AusTraits, a curated plant trait database for the Australian flora
1.Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89 (2014).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
2.Cornwell, W. K. et al. Functional distinctiveness of major plant lineages. J. Ecol. 102, 345â356 (2014).ArticleÂ
Google ScholarÂ
3.DĂaz, S. et al. The global spectrum of plant form and function. Nature 529, 167 (2016).ADSÂ
PubMedÂ
ArticleÂ
CASÂ
Google ScholarÂ
4.Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204 (2016).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
5.Chapin, F. S. III, Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 142, S78âS92 (1993).ArticleÂ
Google ScholarÂ
6.Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. USA 111, 740â745 (2014).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
7.Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113â122 (1998).ArticleÂ
Google ScholarÂ
8.Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882â892 (2007).ArticleÂ
Google ScholarÂ
9.Westoby, M. A leaf-height-seed (LHS) plant ecol. Strategy scheme. Plant Soil 199, 213â227 (1998).CASÂ
ArticleÂ
Google ScholarÂ
10.Funk, J. L. et al. Revisiting the holy grail: Using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156â1173 (2017).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
11.Kattge, J. et al. TRY a global database of plant traits. Glob. Chang. Biol. 17, 2905â2935 (2011).ADSÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
12.Kattge, J. et al. TRY plant trait database enhanced coverage and open access. Glob. Chang. Biol. 26, 119â188 (2020).ADSÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
13.CHAH. Australian Plant Census, Centre of Australian National Biodiversity Research. https://id.biodiversity.org.au/tree/51354547 (2020).14.Kissling, W. D. et al. Towards global data products of Essential Biodiversity Variables on species traits. Nat. Ecol. Evol. 2, 1531â1540 (2018).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
15.Gallagher, R. V. et al. Open Science principles for accelerating trait-based science across the Tree of Life. Nat. Ecol. Evol. 4, 294â303 (2020).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
16.Chapman, A. D. et al. Numbers of living species in Australia and the world. (Australian Government, 2009).17.Hopper, S. D. & Gioia, P. The Southwest Australian Floristic Region: Evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology, Evolution, and Systematics 35, 623â650 (2004).ArticleÂ
Google ScholarÂ
18.Madin, J. et al. An ontology for describing and synthesizing ecological observation data. Ecol. Inform. 2, 279â296 (2007).ArticleÂ
Google ScholarÂ
19.Garnier, E. et al. Towards a thesaurus of plant characteristics: An ecological contribution. J. Ecol. 105, 298â309 (2017).ArticleÂ
Google ScholarÂ
20.Adams, M. A. M, P. & Attiwill. Role of Acacia spp. in nutrient balance and cycling in regenerating Eucalyptus regnans F. Muell. forests. I. Temporal changes in biomass and nutrient content. Aust. J. Bot. 32, 205â215 (1984).CASÂ
Google ScholarÂ
21.Ahrens, C. W. et al. Plant functional traits differ in adaptability and are predicted to be differentially affected by climate change. Ecol. Evo. 10, 232â248 (2019).ArticleÂ
Google ScholarÂ
22.Australian National Botanic Gardens. The National Seed Bank. http://www.anbg.gov.au/gardens/living/seedbank/ (2018).23.Angevin, T. Species richness and functional trait diversity response to land use in a temperate eucalypt woodland community. (La Trobe University, 2011).24.Apgaua, D. M. G. et al. Functional traits and water transport strategies in lowland tropical rainforest trees. PLoS One 10, e0130799 (2015).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
25.Apgaua, D. M. G. et al. Plant functional groups within a tropical forest exhibit different wood functional anatomy. Funct. Ecol. 31, 582â591 (2017).ArticleÂ
Google ScholarÂ
26.Ashton, D. H. Studies of litter in Eucalyptus regnans forests. Aust. J. Bot. 23, 413â433 (1975).CASÂ
ArticleÂ
Google ScholarÂ
27.Ashton, D. H. Phosphorus in forest ecosystems at Beenak, Victoria. The J. Ecol. 64, 171â186 (1976).CASÂ
Google ScholarÂ
28.Attiwill, P. M. Nutrient cycling in a Eucalyptus obliqua (LâHerit.) forest IV: Nutrient uptake and nutrient return. Aust. J. Bot. 28, 199â222 (1980).CASÂ
ArticleÂ
Google ScholarÂ
29.Barlow, B. A., Clifford, H. T., George, A. S. & McCusker, A. K. A. Flora of Australia. http://www.environment.gov.au/biodiversity/abrs/online-resources/flora/main/ (1981).30.Bean, A. R. A revision of Baeckea (Myrtaceae) in eastern Australia, Malesia and south-east Asia. Telopea 7, 245â268 (1997).ArticleÂ
Google ScholarÂ
31.Bell, L.C. Nutrient requirements for the establishment of native flora at Weipa. (Comalco Aluminium Ltd., 1985).32.Bennett, L. T. & Attiwill, P. M. The nutritional status of healthy and declining stands of Banksia integrifolia on the Yanakie Isthmus, Victoria. Aust. J. Bot. 45, 15â30 (1997).ArticleÂ
Google ScholarÂ
33.Bevege, D. I. Biomass and nutrient distribution in indigenous forest ecosystems. vol. 6 20 (Queensland Department of Forestry, 1978).34.Birk, E. M. & Turner, J. Response of flooded gum (E. grandis) to intensive cultural treatments: biomass and nutrient content of eucalypt plantations and native forests. For. Ecol. Manage. 47, 1â28 (1992).ArticleÂ
Google ScholarÂ
35.Blackman, C. J., Brodribb, T. J. & Jordan, G. J. Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytol. 188, 1113â1123 (2010).PubMedÂ
ArticleÂ
Google ScholarÂ
36.Blackman, C. J. et al. Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates. Ann. Bot. 114, 435â440 (2014).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
37.Blackman, C. J. et al. The links between leaf hydraulic vulnerability to drought and key aspects of leaf venation and xylem anatomy among 26 Australian woody angiosperms from contrasting climates. Ann. Bot. 122, 59â67 (2018).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
38.Bloomfield, K. J. et al. A continental-scale assessment of variability in leaf traits: Within species, across sites and between seasons. Funct. Ecol. 32, 1492â1506 (2018).ArticleÂ
Google ScholarÂ
39.Bolza, E. Properties and uses of 175 timber species from Papua New Guinea and West Irian. (Victoria (Australia) CSIRO, Div. of Building Research, 1975).40.Bragg, J. G. & Westoby, M. Leaf size and foraging for light in a sclerophyll woodland. Funct. Ecol. 16, 633â639 (2002).ArticleÂ
Google ScholarÂ
41.Brisbane Rainforest Action and Information Network. Trait measurements for Australian rainforest species. http://www.brisrain.org.au/ (2016).42.Briggs, A. L. & Morgan, J. W. Seed characteristics and soil surface patch type interact to affect germination of semi-arid woodland species. Plant Ecol. 212, 91â103 (2010).ArticleÂ
Google ScholarÂ
43.Brock, J. & Dunlop, A. Native plants of northern Australia. (Reed New Holland, 1993).44.Brodribb, T. J. & Cochard, H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiol. 149, 575â584 (2009).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
45.Buckton, G. et al. Functional traits of lianas in an Australian lowland rainforest align with post-disturbance rather than dry season advantage. Austral Ecol. 44, 983â994 (2019).ArticleÂ
Google ScholarÂ
46.Burgess, S. S. O. & Dawson, T. E. Predicting the limits to tree height using statistical regressions of leaf traits. New Phytol. 174, 626â636 (2007).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
47.Burrows, G. E. Comparative anatomy of the photosynthetic organs of 39 xeromorphic species from subhumid New South Wales, Australia. Int. J. Plant Sci. 162, 411â430 (2001).ArticleÂ
Google ScholarÂ
48.Butler, D. W., Gleason, S. M., Davidson, I., Onoda, Y. & Westoby, M. Safety and streamlining of woody shoots in wind: an empirical study across 39 species in tropical Australia. New Phytol. 193, 137â149 (2011).PubMedÂ
ArticleÂ
Google ScholarÂ
49.CAB International. Forestry Compendium. http://www.cabi.org/fc/ (2009).50.Caldwell, E., Read, J. & Sanson, G. D. Which leaf mechanical traits correlate with insect herbivory among feeding guilds? Ann. Bot. 117, 349â361 (2015).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
51.Canham, C. A., Froend, R. H. & Stock, W. D. Water stress vulnerability of four Banksia species in contrasting ecohydrological habitats on the Gnangara Mound. Western Australia. Plant Cell Envrion. 32, 64â72 (2009).ArticleÂ
Google ScholarÂ
52.Carpenter, R. J. Cuticular morphology and aspects of the ecology and fossil history of North Queensland rainforest Proteaceae. Bot. J. Linn. Soc. 116, 249â303 (1994).ArticleÂ
Google ScholarÂ
53.Carpenter, R. J., Hill, R. S. & Jordan, G. J. Leaf Cuticular Morphology Links Platanaceae and Proteaceae. Int. J. Plant Sci. 166, 843â855 (2005).ArticleÂ
Google ScholarÂ
54.Catford, J. A., Downes, B. J., Gippel, C. J. & Vesk, P. A. Flow regulation reduces native plant cover and facilitates exotic invasion in riparian wetlands. J. Appl. Ecol. 48, 432â442 (2011).ArticleÂ
Google ScholarÂ
55.Catford, J. A., Morris, W. K., Vesk, P. A., Gippel, C. J. & Downes, B. J. Species and environmental characteristics point to flow regulation and drought as drivers of riparian plant invasion. Divers. Distrib. 20, 1084â1096 (2014).ArticleÂ
Google ScholarÂ
56.Cernusak, L. A., Hutley, L. B., Beringer, J. & Tapper, N. J. Stem and leaf gas exchange and their responses to fire in a north Australian tropical savanna. Plant Cell Envrion. 29, 632â646 (2006).ArticleÂ
Google ScholarÂ
57.Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A. M. & Turner, B. L. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agric. For. Meteorol. 151, 1462â1470 (2011).ADSÂ
ArticleÂ
Google ScholarÂ
58.Chandler, G. T., Crisp, M. D., Cayzer, L. W. & Bayer, R. J. Monograph of Gastrolobium (Fabaceae: Mirbelieae). Aust. Syst. Bot. 15, 619â739 (2002).ArticleÂ
Google ScholarÂ
59.Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351â366 (2009).PubMedÂ
ArticleÂ
Google ScholarÂ
60.Cheal, D. Growth stages and tolerable fire intervals for Victoriaâs native vegetation data sets. (Victorian Government Department of Sustainability; Environment Melbourne, 2010).61.Cheesman, A. W., Duff, H., Hill, K., Cernusak, L. A. & McInerney, F. A. Isotopic and morphologic proxies for reconstructing light environment and leaf function of fossil leaves: A modern calibration in the Daintree Rainforest, Australia. Am. J. Bot. 107, 1165â1176 (2020).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
62.Chen et al. Plants show more flesh in the tropics: Variation in fruit type along latitudinal and climatic gradients. Ecography 40, 531â538 (2017).ArticleÂ
Google ScholarÂ
63.Chinnock, R. J. Eremophila and allied genera: A monograph of the plant family Myoporaceae. (Rosenberg, 2007).64.Choat, B., Ball, M. C., Luly, J. G. & Holtum, J. A. M. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees 19, 305â311 (2005).ArticleÂ
Google ScholarÂ
65.Choat, B., Ball, M. C., Luly, J. G., Donnelly, C. F. & Holtum, J. A. M. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology. Tree Physiol. 26, 657â664 (2006).PubMedÂ
ArticleÂ
Google ScholarÂ
66.Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752â755 (2012).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
67.Chudnoff, M. Tropical timbers of the world. 472 (US Department of Agriculture, Forest Service, 1984).68.The French agricultural research and international cooperation organization (CIRAD). Wood density data. http://www.cirad.fr/ (2009).69.Clarke, P. J. et al. A synthesis of postfire recovery traits of woody plants in Australian ecosystems. Sci. Total Environ. 534, 31â42 (2015).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
70.Cooper, W. & Cooper, W. T. Fruits of the Australian tropical rainforest. (Nokomis Editions, 2004).71.Cooper, W. & Cooper, W. T. Australian rainforest fruits. 272 (CSIRO Publishing, 2013).72.Cornwell, W. K. Causes and consequences of functional trait diversity: plant community assembly and leaf decomposition. (Stanford University, California, 2006).73.Centre for Plant Biodiversity Research. EUCLID 2.0: Eucalypts of Australia. http://apps.lucidcentral.org/euclid/text/intro/index.html (2002).74.Craven, L. A., A taxonomic revision of Calytrix Labill. (Myrtaceae). Brunonia 10, 1â138 (1987).ArticleÂ
Google ScholarÂ
75.Craven, L. A., Lepschi, B. J. & Cowley, K. J. Melaleuca (Myrtaceae) of Western Australia: Five new species, three new combinations, one new name and a new state record. Nuytsia 20, 27â36 (2010).
Google ScholarÂ
76.Crisp, M. D., Cayzer, L., Chandler, G. T. & Cook, L. G. A monograph of Daviesia (Mirbelieae, Faboideae, Fabaceae). Phytotaxa 300, 1â308 (2017).ArticleÂ
Google ScholarÂ
77.Cromer, R. N., Raupach, M., Clarke, A. R. P. & Cameron, J. N. Eucalypt plantations in Australia – the potential for intensive production and utilization. Appita J. 29, 165â173 (1975).
Google ScholarÂ
78.Cross, E. The characteristics of natives and invaders: A trait-based investigation into the theory of limiting similarity. (La Trobe University, 2009).79.Crous, K. Y. et al. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming. Glob. Chang. Biol. 19, 3790â3807 (2013).ADSÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
80.Crous, K. Y., Wujeska-Klause, A., Jiang, M., Medlyn, B. E. & Ellsworth, D. S. Nitrogen and phosphorus retranslocation of leaves and stemwood in a mature Eucalyptus forest exposed to 5 years of elevated CO2. Front. Plant. Sci. 10, art664 (2019).ArticleÂ
Google ScholarÂ
81.Cunningham, S. A., Summerhayes, B. & Westoby, M. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol. Monogr. 69, 569â588 (1999).ArticleÂ
Google ScholarÂ
82.Curran, T. J., Clarke, P. J. & Warwick, N. W. M. Water relations of woody plants on contrasting soils during drought: does edaphic compensation account for dry rainforest distribution? Aust. J. Bot. 57, 629â639 (2009).ArticleÂ
Google ScholarÂ
83.Curtis, E. M., Leigh, A. & Rayburg, S. Relationships among leaf traits of Australian arid zone plants: alternative modes of thermal protection. Aust. J. Bot. 60, 471â483 (2012).ArticleÂ
Google ScholarÂ
84.Denton, M. D., Veneklaas, E. J., Freimoser, F. M. & Lambers, H. Banksia species (Proteaceae) from severely phosphorus-impoverished soils exhibit extreme efficiency in the use and re-mobilization of phosphorus. Plant Cell Envrion. 30, 1557â1565 (2007).CASÂ
ArticleÂ
Google ScholarÂ
85.Desch, H. E. & Dinwoodie, J. M. Timber structure, properties, conversion and use. (Palgrave Macmillan, 1996).86.de Tombeur, F. et al. A shift from phenol to silica-based leaf defenses during long-term soil and ecosystem development. Ecol. Lett. 24, 984â995 (2021).PubMedÂ
ArticleÂ
Google ScholarÂ
87.Dong, N. et al. Leaf nitrogen from first principles: field evidence for adaptive variation with climate. Biogeosciences 14, 481â495 (2017).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
88.Dong, N. et al. Components of leaf-trait variation along environmental gradients. New Phytol. 228, 82â94 (2020).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
89.Du, P., Arndt, S. K. & Farrell, C. Relationships between plant drought response, traits, and climate of origin for green roof plant selection. Ecol. Appl. 28, 1752â1761 (2018).PubMedÂ
ArticleÂ
Google ScholarÂ
90.Du, P., Arndt, S. K. & Farrell, C. Can the turgor loss point be used to assess drought response to select plants for green roofs in hot and dry climates? Plant Soil 441, 399â408 (2019).CASÂ
ArticleÂ
Google ScholarÂ
91.Duan, H. et al. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature. Tree Physiol. 35, 756â770 (2015).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
92.Duncan, R. P. et al. Plant traits and extinction in urban areas: a meta-analysis of 11 cities. Glob. Ecol. Biog. 20, 509â519 (2011).ArticleÂ
Google ScholarÂ
93.Dwyer, J. M. & Laughlin, D. C. Constraints on trait combinations explain climatic drivers of biodiversity: The importance of trait covariance in community assembly. Ecol. Lett. 20, 872â882 (2017).PubMedÂ
ArticleÂ
Google ScholarÂ
94.Dwyer, J. M. & Mason, R. Plant community responses to thinning in densely regenerating Acacia harpophylla forest. Restor. Ecol. 26, 97â105 (2018).ArticleÂ
Google ScholarÂ
95.Eamus, D. & Prichard, H. A cost-benefit analysis of leaves of four Australian savanna species. Tree Physiol. 18, 537â545 (1998).PubMedÂ
ArticleÂ
Google ScholarÂ
96.Eamus, D., Myers, B., Duff, G. & Williams, D. Seasonal changes in photosynthesis of eight savanna tree species. Tree Physiol. 19, 665â671 (1999).PubMedÂ
ArticleÂ
Google ScholarÂ
97.Myers, B., E., D. & Duff, G. A cost-benefit analysis of leaves of eight Australian savanna tree species of differing life-span. Photosynthetica 36, 575â586 (1999).ArticleÂ
Google ScholarÂ
98.Edwards, C., Read, J. & Sanson, G. D. Characterising sclerophylly: some mechanical properties of leaves from heath and forest. Oecologia 123, 158â167 (2000).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
99.Edwards, C., Sanson, G. D., Aranwela, N. & Read, J. Relationships between sclerophylly, leaf biomechanical properties and leaf anatomy in some Australian heath and forest species. Plant Biosyst. 134, 261â277 (2000).ArticleÂ
Google ScholarÂ
100.Schöenenberger, J. et al. Phylogenetic analysis of fossil flowers using an angiosperm-wide data set: proof-of-concept and challenges ahead. Am. J. Bot. 107, 1433â1448 (2020).ArticleÂ
Google ScholarÂ
101.Esperon-Rodriguez, M. et al. Functional adaptations and trait plasticity of urban trees along a climatic gradient. Urban For. Urban Green. 54, art126771 (2020).ArticleÂ
Google ScholarÂ
102.Everingham, S. E., Offord, C. A., Sabot, M. E. B. & Moles, A. T. Time travelling seeds reveal that plant regeneration and growth traits are responding to climate change. Ecology 102, e03272 (2020).
Google ScholarÂ
103.Falster, D. S. & Westoby, M. Leaf size and angle vary widely across species: what consequences for light interception? New Phytol. 158, 509â525 (2003).ArticleÂ
Google ScholarÂ
104.Falster, D. S. & Westoby, M. Alternative height strategies among 45 dicot rain forest species from tropical Queensland, Australia. J. Ecol. 93, 521â535 (2005).ArticleÂ
Google ScholarÂ
105.Falster, D. S. & Westoby, M. Tradeoffs between height growth rate, stem persistence and maximum height among plant species in a post-fire succession. Oikos 111, 57â66 (2005).ArticleÂ
Google ScholarÂ
106.Farrell, C., Mitchell, R. E., Szota, C., Rayner, J. P. & Williams, N. S. G. Green roofs for hot and dry climates: Interacting effects of plant water use, succulence and substrate. Ecol. Eng. 49, 270â276 (2012).ArticleÂ
Google ScholarÂ
107.Farrell, C., Szota, C., Williams, N. S. G. & Arndt, S. K. High water users can be drought tolerant: using physiological traits for green roof plant selection. Plant Soil 372, 177â193 (2013).CASÂ
ArticleÂ
Google ScholarÂ
108.Farrell, C., Szota, C. & Arndt, S. K. Does the turgor loss point characterize drought response in dryland plants? Plant Cell Envrion. 40, 1500â1511 (2017).CASÂ
ArticleÂ
Google ScholarÂ
109.Feller, M. C. Biomass and nutrient distribution in two eucalypt forest ecosystems. Austral Ecol. 5, 309â333 (1980).ArticleÂ
Google ScholarÂ
110.Firn, J. et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecol. Evo. 3, 400â406 (2019).ArticleÂ
Google ScholarÂ
111.Flynn, J. H. & Holder, C. D. A guide to useful woods of the world. (Forest Products Society, 2001).112.Fonseca, C. R., Overton, J. M. C., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 88, 964â977 (2000).ArticleÂ
Google ScholarÂ
113.McDonald, P. G., Fonseca, C. R., Overton, J. M. C. & Westoby, M. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct. Ecol. 17, 50â57 (2003).ArticleÂ
Google ScholarÂ
114.Forster, P. I. A taxonomic revision of Alyxia (Apocynaceae) in Australia. Aust. Syst. Bot. 5, 547â580 (1992).ArticleÂ
Google ScholarÂ
115.Forster, P. I. New names and combinations in Marsdenia (Asclepiadaceae: Marsdenieae) from Asia and Malesia (excluding Papusia). Aust. Syst. Bot. 8, 691â701 (1995).ArticleÂ
Google ScholarÂ
116.French, B. J., Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Cause and effects of a megafire in sedge-heathland in the Tasmanian temperate wilderness. Aust. J. Bot. 64, 513â525 (2016).ArticleÂ
Google ScholarÂ
117.Froend, R. H. & Drake, P. L. Defining phreatophyte response to reduced water availability: preliminary investigations on the use of xylem cavitation vulnerability in Banksia woodland species. Aust. J. Bot. 54, 173â179 (2006).ArticleÂ
Google ScholarÂ
118.Funk, J. L., Standish, R. J., Stock, W. D. & Valladares, F. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems. Ecology 97, 75â83 (2016).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
119.Gallagher, R. V. et al. Invasiveness in introduced Australian acacias: The role of species traits and genome size. Divers. Distrib. 17, 884â897 (2011).ArticleÂ
Google ScholarÂ
120.Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. J. Biogeogr. 39, 1757â1771 (2012).ArticleÂ
Google ScholarÂ
121.Gardiner, R., Shoo, L. P. & Dwyer John. M. Look to seedling heights, rather than functional traits, to explain survival during extreme heat stress in the early stages of subtropical rainforest restoration. J. Appl. Ecol. 56, 2687â2697 (2019).ArticleÂ
Google ScholarÂ
122.Geange, S. R. et al. Phenotypic plasticity and water availability: responses of alpine herb species along an elevation gradient. Clim. Change Responses 4, 1â12 (2017).ArticleÂ
Google ScholarÂ
123.Geange, S. R., Holloway-Phillips, M.-M., Briceno, V. F. & Nicotra, A. B. Aciphylla glacialis mortality, growth and frost resistance: a field warming experiment. Aust. J. Bot. 67, 599â609 (2020).ArticleÂ
Google ScholarÂ
124.Ghannoum, O. et al. Exposure to preindustrial, current and future atmospheric CO2 and temperature differentially affects growth and photosynthesis in Eucalyptus. Glob. Chang. Biol. 16, 303â319 (2010).ADSÂ
ArticleÂ
Google ScholarÂ
125.Gleason, S. M., Butler, D. W., Zieminska, K., Waryszak, P. & Westoby, M. Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Funct. Ecol. 26, 343â352 (2012).ArticleÂ
Google ScholarÂ
126.Gleason, S. M., Butler, D. W. & Waryszak, P. Shifts in leaf and stem hydraulic traits across aridity gradients in eastern Australia. Int. J. Plant Sci. 174, 1292â1301 (2013).ArticleÂ
Google ScholarÂ
127.Gleason, S. M., Blackman, C. J., Cook, A. M., Laws, C. A. & Westoby, M. Whole-plant capacitance, embolism resistance and slow transpiration rates all contribute to longer desiccation times in woody angiosperms from arid and wet habitats. Tree Physiol. 34, 275â284 (2014).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
128.Gleason, S. M. et al. Vessel scaling in evergreen angiosperm leaves conforms with Murrayâs law and area-filling assumptions: implications for plant size, leaf size and cold tolerance. New Phytol. 218, 1360â1370 (2018).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
129.Goble-Garratt, E., Bell, D. & Loneragan, W. Floristic and leaf structure patterns along a shallow elevational gradient. Aust. J. Bot. 29, 329â347 (1981).ArticleÂ
Google ScholarÂ
130.Gosper, C. R. Fruit characteristics of invasive bitou bush, Chrysanthemoides monilifera (Asteraceae), and a comparison with co-occurring native plant species. Aust. J. Bot. 52, 223â230 (2004).ArticleÂ
Google ScholarÂ
131.Gosper, C. R., Yates, C. J. & Prober, S. M. Changes in plant species and functional composition with time since fire in two mediterranean climate plant communities. J. Veg. Sci. 23, 1071â1081 (2012).ArticleÂ
Google ScholarÂ
132.Gosper, C. R., Prober, S. M. & Yates, C. J. Estimating fire interval bounds using vital attributes: implications of uncertainty and among-population variability. Ecol. Appl. 23, 924â935 (2013).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
133.Gosper, C. R., Yates, C. J. & Prober, S. M. Floristic diversity in fire-sensitive eucalypt woodlands shows a âUâ-shaped relationship with time since fire. J. Appl. Ecol. 50, 1187â1196 (2013).ArticleÂ
Google ScholarÂ
134.Gosper, C. R. et al. A conceptual model of vegetation dynamics for the unique obligate-seeder eucalypt woodlands of south-western Australia. Austral Ecol. 43, 681â695 (2018).ArticleÂ
Google ScholarÂ
135.Clayton, W. D., Vorontsova, M. S., Harman, K. T. & Williamson, H. GrassBase – The online world grass flora. http://www.kew.org/data/grasses-db.html (2006).136.Gray, E. F. et al. Leaf:wood allometry and functional traits together explain substantial growth rate variation in rainforest trees. AoB Plants 11, 1â11 (2019).ArticleÂ
Google ScholarÂ
137.Groom, P. K. & Lamont, B. B. Reproductive ecology of non-sprouting and re-sprouting Hakea species (Proteaceae) in southwestern Australia. In Gondwanan heritage (eds. S.D. Hopper M. Harvey, J. C. & George, A. S.) (Surrey Beatty, Chipping Norton, 1996).138.Groom, P. K. & Lamont, B. B. Fruit-seed relations in Hakea: serotinous species invest more dry matter in predispersal seed protection. Austral Ecol. 22, 352â355 (1997).ArticleÂ
Google ScholarÂ
139.Groom, P. K. & Lamont, B. B. Phosphorus accumulation in Proteaceae seeds: A synthesis. Plant Soil 334, 61â72 (2010).CASÂ
ArticleÂ
Google ScholarÂ
140.Grootemaat, S., Wright, I. J., van Bodegom, P. M., Cornelissen, J. H. C. & Cornwell, W. K. Burn or rot: leaf traits explain why flammability and decomposability are decoupled across species. Funct. Ecol. 29, 1486â1497 (2015).ArticleÂ
Google ScholarÂ
141.Grootemaat, S., Wright, I. J., van Bodegom, P. M., Cornelissen, J. H. C. & Shaw, V. Bark traits, decomposition and flammability of Australian forest trees. Aust. J. Bot. 65, 327 (2017).ArticleÂ
Google ScholarÂ
142.Grootemaat, S., Wright, I. J., van Bodegom, P. M. & Cornelissen, J. H. C. Scaling up flammability from individual leaves to fuel beds. Oikos 126, 1428â1438 (2017).ArticleÂ
Google ScholarÂ
143.Gross, C. L. The reproductive ecology of Canavalia rosea (Fabaceae) on Anak Krakatau. Indonesia. Aust. J. Bot. 41, 591â599 (1993).ArticleÂ
Google ScholarÂ
144.Gross, C. L. A comparison of the sexual systems in the trees from the Australian tropics with other tropical biomesâmore monoecy but why? Am. J. Bot. 92, 907â919 (2005).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
145.Grubb, P. J. & Metcalfe, D. J. Adaptation and inertia in the Australian tropical lowland rain-forest flora: Contradictory trends in intergeneric and intrageneric comparisons of seed size in relation to light demand. Funct. Ecol. 10, 512â520 (1996).ArticleÂ
Google ScholarÂ
146.Grubb, P. J. et al. Monocot leaves are eaten less than dicot leaves in tropical lowland rain forests: Correlations with toughness and leaf presentation. Ann. Bot. 101, 1379â1389 (2008).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
147.Guilherme Pereira, C., Clode, P. L., Oliveira, R. S. & Lambers, H. Eudicots from severely phosphorus-impoverished environments preferentially allocate phosphorus to their mesophyll. New Phytol. 218, 959â973 (2018).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
148.Guilherme Pereira, C. et al. Trait convergence in photosynthetic nutrient-use efficiency along a 2-million year dune chronosequence in a global biodiversity hotspot. J. Ecol. 107, 2006â2023 (2019).CASÂ
ArticleÂ
Google ScholarÂ
149.Hacke, U. G. et al. Water transport in vesselless Angiosperms: Conducting efficiency and cavitation safety. Int. J. Plant Sci. 168, 1113â1126 (2007).ArticleÂ
Google ScholarÂ
150.Hall, T. J. The nitrogen and phosphorus concentrations of some pasture species in the Dichanthium-Eulalia Grasslands of North-West Queensland. Rangeland J. 3, 67â73 (1981).ArticleÂ
Google ScholarÂ
151.Harrison, M. T., Edwards, E. J., Farquhar, G. D., Nicotra, A. B. & Evans, J. R. Nitrogen in cell walls of sclerophyllous leaves accounts for little of the variation in photosynthetic nitrogen-use efficiency. Plant Cell Envrion. 32, 259â270 (2009).CASÂ
ArticleÂ
Google ScholarÂ
152.Hassiotou, F., Evans, J. R., Ludwig, M. & Veneklaas, E. J. Stomatal crypts may facilitate diffusion of CO2 to adaxial mesophyll cells in thick sclerophylls. Plant Cell Envrion. 32, 1596â1611 (2009).CASÂ
ArticleÂ
Google ScholarÂ
153.Hatch, A. B. Influence of plant litter on the Jarrah forest soils of the Dwellingup region. West. Aust. For. Timber Bur. Leaflet 18 (1955).154.Hayes, P., Turner, B. L., Lambers, H. & Laliberte, E. Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J. Ecol. 102, 396â410 (2013).ArticleÂ
CASÂ
Google ScholarÂ
155.Hayes, P. E., Clode, P. L., Oliveira, R. S. & Lambers, H. Proteaceae from phosphorus-impoverished habitats preferentially allocate phosphorus to photosynthetic cells: an adaptation improving phosphorus-use efficiency. Plant Cell Envrion. 41, 605â619 (2018).CASÂ
ArticleÂ
Google ScholarÂ
156.Henery, M. L. & Westoby, M. Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 92, 479â490 (2001).ArticleÂ
Google ScholarÂ
157.Hocking, P. J. The nutrition of fruits of two proteaceous shrubs, Grevillea wilsonii and Hakea undulata, from south-western Australia. Aust. J. Bot. 30, 219â230 (1982).CASÂ
ArticleÂ
Google ScholarÂ
158.Hocking, P. J. Mineral nutrient composition of leaves and fruits of selected species of Grevillea from southwestern Australia, with special reference to Grevillea leucopteris Meissn. Aust. J. Bot. 34, 155â164 (1986).CASÂ
ArticleÂ
Google ScholarÂ
159.Hong, L. T. et al. Plant resources of south east Asia: Timber trees. World biodiversity Database CD rom series (Springer-Verlag Berlin; Heidelberg GmbH; Co. KG, 1999).160.Hopmans, P., Stewart, H. T. L. & Flinn, D. W. Impacts of harvesting on nutrients in a eucalypt ecosystem in southeastern Australia. For. Ecol. Manage. 59, 29â51 (1993).ArticleÂ
Google ScholarÂ
161.Huang, G., Rymer, P. D., Duan, H., Smith, R. A. & Tissue, D. T. Elevated temperature is more effective than elevated CO2 in exposing genotypic variation in Telopea speciosissima growth plasticity: implications for woody plant populations under climate change. Glob. Chang. Biol. 21, 3800â3813 (2015).ADSÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
162.Hyland, B. P. M., Whiffin, T., Christophel, D., Gray, B. & Elick, R. W. Australian tropical rain forest plants trees, shrubs and vines. (CSIRO Publishing, 2003).163.World Agroforestry Centre (ICRAF). The wood density database. http://www.worldagroforestry.org/output/wood-density-database (2009).164.Ilic, J., Boland, D., McDonald, M., G., D. & Blakemore, P. Woody density phase 1 – State of knowledge. National Carbon Accounting System. Technical Report 18. (Australian Greenhouse Office, Canberra, Australia, 2000).165.Islam, M., Turner, D. W. & Adams, M. A. Phosphorus availability and the growth, mineral composition and nutritive value of ephemeral forbs and associated perennials from the Pilbara, Western Australia. Aust. J. Exp. Agric. 39, 149â159 (1999).ArticleÂ
Google ScholarÂ
166.Islam, M. & Adams, M. A. Mineral content and nutritive value of native grasses and the response to added phosphorus in a Pilbara rangeland. Trop. Grassl. 33, 193â200 (1999).
Google ScholarÂ
167.Jordan, G. J. An investigation of long-distance dispersal based on species native to both Tasmania and New Zealand. Aust. J. Bot. 49, 333â340 (2001).ArticleÂ
Google ScholarÂ
168.Jordan, G. J., Weston, P. H., Carpenter, R. J., Dillon, R. A. & Brodribb, T. J. The evolutionary relations of sunken, covered, and encrypted stomata to dry habitats in Proteaceae. Am. J. Bot. 95, 521â530 (2008).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
169.Jordan, G. J., Carpenter, R. J., Koutoulis, A., Price, A. & Brodribb, T. J. Environmental adaptation in stomatal size independent of the effects of genome size. New Phytol. 205, 608â617 (2015).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
170.Jordan, G. J. et al. Links between environment and stomatal size through evolutionary time in Proteaceae. Proc. R. Soc. Lond. B Biol. Sci. 287, 20192876 (2020).CASÂ
Google ScholarÂ
171.Jurado, E. Diaspore weight, dispersal, growth form and perenniality of central Australian plants. J. Ecol. 79, 811â828 (1991).ArticleÂ
Google ScholarÂ
172.Jurado, E. & Westoby, M. Germination biology of selected central Australian plants. Austral Ecol. 17, 341â348 (1992).ArticleÂ
Google ScholarÂ
173.Kanowski, J. Ecological determinants of the distribution and abundance of the folivorous marsupials endemic to the rainforests of the Atherton uplands, north Queensland. (James Cook University, Townsville, 1999).174.Keighery, G. Taxonomy of the Calytrix ecalycata complex (Myrtaceae). Nuytsia 15, 261â268 (2004).
Google ScholarÂ
175.Royal Botanic Gardens Kew. Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).176.Royal Botanic Gardens Kew. Seed protein data from Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).177.Royal Botanic Gardens Kew. Oil content data from Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).178.Royal Botanic Gardens Kew. Seed dispersal data from the Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).179.Royal Botanic Gardens Kew. Germination data from the Seed Information Database (SID) and Seed Bank Database. http://data.kew.org/sid/ (2019).180.Knox, K. J. E. & Clarke, P. J. Fire severity and nutrient availability do not constrain resprouting in forest shrubs. Plant Ecol. 212, 1967â1978 (2011).ArticleÂ
Google ScholarÂ
181.Körner, C. & Cochrane, P. M. Stomatal responses and water relations of Eucalyptus pauciflora in summer along an elevational gradient. Oecologia 66, 443â455 (1985).ADSÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
182.Kooyman, R., Rossetto, M., Cornwell, W. & Westoby, M. Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests. Glob. Ecol. Biog. 20, 707â716 (2011).ArticleÂ
Google ScholarÂ
183.Kotowska, M. M., Wright, I. J. & Westoby, M. Parenchyma abundance in wood of evergreen trees varies independently of nutrients. Front. Plant. Sci. 11, art86 (2020).ArticleÂ
Google ScholarÂ
184.Kuo, J., Hocking, P. & Pate, J. Nutrient reserves in seeds of selected Proteaceous species from South-western Australia. Aust. J. Bot. 30, 231â249 (1982).CASÂ
ArticleÂ
Google ScholarÂ
185.LalibertĂ©, E. et al. Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. J. Ecol. 100, 631â642 (2012).ArticleÂ
CASÂ
Google ScholarÂ
186.Lambert, M. J. Sulphur relationships of native and exotic tree species. (Macquarie University, Sydney, 1979).187.Lamont, B. B., Groom, P. K. & Cowling, R. M. High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Funct. Ecol. 16, 403â412 (2002).ArticleÂ
Google ScholarÂ
188.Lamont, B. B., Groom, P. K., Williams, M. & He, T. LMA, density and thickness: recognizing different leaf shapes and correcting for their nonlaminarity. New Phytol. 207, 942â947 (2015).PubMedÂ
ArticleÂ
Google ScholarÂ
189.Landsberg, J. Dieback of rural eucalypts: response of foliar dietary quality and herbivory to defoliation. Austral Ecol. 15, 89â96 (1990).ArticleÂ
Google ScholarÂ
190.Landsberg, J. & Gillieson, D. S. Regional and local variation in insect herbivory, vegetation and soils of eucalypt associations in contrasted landscape positions along a climatic gradient. Aust. J. Ecol. 20, 299â315 (1995).ArticleÂ
Google ScholarÂ
191.Lawes, M. J., Adie, H., Russell-Smith, J., Murphy, B. & Midgley, J. J. How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere 2, 1â13 (2011).ArticleÂ
Google ScholarÂ
192.Lawes, M. J., Richards, A., Dathe, J. & Midgley, J. J. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecol. 212, 2057â2069 (2011).ArticleÂ
Google ScholarÂ
193.Lawes, M. J., Midgley, J. J. & Clarke, P. J. Costs and benefits of relative bark thickness in relation to fire damage: A savanna/forest contrast. J. Ecol. 101, 517â524 (2012).ArticleÂ
Google ScholarÂ
194.Lawson, J. R., Fryirs, K. A. & Leishman, M. R. Data from: Hydrological conditions explain wood density in riparian plants of south-eastern Australia. Dryad Digital Repository https://doi.org/10.5061/dryad.72h45 (2015).195.Laxton, E. Relationship between leaf traits, insect communities and resource availability. (Macquarie University, 2005).196.Lee, M. R. et al. Good neighbors aplenty: fungal endophytes rarely exhibit competitive exclusion patterns across a span of woody habitats. Ecology 100, e02790 (2019).PubMedÂ
ArticleÂ
Google ScholarÂ
197.Leigh, A. & Nicotra, A. B. Sexual dimorphism in reproductive allocation and water use efficiency in Maireana pyramidata (Chenopodiaceae), a dioecious, semi-arid shrub. Aust. J. Bot. 51, 509â514 (2003).ArticleÂ
Google ScholarÂ
198.Leigh, A., Cosgrove, M. J. & Nicotra, A. B. Reproductive allocation in a gender dimorphic shrub: anomalous female investment in Gynatrix pulchella? J. Ecol. 94, 1261â1271 (2006).ArticleÂ
Google ScholarÂ
199.Leishman, M. R. & Westoby, M. Classifying plants into groups on the basis of associations of individual traitsâEvidence from Australian semi-arid woodlands. J. Ecol. 80, 417â424 (1992).ArticleÂ
Google ScholarÂ
200.Leishman, M. R., Westoby, M. & Jurado, E. Correlates of seed size variation: A comparison among five temperate floras. J. Ecol. 83, 517â529 (1995).ArticleÂ
Google ScholarÂ
201.Leishman, M. R., Haslehurst, T., Ares, A. & Baruch, Z. Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytol. 176, 635â643 (2007).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
202.Lemmens, R. H. M. J. & Soerjanegara, I. Prosea, Volume 5/1: Timber Trees – Major Commercial Timbers. (Pudoc/Prosea, 1993).203.Lenz, T. I., Wright, I. J. & Westoby, M. Interrelations among pressure-volume curve traits across species and water availability gradients. Physiol. Plant. 127, 423â433 (2006).CASÂ
ArticleÂ
Google ScholarÂ
204.Leuning, R., Cromer, R. N. & Rance, S. Spatial distributions of foliar nitrogen and phosphorus in crowns of Eucalyptus grandis. Oecologia 88, 504â510 (1991).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
205.Lewis, J. D. et al. Rising temperature may negate the stimulatory effect of rising CO2 on growth and physiology of Wollemi pine (Wollemia nobilis). Funct. Plant. Bio. 42, 836â850 (2015).CASÂ
ArticleÂ
Google ScholarÂ
206.Lim, F. K. S., Pollock, L. J. & Vesk, P. A. The role of plant functional traits in shrub distribution around alpine frost hollows. J. Veg. Sci. 28, 585â594 (2017).ArticleÂ
Google ScholarÂ
207.Lord, J. et al. Larger seeds in tropical floras: Consistent patterns independent of growth form and dispersal mode. J. Biogeogr. 24, 205â211 (1997).ArticleÂ
Google ScholarÂ
208.Lusk, C. H., Onoda, Y., Kooyman, R. & Gutiurrez-Giron, A. Reconciling species-level vs plastic responses of evergreen leaf structure to light gradients: shade leaves punch above their weight. New Phytol. 186, 429â438 (2010).PubMedÂ
ArticleÂ
Google ScholarÂ
209.Lusk, C. H., Kelly, J. W. G. & Gleason, S. M. Light requirements of Australian tropical vs. cool-temperate rainforest tree species show different relationships with seedling growth and functional traits. Ann. Bot. 111, 479â488 (2012).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
210.Lusk, C. H., Sendall, K. M. & Clarke, P. J. Seedling growth rates and light requirements of subtropical rainforest trees associated with basaltic and rhyolitic soils. Aust. J. Bot. 62, 48â55 (2014).ArticleÂ
Google ScholarÂ
211.Macinnis-Ng, C., McClenahan, K. & Eamus, D. Convergence in hydraulic architecture, water relations and primary productivity amongst habitats and across seasons in Sydney. Funct. Plant. Bio. 31, 429â439 (2004).ArticleÂ
Google ScholarÂ
212.Macinnis-Ng, C. M. O., Zeppel, M. J. B., Palmer, A. R. & Eamus, D. Seasonal variations in tree water use and physiology correlate with soil salinity and soil water content in remnant woodlands on saline soils. J. Arid Environ. 129, 102â110 (2016).ADSÂ
ArticleÂ
Google ScholarÂ
213.Marsh, N. R. & Adams, M. A. Decline of Eucalyptus tereticornis near Bairnsdale, Victoria: insect herbivory and nitrogen fractions in sap and foliage. Aust. J. Bot. 43, 39â49 (1995).ArticleÂ
Google ScholarÂ
214.Maslin, B. WATTLE, Interactive Identification of Australian Acacia. Version 2. (Australian Biological Resources Study, Canberra, 2014).215.McCarthy, J. K., Dwyer, J. M. & Mokany, K. A regional-scale assessment of using metabolic scaling theory to predict ecosystem properties. Proc. R. Soc. Lond. B Biol. Sci. 286, 20192221 (2019).
Google ScholarÂ
216.McClenahan, K., Macinnis-Ng, C. & Eamus, D. Hydraulic architecture and water relations of several species at diverse sites around Sydney. Aust. J. Bot. 52, 509â518 (2004).ArticleÂ
Google ScholarÂ
217.McGlone, M. S., Richardson, S. J. & Jordan, G. J. Comparative biogeography of New Zealand trees: Species richness, height, leaf traits and range sizes. New Zealand J. Ecol. 34, 137â151 (2010).
Google ScholarÂ
218.McGlone, M. S., Richardson, S. J., Jordan, G. J. & Perry, G. L. W. Is there a âsuboptimalâ woody species height? A response to Scheffer et al. Trends in Ecol. Evo. 30, 4â5 (2015).ArticleÂ
Google ScholarÂ
219.McIntyre, S., Lavorel, S. & Tremont, R. M. Plant life-history attributes: Their relationship to disturbance response in herbaceous vegetation. The J. Ecol. 83, 31â44 (1995).ArticleÂ
Google ScholarÂ
220.Meers, T. Role of plant functional traits in determining the response of vegetation to land use change on the Delatite Peninsula, Victoria. (University of Melbourne, 2007).221.Meers, T. L., Bell, T. L., Enright, N. J. & Kasel, S. Role of plant functional traits in determining vegetation composition of abandoned grazing land in north-eastern Victoria, Australia. J. Veg. Sci. 19, 515â524 (2008).ArticleÂ
Google ScholarÂ
222.Meers, T. L., Bell, T. L., Enright, N. J. & Kasel, S. Do generalisations of global trade-offs in plant design apply to an Australian sclerophyllous flora? Aust. J. Bot. 58, 257â270 (2010).ArticleÂ
Google ScholarÂ
223.Meers, T. L., Kasel, S., Bell, T. L. & Enright, N. J. Conversion of native forest to exotic Pinus radiata plantation: response of understorey plant composition using a plant functional trait approach. For. Ecol. Manage. 259, 399â409 (2010).ArticleÂ
Google ScholarÂ
224.Meier, E. The wood database. http://www.wood-database.com/ (2007).225.LalibertĂ©, E. et al. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecol. Lett. 13, 76â86 (2010).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
226.Milberg, P. & Lamont, B. B. Seed/cotyledon size and nutrient content play a major role in early performance of species on nutrient-poor soils. New Phytol. 137, 665â672 (1997).ArticleÂ
Google ScholarÂ
227.Milberg, P., PĂ©rez-FernĂĄndez, M. A. & Lamont, B. B. Seedling growth response to added nutrients depends on seed size in three woody genera. J. Ecol. 86, 624â632 (1998).ArticleÂ
Google ScholarÂ
228.Mokany, K. & Ash, J. Are traits measured on pot grown plants representative of those in natural communities? J. Veg. Sci. 19, 119â126 (2008).ArticleÂ
Google ScholarÂ
229.Mokany, K., Thomson, J. J., Lynch, A. J. J., Jordan, G. J. & Ferrier, S. Linking changes in community composition and function under climate change. Ecol. Appl. 25, 2132â2141 (2015).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
230.Moles, A. T. & Westoby, M. Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90, 517â524 (2000).ArticleÂ
Google ScholarÂ
231.Moles, A. T., Warton, D. I. & Westoby, M. Seed size and survival in the soil in arid Australia. Austral Ecol. 28, 575â585 (2003).ArticleÂ
Google ScholarÂ
232.Moles, A. T. et al. Putting plant resistance traits on the map: A test of the idea that plants are better defended at lower latitudes. New Phytol. 191, 777â788 (2011).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
233.Mooney, H. A., Ferrar, P. J. & Slatyer, R. O. Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus. Oecologia 36, 103â111 (1978).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
234.Moore, A. W., Russell, J. S. & Coaldrake, J. E. Dry matter and nutrient content of a subtropical semiarid forest of Acacia harpophylla F. Muell. (Brigalow). Aust. J. Bot. 15, 11â24 (1967).ArticleÂ
Google ScholarÂ
235.Moore, N. A., Camac, J. S. & Morgan, J. W. Effects of drought and fire on resprouting capacity of 52 temperate Australian perennial native grasses. New Phytol. 221, 1424â1433 (2018).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
236.Morgan, H. Root system architecture, water use and rainfall responses of perennial species. (Macquarie University, 2005).237.Muir, A. M., Vesk, P. A. & Hepworth, G. Reproductive trajectories over decadal time-spans after fire for eight obligate-seeder shrub species in south-eastern Australia. Aust. J. Bot. 62, 369â379 (2014).ArticleÂ
Google ScholarÂ
238.Munroe, S. E. M. et al. The photosynthetic pathways of plant species surveyed in Australiaâs national terrestrial monitoring network. Scientific Data 8, 97 (2021).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
239.National Herbarium of NSW. Trait measurements for NSW rainforest species from PLantNET. http://plantnet.rbgsyd.nsw.gov.au/ (2016).240.Nicholson, A., Prior, L. D., Perry, G. L. W. & Bowman, D. M. J. S. High post-fire mortality of resprouting woody plants in Tasmanian Mediterranean-type vegetation. Int. J. Wildland Fire 26, 532â537 (2017).ArticleÂ
Google ScholarÂ
241.Nicolle, D. A classification and census of regenerative strategies in the eucalypts (Angophora, Corymbia and Eucalyptus – Myrtaceae), with special reference to the obligate seeders. Aust. J. Bot. 54, 391â407 (2006).ArticleÂ
Google ScholarÂ
242.Nicolle, D. Classification of the Eucalypts (Angophora, Corymbia and Eucalyptus) Version 3. (Currency Creek Arboretum Eucalypt Research, 2018).243.Niinemets, U., Wright, I. J. & Evans, J. R. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. J. Exp. Bot. 60, 2433â2449 (2009).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
244.Kenny, B., Orscheg, C., Tasker, E., Gill, M. A. & Bradstock, R. NSW Flora Fire Response Database, v2.1. (NSW Department of Planning Industry; Environment, 2014).245.Northern Territory Herbarium. Flora of the Darwin Region Online. http://www.lrm.nt.gov.au/plants-and-animals/herbarium/darwin_flora_online (2014).246.Onoda, Y., Richards, A. E. & Westoby, M. The relationship between stem biomechanics and wood density is modified by rainfall in 32 Australian woody plant species. New Phytol. 185, 493â501 (2009).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
247.OâReilly-Nugent, A. et al. Measuring competitive impact: Jointâspecies modelling of invaded plant communities. J. Ecol. 108, 449â459 (2018).ArticleÂ
Google ScholarÂ
248.Osborne, C. P. et al. A global database of C4 photosynthesis in grasses. New Phytol. 204, 441â446 (2014).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
249.Paczkowska G. & Chapman, A.R. The Western Australian flora: A descriptive catalogue. 652 (CALM, Kings Park; Botanic Gardens; Wildflower Society of Western Australia, 2000).250.Palma, E. et al. Functional trait changes in the floras of 11 cities across the globe in response to urbanization. Ecography 40, 875â886 (2017).ArticleÂ
Google ScholarÂ
251.Pate, J. S., Rasins, E., Rullo, J. & Kuo, J. Seed nutrient reserves of Proteaceae with special reference to protein bodies and their inclusions. Ann. Bot. 57, 747â770 (1986).CASÂ
ArticleÂ
Google ScholarÂ
252.Pearcy, R. W. Photosynthetic gas exchange responses of Australian tropical forest trees in canopy, gap and understory micro-environments. Funct. Ecol. 1, 169â178 (1987).ArticleÂ
Google ScholarÂ
253.Peeters, P. J. Correlations between leaf structural traits and the densities of herbivorous insect guilds. Biol. J. Linn. Soc. 77, 43â65 (2002).ArticleÂ
Google ScholarÂ
254.Pekin, B. K., Wittkuhn, R. S., Boer, M. M., Macfarlane, C. & Grierson, P. F. Plant functional traits along environmental gradients in seasonally dry and fire-prone ecosystem. J. Veg. Sci. 22, 1009â1020 (2011).ArticleÂ
Google ScholarÂ
255.Pickering, C., Green, K., Barros, A. A. & Venn, S. A resurvey of late-lying snowpatches reveals changes in both species and functional composition across snowmelt zones. Alp. Bot. 124, 93â103 (2014).ArticleÂ
Google ScholarÂ
256.Pickup, M., Westoby, M. & Basden, A. Dry mass costs of deploying leaf area in relation to leaf size. Funct. Ecol. 19, 88â97 (2005).ArticleÂ
Google ScholarÂ
257.Pollock, L. J., Morris, W. K. & Vesk, P. A. The role of functional traits in species distributions revealed through a hierarchical model. Ecography 35, 716â725 (2011).ArticleÂ
Google ScholarÂ
258.Pollock, L. J. et al. Combining functional traits, the environment and multiple surveys to understand semi-arid tree distributions. J. Veg. Sci. 29, 967â977 (2018).ArticleÂ
Google ScholarÂ
259.Prior, L. D., Eamus, D. & Bowman, D. M. J. S. Leaf attributes in the seasonally dry tropics: A comparison of four habitats in northern Australia. Funct. Ecol. 17, 504â515 (2003).ArticleÂ
Google ScholarÂ
260.Prior, L. D., Bowman, D. M. J. S. & Eamus, D. Seasonal differences in leaf attributes in Australian tropical tree species: family and habitat comparisons. Funct. Ecol. 18, 707â718 (2004).ArticleÂ
Google ScholarÂ
261.Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Impact of high-severity fire in a Tasmainian dry eucalypt forest. Aust. J. Bot. 64, 193â205 (2016).ArticleÂ
Google ScholarÂ
262.Oxford Forestry Institute. Prospect: The wood database. http://dps.plants.ox.ac.uk/ofi/prospect/index.htm (2009).263.Royal Botanic Gardens Kew. Seed Information Database (SID). http://data.kew.org/sid/ (2014).264.Royal Botanic Gardens Sydney. PLantNET. http://plantnet.rbgsyd.nsw.gov.au/search/simple.htm (2014).265.Royal Botanic Gardens Sydney. PLantNET: NSW flora online. http://plantnet.rbgsyd.nsw.gov.au/ (2014).266.Read, J. & Sanson, G. D. Characterizing sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol. 160, 81â99 (2003).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
267.Read, J., Sanson, G. D. & Lamont, B. B. Leaf mechanical properties in sclerophyll woodland and shrubland on contrasting soils. Plant Soil 276, 95â113 (2005).CASÂ
ArticleÂ
Google ScholarÂ
268.Reid, J. B., Hill, R., Brown, M. & and M. Hovenden. Vegetation of Tasmania. 456 (1999).269.Reynolds, V. A., Anderegg, L. D. L., Loy, X., HilleRisLambers, J. & Mayfield, M. M. Unexpected drought resistance strategies in seedlings of four Brachychiton species. Tree Physiol. 38, 664â677 (2017).ArticleÂ
CASÂ
Google ScholarÂ
270.Rice, K. J., Matzner, S. L., Byer, W. & Brown, J. R. Patterns of tree dieback in Queensland, Australia: The importance of drought stress and the role of resistance to cavitation. Oecologia 139, 190â198 (2004).ADSÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
271.Richards, A. E. et al. Physiological profiles of restricted endemic plants and their widespread congenors in the North Queensland wet tropics, Australia. Biol. Conserv. 111, 41â52 (2003).ArticleÂ
Google ScholarÂ
272.Roderick, M. L., Berry, S. L. & Noble, I. R. The relationship between leaf composition and morphology at elevated CO2 concentrations. New Phytol. 143, 63â72 (1999).ArticleÂ
Google ScholarÂ
273.Roderick, M. L. & Cochrane, M. J. On the conservative nature of the leaf mass-area relationship. Ann. Bot. 89, 537â542 (2002).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
274.Rosell, J. A., Gleason, S., Mendez-Alonzo, R., Chang, Y. & Westoby, M. Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. New Phytol. 201, 486â497 (2014).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
275.Rye, B. L. A revision of south-western Australian species of Micromyrtus (Myrtaceae) with five antisepalous ribs on the hypanthium. Nuytsia 15, 101â122 (2002).
Google ScholarÂ
276.Rye, B. L. A partial revision of the south-western Australian species of Micromyrtus (Myrtaceae: Chamelaucieae). Nuytsia 16, 117â147 (2006).
Google ScholarÂ
277.Rye, B. L. Reinstatement of the Western Australian genus Oxymyrrhine (Myrtaceae: Chamelaucieae) with three new species. Nuytsia 19, 149â165 (2009).
Google ScholarÂ
278.Rye, B. L. A revision of the Micromyrtus racemosa complex (Myrtaceae: Chamelaucieae) of south-western Australia. Nuytsia 20, 37â56 (2010).
Google ScholarÂ
279.Rye, B. L., Wilson, P. G. & Keighery, G. J. A revision of the species of Hypocalymma (Myrtaceae: Chamelaucieae) with smooth or colliculate seeds. Nuytsia 23, 283â312 (2013).
Google ScholarÂ
280.Rye, B. L. An update to the taxonomy of some western Australian genera of Myrtaceae tribe Chamelaucieae. 1. Calytrix. Nuytsia 23, 483â501 (2013).
Google ScholarÂ
281.Rye, B. L. A revision of the south-western Australian genus Babingtonia (Myrtaceae: Chamelaucieae). Nuytsia 25, 219â250 (2015).
Google ScholarÂ
282.Jessop, J. P. & Toelken, H. R. Flora of South Australia, 4th edition, 4 vols. (Government Printer, Adelaide, 1986).283.Sams, M. A. et al. Landscape context explains changes in the functional diversity of regenerating forests better than climate or species richness. Glob. Ecol. Biog. 26, 1165â1176 (2017).ArticleÂ
Google ScholarÂ
284.Sauquet, H. et al. The ancestral flower of angiosperms and its early diversification. Nat. Commun. 8, 1â10 (2017).ArticleÂ
CASÂ
Google ScholarÂ
285.Schmidt, S. & Stewart, G. R. Waterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum). Plant Cell Envrion. 20, 1231â1241 (1997).ArticleÂ
Google ScholarÂ
286.Schmidt, S. & Stewart, G. R. d15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia 134, 569â577 (2003).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
287.Schmidt, S., Lamble, R. E., Fensham, R. J. & Siddique, I. Effect of woody vegetation clearing on nutrient and carbon relations of semi-arid dystrophic savanna. Plant Soil 331, 79â90 (2009).ArticleÂ
CASÂ
Google ScholarÂ
288.Schulze, E., Kelliher, F. M., Körner, C., Lloyd, J. & Leuning, R. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst. 25, 629â662 (1994).ArticleÂ
Google ScholarÂ
289.Schulze, E.-D. et al. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Aust. J. Plant. Physiol. 25, 413â425 (1998).
Google ScholarÂ
290.Schulze, E.-D., Turner, N. C., Nicolle, D. & Schumacher, J. Species differences in carbon isotope ratios, specific leaf area and nitrogen concentrations in leaves of Eucalyptus growing in a common garden compared with along an aridity gradient. Physiol. Plant. 127, 434â444 (2006).CASÂ
ArticleÂ
Google ScholarÂ
291.Schulze, E.-D., Turner, N. C., Nicolle, D. & Schumacher, J. Leaf and wood carbon isotope ratios, specific leaf areas and wood growth of Eucalyptus species across a rainfall gradient in Australia. Tree Physiol. 26, 479â492 (2006).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
292.Turner, N. C., Schulze, E.-D., Nicolle, D., Schumacher, J. & Kuhlmann, I. Annual rainfall does not directly determine the carbon isotope ratio of leaves of Eucalyptus species. Physiol. Plant. 132, 440â445 (2008).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
293.Schulze, E. D. et al. Stable carbon and nitrogen isotope ratios of Eucalyptus and Acacia species along a seasonal rainfall gradient in Western Australia. Trees 28, 1125â1135 (2014).CASÂ
ArticleÂ
Google ScholarÂ
294.Scott, A. J. Vegetation recovery and recruitment processes in south-eastern Australian semi-arid old fields. (La Trobe University, 2010).295.Sendall, K. M., Lusk, C. H. & Reich, P. B. Trade-offs in juvenile growth potential vs. shade tolerance among subtropical rain forest trees on soils of contrasting fertility. Funct. Ecol. 30, 845â855 (2015).ArticleÂ
Google ScholarÂ
296.Seng, O. D. Specific gravity of Indonesian Woods and its significance for practical use. (FPRDC Forestry Department, Bogor, Indonesia, 1951).297.Sjöström, A. & Gross, C. L. Life-history characters and phylogeny are correlated with extinction risk in the Australian angiosperms. J. Biogeogr. 33, 271â290 (2006).ArticleÂ
Google ScholarÂ
298.Smith, B. Community-level Convergence and Community Structure of temperate Nothofagus forests. (University of Otago, Dunedin, New Zealand, 1996).299.Smith, R. A., Lewis, J. D., Ghannoum, O. & Tissue, D. T. Leaf structural responses to pre-industrial, current and elevated atmospheric CO2 and temperature affect leaf function in Eucalyptus sideroxylon. Funct. Plant. Bio. 39, 285â296 (2012).CASÂ
ArticleÂ
Google ScholarÂ
300.Soliveres, S., Eldridge, D. J., Hemmings, F. & Maestre, F. T. Nurse plant effects on plant species richness in drylands: The role of grazing, rainfall and species specificity. Perspect. Plant Ecol. Evol. Systs. 14, 402â410 (2012).ArticleÂ
Google ScholarÂ
301.Soper, F. M. et al. Natural abundance (delta15N) indicates shifts in nitrogen relations of woody taxa along a savanna-woodland continental rainfall gradient. Oecologia 178, 297â308 (2014).ADSÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
302.Specht, R. L. et al. Mediterranean-type ecosystems: A data source book. 248 (Springer, 1988).303.Specht, R. L. & Rundel, P. W. Sclerophylly and foliar nutrient status of Mediterranean-climate plant communities in southern Australia. Aust. J. Bot. 38, 459â474 (1990).ArticleÂ
Google ScholarÂ
304.Sperry, J. S., Hacke, U. G., Feild, T. S., Sano, Y. & Sikkema, E. H. Hydraulic consequences of vessel evolution in Angiosperms. Int. J. Plant Sci. 168, 1127â1139 (2007).ArticleÂ
Google ScholarÂ
305.Staples, T., Dwyer, J. M., England, J. R. & Mayfield, M. M. Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Glob. Ecol. Biog. 28, 1417â1429 (2019).ArticleÂ
Google ScholarÂ
306.Stewart, G., Turnbull, M., Schmidt, S. & Erskine, P. 13C natural abundance in plant communities along a rainfall gradient: a biological integrator of water availability. Funct. Plant. Bio. 22, 51â55 (1995).ArticleÂ
Google ScholarÂ
307.Stock, W. D., Pate, J. S. & Rasins, E. Seed developmental patterns in Banksia attenuata R. Br. and B. laricina C. Gardner in relation to mechanical defence costs. New Phytol. 117, 109â114 (1991).CASÂ
ArticleÂ
Google ScholarÂ
308.Tait, C. J., Daniels, C. B. & Hill, R. S. Changes in species assemblages within the Adelaide metropolitan area, Australia, 1836â2002. Ecol. Appl. 15, 346â359 (2005).ArticleÂ
Google ScholarÂ
309.Taseski, G., Keith, D. A., Dalrymple, R. L. & Cornwell, W. K. Shifts in fine root traits within and among species along a small-scale hydrological gradient. (University of New South Wales, 2017).310.Taylor, D. & Eamus, D. Coordinating leaf functional traits with branch hydraulic conductivity: Resource substitution and implications for carbon gain. Tree Physiol. 28, 1169â1177 (2008).PubMedÂ
ArticleÂ
Google ScholarÂ
311.Thomas, F. M. & Vesk, P. A. Growth races in The Mallee: Height growth in woody plants examined with a trait-based model. Austral Ecol. 42, 790â800 (2017).ArticleÂ
Google ScholarÂ
312.Thomas, F. M. & Vesk, P. A. Are trait-growth models transferable? Predicting multi-species growth trajectories between ecosystems using plant functional traits. PLoS One 12, e0176959 (2017).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
313.Thompson, I. R. Morphometric analysis and revision of eastern Australian Hovea (Brongniartieae-Fabaceae). Aust. Syst. Bot. 14, 1â99 (2001).ArticleÂ
Google ScholarÂ
314.Tasmanian Herbarium. Flora of Tasmania Online. http://www.tmag.tas.gov.au/floratasmania (2009).315.Tng, D. Y. P., Jordan, G. J. & Bowman, D. M. J. S. Plant traits demonstrate that temperate and tropical giant Eucalypt forests are ecologically convergent with rainforest not savanna. PLoS One 8, e84378 (2013).ADSÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
316.Toelken, H. R. A revision of the genus Kunzea (Myrtaceae) I. The western Australian section Zeanuk. J. Adel. Bot. Gard. 17, 29â106 (1996).
Google ScholarÂ
317.Tomlinson, K. W. et al. Biomass partitioning and root morphology of savanna trees across a water gradient. J. Ecol. 100, 1113â1121 (2012).ArticleÂ
Google ScholarÂ
318.Tomlinson, K. W. et al. Leaf adaptations of evergreen and deciduous trees of semi-arid and humid savannas on three continents. J. Ecol. 101, 430â440 (2013).ArticleÂ
Google ScholarÂ
319.Tomlinson, K. W. et al. Seedling growth of savanna tree species from three continents under grass competition and nutrient limitation in a greenhouse experiment. J. Ecol. 107, 1051â1066 (2019).ArticleÂ
Google ScholarÂ
320.Tremont, R. M. Life-history attributes of plants in grazed and ungrazed grasslands on the Northern Tablelands of New South Wales. Aust. J. Bot. 42, 511â530 (1994).ArticleÂ
Google ScholarÂ
321.Trudgen, M. E. & Rye, B. L. Astus, a new western Australian genus of Myrtaceae with heterocarpidic fruits. Nuytsia 14, 495â512 (2005).
Google ScholarÂ
322.Trudgen, M. E. & Rye, B. L. An update to the taxonomy of some western Australian genera of Myrtaceae tribe Chamelaucieae. 2. Cyathostemon. Nuytsia 24, 7â16 (2014).
Google ScholarÂ
323.Turner, J. & Lambert, M. J. Nutrient cycling within a 27-year-old Eucalyptus grandis plantation in New South Wales. For. Ecol. Manage. 6, 155â168 (1983).CASÂ
ArticleÂ
Google ScholarÂ
324.Turner, N. C., Schulze, E.-D., Nicolle, D. & Kuhlmann, I. Growth in two common gardens reveals species by environment interaction in carbon isotope discrimination of Eucalyptus. Tree Physiol. 30, 741â747 (2010).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
325.Veneklaas, E. J. & Poot, P. Seasonal patterns in water use and leaf turnover of different plant functional types in a species-rich woodland, south-western Australia. Plant Soil 257, 295â304 (2003).CASÂ
ArticleÂ
Google ScholarÂ
326.Venn, S. E., Green, K., Pickering, C. M. & Morgan, J. W. Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snowpatches. Plant Ecol. 212, 1491â1499 (2011).ArticleÂ
Google ScholarÂ
327.Venn, S., Pickering, C. & Green, K. Spatial and temporal functional changes in alpine summit vegetation are driven by increases in shrubs and graminoids. AoB Plants 6, plu008 (2014).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
328.Vesk, P. A., Leishman, M. R. & Westoby, M. Simple traits do not predict grazing response in Australian dry shrublands and woodlands. J. Appl. Ecol. 41, 22â31 (2004).ArticleÂ
Google ScholarÂ
329.Vesk, P. A. & Yen, J. D. L. Plant resprouting: How many sprouts and how deep? Flexible modelling of multispecies experimental disturbances. Perspect. Plant Ecol. Evol. Systs. 41, 125497 (2019).ArticleÂ
Google ScholarÂ
330.Vlasveld, C., OâLeary, B., Udovicic, F. & Burd, M. Leaf heteroblasty in eucalypts: biogeographic evidence of ecological function. Aust. J. Bot. 66, 191â201 (2018).ArticleÂ
Google ScholarÂ
331.Western Australian Herbarium. FloraBase: The Western Australian flora. http://florabase.dpaw.wa.gov.au (1998).332.Western Australian Herbarium. FloraBase: The Western Australian flora. http://florabase.dpaw.wa.gov.au/ (2016).333.Warren, C. R., Tausz, M. & Adams, M. A. Does rainfall explain variation in leaf morphology and physiology among populations of red ironbark (Eucalyptus sideroxylon subsp. tricarpa) grown in a common garden? Tree Physiol. 25, 1369â1378 (2005).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
334.Warren, C. R., Dreyer, E., Tausz, M. & Adams, M. A. Ecotype adaptation and acclimation of leaf traits to rainfall in 29 species of 16-year-old Eucalyptus at two common gardens. Funct. Ecol. 20, 929â940 (2006).ArticleÂ
Google ScholarÂ
335.Weerasinghe, L. K. et al. Canopy position affects the relationships between leaf respiration and associated traits in a tropical rainforest in Far North Queensland. Tree Physiol. 34, 564â584 (2014).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
336.Wells, J. A. Phylogeny and inter-relations of ecological traits and seed dispersal in rainforest plants: Exploring aspects of functional diversity in primary and secondary rainforests in Australiaâs Wet Tropics. (University of Queensland, 2012).337.Westman, W. E. & Roggers, R. V. Nutrient stocks in a subtropical eucalypt forest, North Stradbroke Island. Austral Ecol. 2, 447â460 (1977).ArticleÂ
Google ScholarÂ
338.Westoby, M. et al. Seed size and plant growth form as factors in dispersal spectra. Ecology 71, 1307â1315 (1990).ArticleÂ
Google ScholarÂ
339.Westoby, M. & Wright, I. J. The leaf size â twig size spectrum and its relationship to other important spectra of variation among species. Oecologia 135, 621â628 (2003).ADSÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
340.Wheeler, J. R., Marchant, N. G. & Lewington, M. Flora of the south west: Bunbury, Augusta, Denmark. (Australian Biological Resources Study; University of Western Australia Press, 2002).341.White, M., Sinclair, S. & Frood, D. Victorian Vital Attributes Database. (Department of Environment, Land, Water; Planning, Victoria, 2020).342.Williams, N. S. G., Morgan, J. W., McDonnell, M. J. & McCarthy, M. A. Plant traits and local extinctions in natural grasslands along an urban-rural gradient. J. Ecol. 93, 1203â1213 (2005).ArticleÂ
Google ScholarÂ
343.Wills, J. et al. Tree leaf trade-offs are stronger for sub-canopy trees: leaf traits reveal little about growth rates in canopy trees. Ecol. Appl. 28, 1116â1125 (2018).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
344.Wilson, P. G. & Rowe, R. A revision of the Indigofereae (Fabaceae) in Australia. 2. Indigofera species with trifoliolate and alternately pinnate leaves. Telopea 12, 293â307 (2008).ArticleÂ
Google ScholarÂ
345.Wright, I. J. et al. A survey of seed and seedling characters in 1744 Australian dicotyledon species: Cross-species trait correlations and correlated trait-shifts within evolutionary lineages. Biol. J. Linn. Soc. 69, 521â547 (2000).ArticleÂ
Google ScholarÂ
346.Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423â434 (2001).ArticleÂ
Google ScholarÂ
347.Wright, I. J. & Westoby, M. Leaves at low versus high rainfall: Coordination of structure, lifespan and physiology. New Phytol. 155, 403â416 (2002).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
348.Wright, I. J., Westoby, M. & Reich, P. B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J. Ecol. 90, 534â543 (2002).ArticleÂ
Google ScholarÂ
349.Wright, I. J., Falster, D. S., Pickup, M. & Westoby, M. Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiol. Plant. 127, 445â456 (2006).CASÂ
ArticleÂ
Google ScholarÂ
350.Wright, I. J. et al. Stem diameter growth rates in a fire-prone savanna correlate with photosynthetic rate and branch-scale biomass allocation, but not specific leaf area. Austral Ecol. 44, 339â350 (2018).ArticleÂ
Google ScholarÂ
351.Yates, C. J. et al. Mallee woodlands and shrublands: the mallee, muruk/muert and maalok vegetation of Southern Australia. in Australian Vegetation (Cambridge University Press, 2017).352.Zanne, A. E. et al. Data from: Towards a worldwide wood economics spectrum. Dryad https://doi.org/10.5061/dryad.234 (2009).353.Zieminska, K., Butler, D. W., Gleason, S. M., Wright, I. J. & Westoby, M. Fibre wall and lumen fractions drive wood density variation across 24 Australian angiosperms. AoB Plants 5, plt046 (2013).PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
354.Zieminska, K., Westoby, M. & Wright, I. J. Broad anatomical variation within a narrow wood density range – A study of twig wood across 69 Australian Angiosperms. PLoS One 10, e0124892 (2015).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
355.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).356.Wickham, H. et al. Welcome to the tidyverse. Journal of Open Source Software 4, 1686 (2019).ADSÂ
ArticleÂ
Google ScholarÂ
357.Stephens, J. Yaml: Methods to convert r data to YAML and back (r package version 2.1. 13). (2014).358.FitzJohn, R. Remake: Make-like build management. R package version 0.2.0. (2016).359.Xie, Y. Dynamic documents with R and Knitr. (2015).360.Allaire, J. et al. Rmarkdown: Dynamic documents for R. R package version 0.5.1. (2015).361.CHAH. Australian Plant Name Index (continuously updated), Centre of Australian National Biodiversity Research. (https://www.biodiversity.org.au/nsl/services/apni (14/05/2020), 2020).362.Chamberlain, S. A. & Szöcs, E. Taxize: Taxonomic search and retrieval in R. F1000Res. 2, 191 (2013).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
363.Falster, D. et al. AusTraits: a curated plant trait database for the Australian flora. Zenodo https://doi.org/10.5281/zenodo.3568417 (2021).364.Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3 (2016).365.Falster, D. S., FitzJohn, R. G., Pennell, M. W. & Cornwell, W. K. Datastorr: A workflow and package for delivering successive versions of âevolving dataâ directly into R. GigaScience 8, giz035 (2019).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
366.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302â314 (2018).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
367.Jin, Y. V.PhyloMaker: Make phylogenetic hypotheses for vascular plants, etc.. R package version 0.1.0. (2020).368.Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. Gtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecol. Evo. 8, 28â36 (2017).ArticleÂ
Google ScholarÂ
369.Stefan, V. & Levin, S. Plotbiomes: Plot Whittaker biomes with ggplot2. R package version 0.0.0.9001. (2020).370.Whittaker, R. H. Communities and ecosystems. (MacMillan Publishers, 1975).371.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302â4315 (2017).ArticleÂ
Google Scholar More