More stories

  • in

    Quantitative assessment of multiple fish species around artificial reefs combining environmental DNA metabarcoding and acoustic survey

    Study site, field survey, and in situ filtration
    The field survey was performed in Tateyama Bay (34° 60′ N, 139° 48′ E), central Japan, in the proximity of the Kuroshio warm current facing the Pacific Ocean (Fig. 1). This area has many artificial reefs (ARs) created to improve fishing efficiency for fishers. Among the ARs, we focused on one high-rise steel AR (AR1), with a height of 30 m, where fish tended to aggregate (Fig. 1 and S1). Sampling stations were set up at the AR1 and at six linear distant points extending northeast and southwest. These stations were named E150, E500, E750, W150, W500, and W750, where “W” or “E” and the number of each station name represented northeast or southwest and distance in meters from the AR1, respectively (Table S1 and Fig. 1). Another station was set up at a second AR (AR2: 25 m height) 220 m from AR1 because we found AR2 by chance during the survey (Table S1 and Fig. 1), and it might affect the eDNA concentration at other stations.Figure 1(a) Location of sampling stations, cruise track, and a set net in Tateyama Bay. Gray areas indicate landmasses, a gray bold line indicates cruise track, and gray thin lines indicate depth contours with an interval of 20 m. The maps were created using ArcGIS Software 10.6.0.8321 by ESRI (https://www.esri.com/) based on the municipal boundary data of Japan (Esri Japan) and Global Map Japan (Geospatial information Authority of Japan) as well as the M7000-series isobath data set (Japan Hydrographic Association). A picture of the artificial reef (AR1) (b) taken one year after this survey (June 2019) and pictures of the dominant species, (c) splendid alfonsino (Beryx splendens), (d) chicken grunt (Parapristipoma trilineatum), (e) chub mackerel (Scomber japonicus), (f) red seabream (Pagrus major), and (g) jack mackerel (Trachurus japonicus). Photograph credits: (b) Nariaki Inoue, (c) Fumie Yamaguchi, (d, e, g) Yutaro Kawano, and (f) Masaaki Sato.Full size imageWe conducted water sampling at eight stations for eDNA analysis and performed an acoustic survey for estimating relative fish density using research vessel Takamaru (Japan Fisheries Research and Education Agency: FRA) on May 23, 2018. We started the echo sounder survey at the eastern part of the bay and continued it during the water sampling (Fig. 1). Although the echo sounder survey could not differentiate between fish species, we collected this data to assess the association between the estimated concentration of fish eDNA and the echo intensity measured by the echo sounder. Water sampling began at E750, then continued along the transect line to E150, AR1, W150, W500, W750, before going back to AR2. At each sampling station, we collected 10 L of seawater from both the middle and bottom layers by one cast of two Niskin water samplers (5L × 2 samples) and measured vertical profiles of water temperature and salinity with a conductivity-temperature-depth sensor (RINKO profiler, JFE Advantech Co., Ltd.). We subsampled 2L seawater from the 5 L seawater of Niskin sampler using measuring bottle and remaining 3 L seawater was used for pre-wash of measuring bottle and filtration devices. Two 2L samples were collected from two Niskin water samples, and then immediately filtered using a combination of Sterivex filter cartridges (nominal pore size = 0.45 μm; Merck Millipore) through an aspirator (i.e., the two filters were subsets of a single water collection) in a laboratory on the research vessel. After filtration (average time of 15 min), an outlet port of the filter cartridge was sealed with an outlet luer cap, 1.5 ml RNAlater (Thermo Fisher Scientific Inc., Waltham, MA) was injected into the cartridge using a filtered pipette tip to prevent eDNA degradation, and an inlet port was also sealed with an inlet luer cap14. The Niskin water samplers were bleached before each water collection using a commercial bleach solution while filtering devices (i.e., filter funnels and measuring cups used for filtration) were bleached after every filtration. We filtered 2L MilliQ water with a filter funnel and measuring cup as a field negative control to test for possible contamination. The filter cartridges were placed in a freezer immediately after filtration until eDNA extraction. In total we collected and filtered 32 eDNA samples (eight stations × two depth layers × two replicates). Disposable latex or nitrile gloves were worn during sampling and replaced between each sampling station.DNA extraction and purificationWorkspaces were sterilized prior to DNA extraction using 10% commercial bleach, and filter tip pipettes were used to safeguard against cross-contamination. Following the method developed by Miya et al.15, the eDNA was extracted and purified. Briefly, after removing RNAlater inside the cartridge using a centrifuge, proteinase-K solution was injected into the cartridge from the inlet port, and the port was re-capped with the inlet lure cap. The eDNA captured on the filter membrane was extracted by constant stirring of the cartridge at a speed of 20 rpm using a roller shaker placed in an incubator heated at 56 °C for 20 min. The eDNA extracts were transferred to a 2-ml tube from the inlet of the filter cartridges by centrifugation. The collected DNA was purified using a DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer’s protocol. After the purification, DNA was eluted using 100 μl of the elution buffer (buffer AE). All DNA extracts were frozen at − 20 °C until paired-end library preparation.Preparation of internal standard DNAsFive artificially designed and synthetic internal standard DNAs, which were similar but not identical to the region of any existing fish mitochondrial 12S rRNA, were included in the library preparation process to estimate the number of fish DNA copies [i.e., quantitative MiSeq sequencing (qMiseq)]7,16. They were designed to have the MiFish primer‐binding regions as those of known existing fishes and to have the conserved regions in the insert region. Variable regions in the insert region were replaced with random bases so that no known existing fish sequences had the same sequences as the standard sequences. The standard DNA size distribution of the library was estimated using an Agilent 2100 BioAnalyzer (Agilent, Santa Clara, CA, USA), and the concentration of double-stranded DNA of the library was quantified using a Qubit dsDNA HS assay kit and a Qubit fluorometer (Thermo Fisher Scientific Inc., Waltham, MA, USA). Based on the quantification values obtained using the Qubit fluorometer, the copy number of the standard DNAs was adjusted as follows: Std. A (100 copies/µl), Std. B (50 copies/µl), Std. C (25 copies/µl), Std. D (12.5 copies/µl) and Std. E (2.5 copies/µl). Then, these standard DNAs were mixed.Paired-end library preparationTwo PCR‐level negative controls (i.e., each with and without internal standard DNAs) were employed for MiSeq run to monitor contamination during the experiments. The first-round PCR (1st PCR) was carried out with a 12-µl reaction volume containing 6.0 µl of 2 × KAPA HiFi HotStart ReadyMix (Roche, Basel, Switzerland), 0.7 µl of each primer (5 µM), 2.6 µl of sterilized distilled H2O, 1.0 µl of standard DNA mix and 1.0 µl of template. Note that the standard DNA mix was included for each sample. The final concentration of each primer was 0.3 µM. We used a mixture of the following four PCR primers modified from original MiFish primers16: MiFish-U-forward (5′-ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT NNN NNG TCG GTA AAA CTC GTG CCA GC-3′) and MiFish-U-reverse (5′-GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC TNN NNN CAT AGT GGG GTA TCT AAT CCC AGT TTG-3′), MiFish-E-forward (5′-ACA CTC TTT CCC TAC ACG ACG CTC TTC CGA TCT NNN NNG TTG GTA AAT CTC GTG CCA GC-3′), and MiFish-E-reverse (5′-GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC TNN NNN CAT AGT GGG GTA TCT AAT CCT AGT TTG-3′). These primer pairs co-amplify a hypervariable region of the fish mitochondrial 12S rRNA gene (around 172 bp) and append primer-binding sites (5′ ends of the sequences before five Ns) for sequencing at both ends of the amplicon. The five random bases were used to enhance cluster separation on the flow cells during initial base call calibrations on the MiSeq platform. The thermal cycle profile after an initial 3 min denaturation at 95 (^circ)C was as follows (35 cycles): denaturation at 98 (^circ)C for 20 s; annealing at 65 (^circ)C for 15 s; and extension at 72 (^circ)C for 15 s, with a final extension at the same temperature for 5 min. Eight replications were performed for the 1st PCR, and the replicates were pooled to minimize the PCR dropouts. The 1st PCR products from the eight tubes were pooled in a single 1.5-ml tube. Then, we sent the 1st PCR products to IDEA consultants, Inc. to outsource the following MiSeq sequencing processes. The pooled products were purified and size-selected for 200–400 bp using a SPRIselect (Beckman Coulter, Inc.) to remove dimers and monomers following the manufacturer’s protocol.The second-round PCR (2nd PCR) was carried out with a 24 µl reaction volume containing 12 µl of 2 × KAPA HiFi HotStart ReadyMix, 2.8 µl of each primer (5 µM), 4.4 µl of sterilized distilled H2O, and 2.0 µl of template. We used the following two primers to append the dual-index sequences (8 nucleotides indicated by Xs) and flowcell-binding sites for the MiSeq platform (5′ ends of the sequences before eight Xs): 2nd-PCR-forward (5′-AAT GAT ACG GCG ACC ACC GAG ATC TAC ACX XXX XXX XAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC T-3′); and 2nd- PCR-reverse (5′-CAA GCA GAA GAC GGC ATA CGA GAT XXX XXX XXG TGA CTG GAG TTC AGA CGT GTG CTC TTC CGA TCT-3′). The thermal cycle profile after an initial 3 min denaturation at 95 (^circ)C was as follows (12 cycles): denaturation at 98 (^circ)C for 20 s; combined annealing and extension at 72 (^circ)C for 15 s, with a final extension at 72 (^circ)C for 5 min. The concentration of each second PCR product was measured by quantitative PCR using TB Green Fast qPCR Mix (Takara inc.). Each sample was diluted to a fixed concentration and combined (i.e., one pooled 2nd PCR product that included all samples). The pooled 2nd PCR product was size-selected to approximately 370 bp using BluePippin (Sage Science). The size-selected library was purified using the Agencourt AMPure XP beads, adjusted to 4 nM by quantitative PCR using TB Green Fast qPCR Mix (Takara Bio Inc.), and sequenced on the MiSeq platform using a MiSeq v2 Reagent Kit (2 × 150 bp) (Illumina, Inc.).Data preprocessing and taxonomic assignmentThe raw MiSeq data were converted into FASTQ files using the bcl2fastq program provided by Illumina (bcl2fastq v2.18). The FASTQ files were then demultiplexed using the command implemented in Claident17. We adopted this process rather than using FASTQ files demultiplexed by the Illumina MiSeq default program in order to remove sequences with low-quality scores and PCR artifacts (chimeras).The processed reads were subjected to a BLASTN search against the full NCBI database. We excluded unique sequences of the following settings: the sequence belonged to organisms other than bony fishes, sharks, and rays; the sequence similarity between queries and the top BLASTN hit was  More

  • in

    Effect of host switching simulation on the fitness of the gregarious parasitoid Anaphes flavipes from a novel two-generation approach

    1.Hairston, N. G., Smith, F. E. & Lawrence, B. S. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).Article 

    Google Scholar 
    2.Gross, P. Insect behavioral and morphological defenses against parasitoid. Annu. Rev. Entomol. 38, 251–273 (1993).Article 

    Google Scholar 
    3.Tylikinais, J. M., Tscharntke, T. & Klein, A. M. Diversity, ecosystem function and stability of parasitoid—host interactions across a tropical habitat gradient. Ecology 87, 3047–3057 (2006).Article 

    Google Scholar 
    4.Strand, M. R. & Obrycki, J. J. Host specificity of insect parasitoids and predators. Bioscience 46, 422–429 (1996).Article 

    Google Scholar 
    5.Dawkins, R. & Krebs, J. R. Arms races between and within species. Proc. R. Soc. Lond. B. 205, 489–511 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Kraaijeveld, A. R., van Alphen, J. J. M. & Godfray, H. C. J. The coevolution of host resistance and parasitoid virulence. Parasitology 116, 29–45 (1998).Article 

    Google Scholar 
    7.Jeffries, M. J. & Lawton, J. H. Enemy free space and the structure of ecological communities. Biol. J. Linn. Soc. 23, 269–286 (1984).Article 

    Google Scholar 
    8.Grosman, A. H. et al. No adaptation of a herbivore to a novel host but loss of adaptation to its native host. Sci. Rep.-UK 5, 16211 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Diamond, S. E. & Kingsolver, J. G. Fitness consequences of host plant choice: A field experiment. Oikos 119, 542–550 (2010).Article 

    Google Scholar 
    10.Meijer, K., Schilthuizen, M., Beukeboom, L. & Smit, C. A review and meta-analysis of the enemy release hypothesis in plant–herbivorous insect systems. PeerJ 4, e2778 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Forbes, A. A., Powell, T. H., Stelinski, L. L., Smith, J. J. & Feder, J. L. Sequential sympatric speciation across trophic levels. Science 323, 776–779 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Grosman, A. H., Holtz, A. M., Pallini, A., Sabelis, M. W. & Janssen, A. Parasitoids follow herbivorous insects to a novel host plant, generalist predators less so. Entomol. Exp. Appl. 162, 261–271 (2017).Article 

    Google Scholar 
    13.Soler, R., Bezemer, T. M., Van Der Putten, W. H., Vet, L. E. & Harvey, J. A. Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J. Anim. Ecol. 74, 1121–1130 (2005).Article 

    Google Scholar 
    14.Ode, P. J. Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions. Annu. Rev. Entomol. 51, 163–185 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Thompson, J. N. Trade-offs in larval performance on normal and novel hosts. Entomol. Exp. Appl. 80, 133–139 (1996).Article 

    Google Scholar 
    16.Lucas, É., Coderre, D. & Brodeur, J. Intraguild predation among aphid predators: Characterization and influence of extraguild prey density. Ecology 79, 1084–1092 (1998).Article 

    Google Scholar 
    17.Henry, L. M., May, N., Acheampong, S., Gillespie, D. R. & Roitberg, B. D. Host-adapted parasitoids in biological control: Does source matter?. Ecol. Appl. 20, 242–250 (2010).PubMed 
    Article 

    Google Scholar 
    18.Mackauer, M. Sexual size dimorphism in solitary parasitoid wasps: influence of host quality. Oikos 76, 265–272 (1996).Article 

    Google Scholar 
    19.Bezemer, T. M. & Mills, N. J. Clutch size decisions of a gregarious parasitoid under laboratory and feld conditions. Anim. Behav. 66, 1119–1128 (2003).Article 

    Google Scholar 
    20.Samková, A., Hadrava, J., Skuhrovec, J. & Janšta, P. Host population density and presence of predators as key factors influencing the number of gregarious parasitoid Anaphes flavipes offspring. Sci. Rep.-UK 9, 6081 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    21.Schmidt, J. M. & Smith, J. J. B. Correlations between body angles and substrate curvature in the parasitoid wasp Trichogramma minutum: a possible mechanism of host radius measurement. J. Exp. Biol. 125, 271–285 (1986).Article 

    Google Scholar 
    22.Boivin, G. & Baaren, J. The role of larval aggression and mobility in the transition between solitary and gregarious development in parasitoid wasps. Ecol. Lett. 3, 469–474 (2000).Article 

    Google Scholar 
    23.Mayhew, P. J. The evolution of gregariousness in parasitoid wasps. P. Roy. Soc. Lond. B. Bio. 265, 383–389 (1998).Article 

    Google Scholar 
    24.Pexton, J. J. & Mayhew, P. J. Competitive interactions between parasitoid larvae and the evolution of gregarious development. Oecologia 141, 179–190 (2004).ADS 
    PubMed 
    Article 

    Google Scholar 
    25.Harvey, P. H. & Partridge, L. Murderous mandibles and black holes in hymenopteran wasps. Nature 326, 128–129 (1987).ADS 
    Article 

    Google Scholar 
    26.Godfray, H. C. J. The evolution of clutch size in parasitic wasps. Am. Nat. 129, 221–233 (1987).Article 

    Google Scholar 
    27.Rosenheim, J. A. Single-sex broods and the evolution of nonsiblicidal parasitoid wasps. Am. Nat. 141, 90–104 (1993).Article 

    Google Scholar 
    28.Mayhew, P. J. & van Alphen, J. J. Gregarious development in alysiine parasitoids evolved through a reduction in larval aggression. Anim. Behav. 58, 131–141 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Pexton, J. J. & Mayhew, P. J. Immobility: The key to family harmony?. Trends. Ecol. Evol. 16, 7–9 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Hamilton, W. D. Extraordinary sex ratios. Science 156, 477–488 (1967).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Mayhew, P. J. & Hardy, I. C. Nonsiblicidal behavior and the evolution of clutch size in bethylid wasps. Am. Nat. 151, 409–424 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Zaviezo, T. & Mills, N. Factors influencing the evolution of clutch size in a gregarious insect parasitoid. J. Anim. Ecol. 69, 1047–1057 (2000).Article 

    Google Scholar 
    33.Koppik, M., Tiel, A. & Hofmeister, T. S. Adaptive decision making or diferential mortality: What causes ofspring emergence in a gregarious parasitoid?. Entomol. Exp. Appl. 150, 208–216 (2014).Article 

    Google Scholar 
    34.Visser, M. E., Van Alphen, J. J. & Hemerik, L. Adaptive superparasitism and patch time allocation in solitary parasitoids: An ESS model. J. Anim. Ecol. 61, 93–101 (1992).Article 

    Google Scholar 
    35.Waage, J. K. & Ming, N. S. The reproductive strategy of a parasitic wasp: I. optimal progeny and sex allocation in Trichogramma evanescens. J. An. Ecol. 53, 401–415 (1984).Article 

    Google Scholar 
    36.Harvey, J. A., Poelman, E. H. & Tanaka, T. Intrinsic inter-and intraspecific competition in parasitoid wasps. Ann. Rev. Entomol. 58, 333–351 (2013).CAS 
    Article 

    Google Scholar 
    37.Harvey, J. A., Bezemer, T. M., Gols, R., Nakamatsu, Y. & Tanaka, T. Comparing the physiological effects and function of larval feeding in closely-related endoparasitoids (Braconidae: Microgastrinae). Physiol. Entomol. 33, 217–225 (2008).Article 

    Google Scholar 
    38.Cloutier, C., Duperron, J., Tertuliano, M. & McNeil, J. N. Host instar, body size and fitness in the koinobiotic parasitoid Aphidius nigripes. Entomol. Exp. Appl. 97, 29–40 (2000).Article 

    Google Scholar 
    39.Bai, B., Luck, R. F., Forster, L., Stephens, B. & Janssen, J. M. The effect of host size on quality attributes of the egg parasitoid Trichogramma pretiosum. Entomol. Exp. Appl. 64, 37–48 (1992).Article 

    Google Scholar 
    40.Kazmer, D. J. & Luck, R. F. Field tests of the size-fitness hypothesis in the egg parasitoid Trichogramma Pretiosum. Ecology 76, 412–425 (1995).Article 

    Google Scholar 
    41.Samková, A., Hadrava, J., Skuhrovec, J. & Janšta, P. Reproductive strategy as a major factor determining female body size and fertility of a gregarious parasitoid. J. Appl. Entomol. 143, 441–450 (2019).Article 

    Google Scholar 
    42.Wei, K., Tang, Y. L., Wang, X. Y., Cao, L. M. & Yang, Z. Q. The developmental strategies and related profitability of an idiobiont ectoparasitoid Sclerodermus pupariae vary with host size. Ecol. Entomol. 39, 101–108 (2014).Article 

    Google Scholar 
    43.May, R. M., Hassell, M. P., Anderson, M. R. & Tonkyn, D. V. Density dependence in host-parasitoid models. J. Anim. Ecol. 50, 855–865 (1981).MathSciNet 
    Article 

    Google Scholar 
    44.Hoddle, M. S., Van Driesche, R. G., Elkinton, J. S. & Sanderson, J. P. Discovery and utilization of Bemisia argentifolii patches by Eretmocerus eremicus and Encarsia formosa (Beltsville strain) in greenhouses. Entomol. Exp. Appl. 87, 15–28 (1998).Article 

    Google Scholar 
    45.Samková, A., Raska, J., Hadrava, J. & Skuhrovec, J. An intergenerational approach for prediction of parasitoid population dynamics. BioRxiv. https://doi.org/10.1101/2021.02.22.432341 (2021).Article 

    Google Scholar 
    46.Anderson, R. C. & Paschke, J. D. The biology and ecology of Anaphes flavipes (Hymenoptera: Mymaridae), an exotic egg parasite of the cereal leaf beetle. Ann. Entomol. Soc. Am. 61, 1–5 (1968).Article 

    Google Scholar 
    47.Klomp, H. & Teerink, B. J. The significance of oviposition rates in the egg parasite Trichogramma embryophagum Htg. Arch. Neerl. Zool. 17, 350–375 (1967).Article 

    Google Scholar 
    48.Waage, J. K. & Lane, J. A. The reproductive strategy of a parasitic wasp: II. Sex allocation and local mate competition in Trichogramma evanescens. J. Anim. Ecol. 53, 417–426 (1984).Article 

    Google Scholar 
    49.Dysart, R. J., Maltby, H. L. & Brunson, M. H. Larval parasites of Oulema melanopus in Europe and their colonization in the United States. Entomophaga 18, 133–167 (1973).Article 

    Google Scholar 
    50.Skuhrovec, J. et al. Insecticidal activity of two formulations of essential oils against the cereal leaf beetle. Acta Agr. Scand. 68, 489–495 (2018).CAS 

    Google Scholar 
    51.Jervis, M. A., Ellers, J. & Harvey, J. A. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu. Rev. Entomol. 53, 361–385 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Vinson, S. B. & Iwantsch, G. F. Host suitability for insect parasitoids. Ann. Rev. Entomol. 25, 397–419 (1980).Article 

    Google Scholar 
    53.Mackauer, M., Sequeira, R. & Otto, M. Growth and development in parasitoid wasps adaptation to variable host resources. In Vertical Food Web Interactions 191–203 (Springer, 1997).Chapter 

    Google Scholar 
    54.Ode, P. J. Plant toxins and parasitoid trophic ecology. Curr. Opin. Insect sci. 32, 118–123 (2019).PubMed 
    Article 

    Google Scholar 
    55.Cronin, J. T. & Abrahamson, W. G. Do parasitoids diversify in response to host-plant shifts by herbivorous insects?. Ecol. Entomol. 26, 347–355 (2001).Article 

    Google Scholar 
    56.Sarfraz, M., Dosdall, L. M. & Keddie, B. A. Host plant nutritional quality affects the performance of the parasitoid Diadegma insulare. Biol. Control. 51, 34–41 (2009).CAS 
    Article 

    Google Scholar 
    57.Harvey, J. A. Factors affecting the evolution of development strategies in parasitoid wasps: The importance of functional constraints and incorporating complexity. Entomol. Exp. Appl. 117, 1–13 (2005).Article 

    Google Scholar 
    58.Cortesero, A. M. & Monge, J. P. Influence of pre-emergence experience on response to host and host plant odours in the larval parasitoid Eupelmus vuilleti. Entomol. Exp. Appl. 72, 281–288 (1994).Article 

    Google Scholar 
    59.Gandolfi, M., Mattiacci, L. & Dorn, S. Preimaginal learning determines adult response to chemical stimuli in a parasitic wasp. Proc. Roy. Soc. Lon. Series. B-Biol. Scien. 270, 2623–2629 (2003).Article 

    Google Scholar 
    60.Kester, K. M. & Barbosa, P. Postemergence learning in the insect parasitoid, Cotesia congregata (Say) (Hymenoptera: Braconidae). J. Insect Behav. 4, 727–742 (1991).Article 

    Google Scholar 
    61.Vet, L. E. & Groenewold, A. W. Semiochemicals and learning in parasitoids. J. Chem. Ecol. 16, 3119–3135 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Samková, A., Hadrava, J., Skuhrovec, J. & Janšta, P. Effect of adult feeding and timing of host exposure on the fertility and longevity of the parasitoid Anaphes flavipes. Entomol. Exp. Appl. 167, 932–938 (2019).Article 

    Google Scholar 
    63.Jervis, M. A., Heimpel, G. E., Ferns, P. N., Harvey, J. A. & Kidd, N. A. Life-history strategies in parasitoid wasps: A comparative analysis of ‘ovigeny’. J. Anim. Ecol. 70, 442–458 (2001).Article 

    Google Scholar 
    64.Bjorksten, T. A. & Hoffmann, A. A. Persistence of experience effects in the parasitoid Trichogramma nr. brassicae. Ecol. Entomol. 23, 110–117 (1998).Article 

    Google Scholar 
    65.Lentz, A. J. & Kester, K. M. Postemergence experience affects sex ratio allocation in a gregarious insect parasitoid. J. Insect. Behav. 21, 34–45 (2008).Article 

    Google Scholar 
    66.Nishida, R. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 47, 57–92 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Zvereva, E. L. & Rank, N. E. Fly parasitoid Megaselia opacicornis uses defensive secretions of the leaf beetle Chrysomela lapponica to locate its host. Oecologia 140, 516–522 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Roy, H. E., Handley, L. J. L., Schönrogge, K., Poland, R. L. & Purse, B. V. Can the enemy release hypothesis explain the success of invasive alien predators and parasitoids?. Biocontrol 56, 451–468 (2011).Article 

    Google Scholar 
    69.Snyder, W. E. & Ives, A. R. Interactions between specialist and generalist natural enemies: Parasitoids, predators, and pea aphid biocontrol. Ecology 84, 91–107 (2003).Article 

    Google Scholar 
    70.Polis, G. A., Myers, C. A. & Holt, R. D. The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20, 297–330 (1989).Article 

    Google Scholar 
    71.Nakashima, Y. & Senoo, N. Avoidance of ladybird trails by an aphid parasitoid Aphidius ervi: active period and efects of prior oviposition experience. Entomol. Exp. Appl. 109, 163–166 (2003).Article 

    Google Scholar 
    72.Samková, A., Raška, J., Hadrava, J., Skuhrovec, J. & Janšta, P. Female manipulation of offspring sex ratio in the gregarious parasitoid Anaphes flavipes from a new two-generation approach. BioRxiv https://doi.org/10.1101/2021.02.22.432331 (2021).Article 

    Google Scholar 
    73.Visser, M. E. The importance of being large: the relationship between size and fitness in females of the parasitoid Aphaereta minuta (Hymenoptera: Braconidae). J. Anim. Ecol. 63, 963–978 (1994).Article 

    Google Scholar 
    74.Banks, M. & Thomson, D. J. Lifetime mating success in the damselfly Coenagrion puella. Anim. Behav. 33, 1175–1183 (1985).Article 

    Google Scholar 
    75.Ellers, J. & Jervis, M. Body size and the timing of egg production in parasitoid wasps. Oikos 102, 164–172 (2003).Article 

    Google Scholar 
    76.Anderson, R. C. & Paschke, J. D. Additional Observations on the Biology of Anaphes flavipes (Hymenoptera: Mymaridae), with Special Reference to the Efects of Temperature and Superparasitism on Development. Ann. Entomol. Soc. Am. 62, 1316–1321 (1969).Article 

    Google Scholar 
    77.Bezděk, J. & Baselga, A. Revision of western Palaearctic species of the Oulema melanopus group, with description of two new species from Europe (Coleoptera: Chrysomelidae: Criocerinae). Acta. Ent. Mus. Nat. Pra. 55, 273–304 (2015).
    Google Scholar 
    78.R. Core Team R. A language and environment for statistical computing. R Foundation for Statistical Computing (R Core Team, 2020).
    Google Scholar 
    79.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw 67, 1–48. (2015) URL: https://CRAN.R-project.org/package=Hmisc.80.Harrell, F. E. Jr, Dupont, C., et mult. al. (2020) Hmisc: Harrell Miscellaneous. R package version 4.4–2. URL: https://CRAN.R-project.org/package=Hmisc.81.Signorell et mult. al. (2021). DescTools: Tools for descriptive statistics. R package version 0.99.40. URL: https://cran.r-project.org/package=DescTools. More

  • in

    Degree of anisogamy is unrelated to the intensity of sexual selection

    1.Andersson, M. B. Sexual Selection (Princeton University Press, 1994).Book 

    Google Scholar 
    2.Royle, N. J., Smiseth, P. T. & Kölliker, M. The Evolution of Parental Care (Oxford University Press, 2012).Book 

    Google Scholar 
    3.Herridge, E. J., Murray, R. L., Gwynne, D. T. & Bussière, L. F. Mating and parental sex roles, diversity in. Encycl. Evol. Biol. 2, 453–458 (2016).Article 

    Google Scholar 
    4.Kokko, H. & Jennions, M. D. Parental investment, sexual selection and sex ratios. J. Evol. Biol. 21, 919–948 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Schärer, L., Rowe, L. & Arnqvist, G. Anisogamy, chance and the evolution of sex roles. Trends Ecol. Evol. 27, 260–264 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Liker, A., Freckleton, R. P. & Székely, T. The evolution of sex roles in birds is related to adult sex ratio. Nat. Commun. 4, 1–6 (2013).Article 
    CAS 

    Google Scholar 
    7.Jennions, M. D. & Fromhage, L. Not all sex ratios are equal: The Fisher condition, parental care and sexual selection. Philos. Trans. R. Soc. B Biol. Sci 372, 20160312 (2017).Article 

    Google Scholar 
    8.Darwin, C. The Descent Man, and Selection in Relation to Sex. John Murray, vol. ah-king (1871).9.Ah-King, M. & Ahnesjö, I. The ‘sex role’ concept: An overview and evaluation. Evol. Biol. 40, 461–470 (2013).Article 

    Google Scholar 
    10.Pizzari, T. & Bonduriansky, R. Sexual behaviour: Conflict, cooperation and co-evolution. In Social Behaviour: Genes, Ecology and Evolution (eds Szekely, T. et al.) (Cambridge University Press, 2010).
    Google Scholar 
    11.Trumbo, S. T. Patterns of parental care in invertebrates. Evol. Parent. Care 12, 62–81 (2012).
    Google Scholar 
    12.Balshine, S. Patterns of parental care in vertebrates. In The Evolution of Parental Care (eds Royle, N. et al.) 62–81 (Oxford University Press, 2012).Chapter 

    Google Scholar 
    13.Székely, T., Remeš, V., Freckleton, R. P. & Liker, A. Why care? Inferring the evolution of complex social behaviour. J. Evol. Biol. 26, 1381–1391 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Bateman, A. J. Intra-sexual selection in Drosophila. Heredity 2, 349–368 (1948).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Snyder, B. F. & Gowaty, P. A. A reappraisal of Bateman’s classic study of intrasexual selection. Evolution 61, 2457–2468 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Gowaty, P. A., Kim, Y.-K. & Anderson, W. W. No evidence of sexual selection in a repetition of Bateman’s classic study of Drosophila melanogaster. Proc. Natl. Acad. Sci. 109, 11740–11745 (2012).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    17.Wade, M. J. Don’t Throw Bateman Out with the Bathwater!. Integr. Comp. Biol. 45, 945–951 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Dewsbury, D. A. The Darwin–Bateman paradigm in historical context. Integr. Comp. Biol. 45, 831–837 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Parker, G. A. The sexual cascade and the rise of pre-ejaculatory (Darwinian) sexual selection, sex roles, and sexual conflict. Cold Spring Harb. Lab. Press 6, a017509 (2014).Article 

    Google Scholar 
    20.Jones, A. G., Arguello, J. R. & Arnold, S. J. Validation of Bateman’s principles: A genetic study of sexual selection and mating patterns in the rough-skinned newt. Proc. R. Soc. B Biol. Sci. 269, 2533–2539 (2002).Article 

    Google Scholar 
    21.Collet, J. M., Dean, R. F., Worley, K., Richardson, D. S. & Pizzari, T. The measure and significance of Bateman’s principles. Proc. R. Soc. B Biol. Sci. 281, 20132973–20132973 (2014).Article 

    Google Scholar 
    22.Hoquet, T. Bateman (1948): Rise and fall of a paradigm?. Anim. Behav. https://doi.org/10.1016/j.anbehav.2019.12.008 (2019).Article 

    Google Scholar 
    23.Janicke, T., Häderer, I. K., Lajeunesse, M. J. & Anthes, N. Darwinian sex roles confirmed across the animal kingdom. Sci. Adv. 2, e1500983–e1500983 (2016).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    24.Tang-Martinez, Z. & Ryder, B. T. The problem with paradigms: Bateman’s worldview as a case study. Integr. Comp. Biol. 54, 821–830 (2005).Article 

    Google Scholar 
    25.Levitan, D. Does Bateman’s principle apply to broadcast-spawning organisms ? Egg traits Iifluence in situ fertilization rates among congeneric sea urchins. Evolution 52, 1043–1056 (1998).PubMed 

    Google Scholar 
    26.Drea, C. M. Bateman revisited: The reproductive tactics of female primates. Integr. Comp. Biol. 45, 915–923 (2005).PubMed 
    Article 

    Google Scholar 
    27.Kokko, H. Should advertising parental care be honest?. Proc. R. Soc. B Biol. Sci. 265, 1871–1878 (1998).Article 

    Google Scholar 
    28.Remeš, V. & Matysioková, B. More ornamented females produce higher-quality offspring in a socially monogamous bird: An experimental study in the great tit (Parus major). Front. Zool. 10, 1–10 (2013).Article 

    Google Scholar 
    29.Hanschen, E. R., Herron, M. D., Wiens, J. J., Nozaki, H. & Michod, R. E. Multicellularity drives the evolution of sexual traits. Am. Nat. 192, E93–E105 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Queller, D. C. Why do females care more than males?. Proc. R. Soc. B Biol. Sci. 264, 1555–1557 (1997).Article 
    ADS 

    Google Scholar 
    31.Alcock, J. Sexual selection and the mating behavior of solitary bees. in (eds. Brockmann, H. J. et al.) vol. 45 1–48 (Academic Press, 2013).32.Bjork, A. & Pitnick, S. Intensity of sexual selection along the anisogamy–isogamy continuum. Nature 441, 742–745 (2006).PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    33.Kodric-Brown, A. & Brown, J. H. Anisogamy, sexual selection, and the evolution and maintenance of sex. Evol. Ecol. 1, 95–105 (1987).Article 

    Google Scholar 
    34.Schulte-Hostedde, A. I., Millar, J. S. & Gibbs, H. L. Sexual selection and mating patterns in a mammal with female-biased sexual size dimorphism. Behav. Ecol. 15, 351–356 (2004).Article 

    Google Scholar 
    35.Liker, A., Freckleton, R. P., Remeš, V. & Székely, T. Sex differences in parental care: Gametic investment, sexual selection, and social environment. Evolution 69, 2862–2875 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Bjork, A. & Pitnick, S. Intensity of sexual selection along the anisogamy-isogamy continuum. Nature 441, 742–745 (2006).PubMed 
    Article 
    ADS 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Thomas, G. H. & Székely, T. Evolutionary pathways in shorebird breeding systems: Sexual conflict, parental care, and chick development. Evolution 59, 2222 (2006).Article 

    Google Scholar 
    38.Gonzalez-Voyer, A., Fitzpatrick, J. L. & Kolm, N. Sexual selection determines parental care patterns in cichlid fishes. Evolution 62, 2015–2026 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Garamszegi, L. Z. & Møller, A. P. Untested assumptions about within-species sample size and missing data in interspecific studies. Behav. Ecol. Sociobiol. 66, 1363–1373 (2012).Article 

    Google Scholar 
    40.Nakagawa, S. & Freckleton, R. P. Model averaging, missing data and multiple imputation: A case study for behavioural ecology. Behav. Ecol. Sociobiol. 65, 103–116 (2011).Article 

    Google Scholar 
    41.Nakagawa, S. & Freckleton, R. P. Missing inaction: The dangers of ignoring missing data. Trends Ecol. Evol. 23, 592–596 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Wiens, J. J. & Morrill, M. C. Missing data in phylogenetic analysis: Reconciling results from simulations and empirical data. Syst. Biol. 60, 719–731 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Apakupakul, K. & Rubenstein, D. R. Bateman’s principle is reversed in a cooperatively breeding bird. Biol. Lett. 11, 20150034 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Nakagawa, S. et al. Meta-analysis of variation: Ecological and evolutionary applications and beyond. Methods Ecol. Evol. 6, 143–152 (2015).Article 

    Google Scholar 
    45.Lajeunesse, M. Recovering missing data or partial data from studies: A survey of conversions and imputation for meta-analysis. Handb. Meta-Anal. Ecol. Evol. 195–206 (2013).46.Smith, R. J. Statistics of sexual size dimorphism. J. Hum. Evol. 36, 423–458 (1999).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    47.Dunn, P. O., Whittingham, L. A. & Pitcher, T. E. Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55, 161–175 (2001).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    48.Pérez-Barbería, F. J., Gordon, I. J. & Pagel, M. The origins of sexual dimorphism in body size in ungulates. Evolution 56, 1276–1285 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Weckerly, F. W. Sexual-size dimorphism: Influence of mass and mating systems in the most dimorphic mammals. J. Mammal. 79, 33–52 (1998).Article 

    Google Scholar 
    50.Székely, T., Reynolds, J. D. & Figuerola, J. Sexual size dimorphism in shorebirds, gulls, and alcids: The influence of sexual and natural selection. Evolution 54, 1404–1413 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Fairbairn, D. J., Blanckenhorn, W. U. & Székely, T. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (Oxford University Press, 2007).Book 

    Google Scholar 
    52.Janicke, T. & Fromonteil, S. Sexual Selection and Sexual Size Dimorphism in Animals. (2021) https://doi.org/10.1101/2021.05.10.443408.53.De Lisle, S. P. Understanding the evolution of ecological sex differences: Integrating character displacement and the Darwin–Bateman paradigm. Evol. Lett. 3, 434–447 (2019).Article 

    Google Scholar 
    54.Harvey, P. H. & Clutton-Brock, T. H. Life history variation in primates. Evolution 39, 559–581 (1985).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: A public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    56.Martins, E. P. & Hansen, T. F. Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149, 646–667 (1997).Article 

    Google Scholar 
    57.Pagel, M. Inferring evolutionary processes from molecular phylogenies. Zool. Scr. 98, 313–333 (1997).
    Google Scholar 
    58.Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726 (2002).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    59.Cooper, N., Thomas, G. H., Venditti, C., Meade, A. & Freckleton, R. P. A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies. Biol. J. Linn. Soc. 118, 64–77 (2016).Article 

    Google Scholar 
    60.Orme, D. The caper package: Comparative analysis of phylogenetics and evolution in R. R Package Version 05(2), 1–36 (2013).
    Google Scholar 
    61.Penone, C. et al. Imputation of missing data in life-history trait datasets: Which approach performs the best?. Methods Ecol. Evol. 5, 1–10 (2014).Article 

    Google Scholar 
    62.Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: Fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).Article 

    Google Scholar 
    63.Goolsby, A. E. W., Bruggeman, J., Ane, C. & Goolsby, M. E. W. Package ‘ Rphylopars ’. (2016).64.Parker, G. A. Sexual selection and sexual conflict. In Sexual Selection and Reproductive Competition in Insects (eds Blum, M. S. & Blum, N. A.) (Academic Press, 1979).
    Google Scholar 
    65.Trivers, R. L. Social Evolution (Benjamin-Cummings Pub Co, 1985).
    Google Scholar 
    66.AlRashidi, M., Kosztolányi, A., Shobrak, M., Küpper, C. & Székely, T. Parental cooperation in an extreme hot environment: Natural behaviour and experimental evidence. Anim. Behav. 82, 235–243 (2011).Article 

    Google Scholar 
    67.Gwynne, D. T. & Simmons, L. W. Experimental reversal of courtship roles in an insect. Nature 346, 172–174 (1990).Article 
    ADS 

    Google Scholar 
    68.Bonnet, X. et al. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): Influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc. 72, 357–372 (2001).Article 

    Google Scholar 
    69.Griskevicius, V. et al. The financial consequences of too many men: Sex ratio effects on saving, borrowing, and spending. J. Pers. Soc. Psychol. 102, 69–80 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Jirotkul, M. Operational sex ratio influences female preference and male-male competition in guppies. Anim. Behav. 58, 287–294 (1999).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    71.Liker, A., Freckleton, R. P. & Székely, T. Divorce and infidelity are associated with skewed adult sex ratios in birds. Curr. Biol. 24, 880–884 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    72.Schacht, R., Kramer, K. L., Székely, T. & Kappeler, P. M. Adult sex ratios and reproductive strategies: A critical re-examination of sex differences in human and animal societies. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372, 20160309 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Székely, Á. & Székely, T. Human behaviour: Sex ratio and the city. Curr. Biol. 22, 684–685 (2012).Article 
    CAS 

    Google Scholar 
    74.Székely, T., Liker, A., Freckleton, R. P., Fichtel, C. & Kappeler, P. M. Sex-biased survival predicts adult sex ratio variation in wild birds. Proc. R. Soc. B Biol. Sci. 281, 20140342–20140342 (2014).Article 

    Google Scholar 
    75.Grant, P. R. & Grant, B. R. Adult sex ratio influences mate choice in Darwin’s finches. Proc. Natl. Acad. Sci. U. S. A. 116, 12373–12382 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Procter, D. S., Moore, A. J. & Miller, C. W. The form of sexual selection arising from male-male competition depends on the presence of females in the social environment. J. Evol. Biol. 25, 803–812 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    77.Janicke, T. & Morrow, E. H. Operational sex ratio predicts the opportunity and direction of sexual selection across animals. Ecol. Lett. https://doi.org/10.1111/ele.12907 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Wolf, K. N. et al. Age-dependent changes in sperm production, semen quality, and testicular volume in the black-footed ferret (Mustela nigripes). Biol. Reprod. 63, 179–187 (2000).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    79.Gasparini, C., Marino, I. A. M., Boschetto, C. & Pilastro, A. Effect of male age on sperm traits and sperm competition success in the guppy (Poecilia reticulata). J. Evol. Biol. 23, 124–135 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Chargé, R., Jalme, M. S., Lacroix, F., Cadet, A. & Sorci, G. Male health status, signalled by courtship display, reveals ejaculate quality and hatching success in a lekking species. J. Anim. Ecol. 79, 843–850 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    81.Ramirez, M. E. V., Le Pennec, M., Dorange, G., Devauchelle, N. & Nonnotte, G. Assessment of female gamete quality in the pacific oyster crassostrea gigas. Invertebr. Reprod. Dev. 36, 73–78 (1999).Article 

    Google Scholar 
    82.Berger, T. & Horner, C. M. In vivo exposure of female rats to toxicants may affect oocyte quality. Reprod. Toxicol. 17, 273–281 (2003).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    83.Dufour, J. J., Fahmy, M. H. & Minvielle, F. Seasonal changes in breeding activity, testicular size, testosterone concentration and seminal characteristics in rams with long or short breeding season. J. Anim. Sci. 58, 416–422 (1984).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    84.Gorman, M. R. & Zucker, I. Seasonal adaptations of siberian hamsters: II: Pattern of change in day length controls annual testicular and body weight rhythms. Biol. Reprod. 53, 116–125 (1995).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    85.Parker, G. A. & Begon, M. Optimal egg size and clutch size: Effects of environment and maternal Phenotype. Am. Nat. 128, 573–592 (1986).Article 

    Google Scholar 
    86.Boyce, M. S. & Perrins, C. M. Optimizing great tit clutch size in a fluctuating environment. Ecology 68, 142–153 (1987).Article 

    Google Scholar 
    87.Tallamy, D. W. Sexual selection and the evolution of exclusive paternal care in arthropods. Anim. Behav. 60, 559–567 (2000).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    88.Olson, V. A., Webb, T. J., Freckleton, R. P. & Székely, T. Are parental care trade-offs in shorebirds driven by parental investment or sexual selection?. J. Evol. Biol. 22, 672–682 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    89.Reynolds, J. D. & Székely, T. The evolution of parental care in shorebirds: Life histories, ecology, and sexual selection. Behav. Ecol. 8, 126–134 (1995).Article 

    Google Scholar 
    90.Balshine-Earn, S. & Earn, D. J. D. On the evolutionary pathway of parental care in mouth-brooding cichlid fish. Proc. R. Soc. B Biol. Sci. 265, 2217–2222 (1998).Article 

    Google Scholar 
    91.Ah-King, M., Kvarnemo, C. & Tullberg, B. S. The influence of territoriality and mating system on the evolution of male care: A phylogenetic study on fish. J. Evol. Biol. 18, 371–382 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    92.Székely, T., Webb, J. N. & Cutchill, I. C. Mating patterns, sexual selection and parental care: An integrative approach. Vertebrate Mat. Syst. https://doi.org/10.1142/9789812793584_0008 (2000).Article 

    Google Scholar 
    93.Trivers, R. L. Parental investment and sexual selection. (1972).94.Keenleyside, M. H. A. Mate desertion in relation to adult sex ratio in the biparental cichlid fish Herotilapia multispinosa. Anim. Behav. 31, 683–688 (1983).Article 

    Google Scholar 
    95.Alonzo, S. H. Social and coevolutionary feedbacks between mating and parental investment. Trends Ecol. Evol. 25, 99–108 (2010).PubMed 
    Article 

    Google Scholar 
    96.Houston, A. I., Székely, T. & McNamara, J. M. Conflict between parents over care. Trends Ecol. Evol. 20, 33–38 (2005).PubMed 
    Article 

    Google Scholar 
    97.Clutton-Brock, T. H. The Evolution of Parental Care (Princeton University Press, 1991).Book 

    Google Scholar 
    98.Liker, A. & Szekely, T. Mortality costs of sexual selection and parental care in natural populations of birds. Evolution 59, 890–897 (2005).PubMed 
    Article 

    Google Scholar 
    99.Emlen, S. T. Lek organization and mating strategies in the bullfrog. Behav. Ecol. Sociobiol. 1, 283–313 (1976).Article 

    Google Scholar 
    100.Weir, L. K., Grant, J. W. A. & Hutchings, J. A. The influence of operational sex ratio on the intensity of competition for mates. Am. Nat. 177, 167–176 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Orians, G. H. On the evolution of mating systems in birds and mammals. Am. Nat. 103, 589–603 (1969).Article 

    Google Scholar 
    102.Carmona-Isunza, M. C. et al. Adult sex ratio and operational sex ratio exhibit different temporal dynamics in the wild. Behav. Ecol. 28, 523–532 (2017).
    Google Scholar 
    103.Wikelski, M., Trillmich, F. & Jun, N. Body size and sexual size dimorphism in marine iguanas fluctuate as a result of opposing natural and sexual selection: An island comparison. Evolution 51, 922–936 (1997).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Székely, T., Freckleton, R. P. & Reynolds, J. D. Sexual selection explains Rensch’s rule of size dimorphism in shorebirds. Proc. Natl. Acad. Sci. 101, 12224–12227 (2004).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    105.Kelly, C. D., Bussière, L. F. & Gwynne, D. T. Sexual selection for male mobility in a giant insect with female-biased size dimorphism. Am. Nat. 172, 417–423 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Kotiaho, J., Alatalo, R. V., Mappes, J. & Parri, S. Sexual selection in a wolf spider: Male drumming activity, body size, and viability. Evolution 50, 1977 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 1–8 (2019).Article 
    CAS 

    Google Scholar 
    108.Cooke, R. S. C., Bates, A. E. & Eigenbrod, F. Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Glob. Ecol. Biogeogr. 28, 484–495 (2019).Article 

    Google Scholar 
    109.Bakewell, A. T., Davis, K. E., Freckleton, R. P., Isaac, N. J. B. & Mayhew, P. J. Comparing life histories across taxonomic groups in multiple dimensions: How mammal-like are insects?. Am. Nat. 195, 70–81 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.del Villalobos-Segura, M. C., García-Prieto, L. & Rico-Chávez, O. Effects of latitude, host body size, and host trophic guild on patterns of diversity of helminths associated with humans, wild and domestic mammals of Mexico. Int. J. Parasitol. Parasites Wildl. 13, 221–230 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Pandit, P. S. et al. Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses. Nat. Commun. 9, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    112.Rapacciuolo, G. et al. Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nat. Ecol. Evol. 3, 53–61 (2019).Article 

    Google Scholar 
    113.Capdevila, P. et al. Longevity, body dimension and reproductive mode drive differences in aquatic versus terrestrial life-history strategies. Funct. Ecol. 34, 1613–1625 (2020).Article 

    Google Scholar 
    114.Ellington, E. H. et al. Using multiple imputation to estimate missing data in meta-regression. Methods Ecol. Evol. 6, 153–163 (2015).Article 

    Google Scholar 
    115.Pollock, L. J. et al. Protecting biodiversity (in all its complexity): New models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2021).Article 

    Google Scholar 
    117.Onkelinx, T., Devos, K. & Quataert, P. Working with population totals in the presence of missing data comparing imputation methods in terms of bias and precision. J. Ornithol. 158, 603–615 (2017).Article 

    Google Scholar  More

  • in

    AusTraits, a curated plant trait database for the Australian flora

    1.Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Cornwell, W. K. et al. Functional distinctiveness of major plant lineages. J. Ecol. 102, 345–356 (2014).Article 

    Google Scholar 
    3.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    4.Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Chapin, F. S. III, Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 142, S78–S92 (1993).Article 

    Google Scholar 
    6.Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. USA 111, 740–745 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).Article 

    Google Scholar 
    8.Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    9.Westoby, M. A leaf-height-seed (LHS) plant ecol. Strategy scheme. Plant Soil 199, 213–227 (1998).CAS 
    Article 

    Google Scholar 
    10.Funk, J. L. et al. Revisiting the holy grail: Using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Kattge, J. et al. TRY a global database of plant traits. Glob. Chang. Biol. 17, 2905–2935 (2011).ADS 
    PubMed Central 
    Article 

    Google Scholar 
    12.Kattge, J. et al. TRY plant trait database enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.CHAH. Australian Plant Census, Centre of Australian National Biodiversity Research. https://id.biodiversity.org.au/tree/51354547 (2020).14.Kissling, W. D. et al. Towards global data products of Essential Biodiversity Variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Gallagher, R. V. et al. Open Science principles for accelerating trait-based science across the Tree of Life. Nat. Ecol. Evol. 4, 294–303 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Chapman, A. D. et al. Numbers of living species in Australia and the world. (Australian Government, 2009).17.Hopper, S. D. & Gioia, P. The Southwest Australian Floristic Region: Evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology, Evolution, and Systematics 35, 623–650 (2004).Article 

    Google Scholar 
    18.Madin, J. et al. An ontology for describing and synthesizing ecological observation data. Ecol. Inform. 2, 279–296 (2007).Article 

    Google Scholar 
    19.Garnier, E. et al. Towards a thesaurus of plant characteristics: An ecological contribution. J. Ecol. 105, 298–309 (2017).Article 

    Google Scholar 
    20.Adams, M. A. M, P. & Attiwill. Role of Acacia spp. in nutrient balance and cycling in regenerating Eucalyptus regnans F. Muell. forests. I. Temporal changes in biomass and nutrient content. Aust. J. Bot. 32, 205–215 (1984).CAS 

    Google Scholar 
    21.Ahrens, C. W. et al. Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change. Ecol. Evo. 10, 232–248 (2019).Article 

    Google Scholar 
    22.Australian National Botanic Gardens. The National Seed Bank. http://www.anbg.gov.au/gardens/living/seedbank/ (2018).23.Angevin, T. Species richness and functional trait diversity response to land use in a temperate eucalypt woodland community. (La Trobe University, 2011).24.Apgaua, D. M. G. et al. Functional traits and water transport strategies in lowland tropical rainforest trees. PLoS One 10, e0130799 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Apgaua, D. M. G. et al. Plant functional groups within a tropical forest exhibit different wood functional anatomy. Funct. Ecol. 31, 582–591 (2017).Article 

    Google Scholar 
    26.Ashton, D. H. Studies of litter in Eucalyptus regnans forests. Aust. J. Bot. 23, 413–433 (1975).CAS 
    Article 

    Google Scholar 
    27.Ashton, D. H. Phosphorus in forest ecosystems at Beenak, Victoria. The J. Ecol. 64, 171–186 (1976).CAS 

    Google Scholar 
    28.Attiwill, P. M. Nutrient cycling in a Eucalyptus obliqua (L’Herit.) forest IV: Nutrient uptake and nutrient return. Aust. J. Bot. 28, 199–222 (1980).CAS 
    Article 

    Google Scholar 
    29.Barlow, B. A., Clifford, H. T., George, A. S. & McCusker, A. K. A. Flora of Australia. http://www.environment.gov.au/biodiversity/abrs/online-resources/flora/main/ (1981).30.Bean, A. R. A revision of Baeckea (Myrtaceae) in eastern Australia, Malesia and south-east Asia. Telopea 7, 245–268 (1997).Article 

    Google Scholar 
    31.Bell, L.C. Nutrient requirements for the establishment of native flora at Weipa. (Comalco Aluminium Ltd., 1985).32.Bennett, L. T. & Attiwill, P. M. The nutritional status of healthy and declining stands of Banksia integrifolia on the Yanakie Isthmus, Victoria. Aust. J. Bot. 45, 15–30 (1997).Article 

    Google Scholar 
    33.Bevege, D. I. Biomass and nutrient distribution in indigenous forest ecosystems. vol. 6 20 (Queensland Department of Forestry, 1978).34.Birk, E. M. & Turner, J. Response of flooded gum (E. grandis) to intensive cultural treatments: biomass and nutrient content of eucalypt plantations and native forests. For. Ecol. Manage. 47, 1–28 (1992).Article 

    Google Scholar 
    35.Blackman, C. J., Brodribb, T. J. & Jordan, G. J. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytol. 188, 1113–1123 (2010).PubMed 
    Article 

    Google Scholar 
    36.Blackman, C. J. et al. Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates. Ann. Bot. 114, 435–440 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Blackman, C. J. et al. The links between leaf hydraulic vulnerability to drought and key aspects of leaf venation and xylem anatomy among 26 Australian woody angiosperms from contrasting climates. Ann. Bot. 122, 59–67 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Bloomfield, K. J. et al. A continental-scale assessment of variability in leaf traits: Within species, across sites and between seasons. Funct. Ecol. 32, 1492–1506 (2018).Article 

    Google Scholar 
    39.Bolza, E. Properties and uses of 175 timber species from Papua New Guinea and West Irian. (Victoria (Australia) CSIRO, Div. of Building Research, 1975).40.Bragg, J. G. & Westoby, M. Leaf size and foraging for light in a sclerophyll woodland. Funct. Ecol. 16, 633–639 (2002).Article 

    Google Scholar 
    41.Brisbane Rainforest Action and Information Network. Trait measurements for Australian rainforest species. http://www.brisrain.org.au/ (2016).42.Briggs, A. L. & Morgan, J. W. Seed characteristics and soil surface patch type interact to affect germination of semi-arid woodland species. Plant Ecol. 212, 91–103 (2010).Article 

    Google Scholar 
    43.Brock, J. & Dunlop, A. Native plants of northern Australia. (Reed New Holland, 1993).44.Brodribb, T. J. & Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575–584 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Buckton, G. et al. Functional traits of lianas in an Australian lowland rainforest align with post-disturbance rather than dry season advantage. Austral Ecol. 44, 983–994 (2019).Article 

    Google Scholar 
    46.Burgess, S. S. O. & Dawson, T. E. Predicting the limits to tree height using statistical regressions of leaf traits. New Phytol. 174, 626–636 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Burrows, G. E. Comparative anatomy of the photosynthetic organs of 39 xeromorphic species from subhumid New South Wales, Australia. Int. J. Plant Sci. 162, 411–430 (2001).Article 

    Google Scholar 
    48.Butler, D. W., Gleason, S. M., Davidson, I., Onoda, Y. & Westoby, M. Safety and streamlining of woody shoots in wind: an empirical study across 39 species in tropical Australia. New Phytol. 193, 137–149 (2011).PubMed 
    Article 

    Google Scholar 
    49.CAB International. Forestry Compendium. http://www.cabi.org/fc/ (2009).50.Caldwell, E., Read, J. & Sanson, G. D. Which leaf mechanical traits correlate with insect herbivory among feeding guilds? Ann. Bot. 117, 349–361 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    51.Canham, C. A., Froend, R. H. & Stock, W. D. Water stress vulnerability of four Banksia species in contrasting ecohydrological habitats on the Gnangara Mound. Western Australia. Plant Cell Envrion. 32, 64–72 (2009).Article 

    Google Scholar 
    52.Carpenter, R. J. Cuticular morphology and aspects of the ecology and fossil history of North Queensland rainforest Proteaceae. Bot. J. Linn. Soc. 116, 249–303 (1994).Article 

    Google Scholar 
    53.Carpenter, R. J., Hill, R. S. & Jordan, G. J. Leaf Cuticular Morphology Links Platanaceae and Proteaceae. Int. J. Plant Sci. 166, 843–855 (2005).Article 

    Google Scholar 
    54.Catford, J. A., Downes, B. J., Gippel, C. J. & Vesk, P. A. Flow regulation reduces native plant cover and facilitates exotic invasion in riparian wetlands. J. Appl. Ecol. 48, 432–442 (2011).Article 

    Google Scholar 
    55.Catford, J. A., Morris, W. K., Vesk, P. A., Gippel, C. J. & Downes, B. J. Species and environmental characteristics point to flow regulation and drought as drivers of riparian plant invasion. Divers. Distrib. 20, 1084–1096 (2014).Article 

    Google Scholar 
    56.Cernusak, L. A., Hutley, L. B., Beringer, J. & Tapper, N. J. Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna. Plant Cell Envrion. 29, 632–646 (2006).Article 

    Google Scholar 
    57.Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A. M. & Turner, B. L. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agric. For. Meteorol. 151, 1462–1470 (2011).ADS 
    Article 

    Google Scholar 
    58.Chandler, G. T., Crisp, M. D., Cayzer, L. W. & Bayer, R. J. Monograph of Gastrolobium (Fabaceae: Mirbelieae). Aust. Syst. Bot. 15, 619–739 (2002).Article 

    Google Scholar 
    59.Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).PubMed 
    Article 

    Google Scholar 
    60.Cheal, D. Growth stages and tolerable fire intervals for Victoria’s native vegetation data sets. (Victorian Government Department of Sustainability; Environment Melbourne, 2010).61.Cheesman, A. W., Duff, H., Hill, K., Cernusak, L. A. & McInerney, F. A. Isotopic and morphologic proxies for reconstructing light environment and leaf function of fossil leaves: A modern calibration in the Daintree Rainforest, Australia. Am. J. Bot. 107, 1165–1176 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Chen et al. Plants show more flesh in the tropics: Variation in fruit type along latitudinal and climatic gradients. Ecography 40, 531–538 (2017).Article 

    Google Scholar 
    63.Chinnock, R. J. Eremophila and allied genera: A monograph of the plant family Myoporaceae. (Rosenberg, 2007).64.Choat, B., Ball, M. C., Luly, J. G. & Holtum, J. A. M. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees 19, 305–311 (2005).Article 

    Google Scholar 
    65.Choat, B., Ball, M. C., Luly, J. G., Donnelly, C. F. & Holtum, J. A. M. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology. Tree Physiol. 26, 657–664 (2006).PubMed 
    Article 

    Google Scholar 
    66.Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Chudnoff, M. Tropical timbers of the world. 472 (US Department of Agriculture, Forest Service, 1984).68.The French agricultural research and international cooperation organization (CIRAD). Wood density data. http://www.cirad.fr/ (2009).69.Clarke, P. J. et al. A synthesis of postfire recovery traits of woody plants in Australian ecosystems. Sci. Total Environ. 534, 31–42 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Cooper, W. & Cooper, W. T. Fruits of the Australian tropical rainforest. (Nokomis Editions, 2004).71.Cooper, W. & Cooper, W. T. Australian rainforest fruits. 272 (CSIRO Publishing, 2013).72.Cornwell, W. K. Causes and consequences of functional trait diversity: plant community assembly and leaf decomposition. (Stanford University, California, 2006).73.Centre for Plant Biodiversity Research. EUCLID 2.0: Eucalypts of Australia. http://apps.lucidcentral.org/euclid/text/intro/index.html (2002).74.Craven, L. A., A taxonomic revision of Calytrix Labill. (Myrtaceae). Brunonia 10, 1–138 (1987).Article 

    Google Scholar 
    75.Craven, L. A., Lepschi, B. J. & Cowley, K. J. Melaleuca (Myrtaceae) of Western Australia: Five new species, three new combinations, one new name and a new state record. Nuytsia 20, 27–36 (2010).
    Google Scholar 
    76.Crisp, M. D., Cayzer, L., Chandler, G. T. & Cook, L. G. A monograph of Daviesia (Mirbelieae, Faboideae, Fabaceae). Phytotaxa 300, 1–308 (2017).Article 

    Google Scholar 
    77.Cromer, R. N., Raupach, M., Clarke, A. R. P. & Cameron, J. N. Eucalypt plantations in Australia – the potential for intensive production and utilization. Appita J. 29, 165–173 (1975).
    Google Scholar 
    78.Cross, E. The characteristics of natives and invaders: A trait-based investigation into the theory of limiting similarity. (La Trobe University, 2009).79.Crous, K. Y. et al. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming. Glob. Chang. Biol. 19, 3790–3807 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    80.Crous, K. Y., Wujeska-Klause, A., Jiang, M., Medlyn, B. E. & Ellsworth, D. S. Nitrogen and phosphorus retranslocation of leaves and stemwood in a mature Eucalyptus forest exposed to 5 years of elevated CO2. Front. Plant. Sci. 10, art664 (2019).Article 

    Google Scholar 
    81.Cunningham, S. A., Summerhayes, B. & Westoby, M. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol. Monogr. 69, 569–588 (1999).Article 

    Google Scholar 
    82.Curran, T. J., Clarke, P. J. & Warwick, N. W. M. Water relations of woody plants on contrasting soils during drought: does edaphic compensation account for dry rainforest distribution? Aust. J. Bot. 57, 629–639 (2009).Article 

    Google Scholar 
    83.Curtis, E. M., Leigh, A. & Rayburg, S. Relationships among leaf traits of Australian arid zone plants: alternative modes of thermal protection. Aust. J. Bot. 60, 471–483 (2012).Article 

    Google Scholar 
    84.Denton, M. D., Veneklaas, E. J., Freimoser, F. M. & Lambers, H. Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus. Plant Cell Envrion. 30, 1557–1565 (2007).CAS 
    Article 

    Google Scholar 
    85.Desch, H. E. & Dinwoodie, J. M. Timber structure, properties, conversion and use. (Palgrave Macmillan, 1996).86.de Tombeur, F. et al. A shift from phenol to silica-based leaf defenses during long-term soil and ecosystem development. Ecol. Lett. 24, 984–995 (2021).PubMed 
    Article 

    Google Scholar 
    87.Dong, N. et al. Leaf nitrogen from first principles: field evidence for adaptive variation with climate. Biogeosciences 14, 481–495 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    88.Dong, N. et al. Components of leaf-trait variation along environmental gradients. New Phytol. 228, 82–94 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Du, P., Arndt, S. K. & Farrell, C. Relationships between plant drought response, traits, and climate of origin for green roof plant selection. Ecol. Appl. 28, 1752–1761 (2018).PubMed 
    Article 

    Google Scholar 
    90.Du, P., Arndt, S. K. & Farrell, C. Can the turgor loss point be used to assess drought response to select plants for green roofs in hot and dry climates? Plant Soil 441, 399–408 (2019).CAS 
    Article 

    Google Scholar 
    91.Duan, H. et al. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature. Tree Physiol. 35, 756–770 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Duncan, R. P. et al. Plant traits and extinction in urban areas: a meta-analysis of 11 cities. Glob. Ecol. Biog. 20, 509–519 (2011).Article 

    Google Scholar 
    93.Dwyer, J. M. & Laughlin, D. C. Constraints on trait combinations explain climatic drivers of biodiversity: The importance of trait covariance in community assembly. Ecol. Lett. 20, 872–882 (2017).PubMed 
    Article 

    Google Scholar 
    94.Dwyer, J. M. & Mason, R. Plant community responses to thinning in densely regenerating Acacia harpophylla forest. Restor. Ecol. 26, 97–105 (2018).Article 

    Google Scholar 
    95.Eamus, D. & Prichard, H. A cost-benefit analysis of leaves of four Australian savanna species. Tree Physiol. 18, 537–545 (1998).PubMed 
    Article 

    Google Scholar 
    96.Eamus, D., Myers, B., Duff, G. & Williams, D. Seasonal changes in photosynthesis of eight savanna tree species. Tree Physiol. 19, 665–671 (1999).PubMed 
    Article 

    Google Scholar 
    97.Myers, B., E., D. & Duff, G. A cost-benefit analysis of leaves of eight Australian savanna tree species of differing life-span. Photosynthetica 36, 575–586 (1999).Article 

    Google Scholar 
    98.Edwards, C., Read, J. & Sanson, G. D. Characterising sclerophylly: some mechanical properties of leaves from heath and forest. Oecologia 123, 158–167 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Edwards, C., Sanson, G. D., Aranwela, N. & Read, J. Relationships between sclerophylly, leaf biomechanical properties and leaf anatomy in some Australian heath and forest species. Plant Biosyst. 134, 261–277 (2000).Article 

    Google Scholar 
    100.Schöenenberger, J. et al. Phylogenetic analysis of fossil flowers using an angiosperm-wide data set: proof-of-concept and challenges ahead. Am. J. Bot. 107, 1433–1448 (2020).Article 

    Google Scholar 
    101.Esperon-Rodriguez, M. et al. Functional adaptations and trait plasticity of urban trees along a climatic gradient. Urban For. Urban Green. 54, art126771 (2020).Article 

    Google Scholar 
    102.Everingham, S. E., Offord, C. A., Sabot, M. E. B. & Moles, A. T. Time travelling seeds reveal that plant regeneration and growth traits are responding to climate change. Ecology 102, e03272 (2020).
    Google Scholar 
    103.Falster, D. S. & Westoby, M. Leaf size and angle vary widely across species: what consequences for light interception? New Phytol. 158, 509–525 (2003).Article 

    Google Scholar 
    104.Falster, D. S. & Westoby, M. Alternative height strategies among 45 dicot rain forest species from tropical Queensland, Australia. J. Ecol. 93, 521–535 (2005).Article 

    Google Scholar 
    105.Falster, D. S. & Westoby, M. Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession. Oikos 111, 57–66 (2005).Article 

    Google Scholar 
    106.Farrell, C., Mitchell, R. E., Szota, C., Rayner, J. P. & Williams, N. S. G. Green roofs for hot and dry climates: Interacting effects of plant water use, succulence and substrate. Ecol. Eng. 49, 270–276 (2012).Article 

    Google Scholar 
    107.Farrell, C., Szota, C., Williams, N. S. G. & Arndt, S. K. High water users can be drought tolerant: using physiological traits for green roof plant selection. Plant Soil 372, 177–193 (2013).CAS 
    Article 

    Google Scholar 
    108.Farrell, C., Szota, C. & Arndt, S. K. Does the turgor loss point characterize drought response in dryland plants? Plant Cell Envrion. 40, 1500–1511 (2017).CAS 
    Article 

    Google Scholar 
    109.Feller, M. C. Biomass and nutrient distribution in two eucalypt forest ecosystems. Austral Ecol. 5, 309–333 (1980).Article 

    Google Scholar 
    110.Firn, J. et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecol. Evo. 3, 400–406 (2019).Article 

    Google Scholar 
    111.Flynn, J. H. & Holder, C. D. A guide to useful woods of the world. (Forest Products Society, 2001).112.Fonseca, C. R., Overton, J. M. C., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 88, 964–977 (2000).Article 

    Google Scholar 
    113.McDonald, P. G., Fonseca, C. R., Overton, J. M. C. & Westoby, M. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct. Ecol. 17, 50–57 (2003).Article 

    Google Scholar 
    114.Forster, P. I. A taxonomic revision of Alyxia (Apocynaceae) in Australia. Aust. Syst. Bot. 5, 547–580 (1992).Article 

    Google Scholar 
    115.Forster, P. I. New names and combinations in Marsdenia (Asclepiadaceae: Marsdenieae) from Asia and Malesia (excluding Papusia). Aust. Syst. Bot. 8, 691–701 (1995).Article 

    Google Scholar 
    116.French, B. J., Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Cause and effects of a megafire in sedge-heathland in the Tasmanian temperate wilderness. Aust. J. Bot. 64, 513–525 (2016).Article 

    Google Scholar 
    117.Froend, R. H. & Drake, P. L. Defining phreatophyte response to reduced water availability: preliminary investigations on the use of xylem cavitation vulnerability in Banksia woodland species. Aust. J. Bot. 54, 173–179 (2006).Article 

    Google Scholar 
    118.Funk, J. L., Standish, R. J., Stock, W. D. & Valladares, F. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems. Ecology 97, 75–83 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    119.Gallagher, R. V. et al. Invasiveness in introduced Australian acacias: The role of species traits and genome size. Divers. Distrib. 17, 884–897 (2011).Article 

    Google Scholar 
    120.Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. J. Biogeogr. 39, 1757–1771 (2012).Article 

    Google Scholar 
    121.Gardiner, R., Shoo, L. P. & Dwyer John. M. Look to seedling heights, rather than functional traits, to explain survival during extreme heat stress in the early stages of subtropical rainforest restoration. J. Appl. Ecol. 56, 2687–2697 (2019).Article 

    Google Scholar 
    122.Geange, S. R. et al. Phenotypic plasticity and water availability: responses of alpine herb species along an elevation gradient. Clim. Change Responses 4, 1–12 (2017).Article 

    Google Scholar 
    123.Geange, S. R., Holloway-Phillips, M.-M., Briceno, V. F. & Nicotra, A. B. Aciphylla glacialis mortality, growth and frost resistance: a field warming experiment. Aust. J. Bot. 67, 599–609 (2020).Article 

    Google Scholar 
    124.Ghannoum, O. et al. Exposure to preindustrial, current and future atmospheric CO2 and temperature differentially affects growth and photosynthesis in Eucalyptus. Glob. Chang. Biol. 16, 303–319 (2010).ADS 
    Article 

    Google Scholar 
    125.Gleason, S. M., Butler, D. W., Zieminska, K., Waryszak, P. & Westoby, M. Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Funct. Ecol. 26, 343–352 (2012).Article 

    Google Scholar 
    126.Gleason, S. M., Butler, D. W. & Waryszak, P. Shifts in leaf and stem hydraulic traits across aridity gradients in eastern Australia. Int. J. Plant Sci. 174, 1292–1301 (2013).Article 

    Google Scholar 
    127.Gleason, S. M., Blackman, C. J., Cook, A. M., Laws, C. A. & Westoby, M. Whole-plant capacitance, embolism resistance and slow transpiration rates all contribute to longer desiccation times in woody angiosperms from arid and wet habitats. Tree Physiol. 34, 275–284 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    128.Gleason, S. M. et al. Vessel scaling in evergreen angiosperm leaves conforms with Murray’s law and area-filling assumptions: implications for plant size, leaf size and cold tolerance. New Phytol. 218, 1360–1370 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    129.Goble-Garratt, E., Bell, D. & Loneragan, W. Floristic and leaf structure patterns along a shallow elevational gradient. Aust. J. Bot. 29, 329–347 (1981).Article 

    Google Scholar 
    130.Gosper, C. R. Fruit characteristics of invasive bitou bush, Chrysanthemoides monilifera (Asteraceae), and a comparison with co-occurring native plant species. Aust. J. Bot. 52, 223–230 (2004).Article 

    Google Scholar 
    131.Gosper, C. R., Yates, C. J. & Prober, S. M. Changes in plant species and functional composition with time since fire in two mediterranean climate plant communities. J. Veg. Sci. 23, 1071–1081 (2012).Article 

    Google Scholar 
    132.Gosper, C. R., Prober, S. M. & Yates, C. J. Estimating fire interval bounds using vital attributes: implications of uncertainty and among-population variability. Ecol. Appl. 23, 924–935 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    133.Gosper, C. R., Yates, C. J. & Prober, S. M. Floristic diversity in fire-sensitive eucalypt woodlands shows a “U”-shaped relationship with time since fire. J. Appl. Ecol. 50, 1187–1196 (2013).Article 

    Google Scholar 
    134.Gosper, C. R. et al. A conceptual model of vegetation dynamics for the unique obligate-seeder eucalypt woodlands of south-western Australia. Austral Ecol. 43, 681–695 (2018).Article 

    Google Scholar 
    135.Clayton, W. D., Vorontsova, M. S., Harman, K. T. & Williamson, H. GrassBase – The online world grass flora. http://www.kew.org/data/grasses-db.html (2006).136.Gray, E. F. et al. Leaf:wood allometry and functional traits together explain substantial growth rate variation in rainforest trees. AoB Plants 11, 1–11 (2019).Article 

    Google Scholar 
    137.Groom, P. K. & Lamont, B. B. Reproductive ecology of non-sprouting and re-sprouting Hakea species (Proteaceae) in southwestern Australia. In Gondwanan heritage (eds. S.D. Hopper M. Harvey, J. C. & George, A. S.) (Surrey Beatty, Chipping Norton, 1996).138.Groom, P. K. & Lamont, B. B. Fruit-seed relations in Hakea: serotinous species invest more dry matter in predispersal seed protection. Austral Ecol. 22, 352–355 (1997).Article 

    Google Scholar 
    139.Groom, P. K. & Lamont, B. B. Phosphorus accumulation in Proteaceae seeds: A synthesis. Plant Soil 334, 61–72 (2010).CAS 
    Article 

    Google Scholar 
    140.Grootemaat, S., Wright, I. J., van Bodegom, P. M., Cornelissen, J. H. C. & Cornwell, W. K. Burn or rot: leaf traits explain why flammability and decomposability are decoupled across species. Funct. Ecol. 29, 1486–1497 (2015).Article 

    Google Scholar 
    141.Grootemaat, S., Wright, I. J., van Bodegom, P. M., Cornelissen, J. H. C. & Shaw, V. Bark traits, decomposition and flammability of Australian forest trees. Aust. J. Bot. 65, 327 (2017).Article 

    Google Scholar 
    142.Grootemaat, S., Wright, I. J., van Bodegom, P. M. & Cornelissen, J. H. C. Scaling up flammability from individual leaves to fuel beds. Oikos 126, 1428–1438 (2017).Article 

    Google Scholar 
    143.Gross, C. L. The reproductive ecology of Canavalia rosea (Fabaceae) on Anak Krakatau. Indonesia. Aust. J. Bot. 41, 591–599 (1993).Article 

    Google Scholar 
    144.Gross, C. L. A comparison of the sexual systems in the trees from the Australian tropics with other tropical biomes–more monoecy but why? Am. J. Bot. 92, 907–919 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    145.Grubb, P. J. & Metcalfe, D. J. Adaptation and inertia in the Australian tropical lowland rain-forest flora: Contradictory trends in intergeneric and intrageneric comparisons of seed size in relation to light demand. Funct. Ecol. 10, 512–520 (1996).Article 

    Google Scholar 
    146.Grubb, P. J. et al. Monocot leaves are eaten less than dicot leaves in tropical lowland rain forests: Correlations with toughness and leaf presentation. Ann. Bot. 101, 1379–1389 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    147.Guilherme Pereira, C., Clode, P. L., Oliveira, R. S. & Lambers, H. Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus to their mesophyll. New Phytol. 218, 959–973 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    148.Guilherme Pereira, C. et al. Trait convergence in photosynthetic nutrient-use efficiency along a 2-million year dune chronosequence in a global biodiversity hotspot.  J. Ecol. 107, 2006–2023 (2019).CAS 
    Article 

    Google Scholar 
    149.Hacke, U. G. et al. Water transport in vesselless Angiosperms: Conducting efficiency and cavitation safety. Int. J. Plant Sci. 168, 1113–1126 (2007).Article 

    Google Scholar 
    150.Hall, T. J. The nitrogen and phosphorus concentrations of some pasture species in the Dichanthium-Eulalia Grasslands of North-West Queensland. Rangeland J. 3, 67–73 (1981).Article 

    Google Scholar 
    151.Harrison, M. T., Edwards, E. J., Farquhar, G. D., Nicotra, A. B. & Evans, J. R. Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen-use efficiency. Plant Cell Envrion. 32, 259–270 (2009).CAS 
    Article 

    Google Scholar 
    152.Hassiotou, F., Evans, J. R., Ludwig, M. & Veneklaas, E. J. Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophylls. Plant Cell Envrion. 32, 1596–1611 (2009).CAS 
    Article 

    Google Scholar 
    153.Hatch, A. B. Influence of plant litter on the Jarrah forest soils of the Dwellingup region. West. Aust. For. Timber Bur. Leaflet 18 (1955).154.Hayes, P., Turner, B. L., Lambers, H. & Laliberte, E. Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J. Ecol. 102, 396–410 (2013).Article 
    CAS 

    Google Scholar 
    155.Hayes, P. E., Clode, P. L., Oliveira, R. S. & Lambers, H. Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: an adaptation improving phosphorus-use efficiency. Plant Cell Envrion. 41, 605–619 (2018).CAS 
    Article 

    Google Scholar 
    156.Henery, M. L. & Westoby, M. Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 92, 479–490 (2001).Article 

    Google Scholar 
    157.Hocking, P. J. The nutrition of fruits of two proteaceous shrubs, Grevillea wilsonii and Hakea undulata, from south-western Australia. Aust. J. Bot. 30, 219–230 (1982).CAS 
    Article 

    Google Scholar 
    158.Hocking, P. J. Mineral nutrient composition of leaves and fruits of selected species of Grevillea from southwestern Australia, with special reference to Grevillea leucopteris Meissn. Aust. J. Bot. 34, 155–164 (1986).CAS 
    Article 

    Google Scholar 
    159.Hong, L. T. et al. Plant resources of south east Asia: Timber trees. World biodiversity Database CD rom series (Springer-Verlag Berlin; Heidelberg GmbH; Co. KG, 1999).160.Hopmans, P., Stewart, H. T. L. & Flinn, D. W. Impacts of harvesting on nutrients in a eucalypt ecosystem in southeastern Australia. For. Ecol. Manage. 59, 29–51 (1993).Article 

    Google Scholar 
    161.Huang, G., Rymer, P. D., Duan, H., Smith, R. A. & Tissue, D. T. Elevated temperature is more effective than elevated CO2 in exposing genotypic variation in Telopea speciosissima growth plasticity: implications for woody plant populations under climate change. Glob. Chang. Biol. 21, 3800–3813 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    162.Hyland, B. P. M., Whiffin, T., Christophel, D., Gray, B. & Elick, R. W. Australian tropical rain forest plants trees, shrubs and vines. (CSIRO Publishing, 2003).163.World Agroforestry Centre (ICRAF). The wood density database. http://www.worldagroforestry.org/output/wood-density-database (2009).164.Ilic, J., Boland, D., McDonald, M., G., D. & Blakemore, P. Woody density phase 1 – State of knowledge. National Carbon Accounting System. Technical Report 18. (Australian Greenhouse Office, Canberra, Australia, 2000).165.Islam, M., Turner, D. W. & Adams, M. A. Phosphorus availability and the growth, mineral composition and nutritive value of ephemeral forbs and associated perennials from the Pilbara, Western Australia. Aust. J. Exp. Agric. 39, 149–159 (1999).Article 

    Google Scholar 
    166.Islam, M. & Adams, M. A. Mineral content and nutritive value of native grasses and the response to added phosphorus in a Pilbara rangeland. Trop. Grassl. 33, 193–200 (1999).
    Google Scholar 
    167.Jordan, G. J. An investigation of long-distance dispersal based on species native to both Tasmania and New Zealand. Aust. J. Bot. 49, 333–340 (2001).Article 

    Google Scholar 
    168.Jordan, G. J., Weston, P. H., Carpenter, R. J., Dillon, R. A. & Brodribb, T. J. The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae. Am. J. Bot. 95, 521–530 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    169.Jordan, G. J., Carpenter, R. J., Koutoulis, A., Price, A. & Brodribb, T. J. Environmental adaptation in stomatal size independent of the effects of genome size. New Phytol. 205, 608–617 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    170.Jordan, G. J. et al. Links between environment and stomatal size through evolutionary time in Proteaceae. Proc. R. Soc. Lond. B Biol. Sci. 287, 20192876 (2020).CAS 

    Google Scholar 
    171.Jurado, E. Diaspore weight, dispersal, growth form and perenniality of central Australian plants. J. Ecol. 79, 811–828 (1991).Article 

    Google Scholar 
    172.Jurado, E. & Westoby, M. Germination biology of selected central Australian plants. Austral Ecol. 17, 341–348 (1992).Article 

    Google Scholar 
    173.Kanowski, J. Ecological determinants of the distribution and abundance of the folivorous marsupials endemic to the rainforests of the Atherton uplands, north Queensland. (James Cook University, Townsville, 1999).174.Keighery, G. Taxonomy of the Calytrix ecalycata complex (Myrtaceae). Nuytsia 15, 261–268 (2004).
    Google Scholar 
    175.Royal Botanic Gardens Kew. Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).176.Royal Botanic Gardens Kew. Seed protein data from Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).177.Royal Botanic Gardens Kew. Oil content data from Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).178.Royal Botanic Gardens Kew. Seed dispersal data from the Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).179.Royal Botanic Gardens Kew. Germination data from the Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).180.Knox, K. J. E. & Clarke, P. J. Fire severity and nutrient availability do not constrain resprouting in forest shrubs. Plant Ecol. 212, 1967–1978 (2011).Article 

    Google Scholar 
    181.Körner, C. & Cochrane, P. M. Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia 66, 443–455 (1985).ADS 
    PubMed 
    Article 

    Google Scholar 
    182.Kooyman, R., Rossetto, M., Cornwell, W. & Westoby, M. Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests. Glob. Ecol. Biog. 20, 707–716 (2011).Article 

    Google Scholar 
    183.Kotowska, M. M., Wright, I. J. & Westoby, M. Parenchyma abundance in wood of evergreen trees varies independently of nutrients. Front. Plant. Sci. 11, art86 (2020).Article 

    Google Scholar 
    184.Kuo, J., Hocking, P. & Pate, J. Nutrient reserves in seeds of selected Proteaceous species from South-western Australia. Aust. J. Bot. 30, 231–249 (1982).CAS 
    Article 

    Google Scholar 
    185.Laliberté, E. et al. Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. J. Ecol. 100, 631–642 (2012).Article 
    CAS 

    Google Scholar 
    186.Lambert, M. J. Sulphur relationships of native and exotic tree species. (Macquarie University, Sydney, 1979).187.Lamont, B. B., Groom, P. K. & Cowling, R. M. High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Funct. Ecol. 16, 403–412 (2002).Article 

    Google Scholar 
    188.Lamont, B. B., Groom, P. K., Williams, M. & He, T. LMA, density and thickness: recognizing different leaf shapes and correcting for their nonlaminarity. New Phytol. 207, 942–947 (2015).PubMed 
    Article 

    Google Scholar 
    189.Landsberg, J. Dieback of rural eucalypts: response of foliar dietary quality and herbivory to defoliation. Austral Ecol. 15, 89–96 (1990).Article 

    Google Scholar 
    190.Landsberg, J. & Gillieson, D. S. Regional and local variation in insect herbivory, vegetation and soils of eucalypt associations in contrasted landscape positions along a climatic gradient. Aust. J. Ecol. 20, 299–315 (1995).Article 

    Google Scholar 
    191.Lawes, M. J., Adie, H., Russell-Smith, J., Murphy, B. & Midgley, J. J. How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere 2, 1–13 (2011).Article 

    Google Scholar 
    192.Lawes, M. J., Richards, A., Dathe, J. & Midgley, J. J. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol. 212, 2057–2069 (2011).Article 

    Google Scholar 
    193.Lawes, M. J., Midgley, J. J. & Clarke, P. J. Costs and benefits of relative bark thickness in relation to fire damage: A savanna/forest contrast. J. Ecol. 101, 517–524 (2012).Article 

    Google Scholar 
    194.Lawson, J. R., Fryirs, K. A. & Leishman, M. R. Data from: Hydrological conditions explain wood density in riparian plants of south-eastern Australia. Dryad Digital Repository https://doi.org/10.5061/dryad.72h45 (2015).195.Laxton, E. Relationship between leaf traits, insect communities and resource availability. (Macquarie University, 2005).196.Lee, M. R. et al. Good neighbors aplenty: fungal endophytes rarely exhibit competitive exclusion patterns across a span of woody habitats. Ecology 100, e02790 (2019).PubMed 
    Article 

    Google Scholar 
    197.Leigh, A. & Nicotra, A. B. Sexual dimorphism in reproductive allocation and water use efficiency in Maireana pyramidata (Chenopodiaceae), a dioecious, semi-arid shrub. Aust. J. Bot. 51, 509–514 (2003).Article 

    Google Scholar 
    198.Leigh, A., Cosgrove, M. J. & Nicotra, A. B. Reproductive allocation in a gender dimorphic shrub: anomalous female investment in Gynatrix pulchella? J. Ecol. 94, 1261–1271 (2006).Article 

    Google Scholar 
    199.Leishman, M. R. & Westoby, M. Classifying plants into groups on the basis of associations of individual traits–Evidence from Australian semi-arid woodlands. J. Ecol. 80, 417–424 (1992).Article 

    Google Scholar 
    200.Leishman, M. R., Westoby, M. & Jurado, E. Correlates of seed size variation: A comparison among five temperate floras. J. Ecol. 83, 517–529 (1995).Article 

    Google Scholar 
    201.Leishman, M. R., Haslehurst, T., Ares, A. & Baruch, Z. Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytol. 176, 635–643 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    202.Lemmens, R. H. M. J. & Soerjanegara, I. Prosea, Volume 5/1: Timber Trees – Major Commercial Timbers. (Pudoc/Prosea, 1993).203.Lenz, T. I., Wright, I. J. & Westoby, M. Interrelations among pressure-volume curve traits across species and water availability gradients. Physiol. Plant. 127, 423–433 (2006).CAS 
    Article 

    Google Scholar 
    204.Leuning, R., Cromer, R. N. & Rance, S. Spatial distributions of foliar nitrogen and phosphorus in crowns of Eucalyptus grandis. Oecologia 88, 504–510 (1991).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    205.Lewis, J. D. et al. Rising temperature may negate the stimulatory effect of rising CO2 on growth and physiology of Wollemi pine (Wollemia nobilis). Funct. Plant. Bio. 42, 836–850 (2015).CAS 
    Article 

    Google Scholar 
    206.Lim, F. K. S., Pollock, L. J. & Vesk, P. A. The role of plant functional traits in shrub distribution around alpine frost hollows. J. Veg. Sci. 28, 585–594 (2017).Article 

    Google Scholar 
    207.Lord, J. et al. Larger seeds in tropical floras: Consistent patterns independent of growth form and dispersal mode. J. Biogeogr. 24, 205–211 (1997).Article 

    Google Scholar 
    208.Lusk, C. H., Onoda, Y., Kooyman, R. & Gutiurrez-Giron, A. Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight. New Phytol. 186, 429–438 (2010).PubMed 
    Article 

    Google Scholar 
    209.Lusk, C. H., Kelly, J. W. G. & Gleason, S. M. Light requirements of Australian tropical vs. cool-temperate rainforest tree species show different relationships with seedling growth and functional traits. Ann. Bot. 111, 479–488 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    210.Lusk, C. H., Sendall, K. M. & Clarke, P. J. Seedling growth rates and light requirements of subtropical rainforest trees associated with basaltic and rhyolitic soils. Aust. J. Bot. 62, 48–55 (2014).Article 

    Google Scholar 
    211.Macinnis-Ng, C., McClenahan, K. & Eamus, D. Convergence in hydraulic architecture, water relations and primary productivity amongst habitats and across seasons in Sydney. Funct. Plant. Bio. 31, 429–439 (2004).Article 

    Google Scholar 
    212.Macinnis-Ng, C. M. O., Zeppel, M. J. B., Palmer, A. R. & Eamus, D. Seasonal variations in tree water use and physiology correlate with soil salinity and soil water content in remnant woodlands on saline soils. J. Arid Environ. 129, 102–110 (2016).ADS 
    Article 

    Google Scholar 
    213.Marsh, N. R. & Adams, M. A. Decline of Eucalyptus tereticornis near Bairnsdale, Victoria: insect herbivory and nitrogen fractions in sap and foliage. Aust. J. Bot. 43, 39–49 (1995).Article 

    Google Scholar 
    214.Maslin, B. WATTLE, Interactive Identification of Australian Acacia. Version 2. (Australian Biological Resources Study, Canberra, 2014).215.McCarthy, J. K., Dwyer, J. M. & Mokany, K. A regional-scale assessment of using metabolic scaling theory to predict ecosystem properties. Proc. R. Soc. Lond. B Biol. Sci. 286, 20192221 (2019).
    Google Scholar 
    216.McClenahan, K., Macinnis-Ng, C. & Eamus, D. Hydraulic architecture and water relations of several species at diverse sites around Sydney. Aust. J. Bot. 52, 509–518 (2004).Article 

    Google Scholar 
    217.McGlone, M. S., Richardson, S. J. & Jordan, G. J. Comparative biogeography of New Zealand trees: Species richness, height, leaf traits and range sizes. New Zealand J. Ecol. 34, 137–151 (2010).
    Google Scholar 
    218.McGlone, M. S., Richardson, S. J., Jordan, G. J. & Perry, G. L. W. Is there a “suboptimal” woody species height? A response to Scheffer et al. Trends in Ecol. Evo. 30, 4–5 (2015).Article 

    Google Scholar 
    219.McIntyre, S., Lavorel, S. & Tremont, R. M. Plant life-history attributes: Their relationship to disturbance response in herbaceous vegetation. The J. Ecol. 83, 31–44 (1995).Article 

    Google Scholar 
    220.Meers, T. Role of plant functional traits in determining the response of vegetation to land use change on the Delatite Peninsula, Victoria. (University of Melbourne, 2007).221.Meers, T. L., Bell, T. L., Enright, N. J. & Kasel, S. Role of plant functional traits in determining vegetation composition of abandoned grazing land in north-eastern Victoria, Australia. J. Veg. Sci. 19, 515–524 (2008).Article 

    Google Scholar 
    222.Meers, T. L., Bell, T. L., Enright, N. J. & Kasel, S. Do generalisations of global trade-offs in plant design apply to an Australian sclerophyllous flora? Aust. J. Bot. 58, 257–270 (2010).Article 

    Google Scholar 
    223.Meers, T. L., Kasel, S., Bell, T. L. & Enright, N. J. Conversion of native forest to exotic Pinus radiata plantation: response of understorey plant composition using a plant functional trait approach. For. Ecol. Manage. 259, 399–409 (2010).Article 

    Google Scholar 
    224.Meier, E. The wood database. http://www.wood-database.com/ (2007).225.Laliberté, E. et al. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 13, 76–86 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    226.Milberg, P. & Lamont, B. B. Seed/cotyledon size and nutrient content play a major role in early performance of species on nutrient-poor soils. New Phytol. 137, 665–672 (1997).Article 

    Google Scholar 
    227.Milberg, P., Pérez-Fernández, M. A. & Lamont, B. B. Seedling growth response to added nutrients depends on seed size in three woody genera. J. Ecol. 86, 624–632 (1998).Article 

    Google Scholar 
    228.Mokany, K. & Ash, J. Are traits measured on pot grown plants representative of those in natural communities? J. Veg. Sci. 19, 119–126 (2008).Article 

    Google Scholar 
    229.Mokany, K., Thomson, J. J., Lynch, A. J. J., Jordan, G. J. & Ferrier, S. Linking changes in community composition and function under climate change. Ecol. Appl. 25, 2132–2141 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    230.Moles, A. T. & Westoby, M. Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90, 517–524 (2000).Article 

    Google Scholar 
    231.Moles, A. T., Warton, D. I. & Westoby, M. Seed size and survival in the soil in arid Australia. Austral Ecol. 28, 575–585 (2003).Article 

    Google Scholar 
    232.Moles, A. T. et al. Putting plant resistance traits on the map: A test of the idea that plants are better defended at lower latitudes. New Phytol. 191, 777–788 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    233.Mooney, H. A., Ferrar, P. J. & Slatyer, R. O. Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus. Oecologia 36, 103–111 (1978).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    234.Moore, A. W., Russell, J. S. & Coaldrake, J. E. Dry matter and nutrient content of a subtropical semiarid forest of Acacia harpophylla F. Muell. (Brigalow). Aust. J. Bot. 15, 11–24 (1967).Article 

    Google Scholar 
    235.Moore, N. A., Camac, J. S. & Morgan, J. W. Effects of drought and fire on resprouting capacity of 52 temperate Australian perennial native grasses. New Phytol. 221, 1424–1433 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    236.Morgan, H. Root system architecture, water use and rainfall responses of perennial species. (Macquarie University, 2005).237.Muir, A. M., Vesk, P. A. & Hepworth, G. Reproductive trajectories over decadal time-spans after fire for eight obligate-seeder shrub species in south-eastern Australia. Aust. J. Bot. 62, 369–379 (2014).Article 

    Google Scholar 
    238.Munroe, S. E. M. et al. The photosynthetic pathways of plant species surveyed in Australia’s national terrestrial monitoring network. Scientific Data 8, 97 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    239.National Herbarium of NSW. Trait measurements for NSW rainforest species from PLantNET. http://plantnet.rbgsyd.nsw.gov.au/ (2016).240.Nicholson, A., Prior, L. D., Perry, G. L. W. & Bowman, D. M. J. S. High post-fire mortality of resprouting woody plants in Tasmanian Mediterranean-type vegetation. Int. J. Wildland Fire 26, 532–537 (2017).Article 

    Google Scholar 
    241.Nicolle, D. A classification and census of regenerative strategies in the eucalypts (Angophora, Corymbia and Eucalyptus – Myrtaceae), with special reference to the obligate seeders. Aust. J. Bot. 54, 391–407 (2006).Article 

    Google Scholar 
    242.Nicolle, D. Classification of the Eucalypts (Angophora, Corymbia and Eucalyptus) Version 3. (Currency Creek Arboretum Eucalypt Research, 2018).243.Niinemets, U., Wright, I. J. & Evans, J. R. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. J. Exp. Bot. 60, 2433–2449 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    244.Kenny, B., Orscheg, C., Tasker, E., Gill, M. A. & Bradstock, R. NSW Flora Fire Response Database, v2.1. (NSW Department of Planning Industry; Environment, 2014).245.Northern Territory Herbarium. Flora of the Darwin Region Online. http://www.lrm.nt.gov.au/plants-and-animals/herbarium/darwin_flora_online (2014).246.Onoda, Y., Richards, A. E. & Westoby, M. The relationship between stem biomechanics and wood density is modified by rainfall in 32 Australian woody plant species. New Phytol. 185, 493–501 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    247.O’Reilly-Nugent, A. et al. Measuring competitive impact: Joint‐species modelling of invaded plant communities. J. Ecol. 108, 449–459 (2018).Article 

    Google Scholar 
    248.Osborne, C. P. et al. A global database of C4 photosynthesis in grasses. New Phytol. 204, 441–446 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    249.Paczkowska G. & Chapman, A.R. The Western Australian flora: A descriptive catalogue. 652 (CALM, Kings Park; Botanic Gardens; Wildflower Society of Western Australia, 2000).250.Palma, E. et al. Functional trait changes in the floras of 11 cities across the globe in response to urbanization. Ecography 40, 875–886 (2017).Article 

    Google Scholar 
    251.Pate, J. S., Rasins, E., Rullo, J. & Kuo, J. Seed nutrient reserves of Proteaceae with special reference to protein bodies and their inclusions. Ann. Bot. 57, 747–770 (1986).CAS 
    Article 

    Google Scholar 
    252.Pearcy, R. W. Photosynthetic gas exchange responses of Australian tropical forest trees in canopy, gap and understory micro-environments. Funct. Ecol. 1, 169–178 (1987).Article 

    Google Scholar 
    253.Peeters, P. J. Correlations between leaf structural traits and the densities of herbivorous insect guilds. Biol. J. Linn. Soc. 77, 43–65 (2002).Article 

    Google Scholar 
    254.Pekin, B. K., Wittkuhn, R. S., Boer, M. M., Macfarlane, C. & Grierson, P. F. Plant functional traits along environmental gradients in seasonally dry and fire-prone ecosystem. J. Veg. Sci. 22, 1009–1020 (2011).Article 

    Google Scholar 
    255.Pickering, C., Green, K., Barros, A. A. & Venn, S. A resurvey of late-lying snowpatches reveals changes in both species and functional composition across snowmelt zones. Alp. Bot. 124, 93–103 (2014).Article 

    Google Scholar 
    256.Pickup, M., Westoby, M. & Basden, A. Dry mass costs of deploying leaf area in relation to leaf size. Funct. Ecol. 19, 88–97 (2005).Article 

    Google Scholar 
    257.Pollock, L. J., Morris, W. K. & Vesk, P. A. The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35, 716–725 (2011).Article 

    Google Scholar 
    258.Pollock, L. J. et al. Combining functional traits, the environment and multiple surveys to understand semi-arid tree distributions. J. Veg. Sci. 29, 967–977 (2018).Article 

    Google Scholar 
    259.Prior, L. D., Eamus, D. & Bowman, D. M. J. S. Leaf attributes in the seasonally dry tropics: A comparison of four habitats in northern Australia. Funct. Ecol. 17, 504–515 (2003).Article 

    Google Scholar 
    260.Prior, L. D., Bowman, D. M. J. S. & Eamus, D. Seasonal differences in leaf attributes in Australian tropical tree species: family and habitat comparisons. Funct. Ecol. 18, 707–718 (2004).Article 

    Google Scholar 
    261.Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Impact of high-severity fire in a Tasmainian dry eucalypt forest. Aust. J. Bot. 64, 193–205 (2016).Article 

    Google Scholar 
    262.Oxford Forestry Institute. Prospect: The wood database. http://dps.plants.ox.ac.uk/ofi/prospect/index.htm (2009).263.Royal Botanic Gardens Kew. Seed Information Database (SID). http://data.kew.org/sid/ (2014).264.Royal Botanic Gardens Sydney. PLantNET. http://plantnet.rbgsyd.nsw.gov.au/search/simple.htm (2014).265.Royal Botanic Gardens Sydney. PLantNET: NSW flora online. http://plantnet.rbgsyd.nsw.gov.au/ (2014).266.Read, J. & Sanson, G. D. Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol. 160, 81–99 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    267.Read, J., Sanson, G. D. & Lamont, B. B. Leaf mechanical properties in sclerophyll woodland and shrubland on contrasting soils. Plant Soil 276, 95–113 (2005).CAS 
    Article 

    Google Scholar 
    268.Reid, J. B., Hill, R., Brown, M. & and M. Hovenden. Vegetation of Tasmania. 456 (1999).269.Reynolds, V. A., Anderegg, L. D. L., Loy, X., HilleRisLambers, J. & Mayfield, M. M. Unexpected drought resistance strategies in seedlings of four Brachychiton species. Tree Physiol. 38, 664–677 (2017).Article 
    CAS 

    Google Scholar 
    270.Rice, K. J., Matzner, S. L., Byer, W. & Brown, J. R. Patterns of tree dieback in Queensland, Australia: The importance of drought stress and the role of resistance to cavitation. Oecologia 139, 190–198 (2004).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    271.Richards, A. E. et al. Physiological profiles of restricted endemic plants and their widespread congenors in the North Queensland wet tropics, Australia. Biol. Conserv. 111, 41–52 (2003).Article 

    Google Scholar 
    272.Roderick, M. L., Berry, S. L. & Noble, I. R. The relationship between leaf composition and morphology at elevated CO2 concentrations. New Phytol. 143, 63–72 (1999).Article 

    Google Scholar 
    273.Roderick, M. L. & Cochrane, M. J. On the conservative nature of the leaf mass-area relationship. Ann. Bot. 89, 537–542 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    274.Rosell, J. A., Gleason, S., Mendez-Alonzo, R., Chang, Y. & Westoby, M. Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytol. 201, 486–497 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    275.Rye, B. L. A revision of south-western Australian species of Micromyrtus (Myrtaceae) with five antisepalous ribs on the hypanthium. Nuytsia 15, 101–122 (2002).
    Google Scholar 
    276.Rye, B. L. A partial revision of the south-western Australian species of Micromyrtus (Myrtaceae: Chamelaucieae). Nuytsia 16, 117–147 (2006).
    Google Scholar 
    277.Rye, B. L. Reinstatement of the Western Australian genus Oxymyrrhine (Myrtaceae: Chamelaucieae) with three new species. Nuytsia 19, 149–165 (2009).
    Google Scholar 
    278.Rye, B. L. A revision of the Micromyrtus racemosa complex (Myrtaceae: Chamelaucieae) of south-western Australia. Nuytsia 20, 37–56 (2010).
    Google Scholar 
    279.Rye, B. L., Wilson, P. G. & Keighery, G. J. A revision of the species of Hypocalymma (Myrtaceae: Chamelaucieae) with smooth or colliculate seeds. Nuytsia 23, 283–312 (2013).
    Google Scholar 
    280.Rye, B. L. An update to the taxonomy of some western Australian genera of Myrtaceae tribe Chamelaucieae. 1. Calytrix. Nuytsia 23, 483–501 (2013).
    Google Scholar 
    281.Rye, B. L. A revision of the south-western Australian genus Babingtonia (Myrtaceae: Chamelaucieae). Nuytsia 25, 219–250 (2015).
    Google Scholar 
    282.Jessop, J. P. & Toelken, H. R. Flora of South Australia, 4th edition, 4 vols. (Government Printer, Adelaide, 1986).283.Sams, M. A. et al. Landscape context explains changes in the functional diversity of regenerating forests better than climate or species richness. Glob. Ecol. Biog. 26, 1165–1176 (2017).Article 

    Google Scholar 
    284.Sauquet, H. et al. The ancestral flower of angiosperms and its early diversification. Nat. Commun. 8, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    285.Schmidt, S. & Stewart, G. R. Waterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum). Plant Cell Envrion. 20, 1231–1241 (1997).Article 

    Google Scholar 
    286.Schmidt, S. & Stewart, G. R. d15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia 134, 569–577 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    287.Schmidt, S., Lamble, R. E., Fensham, R. J. & Siddique, I. Effect of woody vegetation clearing on nutrient and carbon relations of semi-arid dystrophic savanna. Plant Soil 331, 79–90 (2009).Article 
    CAS 

    Google Scholar 
    288.Schulze, E., Kelliher, F. M., Körner, C., Lloyd, J. & Leuning, R. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst. 25, 629–662 (1994).Article 

    Google Scholar 
    289.Schulze, E.-D. et al. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Aust. J. Plant. Physiol. 25, 413–425 (1998).
    Google Scholar 
    290.Schulze, E.-D., Turner, N. C., Nicolle, D. & Schumacher, J. Species differences in carbon isotope ratios, specific leaf area and nitrogen concentrations in leaves of Eucalyptus growing in a common garden compared with along an aridity gradient. Physiol. Plant. 127, 434–444 (2006).CAS 
    Article 

    Google Scholar 
    291.Schulze, E.-D., Turner, N. C., Nicolle, D. & Schumacher, J. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia. Tree Physiol. 26, 479–492 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    292.Turner, N. C., Schulze, E.-D., Nicolle, D., Schumacher, J. & Kuhlmann, I. Annual rainfall does not directly determine the carbon isotope ratio of leaves of Eucalyptus species. Physiol. Plant. 132, 440–445 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    293.Schulze, E. D. et al. Stable carbon and nitrogen isotope ratios of Eucalyptus and Acacia species along a seasonal rainfall gradient in Western Australia. Trees 28, 1125–1135 (2014).CAS 
    Article 

    Google Scholar 
    294.Scott, A. J. Vegetation recovery and recruitment processes in south-eastern Australian semi-arid old fields. (La Trobe University, 2010).295.Sendall, K. M., Lusk, C. H. & Reich, P. B. Trade-offs in juvenile growth potential vs. shade tolerance among subtropical rain forest trees on soils of contrasting fertility. Funct. Ecol. 30, 845–855 (2015).Article 

    Google Scholar 
    296.Seng, O. D. Specific gravity of Indonesian Woods and its significance for practical use. (FPRDC Forestry Department, Bogor, Indonesia, 1951).297.Sjöström, A. & Gross, C. L. Life-history characters and phylogeny are correlated with extinction risk in the Australian angiosperms. J. Biogeogr. 33, 271–290 (2006).Article 

    Google Scholar 
    298.Smith, B. Community-level Convergence and Community Structure of temperate Nothofagus forests. (University of Otago, Dunedin, New Zealand, 1996).299.Smith, R. A., Lewis, J. D., Ghannoum, O. & Tissue, D. T. Leaf structural responses to pre-industrial, current and elevated atmospheric CO2 and temperature affect leaf function in Eucalyptus sideroxylon. Funct. Plant. Bio. 39, 285–296 (2012).CAS 
    Article 

    Google Scholar 
    300.Soliveres, S., Eldridge, D. J., Hemmings, F. & Maestre, F. T. Nurse plant effects on plant species richness in drylands: The role of grazing, rainfall and species specificity. Perspect. Plant Ecol. Evol. Systs. 14, 402–410 (2012).Article 

    Google Scholar 
    301.Soper, F. M. et al. Natural abundance (delta15N) indicates shifts in nitrogen relations of woody taxa along a savanna-woodland continental rainfall gradient. Oecologia 178, 297–308 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    302.Specht, R. L. et al. Mediterranean-type ecosystems: A data source book. 248 (Springer, 1988).303.Specht, R. L. & Rundel, P. W. Sclerophylly and foliar nutrient status of Mediterranean-climate plant communities in southern Australia. Aust. J. Bot. 38, 459–474 (1990).Article 

    Google Scholar 
    304.Sperry, J. S., Hacke, U. G., Feild, T. S., Sano, Y. & Sikkema, E. H. Hydraulic consequences of vessel evolution in Angiosperms. Int. J. Plant Sci. 168, 1127–1139 (2007).Article 

    Google Scholar 
    305.Staples, T., Dwyer, J. M., England, J. R. & Mayfield, M. M. Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Glob. Ecol. Biog. 28, 1417–1429 (2019).Article 

    Google Scholar 
    306.Stewart, G., Turnbull, M., Schmidt, S. & Erskine, P. 13C natural abundance in plant communities along a rainfall gradient: a biological integrator of water availability. Funct. Plant. Bio. 22, 51–55 (1995).Article 

    Google Scholar 
    307.Stock, W. D., Pate, J. S. & Rasins, E. Seed developmental patterns in Banksia attenuata R. Br. and B. laricina C. Gardner in relation to mechanical defence costs. New Phytol. 117, 109–114 (1991).CAS 
    Article 

    Google Scholar 
    308.Tait, C. J., Daniels, C. B. & Hill, R. S. Changes in species assemblages within the Adelaide metropolitan area, Australia, 1836–2002. Ecol. Appl. 15, 346–359 (2005).Article 

    Google Scholar 
    309.Taseski, G., Keith, D. A., Dalrymple, R. L. & Cornwell, W. K. Shifts in fine root traits within and among species along a small-scale hydrological gradient. (University of New South Wales, 2017).310.Taylor, D. & Eamus, D. Coordinating leaf functional traits with branch hydraulic conductivity: Resource substitution and implications for carbon gain. Tree Physiol. 28, 1169–1177 (2008).PubMed 
    Article 

    Google Scholar 
    311.Thomas, F. M. & Vesk, P. A. Growth races in The Mallee: Height growth in woody plants examined with a trait-based model. Austral Ecol. 42, 790–800 (2017).Article 

    Google Scholar 
    312.Thomas, F. M. & Vesk, P. A. Are trait-growth models transferable? Predicting multi-species growth trajectories between ecosystems using plant functional traits. PLoS One 12, e0176959 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    313.Thompson, I. R. Morphometric analysis and revision of eastern Australian Hovea (Brongniartieae-Fabaceae). Aust. Syst. Bot. 14, 1–99 (2001).Article 

    Google Scholar 
    314.Tasmanian Herbarium. Flora of Tasmania Online. http://www.tmag.tas.gov.au/floratasmania (2009).315.Tng, D. Y. P., Jordan, G. J. & Bowman, D. M. J. S. Plant traits demonstrate that temperate and tropical giant Eucalypt forests are ecologically convergent with rainforest not savanna. PLoS One 8, e84378 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    316.Toelken, H. R. A revision of the genus Kunzea (Myrtaceae) I. The western Australian section Zeanuk. J. Adel. Bot. Gard. 17, 29–106 (1996).
    Google Scholar 
    317.Tomlinson, K. W. et al. Biomass partitioning and root morphology of savanna trees across a water gradient. J. Ecol. 100, 1113–1121 (2012).Article 

    Google Scholar 
    318.Tomlinson, K. W. et al. Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents. J. Ecol. 101, 430–440 (2013).Article 

    Google Scholar 
    319.Tomlinson, K. W. et al. Seedling growth of savanna tree species from three continents under grass competition and nutrient limitation in a greenhouse experiment. J. Ecol. 107, 1051–1066 (2019).Article 

    Google Scholar 
    320.Tremont, R. M. Life-history attributes of plants in grazed and ungrazed grasslands on the Northern Tablelands of New South Wales. Aust. J. Bot. 42, 511–530 (1994).Article 

    Google Scholar 
    321.Trudgen, M. E. & Rye, B. L. Astus, a new western Australian genus of Myrtaceae with heterocarpidic fruits. Nuytsia 14, 495–512 (2005).
    Google Scholar 
    322.Trudgen, M. E. & Rye, B. L. An update to the taxonomy of some western Australian genera of Myrtaceae tribe Chamelaucieae. 2. Cyathostemon. Nuytsia 24, 7–16 (2014).
    Google Scholar 
    323.Turner, J. & Lambert, M. J. Nutrient cycling within a 27-year-old Eucalyptus grandis plantation in New South Wales. For. Ecol. Manage. 6, 155–168 (1983).CAS 
    Article 

    Google Scholar 
    324.Turner, N. C., Schulze, E.-D., Nicolle, D. & Kuhlmann, I. Growth in two common gardens reveals species by environment interaction in carbon isotope discrimination of Eucalyptus. Tree Physiol. 30, 741–747 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    325.Veneklaas, E. J. & Poot, P. Seasonal patterns in water use and leaf turnover of different plant functional types in a species-rich woodland, south-western Australia. Plant Soil 257, 295–304 (2003).CAS 
    Article 

    Google Scholar 
    326.Venn, S. E., Green, K., Pickering, C. M. & Morgan, J. W. Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snowpatches. Plant Ecol. 212, 1491–1499 (2011).Article 

    Google Scholar 
    327.Venn, S., Pickering, C. & Green, K. Spatial and temporal functional changes in alpine summit vegetation are driven by increases in shrubs and graminoids. AoB Plants 6, plu008 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    328.Vesk, P. A., Leishman, M. R. & Westoby, M. Simple traits do not predict grazing response in Australian dry shrublands and woodlands. J. Appl. Ecol. 41, 22–31 (2004).Article 

    Google Scholar 
    329.Vesk, P. A. & Yen, J. D. L. Plant resprouting: How many sprouts and how deep? Flexible modelling of multispecies experimental disturbances. Perspect. Plant Ecol. Evol. Systs. 41, 125497 (2019).Article 

    Google Scholar 
    330.Vlasveld, C., O’Leary, B., Udovicic, F. & Burd, M. Leaf heteroblasty in eucalypts: biogeographic evidence of ecological function. Aust. J. Bot. 66, 191–201 (2018).Article 

    Google Scholar 
    331.Western Australian Herbarium. FloraBase: The Western Australian flora. http://florabase.dpaw.wa.gov.au (1998).332.Western Australian Herbarium. FloraBase: The Western Australian flora. http://florabase.dpaw.wa.gov.au/ (2016).333.Warren, C. R., Tausz, M. & Adams, M. A. Does rainfall explain variation in leaf morphology and physiology among populations of red ironbark (Eucalyptus sideroxylon subsp. tricarpa) grown in a common garden? Tree Physiol. 25, 1369–1378 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    334.Warren, C. R., Dreyer, E., Tausz, M. & Adams, M. A. Ecotype adaptation and acclimation of leaf traits to rainfall in 29 species of 16-year-old Eucalyptus at two common gardens. Funct. Ecol. 20, 929–940 (2006).Article 

    Google Scholar 
    335.Weerasinghe, L. K. et al. Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland. Tree Physiol. 34, 564–584 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    336.Wells, J. A. Phylogeny and inter-relations of ecological traits and seed dispersal in rainforest plants: Exploring aspects of functional diversity in primary and secondary rainforests in Australia’s Wet Tropics. (University of Queensland, 2012).337.Westman, W. E. & Roggers, R. V. Nutrient stocks in a subtropical eucalypt forest, North Stradbroke Island. Austral Ecol. 2, 447–460 (1977).Article 

    Google Scholar 
    338.Westoby, M. et al. Seed size and plant growth form as factors in dispersal spectra. Ecology 71, 1307–1315 (1990).Article 

    Google Scholar 
    339.Westoby, M. & Wright, I. J. The leaf size – twig size spectrum and its relationship to other important spectra of variation among species. Oecologia 135, 621–628 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    340.Wheeler, J. R., Marchant, N. G. & Lewington, M. Flora of the south west: Bunbury, Augusta, Denmark. (Australian Biological Resources Study; University of Western Australia Press, 2002).341.White, M., Sinclair, S. & Frood, D. Victorian Vital Attributes Database. (Department of Environment, Land, Water; Planning, Victoria, 2020).342.Williams, N. S. G., Morgan, J. W., McDonnell, M. J. & McCarthy, M. A. Plant traits and local extinctions in natural grasslands along an urban-rural gradient. J. Ecol. 93, 1203–1213 (2005).Article 

    Google Scholar 
    343.Wills, J. et al. Tree leaf trade-offs are stronger for sub-canopy trees: leaf traits reveal little about growth rates in canopy trees. Ecol. Appl. 28, 1116–1125 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    344.Wilson, P. G. & Rowe, R. A revision of the Indigofereae (Fabaceae) in Australia. 2. Indigofera species with trifoliolate and alternately pinnate leaves. Telopea 12, 293–307 (2008).Article 

    Google Scholar 
    345.Wright, I. J. et al. A survey of seed and seedling characters in 1744 Australian dicotyledon species: Cross-species trait correlations and correlated trait-shifts within evolutionary lineages. Biol. J. Linn. Soc. 69, 521–547 (2000).Article 

    Google Scholar 
    346.Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001).Article 

    Google Scholar 
    347.Wright, I. J. & Westoby, M. Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology. New Phytol. 155, 403–416 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    348.Wright, I. J., Westoby, M. & Reich, P. B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J. Ecol. 90, 534–543 (2002).Article 

    Google Scholar 
    349.Wright, I. J., Falster, D. S., Pickup, M. & Westoby, M. Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiol. Plant. 127, 445–456 (2006).CAS 
    Article 

    Google Scholar 
    350.Wright, I. J. et al. Stem diameter growth rates in a fire-prone savanna correlate with photosynthetic rate and branch-scale biomass allocation, but not specific leaf area. Austral Ecol. 44, 339–350 (2018).Article 

    Google Scholar 
    351.Yates, C. J. et al. Mallee woodlands and shrublands: the mallee, muruk/muert and maalok vegetation of Southern Australia. in Australian Vegetation (Cambridge University Press, 2017).352.Zanne, A. E. et al. Data from: Towards a worldwide wood economics spectrum. Dryad https://doi.org/10.5061/dryad.234 (2009).353.Zieminska, K., Butler, D. W., Gleason, S. M., Wright, I. J. & Westoby, M. Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants 5, plt046 (2013).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    354.Zieminska, K., Westoby, M. & Wright, I. J. Broad anatomical variation within a narrow wood density range – A study of twig wood across 69 Australian Angiosperms. PLoS One 10, e0124892 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    355.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).356.Wickham, H. et al. Welcome to the tidyverse. Journal of Open Source Software 4, 1686 (2019).ADS 
    Article 

    Google Scholar 
    357.Stephens, J. Yaml: Methods to convert r data to YAML and back (r package version 2.1. 13). (2014).358.FitzJohn, R. Remake: Make-like build management. R package version 0.2.0. (2016).359.Xie, Y. Dynamic documents with R and Knitr. (2015).360.Allaire, J. et al. Rmarkdown: Dynamic documents for R. R package version 0.5.1. (2015).361.CHAH. Australian Plant Name Index (continuously updated), Centre of Australian National Biodiversity Research. (https://www.biodiversity.org.au/nsl/services/apni (14/05/2020), 2020).362.Chamberlain, S. A. & Szöcs, E. Taxize: Taxonomic search and retrieval in R. F1000Res. 2, 191 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    363.Falster, D. et al. AusTraits: a curated plant trait database for the Australian flora. Zenodo https://doi.org/10.5281/zenodo.3568417 (2021).364.Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3 (2016).365.Falster, D. S., FitzJohn, R. G., Pennell, M. W. & Cornwell, W. K. Datastorr: A workflow and package for delivering successive versions of ‘evolving data’ directly into R. GigaScience 8, giz035 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    366.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    367.Jin, Y. V.PhyloMaker: Make phylogenetic hypotheses for vascular plants, etc.. R package version 0.1.0. (2020).368.Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. Gtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecol. Evo. 8, 28–36 (2017).Article 

    Google Scholar 
    369.Stefan, V. & Levin, S. Plotbiomes: Plot Whittaker biomes with ggplot2. R package version 0.0.0.9001. (2020).370.Whittaker, R. H. Communities and ecosystems. (MacMillan Publishers, 1975).371.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar  More

  • in

    Microbial storage and its implications for soil ecology

    1.Pond C. Storage. In: Townsend C, Calow P, editors. Physiological ecology. Oxford: Blackwell Scientific; 1981. p. 190–219.2.Chapin FS, Schulze E, Mooney HA. The ecology and economics of storage in plants. Annu Rev Ecol Syst. 1990;21:423–47.Article 

    Google Scholar 
    3.Moradali MF, Rehm BHA. Bacterial biopolymers: from pathogenesis to advanced materials. Nat Rev Microbiol. 2020;18:195–210.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Varpe Ø. Life history adaptations to seasonality. Integr Comp Biol. 2017;57:943–60.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Paul EA. Soil microbiology, ecology and biochemistry. 4th ed. Waltham, MA: Academic Press; 2015.6.Becker KW, Collins JR, Durham BP, Groussman RD, White AE, Fredricks HF, et al. Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nat Commun. 2018;9:1–9.Article 
    CAS 

    Google Scholar 
    7.Rothermich MM, Guerrero R, Lenz RW, Goodwin S. Characterization, seasonal occurrence, and diel fluctuation of poly(hydroxyalkanoate) in photosynthetic microbial mats. Appl Environ Microbiol. 2000;66:13.Article 

    Google Scholar 
    8.Borzi A. Le comunicazioni intracellulari delle Nostochinee. Malpighia. 1887;1:28–74.
    Google Scholar 
    9.Sherman LA, Meunier P, Colón-López MS. Diurnal rhythms in metabolism: a day in the life of a unicellular, diazotrophic cyanobacterium. Photosynth Res. 1998;58:25–42.CAS 
    Article 

    Google Scholar 
    10.Stuart RK, Mayali X, Boaro AA, Zemla A, Everroad RC, Nilson D, et al. Light regimes shape utilization of extracellular organic C and N in a cyanobacterial biofilm. mBio. 2016;7:e00650–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Allen MM. Cyanobacterial cell inclusions. Annu Rev Microbiol. 1984;38:1–25.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Sanz-Luque E, Bhaya D, Grossman AR. Polyphosphate: a multifunctional metabolite in cyanobacteria and algae. Front Plant Sci. 2020;11:938.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Martin P, Lauro FM, Sarkar A, Goodkin N, Prakash S, Vinayachandran PN. Particulate polyphosphate and alkaline phosphatase activity across a latitudinal transect in the tropical Indian Ocean: polyphosphate in the tropical Indian Ocean. Limnol Oceanogr. 2018;63:1395–406.CAS 
    Article 

    Google Scholar 
    14.Diaz J, Ingall E, Benitez-Nelson C, Paterson D, de Jonge MD, McNulty I, et al. Marine polyphosphate: a key player in geologic phosphorus sequestration. Science. 2008;320:652–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Godwin CM, Cotner JB. Aquatic heterotrophic bacteria have highly flexible phosphorus content and biomass stoichiometry. ISME J. 2015;9:2324–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Oehmen A, Lemos P, Carvalho G, Yuan Z, Keller J, Blackall L, et al. Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Res. 2007;41:2271–300.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Dorofeev AG, Nikolaev YuA, Mardanov AV, Pimenov NV. Role of phosphate-accumulating bacteria in biological phosphorus removal from wastewater. Appl Biochem Microbiol. 2020;56:1–14.CAS 
    Article 

    Google Scholar 
    18.Carrondo MA. Ferritins, iron uptake and storage from the bacterioferritin viewpoint. EMBO J. 2003;22:1959–68.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Canessa P, Larrondo LF. Environmental responses and the control of iron homeostasis in fungal systems. Appl Microbiol Biotechnol. 2013;97:939–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996;1275:161–203.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Docampo R, Moreno SNJ. Acidocalcisomes. Cell Calcium. 2011;50:113–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Tsednee M, Castruita M, Salomé PA, Sharma A, Lewis BE, Schmollinger SR, et al. Manganese co-localizes with calcium and phosphorus in Chlamydomonas acidocalcisomes and is mobilized in manganese-deficient conditions. J Biol Chem. 2019;294:17626–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Mojzeš P, Gao L, Ismagulova T, Pilátová J, Moudříková Š, Gorelova O, et al. Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells. Proc Natl Acad Sci USA. 2020;117:32722–30.24.Turner BL. Inositol phosphates in soil: Amounts, forms and significance of the phosphorylated inositol stereoisomers. In: Turner BL, Richardson AE, Mullaney EJ, editors. Inositol phosphates: linking agriculture and the environment. 2007. Wallingford: CABI; 2007. p. 186–206.25.Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Otero A, Vincenzini M. Nostoc (Cyanophyceae) goes nude: Extracellular polysaccharides serve as a sink for reducing power under unbalanced C/N metabolism. J Phycol. 2004;40:74–81.CAS 
    Article 

    Google Scholar 
    27.Wang J, Yu H-Q. Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures. Appl Microbiol Biotechnol. 2007;75:871–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Brangarí AC, Fernàndez-Garcia D, Sanchez-Vila X, Manzoni S. Ecological and soil hydraulic implications of microbial responses to stress—a modeling analysis. Adv Water Resour. 2018;116:178–94.Article 

    Google Scholar 
    29.Pal S, Manna A, Paul AK. Production of poly(β-hydroxybutyric acid) and exopolysaccharide by Azotobacter beijerinckii WDN-01. World J Microbiol Biotechnol. 1999;15:11–6.Article 

    Google Scholar 
    30.Kuzyakov Y, Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol Biochem. 2015;83:184–99.CAS 
    Article 

    Google Scholar 
    31.Hauschild P, Röttig A, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A. Lipid accumulation in prokaryotic microorganisms from arid habitats. Appl Microbiol Biotechnol. 2017;101:2203–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Wang JG, Bakken LR. Screening of soil bacteria for poly-β-hydroxybutyric acid production and its role in the survival of starvation. Micro Ecol. 1998;35:94–101.CAS 
    Article 

    Google Scholar 
    33.Hanzlíková A, Jandera A, Kunc F. Poly-3-hydroxybutyrate production and changes of bacterial community in the soil. Folia Microbiologica. 1985;30:58–64.Article 

    Google Scholar 
    34.Iwahara S, Miki S. Production of α-α-trehalose by a bacterium isolated from soil. Agric Biol Chem. 1988;52:867–8.CAS 

    Google Scholar 
    35.Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.López MF, Männer P, Willmann A, Hampp R, Nehls U. Increased trehalose biosynthesis in Hartig net hyphae of ectomycorrhizas. N Phytol. 2007;174:389–98.Article 
    CAS 

    Google Scholar 
    37.Bünemann EK, Smernik RJ, Doolette AL, Marschner P, Stonor R, Wakelin SA, et al. Forms of phosphorus in bacteria and fungi isolated from two Australian soils. Soil Biol Biochem. 2008;40:1908–15.Article 
    CAS 

    Google Scholar 
    38.Genet P, Prevost A, Pargney JC. Seasonal variations of symbiotic ultrastructure and relationships of two natural ectomycorrhizae of beech (Fagus sylvatica/Lactarius blennius var. viridis and Fagus sylvatica/Lactarius subdulcis). Trees. 2000;14:465–74.Article 

    Google Scholar 
    39.Frey B, Brunner I, Walther P, Scheidegger C, Zierold K. Element localization in ultrathin cryosections of high-pressure frozen ectomycorrhizal spruce roots. Plant Cell Environ. 1997;20:929–37.CAS 
    Article 

    Google Scholar 
    40.Hanzlíkova A, Jandera A, Kunc F. Formation of poly-3-hydroxybutyrate by a soil microbial community during batch and heterocontinuous cultivation. Folia Microbiol. 1984;29:233–41.Article 

    Google Scholar 
    41.Mason-Jones K, Banfield CC, Dippold MA. Compound‐specific 13C stable isotope probing confirms synthesis of polyhydroxybutyrate by soil bacteria. Rapid Commun Mass Spectrom. 2019;33:795–802.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Hedlund K. Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biol Biochem. 2002;34:1299–307.CAS 
    Article 

    Google Scholar 
    43.White PM, Potter TL, Strickland TC. Pressurized liquid extraction of soil microbial phospholipid and neutral lipid fatty acids. J Agric Food Chem. 2009;57:7171–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Xu X, Thornton PE, Post WM. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems: Global soil microbial biomass C, N and P. Glob Ecol Biogeogr. 2013;22:737–49.Article 

    Google Scholar 
    45.Bååth E. The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Micro Ecol. 2003;45:373–83.Article 
    CAS 

    Google Scholar 
    46.Soliman AH, Radwan SS. Degradation of sterols, triacylglycerol, and phospholipids by soil microorganisms. Zbl Bakt II Abt. 1981;136:420–6.CAS 

    Google Scholar 
    47.Diakhaté S, Gueye M, Chevallier T, Diallo NH, Assigbetse K, Abadie J, et al. Soil microbial functional capacity and diversity in a millet-shrub intercropping system of semi-arid Senegal. J Arid Environ. 2016;129:71–9.Article 

    Google Scholar 
    48.Bölscher T, Wadsö L, Börjesson G, Herrmann AM. Differences in substrate use efficiency: impacts of microbial community composition, land use management, and substrate complexity. Biol Fertil Soils. 2016;52:547–59.Article 
    CAS 

    Google Scholar 
    49.Mason-Jones K, Schmücker N, Kuzyakov Y. Contrasting effects of organic and mineral nitrogen challenge the N-Mining Hypothesis for soil organic matter priming. Soil Biol Biochem. 2018;124:38–46.CAS 
    Article 

    Google Scholar 
    50.Muhammadi S, Afzal M, Hameed S. Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev. 2015;8:56–77.Article 
    CAS 

    Google Scholar 
    51.Jose NA, Lau R, Swenson TL, Klitgord N, Garcia-Pichel F, Bowen BP, et al. Flux balance modeling to predict bacterial survival during pulsed-activity events. Biogeosciences. 2018;15:2219–29.CAS 
    Article 

    Google Scholar 
    52.Medeiros PM, Fernandes MF, Dick RP, Simoneit BRT. Seasonal variations in sugar contents and microbial community in a ryegrass soil. Chemosphere. 2006;65:832–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Žifčáková L, Větrovský T, Lombard V, Henrissat B, Howe A, Baldrian P. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome 2017;5:1–12.Article 

    Google Scholar 
    54.Ratcliff WC, Denison RF. Individual-level bet hedging in the bacterium Sinorhizobium meliloti. Curr Biol. 2010;20:1740–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database. 2020;2020:baaa062.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Choi J, Kim S-H. A genome tree of life for the fungi kingdom. Proc Natl Acad Sci USA. 2017;114:9391–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Jun S-R, Sims GE, Wu GA, Kim S-H. Whole-proteome phylogeny of prokaryotes by feature frequency profiles: An alignment-free method with optimal feature resolution. Proc Natl Acad Sci USA. 2010;107:133–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Elbahloul Y, Krehenbrink M, Reichelt R, Steinbuchel A. Physiological conditions conducive to high cyanophycin content in biomass of Acinetobacter calcoaceticus strain ADP1. Appl Environ Microbiol. 2005;71:858–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Lillie SH, Pringle JR. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol. 1980;143:1384–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Hall KD, Guo J. Obesity energetics: Body weight regulation and the effects of diet composition. Gastroenterology. 2017;152:1718–27.e3.PubMed 
    Article 

    Google Scholar 
    61.Sala A, Woodruff DR, Meinzer FC. Carbon dynamics in trees: feast or famine? Tree Physiol. 2012;32:764–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Varpe Ø, Ejsmond MJ. Trade-offs between storage and survival affect diapause timing in capital breeders. Evol Ecol. 2018;32:623–41.Article 

    Google Scholar 
    63.Heilmeier H, Freund M, Steinlein T, Schulze E-D, Monson RK. The influence of nitrogen availability on carbon and nitrogen storage in the biennial Cirsium vulgare (Savi) Ten. I. Storage capacity in relation to resource acquisition, allocation and recycling. Plant Cell Environ. 1994;17:1125–31.CAS 
    Article 

    Google Scholar 
    64.Pond CM. Ecology of storage. In: Levin SA, editor. Encyclopedia of biodiversity, 2nd ed. Amsterdam: Academic Press; 2013. p. 23–38.65.McCue MD. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol. 2010;156:1–18.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    66.Donald J, Pannabecker TL. Osmoregulation in desert-adapted mammals. In: Hyndman KA, Pannabecker TL, editors. Sodium and water homeostasis. New York: Springer New York; 2015. p. 191–211.67.Röttig A, Hauschild P, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil. J Biotechnol. 2016;225:48–56.PubMed 
    Article 
    CAS 

    Google Scholar 
    68.Bailey AP, Koster G, Guillermier C, Hirst EMA, MacRae JI, Lechene CP, et al. Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell. 2015;163:340–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Jenni-Eiermann S, Jenni L. Fasting in birds: general patterns and the special case of endurance flight. In: McCue MD, editor. Comparative physiology of fasting, starvation, and food limitation. 2012. Berlin: Springer; 2012. p. 171–92.70.Fischer B, Dieckmann U, Taborsky B. When to store energy in a stochastic environment. Evolution. 2011;65:1221–32.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Bonnet X, Bradshaw D, Shine R. Capital versus income breeding: An ectothermic perspective. Oikos. 1998;83:333.Article 

    Google Scholar 
    72.de Mazancourt C, Schwartz MW. Starve a competitor: evolution of luxury consumption as a competitive strategy. Theor Ecol. 2012;13:37–49.Article 

    Google Scholar 
    73.Ejsmond MJ, Varpe Ø, Czarnoleski M, Kozłowski J. Seasonality in offspring value and trade-offs with growth explain capital breeding. Am Nat. 2015;186:E111–25.Article 

    Google Scholar 
    74.Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, et al. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering. 2017;4:55.PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    75.Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, et al. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev. 2010;34:952–85.CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Doi Y, Kawaguchi Y, Koyama N, Nakamura S, Hiramitsu M, Yoshida Y, et al. Synthesis and degradation of polyhydroxyalkanoates in Alcaligenes eutrophus. FEMS Microbiol Lett. 1992;103:103–8.CAS 
    Article 

    Google Scholar 
    77.Alvarez AHM, Kalscheuer R, Steinbüchel A. Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Lipid. 1997;99:239–46.CAS 
    Article 

    Google Scholar 
    78.Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, François J. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast. 1999;15:191–203.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Gebremariam SY, Beutel MW, Christian D, Hess TF. Research advances and challenges in the microbiology of enhanced biological phosphorus removal-A critical review. Water Environ Res. 2011;83:195–219.CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie. 2004;86:807–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Matin A, Veldhuis C, Stegeman V, Veenhuis M. Selective advantage of a Spirillum sp. in a carbon-limited environment. Accumulation of poly-β-hydroxybutyric acid and its role in starvation. J Gen Microbiol. 1979;112:349–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Poblete-Castro I, Escapa IF, Jäger C, Puchalka J, Chi Lam C, Schomburg D, et al. The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: Highlights from a multi-level omics approach. Micro Cell Fact. 2012;11:34.CAS 
    Article 

    Google Scholar 
    83.Wilkinson JF, Munro ALS. The influence of growth limiting conditions on the synthesis of possible carbon and energy storage polymers in Bacillus megaterium. In: Powell EO, Evans CGT, Strange RE, Tempest DW, editors. Microbial physiology and continuous culture, Proceedings of the Third International Symposium. Salisbury, United Kingdom: Her Majesty’s Stationery Office; 1967. p. 173–85.84.Alvarez HM, Mayer F, Fabritius D, Steinbüchel A. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol. 1996;165:377–86.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Orchard ED, Benitez-Nelson CR, Pellechia PJ, Lomas MW, Dyhrman ST. Polyphosphate in Trichodesmium from the low-phosphorus Sargasso Sea. Limnol Oceanogr. 2010;55:2161–9.CAS 
    Article 

    Google Scholar 
    86.Li J, Mara P, Schubotz F, Sylvan JB, Burgaud G, Klein F, et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature. 2020;579:250–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Preiss J, Romeo T. Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Prog Nucleic Acid Res Mol Biol. 1994;47:299–329.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Mackerras AH, de Chazal NM, Smith GD. Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308. J Gen Microbiol. 1990;136:2057–65.CAS 
    Article 

    Google Scholar 
    89.Parnas H, Cohen D. The optimal strategy for the metabolism of reserve materials in micro-organisms. J Theor Biol. 1976;56:19–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Dijkstra P, Salpas E, Fairbanks D, Miller EB, Hagerty SB, van Groenigen KJ, et al. High carbon use efficiency in soil microbial communities is related to balanced growth, not storage compound synthesis. Soil Biol Biochem. 2015;89:35–43.CAS 
    Article 

    Google Scholar 
    91.Empadinhas N, da Costa MS. Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol. 2008;11:151–61.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Albi T, Serrano A. Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World J Microbiol Biotechnol. 2016;32:27.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    93.Sekar K, Linker SM, Nguyen J, Grünhagen A, Stocker R, Sauer U. Bacterial glycogen provides short-term benefits in changing environments. Appl Environ Microbiol. 2020;86:e00049–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Silljé HH, Paalman JW, ter Schure EG, Olsthoorn SQ, Verkleij AJ, Boonstra J, et al. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J Bacteriol. 1999;181:396–400.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Jahid IK, Silva AJ, Benitez JA. Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl Environ Microbiol. 2006;72:7043–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Ramírez-Trujillo JA, Dunn MF, Suárez-Rodríguez R, Hernández-Lucas I. The Sinorhizobium meliloti glyoxylate cycle enzyme isocitrate lyase (AceA) is required for the utilization of poly-β-hydroxybutyrate during carbon starvation. Ann Microbiol. 2016;66:921–4.Article 
    CAS 

    Google Scholar 
    97.Vagabov VM, Trilisenko LV, Kulaev IS. Dependence of inorganic polyphosphate chain length on the orthophosphate content in the culture medium of the yeast Saccharomyces cerevisiae. Biochemistry. 2000;65:6.
    Google Scholar 
    98.Schimz K-L, Irrgang K, Overhoff B. Glycogen, a cytoplasmic reserve polysaccharide of Cellulomonas sp. (DSM20108): Its identification, carbon source-dependent accumulation, and degradation during starvation. FEMS Microbiol Lett. 1985;30:165–9.CAS 
    Article 

    Google Scholar 
    99.Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, et al. Analysis of storage lipid accumulation in Alcanivorax borkumensis: Evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol. 2007;189:918–28.CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Busuioc M, Mackiewicz K, Buttaro BA, Piggot PJ. Role of intracellular polysaccharide in persistence of Streptococcus mutans. J Bacteriol. 2009;191:7315–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Ruiz JA, Lopez NI, Fernandez RO, Mendez BS. Polyhydroxyalkanoate degradation Is associated with nucleotide accumulation and enhances stress resistance and survival of Pseudomonas oleovorans in natural water microcosms. Appl Environ Microbiol. 2001;67:225–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Klotz A, Georg J, Bučinská L, Watanabe S, Reimann V, Januszewski W, et al. Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. Curr Biol. 2016;26:2862–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Elbein AD. New insights on trehalose: a multifunctional molecule. Glycobiology. 2003;13:17R–27R.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Obruca S, Sedlacek P, Koller M. The underexplored role of diverse stress factors in microbial biopolymer synthesis. Bioresour Technol. 2021;326:124767.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Ayub ND, Tribelli PM, López NI. Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles. 2009;13:59–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Grime JP. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat. 1977;111:1169–94.Article 

    Google Scholar 
    107.Ho A, Kerckhof F-M, Luke C, Reim A, Krause S, Boon N, et al. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies: Functional traits of methane-oxidizing bacteria. Environ Microbiol Rep. 2013;5:335–45.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    108.Santillan E, Seshan H, Constancias F, Wuertz S. Trait‐based life‐history strategies explain succession scenario for complex bacterial communities under varying disturbance. Environ Microbiol. 2019;21:3751–64.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst. 2000;31:343–66.Article 

    Google Scholar 
    110.Loreau M, de Mazancourt C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett. 2013;16:106–15.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Geyer KM, Kyker-Snowman E, Grandy AS, Frey SD. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry. 2016;127:173–88.CAS 
    Article 

    Google Scholar 
    112.Manzoni S, Porporato A. Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biol Biochem. 2009;41:1355–79.CAS 
    Article 

    Google Scholar 
    113.Schultz P, Urban NR. Effects of bacterial dynamics on organic matter decomposition and nutrient release from sediments: a modeling study. Ecol Model. 2008;210:1–14.CAS 
    Article 

    Google Scholar 
    114.Torres-Dorante LO, Claassen N, Steingrobe B, Olfs H-W. Polyphosphate determination in calcium acetate-lactate (CAL) extracts by an indirect colorimetric method. J Plant Nutr Soil Sci. 2004;167:701–3.CAS 
    Article 

    Google Scholar 
    115.Micić V, Köster J, Kruge MA, Engelen B, Hofmann T. Bacterial wax esters in recent fluvial sediments. Org Geochem. 2015;89–90:44–55.Article 
    CAS 

    Google Scholar 
    116.Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol 2014;5:1–10.Article 

    Google Scholar 
    117.Op De Beeck M, Troein C, Siregar S, Gentile L, Abbondanza G, Peterson C, et al. Regulation of fungal decomposition at single-cell level. ISME J. 2020;14:896–905.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    118.Liang C, Amelung W, Lehmann J, Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Chang Biol. 2019;25:3578–90.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    119.Ducklow H, Steinberg D, Buesseler K. Upper ocean carbon export and the biological pump. Oceanography. 2001;14:50–8.Article 

    Google Scholar 
    120.Wieder WR, Allison SD, Davidson EA, Georgiou K, Hararuk O, He Y, et al. Explicitly representing soil microbial processes in Earth system models: Soil microbes in Earth system models. Glob Biogeochem Cycles. 2015;29:1782–800.CAS 
    Article 

    Google Scholar 
    121.Schimel J, Weintraub MN. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem. 2003;35:549–63.CAS 
    Article 

    Google Scholar 
    122.Ni B-J, Fang F, Rittmann BE, Yu H-Q. Modeling microbial products in activated sludge under feast-famine conditions. Environ Sci Technol. 2009;43:2489–97.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    123.Godwin CM, Cotner JB. Stoichiometric flexibility in diverse aquatic heterotrophic bacteria is coupled to differences in cellular phosphorus quotas. Front Microbiol 2015;6:1–15.Article 

    Google Scholar 
    124.Camenzind T, Philipp Grenz K, Lehmann J, Rillig MC. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecol Lett. 2021;24:208–18.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    125.Fatichi S, Manzoni S, Or D, Paschalis A. A mechanistic model of microbially mediated soil biogeochemical processes: a reality check. Glob Biogeochem Cycles. 2019;33:620–48.CAS 
    Article 

    Google Scholar 
    126.Sistla SA, Rastetter EB, Schimel JP. Responses of a tundra system to warming using SCAMPS: a stoichiometrically coupled, acclimating microbe–plant–soil model. Ecol Monogr. 2014;84:151–70.Article 

    Google Scholar 
    127.Lashermes G, Gainvors-Claisse A, Recous S, Bertrand I. Enzymatic strategies and carbon use efficiency of a litter-decomposing fungus grown on maize leaves, stems, and roots. Front Microbiol 2016;7:1–14.Article 

    Google Scholar 
    128.Lee ZM, Schmidt TM. Bacterial growth efficiency varies in soils under different land management practices. Soil Biol Biochem. 2014;69:282–90.CAS 
    Article 

    Google Scholar 
    129.Camenzind T, Lehmann A, Ahland J, Rumpel S, Rillig MC. Trait‐based approaches reveal fungal adaptations to nutrient‐limiting conditions. Environ Microbiol. 2020;22:3548–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    130.Manzoni S, Čapek P, Mooshammer M, Lindahl BD, Richter A, Šantrůčková H. Optimal metabolic regulation along resource stoichiometry gradients. Ecol Lett. 2017;20:1182–91.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    131.Tang J, Riley WJ. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat Clim Chang. 2015;5:5.CAS 
    Article 

    Google Scholar 
    132.Lee KS, Pereira FC, Palatinszky M, Behrendt L, Alcolombri U, Berry D, et al. Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions. Nat Protoc. 2021;16:634–76.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    133.Günther S, Trutnau M, Kleinsteuber S, Hause G, Bley T, Röske I, et al. Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4′,6′-diamidino-2-phenylindole) and tetracycline labeling. Appl Environ Microbiol. 2009;75:2111–21.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    134.Singleton CM, Petriglieri F, Kristensen JM, Kirkegaard RH, Michaelsen TY, Andersen MH, et al. Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nat Commun. 2021;12:2009.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat Methods. 2015;12:1091–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    136.Warren CR. Altitudinal transects reveal large differences in intact lipid composition among soils. Soil Res. 2021;59:644–59.CAS 
    Article 

    Google Scholar 
    137.Wilkinson J. The problem of energy-storage compounds in bacteria. Exp Cell Res. 1959;7:111–30.Article 

    Google Scholar 
    138.Nickels JS, King JD, White DC. Poly-β-hydroxybutyrate accumulation as a measure of unbalanced growth of the estuarine detrital microbiota. Appl Environ Microbiol. 1979;37:459–65.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    139.Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma. 2012;249:541–85.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    140.Alvarez HM. Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie. 2016;120:28–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    141.Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol. 2017;37:24–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    142.Obruca S, Sedlacek P, Slaninova E, Fritz I, Daffert C, Meixner K, et al. Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol. 2020;104:4795–810.CAS 
    PubMed 
    Article 

    Google Scholar 
    143.Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS. Glycogen and its metabolism: some new developments and old themes. Biochem J. 2012;441:763–87.CAS 
    PubMed 
    Article 

    Google Scholar 
    144.Wang L, Wang M, Wise MJ, Liu Q, Yang T, Zhu Z, et al. Recent progress in the structure of glycogen serving as a durable energy reserve in bacteria. World J Microbiol Biotechnol. 2020;36:14.PubMed 
    Article 

    Google Scholar 
    145.Ruhal R, Kataria R, Choudhury B. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation: Trehalose metabolism in bacteria. Micro Biotechnol. 2013;6:493–502.Article 
    CAS 

    Google Scholar 
    146.Kalscheuer R. Genetics of wax ester and triacylglycerol biosynthesis in bacteria. In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 527–35.147.Rao NN, Gómez-García MR, Kornberg A. Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem. 2009;78:605–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    148.Denoncourt A, Downey M. Model systems for studying polyphosphate biology: a focus on microorganisms. Curr Genet. 2021;67:331–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    149.Füser G, Steinbüchel A. Analysis of genome sequences for genes of cyanophycin metabolism: Identifying putative cyanophycin metabolizing prokaryotes. Macromol Biosci. 2007;7:278–96.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    150.Watzer B, Forchhammer K. Cyanophycin: a nitrogen-rich reserve polymer. In: Tiwari A, editor. Cyanobacteria. London: InTech; 2018. More

  • in

    Multidisciplinary analysis of Italian Alpine wildflower honey reveals criticalities, diversity and value

    From the phytosociological relevés performed in each sampling area it is evident that hives were positioned in grasslands rich in Alpine herbaceous species (Table S1). In fact, among the 169 identified species, 85% were herbaceous species common in meadows (of Arrhenatherion elatioris and Triseto flavescentis-Polygonion bistortae phytosociological alliance) and acidophilus pastures (Siversio-Nardetum). 15% of the species were trees and shrubs (not abundant in the floristic relevés of the apiary areas considered), including some of beekeeping interest such as: Rhododendron ferrugineum, Castanea sativa and Rubus idaeus. From the MDS biplot (Fig. 2) elevation is the main ecological variable that differentiates sampling areas. In particular, the relevés of stations B and F are characterized by a floristic composition which is different from the areas at higher elevation (characterized by a higher presence of microthermal alpine species). This is due to the separation between the sub-montane belt and the high mountain belt vegetation on the 1.300 m a.s.l. line in the study area25.Figure 2MDS of the phytosociological relevés. Capital letters indicate the six sampling areas, the 1.300 m a.s.l. contour line that separates sub-montane belt and high mountain belt vegetation is highlighted in red.Full size imageAlthough the beehives were positioned in mountain grasslands, melissopalynological analysis presented a different picture. The pollen of numerous species detected through the floristic relevés were found in the honey samples via melissopalynological analysis, although the latter did not totally overlap with the floristic characterization of the area, in particular from a “quantitative” point of view. In fact, the floristic relevés showed a relative richness of herbaceous species (Table S1) peculiar of mountain grasslands that would seem promising for the production of wildflower honeys. Conversely, in the melissopalynological analysis the species considered interesting but not predominant in the botanical description were relevant (Fig. 3 and Table S2).Figure 3MDS of the melissopalynological analysis of the six samples (dots) of mountain wildflower honeys produced in the stations considered. The crosses are the pollens found in the honey samples, the most important are indicated.Full size imageThe premises to produce wildflower honey is that the botanical species contributing must be different and sometimes very numerous, without any of them assuming a dominant character. However, this was not fully evident in our research: although it was possible to identify more than seventy species through melissopalynological analysis and even more through the floristic characterization of the areas, most of them were defined as minor or sporadic pollen (Table S2). Even though apiaries were in mountain grasslands, the most relevant role was played by some woody species/shrubs: Rubus (presumably Rubus idaeous L., identified in the floristic relevés) and rhododendron (Rhododendron ferrugineum L.) for the mountain/subalpine belt and Castanea and Ericaceae (heather) in the submountain belt. Following the rules to define ‘‘unifloral honey’’, three of the wildflower honeys could be defined unifloral or bifloral:

    Rhododendron unifloral: honey A (Rhododendron 47.18%), and honey C (Rhododendron 62.93%);

    Raspberry unifloral: honey B (Rubus 67.12%)

    Raspberry and Rhododendron bifloral: honey D (Rhododendron 34.27% and Rubus 34.74%) as well as honey E (Rubus 44.25%, Rhododendron 34.14%).

    Honey F, due to the contribution of pollen from Tilia genus (that was detected only in this sample as an important sporadic pollen, 3.5%) Castanea (96.4% in honey F, but it should be noted that chestnut pollen is an overrepresented pollen) and in the second count Ericaceae (32.45%, that was considered a secondary pollen together with Rubus, with a percentage of 38.59% in honey F) differed from the other honeys (Fig. 3).Rubus pollen was anyway present in good amounts in all the samples considered, and was a dominant pollen in honey B, a secondary pollen in honeys C, D, E and F and a minor pollen in honey A. Sorbus and Tilia pollens were detected only in honey F, while no rhododendron was detected in honey F. Honey D was characterized by a percentage higher than the “rare pollen” category of some important alpine essences, such as Liliaceae, Centaurea, Campanulaceae, Anthyllis f., Polygonum bistorta, Lotus alpinus and Potentilla/fragaria (Table S2).Although wildflower honeys are intrinsically characterized by a high variability compared with unifloral honey, this shows the importance of the formal characterization of honey to obtain a product which satisfies consumer expectations, and it was demonstrated that the botanical origin of honey cannot be based on the claims of local beekeepers by considering the predominant flowers surrounding the hive.Although honeybees are considered supergeneralists in their foraging choices, there are certain key species or plant groups that are particularly important in honeybee foraging2, and many were identified in the botanical characterization of the area, including Rubus idaeus L., Calluna vulgaris L., rhododendron and some present in the broad-leaved woods mentioned such as chestnut (Castanea sativa Mill.) or plants of Tilia genus. In the research work by Hawkins et al.2, Rubus fruticosus L. was among the frequently found species and tree pollen belonging to Castanea sativa L. as well as, for example, species of Malus, Salix and Quercus spp, was frequently seen. These kinds of preferences could relate to the ease of availability and abundance of the plant, the quality and abundance of the nectar and pollen and/or specific nutrients or trace elements provided by these species or neurological aspects (as will be discussed further). As referred by beekeepers, over the last decades the production of mountain wildflower honey, that often does not meet the characteristics expected and presents flavours that are reminiscent of other kinds of honey such as rhododendron or linden or chestnut, is becoming more and more critical and this was absolutely confirmed by this study.This could be linked to the fragmentation of an important habitat of the Alps—mountain grasslands (meaning pastures and meadows) for anthropic and climatic reasons8,9. Honeybees from the same colony forage across areas spanning up to several hundred square kilometres, and at linear distances as far as 9 km from the hive41. Onlooker bees are those in charge of finding nectar sources and of giving instructions to the employed bees, the other foraging bees, that communicate the necessity to look for new resources of food to the onlookers through continuous dance communication42. Among the onlookers, there is a difference between the bees that scout for different nectar sources or recruit to well known floral resources43 and there is an optimal ratio of scouts to recruits, for the most effective collective foraging41. However, this balance may change based on the structure of the landscape in which the bees forage for food44,45,46. Theoretical models47,48 and empirical tests49 suggest that when resources are concentrated into a small number of highly rewarding patches, colonies perform best with few scouts and many recruits, while when resource patches are small, evenly distributed, and easy to locate, successful colonies invest more in scouting than in recruitment. This is strictly linked to climate and social changes in the mountains: mountain grasslands are no longer evenly distributed and easily localizable, as they are scattered among expanding areas of shrublands and forests9 and, for the above-mentioned reasons, it is more efficient for the colony to invest in more recruiters than scouters, as recruiters will identify a small number of highly rewarding patches, such as raspberry or rhododendron shrublands or linden and chestnut woods, that are highly rewarding and very different in quality.This overlaps with individual and collective honeybee behaviour driven by proximate physiological mechanisms that involve the tryptophan metabolism via kynurenine pathway that is one of main neuroprotective mechanisms. In this research, many of the differences/similarities among the samples might be attributed to metabolic alterations within this pathway, represented by relative amounts of kynurenic acid. However, different quinoline structures have also been identified (Fig. 4). Neurotransmitters play a central role in several of the biological processes that honeybees require to perform activities such as foraging behaviour50. A considerable amount of literature highlights the involvement of the neuroprotective kynurenine pathway (KP) final product kynurenic acid (KinA) in the regulation of the stress-related hormone dopamine in the honeybee as well as in other animal species51,52. The major known source of dietary KynA are pollen and nectar produced by sweet chestnuts53,54 and it has been verified that this compound is found in high concentrations in chestnut flowers55. This is coherent with the results of this study: chestnut pollen was found in honey F, produced in the lower station where chestnuts also appear in the floristic relevés, and KynA was found to be a dominant compound in honey F. Interestingly, chestnut pollen was found as sporadic pollen in all the other samples, even those produced in the highest apiary stations (Table S2).Figure 4Kinurenic acid and 3-hydroxyquinaldic acid structure and content in the six honey samples, performed in triplicate. The box diagram representing the median with distribution interval between 25 and 75%.Full size imageFurther, KinA may possess positive properties in a number of pathologies of the gastrointestinal tract, especially colitis, colon obstruction or ulceration56,57. It has been proposed that KinA may also possess antioxidative properties56,57,58,59. This was confirmed by this study, since the wildflower honey with a high component of chestnut pollen was the one with the highest antioxidant properties at the FRSA test (66.61 ± 4.77%), even if lower than manuka honey (84.21 ± 1.04%), a dark honey that is a well-known nutraceutical product and has recently attracted attention for its biological properties, especially for its antioxidant and anti-microbial capacities60. Honey A showed the lowest power (22.40 ± 0.28%) while the other honeys ranked around 40% (Fig. 5). Interestingly, metabolomic analysis revealed the presence of 3-hydroxyquinaldic acid (Fig. 4), which is a kynurenic acid isomer and, although its function has not been elucidated in detail, a few literature data indicate its role as a precursor of naturally occurring peptide antibiotics from the quinomycin family61.Figure 5Results of the FRSA test. Capital letters represent the six honey samples considered. Manuka honey was used as a control.Full size imageIn order to evaluate the ability of honey to induce wound closure, a scratch wound assay was performed (Fig. 6)62. Scratch assay creates a gap in confluent keratinocyte monolayer to mimic a wound. It has already been demonstrated that honeys are able to induce wound closure63 to different extents depending on honey origins and properties.Figure 6The scratch wound test in keratinocytes, HaCaT cells, exposed to honeys. (a) The digitalized pictures of scratched cells after 24 h exposure to 0.5% (w/v) of honeys. (b) The closing percentage wound values after 24 h exposure. Statistics on bars indicate differences compared to the control (CTRL) condition determined by a One-Way ANOVA followed by Dunnett’s test (****p  More

  • in

    Interactions between microbial diversity and substrate chemistry determine the fate of carbon in soil

    Soil and litter samplingMineral soil (0–15 cm) was collected at the Elizabeth Woods site, a 120-year-old deciduous forest in West Virginia, US (39° 32′ 50.6″ N, − 80° 00′ 00.4″ W). Soils were collected from four 20 × 20 m plots dominated by either AM-associated trees (i.e. Liriodendron tulipifera and Acer saccharum), or ECM-associated trees (i.e. Quercus rubra, Quercus velutina and Carya ovata). These sites have been characterized previously as Culleoka-Westmoreland silt loam soils at the AM sites and Dormont and Guernsey silt loams at the ECM sites40. Soils were also characterized by C:N ratios 11.7 and 14.1 for the AM and ECM soils respectively, with a pH of 6.8 for both soils. Soils with the same mycorrhizal status were pooled and homogenized, air-dried at room temperature for ~ 24 h and sieved through 2.0 mm mesh before the initiation of the experiment. Uniformly 13C labeled litter ( > 97 atom % 13C) from Quercus robur (i.e., ECM substrate) and Liriodendron tulipifera (i.e. AM substrate) leaves (Isolife BV, Wageningen, NL) were incubated in soil mesocosms in a factorial design with five replicates for each treatment combination (2 soil types × 2 substrate types), along with five replicate controls (no 13C substrate addition) for each soil type. The 13C enriched substrates were dried and ground to a powder and added in a suspension of 0.5 ml sterile water to 20 g of soil at a concentration of 400 ug 13C g−1 soil. The control soils received 0.5 ml sterile water additions. These incubations were well mixed and kept at 60% water-holding capacity for the 21-day period at room-temperature18. Chemical characteristics of soils and plant substrates are provided in Table S1.DNA processing and qSIPFor quantitative stable isotope probing, DNA was extracted, quantified, ultracentrifuged, fractionated and sequenced as described in18,26. DNA was extracted using a MoBio PowerSoil HTP Kit following the manufacturer’s instructions. For stable isotope probing, 5 ug of DNA was loaded into a 5-ml ultracentrifuge tube with ~ 3.5 ml of a saturated cesium chloride (CsCl) solution and ~ 900 ml gradient buffer (200 mM Tris, 200 mM KCl, 2 mM EDTA). DNA was separated via ultracentrifugation at 127,000g for 72 h using a TLN-100 rotor in an Optima Max bench top ultracentrifuge (Beckman Coulter, Fullerton, CA, USA). Tubes were fractionated into ~ 25 fractions of 150 µl each, and the density of each fraction was measured with a Raichart AR200 digital refractometer. DNA was purified using an isopropanol precipitation method. The 16S rRNA gene was subsequently quantified and sequenced in samples containing DNA, within the density range 1.660–1.735 gml−1 (~ 10 fractions per sample). To quantify the 16S rRNA gene, quantitative PCR was performed in triplicate using a QuantStudio 5 applied biosystems (Thermo Fisher Scientific) and primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-GGACTACVSGGGTATCTAAT-3′)41. The PCR program used was as follows: 95 °C for 2 min followed by 45 cycles of 95 °C for 30 s, 64.5 °C for 30 s and 72 °C for 1 min. Libraries were sequenced on an Illumina MiSeq instrument (Illumina, Inc., San Diego, CA, USA) using a 300-cycle v2 reagent kit. Fungal 18S rRNA gene copies in each fraction were also quantified using primers 1380F (5′-CCCTGCCHTTTGTACACAC-3′) and 1510R (5′-CCTTCYGCAGGTTCACCTAC-3′). The PCR program used was as follows: 98 °C for 3 min followed by 40 cycles of 98 °C for 45 s, 60 °C for 45 s and 72 °C for 30 s. DNA fractions were amplified for fungal ITS rRNA genes using primers ITS4F (5′-AGCCTCCGCTTATTGATATGCTTAART-3′) and 5.8SF (5′-AACTTTYRRCAAYGGATCWCT-3′)42 and 300-bp paired-end read chemistry on an IlluminaMiSeq (Illumina, Inc., San Diego, CA, USA). The PCR program used was as follows: 95 °C for 6 min followed by 35 cycles of 95 °C for 15 s, 55 °C for 30 s, and 72 °C for 1 min. DNA fractions were then sequenced using a 500 cycle v2 reagent kit.Files came pre-split and joined multiple paired ends that we combined to pick operational taxonomic units (OTU). Open reference OTUs were picked at 97% identity using SILVA 128 release database for Bacteria and RDP database for Fungi. Taxa were analyzed at the ‘OTU’ level from the QIIME L7 table. Calculation of 13C excess atom fraction (EAF) was performed for each taxon as described previously18,19. Briefly, using the CsCl density gradient data, a weighted average density (WAD) was computed for each taxon’s DNA extracted from control soils that did not receive an isotopically enriched substrate. This natural abundance WAD was then compared to the taxon’s WAD following incubation with the 13C enriched material. The change in WAD can be used to quantify the amount of isotope incorporated into the DNA17,18. Preliminary data analysis revealed an effect of ultracentrifuge tube on estimation of phylotype weighted average density, probably a consequence of slight differences in CsCl density gradients between tubes. This technical error was corrected as previously described18,19. In addition to the samples subjected to qSIP analysis we also extracted and analyzed fungal and bacterial OTU’s from control soils where the DNA was extracted prior to incubation.FTICR-MS and lipidomic analysesSoil from substrate-incubated and controls mesocosms were processed and analyzed with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), using a 12 T Bruker SolariX FTICR mass spectrometer at the Environmental Molecular Sciences Laboratory in Richland, WA, as described in Fudyma et al.43. Briefly, 100 mg of dried soil or litter substrate was extracted using an adjusted Folch extraction44. Extraction was performed on each sample by sequentially adding 2 ml MeOH, followed by a 5 s vortex; 4 ml CHCl3, followed by a 5 s vortex; sonication at 25 °C for 1 h (CPX3800 Ultrasonic Bath, Fisherbrand); addition of 1.25 ml of H2O, followed by a slight mix to achieve bi‐layer separation; and incubated at 4 °C overnight. The top, aqueous layer (metabolite—polar) was pipetted off into 1 ml glass vials and stored at − 80 °C until FTICR‐MS. The bottom, chloroform layer was dried down and stored in 50:50 methanol:chloroform until lipidomics analysis.A standard Bruker electrospray ionization (ESI) source was used to generate negatively charged molecular ions in the metabolite fraction. Samples were then introduced directly to the ESI source. The instrument settings were optimized by tuning on a Suwannee River fulvic acid (SRFA) standard, purchased from International Humic Substances Society (IHCC). Blanks (HPLC grade methanol) were analyzed at the beginning and end of the day to monitor potential carry over from one sample to another. The instrument was flushed between samples using a mixture of water and methanol. One hundred and forty‐four individual scans were averaged for each sample and internally calibrated using an organic matter homologous series separated by 14 Da (CH2 groups). The mass measurement accuracy was less than 1 ppm for singly charged ions across a broad m/z range (m/z 300– 800). Data analysis software (Bruker Daltonik version 4.2) was used to convert raw spectra to a list of m/z values, applying the FTMS peak picker module with a signal-to noise ratio (S/N) threshold set to 7 and absolute intensity threshold set to the default value of 100. Chemical formulae were then assigned using in-house software following the compound identification algorithm that was described in Tolić et al.45. Peaks below 200 and above 800 were dropped to select only for calibrated and assigned peaks. Chemical formulae were assigned based on the following criteria: S/N  > 7 and mass measurement error  800 were not detected in our samples. The m/z values represent the molecular mass (in Dalton) of the detected ions since all detected ions were singly charged ions. While our results do not represent a quantitative characterization of OM, the values presented are relative differences and should be representative of the samples. Finally, we would like to acknowledge that we were not able to see any clear evidence of 13C label in our FTICR-MS analysis of the soil samples. The lack of 13C label in our FTICR-MS analysis of the soil samples even though they received labeled substrate could be either due to the fact that most of the labeled substrates produced by microbial activities were of low molecular weight, which cannot be detected by FTICR-MS and/or the leftover labeled substrate was of low abundance compared to the organic compounds previously present in the soil matrix. As such, we used the FTCIR-MS data to identify shifts in the overall composition of the chemical compounds in each soil.Lipids in the chloroform fraction were analyzed by LC‐MS/MS in both positive and negative ESI modes using a linear trap quadropole (LTQ) Orbitrap Velos mass spectrometer (Thermo Fisher Scientific), as described in detail previously46. Lipid species were identified using the LIQUID tool46 followed by manual data inspection. Confidently identified lipid species were quantified using MZmine47 and the peak intensities were normalized by linear regression and central tendency (i.e., identifying a central or typical value for a probability distribution) using InfernoRDN.Statistical analysisAll data analyses were performed using R 3.2.048. To examine the effects of soil type, substrate type and their interaction in the bacterial, fungal and chemical composition of DOM and the lipid pool; Bray–Curtis distance matrices were compared with permutational multivariate analysis of variance (PerMANOVA) and visualized with Principle Coordinate Analysis (PCoA) using vegan package49. PerMANOVA analysis were run on the relative abundance and on the 13C EAF of individual microbial taxa, separately for both bacterial and fungal communities.The analyses for FTICR-MS were performed separately for control and incubated soils using all assigned molecular formulae remaining after quality filtering31. In all cases, we applied a Z-score standardization before calculating Bray–Curtis distance matrices49. We analyzed the results from FTICR-MS as resulting from the decomposition of the added substrates for two reasons. First, this is a fully factorial design where individual soil samples were split to either receive AM poplar or ECM oak litter substrate. Thus, each soil sample starts with the same characteristics and the changes at the end of the incubation period should reflect the processing of litter. Second, we excluded molecular formulae present in the litters and thus, the differences we report in each soil type are derived from this processing (or the lack of it).We calculated aggregated indices that characterize both the composition and the physicochemical properties of the microbial (both bacteria and fungi) and the SOM and lipid pool34,36. For bacterial and fungal communities, we quantified Shannon–Weaver diversity index for each sample H′ = (-{sum }_{i=1}^{S} pi ln(pi)) (where pi is the proportion of species I) using the relative abundance of individual microbial taxa50. To find the percent of substrate assimilation by individual taxa, we calculated the proportion of C assimilated by each group as previously described18,51 as a percent. For SOM and lipid molecular formulae, we separately calculated weighted means of formula-based characteristics (i.e. m/z, Aromaticity Index—AI; H/C, O/C, and Nominal Oxidation State of Carbon-NOSC) as the sum of the product of the single-formula information (i.e. m/zi, AIi, H/Ci and NOSCi) and the relative intensity (Ii) divided by the sum of all intensities (e.g., m/z sample1 = ({sum }_{i=1}^{S})(m/zi ·Ii)/Σ(Ii)). With these metrics we obtained sample-level information related to the molecular size (i.e. m/z), the molecular bioavailability (i.e. higher H/C ratio), the molecular reactiveness (i.e. lower AI) and the energetic rewards from molecular oxidative degradation (i.e. higher NOSC) of the SOM, which allows to infer the potential of decomposition products to form stable SOM12,31,35. Detailed information of the calculated indices can be found in the literature31,35,36.We further tested the effects of soil type, substrate type and their interaction on each index using the “lm” function from the “stats” package. In these analyses, P values were approximated by an F test using Type II ANOVA tests with Kenward-Roger Degrees of Freedom52. When interactions between soil and substrate type were found at P  More

  • in

    Effects of ownership patterns on cross-boundary wildfires

    1.Stanfield, B. J., Bliss, J. C. & Spies, T. A. Land ownership and landscape structure: A spatial analysis of sixty-six Oregon (USA) Coast Range watersheds. Landsc. Ecol. 17, 685–697 (2002).Article 

    Google Scholar 
    2.Spies, T. et al. Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA. Ecol Soc 22, 25. https://doi.org/10.5751/ES-08841-220125 (2017).Article 

    Google Scholar 
    3.Zald, H. & Dunn, C. J. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Ecol. Appl. 28, 1068–1080 (2018).Article 

    Google Scholar 
    4.Ager, A. A. et al. Network analysis of wildfire transmission and implications for risk governance. PLoS ONE 12, e0172867. https://doi.org/10.1371/journal.pone.0172867 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Abatzoglou, J. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. 113, 11770–11775 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Sheehan, T., Let, D. B. & Ferschweiler, K. Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures. Ecol. Model. 317, 16–29 (2015).Article 

    Google Scholar 
    7.Spies, T. A. et al. Examining fire-prone forest landscapes as coupled human and natural systems. Ecol. Soc. 19, 9. https://doi.org/10.5751/ES-06584-190309 (2014).Article 

    Google Scholar 
    8.Watkins, T. H. Untrammeled by man: The making of the Wilderness Act of 1964. Audubon 91, 74–90 (1989).
    Google Scholar 
    9.Huffman, D. W., Roccaforte, J. P., Springer, J. D. & Crouse, J. E. Restoration applications of resource objective wildfires in western US forests: A status of knowledge review. Fire Ecol. 16, 18. https://doi.org/10.1186/s42408-020-00077-x (2020).Article 

    Google Scholar 
    10.Charnley, S., Spies, T. A., Barros, A. M. G., White, E. M. & Olsen, K. A. Diversity in forest management to reduce wildfire losses: Implications for resilience. Ecol. Soc. 22, 1. https://doi.org/10.5751/ES-08753-220122 (2017).Article 

    Google Scholar 
    11.Lake, F. K. & Long, J. W. Fire and tribal cultural resources. Report No. PSW-GTR-274, (USDA USFS Pacific Southwest Research Station, Albany, CA, 2014).12.Binkley, C. S., Aronow, M. E., Washburn, C. L. & New, D. Global perspectives on intensively managed plantations: Implications for the Pacific Northwest. J. For. 103, 61–64 (2005).
    Google Scholar 
    13.Palaiologou, P. et al. Fine-scale assessment of cross-boundary wildfire events in the western United States. Nat. Hazards Earth Syst. Sci. 19, 1755–1777. https://doi.org/10.5194/nhess-19-1755-2019 (2019).ADS 
    Article 

    Google Scholar 
    14.Ager, A. A., Palaiologou, P., Evers, C., Day, M. A. & Barros, A. M. Assessment of wildfire transmission from national forests to communities in the Western United States. 52 (USDA Forest Service, 2017).15.Steelman, T. U. S. wildfire governance as a social-ecological problem. Ecol. Soc. 21, 3. https://doi.org/10.5751/ES-08681-210403 (2016).Article 

    Google Scholar 
    16.Charnley, S., Kelly, E. C. & Fischer, A. P. Fostering collective action to reduce wildfire risk across property boundaries in the American West. Environ. Res. Lett. 15, 025007 (2020).ADS 
    Article 

    Google Scholar 
    17.USDA Forest Service. Towards shared stewardship across landscapes: An outcome-based investment strategy. Report No. FS-118, (USDA Forest Service, Washington, DC, 2018).18.USDA Forest Service. National Cohesive Wildland Fire Management Strategy. http://www.forestsandrangelands.gov/strategy/index.shtml (2015).19.Marsik, M. et al. Regional-scale management maps for forested areas of the Southeastern United States and the US Pacific Northwest. Sci. Data 5, 1–13 (2018).Article 

    Google Scholar 
    20.Franklin, J. F. & Dyrness, C. T. in General Technical Report PNW-GTR-008 427 (U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR, 1973).21.Simpson, M. Central Oregon Area Ecology and Forest Health Program (ed Pacific Northwest Region USDA Forest Service) (Bend, OR, 2013).22.MTBS. MTBS Data Access: Burned areas boundaries. https://www.mtbs.gov/index.php/direct-download. (2020).23.Picotte, J. J. et al. Changes to the monitoring trends in burn severity program mapping production procedures and data products. Fire Ecol. 16, 1–13 (2020).Article 

    Google Scholar 
    24.Meddens, A. J. H., Kolden, C. A., Lutz, J. A., Abatzoglou, J. & Hudak, A. T. Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014. Ecosphere 9, e02029 (2018).Article 

    Google Scholar 
    25.USGS. (USGS Gap Analysis Program (GAP), 2016).26.Gaines, L., Hemstrom, M., Kagan, J. & Salwasser, J. Integrated landscape assessment project final report. 62 (The Institute for Natural Resources, Oregon State University, Corvallis, Or, 2013).27.Bond, W. J. & Keeley, J. E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).Article 

    Google Scholar 
    28.Manly, B., McDonald, L. & Thomas, D. Resource Selection by Animals (Chapman & Hall, 1993).Book 

    Google Scholar 
    29.Bajocco, S., Pezzatti, G. B., Mazzoleni, S. & Ricotta, C. Wildfire seasonality and land use: When do wildfires prefer to burn?. Envrion. Monit. Assess. 164, 445–452 (2010).CAS 
    Article 

    Google Scholar 
    30.Bajocco, S. & Ricotta, C. Evidence of selective burning in Sardinia (Italy): Which land cover classes do wildfires prefer?. Landsc. Ecol. 23, 241–248 (2008).Article 

    Google Scholar 
    31.Barros, A. M. G. & Pereira, J. M. C. Wildfire selectivity for land cover type: Does size matter?. PLoS ONE 9, e84760 (2014).ADS 
    Article 

    Google Scholar 
    32.R Package ‘phuassess’ (2016).33.Fattorini, L., Pisani, C., Riga, F. & Zaccaroni, M. The R package “phuassess” for assessing habitat selection using permutation-based combination of sign tests. Mamm. Biol. 83, 64–70 (2017).Article 

    Google Scholar 
    34.Fattorini, L., Pisani, C., Riga, F. & Zaccaroni, M. A permutation-based combination of sign tests for assessing habitat selection. Environ. Ecol. Stat. 21, 161–187 (2013).MathSciNet 
    Article 

    Google Scholar 
    35.R: A Language and Environment for Statistical Computing v.3.5.3 (R Foundation for Statistical Computing, Vienna, Austria, 2019).36.ArcGIS Desktop: Release 10 (Environmental Systems Research Institute, 2011).37.MATLAB Release 2019a v. 2019a (The Mathworks, Inc., 2019).38.Collins, B. & Stephens, S. Fire scarring patterns in Sierra Nevada wilderness areas burned by multiple wildland fire use fires. Fire Ecol. 3, 53–67 (2007).Article 

    Google Scholar 
    39.Reilly, M. J. et al. Cumulative effects of wildfires on forest dynamics in the eastern Cascade Mountains USA. Ecol. Appl. 28, 291–308 (2018).Article 

    Google Scholar 
    40.Johnston, J. D., Kilbride, J. B., Meigs, G. W., Dunn, C. J. & Kennedy, R. E. Does conserving roadless wildland increase wildfire activity in western US national forests?. Environ. Res. Lett. 16, 084040 (2021).ADS 
    Article 

    Google Scholar 
    41.Schultz, C. A., Thompson, M. P. & McCaffrey, S. M. Forest service fire management and the elusiveness of change. Fire Ecol. 15, 1–15 (2019).Article 

    Google Scholar 
    42.Ager, A. A., Houtman, R., Day, M. A., Ringo, C. & Palaiologou, P. Tradeoffs between US national forest harvest targets and fuel management to reduce wildfire transmission to the wildland urban interface. For. Ecol. Manag. 434, 99–109 (2019).Article 

    Google Scholar 
    43.NWCG. Guidance for Implementation of Federal Wildland Fire Management Policy (2009).44.Franklin, J. F. et al. Extent and Distribution of Old Forest Conditions on Washington Department of Natural Resources-Managed Forest Lands in Eastern Washington (Washington Department of Natural Resources, 2007).45.Stephens, S. L. et al. Fire and climate change: Conserving seasonally dry forests is still possible. Front. Ecol. Environ. 18, 354–360 (2020).Article 

    Google Scholar 
    46.Long, J., Lake, F. K., Lynn, K. & Viles, C. Tribal ecocultural resources and engagement. Report No. General Technical Report PNW-GTR-966, 851-917 (USDA – USFS, 2018).47.Scott, J. H. & Burgan, R. E. Standard fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model. Report No. RMRS-GTR-153, 72 (USDA Forest Service, Rocky Mountain Research Station, 2005).48.Fernandes, P. M., Pacheco, A. P., Almeida, R. & Claro, J. The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal. Eur. J. For. Res. 135, 253–262 (2016).Article 

    Google Scholar 
    49.WADNR, W. D. o. N. R. Forest Health Assessment and Treatment Framework (RCW 76.06.200) (Washington State Department of Natural Resources, 2020).50.Collins, B. M. & Stephens, S. L. Managing natural wildfires in Sierra Nevada wilderness areas. Front. Ecol. Environ. 5, 523–527 (2007).Article 

    Google Scholar 
    51.Holden, Z. A., Morgan, P., Rollins, M. G. & Kavanagh, K. Effects of multiple wildland fires on ponderosa pine stand structure in two southwestern wilderness areas, USA. Fire Ecol. 3, 18–33 (2007).Article 

    Google Scholar 
    52.Hunter, M. E., Iniguez, J. M. & Farris, C. A. (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2014). More