the annual rate of deforestation. For. Ecol. Manag. 177, 593–596 (2003).Article 

    Google Scholar 
    55.Puyravaud, J. P., Gubbi, S., Poornesha, H. C. & Davidar, P. Deforestation increases frequency of incidents with elephants (Elephas maximus). Trop. Conserv. Sci. 12, 20 (2019).Article 

    Google Scholar 
    56.Puyravaud, J. P., Davidar, P. & Laurance, W. F. Cryptic destruction of India’s native forests. Conserv. Lett. 3, 390–394 (2010).Article 

    Google Scholar 
    57.Sampson, C. et al. Effects of illegal grazing and invasive Lantana camara on Asian elephant habitat use. Biol. Conserv. 220, 50–59 (2018).Article 

    Google Scholar 
    58.Roever, C. L., van Aarde, R. J. & Leggett, K. Functional responses in the habitat selection of a generalist mega-herbivore, the African savannah elephant. Ecography (Cop.) 35, 972–982 (2012).Article 

    Google Scholar 
    59.Liu, P., Wen, H., Lin, L., Liu, J. & Zhang, L. Habitat evaluation for Asian elephants (Elephas maximus) in Lincang: Conservation planning for an extremely small population of elephants in China. Biol. Conserv. 198, 113–121 (2016).Article 

    Google Scholar 
    60.Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, 2 (2015).Article 

    Google Scholar 
    61.Sukumar, R. The Asian Elephant: Ecology and Management Vol 8 254 (Cambridge University Press, 1989).
    Google Scholar 
    62.Desai, A. A. & Baskaran, N. Impact of human activities on the ranging behaviour of elephants in the Nilgiri biosphere Reserve, South India. Bombay Nat. Hist. Soc. 93, 25 (1996).
    Google Scholar 
    63.Smit, I. P. J., Grant, C. C. & Devereux, B. J. Do artificial waterholes influence the way herbivores use the landscape? Herbivore distribution patterns around rivers and artificial surface water sources in a large African savanna park. Biol. Conserv. 136, 85–99 (2007).Article 

    Google Scholar 
    64.Smit, I. P. J., Grant, C. C. & Whyte, I. J. Landscape-scale sexual segregation in the dry season distribution and resource utilization of elephants in Kruger National Park, South Africa: Biodiversity research. Divers. Distrib. 13, 225–236 (2007).Article 

    Google Scholar 
    65.Birkett, P. J., Vanak, A. T., Muggeo, V. M. R., Ferreira, S. M. & Slotow, R. Animal perception of seasonal thresholds: Changes in elephant movement in relation to rainfall patterns. PLoS One 7, 25 (2012).
    Google Scholar 
    66.Wilson, S., Davies, T. E., Hazarika, N. & Zimmermann, A. Understanding spatial and temporal patterns of human-elephant conflict in Assam, India. Oryx https://doi.org/10.1017/S0030605313000513 (2015).Article 

    Google Scholar 
    67.Neupane, D., Kunwar, S., Bohara, A. K., Risch, T. S. & Johnson, R. L. Willingness to pay for mitigating human-elephant conflict by residents of Nepal. J. Nat. Conserv. 36, 65–76 (2017).Article 

    Google Scholar 
    68.Neupane, D., Kwon, Y., Risch, T. S., Williams, A. C. & Johnson, R. L. Habitat use by Asian elephants: Context matters. Glob. Ecol. Conserv. 17, e00570 (2019).Article 

    Google Scholar 
    69.Goswami, V. R., Medhi, K., Nichols, J. D. & Oli, M. K. Mechanistic understanding of human-wildlife conflict through a novel application of dynamic occupancy models. Conserv. Biol. 29, 1100–1110 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Reddy, C. S. et al. Conservation priorities of forest ecosystems: Evaluation of deforestation and degradation hotspots using geospatial techniques. Ecol. Eng. 91, 2 (2016).Article 

    Google Scholar 
    71.Nandy, S., Kushwaha, S. P. S. & Dadhwal, V. K. Forest degradation assessment in the upper catchment of the river Tons using remote sensing and GIS. Ecol. Indic. 11, 509–513 (2011).Article 

    Google Scholar 
    72.Suba, R. B. et al. Rapid expansion of oil palm is leading to human–elephant conflicts in north Kalimantan province of Indonesia. Trop. Conserv. Sci. 10, 25 (2017).Article 

    Google Scholar 
    73.Naha, D., Sathyakumar, S., Dash, S., Chettri, A. & Rawat, G. S. Assessment and prediction of spatial patterns of human-elephant conflicts in changing land cover scenarios of a human-dominated landscape in North Bengal. PLoS One 14, 25 (2019).
    Google Scholar 
    74.Laudari, H. K., Aryal, K. & Maraseni, T. A postmortem of forest policy dynamics of Nepal. Land Use Policy 91, 25 (2020).Article 

    Google Scholar 
    75.Gee, E. P. Report on a brief survey of the wild life resources of Nepal, including the rhinoceros. Oryx 7, 67–76 (1963).Article 

    Google Scholar 
    76.Kanel, K. R. & Acharya, D. P. Re-Inventing Forestry Agencies: Institutional Innovation to Support Community Forestry in Nepal. Re-Inventing Forestry Agencies: Experiences of Institutional Restructuring in Asia and the Pacific vol. 4 (FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS REGIONAL OFFICE FOR ASIA AND THE PACIFIC Bangkok, 2008, 2008).77.Dahal, G. R., Pokharel, B. K., Khanal, D. R. & Pokhrel, P. R. A framework for classifying subsistence production types of Nepal. J. For. Livelih. 15, 15–26 (2017).Article 

    Google Scholar 
    78.Ranjit, Y. History of forest management in Nepal: An analysis of political and economic perspective. Econ. J. Nepal 42, 12–28 (2019).Article 

    Google Scholar 
    79.Adhikari, J. & Dhungana, H. The state and forest resources: An historical analysis of policies affecting forest management in the Nepalese Tarai. Himal. J. Assoc. Nepal Himal. Stud. 29, 43–56 (2010).
    Google Scholar 
    80.Ram, A.K. & Acharya, H. Status distribution and habitat use by Asian elephants in Nepal. In A Compendium of Conservation Bulletien. 155–160 (Department of National Parks and Wildlife Conservation, Nepal, 2020).81.GoN/PCTMCDB. President Chure-Tarai Madhesh Conservation and Management Master Plan. (2017).82.Chaudhary, B. et al. Detailed Final Report Report with Major Findings (Part-I). 1–19 (2018).83.CBS. National Population Census. Central Bureau of Statistics Vol. 08, 2014 (Central Bureau of Statistics Ramshah Path, 2011).
    Google Scholar 
    84.Hamilton, A. C. & Radford, E. A. Identification and Conservation of Impeortant Plant Areas for Medicinal Plants in the Himalaya. Project and Workshop Report (Plantlife International, Salisbury, UK) and Ethnobotanical Society of Nepal (Kathmandu, Nepal, 2007).85.Chaudhary, R. P., Uprety, Y. & Rimal, S. K. Deforestation in Nepal: Causes, consequences, and responses. Biol. Environ. Hazards Risks Disast. 20, 20. https://doi.org/10.1016/B978-0-12-394847-2.00020-6 (2016).Article 

    Google Scholar 
    86.Neupane, D., Johnson, R. L. & Risch, T. S. How do land-use practices affect human–elephant conflict in Nepal?. Wildl. Biol. 17, wlb.00313 (2017).Article 

    Google Scholar 
    87.Acharya, K. P., Paudel, P. K., Jnawali, S. R., Neupane, P. R. & Köhl, M. Can forest fragmentation and configuration work as indicators of human–wildlife conflict? Evidences from human death and injury by wildlife attacks in Nepal. Ecol. Indic. 80, 74–83 (2017).Article 

    Google Scholar 
    88.DNPWC. Elephant Conservation Action Plan of Nepal (2010–2019). 1–30 (2010).89.Wilcove, D. S., McLellan, C. H. & Dobson, A. P. Habitat fragmentation in the temperate zone. In Conservation Biology 237–256 (The Science of Scarcity and Diversity, 1986).
    Google Scholar 
    90.FAO. State of the World’s Forests. Food and Agriculture Organization of The United Nations, Rome (2014).91.Padalia, H. et al. Assessment of historical forest cover loss and fragmentation in Asian elephant ranges in India. Environ. Monit. Assess. 191, 25 (2019).Article 

    Google Scholar 
    92.Sudhakar Reddy, C. et al. Quantification and monitoring of deforestation in India over eight decades (1930–2013). Biodivers. Conserv. 25, 93–116 (2016).Article 

    Google Scholar 
    93.Kaim, D. et al. Broad scale forest cover reconstruction from historical topographic maps. Appl. Geogr. 67, 39–48 (2016).Article 

    Google Scholar 
    94.Kaim, D. et al. Uncertainty in historical land-use reconstructions with topographic maps. Quaest. Geogr. 33, 55–63 (2014).Article 

    Google Scholar 
    95.Gorelick, N. et al. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 
    Article 

    Google Scholar 
    96.Wang, Y. et al. Mapping tropical disturbed forests using multi-decadal 30 m optical satellite imagery. Remote Sens. Environ. 221, 474–488 (2019).ADS 
    Article 

    Google Scholar 
    97.Huang, H. et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 202, 166–176 (2017).ADS 
    Article 

    Google Scholar 
    98.Midekisa, A. et al. Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PLoS One 12, 1–15 (2017).
    Google Scholar 
    99.Zurqani, H. A., Post, C. J., Mikhailova, E. A., Schlautman, M. A. & Sharp, J. L. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 69, 175–185 (2018).ADS 
    Article 

    Google Scholar 
    100.Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M. & Rigol-Sanchez, J. P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 67, 93–104 (2012).ADS 
    Article 

    Google Scholar 
    101.ESRI. ArcGIS Desktop105 (ESRI, 2016).
    Google Scholar 
    102.Elkie, P., Rempel, R. & Carr, A. Patch Analyst User’s Manual. Ont. Min. Natur. Resour. Northwest Sci. & Technol. Thunder Bay, Ont. TM-002, 16. (1999).103.Vogt, P. et al. Mapping spatial patterns with morphological image processing. Landsc. Ecol. 22, 171–177 (2007).Article 

    Google Scholar 
    104.Dutta, K., Sudhakar Reddy, C., Sharma, S. & Jha, C. S. Quantification and monitoring of forest cover changes in Agasthyamalai Biosphere Reserve, Western Ghats, India (1920–2012). Curr. Sci. 110, 508–520 (2016).Article 

    Google Scholar 
    105.Shapiro, A. C., Aguilar-Amuchastegui, N., Hostert, P. & Bastin, J. F. Using fragmentation to assess degradation of forest edges in Democratic Republic of Congo. Carbon Balance Manag. 11, 25 (2016).Article 
    CAS 

    Google Scholar  More