1.Clutton-Brock, T. H. The Evolution of Parental Care Vol. 64 (Princeton University Press, 1991).Book
Google Scholar
2.Royle, N. J., Smiseth, P. T. & Kölliker, M. The Evolution of Parental Care (Oxford University Press, 2012).Book
Google Scholar
3.Hansell, M. Bird Nests and Construction Behaviour (Cambridge University Press, 2000).Book
Google Scholar
4.Doody, J. S., Freedberg, S. & Keogh, J. S. Communal egg-laying in reptiles and amphibians: evolutionary patterns and hypotheses. Q. Rev. Biol. 84, 229–252 (2009).PubMed
Article
PubMed Central
Google Scholar
5.Boness, D. J. & Don Bowen, W. The evolution of maternal care in pinnipeds: new findings raise questions about the evolution of maternal feeding strategies. Bioscience 46, 645–654 (1996).Article
Google Scholar
6.Salomon, M., Mayntz, D., Toft, S. & Lubin, Y. Maternal nutrition affects offspring performance via maternal care in a subsocial spider. Behav. Ecol. Sociobiol. 65, 1191–1202 (2011).Article
Google Scholar
7.Summers, K. Mating and aggressive behaviour in dendrobatid frogs from Corcovado National Park, Costa Rica: a comparative study. Behaviour 137, 7–24 (2000).Article
Google Scholar
8.Li, D. & Jackson, R. R. A predator’s preference for egg-carrying prey: a novel cost of parental care. Behav. Ecol. Sociobiol. 55, 129–136 (2003).Article
Google Scholar
9.Stiver, K. A. & Alonzo, S. H. Parental and mating effort: is there necessarily a trade-off?. Ethology 115, 1101–1126 (2009).Article
Google Scholar
10.Ercit, K., Martinez-Novoa, A. & Gwynne, D. T. Egg load decreases mobility and increases predation risk in female black-horned tree crickets (Oecanthus nigricornis). PLoS ONE 9, e110298 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
11.Ghalambor, C. K. & Martin, T. E. Fecundity-survival trade-offs and parental risk-taking in birds. Science 292, 494–497 (2001).ADS
CAS
Article
PubMed
Google Scholar
12.Thorogood, R., Ewen, J. G. & Kilner, R. M. Sense and sensitivity: responsiveness to offspring signals varies with the parents’ potential to breed again. Philos. Trans. R. Soc. B. 278, 2638–2645 (2011).
Google Scholar
13.Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).
Google Scholar
14.Weir, B. J. & Rowlands, I. Reproductive strategies of mammals. Annu. Rev. Ecol. Evol. Syst. 4, 139–163 (1973).Article
Google Scholar
15.Kvarnemo, C. In Evolutionary Behavioral Ecology (ed. FoxWestneat, C. W.) (Oxford University Press, 2010).
Google Scholar
16.Alonso-Alvarez, C. & Velando, A. Benefits and costs of parental care. The evolution of parental care, 40–61 (2012).17.Farmer, C. Parental care: the key to understanding endothermy and other convergent features in birds and mammals. Am. Nat. 155, 326–334 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
18.Ar, A. & Yom-Tov, Y. The evolution of parental care in birds. Evolution 32, 655–669 (1978).CAS
PubMed
Article
PubMed Central
Google Scholar
19.Gubernick, D. J. Parent and infant attachment in mammals. In Parental care in mammals 243–305 (Springer, 1981).20.Case, T. J. Endothermy and parental care in the terrestrial vertebrates. Am. Nat. 112, 861–874 (1978).Article
Google Scholar
21.Gross, M. R. & Shine, R. Parental care and mode of fertilization in ectothermic vertebrates. Evolution 35, 775–793 (1981).PubMed
Article
PubMed Central
Google Scholar
22.Balshine, S. Patterns of parental care in vertebrates. Evol. Parental Care 62, 80 (2012).
Google Scholar
23.Furness, A. I. & Capellini, I. The evolution of parental care diversity in amphibians. Nat. Commun. 10, 1–12 (2019).CAS
Article
Google Scholar
24.Schulte, L. M., Ringler, E., Rojas, B. & Stynoski, J. L. Developments in amphibian parental care research: history, present advances, and future perspectives. Herpetol. Monogr. 34, 71–97 (2020).Article
Google Scholar
25.Wells, K. D. The Ecology and Behavior of Amphibians (University of Chicago Press, 2010).
Google Scholar
26.Weygoldt, P. Evolution of parental care in dart poison frogs (Amphibia: Anura: Dendrobatidae). J. Zoolog. Syst. Evol. 25, 51–67 (1987).Article
Google Scholar
27.Summers, K. & Tumulty, J. in Sexual Selection 289–320 (Elsevier, 2014).28.Lehtinen, R., Lannoo, M. J. & Wassersug, R. J. Phytotelm-breeding anurans: past, present and future research. Misc. Publ. Museum Zool. Univ. Michigan 193, 1–9 (2004).
Google Scholar
29.Brust, D. G. Maternal brood care by Dendrobates pumilio: a frog that feeds its young. J. Herpetol. 27, 96–98 (1993).Article
Google Scholar
30.Bourne, G. R., Collins, A. C., Holder, A. M. & McCarthy, C. L. Vocal communication and reproductive behavior of the frog Colostethus beebei in Guyana. J. Herpetol. 35, 272–281 (2001).Article
Google Scholar
31.Schulte, L. M. Feeding or avoiding? Facultative egg feeding in a Peruvian poison frog (Ranitomeya variabilis). Ethol. Ecol. Evol. 26, 58–68. https://doi.org/10.1080/03949370.2013.850453 (2014).Article
Google Scholar
32.Beck, K. B., Loretto, M.-C., Ringler, M., Hödl, W. & Pašukonis, A. Relying on known or exploring for new? Movement patterns and reproductive resource use in a tadpole-transporting frog. PeerJ 5, e3745 (2017).PubMed
PubMed Central
Article
Google Scholar
33.Pašukonis, A., Loretto, M.-C. & Rojas, B. How far do tadpoles travel in the rainforest? Parent-assisted dispersal in poison frogs. Evol. Ecol. 33, 613–623 (2019).PubMed
PubMed Central
Article
Google Scholar
34.Summers, K. Metabolism and parental care in ectotherms: a comment on Beekman et al. Behav. Ecol. 30, 593–594 (2019).Article
Google Scholar
35.Santos, J. C. & Cannatella, D. C. Phenotypic integration emerges from aposematism and scale in poison frogs. Proc. Natl. Acad. Sci. 108, 6175–6180 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
36.Stynoski, J. L., Schulte, L. M. & Rojas, B. Poison frogs. Curr. Biol. 25, R1026–R1028 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
37.Rojas, B., Valkonen, J. & Nokelainen, O. Aposematism. Curr. Biol. 25, R350–R351 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
38.Poulton, E. B. The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects (D. Appleton, 1990).
Google Scholar
39.Santos, J. C., Coloma, L. A. & Cannatella, D. C. Multiple, recurring origins of aposematism and diet specialization in poison frogs. Proc. Natl. Acad. Sci. 100, 12792–12797 (2003).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
40.Vences, M. et al. Convergent evolution of aposematic coloration in Neotropical poison frogs: a molecular phylogenetic perspective. Org. Divers. Evol. 3, 215–226 (2003).Article
Google Scholar
41.Daly, J. W. et al. An uptake system for dietary alkaloids in poison frogs (Dendrobatidae). Toxicon 32, 657–663 (1994).CAS
PubMed
Article
PubMed Central
Google Scholar
42.Saporito, R. A., Spande, T. F., Garraffo, H. M. & Donnelly, M. A. Arthropod alkaloids in poison frogs: a review of the dietary hypothesis. Heterocycles 79, 277–297 (2009).CAS
Article
Google Scholar
43.Santos, J. C. et al. Aposematism increases acoustic diversification and speciation in poison frogs. Philos. Trans. R. Soc. B. 281, 20141761 (2014).
Google Scholar
44.Caldwell, J. P. The evolution of myrmecophagy and its correlates in poison frogs (Family Dendrobatidae). J. Zool. 240, 75–101 (1996).Article
Google Scholar
45.Summers, K., Symula, R., Clough, M. & Cronin, T. Visual mate choice in poison frogs. Philos. Trans. R. Soc. B. 266, 2141–2145 (1999).CAS
Google Scholar
46.Duellman, W. E. & Trueb, L. Biology of Amphibians (JHU Press, 1994).
Google Scholar
47.Summers, K. & McKeon, C. S. The evolutionary ecology of phytotelmata use in Neotropical poison frogs. Misc. Publ. Mus. Zool. Univ. Mich. 193, 55–73 (2004).
Google Scholar
48.Summers, K., Sea McKeon, C. & Heying, H. The evolution of parental care and egg size: a comparative analysis in frogs. Philos. Trans. R. Soc. B. 273, 687–692 (2006).
Google Scholar
49.Wells, K. D. Courtship and parental behavior in a Panamanian poison-arrow frog (Dendrobates auratus). Herpetologica 34, 148–155 (1978).
Google Scholar
50.Summers, K. Sexual selection and intra-female competition in the green poison-dart frog, Dendrobates auratus. Anim. Behav. 37, 797–805 (1989).Article
Google Scholar
51.Summers, K. Paternal care and the cost of polygyny in the green dart-poison frog. Behav. Ecol. Sociobiol. 27, 307–313 (1990).Article
Google Scholar
52.Summers, K. & Amos, W. Behavioral, ecological, and molecular genetic analyses of reproductive strategies in the Amazonian dart-poison frog, Dendrobates ventrimaculatus. Behav. Ecol. 8, 260–267 (1997).Article
Google Scholar
53.Limerick, S. Courtship behavior and oviposition of the poison-arrow frog Dendrobates pumilio. Herpetologica 36, 69–71 (1980).
Google Scholar
54.Pröhl, H. & Hödl, W. Parental investment, potential reproductive rates, and mating system in the strawberry dart-poison frog, Dendrobates pumilio. Behav. Ecol. Sociobiol. 46, 215–220 (1999).Article
Google Scholar
55.Brown, J. L., Morales, V. & Summers, K. A key ecological trait drove the evolution of biparental care and monogamy in an amphibian. Am. Nat. 175, 436–446 (2010).PubMed
Article
PubMed Central
Google Scholar
56.Yang, Y., Blomenkamp, S., Dugas, M. B., Richards-Zawacki, C. L. & Pröhl, H. Mate choice versus mate preference: inferences about color-assortative mating differ between field and lab assays of poison frog behavior. Am. Nat. 193, 598–607 (2019).PubMed
Article
PubMed Central
Google Scholar
57.Wells, K. D. Behavoral ecology and social organization of a dendrobatid frog (Colostethus inguinalis). Behav. Ecol. Sociobiol. 6, 199–209 (1980).Article
Google Scholar
58.Luddecke, H. Behavioral aspects of the reproductive biology of the Andean frog Colostethus palmatus (Amphibia: Dendrobatidae). Rev. Acad. Colomb. Cienc. Exact. Fis. Nat. 23, S303–S303 (1999).
Google Scholar
59.Montanarin, A., Kaefer, I. L. & Lima, A. P. Courtship and mating behaviour of the brilliant-thighed frog Allobates femoralis from Central Amazonia: Implications for the study of a species complex. Ethol. Ecol. Evol. 23, 141–150 (2011).Article
Google Scholar
60.Ursprung, E., Ringler, M., Jehle, R. & Hoedl, W. Strong male/male competition allows for nonchoosy females: High levels of polygynandry in a territorial frog with paternal care. Mol. Ecol. 20, 1759–1771 (2011).PubMed
Article
PubMed Central
Google Scholar
61.Stückler, S. et al. Spatio-temporal characteristics of the prolonged courtship in brilliant-thighed poison frogs, Allobates femoralis. Herpetologica 75, 268–279 (2019).Article
Google Scholar
62.Symula, R., Schulte, R. & Summers, K. Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. Philos. Trans. R. Soc. B 268, 2415–2421 (2001).CAS
Google Scholar
63.Summers, K. Mating strategies in two species of dart-poison frogs: a comparative study. Anim. Behav. 43, 907–919 (1992).Article
Google Scholar
64.Rojas, B. & Pašukonis, A. From habitat use to social behavior: natural history of a voiceless poison frog, Dendrobates tinctorius. PeerJ 7, e7648 (2019).PubMed
PubMed Central
Article
Google Scholar
65.Maan, M. E. & Cummings, M. E. Poison frog colors are honest signals of toxicity, particularly for bird predators. Am. Nat. 179, E1–E14 (2012).PubMed
Article
PubMed Central
Google Scholar
66.Grant, T. et al. Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bull. Am. Mus. Nat. 2006, 1–262 (2006).
Google Scholar
67.Grant, T. et al. Phylogenetic systematics of dart-poison frogs and their relatives revisited (Anura: Dendrobatoidea). S. Am. J. Herpetol. 12, S1–S90 (2017).Article
Google Scholar
68.Duellman, W. E. Frogs of the genus Colostethus (Anura; Dendrobatidae) in the Andes of northern Peru (2004).69.Fairbairn, D. J. Odd Couples: Extraordinary Differences Between the Sexes in the Animal Kingdom (Princeton University Press, 2013).Book
Google Scholar
70.Fairbairn, D. J., Blanckenhorn, W. U. & Székely, T. Sex, Size and Gender Roles: Evolutionary Studies of Sexual Size Dimorphism (Oxford University Press, 2007).Book
Google Scholar
71.Vági, B., Végvári, Z., Liker, A., Freckleton, R. P. & Székely, T. Parental care and the evolution of terrestriality in frogs. Philos. Trans. R. Soc. B. 286, 20182737 (2019).
Google Scholar
72.Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
Google Scholar
73.Kelber, A., Vorobyev, M. & Osorio, D. Animal colour vision–behavioural tests and physiological concepts. Biol. Rev. 78, 81–118 (2003).PubMed
Article
PubMed Central
Google Scholar
74.Renoult, J. P., Kelber, A. & Schaefer, H. M. Colour spaces in ecology and evolutionary biology. Biol. Rev. 92, 292–315 (2017).PubMed
Article
PubMed Central
Google Scholar
75.Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. 41, 315–352 (1990).Article
Google Scholar
76.Kemp, D. J. et al. An integrative framework for the appraisal of coloration in nature. Am. Nat. 185, 705–724 (2015).PubMed
Article
PubMed Central
Google Scholar
77.Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods. Ecol. Evol. 6, 1320–1331 (2015).PubMed
PubMed Central
Article
Google Scholar
78.Maia, R. & White, T. E. Comparing colors using visual models. Behav. Ecol. 29, 649–659 (2018).Article
Google Scholar
79.Bergeron, Z. T. & Fuller, R. C. Using human vision to detect variation in avian coloration: how bad is it?. Am. Nat. 191, 269–276 (2018).PubMed
Article
PubMed Central
Google Scholar
80.Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).PubMed
Article
PubMed Central
Google Scholar
81.Yang, Z., Kumar, S. & Nei, M. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141, 1641–1650 (1995).CAS
PubMed
PubMed Central
Article
Google Scholar
82.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
83.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series. B. Stat. Methodo. 57, 289–300 (1995).MathSciNet
MATH
Google Scholar
84.Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article
Google Scholar
85.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).MATH
Google Scholar
86.Barker, D., Meade, A. & Pagel, M. Constrained models of evolution lead to improved prediction of functional linkage from correlated gain and loss of genes. Bioinformatics 23, 14–20 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
87.Lindstedt, C., Boncoraglio, G., Cotter, S. C., Gilbert, J. D. J. & Kilner, R. M. Parental care shapes evolution of aposematism and provides lifelong protection against predators. bioRxiv 25, 644864 (2019).
Google Scholar
88.Donnelly, M. A. Demographic effects of reproductive resource supplementation in a territorial frog, Dendrobates pumilio. Ecol. Monogr. 59, 207–221 (1989).Article
Google Scholar
89.Rojas, B. & Endler, J. A. Sexual dimorphism and intra-populational colour pattern variation in the aposematic frog Dendrobates tinctorius. Evol. Ecol. 27, 739–753 (2013).Article
Google Scholar
90.Pröhl, H. Territorial behavior in dendrobatid frogs. J. Herpetol. 39, 354–365 (2005).Article
Google Scholar
91.Speed, M. P., Brockhurst, M. A. & Ruxton, G. D. The dual benefits of aposematism: predator avoidance and enhanced resource collection. Evolution 64, 1622–1633 (2010).PubMed
Article
PubMed Central
Google Scholar
92.Fincke, O. M. Organization of predator assemblages in Neotropical tree holes: effects of abiotic factors and priority. Ecol. Entomol. 24, 13–23 (1999).Article
Google Scholar
93.Summers, K. The effects of cannibalism on Amazonian poison frog egg and tadpole deposition and survivorship in Heliconia axil pools. Oecologia 119, 557–564 (1999).ADS
PubMed
Article
PubMed Central
Google Scholar
94.McKeon, C. S. & Summers, K. Predator driven reproductive behavior in a tropical frog. Evol. Ecol. 27, 725–737 (2013).Article
Google Scholar
95.Amézquita, A., Castro, L., Arias, M., González, M. & Esquivel, C. Field but not lab paradigms support generalisation by predators of aposematic polymorphic prey: the Oophaga histrionica complex. Evol. Ecol. 27, 769–782 (2013).Article
Google Scholar
96.Lawrence, J. P. et al. Weak warning signals can persist in the absence of gene flow. PNAS 116, 19037–19045 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
97.Lack, D. The natural regulation of animal numbers. The Natural Regulation of Animal Numbers. (1954).98.Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).Article
Google Scholar
99.Brown, J., Morales, V. & Summers, K. Divergence in parental care, habitat selection and larval life history between two species of Peruvian poison frogs: an experimental analysis. J. Evol. Biol. 21, 1534–1543 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
100.Brown, J. L., Morales, V. & Summers, K. Tactical reproductive parasitism via larval cannibalism in Peruvian poison frogs. Biol. Lett. 5, 148–151 (2009).PubMed
Article
PubMed Central
Google Scholar
101.Brown, J. L., Morales, V. & Summers, K. Home range size and location in relation to reproductive resources in poison frogs (Dendrobatidae): a Monte Carlo approach using GIS data. Anim. Behav. 77, 547–554 (2009).Article
Google Scholar
102.Kok, P. J., Willaert, B. & Means, D. B. A new diagnosis and description of Anomaloglossus roraima (La Marca, 1998) (Anura: Aromobatidae: Anomaloglossinae), with description of its tadpole and call. S. Am. J. Herpetol. 8, 29–45 (2013).Article
Google Scholar
103.Pašukonis, A. et al. The significance of spatial memory for water finding in a tadpole-transporting frog. Anim. Behav. 116, 89–98 (2016).PubMed
PubMed Central
Article
Google Scholar
104.Pašukonis, A., Warrington, I., Ringler, M. & Hödl, W. Poison frogs rely on experience to find the way home in the rainforest. Biol. Lett. 10, 20140642 (2014).PubMed
PubMed Central
Article
Google Scholar
105.Poelman, E. H. & Dicke, M. Offering offspring as food to cannibals: oviposition strategies of Amazonian poison frogs (Dendrobates ventrimaculatus). Evol. Ecol. 21, 215–227 (2007).Article
Google Scholar
106.Caldwell, J. P. & de Araujo, M. C. Cannibalistic interactions resulting from indiscriminate predatory behavior in tadpoles of poison frogs (Anura: Dendrobatidae). Biotropica 30, 92–103 (1998).Article
Google Scholar
107.Gray, H. M., Summers, K. & Ibáñez, R. Kin discrimination in cannibalistic tadpoles of the Green Poison Frog, Dendrobates auratus (Anura, Dendrobatidae). Phyllomedusa (2009).108.Rojas, B. Strange parental decisions: fathers of the dyeing poison frog deposit their tadpoles in pools occupied by large cannibals. Behav. Ecol. Sociobiol. 68, 551–559 (2014).Article
Google Scholar
109.Schulte, L. M. & Mayer, M. Poison frog tadpoles seek parental transportation to escape their cannibalistic siblings. J. Zool. 303, 83–89, 12472 (2017).110.Ringler, E., Pašukonis, A., Hödl, W. & Ringler, M. Tadpole transport logistics in a Neotropical poison frog: indications for strategic planning and adaptive plasticity in anuran parental care. Front. Zool. 10, 67 (2013).PubMed
PubMed Central
Article
Google Scholar
111.Pröhl, H. Variation in male calling behaviour and relation to male mating success in the strawberry poison frog (Dendrobates pumilio). Ethology 109, 273–290 (2003).Article
Google Scholar
112.Summers, K. & Earn, D. J. The cost of polygyny and the evolution of female care in poison frogs. Biol. J. Linn. Soc. 66, 515–538 (1999).Article
Google Scholar
113.Ringler, E. et al. Flexible compensation of uniparental care: female poison frogs take over when males disappear. Behav. Ecol. 26, 1219–1225 (2015).PubMed
PubMed Central
Article
Google Scholar
114.Pyron, R. A. & Wiens, J. J. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543–583 (2011).PubMed
Article
PubMed Central
Google Scholar
115.Streicher, J. W. et al. Evaluating methods for phylogenomic analyses, and a new phylogeny for a major frog clade (Hyloidea) based on 2214 loci. Mol. Phylogenet. Evol. 119, 128–143 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
116.Gilbert, J. D. Thrips domiciles protect larvae from desiccation in an arid environment. Behav. Ecol. 25, 1338–1346 (2014).PubMed
PubMed Central
Article
Google Scholar
117.Hime, P. M. et al. Phylogenomics reveals ancient gene tree discordance in the amphibian tree of life. Syst. Biol. 70, 49–66 (2021).PubMed
Article
PubMed Central
Google Scholar
118.Moen, D. S., Morlon, H. & Wiens, J. J. Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst. Biol. 65, 146–160 (2016).PubMed
Article
PubMed Central
Google Scholar
119.Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).PubMed
Article
PubMed Central
Google Scholar
120.Liu, Y., Day, L. B., Summers, K. & Burmeister, S. S. Learning to learn: advanced behavioural flexibility in a poison frog. Anim. Behav. 111, 167–172 (2016).Article
Google Scholar
121.Liu, Y., Day, L. B., Summers, K. & Burmeister, S. S. A cognitive map in a poison frog. J. Exp. Biol. 222, jeb97467 (2019).Article
Google Scholar
122.Liu, Y., Jones, C. D., Day, L. B., Summers, K. & Burmeister, S. S. Cognitive phenotype and differential gene expression in a hippocampal homologue in two species of frog. Integr. Comp Biol. 60, 1007–1023 (2020).PubMed
Article
PubMed Central
Google Scholar More