1.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS
Article
Google Scholar
2.Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).CAS
Google Scholar
3.Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).
Google Scholar
4.Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228 (2018).
Google Scholar
5.Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
Google Scholar
6.Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).
Google Scholar
7.Chevin, L. M. & Hoffmann, A. A. Evolution of phenotypic plasticity in extreme environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160138 (2017).
Google Scholar
8.Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180174 (2019).
Google Scholar
9.Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313 (2010).
Google Scholar
10.Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).CAS
Google Scholar
11.Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).
Google Scholar
12.Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).
Google Scholar
13.Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).
Google Scholar
14.Samplonius, J. M. et al. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat. Ecol. Evol. 5, 155–164 (2021).
Google Scholar
15.Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).CAS
Google Scholar
16.Tomotani, B. M. et al. Climate change leads to differential shifts in the timing of annual cycle stages in a migratory bird. Glob. Change Biol. 24, 823–835 (2018).
Google Scholar
17.Moyes, K. et al. Advancing breeding phenology in response to environmental change in a wild red deer population. Glob. Change Biol. 17, 2455–2469 (2011).
Google Scholar
18.Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).CAS
Google Scholar
19.Todd, B. D., Scott, D. E., Pechmann, J. H. K. & Whitfield Gibbons, J. Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian community. Proc. R. Soc. Lond. B Biol. Sci. 278, 2191–2197 (2011).
Google Scholar
20.Taylor, S. G. Climate warming causes phenological shift in pink salmon, Oncorhynchus gorbuscha, behavior at Auke Creek, Alaska. Glob. Change Biol. 14, 229–235 (2008).
Google Scholar
21.Mills, L. S. et al. Camouflage mismatch in seasonal coat color due to decreased snow duration. Proc. Natl Acad. Sci. USA 110, 7360–7365 (2013).CAS
Google Scholar
22.Lameris, T. K. et al. Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. Curr. Biol. 28, 2467–2473.e4 (2018).CAS
Google Scholar
23.Singer, M. C. & Parmesan, C. Phenological asynchrony between herbivorous insects and their hosts: signal of climate change or pre-existing adaptive strategy? Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3161–3176 (2010).
Google Scholar
24.Charmantier, A. & Gienapp, P. Climate change and timing of avian breeding and migration: evolutionary versus plastic changes. Evol. Appl. 7, 15–28 (2014).
Google Scholar
25.Keogan, K. et al. Global phenological insensitivity to shifting ocean temperatures among seabirds. Nat. Clim. Change 8, 313–317 (2018).
Google Scholar
26.Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298 (2001).CAS
Google Scholar
27.Both, C., van Asch, M., Bijlsma, R. G., van den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J. Anim. Ecol. 78, 73–83 (2009).
Google Scholar
28.Cresswell, W. & McCleery, R. How great tits maintain synchronization of their hatch date with food supply in response to long-term variability in temperature. J. Anim. Ecol. 72, 356–366 (2003).
Google Scholar
29.Visser, M. E., Van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. Lond. B Biol. Sci. 265, 1867–1870 (1998).
Google Scholar
30.Sanz, J. J., Potti, J., Moreno, J., Merino, S. & Frías, O. Climate change and fitness components of a migratory bird breeding in the Mediterranean region. Glob. Change Biol. 9, 461–472 (2003).
Google Scholar
31.Marrot, P., Charmantier, A., Blondel, J. & Garant, D. Current spring warming as a driver of selection on reproductive timing in a wild passerine. J. Anim. Ecol. 87, 754–764 (2018).
Google Scholar
32.Burgess, M. D. et al. Tritrophic phenological match–mismatch in space and time. Nat. Ecol. Evol. 2, 970–975 (2018).
Google Scholar
33.Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).
Google Scholar
34.Pearce-Higgins, J. W., Yalden, D. W. & Whittingham, M. J. Warmer springs advance the breeding phenology of golden plovers Pluvialis apricaria and their prey (Tipulidae). Oecologia 143, 470–476 (2005).CAS
Google Scholar
35.Nussey, D. H., Clutton-Brock, T. H., Elston, D. A., Albon, S. D. & Kruuk, L. E. B. Phenotypic plasticity in a maternal trait in red deer. J. Anim. Ecol. 74, 387–396 (2005).
Google Scholar
36.Husby, A. et al. Contrasting patterns of phenotypic plasticity in reproductive traits in two great tit (Parus major) populations. Evolution 64, 2221–2237 (2010).
Google Scholar
37.Matthysen, E., Adriaensen, F. & Dhondt, A. A. Multiple responses to increasing spring temperatures in the breeding cycle of blue and great tits (Cyanistes caeruleus, Parus major). Glob. Change Biol. 17, 1–16 (2011).
Google Scholar
38.Fisher, J. I., Mustard, J. F. & Vadeboncoeur, M. A. Green leaf phenology at Landsat resolution: scaling from the field to the satellite. Remote Sens. Environ. 100, 265–279 (2006).
Google Scholar
39.Duparc, A. et al. Co-variation between plant above-ground biomass and phenology in sub-alpine grasslands. Appl. Veg. Sci. 16, 305–316 (2013).
Google Scholar
40.Hinks, A. E. et al. Scale-dependent phenological synchrony between songbirds and their caterpillar food source. Am. Nat. 186, 84–97 (2015).
Google Scholar
41.Lambrechts, M. M., Blondel, J., Maistre, M. & Perret, P. A single response mechanism is responsible for evolutionary adaptive variation in a bird’s laying date. Proc. Natl Acad. Sci. USA 94, 5153–5155 (1997).CAS
Google Scholar
42.Dawson, A. Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1621–1633 (2008).
Google Scholar
43.Visser, M. E. et al. Phenology, seasonal timing and circannual rhythms: towards a unified framework. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3113–3127 (2010).CAS
Google Scholar
44.Caro, S. P., Schaper, S. V., Hut, R. A., Ball, G. F. & Visser, M. E. The case of the missing mechanism: how does temperature influence seasonal timing in endotherms? PLoS Biol. 11, e1001517 (2013).CAS
Google Scholar
45.Bourgault, P., Thomas, D., Perret, P. & Blondel, J. Spring vegetation phenology is a robust predictor of breeding date across broad landscapes: a multi-site approach using the Corsican blue tit (Cyanistes caeruleus). Oecologia 162, 885–892 (2010).
Google Scholar
46.Bison, M. et al. Best environmental predictors of breeding phenology differ with elevation in a common woodland bird species. Ecol. Evol. 10, 10219–10229 (2020).
Google Scholar
47.Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190454 (2020).
Google Scholar
48.Gienapp, P., Reed, T. E. & Visser, M. E. Why climate change will invariably alter selection pressures on phenology. Proc. R. Soc. Lond. B Biol. Sci. 281, 20141611 (2014).
Google Scholar
49.Lönnstedt, O. M., McCormick, M. I., Chivers, D. P. & Ferrari, M. C. O. Habitat degradation is threatening reef replenishment by making fish fearless. J. Anim. Ecol. 83, 1178–1185 (2014).
Google Scholar
50.Pellerin, F., Cote, J., Bestion, E. & Aguilée, R. Matching habitat choice promotes species persistence under climate change. Oikos 128, 221–234 (2019).
Google Scholar
51.Firth, J. A., Verhelst, B. L., Crates, R. A., Garroway, C. J. & Sheldon, B. C. Spatial, temporal and individual-based differences in nest-site visits and subsequent reproductive success in wild great tits. J. Avian Biol. 49, e01740 (2018).
Google Scholar
52.Naef-Daenzer, B. & Keller, L. F. The foraging performance of great and blue tits (Parus major and P. caeruleus) in relation to caterpillar development, and its consequences for nestling growth and fledging weight. J. Anim. Ecol. 68, 708–718 (1999).
Google Scholar
53.Naef-Daenzer, B. Patch time allocation and patch sampling by foraging great and blue tits. Anim. Behav. 59, 989–999 (2000).CAS
Google Scholar
54.Bouwhuis, S., Sheldon, B. C., Verhulst, S. & Charmantier, A. Great tits growing old: selective disappearance and the partitioning of senescence to stages within the breeding cycle. Proc. R. Soc. Lond. B Biol. Sci. 276, 2769–2777 (2009).CAS
Google Scholar
55.Cole, E. F. & Sheldon, B. C. The shifting phenological landscape: within- and between-species variation in leaf emergence in a mixed-deciduous woodland. Ecol. Evol. 7, 1135–1147 (2017).
Google Scholar
56.Wint, W. The role of alternative host-plant species in the life of a polyphagous moth, Operophtera brumata (Lepidoptera: Geometridae). J. Anim. Ecol. 52, 439–450 (1983).
Google Scholar
57.Keller, L. F. & van Noordwijk, A. J. Effects of local environmental conditions on nestling growth in the great tit Parus major L. Ardea 82, 349–362 (1994).
Google Scholar
58.Wilkin, T. A., Garant, D., Gosler, A. G. & Sheldon, B. C. Density effects on life-history traits in a wild population of the great tit Parus major: analyses of long-term data with GIS techniques. J. Anim. Ecol. 75, 604–615 (2006).
Google Scholar
59.Wilkin, T. A. & Sheldon, B. C. Sex differences in the persistence of natal environmental effects on life histories. Curr. Biol. 19, 1998–2002 (2009).CAS
Google Scholar
60.Gagen, M. et al. The tree ring growth histories of UK native oaks as a tool for investigating chronic oak decline: an example from the Forest of Dean. Dendrochronologia 55, 50–59 (2019).
Google Scholar
61.Sturrock, R. N. et al. Climate change and forest diseases. Plant Pathol. 60, 133–149 (2011).
Google Scholar
62.MacColl, A. D. C. The ecological causes of evolution. Trends Ecol. Evol. 26, 514–522 (2011).
Google Scholar
63.Grant, P. R. & Price, T. D. Population variation in continuously varying traits as an ecological genetics problem. Integr. Comp. Biol. 21, 795–811 (1981).
Google Scholar
64.Hereford, J. A quantitative survey of local adaptation and fitness trade-offs. Am. Nat. 173, 579–588 (2009).
Google Scholar
65.Hadfield, J. D. The spatial scale of local adaptation in a stochastic environment. Ecol. Lett. 19, 780–788 (2016).
Google Scholar
66.Porlier, M. et al. Variation in phenotypic plasticity and selection patterns in blue tit breeding time: between- and within-population comparisons. J. Anim. Ecol. 81, 1041–1051 (2012).
Google Scholar
67.Hidalgo Aranzamendi, N., Hall, M. L., Kingma, S. A., van de Pol, M. & Peters, A. Rapid plastic breeding response to rain matches peak prey abundance in a tropical savanna bird. J. Anim. Ecol. 88, 1799–1811 (2019).
Google Scholar
68.Caro, S. P., Lambrechts, M. M., Balthazart, J. & Perret, P. Non-photoperiodic factors and timing of breeding in blue tits: impact of environmental and social influences in semi-natural conditions. Behav. Process. 75, 1–7 (2007).CAS
Google Scholar
69.Bourret, A., Bélisle, M., Pelletier, F. & Garant, D. Multidimensional environmental influences on timing of breeding in a tree swallow population facing climate change. Evol. Appl. 8, 933–944 (2015).
Google Scholar
70.Nussey, D. H., Wilson, A. J. & Brommer, J. E. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20, 831–844 (2007).CAS
Google Scholar
71.Morris, D. W. Toward an ecological synthesis: a case for habitat selection. Oecologia 136, 1–13 (2003).
Google Scholar
72.Long, R. A. et al. Linking habitat selection to fitness-related traits in herbivores: the role of the energy landscape. Oecologia 181, 709–720 (2016).
Google Scholar
73.Morris, D. W. Spatial scale and the cost of density-dependent habitat selection. Evol. Ecol. 1, 379–388 (1987).
Google Scholar
74.Patten, M. A. & Kelly, J. F. Habitat selection and the perceptual trap. Ecol. Appl. 20, 2148–2156 (2010).
Google Scholar
75.Ponchon, A., Garnier, R., Grémillet, D. & Boulinier, T. Predicting population responses to environmental change: the importance of considering informed dispersal strategies in spatially structured population models. Divers. Distrib. 21, 88–100 (2015).
Google Scholar
76.Nilsson, A. L. K. et al. Hydrology influences breeding time in the white-throated dipper. BMC Ecol. 20, 70 (2020).
Google Scholar
77.Nilsson, A. L. K. et al. Location is everything, but climate gets a share: analyzing small-scale environmental influences on breeding success in the white-throated dipper. Front. Ecol. Evol. 8, 542846 (2020).
Google Scholar
78.Martin, R. O., Cunningham, S. J. & Hockey, P. A. R. Elevated temperatures drive fine-scale patterns of habitat use in a savanna bird community. Ostrich 86, 127–135 (2015).
Google Scholar
79.Bailey, L. D. et al. Habitat selection can reduce effects of extreme climatic events in a long-lived shorebird. J. Anim. Ecol. 88, 1474–1485 (2019).
Google Scholar
80.Kirby, K. J. et al. Changes in the tree and shrub layer of Wytham Woods (southern England) 1974–2012: local and national trends compared. Forestry 87, 663–673 (2014).
Google Scholar
81.Perrins, C. & McCleery, R. Laying dates and clutch size in the great tit. Wilson Bull. 101, 236–253 (1989).
Google Scholar
82.Wilkin, T. A., Perrins, C. M. & Sheldon, B. C. The use of GIS in estimating spatial variation in habitat quality: a case study of lay-date in the great tit Parus major. Ibis 149, 110–118 (2007).
Google Scholar
83.Perrins, C. M. Population fluctuations and clutch-size in the great tit, Parus major L. J. Anim. Ecol. 34, 601–647 (1965).
Google Scholar
84.Wesołowski, T. & Rowiński, P. Timing of bud burst and tree-leaf development in a multispecies temperate forest. For. Ecol. Manage. 237, 387–393 (2006).
Google Scholar
85.Gibson, C. W. D. in Woodland Conservation and Research in the Clay Vale of Oxfordshire and Buckinghamshire (eds Kirby, K. J. & Write, F. J.) 32–40 (JNCC, 1988).86.Dawkin, H. C. & Field, D. R. B. A Long-Term Surveillance System for British Woodland Vegetation. Commonwealth Forestry Institute, Oxford, Occasional Paper No. 1. (1978).87.Horsfall, A. S. & Kirby, K. J. The Use of Permanent Quadrats to Record Changes in the Structure and Composition of Wytham Woods, Oxfordshire Research and Survey in Nature Conservation No. 1 (JNCC, 1992).88.Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. 40, 135–145 (2009).
Google Scholar
89.Van Noordwijk, M. & Purnomosidhi, P. Root architecture in relation to tree–soil–crop interactions and shoot pruning in agroforestry. Agrofor. Syst. 30, 161–173 (1995).
Google Scholar
90.Bailey, L. D. & van de Pol, M. climwin: an R toolbox for climate window analysis. PLoS ONE 11, e0167980 (2016).
Google Scholar
91.van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).
Google Scholar
92.Simmonds, E. G., Cole, E. F. & Sheldon, B. C. Cue identification in phenology: a case study of the predictive performance of current statistical tools. J. Anim. Ecol. 88, 1428–1440 (2019).
Google Scholar
93.Oksanen, J. et al. vegan: Community Ecology Package: R Package v.2.5-6 (2019); https://CRAN.R-project.org/package=vegan94.Sturges, H. A. The choice of a class interval. J. Am. Stat. Assoc. 21, 65–66 (1926).
Google Scholar
95.Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. https://doi.org/10.18637/jss.v033.i02 (2010).96.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); http://www.R-project.org/ More