More stories

  • in

    Changes in microbial community phylogeny and metabolic activity along the water column uncouple at near sediment aphotic layers in fjords

    The present study was carried out in six fjords within New Zealand’s Fiordland system, specifically Breaksea Sound, Chalky Inlet, Doubtful Sound, Dusky Sound, Long Sound, and Wet Jacket Arm, as described in Tobias-Hünefeldt et al.15. Analyses were divided into three categories: (1) a multi-fjord analysis comprising five of the tested fjords (excluding Long Sound), (2) a high-resolution study along Long Sound’s horizontal axis, and (3) a depth profile of Long Sound’s deepest location (at 421 m). These categories were established to identify trends across multiple fjords, and then test the trends using a fjord analysed at a higher resolution. Total community composition (via 16S and 18S rRNA gene sequencing) and metabolic potential did not significantly covary across the five studied fjords (Mantel, r  More

  • in

    The effect of estuarine system on the meiofauna and nematodes in the East Siberian Sea

    1.Stein, R. & Macdonald, R. W. Organic carbon budget: Arctic Ocean vs. global ocean. In The Organic Carbon Cycle in the Arctic Ocean (eds Stein, R. & Macdonald, R. W.) (Springer, 2004).Chapter 

    Google Scholar 
    2.Barber, D. G. & Massom, R. A. The role of sea ice in Arctic and Antarctic polynyas. Oceanogr. Ser. 74, 1–54. https://doi.org/10.1016/S0422-9894(06)74001-6 (2007).Article 

    Google Scholar 
    3.Sheremetevskiy, A. M. Role of meiobenthos of the South Sakhalin shelf, Eastern Kamchatka, and Novosibirsk shallow water area. Issledovaniya Fauny Morei 35, 43 (1987).
    Google Scholar 
    4.Golikov, A. N. Ecosystems of the New Siberian shoals and fauna of the Laptev Sea and adjacent waters of the Arctic Ocean (in Russian). Explor. Fauna Seas 37, 4 (1990).
    Google Scholar 
    5.Golikov, A. N. Fauna of the East Siberian Sea. Part III. Explor. Fauna Seas 49, 57 (1994).
    Google Scholar 
    6.Sirenko, B. I. & Denisenko, S. G. Fauna of the East Siberian Sea, distribution patterns and structure of bottom communities. Explor. Fauna Seas 66, 74 (2010).
    Google Scholar 
    7.Sirenko, B. I. List of species of free-living invertebrates of Eurasian Arctic seas and adjacent deep waters. Explor. Fauna Seas 51(59), 1–76 (2001).
    Google Scholar 
    8.Schmidt-Rhaesa, A. Handbook of Zoology: Gastrotricha, Cycloneuralia, Gnathifera Vol. 2, 608 (De Gruyter, 2020).
    Google Scholar 
    9.Udalov, A. et al. Integrity of benthic assemblages along the arctic estuarine-coastal system. Ecol. Indic. 121, 107115. https://doi.org/10.1016/j.ecolind.2020.107115 (2021).Article 

    Google Scholar 
    10.Portnova, D., Fedyaeva, M., Udalov, A. & Tchesunov, A. Community structure of nematodes in the Laptev Sea shelf with notes on the lives of ice nematodes. Reg. Stud. Mar. Sci. 31, 100757. https://doi.org/10.1016/j.rsma.2019.100757 (2019).Article 

    Google Scholar 
    11.Gallucci, F., Moens, T. & Fonseca, G. Small-scale spatial patterns of meiobenthos in the Arctic deep sea. Mar. Biodivers. 39(1), 9–25. https://doi.org/10.1007/s12526-009-0003-x (2009).Article 

    Google Scholar 
    12.Lei, Y., Stumm, K., Volkenborn, N., Wickham, S. A. & Berninger, U. G. Impact of Arenicola marina (Polychaeta) on the microbial assemblages and meiobenthos in a marine intertidal flat. Mar. Biol. 157(6), 1271–1282. https://doi.org/10.1007/s00227-010-1407-7 (2010).Article 

    Google Scholar 
    13.Flint, M. V., Poyarkov, S. G. & Rymsky-Korsakov, N. A. Ecosystems of the Siberian Arctic Seas-2017 (Cruise 69 of the R/V Akademik Mstislav Keldysh). Oceanology 58(2), 315–318. https://doi.org/10.1134/S0001437018020042 (2018).ADS 
    Article 

    Google Scholar 
    14.Garlitska, L. A. & Azovsky, A. I. Benthic harpacticoid copepods of the Yenisei Gulf and the adjacent shallow waters of the Kara Sea. J. Nat. Hist. 50, 2941–2959. https://doi.org/10.1080/00222933.2016.1219410 (2016).Article 

    Google Scholar 
    15.Portnova, D., Garlitska, L., Udalov, A. & Kondar, D. Meiobenthos and nematode community in the Yenisei Bay and adjacent parts of the Kara Sea shelf. Oceanology 57(1), 1–15. https://doi.org/10.1134/S0001437017010155 (2017).Article 

    Google Scholar 
    16.Carmack, E. et al. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull. Am. Meteorol. Soc. 96(12), 2079–2105. https://doi.org/10.1175/BAMS-D-13-00177.1 (2005).ADS 
    Article 

    Google Scholar 
    17.Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science 298(5601), 2171–2173. https://doi.org/10.1126/science.1077445 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Polukhin, A. The role of river runoff in the Kara Sea surface layer acidification and carbonate system changes. ERL 14(10), 105007. https://doi.org/10.1088/1748-9326/ab421e (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Lisitzin, A. P. Marginal filter of the oceans. Oceanology 34(5), 735–743 (1994).CAS 

    Google Scholar 
    20.Moens, T., Braeckman, U., Derycke, S., Fonseca, G., Gallucci, F., Gingold, R., Guilini, Katja, Ingles, J., Leduc, D., Vanaverbeke, J., Van Colen, C., Vanreusel, A, & Vincx, M. Ecology of free-living marine nematodes. In Volume 2 Nematoda, 109–152. De Gruyter (2013)21.Aller, J. Y. & Aller, R. C. General characteristics of benthic faunas on the Amazon inner continental shelf with comparison to the shelf off the Changjiang River, East China Sea. Cont. Shelf Res. 6(1–2), 291–310. https://doi.org/10.1016/0278-4343(86)90065-8 (1986).ADS 
    Article 

    Google Scholar 
    22.Soetaert, K., Vincx, M., Wittoeck, J. & Tulkens, M. Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia 311(1), 185–206. https://doi.org/10.1007/BF00008580 (1995).Article 

    Google Scholar 
    23.Tank, S. E. et al. The processing and impact of dissolved riverine nitrogen in the Arctic Ocean. Estuaries Coast 35, 401–415. https://doi.org/10.1007/s12237-011-9417-3 (2012).CAS 
    Article 

    Google Scholar 
    24.Galtsova, V. V., Lukina, T. G. & Vladimirov, M. V. Meiobenthos of Chaunskaya Bay, East Siberian Sea. Issledovaniya Fauny Morei 48(56), 67–97 (1994).
    Google Scholar 
    25.Coull, B. C. Role of meiofauna in estuarine soft‐bottom habitats. Austral Ecol. 24(4), 327–343 (1999).Article 

    Google Scholar 
    26.Vincx, M., Meire, P., & Heip, C. The distribution of nematodes communities in the Southern Bight of the North Sea. Cah Biol Mar. 31(1), 107–129 (1990).27.Vanaverbeke, J., Gheskiere, T., Steyaert, M., & Vincx, M. Nematode assemblages from subtidal sandbanks in the Southern Bight of the North Sea: effect of small sedimentological differences. J. Sea Res. 48(3), 197–207. https://doi.org/10.1016/S1385-1101(02)00165-X (2002)ADS 
    Article 

    Google Scholar 
    28.Steyaert, M., et al. The importance of fine-scale, vertical profiles in characterising nematode community structure. Estuar Coast Shelf Sci. 58(2), 353–366 (2003).ADS 
    Article 

    Google Scholar 
    29.Alves, A. S., Adão, H., Patrício, J., Neto, J. M., Costa, M. J., & Marques, J. C. Spatial distribution of subtidal meiobenthos along estuarine gradients in two southern European estuaries (Portugal). J. Mar. Biol. Assoc. U. K. 89(8), 1529–1540 (2009).CAS 
    Article 

    Google Scholar 
    30.Garlitska, L. A., Chertoprud, E. S., Portnova, D. A. & Azovsky, A. I. Benthic harpacticoida of the Kara Sea: Species composition and bathymetrically related distribution. Oceanology 59(4), 541–551. https://doi.org/10.1134/S0001437019040064 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Huang, D. et al. Preliminary study on community structures of meiofauna in the middle and eastern Chukchi Sea. Acta Oceanol. Sin. 40(6), 83–91. https://doi.org/10.1007/s13131-021-1777-3 (2021).ADS 
    Article 

    Google Scholar 
    32.Giere, O. Meiobenthology: The Microscopic Motile Fauna in Aquatic Sediments 2nd edn. (Springer, 2009).
    Google Scholar 
    33.Semiletov, I. et al. The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters. Geophys. Res. Lett. https://doi.org/10.1029/2005GL022490 (2005).Article 

    Google Scholar 
    34.Miroshnikov, A. Y. et al. Ecological state and mineral-geochemical characteristics of the bottom sediments of the East Siberian Sea. Oceanology 60(4), 595–610. https://doi.org/10.31857/S0030157420040152 (2020).Article 

    Google Scholar 
    35.Frontalini, F. et al. The response of cultured meiofaunal and benthic foraminiferal communities to lead exposure: Results from mesocosm experiments. Environ. Toxicol. Chem. 37(9), 2439–2447. https://doi.org/10.1002/etc.4207 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Fonseca, G. & Soltwedel, T. Deep-sea meiobenthic communities underneath the marginal ice zone off Eastern Greenland. Polar Biol. 30, 607–618. https://doi.org/10.1007/s00300-006-0220-8 (2007).Article 

    Google Scholar 
    37.Portnova, D. & Polukhin, A. Meiobenthos of the eastern shelf of the Kara Sea compared with the meiobenthos of other parts of the sea. Reg. Stud. Mar. Sci. 24, 370–378. https://doi.org/10.1016/j.rsma.2018.10.002 (2018).Article 

    Google Scholar 
    38.Alexeev, D. K., & Galtsova, V. V. Effect of radioactive pollution on the biodiversity of marine benthic ecosystems of the Russian Arctic shelf. Polar Sci. 6(2), 183–195 (2012).ADS 
    Article 

    Google Scholar 
    39.Grzelak, K. & Sørensen, M. V. Diversity and community structure of kinorhynchs around Svalbard: First insights into spatial patterns and environmental drivers. Zool. Anz. 282, 31–43. https://doi.org/10.1016/j.jcz.2019.05.009 (2019).Article 

    Google Scholar 
    40.Landers, S. C. et al. Kinorhynch communities from Alabama coastal waters. Mar. Biol. Res. 16(6–7), 494–504. https://doi.org/10.1080/17451000.2020.1789660 (2020).Article 

    Google Scholar 
    41.Holovachov, O. New and known species of the genus Campylaimus Cobb, 1920 (Nematoda: Araeolaimida: Diplopeltidae) from North European marine habitats. Biodivers. Data J. https://doi.org/10.3897/BDJ.7.e46545 (2007).Article 

    Google Scholar 
    42.Sharma, J. & Bluhm, B. A. Diversity of larger free-living nematodes from macrobenthos ( > 250 μm) in the Arctic deep-sea Canada Basin. Mar. Biodivers. 41(3), 455–465. https://doi.org/10.1007/s12526-010-0060-1 (2010).Article 

    Google Scholar 
    43.Kotwicki, L., Grzelak, K. & Bełdowski, J. Benthic communities in chemical munitions dumping site areas within the Baltic deeps with special focus on nematodes. Deep Sea Res. II 128, 123–130. https://doi.org/10.1016/j.dsr2.2015.12.012 (2016).CAS 
    Article 

    Google Scholar 
    44.Netto, S. A., Pagliosa, P. R., Colling, A., Fonseca, A. L. & Brauk, K. M. Benthic estuarine assemblages from the Southern Brazilian marine ecoregion. Braz. Estuaries. https://doi.org/10.1007/978-3-319-77779-5_6 (2018).Article 

    Google Scholar 
    45.Broman, E., et al. Uncovering diversity and metabolic spectrum of animals in dead zone sediments. Commun. Biol. 3(1), 1–12 (2020).46.Zeppilli, D., et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodiver. 48(1), 35–71 (2018).47.Pérez-García, J. A. et al. Nematode diversity of freshwater and anchialine caves of Western Cuba. PBSW 131(1), 144–155. https://doi.org/10.2988/17-00024 (2018).Article 

    Google Scholar 
    48.Bezzubova, E. M., Seliverstova, A. M., Zamyatin, I. A. & Romanova, N. D. Heterotrophic bacterioplankton of the Laptev and East Siberian Sea shelf affected by freshwater inflow areas. Oceanology 60, 62–73. https://doi.org/10.1134/S0001437020010026 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Vanreusel, A. et al. Meiobenthos of the central Arctic Ocean with special emphasis on the nematode community structure. Deep Sea Res. I 47, 1855–1879. https://doi.org/10.1016/S0967-063728002900007-8 (2000).Article 

    Google Scholar 
    50.Tahseen, Q. Nematodes in aquatic environments: Adaptations and survival strategies. Biodivers. J. 3(1), 13–40 (2012).
    Google Scholar 
    51.Williams, W. J. & Carmack, E. C. The ‘interior’ shelves of the Arctic Ocean: Physical oceanographic setting, climatology and effects of sea-ice retreat on cross-shelf exchange. Prog. Ocean 139, 24–41. https://doi.org/10.1016/j.pocean.2015.07.008 (2015).Article 

    Google Scholar 
    52.Magritsky, D. V. et al. Long-term changes of river water inflow into the seas of the Russian Arctic sector. Polarforschung 87(2), 177–194. https://doi.org/10.2312/polarforschung.87.2.177 (2018).Article 

    Google Scholar 
    53.Anderson, L. G. et al. East Siberian Sea, an Arctic region of very high biogeochemical activity. Biogeosciences 4, 6. https://doi.org/10.5194/bg-8-1745-2011 (2011).CAS 
    Article 

    Google Scholar 
    54.Dmitrienko, I. A. et al. Impact of the Arctic Ocean Atlantic water layer on Siberian shelf hydrography. J. Geophys. Res. Oceans. https://doi.org/10.1029/2009JC006020 (2010).Article 

    Google Scholar 
    55.Stein, R. Arctic Ocean Sediments: Processes, PROXIES, and Paleoenvironment (Elsevier, 2008).
    Google Scholar 
    56.Petrova, V. I., Batova, G. I., Kursheva, A. V. & Litvinenko, I. V. Geochemistry of organic matter of bottom sediments in the rises of the central Arctic Ocean. Russ. Geol. Geophys. 51(1), 88–97. https://doi.org/10.1016/j.rgg.2009.12.008 (2010).ADS 
    Article 

    Google Scholar 
    57.Millero, F. J. Thermodynamics of the carbon dioxide system in oceans. GCA 59(4), 661–677. https://doi.org/10.12691/wjce-3-6-1 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Pavlova, G. Y. et al. Intercalibration of Bruevich’s method to determine the total alkalinity in seawater. Oceanology 48, 438. https://doi.org/10.1134/S0001437008030168 (2008).ADS 
    Article 

    Google Scholar 
    59.Dickson, A. G. & Goyet, C. Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water. Version 2 (No. ORNL/CDIAC-74) (1994).60.Dickson, A. G., Afghan, J. D. & Anderson, G. C. Reference materials for oceanic CO2 analysis: A method for the certification of total alkalinity. Mar. Chem. 80, 185–197. https://doi.org/10.1016/S0304-4203(02)00133-0 (2003).CAS 
    Article 

    Google Scholar 
    61.Lewis, E. & Wallace, D. W. R. Program Developed for CO2 System Calculations. ORNL/CDIAC-105 (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 1998).Book 

    Google Scholar 
    62.Shiklomanov, A. I., Holmes, J. W., McClelland, S. E., Tank, R. & Spencer, G.M. Arctic Great Rivers Observatory. Discharge Dataset, Version 20200801 (2020).63.Niemistö, L. A gravity corer for studies of soft sediments. Merentutkimuslait. Julk./Havsforskningsinst. Skr. 238, 33–38 (1974).
    Google Scholar 
    64.Eleftheriou, A. Methods for the Study of Marine Benthos (Wiley, 2013).Book 

    Google Scholar 
    65.Wieser, W. Beziehungen zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden, marinen Nematoden. Ark. Zool. 2, 439–484 (1953).
    Google Scholar 
    66.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    67.Heip, C. & Herman, P. Indices of diversity and evenness. Oceanis 24(4), 61–88 (2001).
    Google Scholar  More

  • in

    Nutritional resources of the yeast symbiont cultivated by the lizard beetle Doubledaya bucculenta in bamboos

    Insects and bamboosFive internodes (length: mean ± SD = 44.8 ± 1.1 cm, n = 5; diameter in the middle part of internodes: 21.4 ± 0.8 mm, n = 5) of five living mature culms of P. simonii bamboo were sampled at Kawaminami, Miyazaki Prefecture, Japan [32°9′ N, 131°29′ E] on 6 June, 2019. Per internode, four semi-cylindrical strips (ca. 15 × 2 cm) were made and stored at − 25 °C until use.To obtain fungus-free larvae of D. bucculenta, we sampled five beetle eggs from P. simonii bamboo obtained at Toyota, Aichi Prefecture, Japan [35°9′ N, 137°13′ E] on 9 May, 2019 in the laboratory from ovipositing females collected at Kawaminami on 10 and 11 April, 2019. The eggs were immersed in 99.5% ethanol for 10 s followed by 70% ethanol for 10 s for surface sterilization and then individually placed on potato dextrose agar (PDA) (Difco, Detroit, MI, USA) plates. The plates were incubated at 25 °C in the dark until 30 days after larval hatching to confirm the absence of the formation of yeast or other microbial colonies. Consequently, all five larvae hatched successfully and aseptically.The bamboo used in this study was morphologically identified using the literature29. This is native to the study areas and no other host bamboo species are distributed there29. Therefore, no voucher specimen of this bamboo has been deposited in a publicly available herbarium. No specific permits were required for the described field studies. The location is not privately-owned or protected in any way. The field studies did not involve endangered or protected species. All applicable international, national, and/or institutional guidelines for the care and use of animals and plants were followed. This study is reported in accordance with ARRIVE guidelines.Component analyses of bamboo tissuesFor YP and LP, the yeast W. anomalus originating from D. bucculenta in Kawaminami (strain: DBL05Kawaminami) was cultured on a 9-cm PDA plate to obtain enough biomass for further experiments. Afterwards, yeast cells were suspended in ca. 10 mL of sterilized water, and were inoculated on the inner surface of the autoclaved internode strips using an autoclaved tissue paper immersed with the yeast suspension. For LP, additionally, the fungus-free 2nd instar larvae (weight: mean ± SD = 2.4 ± 0.4 mg, n = 5) were individually placed on the yeast-inoculated strips. Each of these yeast-inoculated and yeast-and-larva-inoculated strips was then put in a sterilized test tube (3.0 cm in diameter and 20 cm tall) with moistened cotton placed at the bottom. Each of the test tubes was covered with a sterilized polypropylene cap, sealed with Parafilm Sealing Film (Pechiney Plastic Packaging, Chicago, IL, USA) on which three small holes were made using a fire-sterilized insect pin to avoid oxygen shortage, and individually put in a plastic zipper bag. These yeasts and insects were incubated at 25 °C in the dark for 47 days for YP (n = 5), and 47 (n = 4) and 73 (n = 1) days until these larvae reached adulthood for LP (adult elytral length: mean ± SD = 9.2 ± 0.4 mm, n = 5). Microbial contamination was invisible to the naked eye.For FP, YP and LP, the inner surface (up to 0.3 mm in thickness, dry weight: 336 to 935 mg) of a strip was sampled using a small U-shaped gouge. In the case of FX, first, the pith of a strip was completely removed, and then xylem tissue (up to 0.5 mm in thickness, dry weight: 729 to 872 mg) was sampled using a small U-shaped gouge. These tissues were individually sampled from five strips derived from five different internodes for each tissue type.Samples were extracted by aqueous ethanol and hydrolyzed by sulfuric acid with reference to the literature30,31,32 as follows. Four types of samples were freeze-dried and pulverized using a rotor-speed mill (Fritsch, PULVERISETTE 14, 0.2 mm mesh). About 80 mg of powdered sample was extracted using 5-mL 80% ethanol aqueous solution (aq.) at 63 °C three times. The volume of the extracts was adjusted to 25 mL, filtered, and analyzed using ion exchange chromatography measurements (extractable sugar analysis). Their extracted residues were hydrolyzed using sulfuric acid as follows: 50-mg samples were immersed in 1.64-g 72% sulfuric acid aq. at 30 °C for 2 h, boiled in 39.4-g 3% sulfuric acid aq. for 4 h, and filtered to collect sulfuric acid residues as sulfuric acid lignin fractions. The volumes of the filtrates were fixed to 100 mL, passed through a sulfuric acid-removing filter (DIONEX OnGuard IIA), and submitted to ion exchange chromatography measurements (structural sugar analysis). For the uronic acid measurements, the sulfuric acid-removing filter was not used.Ion exchange chromatography measurements were conducted using a DIONEX ICS-3000 apparatus. The measurement conditions were as follows: column, CarboPac PA-1 (2.0 mm I.D. × 250 mm L, Dionex corp.); flow rate, 0.3 mL min−1; column temperature, 30 °C; injection volume, 25 µL; eluent, H2O (solvent A), 100 mM NaOHaq. (solvent B), aqueous solution containing 100 mM NaOH and 1.0 M CH3COONa (solvent C), and aqueous solution containing 100 mM NaOH and 150 mM CH3COONa (solvent D). The gradient conditions for monomers, dimers, and uronic acids were as follows: for monomers, with a gradient of B 0.5% C 0% 45 min, C 100% 10 min, B 100% 10 min, B 0.5% C 0% 20 min; for dimers, with a gradient of B 50% C 0% 50 min, C 100% 10 min, B 100% 10 min, B 50% C 0% 15 min; for uronic acids, with a gradient of D 100% 10 min. These extraction, hydrolysis, and measurement procedures were conducted using n = 5 samples. For the structural sugars, their yield was calculated as the dehydrated state. The values of other extractives % were calculated by the subtraction of total extractable sugars % from total extractives %.Elemental analysis (carbon, hydrogen, nitrogen) was conducted by 2400 CHNS Organic Elemental Analyzer (PerkinElmer Japan, Yokohama, Japan). About 1-mg dried samples were burned completely and the produced CO2, H2O, and N2 (after reduction of NOx species) gasses were quantified by a thermal conductivity detector.Means of components of bamboo tissues were compared among tissue types using the Steel–Dwass test after the Kruskal–Wallis test. Calculations were performed using R 3.5.133.Carbon assimilation testThe yeast W. anomalus (DBL05Kawaminami) was cultured aerobically in 20 mL of yeast nitrogen base (YNB) (Difco) containing 0.5% glucose at 25 °C in the dark for 2 days with shaking at 85 rpm. The culture media were centrifuged and cell pellets were suspended in sterile water, in which the OD600 was adjusted to 0.10. Fifty μL of the cell suspension was added into a tube (2 mL) with 1 mL of each of 14 different media containing YNB and one of the following carbon sources: d-glucose, d-galactose, d-mannose, d-xylose, l-arabinose, d-fructose, d-galacturonic acid, d-glucuronic acid, sucrose, cellobiose, starch from corn, xylan from corn, carboxymethyl cellulose, and no carbon source (n = 5 to 6). The concentration of each carbon source was 0.5 g L−1, except for xylan at 1.5 g L−1. The tubes were shaken at 85 rpm and incubated at 25 °C in the dark for 7 days. Afterwards, the presence of visible pellets of yeasts and OD600 were recorded to determine the growth of the strain. The degree of assimilation was scored according to the presence of the pellets and the difference in the turbidity increase (ΔOD600) between culture media containing no and a given carbon source as follows: no growth (without a pellet, ΔOD600  More

  • in

    A doubling of stony coral cover on shallow forereefs at Carrie Bow Cay, Belize from 2014 to 2019

    1.Hughes, T. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    3.Brander, L. M., Van Beukering, P. & Cesar, H. S. The recreational value of coral reefs: A meta-analysis. Ecol. Econ. 63, 209–218 (2007).Article 

    Google Scholar 
    4.Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90, 1478–1484 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Hughes, T. Catastrophes, phase shifts, and large-scale degradation of a Caribbean Coral Reef. Science 265, 1547–1551 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Hughes, T. P., Bellwood, D. R., Folke, C. S., McCook, L. J. & Pandolfi, J. M. No-take areas, herbivory and coral reef resilience. Trends Ecol. Evol. 22, 1–3 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Edgar, G. J. et al. Reef Life Survey: Establishing the ecological basis for conservation of shallow marine life. Biol. Conserv. 252, 108855 (2020).Article 

    Google Scholar 
    10.Chabanet, P., Bigot, L., Garnier, R., Tessier, E. & Moyne-Picard, M. Coral reef monitoring at Reunion island (Western Indian Ocean) using the GCRMN method. Proc. 9th Int. Coral Reef Symp. 2, 873–878 (2000).
    Google Scholar 
    11.Lang, J. C., Marks, K. W., Kramer, P. A., Kramer, P. R. & Ginsburg, R. N. AGRRA Protocols Version 5.4. (2010).12.Cortés, J. et al. The CARICOMP network of Caribbean Marine Laboratories (1985–2007): History, key findings, and lessons learned. Front. Mar. Sci. 5, 519 (2019).Article 

    Google Scholar 
    13.Dethier, M. N., Graham, E. S., Cohen, S. & Tear, L. M. Visual versus random-point percent cover estimations: ‘objective’ is not always better. Mar. Ecol. Prog. Ser. 96, 93–100 (1993).Article 

    Google Scholar 
    14.Beijbom, O., Edmunds, P. J., Kline, D. I., Mitchell, B. G. & Kriegman, D. Automated annotation of coral reef survey images. In 2012 IEEE Conference on Computer Vision and Pattern Recognition 1170–1177 (IEEE, 2012).15.Beijbom, O. et al. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PloS One 10, e0130312 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Williams, I. D. et al. Leveraging automated image analysis tools to transform our capacity to assess status and trends of coral reefs. Front. Mar. Sci. 6, 222 (2019).Article 

    Google Scholar 
    17.Roelfsema, C. et al. Benthic and coral reef community field data for Heron Reef, Southern Great Barrier Reef, Australia, 2002–2018. Sci. Data 8, 1–7 (2021).MathSciNet 
    Article 

    Google Scholar 
    18.Gonzalez-Rivero, M. et al. Monitoring of coral reefs using artificial intelligence: A feasible and cost-effective approach. Remote Sens. 12, 489 (2020).Article 

    Google Scholar 
    19.Cairns, S. D. Stony corals (Cnidaria: Hydrozoa, Scleractinia) of Carrie Bow Cay, Belize. Smithson. Contrib. Mar. Sci. 21, 271–302 (1982).
    Google Scholar 
    20.Rutzler, K. & Macintyre, I. G. The Atlantic Barrier Reef Ecosystem at Carrie Bow Cay, Belize, 1: Structure and Communities (Smithsonian Institution Press, 1982). https://doi.org/10.5479/si.01960768.12.539.Book 

    Google Scholar 
    21.Rutzler, K. Caribbean coral reef ecosystems: Thirty-five years of smithsonian marine science in Belize. In Proceedings of the Smithsonian Marine Science Symposium (2009).22.McField, M. et al. Mesoamerican Reef Report Card. (2020).23.Cox, C. E. et al. Genetic testing reveals some mislabeling but general compliance with a ban on herbivorous fish harvesting in Belize. Conserv. Lett. 6, 132–140 (2013).Article 

    Google Scholar 
    24.Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5, 9–13 (2005).
    Google Scholar 
    25.Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).Article 

    Google Scholar 
    26.R Core Team. A language and environment for statistical computing. (2020).27.Althaus, F. et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: The CATAMI classification scheme. PLoS One 10, e0141039 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Goatley, C. H., Bonaldo, R. M., Fox, R. J. & Bellwood, D. R. Sediments and herbivory as sensitive indicators of coral reef degradation. Ecol. Soc. 21(1), 29 (2016).Article 

    Google Scholar 
    29.Connell, S., Foster, M. & Airoldi, L. What are algal turfs? Towards a better description of turfs. Mar. Ecol. Prog. Ser. 495, 299–307 (2014).Article 

    Google Scholar 
    30.Lozada-Misa, P., Schumacher, B. D. & Vargas-Angel, B. Analysis of benthic survey images via CoralNet: A summary of standard operating procedures and guidelines. Pacific
    Islands Fish. Sci. Cent. Natl. Mar. Fish. Serv. https://doi.org/10.7289/V5%2FAR-PIFSC-H-17-02 (2017).Article 

    Google Scholar 
    31.Obura, D. & Grimsditch, G. Resilience Assessment of Coral Reefs: Assessment Protocol for Coral Reefs, Focusing on Coral Bleaching and Thermal Stress (Citeseer, 2009).
    Google Scholar 
    32.Broeke, J., Pérez, J. M. M., & Pascau, J. Image processing with ImageJ. (Packt Publishing Ltd, 2015).
    Google Scholar 
    33.Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, 2017).MATH 
    Book 

    Google Scholar 
    34.Fasiolo, M., Nedellec, R., Goude, Y. & Wood, S. N. Scalable visualization methods for modern generalized additive models. J. Comput. Graph. Stat. 29, 78–86 (2020).MathSciNet 
    Article 

    Google Scholar 
    35.Oksanen, J. et al. Community ecology package. R Package Version 2, (2013).36.Arnold, S. N. & Steneck, R. S. Settling into an increasingly hostile world: The rapidly closing ‘“Recruitment Window”’ for corals. PLoS One. https://doi.org/10.1371/journal.pone.0028681 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Mumby, P. J. & Harborne, A. R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS One 5, e8657 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Adam, T. C., Burkepile, D. E., Ruttenberg, B. I. & Paddack, M. J. Herbivory and the resilience of Caribbean coral reefs: Knowledge gaps and implications for management. Mar. Ecol. Prog. Ser. 520, 1–20 (2015).Article 

    Google Scholar 
    39.Suchley, A., McField, M. D. & Alvarez-Filip, L. Rapidly increasing macroalgal cover not related to herbivorous fishes on Mesoamerican reefs. PeerJ 4, e2084 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Arnold, S. N., Steneck, R. S. & Mumby, P. J. Running the gauntlet: Inhibitory effects of algal turfs on the processes of coral recruitment. Mar. Ecol. Prog. Ser. 414, 91–105 (2010).Article 

    Google Scholar 
    41.Box, S. J. & Mumby, P. J. Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar. Ecol. Prog. Ser. 342, 139–149 (2007).Article 

    Google Scholar 
    42.Williams, I. & Polunin, N. Large-scale associations between macroalgal cover and grazer biomass on mid-depth reefs in the Caribbean. Coral Reefs 19, 358–366 (2001).Article 

    Google Scholar 
    43.Newman, M. J., Paredes, G. A., Sala, E. & Jackson, J. B. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol. Lett. 9, 1216–1227 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Mumby, P. J., Steneck, R. S., Roff, G. & Paul, V. J. Marine reserves, fisheries ban, and 20 years of positive change in a coral reef ecosystem. Conserv. Biol. https://doi.org/10.1111/cobi.13738 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Aronson, R., Precht, W., Toscano, M. & Koltes, K. The 1998 bleaching event and its aftermath on a coral reef in Belize. Mar. Biol. 141, 435–447 (2002).Article 

    Google Scholar 
    46.Green, D. H., Edmunds, P. J. & Carpenter, R. C. Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar. Ecol. Prog. Ser. 359, 1–10 (2008).Article 

    Google Scholar 
    47.Roff, G., Joseph, J. & Mumby, P. J. Multi-decadal changes in structural complexity following mass coral mortality on a Caribbean reef. Biogeosciences 17, 5909–5918 (2020).Article 

    Google Scholar 
    48.Graham, N. & Nash, K. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).Article 

    Google Scholar 
    49.Aronson, R. B. & Precht, W. F. White-band disease and the changing face of Caribbean coral reefs. Ecol. Etiol. New. Emerg. Mar. Dis. 159, 25–38 (2001).
    Google Scholar 
    50.Aronson, R. B., Macintyre, I. G., Precht, W. F., Murdoch, T. J. & Wapnick, C. M. The expanding scale of species turnover events on coral reefs in Belize. Ecol. Monogr. 72, 233–249 (2002).Article 

    Google Scholar 
    51.McField, M. et al. Status of the Mesoamerican Reef after the 2005 coral bleaching event. Status Caribb. Coral Reefs Bleach. Hurric. In 45–60 (2005).52.Arias-González, J. E. et al. A coral-algal phase shift in Mesoamerica not driven by changes in herbivorous fish abundance. PLoS One 12, e0174855 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Miller, S. Automatically Annotating 175,000+ Images with the CoralNet API. CoralNet (Accessed 23 August 2021); https://coralnet.ucsd.edu/blog/automatically-annotating-175000-images-with-the-coralnet-api/ (2020).54.Muller, E. M., Sartor, C., Alcaraz, N. I. & van Woesik, R. Spatial epidemiology of the stony-coral-tissue-loss disease in Florida. Front. Mar. Sci. 7, 163 (2020).Article 

    Google Scholar 
    55.Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A. & González-Barrios, F. J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 7, e8069 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Weil, E. et al. Spread of the new coral disease “SCTLD” into the Caribbean: implications for Puerto Rico. Reef Encount. 34, 38–43 (2019).
    Google Scholar 
    57.Heres, M. M., Farmer, B. H., Elmer, F. & Hertler, H. Ecological consequences of Stony Coral Tissue Loss Disease in the Turks and Caicos Islands. Coral Reefs 40, 609–624 (2021).Article 

    Google Scholar 
    58.Walton, C. J., Hayes, N. K. & Gilliam, D. S. Impacts of a regional, multi-year, multi-species coral disease outbreak in Southeast Florida. Front. Mar. Sci. 5, 323 (2018).Article 

    Google Scholar  More

  • in

    Persistence of plant-mediated microbial soil legacy effects in soil and inside roots

    1.Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Putten, W. Hvander Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol 11, 789–799 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev. Plant Biol. 57, 233–266 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.De Long, J. R., Fry, E. L., Veen, G. F. & Kardol, P. Why are plant–soil feedbacks so unpredictable, and what to do about it? Funct. Ecol. 33, 118–128 (2019).Article 

    Google Scholar 
    5.Meisner, A., De Deyn, G. B., de Boer, W. & van der Putten, W. H. Soil biotic legacy effects of extreme weather events influence plant invasiveness. Proc. Natl. Acad. Sci. USA. 110, 9835–9838 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Kostenko, O., van de Voorde, T. F. J., Mulder, P. P. J., van der Putten, W. H. & Bezemer, T. M. Legacy effects of aboveground-belowground interactions. Ecol. Lett. 15, 813–821 (2012).PubMed 
    Article 

    Google Scholar 
    7.Heinen, R. et al. Plant community composition steers grassland vegetation via soil legacy effects. Ecol. Lett. 23, 973–982 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Semchenko, M. et al. Fungal diversity regulates plant-soil feedbacks in temperate grassland. Sci. Adv. 4, eaau4578 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Cordovez, V., Dini-Andreote, F., Carrión, V. J. & Raaijmakers, J. M. Ecology and evolution of plant microbiomes. Annu. Rev. Microbiol. 73, 69–88 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Bennett, J. A. & Klironomos, J. Mechanisms of plant–soil feedback: interactions among biotic and abiotic drivers. New Phytol. 222, 91–96 (2019).PubMed 
    Article 

    Google Scholar 
    11.van der Putten, W. H. et al. Plant–soil feedbacks: the past, the present and future challenges. J. Ecol. 101, 265–276 (2013).Article 

    Google Scholar 
    12.Bever, J. D., Platt, T. G. & Morton, E. R. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. Annu. Rev. Microbiol. 66, 265–283 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Petermann, J. S., Fergus, A. J. F., Turnbull, L. A. & Schmid, B. Janzen-connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89, 2399–2406 (2008).PubMed 
    Article 

    Google Scholar 
    14.Cortois, R., Schröder‐Georgi, T., Weigelt, A., van der Putten, W. H. & De Deyn, G. B. Plant–soil feedbacks: role of plant functional group and plant traits. J. Ecol. 104, 1608–1617 (2016).Article 

    Google Scholar 
    15.Bezemer, T. M., Jing, J., Bakx‐Schotman, J. M. T. & Bijleveld, E.-J. Plant competition alters the temporal dynamics of plant-soil feedbacks. J. Ecol. 106, 2287–2300 (2018).Article 

    Google Scholar 
    16.Kardol, P., Deyn, G. B. D., Laliberté, E., Mariotte, P. & Hawkes, C. V. Biotic plant–soil feedbacks across temporal scales. J. Ecol. 101, 309–315 (2013).Article 

    Google Scholar 
    17.Dudenhöffer, J.-H., Ebeling, A., Klein, A.-M. & Wagg, C. Beyond biomass: Soil feedbacks are transient over plant life stages and alter fitness. J. Ecol. 106, 230–241 (2018).Article 
    CAS 

    Google Scholar 
    18.Elger, A., Lemoine, D. G., Fenner, M. & Hanley, M. E. Plant ontogeny and chemical defence: older seedlings are better defended. Oikos. 118, 767–773 (2009).CAS 
    Article 

    Google Scholar 
    19.Nelson, E. B. The seed microbiome: origins, interactions, and impacts. Plant Soil 422, 7–34 (2018).CAS 
    Article 

    Google Scholar 
    20.Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Rosenblueth, M. & Martínez-Romero, E. Bacterial endophytes and their interactions with hosts. Mol. Plant Microbe Interact. 19, 827–837 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Lundberg, D. S. et al. Defining core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Gaiero, J. R. et al. Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am. J. Bot. 100, 1738–1750 (2013).PubMed 
    Article 

    Google Scholar 
    24.Rodriguez, R. J. Jr, Arnold, J. F. W. & Redman, A. E. Fungal endophytes: diversity and functional roles. New Phytol. 182, 314–330 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Carrión, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    26.Fitzpatrick, C. R. et al. Ecological role of the angiosperm root microbiome. Proc. Natl. Acad. Sci. USA. 115, E1157–E1165 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Hardoim, P. R., van Overbeek, L. S. & Elsas, J. Dvan Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 16, 463–471 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Hannula, S. E., Zhu, F., Heinen, R. & Bezemer, T. M. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    30.Sikes, B. A., Hawkes, C. V. & Fukami, T. Plant and root endophyte assembly history: interactive effects on native and exotic plants. Ecology 97, 484–493 (2016).PubMed 
    Article 

    Google Scholar 
    31.Bezemer, T. M. et al. Plant species and functional group effects on abiotic and microbial soil properties and plant–soil feedback responses in two grasslands. J. Ecol. 94, 893–904 (2006).CAS 
    Article 

    Google Scholar 
    32.van de Voorde, T. F., van der Putten, W. H. &  Bezemer, T. M. Intra‐and interspecific plant–soil interactions, soil legacies and priority effects during old‐field succession. J. Ecol. 99, 945–953 (2011).Article 

    Google Scholar 
    33.Hannula, S. E. et al. Time after time: temporal variation in the effects of grass and forb species on soil bacterial and fungal communities. mBio 10, e02635–19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Ampt, E. A., van Ruijven, J., Raaijmakers, J. M., Termorshuizen, A. J. & Mommer, L. Linking ecology and plant pathology to unravel the importance of soil-borne fungal pathogens in species-rich grasslands. Eur. J. Plant Pathol. 154, 141–156 (2019).Article 

    Google Scholar 
    36.Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA. 105, 11512–11519 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Rousk, J. & Bååth, E. Fungal biomass production and turnover in soil estimated using the acetate-in-ergosterol technique. Soil Biol. Biochem. 39, 2173–2177 (2007).CAS 
    Article 

    Google Scholar 
    38.Phillips, M. L. et al. Fungal community assembly in soils and roots under plant invasion and nitrogen deposition. Fungal Ecol. 40, 107–117 (2019).Article 

    Google Scholar 
    39.Carini, P., Marsden, P. & Leff, J. E. A. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2017).CAS 
    Article 

    Google Scholar 
    40.Hannula, S. E., Morrien, E., van der Putter, W. H. & de Boer, W. Rhizosphere fungi actively assimilating plant-derived carbon in a grassland soil. Fungal Ecol. 48, 100988 (2020).Article 

    Google Scholar 
    41.Kulmatiski, A., Beard, K. H., Stevens, J. R. & Cobbold, S. M. Plant–soil feedbacks: a meta‐analytical review. Ecol. Lett. 11, 980–992 (2008).PubMed 
    Article 

    Google Scholar 
    42.Dassen, S. et al. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Mol. Ecol. 26, 4085–4098 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Hannula, S. E. et al. Structure and ecological function of the soil microbiome affecting plant–soil feedbacks in the presence of a soil‐borne pathogen. Environ. Microbiol. 22, 660–676 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Francioli, D. et al. Plant functional group drives the community structure of saprophytic fungi in a grassland biodiversity experiment. Plant Soil https://doi.org/10.1007/s11104-020-04454-y (2020).45.Craine, J., Froehle, J., Tilman, D., Wedin, D. & Chapin, F. S. III The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93, 274–285 (2001).Article 

    Google Scholar 
    46.Tjoelker, M., Craine, J. M., Wedin, D., Reich, P. B. & Tilman, D. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol. 167, 493–508 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Herz, K. et al. Linking root exudates to functional plant traits. PLoS ONE 13, e0204128 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Huberty, M., Choi, Y. H., Heinen, R. & Bezemer, T. M. Above-ground plant metabolomic responses to plant–soil feedbacks and herbivory. J. Ecol. 108, 1703–1712 (2020).CAS 
    Article 

    Google Scholar 
    49.Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA. 112, E911–E920 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Jones, D. L., Nguyen, C. & Finlay, R. D. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321, 5–33 (2009).CAS 
    Article 

    Google Scholar 
    51.Hannula, S. E. et al. Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. ISME J. 11, 2294–2304 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Koyama, A., Maherali, H. & Antunes, P. M. Plant geographic origin and phylogeny as potential drivers of community structure in root‐inhabiting fungi. J. Ecol. 107, 1720–1736 (2019).Article 

    Google Scholar 
    53.Wemheuer, F., Wemheuer, B., Daniel, R. & Vidal, S. Deciphering bacterial and fungal endophyte communities in leaves of two maple trees with green islands. Sci. Rep. 9, 1–14 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    54.Ma, H. et al. Steering root microbiomes of a commercial horticultural crop with plant-soil feedbacks. Appl. Soil Ecol. 150, 103468 (2020).Article 

    Google Scholar 
    55.Suárez-Moreno, Z. R. et al. Plant-growth promotion and biocontrol properties of three streptomyces spp. isolates to control bacterial rice pathogens. Front. Microbiol. 10, 290 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Treseder, K. K. The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant Soil 371, 1–13 (2013).CAS 
    Article 

    Google Scholar 
    57.Liang, M. et al. Arbuscular mycorrhizal fungi counteract the Janzen-Connell effect of soil pathogens. Ecology 96, 562–574 (2015).PubMed 
    Article 

    Google Scholar 
    58.Teste, F. P., Veneklaas, E. J., Dixon, K. W. & Lambers, H. Complementary plant nutrient-acquisition strategies promote growth of neighbour species. Funct. Ecol. 28, 819–828 (2014).Article 

    Google Scholar 
    59.Mommer, L. et al. Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. New Phytol. 218, 542–553 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Hassani, M. A., Durán, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6, 58 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.De Long, J. R. et al. How plant–soil feedbacks influence the next generation of plants?. Ecol. Res. 36, 32–44 https://doi.org/10.1111/1440-1703.12165 (2021).CAS 
    Article 

    Google Scholar 
    62.Tedersoo, L. et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10, 1–43 (2015).Article 

    Google Scholar 
    63.Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Micro. Ecol. 75, 129–137 (2015).Article 

    Google Scholar 
    66.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Gweon, H. S. et al. PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol. Evol. 6, 973–980 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    70.Paulson, J. N., Stine, O. C., Bravo, H. C. & Pop, M. Robust methods for differential abundance analysis in marker gene surveys. Nat. Methods 10, 1200–1202 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Oksanen, J. et al. Vegan: Ordination Methods, Diversity Analysis And Other Functions For Community And Vegetation Ecologists (Community Ecol Package Vegan, 2013).73.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Phenotypic plasticity and a new small molecule are involved in a fungal-bacterial interaction

    Synergy between S. cerevisiae and R. etli in biofilm formationWhen S. cerevisiae Mat α Σ1278h and R.etli CE3 were grown in minimal medium with low glucose concentrations (0.1%), these species adhered to abiotic surfaces to form biofilms (Fig. 1). Interestingly, R. etli and S. cerevisiae formed a mixed biofilm whose biomass was ~ 3 times greater than that of either single-species biofilm (Fig. 1a). In addition, at 24 h, the number of colony-forming units (CFU)/cm2 of R. etli CE3 in the mixed biofilm was higher than that in the pure biofilm (Supplementary Fig. 1). Confocal laser scanning microscopy of biofilms stained with the Live/Dead Kit (propidium iodide and SYTO9) showed that in the mixed biofilm, the yeast cells formed patches, and the bacterial cells covered most of the surface (Fig. 1b). In contrast, monospecies biofilms of R. etli and S. cerevisiae had lower structural complexity and contained a greater (80%) number of dead cells, and their individual densities were lower than their populations in the mixed biofilm (Fig. 1b). These results suggest that in mixed biofilms, S. cerevisiae promotes bacterial growth.Figure 1The interaction between S. cerevisiae and Rhizobium etli CE3 results in the formation of a structurally complex and more productive biofilm in terms of biomass. (a) Biofilm formation of R. etli CE3 and S. cerevisiae Σ1278h Mat α and biofilm growth over time in minimal dextrose medium. The data are representative of 3 independent experiments +/− the S.D. values. (b) Top view and cross section of confocal micrographs of the S. cerevisiae-R. etli mixed biofilm and the single-species biofilms. Magnification 40 × . The images are representative of 3 independent experiments. Biofilms were developed on glass microscope slides and stained with a LIVE/DEAD viability kit. Red fluorescence indicates dead cells, and live cells are colored green. Images were acquired 24 h after inoculation.Full size image
    S. cerevisiae secretes dicarboxylic acids that promote R. etli growth and biofilm formationWe found that the R. etli colonies that grew close to S. cerevisiae on solid glucose minimal medium were larger than those growing far from yeast colony (Fig. 2).Figure 2Yeast cells produce dicarboxylic acids that promote the growth of R. etli. (a) R. etli growth in coculture with S. cerevisiae BY4741 mutants (aco1Δ, fum1Δ, sdh1Δ and mdh1Δ) that accumulate dicarboxylic acids and a BY4741 strain with blockade of the aerobic respiratory chain (rho-). (b) Test on solid medium showing that S. cerevisiae BY4741 (*) secretes compounds that promote bacterial growth (  >). In contrast, BY4741 rho- cells (ρ), which do not produce dicarboxylic acids, do not promote the growth of R. etli CE3. R. etli CE3 cells were spread over MMD agar, and yeast cells were spotted in the center. (c) Top view of light micrographs of dual-species biofilms; S. cerevisiae (arrowhead) and R. etli (arrow). Biofilms were developed on glass microscope slides and stained with crystal violet. Magnification 20 × . The images are representative of 3 independent experiments. (d) Growth of R. etli strains in coculture with S. cerevisiae BY4741. The growth of the rhizobium strains was estimated at 24 h. R. etli CE3 strains: wild-type (wt), dctA- containing an empty expression plasmid (dctA-) and dctA- containing a plasmid expressing dctA (dctA-/dctA). The data are representative of 3 independent experiments +/− the S.D. values.Full size imageWe used a visual growth promotion assay on solid medium to screen for S. cerevisiae knockout strains (YKO library) that influenced bacterial growth. 159 yeast mutants were unable to promote R. etli CE3 growth (Supplementary Table 3). In general, these mutants were defective in mitochondrial function. Interestingly, we found that 5 strains with mutations in genes coding for enzymes involved in the TCA cycle showed an enhanced ability to promote bacterial growth compared to that of the wild-type strain (Fig. 2a).To determine how the S. cerevisiae mutants may affect the fungal-bacterial interaction, we analyzed factors that may be altered in mutants with mitochondrial function defects and a compromised TCA cycle.We compared the production of TCA intermediates between the wild-type and mutant yeast strains. Mutants defective in mitochondrial function (mef1Δ, gep5Δ, sdh2Δ, ppa2Δ, imp1Δ, cox7Δ, cyc1Δ and cyc2Δ) produced low amounts of tricarboxylic acids (Supplementary Fig. 2a). In contrast, the aconitase mutant (aco1Δ) produced 60% more citrate and succinate; the fumarase mutant (fum1Δ) resulted in fumarate accumulation; the succinate dehydrogenase mutants (sdh1Δ and sdh4Δ) produced 80% more succinate; and the mitochondrial malate dehydrogenase mutant (mdh1Δ) produced 60% more malate and succinate (Supplementary Fig. 2b). These results suggested that the large quantities of tricarboxylic acids secreted by the mutant yeast played a role in promoting bacterial growth in the cocultures.We analyzed the biomass of mixed biofilms formed by yeast cells defective in mitochondrial function (Σ1278B petit mutant). The ability of the wild-type and the petit mutant strains to form a monospecies biofilm was similar (Supplementary Fig. 3). In contrast, the mixed biofilm formed by yeast cells defective in mitochondrial function was significantly lower in biomass than that formed by the wild-type yeast strain (Fig. 2c). Also, Σ1278B petit mutant produced low amounts of tricarboxylic acids (Supplementary Fig. 2a).We next measured the biomass of the mixed biofilm formed by S. cerevisiae and a Rhizobium mutant unable to take up C4-dicarboxylic acids (dctA-). This evaluation revealed that C4-dicarboxylate uptake by R. etli is necessary to form mixed biofilms with high biomass (Fig. 2d).A symbiotic plasmid is involved in the phenotypic plasticity of R. etli.
    The genome of Rhizobium etli CE3 is composed of a chromosome and 6 plasmids (pA, pB, pC, pD, PE and pF)11. To determine whether elements encoded by these replicons can participate in the establishment of commensalism, we evaluated the formation of biofilms by yeast and R. etli strains lacking these replicons12. We found that lack of pA, pB, pC or pF did not affect the ability of bacteria to coexist with yeast (Fig. 3a). Interestingly, a strain cured of plasmids pA-/pD- could not coexist with S. cerevisiae to form a mixed biofilm and obtain the benefits provided by the fungus (Fig. 3a).Figure 3Plasmids pA and pD encode proteins performing functions that are necessary for the coexistence of bacterial cells with yeast. Growth of R. etli strains in biofilms with S. cerevisiae S1278B. (a) Growth in mixed biofilms of R. etli strains lacking the plasmids; pA, pB, pC, pF and in one case of two plasmids, pA-/pD-. The growth of the rhizobia strains was assessed at 24 h. (b) Scheme of the genes contained in a cosmid that partially complements the growth of the pA-/pD- strain in mixed biofilms. Here, 3, 2 and only one gene was amplified to generate the plasmids AD1, AD2 and AD3, respectively, as indicated in the figure. (c) Growth of R. etli strains in mixed biofilms. Strains AD1 and AD2 are R. etli pA-/pD- cells that carried plasmids AD1 and AD2, respectively. The growth of rhizobium strains in mixed biofilms was estimated at 24 h. The data are representative of 3 independent experiments +/− the S.D. values.Full size imageTo determine the genetic elements from the symbiotic plasmid involved in the interaction with yeast, we complemented the R. etli pA-/pD- strain with a cosmid library containing fragments of partial digestion (EcoRI) of the R. etli CE3 genome13. We found that a cosmid containing 9 ORFs from plasmid pD (GenBank: U80928.5) partially restored the ability of R. etli pA-/pD- to form a mixed biofilm (Fig. 3b). This cosmid contains 7 insertion sequences (IS) and a predicted operon encoding a probable peptide pheromone/bacteriocin exporter (RHE_PD00332) and a probable bacteriocin/lantibiotic ABC transporter (RHE_PD00333) (Fig. 3b).The complete operon or only the ABC transporter gene, including its endogenous promoter and terminator regions, was cloned into plasmid pBBR1MCS-3, and the resultant plasmids were named AD1, AD2 and AD32, respectively (Supplementary table 1 and 2). We found that complementation with the complete operon (plasmid AD2) partially restored the ability of R. etli pA-/pD- to form a mixed biofilm with yeast (Fig. 3c). In contrast, complementing with the RHE_PD00332 gene (plasmid AD3) does not restore the phenotype. It is necessary to complement only with the RHE_PD00333 gene to determine if its product is involved in the phenotypic plasticity of R. etli. These results suggest that the ABC transporter gene (RHE_PD00333) is involved in the fungal-bacteria interaction.
    S. cerevisiae produces a small molecule that affects R. etli growthTo determine how S. cerevisiae affects the growth of R. etli pA-/pD- (Fig. 4a), we evaluated the inhibitory activity of methanol extracts of S. cerevisiae culture supernatants.Figure 4S. cerevisiae s1278B produces a small molecule that only affects the growth of R. etli strains that do not harbor the symbiotic plasmid and plasmid A. (a) S. cerevisiae and R. etli strains were inoculated in close proximity onto MMD soft agar. R. etli pA-/pD- grew, forming a swarm far from the yeast colony. (b) Inhibition of R. etli pA-/pD- growth by 5 µg/mL of a purified compound from the yeast supernatant, which we named Sc2A. (c) Proposed molecular structure of Sc2A.Full size imageInterestingly, we found that the methanol extract inhibited R. etli pA-/pD- growth but had no activity against wild-type R. etli (Fig. 4b). We investigated the chemical constituents of the S. cerevisiae culture supernatants. After succesive organic solvent extractions, the methanolic extract was fractionated by HPLC and 8 fractions were obtained. Each fraction was tested for its determine its effect on the growth of R. etli pA-/pD-. Only a fraction with the ability to inhibit the growth of R. etli pA-/pD- was identified. This resulted in ~ 90% pure sophoroside, judging by its appearance as a dominant peak in the mass spectra obtained by Fast Atom Bombardment Mass Spectroscopy (FAB). As a result, a new sophoroside with bacteriostatic activity, named Sc2A, was isolated (Fig. 4c). The structure of Sc2A was elucidated by a combination of extensive spectroscopic analyses, including 2D NMR and HR-MS.Sc2A was isolated as a crystalline powder with a positive optical rotation ([α]D25 + 13.7°, c0.58, H2O). The molecular formula of Sc2A was determined to be C30H50O24 from its positive-mode FAB data (m/z 794.26 [M + H]+), which was consistent with the 13C NMR data. RMN1H (CD3OD, 400 MHz) data for Sc2A: δ 5.1 d (J = 3.6 Hz), 4.4 d (J = 8 Hz), 4.23 dd (J = 9, 4.8 Hz), 3.79 t (J = 10.8, 14.4 Hz), 3.73 m, 3.67 m, 3.639 m, 3.63 dd (J = 8, 9.2 Hz), 3.53 dd (J = 5.6, 5.2 Hz), 3.36 dd (J = 3.6, 4 Hz), 3.31 dd (J = 8, 8 Hz), 3.10 dd (J = 8, 7.6 Hz), 2.77 dd (J = 4.4, 6.8 Hz), 2.61 m, 2.46 m, 2.33 m, 2.12 m. RMN13C-DEPT (CD3OD, 400 MHz) data for Sc2A: δ 181.2 (C), 175.9 (C), 98.1(CH), 93.8 (CH), 78.05 (CH), 78.02 (CH), 76.30 (CH), 74.92 (CH), 73.80 (CH), 73.11 (CH), 71.78 (CH), 71.72 (CH), 64.37 (CH2), 62.87 (CH2),62.72 (CH2), 57.24 (CH), 30.70 (CH2), 26.19 (CH2), 28.21 (CH2).The IR spectrum of Sc2A displayed characteristic absorptions of 3416.34 cm-1 (O–H), 1642.10 (C = O), 1405.44 (C–OH), 1242.93 (C–O–C), 1040.36 (C-H), and 598.48 (O-C-O).Sc2A possesses a sophorose linked by 2,5 hexanedione to another molecule of sophorose (Fig. 4c).Sc2A induces the expression of genes involved in symbiosisExpression from the nifH and fixA promoters was studied in R. etli monocultures and cocultures with yeast by monitoring GUS activity in living cells. Cells were grown on solid PY-D medium for 1 day, and monitoring of GUS expression showed that the nifH promoter was strongly induced when R. etli was grown with yeast in liquid medium and on solid medium (Fig. 5).Figure 5The expression of Rhizobium etli genes involved in symbiosis is induced in cocultures with yeast or by exposure to the small molecule Sc2A. (a) Activity of different R. etli promoters in monoculture (Re) or in coculture with yeast (+ Sc). Cells were cultured for 24 h in 1 ml of PY-D in 1.5-mL tubes. The tubes were kept closed to generate an environment with a low oxygen concentration. (b) Activity of the nifH promoter in R. etli cells grown alone (Re) or in coculture with yeast (+ Sc) on PY-D agar. (c) Effect of Sc2A on the expression of the nodA gene in R. etli cells grown in liquid culture. Cells stimulated with the flavonoid naringenin were included as a positive induction control. The data are representative of 3 independent experiments +/− the S.D. values.Full size imageAt the beginning of the symbiosis, the legume roots exude flavonoids, which induces in R. etli the expression of a group of genes (nod) involved in the synthesis of lipochitooligosaccharides, also called nodulation factors (NFs). Recognition of NFs by the host plant triggers both rhizobial infection and initiation of nodule organogenesis14. NodA protein is involved in N-acylation of the chitooligosaccharide backbone of NFs. Given the participation of nodA in the interaction of R. etli with a eukaryote, we decided to evaluate the expression of this gene in response to exposure to 5 µg/mL of Sc2A (this concentration is similar to that found in cocultures). We found that Sc2A induces the expression of nodA (Fig. 5c). However, the levels of induction of nodA were moderated compared to the values obtained upon naringenin induction (Fig. 5c). More

  • in

    Genetic purging in captive endangered ungulates with extremely low effective population sizes

    We have analyzed the inbreeding-purging process in four captive populations of different ungulate species with effective sizes ranging 4–40 and with available pedigrees as well as survival and productivity records. This allows us to explore the role of inbreeding and purging in determining the evolution of fitness traits in a range of scenarios relevant in the context of conservation.In A. lervia (Ne ≈ 4), purging is expected only for the most severely deleterious alleles (those giving dNe  > 1, which implies d  > 0.25 as, for example, in completely recessive alleles with deleterious homozygous disadvantage s  > 0.5). Thus, it could be that purging has not been detected for this species because such severely deleterious alleles had been purged during the demographic decline in the wild, before the foundation of the captive population. This would be consistent with the low and non-significant inbreeding load estimated in this species. It is also possible that these estimates are non-significant due to the relatively small number of individuals available.G. cuvieri and N. dama have significant initial inbreeding loads that, adding up the direct and maternal components, is about 1.25 in both cases, which is on the order of other estimates published for captive populations (Ralls et al. 1988). Since in both species Ne  > 10, purging should be efficient against less severely deleterious alleles than in A. lervia (d  > 0.1). Purging is detected for both species with very low P values. This result is in agreement with Moreno et al. (2015), who suggested that purging had occurred in G. cuvieri as they found an increased juvenile survival parallel to an increased inbreeding coefficient. The relative contribution of severe and mild deleterious effects to the inbreeding load of populations is under a scientific debate with direct implications in conservation biology (Ralls et al. 2020, Kyriazis et al. 2021, Pérez-Pereira et al. 2021). The large d estimates obtained in our analysis indicate that a substantial fraction of the initial inbreeding load is being purged under modest effective population sizes, implying that such substantial fraction is due to relatively severe deleterious mutations in these two populations. As far as we are aware, these are the first estimates of this purging parameter obtained in managed, non-experimental populations. Previous estimates of d were obtained in D. melanogaster bottlenecked populations, first for egg-to-pupae viability in lines with Ne = 6 or 12 under noncompetitive conditions (d = 0.09, Bersabé and García-Dorado 2013), and second in lines with higher Ne ≈ 40–50 under more competitive conditions, giving a larger estimate of d, of the order of that estimated in these two ungulate endangered species (d ≈ 0.3, López-Cortegano et al. 2016).Regarding G. dorcas, given its larger population size, purging is expected even against alleles with mild recessive component of the deleterious effect (d  > 0.025). However, although a significant (if modest) inbreeding load was estimated, no significant purging was detected. Nevertheless, the number of equivalent complete generations by the end of the pedigree (EqG = 7) was smaller than our proposed minimum number of generations required to detect purging (tm = 10). This suggests that, due to the large size of this population, more generations are needed to detect purging.The results above support the use of tm to get an approximate idea about when a pedigree is too shallow for purging to be detected. Should the number of generations available be larger than tm, IP predictions could additionally be computed to search the d values that can be expected to produce detectable purging. Supplementary Fig. S3 shows that the true number of generations required to detect purging becomes increasingly larger than tm for alleles with smaller d values, as they suffer weaker purging each time they are exposed in homozygosis. The tm approach helps to understand the failure of many studies to detect purging. Such is the case of the extensive meta-analyses on 119 zoo populations by Boakes et al. (2007), where the median Ne value was 22.6 while the median number of generations was t = 3 meaning that, for most species, at least 5 more generations were needed before purging could be detectable. On the contrary, and in agreement with this tm approach, purging was experimentally detected in lines of D. melanogaster with Ne = 43 (i.e., tm ≈ 10) where, after an initial period of inbreeding depression, fitness experienced a substantial recovery beginning between generations 10 and 20 (López-Cortegano et al. 2016).A reason why detecting purging in captive populations is challenging is that a fitness rebound can also be due to adaptation to captive conditions or to environmental effects, such as those derived from improved husbandry (Clifford et al. 2007). In fact, this might have been the case in Speke’s gazelle breeding program, where the observed rebound of fitness was first ascribed to purging (Templeton and Read 1984, 1998), while Kalinowski et al. (2000) suggested that husbandry improvements could also be responsible for these findings. Our estimates of d and δ, however, are based on the association between the fitness trait and purged inbreeding at the individual level (Wi, gi) which, in our data, is mainly expressed within cohorts while average survival showed little variation through time. In addition, the analyses included temporal factors (YOB or POM) that should have removed confounding effects from adaptation to captivity or improved husbandry. Therefore, adaptive processes or time-dependent environmental factors are not expected to have biased our IP estimates.For productivity, the estimates of inbreeding load were high (overall inbreeding load ~5, P value  More

  • in

    Macroecological distributions of gene variants highlight the functional organization of soil microbial systems

    1.Gupta A, Sharma VK. Using the taxon-specific genes for the taxonomic classification of bacterial genomes. BMC Genom. 2015;16:1–15.Article 
    CAS 

    Google Scholar 
    2.Gil R, Silva FJ, Pereto J, Moya A. Determination of the Core of a Minimal Bacterial Gene Set. Microbiol Mol Biol Rev. 2004;68:518–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Mira A, Martín-Cuadrado AB, D’Auria G, Rodríguez-Valera F. The bacterial pan-genome: a new paradigm in microbiology. Int Microbiol. 2010;13:45–57.CAS 
    PubMed 

    Google Scholar 
    4.Escalas A, Troussellier M, Yuan T, Bouvier T, Bouvier C, Mouchet MA, et al. Functional diversity and redundancy across fish gut, sediment and water bacterial communities. Environ Microbiol. 2017;19:3268–82.PubMed 
    Article 

    Google Scholar 
    5.Jurburg SD, Salles JF. Functional Redundancy and Ecosystem Function — The Soil Microbiota as a Case Study. In: Lo Y-H, Blanco JA, Shovonlal R, editors. Biodiversity in Ecosystems—Linking Structure and Function. BoD–Books on Demand; 2015. p. 29–49.6.Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.PubMed 
    Article 

    Google Scholar 
    7.Polz MF, Hunt DE, Preheim SP, Weinreich DM. Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes. Philos Trans R Soc Lond B Biol Sci. 2006;361:2009–21.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Young JPW. Bacteria Are Smartphones and Mobile Genes Are Apps. Trends Microbiol. 2016;24:931–2.CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Boon E, Meehan CJ, Whidden C, Wong DHJ, Langille MGI, Beiko RG. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev. 2014;38:90–118.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Escalas A, Hale L, Voordeckers JW, Yang Y, Firestone MK, Alvarez-Cohen L, et al. Microbial Functional Diversity: from Concepts to Applications. Ecol Evol. 2019;5:12000–16.Article 

    Google Scholar 
    11.Barberán A, Casamayor EO, Fierer N. The microbial contribution to macroecology. Front Microbiol. 2014;5:1–8.Article 

    Google Scholar 
    12.Shade A, Dunn RR, Blowes SA, Keil P, Bohannan BJM, Herrmann M, et al. Macroecology to Unite All Life, Large and Small. Trends Ecol Evol. 2018;33:731–44.PubMed 
    Article 

    Google Scholar 
    13.Chase AB, Martiny JB. The importance of resolving biogeographic patterns of microbial microdiversity. Microbiol Aust. 2018;1:5–8.Article 

    Google Scholar 
    14.Shoemaker WR, Locey KJ, Lennon JT. A macroecological theory of microbial biodiversity. Nat Ecol Evol. 2017;1:e1450v4.Article 

    Google Scholar 
    15.Bachy C, Worden AZ. Microbial ecology: finding structure in the rare biosphere. Curr Biol. 2014;24:R315–R317.16.Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat Rev Microbiol. 2015;13:217–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Pedrós-Alió C. The Rare Bacterial Biosphere. Ann Rev Mar Sci. 2012;4:449–66.PubMed 
    Article 

    Google Scholar 
    18.Rabinowitz D. Seven forms of rarity and their frequency in the flora of the British Isles. In: Soulé ME, editors. Conservation biology: the science of scarcity and diversity. Sinauer Associates; Massachusetts; 1986.19.McGeoch MA, Gaston KJ. Occupancy frequency distributions: patterns, artefacts and mechanisms. Biol Rev Camb Philos Soc. 2002;77:311–31.PubMed 
    Article 

    Google Scholar 
    20.Blackburn TM, Cassey P, Gaston KJ. Variations on a theme: Sources of heterogeneity in the form of the interspecific relationship between abundance and distribution. J Anim Ecol. 2006;75:1426–39.PubMed 
    Article 

    Google Scholar 
    21.Buckley HL, Freckleton RP. Understanding the role of species dynamics in abundance-occupancy relationships. J Ecol. 2010;98:645–58.Article 

    Google Scholar 
    22.Gaston KJ, Blackburn TM, Greenwood JJD, Gregory RD, Quinn RM, Lawton JH. Abundance-occupancy relationships. J Appl Ecol. 2000;37:39–59.Article 

    Google Scholar 
    23.Miranda LE, Killgore KJ. Abundance–occupancy patterns in a riverine fish assemblage. Freshw Biol. 2019;64:2221–33.Article 

    Google Scholar 
    24.Suhonen J, Jokimäki J. Temporally stable species occupancy frequency distribution and abundance-occupancy relationship patterns in urban wintering bird assemblages. Front Ecol Evol. 2019;7:129.Article 

    Google Scholar 
    25.Webb TJ, Barry JP, McClain CR. Abundance–occupancy relationships in deep sea wood fall communities. Ecography. 2017;40:1339–47.Article 

    Google Scholar 
    26.Amend AS, Oliver TA, Amaral-Zettler LA, Boetius A, Fuhrman JA, Horner-Devine MC, et al. Macroecological patterns of marine bacteria on a global scale. J Biogeogr. 2013;40:800–11.Article 

    Google Scholar 
    27.Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.PubMed 
    Article 
    CAS 

    Google Scholar 
    28.Barnes CJ, Burns CA, van der Gast CJ, McNamara NP, Bending GD. Spatio-temporal variation of core and satellite arbuscular mycorrhizal fungus communities in Miscanthus giganteus. Front Microbiol. 2016;7:1–12.
    Google Scholar 
    29.Fillol M, Auguet JC, Casamayor EO, Borrego CM. Insights in the ecology and evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME J. 2016;10:665–77.PubMed 
    Article 

    Google Scholar 
    30.Jeanbille M, Gury J, Duran R, Tronczynski J, Agogué H, Saïd OBen, et al. Response of core microbial consortia to chronic hydrocarbon contaminations in coastal sediment habitats. Front Microbiol. 2016;7:1–13.
    Google Scholar 
    31.Lindh MV, Sjöstedt J, Ekstam B, Casini M, Lundin D, Hugerth LW, et al. Metapopulation theory identifies biogeographical patterns among core and satellite marine bacteria scaling from tens to thousands of kilometers. Environ Microbiol. 2017;19:1222–36.CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Logares R, Audic SS, Bass D, Bittner L, Boutte C, Christen R, et al. Patterns of Rare and Abundant Marine Microbial Eukaryotes. Curr Biol. 2014;24:813–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Michelland R, Thioulouse J, Kyselková M, Grundmann GL. Bacterial Community Structure at the Microscale in Two Different Soils. Micro Ecol. 2016;72:717–24.CAS 
    Article 

    Google Scholar 
    34.Unterseher M, Jumpponen A, Öpik M, Tedersoo L, Moora M, Dormann CF, et al. Species abundance distributions and richness estimations in fungal metagenomics – Lessons learned from community ecology. Mol Ecol. 2011;20:275–85.PubMed 
    Article 

    Google Scholar 
    35.Grime JP. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J Ecol. 1998;86:902–10.Article 

    Google Scholar 
    36.Grime JP. Dominant and subordinate components of plant communities: implications for succession, sta- bility and diversity. In: Gray AJ, Crawley MJ, editors. Colonization, Succession and Stability. Oxford:Blackwell Scientific Publications; 1984. p. 413–28.37.Hanski I. Dynamics of Regional Distribution: the Core and Satellite Species Hypothesis. Oikos. 1982;38:210.Article 

    Google Scholar 
    38.Magurran AE, Henderson PA. Explaining the excess of rare species in natural species abundance distributions. Nature. 2003;422:714–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Newton R, Shade A. Lifestyles of rarity: understanding heterotrophic strategies to inform the ecology of the microbial rare biosphere. Aquat Micro Ecol. 2016;78:51–63.Article 

    Google Scholar 
    40.Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. MBio. 2014;5:e01371–14.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Shade A, Gilbert JA. Temporal patterns of rarity provide a more complete view of microbial diversity. Trends Microbiol. 2015;23:335–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Koch AL. Oligotrophs versus copiotrophs. BioEssays. 2001;23:657–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Cobo-Simón M, Tamames J. Relating genomic characteristics to environmental preferences and ubiquity in different microbial taxa. BMC Genom. 2017;18:1–11.Article 
    CAS 

    Google Scholar 
    44.Tu Q, Yu H, He Z, Deng Y, Wu L, Van Nostrand JD, et al. GeoChip 4: a functional gene-array-based high-throughput environmental technology for microbial community analysis. Mol Ecol Resour. 2014;14:914–28.CAS 
    PubMed 

    Google Scholar 
    45.Xu X, Wang N, Lipson D, Sinsabaugh R, Schimel J, He L, et al. Microbial macroecology: in search of mechanisms governing microbial biogeographic patterns. Glob Ecol Biogeogr. 2020;29:1870–86.Article 

    Google Scholar 
    46.Reich PB, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, et al. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature. 2001;410:809–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Field CB, Chapin FS, Chiariello NK, Holland EA, Mooney HA. The Jasper Ridge CO2 Experiment: Design and Motivation. In: Mooney HA, Koch GW, (Editors). Carbon Dioxide and Terrestrial Ecosystems. San Diego, California: Academic Press; 1996. p. 121–45.Chapter 

    Google Scholar 
    48.Luo C, Rodriguez-R LM, Johnston ER, Wu L, Cheng L, Xue K, et al. Soil microbial community responses to a decade of warming as revealed by comparative metagenomics. Appl Environ Microbiol. 2014;80:1777–86.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Mauritz M, Bracho R, Celis G, Hutchings J, Natali SM, Pegoraro E, et al. Nonlinear CO2 flux response to 7 years of experimentally induced permafrost thaw. Glob Chang. Biol. 2017;23:3646–66.
    Google Scholar 
    50.Natali SM, Schuur EAG, Mauritz M, Schade JD, Celis G, Crummer KG, et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J Geophys Res Biogeosci. 2015;120:525–37.CAS 
    Article 

    Google Scholar 
    51.Yang Y, Gao Y, Wang S, Xu D, Yu H, Wu L, et al. The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME J. 2014;8:430–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Yang Y, Wu L, Lin Q, Yuan M, Xu D, Yu H, et al. Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Glob Chang Biol. 2013;19:637–48.PubMed 
    Article 

    Google Scholar 
    53.Zhang Y, Cong J, Lu H, Li G, Xue Y, Deng Y, et al. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China. Micro Biotechnol. 2015;8:739–46.Article 

    Google Scholar 
    54.Zhang Y, Cong J, Lu H, Deng Y, Liu X, Zhou J, et al. Soil bacterial endemism and potential functional redundancy in natural broadleaf forest along a latitudinal gradient. Sci Rep. 2016;6:1–8.Article 
    CAS 

    Google Scholar 
    55.Paula FS, Rodrigues JLM, Zhou J, Wu L, Mueller RC, Mirza BS, et al. Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Mol Ecol. 2014;23:2988–99.PubMed 
    Article 

    Google Scholar 
    56.Rodrigues JLM, Pellizari VH, Mueller R, Baek K, Jesus EDC, Paula FS, et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc Natl Acad Sci USA. 2013;110:988–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.He Z, Deng Y, Van Nostrand JD, Tu QC, Xu MY, Hemme CL, et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. Isme J. 2010;4:1167–79.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, et al. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 2007;1:67–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Li X, He Z, Zhou J. Selection of optimal oligonucleotide probes for microarrays using multiple criteria, global alignment and parameter estimation. Nucleic Acids Res. 2005;33:6114–23.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Tu Q, He Z, Deng Y, Zhou J. Strain/species-specific probe design for microbial identification microarrays. Appl Environ Microbiol. 2013;79:5085–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Wu L, Liu X, Schadt CW, Zhou J. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Appl Environ Microbiol. 2006;72:4931–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Wu L, Liu X, Schadt CW, Zhou J. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Applied and Environmental Microbiology. 2006;72:4931–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, et al. Package ‘vegan’. Community ecology package, version. 2013;2:1–295.
    Google Scholar 
    64.Anderson MJ, Bueno AS. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 
    65.Crow EL, Patil GP. Applications in Ecology. In: Cros E, Shimizu K, editors. Lognormal Distributions. New York and Basel:Marcel Dekker; 1988. p. 303–30.66.Ser-Giacomi E, Zinger L, Malviya S, De Vargas C, Karsenti E, Bowler C, et al. Ubiquitous abundance distribution of non-dominant plankton across the global ocean. Nat Ecol Evol. 2018;2:1243–9.PubMed 
    Article 

    Google Scholar 
    67.Wu L, Ning D, Zhang B, Li Y, Zhang P, Shan X, et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat Microbiol. 2019;4:1183–95.CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci. 2016;113:5970–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Louca S, Mazel F, Doebeli M, Parfrey LW. A census-based estimate of Earth’s bacterial and archaeal diversity. PLoS Biol. 2019;2:1–30.
    Google Scholar 
    70.Tokeshi M. Dynamics of distribution in animal communities: theory and analysis. Res Popul Ecol (Kyoto). 1992;34:249–73.Article 

    Google Scholar 
    71.Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberød AK, Schmidt TSB, et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome. 2020;8:55.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Azovsky A, Mazei Y. Do microbes have macroecology? Large-scale patterns in the diversity and distribution of marine benthic ciliates. Glob Ecol Biogeogr. 2013;22:163–72.Article 

    Google Scholar 
    73.Noguez AM, Arita HT, Escalante AE, Forney LJ, García-Oliva F, Souza V. Microbial macroecology: highly structured prokaryotic soil assemblages in a tropical deciduous forest. Glob Ecol Biogeogr. 2005;14:241–8.Article 

    Google Scholar 
    74.Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Papp L, Izsák J, Papp L, Izsak J. Bimodality in Occurrence Classes: a Direct Consequence of Lognormal or Logarithmic Series Distribution of Abundances- A Numerical Experimentation. Oikos. 1997;79:191.Article 

    Google Scholar 
    76.Verberk WCEP, van der Velde G, Esselink H. Explaining abundance-occupancy relationships in specialists and generalists: A case study on aquatic macroinvertebrates in standing waters. J Anim Ecol. 2010;79:589–601.PubMed 
    Article 

    Google Scholar 
    77.Liao J, Cao X, Zhao L, Wang J, Gao Z, Wang MC, et al. The importance of neutral and niche processes for bacterial community assembly differs between habitat generalists and specialists. FEMS Microbiol Ecol. 2016;92:fiw174.PubMed 
    Article 
    CAS 

    Google Scholar 
    78.Slatyer RA, Hirst M, Sexton JP. Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett. 2013;16:1104–14.PubMed 
    Article 

    Google Scholar 
    79.Fierer N, Barberán A, Laughlin DC. Seeing the forest for the genes: using metagenomics to infer the aggregated traits of microbial communities. Front Microbiol. 2014;5:1–6.Article 

    Google Scholar 
    80.Rivett DW, Bell T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat Microbiol. 2018;3:767–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Guillaumaud N, et al. Decline of soil microbial diversity does not influence the resistance and resilience of key soil microbial functional groups following a model disturbance. Environ Microbiol. 2007;9:2211–9.PubMed 
    Article 

    Google Scholar 
    82.Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, et al. Maintenance of soil functioning following erosion of microbial diversity. Environ Microbiol. 2006;8:2162–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Mendes LW, Tsai SM, Navarrete AA, de Hollander M, van Veen JA, Kuramae EE. Soil-Borne microbiome: linking diversity to function. Micro Ecol. 2015;70:255–65.CAS 
    Article 

    Google Scholar 
    84.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome – SM. Science. 2015;348:1261359–1261359.PubMed 
    Article 
    CAS 

    Google Scholar 
    85.Wohl DL, Arora S, Gladstone JR. Functional redundancy supports biodiversity and ecosystem function in a cloased and constant environment. Ecology. 2008;85:1534–40.Article 

    Google Scholar 
    86.Kurm V, Geisen S, Gera Hol WH. A low proportion of rare bacterial taxa responds to abiotic changes compared with dominant taxa. Environ Microbiol. 2019;21:750–8.PubMed 
    Article 

    Google Scholar 
    87.Bergkessel M, Basta DW, Newman DK. The physiology of growth arrest: Uniting molecular and environmental microbiology. Nat Rev Microbiol. 2016;14:549–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Hofer U. Life in the slow lane. Nat Rev Microbiol. 2019;26:266–7.Article 
    CAS 

    Google Scholar 
    89.Baho DL, Peter H, Tranvik LJ. Resistance and resilience of microbial communities – Temporal and spatial insurance against perturbations. Environ Microbiol. 2012;9:2283–92.Article 

    Google Scholar 
    90.Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 2017;11:853–62.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Aanderud ZT, Jones SE, Fierer N, Lennon JT. Resuscitation of the rare biosphere contributes to pulses of ecosystem activity. Front Microbiol. 2015;6:1–11.Article 

    Google Scholar 
    92.Lawson CE, Strachan BJ, Hanson NW, Hahn AS, Hall ER, Rabinowitz B, et al. Rare taxa have potential to make metabolic contributions in enhanced biological phosphorus removal ecosystems. Environ Microbiol. 2015;17:4979–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    93.Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio. 2015;6:e02288–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Zhou J, Wu L, Deng Y, Zhi X, Jiang YH, Tu Q, et al. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J. 2011;5:1303–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Shi Z, Yin H, Van Nostrand JD, Voordeckers JW, Tu Q, Deng Y, et al. Functional Gene Array-Based Ultrasensitive and Quantitative Detection of Microbial Populations in Complex Communities. mSystems. 2019;4:99–117.
    Google Scholar  More