Large-bodied birds are over-represented in unstructured citizen science data
1.Pocock, M. J., Tweddle, J. C., Savage, J., Robinson, L. D. & Roy, H. E. The diversity and evolution of ecological and environmental citizen science. PLoS ONE 12, e0172579 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
2.Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Cons. 213, 280–294 (2017).Article
Google Scholar
3.Chandler, M. et al. Involving citizen scientists in biodiversity observation. In The GEO Handbook on Biodiversity Observation Networks 211–237 (Springer, 2017).4.McKinley, D. C. et al. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Cons. 208, 15–28 (2017).Article
Google Scholar
5.Pereira, H. M. et al. Monitoring essential biodiversity variables at the species level. In The GEO Handbook on Biodiversity Observation Networks 79–105 (Springer, 2017).6.Wiggins, A. & Crowston, K. From conservation to crowdsourcing: A typology of citizen science. in 2011 44th Hawaii International Conference on System Sciences 1–10 (IEEE, 2011).7.Haklay, M. Citizen science and volunteered geographic information: Overview and typology of participation. In Crowdsourcing Geographic Knowledge 105–122 (Springer, 2013).8.Kelling, S. et al. Using semistructured surveys to improve citizen science data for monitoring biodiversity. Bioscience 69, 170–179 (2019).PubMed
PubMed Central
Article
Google Scholar
9.Welvaert, M. & Caley, P. Citizen surveillance for environmental monitoring: Combining the efforts of citizen science and crowdsourcing in a quantitative data framework. Springerplus 5, 1890 (2016).PubMed
PubMed Central
Article
Google Scholar
10.Callaghan, C. T., Rowley, J. J., Cornwell, W. K., Poore, A. G. & Major, R. E. Improving big citizen science data: Moving beyond haphazard sampling. PLoS Biol. 17, e3000357 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
11.Bonter, D. N. & Cooper, C. B. Data validation in citizen science: A case study from project FeederWatch. Front. Ecol. Environ. 10, 305–307 (2012).Article
Google Scholar
12.Kosmala, M., Wiggins, A., Swanson, A. & Simmons, B. Assessing data quality in citizen science. Front. Ecol. Environ. 14, 551–560 (2016).Article
Google Scholar
13.Burgess, H. K. et al. The science of citizen science: Exploring barriers to use as a primary research tool. Biol. Cons. 208, 113–120 (2017).Article
Google Scholar
14.Courter, J. R., Johnson, R. J., Stuyck, C. M., Lang, B. A. & Kaiser, E. W. Weekend bias in citizen science data reporting: Implications for phenology studies. Int. J. Biometeorol. 57, 715–720 (2013).ADS
PubMed
Article
PubMed Central
Google Scholar
15.Sullivan, B. L. et al. The eBird enterprise: An integrated approach to development and application of citizen science. Biol. Cons. 169, 31–40 (2014).Article
Google Scholar
16.Kelling, S. et al. Can observation skills of citizen scientists be estimated using species accumulation curves?. PLoS ONE 10, e0139600 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
17.Tiago, P., Ceia-Hasse, A., Marques, T. A., Capinha, C. & Pereira, H. M. Spatial distribution of citizen science casuistic observations for different taxonomic groups. Sci. Rep. 7, 1–9 (2017).CAS
Article
Google Scholar
18.Geldmann, J. et al. What determines spatial bias in citizen science? Exploring four recording schemes with different proficiency requirements. Divers. Distrib. 22, 1139–1149 (2016).Article
Google Scholar
19.Callaghan, C. T. et al. Three frontiers for the future of biodiversity research using citizen science data. Bioscience 71, 55–63 (2021).
Google Scholar
20.Ward, D. F. Understanding sampling and taxonomic biases recorded by citizen scientists. J. Insect Conserv. 18, 753–756 (2014).Article
Google Scholar
21.Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 1–14 (2017).CAS
Article
Google Scholar
22.Martı́n-López, B., Montes, C., Ramı́rez, L. & Benayas, J. What drives policy decision-making related to species conservation? Biol. Conserv. 142, 1370–1380 (2009).23.Boakes, E. H. et al. Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS Biol 8, e1000385 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
24.Aceves-Bueno, E. et al. The accuracy of citizen science data: A quantitative review. Bull. Ecol. Soc. Am. 98, 278–290 (2017).Article
Google Scholar
25.Davies, T. K., Stevens, G., Meekan, M. G., Struve, J. & Rowcliffe, J. M. Can citizen science monitor whale-shark aggregations? Investigating bias in mark–recapture modelling using identification photographs sourced from the public. Wildl. Res. 39, 696–704 (2013).Article
Google Scholar
26.Crall, A. W. et al. Assessing citizen science data quality: An invasive species case study. Conserv. Lett. 4, 433–442 (2011).Article
Google Scholar
27.van Strien, A. J., van Swaay, C. A. & Termaat, T. Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. J. Appl. Ecol. 50, 1450–1458 (2013).Article
Google Scholar
28.Johnston, A., Moran, N., Musgrove, A., Fink, D. & Baillie, S. R. Estimating species distributions from spatially biased citizen science data. Ecol. Model. 422, 108927 (2020).Article
Google Scholar
29.Tiago, P., Pereira, H. M. & Capinha, C. Using citizen science data to estimate climatic niches and species distributions. Basic Appl. Ecol. 20, 75–85 (2017).Article
Google Scholar
30.Sullivan, B. L. et al. Using open access observational data for conservation action: A case study for birds. Biol. Cons. 208, 5–14 (2017).Article
Google Scholar
31.Callaghan, C. T. et al. Citizen science data accurately predicts expert-derived species richness at a continental scale when sampling thresholds are met. Biodivers. Conserv. 29, 1323–1337 (2020).Article
Google Scholar
32.Birkin, L. & Goulson, D. Using citizen science to monitor pollination services. Ecol. Entomol. 40, 3–11 (2015).Article
Google Scholar
33.Delaney, D. G., Sperling, C. D., Adams, C. S. & Leung, B. Marine invasive species: Validation of citizen science and implications for national monitoring networks. Biol. Invasions 10, 117–128 (2008).Article
Google Scholar
34.Schultz, C. B., Brown, L. M., Pelton, E. & Crone, E. E. Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western north america. Biol. Cons. 214, 343–346 (2017).Article
Google Scholar
35.Bird, T. J. et al. Statistical solutions for error and bias in global citizen science datasets. Biol. Cons. 173, 144–154 (2014).Article
Google Scholar
36.Isaac, N. J., van Strien, A. J., August, T. A., de Zeeuw, M. P. & Roy, D. B. Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).Article
Google Scholar
37.Dickinson, J. L. et al. The current state of citizen science as a tool for ecological research and public engagement. Front. Ecol. Environ. 10, 291–297 (2012).Article
Google Scholar
38.Bonney, R. et al. Next steps for citizen science. Science 343, 1436–1437 (2014).ADS
PubMed
Article
Google Scholar
39.Jordan, R. C., Gray, S. A., Howe, D. V., Brooks, W. R. & Ehrenfeld, J. G. Knowledge gain and behavioral change in citizen-science programs. Conserv. Biol. 25, 1148–1154 (2011).PubMed
Article
Google Scholar
40.Crall, A. W. et al. The impacts of an invasive species citizen science training program on participant attitudes, behavior, and science literacy. Public Underst. Sci. 22, 745–764 (2013).PubMed
Article
PubMed Central
Google Scholar
41.Jordan, R. C., Ballard, H. L. & Phillips, T. B. Key issues and new approaches for evaluating citizen-science learning outcomes. Front. Ecol. Environ. 10, 307–309 (2012).Article
Google Scholar
42.Evans, C. et al. The neighborhood nestwatch program: Participant outcomes of a citizen-science ecological research project. Conserv. Biol. 19, 589–594 (2005).Article
Google Scholar
43.Haywood, B. K., Parrish, J. K. & Dolliver, J. Place-based and data-rich citizen science as a precursor for conservation action. Conserv. Biol. 30, 476–486 (2016).PubMed
Article
PubMed Central
Google Scholar
44.Pocock, M. J. et al. A vision for global biodiversity monitoring with citizen science. In Advances in Ecological Research vol. 59, 169–223 (Elsevier, 2018).45.Tiago, P., Gouveia, M. J., Capinha, C., Santos-Reis, M. & Pereira, H. M. The influence of motivational factors on the frequency of participation in citizen science activities. Nat. Conserv. 18, 61 (2017).Article
Google Scholar
46.Isaac, N. J. & Pocock, M. J. Bias and information in biological records. Biol. J. Lin. Soc. 115, 522–531 (2015).Article
Google Scholar
47.Angulo, E. & Courchamp, F. Rare species are valued big time. PLoS ONE 4, e5215 (2009).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
48.Booth, J. E., Gaston, K. J., Evans, K. L. & Armsworth, P. R. The value of species rarity in biodiversity recreation: A birdwatching example. Biol. Cons. 144, 2728–2732 (2011).Article
Google Scholar
49.Rowley, J. J. et al. FrogID: Citizen scientists provide validated biodiversity data on frogs of australia. Herpetol. Conserv. Biol. 14, 155–170 (2019).
Google Scholar
50.Boakes, E. H. et al. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers recording behaviour. Sci. Rep. 6, 33051 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
51.Garrard, G. E., McCarthy, M. A., Williams, N. S., Bekessy, S. A. & Wintle, B. A. A general model of detectability using species traits. Methods Ecol. Evol. 4, 45–52 (2013).Article
Google Scholar
52.Denis, T. et al. Biological traits, rather than environment, shape detection curves of large vertebrates in neotropical rainforests. Ecol. Appl. 27, 1564–1577 (2017).PubMed
Article
PubMed Central
Google Scholar
53.Sólymos, P., Matsuoka, S. M., Stralberg, D., Barker, N. K. & Bayne, E. M. Phylogeny and species traits predict bird detectability. Ecography 41, 1595–1603 (2018).Article
Google Scholar
54.Wood, C., Sullivan, B., Iliff, M., Fink, D. & Kelling, S. eBird: Engaging birders in science and conservation. PLoS Biol 9, 1001220 (2011).Article
CAS
Google Scholar
55.GBIF.org (3rd December 2019). GBIF occurrence download. https://doi.org/10.15468/dl.lpwczr56.Gilfedder, M. et al. Brokering trust in citizen science. Soc. Nat. Resour. 32, 292–302 (2019).Article
Google Scholar
57.Callaghan, C., Lyons, M., Martin, J., Major, R. & Kingsford, R. Assessing the reliability of avian biodiversity measures of urban greenspaces using eBird citizen science data. Avian Conserv. Ecol. 12, 66 (2017).
Google Scholar
58.Johnston, A. et al. Best practices for making reliable inferences from citizen science data: Case study using eBird to estimate species distributions. BioRxiv 574392 (2019).59.Myhrvold, N. P. et al. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles: Ecological archives E096–269. Ecology 96, 3109–3109 (2015).Article
Google Scholar
60.Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
61.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).62.Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).ADS
Article
Google Scholar
63.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
64.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article
Google Scholar
65.Johnston, A. et al. Species traits explain variation in detectability of UK birds. Bird Study 61, 340–350 (2014).Article
Google Scholar
66.Steen, V. A., Elphick, C. S. & Tingley, M. W. An evaluation of stringent filtering to improve species distribution models from citizen science data. Divers. Distrib. 25, 1857–1869 (2019).Article
Google Scholar
67.Henckel, L., Bradter, U., Jönsson, M., Isaac, N. J. & Snäll, T. Assessing the usefulness of citizen science data for habitat suitability modelling: Opportunistic reporting versus sampling based on a systematic protocol. Divers. Distrib. 26, 1276–1290 (2020).Article
Google Scholar
68.Caley, P., Welvaert, M. & Barry, S. C. Crowd surveillance: Estimating citizen science reporting probabilities for insects of biosecurity concern. J. Pest. Sci. 93, 543–550 (2020).Article
Google Scholar
69.Périquet, S., Roxburgh, L., le Roux, A. & Collinson, W. J. Testing the value of citizen science for roadkill studies: A case study from South Africa. Front. Ecol. Evol. 6, 15 (2018).Article
Google Scholar
70.Nakagawa, S. & Freckleton, R. P. Model averaging, missing data and multiple imputation: A case study for behavioural ecology. Behav. Ecol. Sociobiol. 65, 103–116 (2011).Article
Google Scholar
71.Schlossberg, S., Chase, M. & Griffin, C. Using species traits to predict detectability of animals on aerial surveys. Ecol. Appl. 28, 106–118 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
72.Aristeidou, M., Scanlon, E. & Sharples, M. Profiles of engagement in online communities of citizen science participation. Comput. Hum. Behav. 74, 246–256 (2017).Article
Google Scholar
73.Troscianko, J., Skelhorn, J. & Stevens, M. Quantifying camouflage: How to predict detectability from appearance. BMC Evol. Biol. 17, 1–13 (2017).Article
Google Scholar
74.Schuetz, J. G. & Johnston, A. Characterizing the cultural niches of North American birds. Proc. Natl. Acad. Sci. 22, 10868–10873 (2019).Article
CAS
Google Scholar
75.Lišková, S. & Frynta, D. What determines bird beauty in human eyes?. Anthrozoös 26, 27–41 (2013).Article
Google Scholar
76.Tulloch, A. I., Possingham, H. P., Joseph, L. N., Szabo, J. & Martin, T. G. Realising the full potential of citizen science monitoring programs. Biol. Cons. 165, 128–138 (2013).Article
Google Scholar
77.Kobori, H. et al. Citizen science: A new approach to advance ecology, education, and conservation. Ecol. Res. 31, 1–19 (2016).CAS
Article
Google Scholar
78.Callaghan, C. T., Poore, A. G., Major, R. E., Rowley, J. J. & Cornwell, W. K. Optimizing future biodiversity sampling by citizen scientists. Proc. R. Soc. B 286, 20191487 (2019).PubMed
PubMed Central
Article
Google Scholar
79.Pacifici, K. et al. Integrating multiple data sources in species distribution modeling: A framework for data fusion. Ecology 98, 840–850 (2017).PubMed
Article
PubMed Central
Google Scholar
80.Robinson, O. J. et al. Integrating citizen science data with expert surveys increases accuracy and spatial extent of species distribution models. Divers. Distrib. 26, 976–986 (2020).Article
Google Scholar
81.van Strien, A. J., Termaat, T., Groenendijk, D., Mensing, V. & Kery, M. Site-occupancy models may offer new opportunities for dragonfly monitoring based on daily species lists. Basic Appl. Ecol. 11, 495–503 (2010).Article
Google Scholar
82.Van der Wal, R. et al. Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording. Ambio 44, 584–600 (2015).PubMed
PubMed Central
Article
Google Scholar
83.Dennis, E. B., Morgan, B. J., Brereton, T. M., Roy, D. B. & Fox, R. Using citizen science butterfly counts to predict species population trends. Conserv. Biol. 31, 1350–1361 (2017).PubMed
Article
PubMed Central
Google Scholar
84.Stoudt, S., Goldstein, B. R. & De Valpine, P. Identifying charismatic bird species and traits with community science data. bioRxiv. https://doi.org/10.1101/2021.06.05.446577 More