Dynamics in C, N, and P stoichiometry and microbial biomass following soil depth and vegetation types in low mountain and hill region of China
1.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 162–1627. https://doi.org/10.1126/science.1097396 (2004).CAS
Article
Google Scholar
2.Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676. https://doi.org/10.1038/nature12670 (2013).ADS
CAS
Article
PubMed
Google Scholar
3.Jiao, F., Shi, X. R., Han, F. P. & Yuan, Z. Y. Increasing aridity, temperature and soil pH induce soil C–N–P imbalance in grasslands. Sci. Rep. 6, 19601–19609. https://doi.org/10.1038/srep19601 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
4.Cleveland, C. C. & Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfifield ratio” for the microbial biomass?. Biogeochemistry 85, 235–252. https://doi.org/10.2307/20456544 (2007).Article
Google Scholar
5.Wang, X. G. et al. Changes in soil C:N: P stoichiometry along an aridity gradient in drylands of northern China. Geoderma 361, 114087–114094. https://doi.org/10.1016/j.geoderma.2019.114087 (2019).ADS
CAS
Article
Google Scholar
6.Zhao, Z., Zhao, Z., Fu, B., Wang, J. G. & Tang, W. Characteristics of soil organic carbon fractions under different land use patterns in a tropical area. J. Soils Sediments 21, 1–9. https://doi.org/10.1007/s11368-020-02809-7 (2021).CAS
Article
Google Scholar
7.Wang, Z. C., Liu, S. S., Huang, C., Liu, Y. Y. & Bu, Z. J. Impact of land use change on profile distributions of organic carbon fractions in peat and mineral soils in Northeast China. CATENA 152, 1–8. https://doi.org/10.1016/j.catena.2016.12.022 (2017).CAS
Article
Google Scholar
8.Saha, D., Kukal, S. S. & Bawa, S. S. Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded Shiwaliks Hills of Lower Himalayas. Land Degrad. Dev. 25, 407–416. https://doi.org/10.1002/ldr.2151 (2014).Article
Google Scholar
9.Tan, W. F. et al. Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. CATENA 121, 22–30. https://doi.org/10.1016/j.catena.2014.04.014 (2014).CAS
Article
Google Scholar
10.Finzi, A. C. et al. Responses and feedbacks of coupled biogeochemical cycles to climate change: Examples from terrestrial ecosystems. Front. Ecol. Environ. 9, 61–67. https://doi.org/10.1890/100001 (2011).Article
Google Scholar
11.Oost, K. V. et al. The impact of agricultural soil erosion on the global carbon cycle. Science 318, 626–629. https://doi.org/10.1126/science.1145724 (2007).ADS
CAS
Article
PubMed
Google Scholar
12.Assefa, D. et al. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. CATENA 153, 89–99. https://doi.org/10.1016/j.catena.2017.02.003 (2017).CAS
Article
Google Scholar
13.Kong, A. Y., Six, J., Bryant, D. C., Denison, R. F. & Van Kessel, C. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci. Soc. Am. J. 69, 1078–1085. https://doi.org/10.2136/sssaj2004.0215 (2005).ADS
CAS
Article
Google Scholar
14.Dieleman, W. I. J., Venter, M., Ramachandra, A., Krockenberger, A. K. & Bird, M. I. Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma 204–205, 59–67. https://doi.org/10.1016/j.geoderma.2013.04.005 (2013).ADS
CAS
Article
Google Scholar
15.Zhang, K., Su, Y. Z. & Yang, R. Variation of soil organic carbon, nitrogen, and phosphorus stoichiometry and biogeographic factors across the desert ecosystem of Hexi Corridor, northwestern China. J. Soils Sediments 19, 49–57. https://doi.org/10.1007/s11368-018-2007-2 (2019).CAS
Article
Google Scholar
16.Jobbagy, E. E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436. https://doi.org/10.2307/2641104 (2000).Article
Google Scholar
17.Fu, X.L., Shao, M.G., Wei, X.R., Horton, R. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 155, 31–35. https://doi.org/10.1016/j.geoderma.2009.11.020 (2010).ADS
CAS
Article
Google Scholar
18.Ferreira, A. C. C., Leite, L. F. C., de Araújo, A. S. F. & Eisenhauer, N. Land-Use type effects on soil organic carbon and microbial properties in a semiarid region of Northeast Brazil. Land Degrad. Dev. 27, 171–178. https://doi.org/10.1002/ldr.2282 (2016).Article
Google Scholar
19.Li, Y. Y., Shao, M. A., Zheng, J. Y. & Zhang, X. C. Spatial–temporal changes of soil organic carbon during vegetation recovery at Ziwuling, China. Pedosphere 15, 601–610. https://doi.org/10.1002/jpln.200521793 (2005).CAS
Article
Google Scholar
20.Wang, T., Kang, F. F., Cheng, X. Q., Han, H. R. & Ji, W. J. Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area of North China. Soil Tillage Res. 163, 176–184. https://doi.org/10.1016/j.still.2016.05.015 (2016).Article
Google Scholar
21.An, S., Mentler, A., Mayer, H. & Blum, W. E. H. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. CATENA 81, 226–233. https://doi.org/10.1016/j.catena.2010.04.002 (2010).CAS
Article
Google Scholar
22.Shedayi, A. A., Xu, M., Naseer, I. & Khan, B. Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges. Springerplus 5, 320. https://doi.org/10.1186/s40064-016-1935-9 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
23.Chen, F. S., Zeng, D. H. & He, X. Y. Small-scale spatial variability of soil nutrients and vegetation properties in semi-arid Northern China. Pedosphere 16, 778–787. https://doi.org/10.1016/S1002-0160(06)60114-8 (2006).Article
Google Scholar
24.Xu, Q. F. & Xu, J. M. Changes in soil carbon pools induced by substitution of plantation for native forest. Pedosphere 13, 271–278. https://doi.org/10.1002/jpln.200390066 (2003).Article
Google Scholar
25.Ge, N. N. et al. Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. CATENA 172, 148–157. https://doi.org/10.1016/j.catena.2018.08.021 (2019).CAS
Article
Google Scholar
26.Fu, B. J., Chen, L. D. & Ma, K. M. The relationship between land use and soil conditions in the hilly area of Loess Plateau in Northern Shanxi. CATENA 39, 69–78. https://doi.org/10.1016/S0341-8162(99)00084-3 (2000).Article
Google Scholar
27.Xie, X. L., Sun, B., Zhou, H. Z. & Li, Z. P. Soil carbon stocks and their influencing factors under native vegetation in China. Acta Pedol. Sin. 41, 687–699 (2004).
Google Scholar
28.Njeru, C. M. et al. Assessing stock and thresholds detection of soil organic carbon and nitrogen along an altitude gradient in an east Africa mountain ecosystem. Geoderma Reg. 10, 29–38. https://doi.org/10.1016/j.geodrs.2017.04.002 (2017).Article
Google Scholar
29.Yu, D. S. et al. Regional patterns of soil organic carbon stocks in China. Environ. Manag. 85, 680–689. https://doi.org/10.1016/j.jenvman.2006.09.020 (2007).CAS
Article
Google Scholar
30.Albrecht, A. & Kandji, S. T. Carbon sequestration in tropical agroforestry systems: A review. Agric. Ecosyst. Environ. 99, 15–27. https://doi.org/10.1016/S0167-8809(03)00138-5 (2003).CAS
Article
Google Scholar
31.Takimoto, A., Nair, P. K. R. & Nair, V. D. Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric. Ecosyst. Environ. 125, 159–166. https://doi.org/10.1016/j.agee.2007.12.010 (2008).CAS
Article
Google Scholar
32.Omonode, R. A. & Vyn, T. Vertical distribution ofsoil organic carbon and nitrogen under warm-season native grasses relative to croplands in west-central Indiana, USA. Agric. Ecosyst. Environ. 117, 159–170. https://doi.org/10.1016/j.agee.2006.03.031 (2006).CAS
Article
Google Scholar
33.Tian, H. Q., Chen, G. S., Zhang, C., Melillo, J. M. & Hall, C. A. S. Pattern and variation of C:C:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 98, 139–151 (2010).CAS
Article
Google Scholar
34.Walker, T. W. & Adams, A. F. R. Studies on soil organic matter. I. Soil Sci. 85, 307–318 (1958).ADS
CAS
Article
Google Scholar
35.Gao, J. L. et al. Ecological soil C, N, and P stoichiometry of different land use patterns in the agriculture-pasture ecotone of Northern China. Acta Ecol. Sin. https://doi.org/10.5846/stxb201804030756 (2019).Article
Google Scholar
36.Deng, J. et al. Nitrogen and phosphorus resorption in relation to nutrition limitation along the chronosequence of black locust (Robinia pseudoacacia L.) plantation. Forests 10, 261–275. https://doi.org/10.3390/f10030261 (2019).Article
Google Scholar
37.Yu, Z. P. et al. Temporal changes in soil C–N–P stoichiometry over the past 60 years across subtropical China. Global Change Biol. 24, 1308–1320 (2018).ADS
Article
Google Scholar
38.Mandal, A., Patra, A. K., Singh, D., Swarup, A. & Ebhin Masto, R. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour. Technol. 98, 3585–3592. https://doi.org/10.1016/j.biortech.2006.11.027 (2007).CAS
Article
PubMed
Google Scholar
39.Jiang, Y., Zhao, T., Yan, H., Huang, Y. M. & An, S. S. Effect of different land uses on soil microbial biomass carbon, nitrogen and phosphorus in three vegetation zones on loess hilly area. Bull. Soil Water Conserv. 33, 62–68 (2013) (in Chinese).CAS
Google Scholar
40.Devi, N. B. & Yadava, P. S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Appl. Soil Ecol. 31, 220–227. https://doi.org/10.1016/j.apsoil.2005.05.005 (2006).Article
Google Scholar
41.Dong, W., Hu, C., Chen, S. & Zhang, Y. Tillage and residue s management effects on soil carbon and CO, emission in a wheat-corn double-cropping system. Nutr. Cycl. Agroecosyst. 83, 27–37. https://doi.org/10.1007/s10705-008-9195-x (2009).CAS
Article
Google Scholar
42.Li, Y., Chang, S. X., Tian, L., Tian, L. & Zhang, Q. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. Soil Biol. Biochem. 121, 50–58. https://doi.org/10.1016/j.soilbio.2018.02.024 (2018).CAS
Article
Google Scholar
43.Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340. https://doi.org/10.1038/ngeo846 (2010).ADS
CAS
Article
Google Scholar
44.Anderson, T. H. & Domsch, K. H. Soil microbial biomass: The eco-physiological approach. Soil Biol. Biochem. 42, 2039–2043. https://doi.org/10.1016/j.soilbio.2010.06.026 (2010).CAS
Article
Google Scholar
45.Shaw, K. Determination of organic carbon in soil and plant material. Soil Sci. 10, 316–326 (1959).CAS
Article
Google Scholar
46.Puget, P. & Lal, R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Tillage Res 80, 201–213. https://doi.org/10.1016/j.still.2004.03.018 (2005).Article
Google Scholar
47.Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure. Soil Biol. Biochem. 22, 1167–1169. https://doi.org/10.1016/0038-0717(90)90046-3 (1990).CAS
Article
Google Scholar More