More stories

  • in

    Large-bodied birds are over-represented in unstructured citizen science data

    1.Pocock, M. J., Tweddle, J. C., Savage, J., Robinson, L. D. & Roy, H. E. The diversity and evolution of ecological and environmental citizen science. PLoS ONE 12, e0172579 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Cons. 213, 280–294 (2017).Article 

    Google Scholar 
    3.Chandler, M. et al. Involving citizen scientists in biodiversity observation. In The GEO Handbook on Biodiversity Observation Networks 211–237 (Springer, 2017).4.McKinley, D. C. et al. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Cons. 208, 15–28 (2017).Article 

    Google Scholar 
    5.Pereira, H. M. et al. Monitoring essential biodiversity variables at the species level. In The GEO Handbook on Biodiversity Observation Networks 79–105 (Springer, 2017).6.Wiggins, A. & Crowston, K. From conservation to crowdsourcing: A typology of citizen science. in 2011 44th Hawaii International Conference on System Sciences 1–10 (IEEE, 2011).7.Haklay, M. Citizen science and volunteered geographic information: Overview and typology of participation. In Crowdsourcing Geographic Knowledge 105–122 (Springer, 2013).8.Kelling, S. et al. Using semistructured surveys to improve citizen science data for monitoring biodiversity. Bioscience 69, 170–179 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Welvaert, M. & Caley, P. Citizen surveillance for environmental monitoring: Combining the efforts of citizen science and crowdsourcing in a quantitative data framework. Springerplus 5, 1890 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Callaghan, C. T., Rowley, J. J., Cornwell, W. K., Poore, A. G. & Major, R. E. Improving big citizen science data: Moving beyond haphazard sampling. PLoS Biol. 17, e3000357 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Bonter, D. N. & Cooper, C. B. Data validation in citizen science: A case study from project FeederWatch. Front. Ecol. Environ. 10, 305–307 (2012).Article 

    Google Scholar 
    12.Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016).Article 

    Google Scholar 
    13.Burgess, H. K. et al. The science of citizen science: Exploring barriers to use as a primary research tool. Biol. Cons. 208, 113–120 (2017).Article 

    Google Scholar 
    14.Courter, J. R., Johnson, R. J., Stuyck, C. M., Lang, B. A. & Kaiser, E. W. Weekend bias in citizen science data reporting: Implications for phenology studies. Int. J. Biometeorol. 57, 715–720 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Sullivan, B. L. et al. The eBird enterprise: An integrated approach to development and application of citizen science. Biol. Cons. 169, 31–40 (2014).Article 

    Google Scholar 
    16.Kelling, S. et al. Can observation skills of citizen scientists be estimated using species accumulation curves?. PLoS ONE 10, e0139600 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Tiago, P., Ceia-Hasse, A., Marques, T. A., Capinha, C. & Pereira, H. M. Spatial distribution of citizen science casuistic observations for different taxonomic groups. Sci. Rep. 7, 1–9 (2017).CAS 
    Article 

    Google Scholar 
    18.Geldmann, J. et al. What determines spatial bias in citizen science? Exploring four recording schemes with different proficiency requirements. Divers. Distrib. 22, 1139–1149 (2016).Article 

    Google Scholar 
    19.Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. Bioscience 71, 55–63 (2021).
    Google Scholar 
    20.Ward, D. F. Understanding sampling and taxonomic biases recorded by citizen scientists. J. Insect Conserv. 18, 753–756 (2014).Article 

    Google Scholar 
    21.Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 1–14 (2017).CAS 
    Article 

    Google Scholar 
    22.Martı́n-López, B., Montes, C., Ramı́rez, L. & Benayas, J. What drives policy decision-making related to species conservation? Biol. Conserv. 142, 1370–1380 (2009).23.Boakes, E. H. et al. Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS Biol 8, e1000385 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Aceves-Bueno, E. et al. The accuracy of citizen science data: A quantitative review. Bull. Ecol. Soc. Am. 98, 278–290 (2017).Article 

    Google Scholar 
    25.Davies, T. K., Stevens, G., Meekan, M. G., Struve, J. & Rowcliffe, J. M. Can citizen science monitor whale-shark aggregations? Investigating bias in mark–recapture modelling using identification photographs sourced from the public. Wildl. Res. 39, 696–704 (2013).Article 

    Google Scholar 
    26.Crall, A. W. et al. Assessing citizen science data quality: An invasive species case study. Conserv. Lett. 4, 433–442 (2011).Article 

    Google Scholar 
    27.van Strien, A. J., van Swaay, C. A. & Termaat, T. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50, 1450–1458 (2013).Article 

    Google Scholar 
    28.Johnston, A., Moran, N., Musgrove, A., Fink, D. & Baillie, S. R. Estimating species distributions from spatially biased citizen science data. Ecol. Model. 422, 108927 (2020).Article 

    Google Scholar 
    29.Tiago, P., Pereira, H. M. & Capinha, C. Using citizen science data to estimate climatic niches and species distributions. Basic Appl. Ecol. 20, 75–85 (2017).Article 

    Google Scholar 
    30.Sullivan, B. L. et al. Using open access observational data for conservation action: A case study for birds. Biol. Cons. 208, 5–14 (2017).Article 

    Google Scholar 
    31.Callaghan, C. T. et al. Citizen science data accurately predicts expert-derived species richness at a continental scale when sampling thresholds are met. Biodivers. Conserv. 29, 1323–1337 (2020).Article 

    Google Scholar 
    32.Birkin, L. & Goulson, D. Using citizen science to monitor pollination services. Ecol. Entomol. 40, 3–11 (2015).Article 

    Google Scholar 
    33.Delaney, D. G., Sperling, C. D., Adams, C. S. & Leung, B. Marine invasive species: Validation of citizen science and implications for national monitoring networks. Biol. Invasions 10, 117–128 (2008).Article 

    Google Scholar 
    34.Schultz, C. B., Brown, L. M., Pelton, E. & Crone, E. E. Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western north america. Biol. Cons. 214, 343–346 (2017).Article 

    Google Scholar 
    35.Bird, T. J. et al. Statistical solutions for error and bias in global citizen science datasets. Biol. Cons. 173, 144–154 (2014).Article 

    Google Scholar 
    36.Isaac, N. J., van Strien, A. J., August, T. A., de Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).Article 

    Google Scholar 
    37.Dickinson, J. L. et al. The current state of citizen science as a tool for ecological research and public engagement. Front. Ecol. Environ. 10, 291–297 (2012).Article 

    Google Scholar 
    38.Bonney, R. et al. Next steps for citizen science. Science 343, 1436–1437 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    39.Jordan, R. C., Gray, S. A., Howe, D. V., Brooks, W. R. & Ehrenfeld, J. G. Knowledge gain and behavioral change in citizen-science programs. Conserv. Biol. 25, 1148–1154 (2011).PubMed 
    Article 

    Google Scholar 
    40.Crall, A. W. et al. The impacts of an invasive species citizen science training program on participant attitudes, behavior, and science literacy. Public Underst. Sci. 22, 745–764 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Jordan, R. C., Ballard, H. L. & Phillips, T. B. Key issues and new approaches for evaluating citizen-science learning outcomes. Front. Ecol. Environ. 10, 307–309 (2012).Article 

    Google Scholar 
    42.Evans, C. et al. The neighborhood nestwatch program: Participant outcomes of a citizen-science ecological research project. Conserv. Biol. 19, 589–594 (2005).Article 

    Google Scholar 
    43.Haywood, B. K., Parrish, J. K. & Dolliver, J. Place-based and data-rich citizen science as a precursor for conservation action. Conserv. Biol. 30, 476–486 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Pocock, M. J. et al. A vision for global biodiversity monitoring with citizen science. In Advances in Ecological Research vol. 59, 169–223 (Elsevier, 2018).45.Tiago, P., Gouveia, M. J., Capinha, C., Santos-Reis, M. & Pereira, H. M. The influence of motivational factors on the frequency of participation in citizen science activities. Nat. Conserv. 18, 61 (2017).Article 

    Google Scholar 
    46.Isaac, N. J. & Pocock, M. J. Bias and information in biological records. Biol. J. Lin. Soc. 115, 522–531 (2015).Article 

    Google Scholar 
    47.Angulo, E. & Courchamp, F. Rare species are valued big time. PLoS ONE 4, e5215 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Booth, J. E., Gaston, K. J., Evans, K. L. & Armsworth, P. R. The value of species rarity in biodiversity recreation: A birdwatching example. Biol. Cons. 144, 2728–2732 (2011).Article 

    Google Scholar 
    49.Rowley, J. J. et al. FrogID: Citizen scientists provide validated biodiversity data on frogs of australia. Herpetol. Conserv. Biol. 14, 155–170 (2019).
    Google Scholar 
    50.Boakes, E. H. et al. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers recording behaviour. Sci. Rep. 6, 33051 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Garrard, G. E., McCarthy, M. A., Williams, N. S., Bekessy, S. A. & Wintle, B. A. A general model of detectability using species traits. Methods Ecol. Evol. 4, 45–52 (2013).Article 

    Google Scholar 
    52.Denis, T. et al. Biological traits, rather than environment, shape detection curves of large vertebrates in neotropical rainforests. Ecol. Appl. 27, 1564–1577 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Sólymos, P., Matsuoka, S. M., Stralberg, D., Barker, N. K. & Bayne, E. M. Phylogeny and species traits predict bird detectability. Ecography 41, 1595–1603 (2018).Article 

    Google Scholar 
    54.Wood, C., Sullivan, B., Iliff, M., Fink, D. & Kelling, S. eBird: Engaging birders in science and conservation. PLoS Biol 9, 1001220 (2011).Article 
    CAS 

    Google Scholar 
    55.GBIF.org (3rd December 2019). GBIF occurrence download. https://doi.org/10.15468/dl.lpwczr56.Gilfedder, M. et al. Brokering trust in citizen science. Soc. Nat. Resour. 32, 292–302 (2019).Article 

    Google Scholar 
    57.Callaghan, C., Lyons, M., Martin, J., Major, R. & Kingsford, R. Assessing the reliability of avian biodiversity measures of urban greenspaces using eBird citizen science data. Avian Conserv. Ecol. 12, 66 (2017).
    Google Scholar 
    58.Johnston, A. et al. Best practices for making reliable inferences from citizen science data: Case study using eBird to estimate species distributions. BioRxiv 574392 (2019).59.Myhrvold, N. P. et al. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles: Ecological archives E096–269. Ecology 96, 3109–3109 (2015).Article 

    Google Scholar 
    60.Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).62.Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).ADS 
    Article 

    Google Scholar 
    63.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    64.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    65.Johnston, A. et al. Species traits explain variation in detectability of UK birds. Bird Study 61, 340–350 (2014).Article 

    Google Scholar 
    66.Steen, V. A., Elphick, C. S. & Tingley, M. W. An evaluation of stringent filtering to improve species distribution models from citizen science data. Divers. Distrib. 25, 1857–1869 (2019).Article 

    Google Scholar 
    67.Henckel, L., Bradter, U., Jönsson, M., Isaac, N. J. & Snäll, T. Assessing the usefulness of citizen science data for habitat suitability modelling: Opportunistic reporting versus sampling based on a systematic protocol. Divers. Distrib. 26, 1276–1290 (2020).Article 

    Google Scholar 
    68.Caley, P., Welvaert, M. & Barry, S. C. Crowd surveillance: Estimating citizen science reporting probabilities for insects of biosecurity concern. J. Pest. Sci. 93, 543–550 (2020).Article 

    Google Scholar 
    69.Périquet, S., Roxburgh, L., le Roux, A. & Collinson, W. J. Testing the value of citizen science for roadkill studies: A case study from South Africa. Front. Ecol. Evol. 6, 15 (2018).Article 

    Google Scholar 
    70.Nakagawa, S. & Freckleton, R. P. Model averaging, missing data and multiple imputation: A case study for behavioural ecology. Behav. Ecol. Sociobiol. 65, 103–116 (2011).Article 

    Google Scholar 
    71.Schlossberg, S., Chase, M. & Griffin, C. Using species traits to predict detectability of animals on aerial surveys. Ecol. Appl. 28, 106–118 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Aristeidou, M., Scanlon, E. & Sharples, M. Profiles of engagement in online communities of citizen science participation. Comput. Hum. Behav. 74, 246–256 (2017).Article 

    Google Scholar 
    73.Troscianko, J., Skelhorn, J. & Stevens, M. Quantifying camouflage: How to predict detectability from appearance. BMC Evol. Biol. 17, 1–13 (2017).Article 

    Google Scholar 
    74.Schuetz, J. G. & Johnston, A. Characterizing the cultural niches of North American birds. Proc. Natl. Acad. Sci. 22, 10868–10873 (2019).Article 
    CAS 

    Google Scholar 
    75.Lišková, S. & Frynta, D. What determines bird beauty in human eyes?. Anthrozoös 26, 27–41 (2013).Article 

    Google Scholar 
    76.Tulloch, A. I., Possingham, H. P., Joseph, L. N., Szabo, J. & Martin, T. G. Realising the full potential of citizen science monitoring programs. Biol. Cons. 165, 128–138 (2013).Article 

    Google Scholar 
    77.Kobori, H. et al. Citizen science: A new approach to advance ecology, education, and conservation. Ecol. Res. 31, 1–19 (2016).CAS 
    Article 

    Google Scholar 
    78.Callaghan, C. T., Poore, A. G., Major, R. E., Rowley, J. J. & Cornwell, W. K. Optimizing future biodiversity sampling by citizen scientists. Proc. R. Soc. B 286, 20191487 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Pacifici, K. et al. Integrating multiple data sources in species distribution modeling: A framework for data fusion. Ecology 98, 840–850 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Robinson, O. J. et al. Integrating citizen science data with expert surveys increases accuracy and spatial extent of species distribution models. Divers. Distrib. 26, 976–986 (2020).Article 

    Google Scholar 
    81.van Strien, A. J., Termaat, T., Groenendijk, D., Mensing, V. & Kery, M. Site-occupancy models may offer new opportunities for dragonfly monitoring based on daily species lists. Basic Appl. Ecol. 11, 495–503 (2010).Article 

    Google Scholar 
    82.Van der Wal, R. et al. Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording. Ambio 44, 584–600 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Dennis, E. B., Morgan, B. J., Brereton, T. M., Roy, D. B. & Fox, R. Using citizen science butterfly counts to predict species population trends. Conserv. Biol. 31, 1350–1361 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Stoudt, S., Goldstein, B. R. & De Valpine, P. Identifying charismatic bird species and traits with community science data. bioRxiv. https://doi.org/10.1101/2021.06.05.446577 More

  • in

    Coral conservation strikes a balance

    NATURE INDEX
    24 September 2021

    Coral conservation strikes a balance

    Australia–Fiji collaboration matches community needs with reef protection.

    Clare Watson

    0

    Clare Watson

    Clare Watson is a freelance writer in Wollongong, Australia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    A spear fisherman catches reef fish, a cultural mainstay on Mali Island in Fiji.Credit: Juergen Freund/naturepl.com

    Coral reefs are under threat, and so too are the livelihoods of more 500 million people who depend on them. Global climate change is causing longer and more frequent marine heatwaves, leading to widespread and repeated coral bleaching. Overfishing and pollution exacerbate the problem, adding pressure to these marine biodiversity hotspots that sustain coastal communities.Reef-management programmes that limit or prohibit fishing and other commercial activities are bound to be ineffective if local communities are not involved in their design and management, says Sangeeta Mangubhai, a coral-reef ecologist in Fiji. “If people haven’t been engaged in the management [of conservation strategies], they’re not as likely to understand what the rules are, or they might not comply with it,” she says. Initiatives that are designed to protect coral reefs without incorporating insights from local communities may also affect them in unintended ways, she adds.
    Nature Index 2021 Science cities
    In collaboration with environmental social scientist, Georgina Gurney, Mangubhai is identifying the conditions that support both conservation outcomes and the wellbeing of coastal communities who often have cultural practices and spiritual ties to the sea. Their work explores the social factors that influence coral-reef-management programmes, such as the perceived fairness of payment schemes that direct tourism revenue back to the communities who manage local reefs (G. G. Gurney et al. Environ. Sci. Policy 124, 23–32; 2021).“First and foremost, it’s an ethical and moral issue,” says Gurney. “Conservation should not impinge on the wellbeing of people; it should promote the wellbeing of people.”Based at James Cook University (JCU) in Townsville, a city on the northeastern coast of Queensland, Australia, Gurney has close access to the Great Barrier Reef, which contains the world’s largest coral reef ecosystem. The university has long-standing ties with researchers in nearby Pacific island nations, such as Papua New Guinea, Fiji and New Caledonia.Townsville was the second most-prolific city in the 82 high-quality natural-sciences journals tracked by the Nature Index for research related to the United Nations’ Sustainable Development Goal (SDG) Life below water (SDG14) in 2015–20, with a Share of 15.59, 52% of which is attributed to JCU. Beijing, placed first by output related to SDG14, had a Share of 17.88 for the same period. (For more information on the analyses used in this article, see ‘A guide to Nature Index’.)

    Georgina Gurney and Sangeeta Mangubhai at a fish market in Suva, Fiji.Credit: Isabelle Gurney

    According to Gurney, successful conservation programmes should evaluate social factors alongside ecological outcomes, such as fish stocks and coral health, although this is rarely the case. With Mangubhai and other collaborators, Gurney has developed a framework that combines 90 social and ecological indicators, from coral cover and fish biomass to household incomes derived from the reef, equitable benefit-sharing and conflicts occurring over marine resources (G. G. Gurney et al. Biol. Conserv. 240, 108298; 2019).In principle, the framework standardizes how outcomes of coral-reef programmes are evaluated to improve data collection and enable cross-country comparisons. It has been adopted by the New York-based non-governmental organization, the Wildlife Conservation Society (WCF), and its partners in 7 countries and more than 130 communities across Africa, Asia and the Pacific.Besides improving conservation efforts, Mangubhai, who leads the WCF’s Fiji programme, says the partnership gives equal footing to local conservation scientists and policymakers, empowering them to direct independent research. “If you have these meaningful collaborations, the outcome is going to have so much more of an impact on the ground,” she says.Incorporating an understanding of the social factors that influence coral-reef conservation into marine-management strategies translates to respect for local traditional cultural practices of Indigenous Fijians, says Mangubhai. Temporary closures called tabu, which are used to maintain the productivity of their customary fishing grounds, are a good example. “It’s a real merging of traditional knowledge and other best practices, such as size limits on fish catch, to help communities achieve the outcomes they want for themselves,” she says.

    doi: https://doi.org/10.1038/d41586-021-02409-6This article is part of Nature Index 2021 Science cities, an editorially independent supplement produced with the financial support of third parties. About this content.

    Related Articles

    Sustainable Development Goals research speaks to city strengths and priorities

    Tracking 20 leading cities’ Sustainable Development Goals research

    How cities are collaborating to safeguard oceans

    Rising tide of floating plastics spurs surge in research

    Uneven spread of research leaves poorer cities short of solutions

    Pursuit of better batteries underpins China’s lead in energy research

    How Belo Horizonte’s bid to tackle hunger inspired other cities

    New York bids to level the playing field in a metropolis of inequality

    Subjects

    Conservation biology

    Ocean sciences

    Sustainability

    Latest on:

    Ocean sciences

    How cities are collaborating to help safeguard oceans
    Nature Index 24 SEP 21

    Rising tide of floating plastics spurs surge in research
    Nature Index 24 SEP 21

    Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
    Article 15 SEP 21

    Sustainability

    Sustainable Development Goals research speaks to city strengths and priorities
    Nature Index 24 SEP 21

    Tracking 20 leading cities’ Sustainable Development Goals research
    Nature Index 24 SEP 21

    Pursuit of better batteries underpins China’s lead in energy research
    Nature Index 24 SEP 21

    Jobs

    Postdoctoral Research Fellow in Bioinformatics and Genomics

    Max Planck Institute for Molecular Biomedicine
    Münster, Germany

    Associate Professor (Tenure) or Professor (Tenure), Biomaterials

    The University of British Columbia (UBC)
    Vancouver, Canada

    Postdoctoral Fellow in Functional Genomics/Glycomics

    The University of British Columbia (UBC)
    Vancouver, Canada

    60048: Physicist, Statistician, theoretical Computer Scientist or similar (f/m/x) – Development of causal inference methods in the field causal Inference and machine learning as part of the EU project XAIDA

    German Aerospace Center (DLR)
    Jena, Germany More

  • in

    Rising tide of floating plastics spurs surge in research

    NATURE INDEX
    24 September 2021

    Rising tide of floating plastics spurs surge in research

    Strong government policies and research insights are essential to deliver on a pledge to clean up the sea.

    Michael Eisenstein

    0

    Michael Eisenstein

    Michael Eisenstein is a freelance writer in Philadelphia, Pennsylvania.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    A jellyfish swims beneath a slick of floating plastic debris in the Indian Ocean near Sri Lanka.Credit: Alex Mustard/naturepl.com

    Many stories have been written about the ‘Great Pacific garbage patch’, a name evoking a vast Sargasso Sea of plastic bottles and bags. But the reality is that much of this debris has been broken down into a murky suspension of ‘microplastics’ spanning an area three times the size of France.
    Nature Index 2021 Science cities
    These plastic flecks introduce long-lasting chemical pollution into marine and coastal ecosystems, says Daoji Li, an oceanographer at East China Normal University in Shanghai. In 2020, Li and his colleagues found that microplastic debris is highly concentrated in even the deepest underwater trenches (G. Peng et al. Water Res. 168, 115121; 2020). Staving off this influx of pollutants is a target of the United Nations’ Sustainable Development Goal (SDG) Life below water (SDG14), with its aim to “prevent and significantly reduce marine pollution of all kinds” by 2025.Between 4.8 million and 12.7 million tonnes of plastic waste entered the oceans in 2010, according to a study in Science, and those numbers are expected to increase dramatically by 2050 without improvements to waste-management infrastructure (J. Jambeck et al. Science 347, 768–771; 2015). Scientists in China, which is a major producer and importer of plastic waste, are taking the lead in amelioration. According to the 2021 UNESCO Science Report, floating plastic debris was the fastest-growing area of SDG-related research in 2012–19 (see ‘A buoyant field’). Publications from the Chinese mainland on the topic jumped from 7 in the period 2012–15 to 286 in 2016–19, placing it third by volume after the United States and United Kingdom. Much of this work has come from investigators in Beijing, the top-ranked city in the Nature Index for SDG14-related research. (For more information on the analyses used in this article, see ‘A guide to Nature Index’.)

    Source: UNESCO

    Li is sceptical that much can be done to eliminate existing plastic pollution. “But what we can do is stop them entering to the ocean,” he says. His team has developed a monitoring framework that outlines ‘gold-standard’ technologies and assays for detecting and quantifying microplastic contamination.Government action is essential to stem the flow of plastic debris. UNESCO reports that 127 countries have adopted legislation to regulate plastic bags. In 2020, China launched an ambitious effort to ban plastic bags nationwide by 2022 and cut single-use plastic in restaurants by one-third by 2025 — although the COVID-19 pandemic created a surge in demand for delivery that derailed this effort.Despite the many hurdles to overcome, Li feels positive about the future. “I am pretty confident that we could meet the target set for SDG14,” he says, “but when we realize those challenges, we should keep going.”

    Source: UNESCO

    doi: https://doi.org/10.1038/d41586-021-02408-7This article is part of Nature Index 2021 Science cities, an editorially independent supplement produced with the financial support of third parties. About this content.

    Related Articles

    Sustainable Development Goals research speaks to city strengths and priorities

    Tracking 20 leading cities’ Sustainable Development Goals research

    How cities are collaborating to safeguard oceans

    Coral conservation strikes a balance

    Uneven spread of research leaves poorer cities short of solutions

    Pursuit of better batteries underpins China’s lead in energy research

    How Belo Horizonte’s bid to tackle hunger inspired other cities

    New York bids to level the playing field in a metropolis of inequality

    Subjects

    Conservation biology

    Ocean sciences

    Sustainability

    Latest on:

    Ocean sciences

    Coral conservation strikes a balance
    Nature Index 24 SEP 21

    How cities are collaborating to help safeguard oceans
    Nature Index 24 SEP 21

    Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
    Article 15 SEP 21

    Sustainability

    Sustainable Development Goals research speaks to city strengths and priorities
    Nature Index 24 SEP 21

    Tracking 20 leading cities’ Sustainable Development Goals research
    Nature Index 24 SEP 21

    Coral conservation strikes a balance
    Nature Index 24 SEP 21

    Jobs

    Postdoctoral Research Fellow in Bioinformatics and Genomics

    Max Planck Institute for Molecular Biomedicine
    Münster, Germany

    Associate Professor (Tenure) or Professor (Tenure), Biomaterials

    The University of British Columbia (UBC)
    Vancouver, Canada

    Postdoctoral Fellow in Functional Genomics/Glycomics

    The University of British Columbia (UBC)
    Vancouver, Canada

    60048: Physicist, Statistician, theoretical Computer Scientist or similar (f/m/x) – Development of causal inference methods in the field causal Inference and machine learning as part of the EU project XAIDA

    German Aerospace Center (DLR)
    Jena, Germany More

  • in

    How cities are collaborating to help safeguard oceans

    NATURE INDEX
    24 September 2021

    How cities are collaborating to help safeguard oceans

    Despite missed deadlines in 2020 for key targets in marine conservation, momentum for these Sustainable Development Goals is growing.

    Michael Eisenstein

    0

    Michael Eisenstein

    Michael Eisenstein is a freelance writer in Philadelphia, Pennsylvania.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    Bart Shepherd, co-leader of the Hope for Reefs initiative, guides fish into a decompression chamber while on expedition in Vanuatu.Credit: Luiz Rocha/California Academy of Sciences

    For about 30 minutes each year, vast colonies of corals in the waters of Palau, an island nation in the western Pacific, erupt in an almost perfectly synchronized mass-spawning event. Releasing buoyant packages of sperm and egg cells into the water to be fertilized by neighbouring colonies, these hermaphroditic species must make the most of rare opportunities to seed new life.In one of the world’s few indoor coral-culturing labs, Rebecca Albright and her team at the California Academy of Sciences in San Francisco are recreating the seasonal and lunar shifts that trigger such an event. The aim is to create multiple spawning systems that can be studied under controlled conditions. “Corals are notorious for being fickle animals to keep in captivity,” says Albright, a coral biologist and co-leader of Hope for Reefs, a global initiative to research and restore crucial coral-reef systems. “Most only sexually reproduce once a year, so you have to simulate all these environmental cues to elicit that.”
    Nature Index 2021 Science cities
    Strategies for cultivating and transplanting healthy corals into depleted areas are a crucial part of strengthening populations against what Albright describes as the “one-two punch effect” of climate change. Rising temperatures cause coral bleaching and death, while ocean acidification caused by increased levels of carbon dioxide makes corals less resilient and prevents regrowth. “If we are able to cap warming at 1.5  °C, we’re still going to lose 90% of reefs by 2050,” she says. “And if we edge towards 2 °C, we risk losing 97% to 99%.”Of the United Nations’ 17 Sustainable Development Goals (SDGs), Life below water (SDG14) and other SDGs related to environmental sustainability — Responsible consumption and production (SDG12), Climate action (SDG13) and Life on land (SDG15) — were the weakest in both donor funding and outcomes, attracting less than US$25 billion between them in 2000–13, according to the 2021 UNESCO Science Report (see go.nature.com/3zlojva). SDGs that are more directly related to economic growth — Industry, innovation and infrastructure (SDG9) and Sustainable cities and communities (SDG11) — by comparison, received $130 billion and $147 billion, respectively, over the same period.James Leape, co-director of Stanford University’s Center for Ocean Solutions in California, notes that four of the ten targets for SDG14, which aims to “conserve and sustainably use the oceans, seas and marine resources”, were due in 2020. All were missed. These include controlling the global damage wrought by illegal and unregulated fishing, which remains largely unchecked, and implementing scientifically grounded strategies for restoring affected fish stocks.But there are signs of momentum. The amount of ocean being conserved and managed within marine protected areas (MPAs), for example, has increased from 0.9% to 7.7% since 2000, says Leape. MPAs are regions in which fishing, mining and other activities are restricted. Efforts are under way to further expand the number of MPAs globally.Coastal collaborationsAs the world’s leading fishing nation, responsible for 15% of the reported global wild fish catch, China has ramped up efforts to designate new MPAs. Since 1980, China has designated more than 270 MPAs, comprising about 5% of its national waters. But it’s a long way off efforts by countries such as the United States, which has more than 1,000 MPAs that cover about 26% of its waters, and the United Kingdom, with 371 MPAs comprising 38% of its seas. In a 2019 Nature correspondence, fisheries researchers Yunzhou Li and Yiping Ren, from the Ocean University of China in Qingdao and Yong Chen from the University of Maine, Orono, say that effective monitoring and strict enforcement will also be essential to the success of China’s efforts (see Nature 573, 346; 2019).In a city-based analysis by the Nature Index, Beijing had the greatest output related to SDG14 in the 82 natural-sciences journals tracked by the index in 2015–20, with a Share of 17.88, followed by the coastal city of Townsville in northeastern Queensland, Australia (Share 15.59) and the Boston metropolitan area (Share 13.66). The San Francisco Bay Area, second only to Beijing in output related to all 17 SDGs, had the sixth-highest Share for SDG14 (13.24). (For more information on the analyses used in this article, see ‘A guide to Nature Index’.)

    Residents in the coastal town of Maroantsetra, in northeastern Madagascar, display their catch.Credit: Rebecca Gaal

    Many small island states face serious threats from the rapid decline of their coral reefs, which represent one of the world’s most diverse ecosystems. Gildas Todinanahary, a marine biologist at the Fisheries and Marine Science Institute at the University of Toliara in Madagascar, says the percentage of live coral cover surrounding the island nation has dropped from more than 80% in the 1980s to less than 10%, on average, today. “Decades ago, they used to say there will always be fish in the sea,” says Todinanahary. “Now they say there are no more fish.” This has jeopardized the livelihood of the fishing communities on the island’s western shore, he says.Christopher Golden, an ecologist and epidemiologist at the Harvard School of Public Health in Boston, is working with Todinanahary and his colleagues to deploy a series of small tiered platforms, designed to mimic the cracks and crevices of the reef, into healthy coral communities along the Madagascar coast. Once colonized, these structures are transported into degraded reefs in an effort to repopulate them. “If we can create a healthier reef, we can then rehabilitate some of the fish populations, and that will lead to improved fish-catch and greater access to seafood as a nutritional resource,” says Golden.Todinanahary is enthusiastic about the potential for seeding new reefs in barren coastal stretches, but says education and outreach to fishing communities will be key to ensuring that those restoration efforts endure. “It’s important to help communities change their habits and activities,” he says — for example, by providing training for alternative livelihoods such as aquaculture.Buy-in from community leaders is also crucial to the success of partnerships between researchers in leading science cities and colleagues in low- and middle-income maritime nations in SDG-related projects. In 2016, the government of Palau invited Leape and his team at Stanford to develop a strategy for turning 80% of its exclusive economic zone, a 370-km radius surrounding the island, into a protected area where fishing is prohibited. The initiative went into effect in January 2020. “We’re using satellite tracking to understand the patterns of use of the sanctuary by large pelagic species, and using DNA analysis to monitor biodiversity in the sanctuary,” says Leape. Palau’s programme has helped to motivate other island nations in the region to extend marine protection and conservation efforts as part of the Micronesia Challenge, an initiative to conserve 50% of marine resources and 30% of terrestrial resources by 2030.Golden’s research emphasizes both the sustainability and food-security sides of the fisheries-management coin, with routine health assessments of communities in places such as Madagascar and the Republic of Kiribati, an island nation in the central Pacific Ocean, coupled with close monitoring of the ecological health of their surrounding waters. To help this effort, Golden and his colleagues developed the Aquatic Food Composition Database, which compiles detailed nutritional information on more than 3,700 local plant and animal species to provide ecologically grounded guidance to local fishers. “We can look at what type of resilience there might be if we lose access to one species and have to focus on another,” says Golden. “We can understand the type of nourishment that people are actually getting from their catch.”Stanford’s Center for Ocean Solutions is also leveraging new technologies to guide sustainable fishing practices that benefit small-scale fishers, whose livelihood SDG14 aims to safeguard. “Their catches account for about two-thirds of the seafood we eat, and 90% of the fishery jobs,” says Leape. The centre is partnering with ABALOBI, an organization in South Africa founded by fisheries researcher Serge Raemaekers, from the University of Cape Town. ABALOBI has designed a mobile app toolbox to help fishers track specific fish populations, coordinate boats and crews, and bring catches to market. Leape is hopeful that early pilot testing in Africa and the Indian Ocean will pave the way for broader deployment in the near future.In parallel, Leape’s team is working on strategies to crack down on illegal fishing — currently estimated to account for roughly 20% of the global catch. This is being achieved partly through tools such as the satellite-based fishery monitoring efforts of Global Fishing Watch, a website run by Google in partnership with conservation non-profit organizations Oceana and SkyTruth. But technology is only part of the solution. Leape sees a crucial role for aggressive government enforcement and getting major corporations to engage in closer oversight of fishing practices. “We’ve been using Global Fishing Watch and other data sources to understand the patterns and areas for illegal fishing,” he says. “We’re working with these partners to try to translate that data into a more concerted effort to crack the problem.”

    doi: https://doi.org/10.1038/d41586-021-02407-8This article is part of Nature Index 2021 Science cities, an editorially independent supplement produced with the financial support of third parties. About this content.

    Related Articles

    Sustainable Development Goals research speaks to city strengths and priorities

    Tracking 20 leading cities’ Sustainable Development Goals research

    Rising tide of floating plastics spurs surge in research

    Coral conservation strikes a balance

    Uneven spread of research leaves poorer cities short of solutions

    Pursuit of better batteries underpins China’s lead in energy research

    How Belo Horizonte’s bid to tackle hunger inspired other cities

    New York bids to level the playing field in a metropolis of inequality

    Subjects

    Conservation biology

    Ocean sciences

    Sustainability

    Climate change

    Latest on:

    Ocean sciences

    Coral conservation strikes a balance
    Nature Index 24 SEP 21

    Rising tide of floating plastics spurs surge in research
    Nature Index 24 SEP 21

    Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires
    Article 15 SEP 21

    Sustainability

    Sustainable Development Goals research speaks to city strengths and priorities
    Nature Index 24 SEP 21

    Tracking 20 leading cities’ Sustainable Development Goals research
    Nature Index 24 SEP 21

    Coral conservation strikes a balance
    Nature Index 24 SEP 21

    Jobs

    Postdoctoral Research Fellow in Bioinformatics and Genomics

    Max Planck Institute for Molecular Biomedicine
    Münster, Germany

    Associate Professor (Tenure) or Professor (Tenure), Biomaterials

    The University of British Columbia (UBC)
    Vancouver, Canada

    Postdoctoral Fellow in Functional Genomics/Glycomics

    The University of British Columbia (UBC)
    Vancouver, Canada

    60048: Physicist, Statistician, theoretical Computer Scientist or similar (f/m/x) – Development of causal inference methods in the field causal Inference and machine learning as part of the EU project XAIDA

    German Aerospace Center (DLR)
    Jena, Germany More

  • in

    Mycorrhizal types influence island biogeography of plants

    1.MacArthur, R. H. & Wilson, E. The theory of Island Biogeography. (Princeton University Press, 1967).2.Losos, J. B. & Schluter, D. Analysis of an evolutionary species–area relationship. Nature 408, 847 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Kisel, Y. & Barraclough, T. G. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316–334 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Losos, J. B. & Ricklefs, R. E. The Theory Of Island Biogeography Revisited. (Princeton University Press, 2009).5.Onstein, R. E. et al. Frugivory-related traits promote speciation of tropical palms. Nat. Ecol. Evol. 1, 1903 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Bush, M. B. & Whittaker, R. J. Krakatau: colonization patterns and hierarchies. J. Biogeogr. 18, 341–356 (1991).7.Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).Article 

    Google Scholar 
    8.Hoeksema, J. D. et al. Evolutionary history of plant hosts and fungal symbionts predicts the strength of mycorrhizal mutualism. Commun. Biol. 1, 116 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Duchicela, J., Bever, J. D. & Schultz, P. A. Symbionts as filters of plant colonization of islands: tests of expected patterns and environmental consequences in the galapagos. Plants 9, 74 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    10.Delavaux, C. S. et al. Mycorrhizal fungi influence global plant biogeography. Nat. Ecol. Evol. 3, 424 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Chaudhary, V. B., Nolimal, S., Sosa‐Hernández, M. A., Egan, C. & Kastens, J. Trait‐based aerial dispersal of arbuscular mycorrhizal fungi. New Phytol. 228, 238–252 (2020).12.Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic press, 2008).13.Oneto, D. L., Golan, J., Mazzino, A., Pringle, A. & Seminara, A. Timing of fungal spore release dictates survival during atmospheric transport. Proc. Natl Acad. Sci. USA 117, 5134–5143 (2020).CAS 
    Article 

    Google Scholar 
    14.Roper, M., Pepper, R. E., Brenner, M. P. & Pringle, A. Explosively launched spores of ascomycete fungi have drag-minimizing shapes. Proc. Natl Acad. Sci. USA 105, 20583–20588 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol. 209, 1705–1719 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Read, D. J. & Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems- a journey towards relevance? New Phytol. 157, 475–492 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Martino, E. et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 217, 1213–1229 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.McCORMICK, M. K. et al. Limitations on orchid recruitment: not a simple picture. Mol. Ecol. 21, 1511–1523 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Selosse, M. A. et al. Saprotrophic fungal symbionts in tropical achlorophyllous orchids: finding treasures among the ‘molecular scraps’? Plant Signal. Behav. 5, 349–353 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Smith, G. R., Finlay, R. D., Stenlid, J., Vasaitis, R. & Menkis, A. Growing evidence for facultative biotrophy in saprotrophic fungi: data from microcosm tests with 201 species of wood‐decay basidiomycetes. New Phytol. 215, 747–755 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Lindahl, B. D. & Tunlid, A. Ectomycorrhizal fungi–potential organic matter decomposers, yet not saprotrophs. New Phytol. 205, 1443–1447 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Peay, K. G., Schubert, M. G., Nguyen, N. H. & Bruns, T. D. Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol. Ecol. 21, 4122–4136 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Pither, J., Pickles, B. J., Simard, S. W., Ordonez, A. & Williams, J. W. Below‐ground biotic interactions moderated the postglacial range dynamics of trees. New Phytol. 220, 1148–1160 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.van der Heijden, M. G., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    25.Chaudhary, V. B. et al. MycoDB, a global database of plant response to mycorrhizal fungi. Sci. Data 3, 160028 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Pyšek, P. et al. Facultative mycorrhizal associations promote plant naturalization worldwide. Ecosphere 10, e02937 (2019).Article 

    Google Scholar 
    27.Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol. 199, 41–51 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Steidinger, B. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Bueno, C. G. et al. Plant mycorrhizal status, but not type, shifts with latitude and elevation in Europe. Glob. Ecol. Biogeogr. 26, 690–699 (2017).Article 

    Google Scholar 
    30.Cameron, D. D., Leake, J. R. & Read, D. J. Mutualistic mycorrhiza in orchids: evidence from plant–fungus carbon and nitrogen transfers in the green‐leaved terrestrial orchid Goodyera repens. New Phytol. 171, 405–416 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Dearnaley, J. D. Further advances in orchid mycorrhizal research. Mycorrhiza 17, 475–486 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Davison, J. et al. Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities. ISME J. 12, 2211–2224 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Koziol, L. & Bever, J. D. Mycorrhizal feedbacks generate positive frequency dependence accelerating grassland succession. J. Ecol. 107, 622–632 (2019).Article 

    Google Scholar 
    34.Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).Article 
    CAS 

    Google Scholar 
    35.Koziol, L. et al. The plant microbiome and native plant restoration: the example of native mycorrhizal fungi. BioScience 68, 996–1006 (2018).36.Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 3, 239 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Zotz, G. The systematic distribution of vascular epiphytes–a critical update. Bot. J. Linn. Soc. 171, 453–481 (2013).Article 

    Google Scholar 
    38.Zotz, G. Vascular epiphytes in the temperate zones–a review. Plant Ecol. 176, 173–183 (2005).Article 

    Google Scholar 
    39.Taylor, A., Weigelt, P., König, C., Zotz, G. & Kreft, H. Island disharmony revisited using orchids as a model group. New Phytol. 223, 597–606 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Razanajatovo, M. et al. Autofertility and self‐compatibility moderately benefit island colonization of plants. Glob. Ecol. Biogeogr. 28, 341–352 (2019).Article 

    Google Scholar 
    41.van Kleunen, M. et al. The Global Naturalized Alien Flora (Glo NAF) database. Ecology 100, e02542 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Pysek, P. et al. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89, 203–274 (2017).Article 

    Google Scholar 
    43.Weigelt, P., König, C. & Kreft, H. GIFT–A global inventory of floras and traits for macroecology and biogeography. J. Biogeogr. 47, 16–43 (2020).Article 

    Google Scholar 
    44.Kalwij, J. M. Review of ‘The Plant List, a working list of all plant species’. J. Veg. Sci. 23, 998–1002 (2012).Article 

    Google Scholar 
    45.Byng, J. W. et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).Article 

    Google Scholar 
    46.Maherali, H. et al. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am. Nat. 188, E113–E125 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Brundrett, M. C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320, 37–77 (2009).CAS 
    Article 

    Google Scholar 
    48.Gerdemann, J. Vesicular-arbuscular mycorrhiza and plant growth. Annu. Rev. Phytopathol. 6, 397–418 (1968).Article 

    Google Scholar 
    49.Bueno, C. G., Gerz, M., Zobel, M. & Moora, M. Conceptual differences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment. Mycorrhiza 29, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    50.Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115(2018).51.Vrålstad, T. Are ericoid and ectomycorrhizal fungi part of a common guild? New Phytol. 164, 7–10 (2004).52.Vrålstad, T., Fossheim, T. & Schumacher, T. Piceirhiza bicolorata–the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol. 145, 549–563 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010). Report No. 2331-1258, (US Geological Survey, 2011).55.Center for International Earth Science Information Network – CIESIN – Columbia University, U. N. F. a. A. P.-F., and Centro Internacional de Agricultura Tropical – CIAT. Gridded Population of the World, Version 3 (GPWv3): Population Count Grid. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). (2005).56.Tuanmu, M. N. & Jetz, W. A global 1‐km consensus land‐cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).Article 

    Google Scholar 
    57.Weigelt, P. & Kreft, H. Quantifying island isolation–insights from global patterns of insular plant species richness. Ecography 36, 417–429 (2013).Article 

    Google Scholar 
    58.Kreft, H., Jetz, W., Mutke, J., Kier, G. & Barthlott, W. Global diversity of island floras from a macroecological perspective. Ecol. Lett. 11, 116–127 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    59.Triantis, K. A., Economo, E. P., Guilhaumon, F. & Ricklefs, R. E. Diversity regulation at macro‐scales: species richness on oceanic archipelagos. Glob. Ecol. Biogeogr. 24, 594–605 (2015).Article 

    Google Scholar 
    60.Crase, B., Liedloff, A. C. & Wintle, B. A. A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography 35, 879–888 (2012).Article 

    Google Scholar 
    61.Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST. 27, 716–748 https://doi.org/10.1007/s11749-018-0599-x (2018).Article 

    Google Scholar 
    62.R Core Team. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2019).63.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    64.Delavaux, C. et al. Mycorrhizal Types Influence Island Biogeography of Plants: associated data. Zenodo https://doi.org/10.5281/zenodo.5179626 (2021). More

  • in

    Broad scale proteomic analysis of heat-destabilised symbiosis in the hard coral Acropora millepora

    Coral physiology in response to elevated temperatureSustained declines in photosynthetic health and symbiont density are well-defined characteristics of coral bleaching41. Consistent with previous studies10,11, the photosynthetic health of the coral symbionts, measured as dark-adapted quantum yield of PSII (FV/FM), decreased towards the end of the temperature ramping period (from day 4), declining further over the following three days (rmANOVA; F6,39 = 129.9, P  More

  • in

    Heterothermy as a mechanism to offset energetic costs of environmental and homeostatic perturbations

    1.Wingfield, J. C., Vleck, C. M. & Moore, M. C. Seasonal changes of the adrenocortical response to stress in birds of the Sonoran Desert. J. Exp. Zool. 264, 419–428 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Boonstra, R. Coping with changing northern environments: The role of the stress axis in birds and mammals. Integr. Comp. Biol. 44, 95–108 (2004).PubMed 
    Article 

    Google Scholar 
    3.Lind, J. & Cresswell, W. Determining the fitness consequences of antipredation behavior. Behav. Ecol. 16, 945–956 (2005).Article 

    Google Scholar 
    4.Boyles, J. G., Smit, B. & McKechnie, A. E. A new comparative metric for estimating heterothermy in endotherms. Physiol. Biochem. Zool. 84, 115–123 (2011).PubMed 
    Article 

    Google Scholar 
    5.Boyles, J. G. et al. A global heterothermic continuum in mammals. Glob. Ecol. Biogeogr. 22, 1029–1039 (2013).Article 

    Google Scholar 
    6.Canale, C. I., Levesque, D. L. & Lovegrove, B. G. Tropical heterothermy: Does the exception prove the rule or force a re-definition? In Living in a Seasonal World: Thermoregulatory and Metabolic adaptations (eds Ruf, T. et al.) 29–40 (Springer, Berlin, 2012).Chapter 

    Google Scholar 
    7.Dammhahn, M., Landry-Cuerrier, M., Réale, D., Garant, D. & Humphries, M. M. Individual variation in energy-saving heterothermy affects survival and reproductive success. Funct. Ecol. 31, 866–875 (2017).Article 

    Google Scholar 
    8.McGuire, L. P., Jonasson, K. A. & Guglielmo, C. G. Bats on a budget: Torpor-assisted migration saves time and energy. PLoS ONE 9, e115724 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Glazier, D. S. Metabolic level and size scaling of rates of respiration and growth in unicellular organisms. Funct. Ecol. 23, 963–968 (2009).Article 

    Google Scholar 
    10.Turbill, C. & Stojanovski, L. Torpor reduces predation risk by compensating for the energetic cost of antipredator foraging behaviours. Proc. R. Soc. B Biol. Sci. 285, 1–9 (2018).
    Google Scholar 
    11.Angilletta, M. J., Cooper, B. S., Schuler, M. S. & Boyles, J. G. The evolution of thermal physiology in endotherms. Front. Biosci. 2, 861–881 (2010).
    Google Scholar 
    12.Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).Book 

    Google Scholar 
    13.Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Menzies, A. K. et al. Body temperature, heart rate, and activity patterns of two boreal homeotherms in winter: Homeostasis, allostasis, and ecological coexistence. Funct. Ecol. 34, 2292–2301 (2020).Article 

    Google Scholar 
    15.Humphries, M. M. & Careau, V. Heat for nothing or activity for free? Evidence and implications of activity-thermoregulatory heat substitution. Integr. Comp. Biol. 51, 419–431 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Daly, M., Behrends, P. R., Wilson, M. I. & Jacobs, L. F. Behavioural modulation of predation risk: Moonlight avoidance and crepuscular compensation in a nocturnal desert rodent, Dipodomys merriami. Anim. Behav. 44, 1–9 (1992).Article 

    Google Scholar 
    17.Price, M. V., Waser, N. M. & Bass, T. A. Effects of moonlight on microhabitat use by desert rodents. J. Mammal. 65, 353–356 (1984).Article 

    Google Scholar 
    18.Roschlau, C. & Scheibler, E. Foraging behaviour of a desert rodent community: Habitat or moon—Which is more influential?. Ethol. Ecol. Evol. 28, 394–413 (2016).Article 

    Google Scholar 
    19.Mandelik, Y., Jones, M. & Dayan, T. Structurally complex habitat and sensory adaptations mediate the behavioural responses of a desert rodent to an indirect cue for increased predation risk. Evol. Ecol. Res. 5, 501–515 (2003).
    Google Scholar 
    20.Gutman, R., Dayan, T., Levy, O., Schubert, I. & Kronfeld-Schor, N. The effect of the lunar cycle on fecal cortisol metabolite levels and foraging ecology of nocturnally and diurnally active spiny mice. PLoS ONE 6, 35–38 (2011).Article 
    CAS 

    Google Scholar 
    21.Upham, N. S. & Hafner, J. C. Do nocturnal rodents in the great basin desert avoid moonlight?. J. Mammal. 94, 59–72 (2013).Article 

    Google Scholar 
    22.Price, M. V. Structure of desert rodent communities: A critical review of questions and approaches. Integr. Comp. Biol. 26, 39–49 (1986).
    Google Scholar 
    23.Bennett, A. M. et al. Acute changes in whole body corticosterone in response to perceived predation risk: A mechanism for anti-predator behavior in anurans? Gen. Comp. Endocrinol. 229, 62–66 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Hernández, M. C., Navarro-Castilla, Á., Planillo, A., Sánchez-González, B. & Barja, I. The landscape of fear: Why some free-ranging rodents choose repeated live-trapping over predation risk and how it is associated with the physiological stress response. Behav. Process. 157, 125–132 (2018).Article 

    Google Scholar 
    25.Thaker, M., Lima, S. L. & Hews, D. K. Acute corticosterone elevation enhances antipredator behaviors in male tree lizard morphs. Horm. Behav. 56, 51–57 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Preparative actions. Endocr. Rev. 21, 55–89 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Mitra, R. & Sapolsky, R. M. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc. Natl. Acad. Sci. 105, 5573–5578 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Schroder, G. D. Foraging behavior and home range utilization of the bannertial kangaroo rat (Dipodomys spectabilis). Ecology 60, 657–665 (1979).ADS 
    Article 

    Google Scholar 
    29.Andersen, M. C. & Kay, F. R. Banner-tailed kangaroo rat burrow mounds and desert grassland habitats. J. Arid Environ. 41, 147–160 (1999).ADS 
    Article 

    Google Scholar 
    30.Harris, J. H. An experimental analysis of desert rodent foraging ecology. Ecology 65, 1579–1584 (1984).Article 

    Google Scholar 
    31.Lockard, R. B. Seasonal change in the activity pattern of Dipodomys spectabilis. J. Mammal. 59, 563–568 (1978).Article 

    Google Scholar 
    32.Lockard, R. B. & Owings, D. H. Seasonal variation in moonlight avoidance by bannertail kangaroo rats. J. Mammal. 55, 189–193 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Dawson, W. R. The relaxation of oxygen consumption to temperature in desert rodents. J. Mammal. 36, 543–553 (1955).Article 

    Google Scholar 
    34.Hart, J. S. Rodents. In Mammals. 1–149 (Academic Press, 1971).35.Quispe, R., Trappschuh, M., Gahr, M. & Goymann, W. Towards more physiological manipulations of hormones in field studies: Comparing the release dynamics of three kinds of testosterone implants, silastic tubing, time-release pellets and beeswax. Gen. Comp. Endocrinol. 212, 100–105 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Sahores, A. et al. Novel, low cost, highly effective, handmade steroid pellets for experimental studies. PLoS ONE 8, e64049 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Sopinka, N. M. et al. Manipulating glucocorticoids in wild animals: Basic and applied perspectives. Conserv. Physiol. 3, cov031 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Akana, S. F. et al. Feedback sensitivity of the rat hypothalamo-pituitary-adrenal axis and its capacity to adjust to exogenous corticosterone. Endocrinology 131, 585–594 (1992).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Bush, V. L., Middlemiss, D. N., Marsden, C. A. & Fone, K. C. F. Implantation of a slow release rorticosterone pellet induces long-term alterations in serotonergic neurochemistry in the rat brain. J. Neuroendocrinol. 15, 607–613 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Meyer, J. S., Micco, D. J., Stephenson, B. S., Krey, L. C. & McEwen, B. S. Subcutaneous implantation method for chronic glucocorticoid replacement therapy. Physiol. Behav. 22, 867–870 (1979).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Chang, C. C. & Kincl, F. A. Sustained release hormonal preparations: 3. Biological effectiveness of 6-methyl-1717α-acetoxypregna-4,6-diene-3,20-dione. Steroids 12, 689–696 (1968).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Kratochvíl, P., Benagiano, G. & Kincl, F. A. Sustained release hormonal preparations. 6. Permeability constant of various steroids. Steroids 15, 505–511 (1970).PubMed 
    Article 

    Google Scholar 
    43.Nash, H. A., Robertson, D. N., Moo Young, A. J. & Atkinson, L. E. Steroid release from silastic capsules and rods. Contraception 18, 367–394 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Borrow, A. P. et al. Chronic variable stress alters hypothalamic–pituitary–adrenal axis function in the female mouse. Physiol. Behav. 209, 112613 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Lajud, N., Roque, A., Cajero, M., Gutiérrez-Ospina, G. & Torner, L. Periodic maternal separation decreases hippocampal neurogenesis without affecting basal corticosterone during the stress hyporesponsive period, but alters HPA axis and coping behavior in adulthood. Psychoneuroendocrinology 37, 410–420 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Mateo, J. M. & Cavigelli, S. A. A validation of extraction methods for noninvasive sampling of glucocorticoids in free-living ground squirrels. Physiol. Biochem. Zool. 78, 1069–1084 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Touma, C., Palme, R. & Sachser, N. Analyzing corticosterone metabolites in fecal samples of mice: A noninvasive technique to monitor stress hormones. Horm. Behav. 45, 10–22 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Torres-Medina, F. et al. Corticosterone implants produce stress-hyporesponsive birds. J. Exp. Biol. 221, jeb173864 (2018).PubMed 
    Article 

    Google Scholar 
    49.Adzic, M. et al. Acute or chronic stress induce cell compartment-specific phosphorylation of glucocorticoid receptor and alter its transcriptional activity in Wistar rat brain. J. Endocrinol. 202, 87–97 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Ellis, M. V. Development of a compact system for field euthanasia of small mammals. J. Mammal. 98, 1211–1214 (2017).Article 

    Google Scholar 
    51.Guglielmo, C. G., McGuire, L. P., Gerson, A. R. & Seewagen, C. L. Simple, rapid, and non-invasive measurement of fat, lean, and total water masses of live birds using quantitative magnetic resonance. J. Ornithol. 152, 75 (2011).Article 

    Google Scholar 
    52.McGuire, L. P. & Guglielmo, C. G. Quantitative magnetic resonance: A rapid, noninvasive body composition analysis technique for live and salvaged bats. J. Mammal. 91, 1375–1380 (2010).Article 

    Google Scholar 
    53.Warner, D. A., Johnson, M. S. & Nagy, T. R. Validation of body condition indices and quantitative magnetic resonance in estimating body composition in a small lizard. J. Exp. Zool. Part A Ecol. Genet. Physiol. 325, 588–597 (2016).CAS 
    Article 

    Google Scholar 
    54.Boyles, J. G. A brief introduction to methods for describing body temperature in endotherms. Physiol. Biochem. Zool. 92, 365–372 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Monson, G. & Kessler, W. Life history notes on the banner-tailed kangaroo rat, Merriam’s kangaroo rat, and the white-throated wood rat in Arizona and New Mexico. J. Wildl. Manag. 4, 37–43 (1940).Article 

    Google Scholar 
    56.Smit, B., Boyles, J. G., Brigham, R. M. & Mckechnie, A. E. Torpor in dark times: patterns of heterothermy are associated with the lunar cycle in a nocturnal bird. J. Biol. Rhythms 26, 241–248 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Kay, F. R. & Whitford, W. G. The burrow environment of the banner-tailed kangaroo rat, Dipodomys spectabilis, in southcentral New Mexico. Am. Midl. Nat. 99, 270–279 (1978).Article 

    Google Scholar 
    58.Randall, J. A. Territorial-defense interactions with neighbors and strangers in banner-tailed kangaroo rats. J. Mammal. 70, 308–315 (1989).Article 

    Google Scholar 
    59.Randall, J. A. Mating strategies of a nocturnal, desert rodent (Dipodomys spectabilis). Behav. Ecol. Sociobiol. 28, 215–220 (1991).Article 

    Google Scholar 
    60.Ward, D. W. & Randall, J. A. Territorial defense in the bannertail kangaroo rat (Dipodomys spectabilis): footdrumming and visual threats. Behav. Ecol. Sociobiol. 20, 323–328 (1987).Article 

    Google Scholar 
    61.Brown, J. S., Kotler, B. P., Smith, R. J. & Wirtz, W. O. The effects of owl predation on the foraging behavior of heteromyid rodents. Oecologia 76, 408–415 (1988).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Navarro-Castilla, Á., Barja, I. & Díaz, M. Foraging, feeding, and physiological stress responses of wild wood mice to increased illumination and common genet cues. Curr. Zool. 64, 409–417 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Sargunaraj, F., Kotler, B. P., Juliana, J. R. S. & Wielebnowski, N. Stress as an adaptation II: Does experimental cortisol supplementation affect predation risk assessment in foraging gerbils?. Evol. Ecol. Res. 18, 587–598 (2017).
    Google Scholar 
    64.Voellmy, I. K., Goncalves, I. B., Barrette, M. F., Monfort, S. L. & Manser, M. B. Mean fecal glucocorticoid metabolites are associated with vigilance, whereas immediate cortisol levels better reflect acute anti-predator responses in meerkats. Horm. Behav. 66, 759–765 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Kotler, B. P., Brown, J., Mukherjee, S., Berger-Tal, O. & Bouskila, A. Moonlight avoidance in gerbils reveals a sophisticated interplay among time allocation, vigilance and state-dependent foraging. Proc. R. Soc. B Biol. Sci. 277, 1469–1474 (2010).Article 

    Google Scholar 
    66.Pravosudov, V. V. Long-term moderate elevation of corticosterone facilitates avian food-caching behaviour and enhances spatial memory. Proc. R. Soc. B Biol. Sci. 270, 2599–2604 (2003).CAS 
    Article 

    Google Scholar 
    67.Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: Neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    68.Humphries, M. M., Kramer, D. L. & Thomas, D. W. The role of energy availability in mammalian hibernation: An experimental test in free-ranging eastern chipmunks. Physiol. Biochem. Zool. 76, 165–179 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Munro, D., Thomas, D. W. & Humphries, M. M. Torpor patterns of hibernating eastern chipmunks Tamias striatus vary in response to the size and fatty acid composition of food hoards. J. Anim. Ecol. 74, 692–700 (2005).Article 

    Google Scholar 
    70.Ernest, S. K. M. et al. Rodents, plants, and precipitation: Spatial and temporal dynamics of consumers and resources. Oikos 88, 470–482 (2017).Article 

    Google Scholar 
    71.Warne, R. W., Pershall, A. D. & Wolf, B. O. Linking precipitation and C3–C4 plant production to resource dynamics in higher-trophic-level consumers. Ecology 91, 1628–1638 (2010).PubMed 
    Article 

    Google Scholar 
    72.Warne, R. W., Baer, S. G. & Boyles, J. G. Community physiological ecology. Trends Ecol. Evol. 34, 510–518 (2019).PubMed 
    Article 

    Google Scholar  More

  • in

    Long-term trends in the body condition of parents and offspring of Tengmalm’s owls under fluctuating food conditions and climate change

    1.Brommer, J. E., Pietiäinen, H. & Kolunen, H. Reproduction and survival in a variable environment: Ural owls (Strix uralensis) and the three-year vole cycle. Auk 119, 544–550. https://doi.org/10.1642/0004-8038(2002)119[0544:rasiav]2.0.co;2 (2002).Article 

    Google Scholar 
    2.Begon, M., Townsend, C. R. & Harper, J. L. Ecology, Individuals, Populations and Communities 4th edn. (Blackwell, 2006).
    Google Scholar 
    3.Chang, A. M. & Wiebe, K. L. Body condition in snowy owls wintering on the prairies is greater in females and older individuals and may contribute to sex-biased mortality. Auk 133, 738–746. https://doi.org/10.1642/auk-16-60.1 (2016).Article 

    Google Scholar 
    4.McLean, N., van der Jeugd, H. P. & van de Pol, M. High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLoS ONE 13, e0192401. https://doi.org/10.1371/journal.pone.0192401 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.McLean, N. M., van der Jeugd, H. P., van Turnhout, C. A. M., Lefcheck, J. S. & van de Pol, M. Reduced avian body condition due to global warming has little reproductive or population consequences. Oikos 129, 714–730. https://doi.org/10.1111/oik.06802 (2020).Article 

    Google Scholar 
    6.Aubry, L. M. et al. Climate change, phenology, and habitat degradation: Drivers of gosling body condition and juvenile survival in lesser snow geese. Glob. Change Biol. 19, 149–160. https://doi.org/10.1111/gcb.12013 (2013).ADS 
    Article 

    Google Scholar 
    7.Gardner, J. L., Amano, T., Sutherland, W. J., Clayton, M. & Peters, A. Individual and demographic consequences of reduced body condition following repeated exposure to high temperatures. Ecology 97, 786–795. https://doi.org/10.1890/15-0642.1 (2016).Article 
    PubMed 

    Google Scholar 
    8.Newton, I. Population Limitation in Birds (Academic Press, 1998).
    Google Scholar 
    9.Dunn, P. O. & Møller, A. P. Effects of Climate Change on Birds 2nd edn. (Oxford University Press, 2019).Book 

    Google Scholar 
    10.Crossin, G. T. et al. A carryover effect of migration underlies individual variation in reproductive readiness and extreme egg size dimorphism in Macaroni penguins. Am. Nat. 176, 357–366. https://doi.org/10.1086/655223 (2010).Article 
    PubMed 

    Google Scholar 
    11.Clausen, K. K., Madsen, J. & Tombre, I. M. Carry-over or compensation? The impact of winter harshness and post-winter body condition on spring-fattening in a migratory goose species. PLoS ONE 10(7), e0132312. https://doi.org/10.1371/journal.pone.0132312 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Selonen, V., Wistbacka, R. & Korpimäki, E. Food abundance and weather modify reproduction of two arboreal squirrel species. J. Mammal. 97, 1376–1384. https://doi.org/10.1093/jmammal/gyw096 (2016).Article 

    Google Scholar 
    13.Harrison, X. A., Blount, J. D., Inger, R., Norris, D. R. & Bearhop, S. Carry-over effects as drivers of fitness differences in animals. J. Anim. Ecol. 80, 4–18. https://doi.org/10.1111/j.1365-2656.2010.01740.x (2011).Article 
    PubMed 

    Google Scholar 
    14.O’Connor, C. M., Norris, D. R., Crossin, G. T. & Cooke, S. J. Biological carryover effects: Linking common concepts and mechanisms in ecology and evolution. Ecosphere 5, 1–11. https://doi.org/10.1890/es13-00388.1 (2014).Article 

    Google Scholar 
    15.Montreuil-Spencer, C., Schoenemann, K., Lendvai, A. Z. & Bonier, F. Winter corticosterone and body condition predict breeding investment in a nonmigratory bird. Behav. Ecol. 30, 1642–1652. https://doi.org/10.1093/beheco/arz129 (2019).Article 

    Google Scholar 
    16.Korpimäki, E. Body mass of breeding Tengmalm’s owls Aegolius funereus: Seasonal, between-year, site and age-related variation. Ornis Scand. 21, 169–178. https://doi.org/10.2307/3676776 (1990).Article 

    Google Scholar 
    17.Dijkstra, C., Daan, S., Meijer, T., Cave, A. J. & Foppen, R. P. B. Daily and seasonal-variations in body-mass of the kestrel in relation to food availability and reproduction. Ardea 76, 127–140 (1988).
    Google Scholar 
    18.Pietiäinen, H. & Kolunen, H. Female body condition and breeding of the Ural owl Strix uralensis. Funct. Ecol. 7, 726–735. https://doi.org/10.2307/2390195 (1993).Article 

    Google Scholar 
    19.Wijnandts, H. Ecological energetics of the long-eared owl (Asio otus). Ardea 72, 1–92 (1984).
    Google Scholar 
    20.Korpimäki, E. & Hakkarainen, H. Fluctuating food supply affects the cluch size of Tengmalm’s owl independent of laying date. Oecologia 85, 543–552 (1991).ADS 
    Article 

    Google Scholar 
    21.Korpimäki, E. & Wiehn, J. Clutch size of kestrels: Seasonal decline and experimental evidence for food limitation under fluctuating food conditions. Oikos 83, 259–272. https://doi.org/10.2307/3546837 (1998).Article 

    Google Scholar 
    22.Pietiäinen, H. Seasonal and individual variation in the production of offspring in the Ural owl Strix uralensis. J. Anim. Ecol. 58, 905–920. https://doi.org/10.2307/5132 (1989).Article 

    Google Scholar 
    23.Wellicome, T. I. Effects of food on reproduction in burrowing owls (Athene cunicularia) during three stages of the breeding season (Ph.D. dissertation). (University of Alberta, 2000).24.Ilmonen, P. et al. Parental effort and blood parasitism in Tengmalm’s owl: Effects of natural and experimental variation in food abundance. Oikos 86, 79–86. https://doi.org/10.2307/3546571 (1999).Article 

    Google Scholar 
    25.Santangeli, A., Hakkarainen, H., Laaksonen, T. & Korpimäki, E. Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm’s owls. Anim. Behav. 83, 1115–1123. https://doi.org/10.1016/j.anbehav.2012.02.002 (2012).Article 

    Google Scholar 
    26.Griebel, R. L. & Savidge, J. A. Factors related to body condition of nestling burrowing owls in Buffalo Gap National Grassland, South Dakota. Wilson Bull. 115, 477–480. https://doi.org/10.1676/02-094 (2003).Article 

    Google Scholar 
    27.Valkama, J., Korpimäki, E., Holm, A. & Hakkarainen, H. Hatching asynchrony and brood reduction in Tengmalm’s owl Aegolius funereus: The role of temporal and spatial variation in food abundance. Oecologia 133, 334–341. https://doi.org/10.1007/s00442-002-1033-2 (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    28.König, C. & Weick, F. Owls of the World 2nd edn. (Yale University Press, 2008).
    Google Scholar 
    29.Mikkola, H. Owls of Europe (Poyser, 1983).
    Google Scholar 
    30.Korpimäki, E. On the Ecology and Biology of Tengmalm’s Owl (Aegolius funereus) in Southern Ostrobothnia and Soumenselkä, Western Finland Vol. 13, 1–84 (University of Oulu, 1981).
    Google Scholar 
    31.Korpimäki, E. Diet of breeding Tengmalm’s owls Aegolius funereus: Long-term changes and year-to-year variation under cyclic food conditions. Ornis Fenn. 65, 21–30 (1988).
    Google Scholar 
    32.Korpimäki, E. & Hakkarainen, H. The Boreal Owl: Ecology, Behaviour and Conservation of a Forest-Dwelling Predator (Cambridge University Press, 2012).Book 

    Google Scholar 
    33.Kouba, M., Bartoš, L., Šindelář, J. & Šťastný, K. Alloparental care and adoption in Tengmalm’s owl (Aegolius funereus). J. Ornithol. 158, 185–191. https://doi.org/10.1007/s10336-016-1381-z (2017).Article 

    Google Scholar 
    34.Eldegard, K. & Sonerud, G. A. Experimental increase in food supply influences the outcome of within-family conflicts in Tengmalm’s owl. Behav. Ecol. Sociobiol. 64, 815–826 (2010).Article 

    Google Scholar 
    35.Eldegard, K. & Sonerud, G. A. Sex roles during post-fledging care in birds: Female Tengmalm’s owls contribute little to food provisioning. J. Ornithol. 153, 385–398. https://doi.org/10.1007/s10336-011-0753-7 (2012).Article 

    Google Scholar 
    36.Kouba, M., Bartoš, L. & Šťastný, K. Differential movement patterns of juvenile Tengmalm’s owls (Aegolius funereus) during the post-fledging dependence period in two years with contrasting prey abundance. PLoS ONE 8(7), e67034. https://doi.org/10.1371/journal.pone.0067034 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Korpimäki, E. Fluctuating food abundance determines the lifetime reproductive success of male Tengmalm’s owls. J. Anim. Ecol. 61, 103–111 (1992).Article 

    Google Scholar 
    38.Kouba, M., Bartoš, L., Korpimäki, E. & Zárybnická, M. Factors affecting the duration of nestling period and fledging order in Tengmalm’s owl (Aegolius funereus): Effect of wing length and hatching sequence. PLoS ONE 10(3), e0121641. https://doi.org/10.1371/journal.pone.0121641 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Björklund, H., Saurola, P. & Valkama, J. Petolintuvuosi 2019 oli kohtalainen (Summary: Breeding and population trends of common raptors and owls in Finland in 2019). Yearb. Linnut Mag. 2019, 44–59 (2020).
    Google Scholar 
    40.Kouba, M., Bartoš, L., Bartošová, J., Hongisto, K. & Korpimäki, E. Interactive influences of fluctuations of main food resources and climate change on long-term population decline of Tengmalm’s owls in the boreal forest. Sci. Rep. 10, 20429. https://doi.org/10.1038/s41598-41020-77531-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Ferrero, J. J., Grande, J. M. & Negro, J. J. Copulation behavior of a potentially double-brooded bird of prey, the black-winged kite (Elanus caeruleus). J. Raptor Res. 37, 1–7 (2003).
    Google Scholar 
    42.Sergio, F. From individual behaviour to population pattern: Weather-dependent foraging and breeding performance in black kites. Anim. Behav. 66, 1109–1117. https://doi.org/10.1006/anbe.2003.2303 (2003).Article 

    Google Scholar 
    43.Korpimäki, E. Effects of age on breeding performance of Tengmalm’s owl Aegolius funereus in western Finland. Ornis Scand. 19, 21–26 (1988).Article 

    Google Scholar 
    44.Laaksonen, T., Korpimäki, E. & Hakkarainen, H. Interactive effects of parental age and environmental variation on the breeding performance of Tengmalm’s owls. J. Anim. Ecol. 71, 23–31. https://doi.org/10.1046/j.0021-8790.2001.00570.x (2002).Article 

    Google Scholar 
    45.Korpimäki, E. Highlights from a long-term study of Tengmalm’s owls: Cyclic fluctuations in vole abundance govern mating systems, population dynamics and demography. Brit. Birds 113, 316–333 (2020).
    Google Scholar 
    46.Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x (2009).Article 

    Google Scholar 
    47.Korpimäki, E., Norrdahl, K., Huitu, O. & Klemola, T. Predator-induced synchrony in population oscillations of coexisting small mammal species. Proc. R. Soc. B-Biol. Sci. 272, 193–202 (2005).Article 

    Google Scholar 
    48.Huitu, O., Norrdahl, K. & Korpimäki, E. Landscape effects on temporal and spatial properties of vole population fluctuations. Oecologia 135, 209–220. https://doi.org/10.1007/s00442-002-1171-6 (2003).ADS 
    Article 
    PubMed 

    Google Scholar 
    49.Schreiber-Gregory, D. N. & Jackson, H. M. Multicollinearity: What is it, why should we care, and how can it be controlled. In Proc. SAS R Global Forum 2017, Conference Paper 1404 (2017).50.Zuur, A., Ieno, E. N. & Smith, G. M. Analyzing Ecological Data (Springer, 2007).Book 

    Google Scholar 
    51.Tao, J., Littel, R., Patetta, M., Truxillo, C. & Wolfinger, R. Mixed Model Analyses Using the SAS System Course Notes (SAS Institute Inc., 2002).
    Google Scholar 
    52.Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretical Approach (Springer, 1998).Book 

    Google Scholar 
    53.Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    54.Vaida, F. & Blanchard, S. Conditional Akaike information for mixed-effects models. Biometrika 92, 351–370. https://doi.org/10.1093/biomet/92.2.351 (2005).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    55.Ward, E. J. A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools. Ecol. Model. 211, 1–10. https://doi.org/10.1016/j.ecolmodel.2007.10.030 (2008).CAS 
    Article 

    Google Scholar 
    56.Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).MathSciNet 
    Article 

    Google Scholar 
    57.Christensen, W. Agreeing to disagree: Using SAS to make reasoned decisions when information criteria select different models. In SAS Conference Proceedings: Western Users of SAS Software 2018. September 5–7, 2018, Sacramento, California, Paper 099–2018 (2018).58.Posada, D. & Buckley, T. R. Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793–808. https://doi.org/10.1080/10635150490522304 (2004).Article 
    PubMed 

    Google Scholar 
    59.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    60.Buckland, S. T., Burnham, K. P. & Augustin, N. H. Model selection: An integral part of inference. Biometrics 53, 603–618. https://doi.org/10.2307/2533961 (1997).Article 
    MATH 

    Google Scholar 
    61.Wagenmakers, E. J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196. https://doi.org/10.3758/bf03206482 (2004).Article 
    PubMed 

    Google Scholar 
    62.Lack, D. The Natural Regulation of Animal Numbers (Oxford University Press, 1954).
    Google Scholar 
    63.Korpela, K. et al. Nonlinear effects of climate on boreal rodent dynamics: Mild winters do not negate high-amplitude cycles. Glob. Change Biol. 19, 697–710. https://doi.org/10.1111/gcb.12099 (2013).ADS 
    Article 

    Google Scholar 
    64.Wiehn, J. & Korpimäki, E. Food limitation on brood size: Experimental evidence in the Eurasian kestrel. Ecology 78, 2043–2050. https://doi.org/10.2307/2265943 (1997).Article 

    Google Scholar 
    65.Korpimäki, E. & Lagerström, M. Survival and natal dispersal of fledglings of Tengmalm’s owl in relation to fluctuating food conditions and hatching date. J. Anim. Ecol. 57, 433–441 (1988).Article 

    Google Scholar 
    66.Norris, K. J. Female choice and the quality of parental care in the great tit Parus major. Behav. Ecol. Sociobiol. 27, 275–281 (1990).Article 

    Google Scholar 
    67.Naef-Daenzer, B., Widmer, F. & Nuber, M. Differential post-fledging survival of great and coal tits in relation to their condition and fledging date. J. Anim. Ecol. 70, 730–738. https://doi.org/10.1046/j.0021-8790.2001.00533.x (2001).Article 

    Google Scholar 
    68.Grüebler, M. U. & Naef-Daenzer, B. Postfledging parental effort in barn swallows: Evidence for a trade-off in the allocation of time between broods. Anim. Behav. 75, 1877–1884. https://doi.org/10.1016/j.anbehav.2007.12.002 (2008).Article 

    Google Scholar 
    69.Jones, T. M., Ward, M. P., Benson, T. J. & Brawn, J. D. Variation in nestling body condition and wing development predict cause-specific mortality in fledgling dickcissels. J. Avian Biol. 48, 439–447. https://doi.org/10.1111/jav.01143 (2017).Article 

    Google Scholar 
    70.Magrath, R. D. Nestling weight and juvenile survival in the blackbird, Turdus merula. J. Anim. Ecol. 60, 335–351. https://doi.org/10.2307/5464 (1991).Article 

    Google Scholar 
    71.Naef-Daenzer, B. & Grüebler, M. U. Post-fledging survival of altricial birds: Ecological determinants and adaptation. J. Field Ornithol. 87, 227–250. https://doi.org/10.1111/jofo.12157 (2016).Article 

    Google Scholar 
    72.Winkler, D. W., Luo, M. K. & Rakhimberdiev, E. Temperature effects on food supply and chick mortality in tree swallows (Tachycineta bicolor). Oecologia 173, 129–138. https://doi.org/10.1007/s00442-013-2605-z (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Hylton, R. A., Frederick, P. C., de la Fuente, T. E. & Spalding, M. G. Effects of nestling health on postfledging survival of wood storks. Condor 108, 97–106. https://doi.org/10.1650/0010-5422(2006)108[0097:Eonhop]2.0.Co;2 (2006).Article 

    Google Scholar 
    74.Imlay, T. L., Mann, H. A. R. & Leonard, M. L. No effect of insect abundance on nestling survival or mass for three aerial insectivores. Avian Conserv. Ecol. https://doi.org/10.5751/ace-01092-120219 (2017).Article 

    Google Scholar 
    75.Nooker, J. K., Dunn, P. O. & Whittingham, L. A. Effects of food abundance, weather, and female condition on reproduction in tree swallows (Tachycineta bicolor). Auk 122, 1225–1238. https://doi.org/10.1642/0004-8038(2005)122[1225:eofawa]2.0.co;2 (2005).Article 

    Google Scholar 
    76.Perrig, M., Gruebler, M. U., Keil, H. & Naef-Daenzer, B. Experimental food supplementation affects the physical development, behaviour and survival of little owl Athene noctua nestlings. Ibis 156, 755–767. https://doi.org/10.1111/ibi.12171 (2014).Article 

    Google Scholar 
    77.Perrig, M., Gruebler, M. U., Keil, H. & Naef-Daenzer, B. Post-fledging survival of little owls Athene noctua in relation to nestling food supply. Ibis 159, 532–540. https://doi.org/10.1111/ibi.12477 (2017).Article 

    Google Scholar 
    78.McDonald, P. G., Olsen, P. D. & Cockburn, A. Sex allocation and nestling survival in a dimorphic raptor: Does size matter? Behav. Ecol. 16, 922–930. https://doi.org/10.1093/beheco/ari071 (2005).Article 

    Google Scholar 
    79.Morosinotto, C. et al. Fledging mass is color morph specific and affects local recruitment in a wild bird. Am. Nat. 196, 609–619. https://doi.org/10.1086/710708 (2020).Article 
    PubMed 

    Google Scholar 
    80.Overskaug, K., Bolstad, J. P., Sunde, P. & Øien, I. J. Fledgling behavior and survival in northern tawny owls. Condor 101, 169–174 (1999).Article 

    Google Scholar 
    81.Todd, L. D., Poulin, R. G., Wellicome, T. I. & Brigham, R. M. Post-fledging survival of burrowing owls in Saskatchewan. J. Wildl. Manage. 67, 512–519. https://doi.org/10.2307/3802709 (2003).Article 

    Google Scholar 
    82.Cox, W. A., Thompson, F. R., Cox, A. S. & Faaborg, J. Post-fledging survival in passerine birds and the value of post-fledging studies to conservation. J. Wildl. Manage. 78, 183–193. https://doi.org/10.1002/jwmg.670 (2014).Article 

    Google Scholar 
    83.Korpimäki, E. Timing of breeding of Tengmalm’s owl Aegolius funereus in relation to vole dynamics in western Finland. Ibis 129, 58–68 (1987).Article 

    Google Scholar 
    84.Pigeault, R., Cozzarolo, C. S., Glaizot, O. & Christe, P. Effect of age, haemosporidian infection and body condition on pair composition and reproductive success in great tits Parus major. Ibis 162, 613–626. https://doi.org/10.1111/ibi.12774 (2020).Article 

    Google Scholar 
    85.Hakkarainen, H. & Korpimäki, E. The effect of female body-size on clutch volume of Tengmalm’s owls Aegolius funereus in varying food conditions. Ornis Fenn. 70, 189–195 (1993).
    Google Scholar 
    86.Hanauska-Brown, L. A., Dufty, A. M. & Roloff, G. J. Blood chemistry, cytology, and body condition in adult northern goshawks (Accipiter gentilis). J. Raptor Res. 37, 299–306 (2003).
    Google Scholar 
    87.Chastel, O., Weimerskirch, H. & Jouventin, P. Body condition and seabird reproductive performance: A study of three petrel species. Ecology 76, 2240–2246. https://doi.org/10.2307/1941698 (1995).Article 

    Google Scholar 
    88.Grilli, M. G., Pari, M. & Ibanez, A. Poor body conditions during the breeding period in a seabird population with low breeding success. Mar. Biol. https://doi.org/10.1007/s00227-018-3401-4 (2018).Article 

    Google Scholar 
    89.Toland, B. Hunting success of some Missouri raptors. Wilson Bull. 98, 116–125 (1986).
    Google Scholar 
    90.Masoero, G., Morosinotto, C., Laaksonen, T. & Korpimäki, E. Food hoarding of an avian predator: Sex- and age-related differences under fluctuating food conditions. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-00018-02571-x (2018).Article 

    Google Scholar 
    91.Masoero, G., Laaksonen, T., Morosinotto, C. & Korpimäki, E. Age and sex differences in numerical responses, dietary shifts, and total responses of a generalist predator to population dynamics of main prey. Oecologia 192, 699–711. https://doi.org/10.1007/s00442-020-04607-x (2020).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Norrdahl, K. & Korpimäki, E. Changes in population structure and reproduction during a 3-year population cycle of voles. Oikos 96, 331–345. https://doi.org/10.1034/j.1600-0706.2002.970319.x (2002).Article 

    Google Scholar 
    93.Merritt, J. F., Lima, M. & Bozinovic, F. Seasonal regulation in fluctuating small mammal populations: Feedback structure and climate. Oikos 94, 505–514. https://doi.org/10.1034/j.1600-0706.2001.940312.x (2001).Article 

    Google Scholar 
    94.Solonen, T. Overwinter population change of small mammals in southern Finland. Ann. Zool. Fenn. 43, 295–302 (2006).
    Google Scholar 
    95.Haapakoski, M. & Ylönen, H. Snow evens fragmentation effects and food determines overwintering success in ground-dwelling voles. Ecol. Res. 28, 307–315. https://doi.org/10.1007/s11284-012-1020-y (2013).Article 

    Google Scholar 
    96.Berlioz, J. & Bergman, G. (eds) Proc., XII International Ornithological Congress, Helsinki 5–12 Vol. 158, 586–591 (Tilgmannin Kirjapaino, 1960).
    Google Scholar 
    97.Fraixedas, S., Linden, A. & Lehikoinen, A. Population trends of common breeding forest birds in southern Finland are consistent with trends in forest management and climate change. Ornis Fenn. 92, 187–203 (2015).
    Google Scholar 
    98.Virkkala, R. Long-term decline of southern boreal forest birds: Consequence of habitat alteration or climate change? Biodivers. Conserv. 25, 151–167. https://doi.org/10.1007/s10531-015-1043-0 (2016).Article 

    Google Scholar 
    99.Björklund, H., Valkama, J., Tomppo, E. & Laaksonen, T. Habitat effects on the breeding performance of three forest-dwelling hawks. PLoS ONE 10(9), e0137877. https://doi.org/10.1371/journal.pone.0137877 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    100.Koskimäki, J. et al. Are habitat loss, predation risk and climate related to the drastic decline in a Siberian flying squirrel population? A 15-year study. Popul. Ecol. 56, 341–348. https://doi.org/10.1007/s10144-013-0411-4 (2014).Article 

    Google Scholar 
    101.Suzuki, N. & Parker, K. L. Proactive conservation of high-value habitat for woodland caribou and grizzly bears in the boreal zone of British Columbia, Canada. Biol. Conserv. 230, 91–103. https://doi.org/10.1016/j.biocon.2018.12.013 (2019).Article 

    Google Scholar 
    102.Venier, L. A. et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ. Rev. 22, 457–490. https://doi.org/10.1139/er-2013-0075 (2014).Article 

    Google Scholar 
    103.Thomas, J. W. et al. A Conservation Strategy for the Northern Spotted Owl (US Government Printing Office 791-171/20026, 1990).
    Google Scholar 
    104.Laaksonen, T. & Lehikoinen, A. Population trends in boreal birds: Continuing declines in agricultural, northern, and long-distance migrant species. Biol. Conserv. 168, 99–107. https://doi.org/10.1016/j.biocon.2013.09.007 (2013).Article 

    Google Scholar  More