Upside down sulphate dynamics in a saline inland lake
Canfield, D. E.; Kristensen, E.; Thamdrup, B. The Sulfur Cycle. In Advances in Marine Biology; Aquatic Geomicrobiology; Academic Press, 2005; Vol. 48, pp 313–381. https://doi.org/10.1016/S0065-2881(05)48009-8.Jørgensen, B. B., Findlay, A. J. & Pellerin, A. The biogeochemical sulfur cycle of marine sediments. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00849 (2019).Article
PubMed
PubMed Central
Google Scholar
Thamdrup, B., Fossing, H. & Jørgensen, B. B. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay. Denmark. Geochim. Cosmochim. Acta 58(23), 5115–5129. https://doi.org/10.1016/0016-7037(94)90298-4 (1994).Article
ADS
CAS
Google Scholar
Holmer, M. & Storkholm, P. Sulphate reduction and sulphur cycling in lake sediments: A review. Freshw. Biol. 46(4), 431–451. https://doi.org/10.1046/j.1365-2427.2001.00687.x (2001).Article
CAS
Google Scholar
Koschorreck, M. Microbial sulphate reduction at a low PH. FEMS Microbiol. Ecol. 64(3), 329–342. https://doi.org/10.1111/j.1574-6941.2008.00482.x (2008).Article
CAS
PubMed
Google Scholar
Kwon, M. J. et al. Impact of organic carbon electron donors on microbial community development under iron- and sulfate-reducing conditions. PLoS ONE 11(1), e0146689. https://doi.org/10.1371/journal.pone.0146689 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
Fründ, C. & Cohen, Y. Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl. Environ. Microbiol. 58(1), 70–77. https://doi.org/10.1128/aem.58.1.70-77.1992 (1992).
Article
ADS
PubMed
PubMed Central
Google Scholar
Marschall, C., Frenzel, P. & Cypionka, H. Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch. Microbiol. 159(2), 168–173. https://doi.org/10.1007/BF00250278 (1993).Article
CAS
Google Scholar
Borzenko, S. V., Kolpakova, M. N., Shvartsev, S. L. & Isupov, V. P. Biogeochemical conversion of sulfur species in saline lakes of steppe Altai. J. Oceanol. Limnol. 36(3), 676–686. https://doi.org/10.1007/s00343-018-6293-8 (2018).Article
ADS
CAS
Google Scholar
Häusler, S. et al. Sulfate reduction and sulfide oxidation in extremely steep salinity gradients formed by freshwater springs emerging into the dead sea. FEMS Microbiol Ecol 90(3), 956–969. https://doi.org/10.1111/1574-6941.12449 (2014).Article
CAS
PubMed
Google Scholar
Komor, S. C. Bidirectional sulfate diffusion in saline-lake sediments: Evidence from Devils Lake, Northeast North Dakota. Geology 20(4), 319–322. https://doi.org/10.1130/0091-7613(1992)020%3c0319:BSDISL%3e2.3.CO;2 (1992).Article
ADS
CAS
Google Scholar
Valiente, N. et al. Tracing sulfate recycling in the hypersaline Pétrola Lake (SE Spain): A combined isotopic and microbiological approach. Chem. Geol. 473, 74–89. https://doi.org/10.1016/j.chemgeo.2017.10.024 (2017).Article
ADS
CAS
Google Scholar
Moreira, N., Walter, L., Vasconcelos, C., McKenzie, J. & McCall, P. Role of sulfide oxidation in dolomitization: Sediment and pore-water geochemistry of a modern hypersaline lagoon system. Geology 32(8), 701–704. https://doi.org/10.1130/G20353.1 (2004).Article
ADS
CAS
Google Scholar
Jolly, I. D., McEwan, K. L. & Holland, K. L. A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology https://doi.org/10.1002/eco.6 (2008).Article
Google Scholar
Williams, W. D. Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. Environ. Conserv. 29(2), 154–167. https://doi.org/10.1017/S0376892902000103 (2002).Article
Google Scholar
CHE. Confederación Hidrográfica del Ebro. https://www.chebro.es/ (Accessed 1 June 2022).Comín, F. A., Rodó, X. & Comín, P. Lake Gallocanta (Aragon, NE Spain), a paradigm of fluctuations at different scales of time. Limnetica 8(1), 79–86 (1992).Article
Google Scholar
Luna, E.; Latorre, B.; Castañeda, C. Rainfall and the Presence of Water in Gallocanta Lake. http://digital.csic.es/handle/10261/117417. (2014).San Roman Saldaña, J.; García Vera, M. Á.; Blasco Herguedas, Ó.; Coloma López, P. Toma de Datos, Modelación y Gestión Del Agua Subterránea En La Cuenca Endorréica de La Laguna de Gallocanta (España); Alicante, Spain, 2005; pp 551–557.Orellana-Macías, J. M., Merchán, D. & Causapé, J. Evolution and assessment of a nitrate vulnerable zone over 20 years: Gallocanta groundwater body (Spain). Hydrogeol. J. https://doi.org/10.1007/s10040-020-02184-0 (2020).Article
Google Scholar
Gracia, F. J., Gutierrez, F. & Gutierrez, M. Origin and evolution of the Gallocanta Polije (Iberian range, NE Spain). Z. Geomorph. N. F. 46(2), 245–262 (2002).Article
Google Scholar
García-Vera, M.A.; San Román Saldaña, J.; Blasco Herguedas, O.; Coloma López, P. Hidrogeología de La Laguna de GalIocanta e Implicaciones Ambientales. In M.A. Casterad and C. Castañeda (Eds.). La Laguna de Gallocanta: Medio Natural, Conservación y Teledetección. Memorias de la Real Sociedad Española de Historia Natural. 2009, 7, 79–104.Comín, F. A., Juli, R., Comín, P. & Plana, F. Hydrogeochemistry of Lake Gallocanta (Aragón, NE Spain). Hydrobiologia 197, 51–66. https://doi.org/10.1007/bf00026938 (1990).Article
Google Scholar
Mayayo, M. J. et al. Sedimentological evolution of the holocene Gallocanta Lake, NE Spain. Limnol. Spain Tribute Kerry Kelts 14, 359–384 (2003).
Google Scholar
Pérez, A. et al. Sedimentary facies distribution and genesis of a recent carbonate-rich Saline Lake: Gallocanta Lake, Iberian Chain, NE Spain. Sediment. Geol. 148(1–2), 185–202. https://doi.org/10.1016/S0037-0738(01)00217-2 (2002).Article
ADS
Google Scholar
Corzo, A. et al. Carbonate mineralogy along a biogeochemical gradient in recent lacustrine sediments of Gallocanta Lake (Spain). Geomicrobiol. J. 22(6), 283–298. https://doi.org/10.1080/01490450500183654 (2005).Article
CAS
Google Scholar
Castañeda, C., Gracia, F. J., Luna, E. & Rodríguez-Ochoa, R. Edaphic and geomorphic evidences of water level fluctuations in Gallocanta Lake, NE Spain. Geoderma 239–240, 265–279. https://doi.org/10.1016/j.geoderma.2014.11.005 (2015).Article
ADS
CAS
Google Scholar
Luzón, A. et al. Holocene environmental changes in the Gallocanta lacustrine basin, Iberian range, NE Spain. Holocene 17(5), 649–663. https://doi.org/10.1177/0959683607078994 (2007).Article
ADS
Google Scholar
Schütt, B. Reconstruction of holocene paleoenvironments in the endorheic basin of laguna de Gallocanta, Central Spain by investigation of mineralogical and geochemical characters from lacustrine sediments. J. Paleolimnol. 20, 217. https://doi.org/10.1023/A:1007924000636 (1998).Article
ADS
Google Scholar
Castañeda, C., Luna, E. & Rabenhorst, M. Reducing conditions in soil of Gallocanta Lake. Northeast Spain. Eur. J. Soil Sci. 68(2), 249–258. https://doi.org/10.1111/ejss.12407 (2017).Article
CAS
Google Scholar
Castañeda, C., Gracia, F. J., Conesa, J. A. & Latorre, B. Geomorphological control of habitat distribution in an intermittent shallow Saline Lake, Gallocanta Lake. NE Spain. Sci. Total Environ. 726, 138601. https://doi.org/10.1016/j.scitotenv.2020.138601 (2020).Article
ADS
CAS
PubMed
Google Scholar
Comín, F. A., Rodó, X. & Menéndez, M. Spatial heterogeneity of macrophytes in lake Gallocanta (Aragón, NE Spain). Hydrobiologia 267(1–3), 169–178. https://doi.org/10.1007/BF00018799 (1993).Article
Google Scholar
Castro, O. D. et al. A Contribution to the characterization of ruppia drepanensis (ruppiaceae), a key species of threatened mediterranean Wetlands. Ann. Mo. Bot. Gard. 106, 1–9. https://doi.org/10.3417/2020520 (2021).Article
Google Scholar
Alonso López, J. A., Alonso López, J. C., Cantos, F. J. & Bautista, L. M. Spring crane grus grus migration through Gallocanta, Spain. II. Timing and pattern of daily departures. Ardea 78, 379–388 (1990).
Google Scholar
Alonso López, J. C., Alonso López, J. A., Cantos, F. J. & Bautista, L. M. Spring crane grus grus migration through Gallocanta, Spain. I. Daily Variations in Migration Volume. Ardea 78, 365–378 (1990).
Google Scholar
Orellana-Macías, J. M., Bautista, L. M., Merchán, D., Causapé, J. & Alonso, J. C. Shifts in crane migration phenology associated with climate change in southwestern Europe. Avian Conserv. Ecol. 15(1), 1–13. https://doi.org/10.5751/ACE-01565-150116 (2020).Article
Google Scholar
Luzón, A., Mayayo, M. J. & Pérez, A. Stable isotope characterisation of co-existing carbonates from the holocene Gallocanta Lake (NE Spain): Palaeolimnological implications. Int. J. Earth Sci. 98(5), 1129–1150. https://doi.org/10.1007/s00531-008-0308-1 (2009).Article
CAS
Google Scholar
Accoe, F. et al. Evolution of the Δ13C signature related to total carbon contents and carbon decomposition rate constants in a soil profile under grassland. Rapid Commun. Mass Spectrom. 16(23), 2184–2189. https://doi.org/10.1002/rcm.767 (2002).Article
ADS
CAS
PubMed
Google Scholar
Menéndez-Serra, M., Triadó-Margarit, X., Castañeda, C., Herrero, J. & Casamayor, E. O. Microbial composition, potential functional roles and genetic novelty in gypsum-rich and hypersaline soils of Monegros and Gallocanta (Spain). Sci. Total Environ. 650(September), 343–353. https://doi.org/10.1016/j.scitotenv.2018.09.050 (2019).Article
ADS
CAS
PubMed
Google Scholar
Kendall, C. & McDonnell, J. J. Isotope Tracers in Catchment Hydrology 1st edn. (Elsevier, 1999).
Google Scholar
Mayer, B., Fritz, P., Prietzel, J. & Krouse, H. R. The use of stable sulfur and oxygen isotope ratios for interpreting the mobility of sulfate in aerobic forest soils. Appl. Geochem. 10(2), 161–173. https://doi.org/10.1016/0883-2927(94)00054-A (1995).Article
ADS
CAS
Google Scholar
Otero, N., Canals, À. & Soler, A. Using dual-isotope data to trace the origin and processes of dissolved sulphate: A case study in calders stream (Llobregat Basin, Spain). Aquat. Geochem. 13(2), 109–126. https://doi.org/10.1007/s10498-007-9010-3 (2007).Article
CAS
Google Scholar
Canfield, D. E. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim. Cosmochim. Acta 65(7), 1117–1124. https://doi.org/10.1016/S0016-7037(00)00584-6 (2001).Article
ADS
CAS
Google Scholar
Canfield, D. E. Biogeochemistry of sulfur isotopes. Rev. Mineral. Geochem. 43(1), 607–636. https://doi.org/10.2138/gsrmg.43.1.607 (2001).Article
CAS
Google Scholar
Antler, G., Turchyn, A. V., Ono, S., Sivan, O. & Bosak, T. Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction. Geochim. Cosmochim. Acta 203, 364–380. https://doi.org/10.1016/j.gca.2017.01.015 (2017).Article
ADS
CAS
Google Scholar
Kaplan, I. R. & Rittenberg, S. C. Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol. 34(2), 195–212. https://doi.org/10.1099/00221287-34-2-195 (1964).Article
CAS
PubMed
Google Scholar
Mangalo, M., Meckenstock, R. U., Stichler, W. & Einsiedl, F. Stable isotope fractionation during bacterial sulfate reduction is controlled by reoxidation of intermediates. Geochim. Cosmochim. Acta 71(17), 4161–4171. https://doi.org/10.1016/j.gca.2007.06.058 (2007).Article
ADS
CAS
Google Scholar
Strebel, O., Böttcher, J. & Fritz, P. Use of isotope fractionation of sulfate-sulfur and sulfate-oxygen to assess bacterial desulfurication in a sandy aquifer. J. Hydrol. 121(1–4), 155–172. https://doi.org/10.1016/0022-1694(90)90230-U (1990).Article
ADS
CAS
Google Scholar
Sim, M. S., Bosak, T. & Ono, S. Large sulfur isotope fractionation does not require disproportionation. Science 333(6038), 74–77. https://doi.org/10.1126/science.1205103 (2011).Article
ADS
CAS
PubMed
Google Scholar
Leavitt, W. D., Halevy, I., Bradley, A. S. & Johnston, D. T. Influence of sulfate reduction rates on the phanerozoic sulfur isotope record. Proc. Natl. Acad. Sci. 110(28), 11244–11249. https://doi.org/10.1073/pnas.1218874110 (2013).Article
ADS
PubMed
PubMed Central
Google Scholar
Utrilla, R., Pierre, C., Orti, F. & Pueyo, J. J. Oxygen and sulphur isotope compositions as indicators of the origin of mesozoic and cenozoic evaporites from Spain. Chem. Geol. 102(1), 229–244. https://doi.org/10.1016/0009-2541(92)90158-2 (1992).Article
ADS
CAS
Google Scholar
Driessche, A. E. S. V., Canals, A., Ossorio, M., Reyes, R. C. & García-Ruiz, J. M. Unraveling the sulfate sources of (Giant) gypsum crystals using gypsum isotope fractionation factors. J. Geol. https://doi.org/10.1086/684832 (2016).Article
Google Scholar
Wardlaw, G. D. & Valentine, D. L. Evidence for salt diffusion from sediments contributing to increasing salinity in the Salton sea, California. Hydrobiologia 533(1), 77–85. https://doi.org/10.1007/s10750-004-2395-8 (2005).Article
CAS
Google Scholar
Bak, F. & Pfennig, N. Microbial sulfate reduction in littoral sediment of lake constance. FEMS Microbiol. Lett. 85(1), 31–42. https://doi.org/10.1111/j.1574-6968.1991.tb04695.x (1991).Article
CAS
Google Scholar
Dogramaci, S. S., Herczeg, A. L., Schiff, S. L. & Bone, Y. Controls on Δ34S and Δ18O of dissolved sulfate in aquifers of the murray basin, Australia and their use as indicators of flow processes. Appl. Geochem. 16(4), 475–488. https://doi.org/10.1016/S0883-2927(00)00052-4 (2001).Article
ADS
CAS
Google Scholar
Rodier. L’analyse de l’eau, eaux naturelles, eaux résiduaires, eau de mer; Dunod, 1976.Romain, T. Tester Les Isotopes Stables de l’azote Des Matières Organiques Fossiles Terrestres Comme Marqueur Paléoclimatique Sur Des Séries Pré-Quaternaires, Université Pierre et Marie Curie – Paris VI, 2015. https://tel.archives-ouvertes.fr/tel-01408071. More