More stories

  • in

    Non-synonymous variation and protein structure of candidate genes associated with selection in farm and wild populations of turbot (Scophthalmus maximus)

    Ilker, E. & Hinczewski, M. Modeling the growth of organisms validates a general relation between metabolic costs and natural selection. Phys. Rev. Lett. 122, 238101 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boltaña, S. et al. Influences of thermal environment on fish growth. Ecol. Evol. 7, 6814–6825 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosenfeld, J., Richards, J., Allen, D., Van Leeuwen, T. & Monnet, G. Adaptive trade-offs in fish energetics and physiology: Insights from adaptive differentiation among juvenile salmonids. Can. J. Fish. Aquat. Sci. 77, 1243–1255 (2020).Article 

    Google Scholar 
    Robertson, D. R. & Collin, R. Inter- and intra-specific variation in egg size among reef fishes across the isthmus of Panama. Front. Ecol. Evol. 2, 84 (2015).Article 

    Google Scholar 
    Zueva, K. J., Lumme, J., Veselov, A. E., Kent, M. P. & Primmer, C. R. Genomic signatures of parasite-driven natural selection in north European Atlantic salmon (Salmo salar). Mar. Genom. 39, 26–38 (2018).Article 

    Google Scholar 
    Rajkov, J., El Taher, A., Böhne, A., Salzburger, W. & Egger, B. Gene expression remodelling and immune response during adaptive divergence in an African cichlid fish. Mol. Ecol. 30, 274–296 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Verhille, C. E. et al. Inter-population differences in salinity tolerance and osmoregulation of juvenile wild and hatchery-born Sacramento splittail. Conserv. Physiol. 4, 1–12 (2016).Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase (version Feb 2018). In: Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist (Roskov Y. et al.). (2018). www.catalogueoflife.org/annual-checklist/2019. ISSN 2405–884X.Karås, P. & Klingsheim, V. Effects of temperature and salinity on embryonic development of turbot (Scophthalmus maximus L.) from the North Sea, and comparisons with Baltic populations. Helgolander Meeresuntersuchungen 51, 241–247 (1997).Article 
    ADS 

    Google Scholar 
    Barbut, L. et al. How larval traits of six flatfish species impact connectivity. Limnol. Oceanogr. 64, 1150–1171 (2019).Article 
    ADS 

    Google Scholar 
    Bouza, C., Presa, P., Castro, J., Sánchez, L. & Martínez, P. Allozyme and microsatellite diversity in natural and domestic populations of turbot (Scophthalmus maximus) in comparison with other Pleuronectiformes. Can. J. Fish. Aquat. Sci. 59, 1460–1473 (2002).Article 
    CAS 

    Google Scholar 
    Nielsen, E. E., Nielsen, P. H., Meldrup, D. & Hansen, M. M. Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea. Mol. Ecol. 13, 585–595 (2004).Article 
    PubMed 

    Google Scholar 
    Vandamme, S. G. et al. Regional environmental pressure influences population differentiation in turbot (Scophthalmus maximus). Mol. Ecol. 23, 618–636 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vilas, R. et al. A genome scan for candidate genes involved in the adaptation of turbot (Scophthalmus maximus). Mar. Genom. 23, 77–86 (2015).Article 

    Google Scholar 
    Turan, C. et al. Genetics structure analysis of turbot (Scophthalmus maximus, Linnaeus, 1758) in the Black and Mediterranean Seas for application of innovative Management Strategies. Front. Mar. Sci. 6, 740 (2019).Article 

    Google Scholar 
    Ivanova, P. et al. Genetic diversity and morphological characterisation of three turbot (Scophthalmus maximus L., 1758) populations along the Bulgarian Black Sea coast. Nat. Conserv. 43, 123–146 (2021).Article 

    Google Scholar 
    do Prado, F. D. et al. Parallel evolution and adaptation to environmental factors in a marine flatfish: Implications for fisheries and aquaculture management of the turbot (Scophthalmus maximus). Evol. Appl. 11, 1322–1341 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    do Prado, F. D. et al. Tracing the genetic impact of farmed turbot Scophthalmus maximus on wild populations. Aquac. Environ. Interact. 10, 447–463 (2018).Article 

    Google Scholar 
    Robledo, D. et al. Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production. Comp. Biochem. Physiol. Part D Genom. Proteom. 21, 41–55 (2017).CAS 

    Google Scholar 
    Sánchez-Molano, E. et al. Detection of growth-related QTL in turbot (Scophthalmus maximus). BMC Genomics 12, 473 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Ramilo, S. T. et al. QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus maximus). BMC Genom. 12, 541 (2011).Article 

    Google Scholar 
    Robledo, D. et al. Integrative transcriptome, genome and quantitative trait loci resources identify single nucleotide polymorphisms in candidate genes for growth traits in turbot. Int. J. Mol. Sci. 17, 243 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sciara, A. A. et al. Validation of growth-related quantitative trait loci markers in turbot (Scophthalmus maximus) families as a step toward marker assisted selection. Aquaculture 495, 602–610 (2018).Article 

    Google Scholar 
    Ma, A., Huang, Z., Wang, X. & Xu, Y. & Guo, X.,. Identification of quantitative trait loci associated with upper temperature tolerance in turbot, Scophthalmus maximus. Sci. Rep. 11, 1–12 (2021).Article 

    Google Scholar 
    Cui, W. et al. Comparative transcriptomic analysis reveals mechanisms of divergence in osmotic regulation of the turbot Scophthalmus maximus. Fish Physiol. Biochem. 46, 1519–1536 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martínez, P. et al. Identification of the major sex-determining region of turbot (Scophthalmus maximus). Genetics 183, 1443–1452 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martínez, P. et al. A genome-wide association study, supported by a new chromosome-level genome assembly, suggests sox2 as a main driver of the undifferentiatiated ZZ/ZW sex determination of turbot (Scophthalmus maximus). Genomics 113, 1705–1718 (2021).Article 
    PubMed 

    Google Scholar 
    Martínez, P. et al. Turbot (Scophthalmus maximus) genomic resources:application for boosting aquaculture production. Genomics in Aquaculture (Elsevier Inc., 2016). https://doi.org/10.1016/B978-0-12-801418-9.00006-8.Saura, M. et al. Disentangling genetic variation for resistance and endurance to scuticociliatosis in turbot using pedigree and genomic information. Front. Genet. 10, 539 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramburu, O. et al. Genomic signatures after five generations of intensive selective breeding: Runs of homozygosity and genetic diversity in representative domestic and wild populations of turbot (Scophthalmus maximus). Front. Genet. 11, 1–14 (2020).Article 

    Google Scholar 
    Aramburu, O., Blanco, A., Bouza, C. & Martínez, P. Integration of host-pathogen functional genomics data into the chromosome-level genome assembly of turbot (Scophthalmus maximus). Aquaculture 564, 739067 (2023).Article 
    CAS 

    Google Scholar 
    Saul, M. C., Philip, V. M., Reinholdt, L. G. & Chesler, E. J. High-diversity mouse populations for complex traits. Trends Genet. 35, 501–514 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moen, T. et al. Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genetics 200, 1313–1326 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pavelin, J. et al. The nedd-8 activating enzyme gene underlies genetic resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genomics 113, 3842–3850 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Barson, N. J. et al. Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature 528, 405–408 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chen, J. et al. Functional differences between TSHR alleles associate with variation in spawning season in Atlantic herring. Commun. Biol. 4, 795 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Imsland, A. K., Brix, O., Nævdal, G. & Samuelsen, E. N. Hemoglobin genotypes in turbot (Scophthalmus maximus Rafinesque), their oxygen affinity properties and relation with growth. Comp. Biochem. Physiol. A Physiol. 116, 157–165 (1997).Article 

    Google Scholar 
    Imsland, A. K., Foss, A., Stefansson, S. O. & Nævdal, G. Hemoglobin genotypes of turbot (Scophthalmus maximus): Consequences for growth and variations in optimal temperature for growth. Fish Physiol. Biochem. 23, 75–81 (2000).Article 
    CAS 

    Google Scholar 
    Andersen, Ø., Rubiolo, J. A., De Rosa, M. C. & Martinez, P. The hemoglobin Gly16β1Asp polymorphism in turbot (Scophthalmus maximus) is differentially distributed across European populations. Fish Physiol. Biochem. 46, 2367–2376 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Torrisi, M., Pollastri, G. & Le, Q. Deep learning methods in protein structure prediction. Comput. Struct. Biotechnol. J. 18, 1301–1310 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    AlQuraishi, M. Machine learning in protein structure prediction. Curr. Opin. Chem. Biol. 65, 1–8 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Powder, K. E., Cousin, H., McLinden, G. P. & Craig Albertson, R. A nonsynonymous mutation in the transcriptional regulator lbh is associated with cichlid craniofacial adaptation and neural crest cell development. Mol. Biol. Evol. 31, 3113–3124 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gupta, A. M., Chakrabarti, J. & Mandal, S. Non-synonymous mutations of SARS-CoV-2 leads epitope loss and segregates its variants. Microbes Infect. 22, 598–607 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verde, C. et al. Structure, function and molecular adaptations of haemoglobins of the polar cartilaginous fish Bathyraja eatonii and Raja hyperborea. Biochem. J. 389, 297–306 (2005).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pearce, R. & Zhang, Y. Toward the solution of the protein structure prediction problem. J. Biol. Chem. 297, 100870 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinf. 9, 40 (2008).Article 

    Google Scholar 
    Pirolli, D. et al. Insights from molecular dynamics simulations: Structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model. PLoS ONE 9, e103866 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, J., Freddolino, P. L. & Zhang, Y. From Protein Structure to Function with Bioinformatics. In From Protein Structure to Function with Bioinformatics: Second Edition (ed. Rigden, D. J.) (2017). https://doi.org/10.1007/978-94-024-1069-3Baek, M. et al. Accurate prediction of protein structures and interactions using a 3-track neural network. Science 373, 871–876 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castro, J. et al. Potential sources of error in parentage assessment of turbot (Scophthalmus maximus) using microsatellite loci. Aquaculture 242, 119–135 (2004).Article 
    CAS 

    Google Scholar 
    Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv ID 1303.3997v2 00, 1–3 (2013).Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vera, M. et al. Development and validation of single nucleotide polymorphisms (SNPs) markers from two transcriptome 454-runs of turbot (Scophthalmus maximus) using high-throughput genotyping. Int. J. Mol. Sci. 14, 5694–5711 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellis, J. A. & Ong, B. The MassARRAY® system for targeted SNP genotyping. Methods in molecular biology vol. 1492 (2017).Choi, Y. & Chan, A. P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31, 2745–2747 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costello, M. J. Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol. 22, 475–483 (2006).Article 
    PubMed 

    Google Scholar 
    Blanchet, S., Rey, O. & Loot, G. Evidence for host variation in parasite tolerance in a wild fish population. Evol. Ecol. 24, 1129–1139 (2010).Article 

    Google Scholar 
    Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).Article 
    PubMed 

    Google Scholar 
    Foll, M. & Gaggiotti, O. A Genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A bayesian perspective. Genetics 993, 977–993 (2008).Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).Article 
    PubMed 

    Google Scholar 
    Narum, S. R. & Hess, J. E. Comparison of FST outlier tests for SNP loci under selection. Mol. Ecol. Resour. 11, 184–194 (2011).Article 
    PubMed 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402 (1997).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Romero, P. et al. Sequence complexity of disordered protein. Prot. Struct. Funct. Genet. 42, 38–48 (2001).Article 
    CAS 

    Google Scholar 
    Jones, D. T. & Cozzetto, D. DISOPRED3: Precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31, 857–863 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mészáros, B., Erdös, G. & Dosztányi, Z. IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucl. Acids Res. 46, W329–W337 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ishida, T. & Kinoshita, K. PrDOS: Prediction of disordered protein regions from amino acid sequence. Nucl. Acids Res. 35, W460-464 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ito, N., Komiyama, N. H. & Fermi, G. Structure of deoxyhaemoglobin of the Anctartic fish Pagothenia bernacchi and structural basis of the root effect. J. Mol. Biol. https://doi.org/10.2210/pdb1hbh/pdb (1995).Article 
    PubMed 

    Google Scholar 
    Šali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).Article 
    PubMed 

    Google Scholar 
    Gou, X. et al. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Res. 24, 1308–1315 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossman, S. R. et al. Identifying recent adaptations in large-scale genomic data. Cell 152, 703–713 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Macpherson, J. M., Sella, G., Davis, J. C. & Petrov, D. A. Genomewide spatial correspondence between nonsynonymous divergence and neutral polymorphism reveals extensive adaptation in Drosophila. Genetics 177, 2083–2099 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Howe, D. G. et al. ZFIN, the Zebrafish model organism database: Increased support for mutants and transgenics. Nucl. Acids Res. 41, 854–860 (2013).Article 

    Google Scholar 
    Huber, C. D., Kim, B. Y., Marsden, C. D. & Lohmueller, K. E. Determining the factors driving selective effects of new nonsynonymous mutations. Proc. Natl. Acad. Sci. USA 114, 4465–4470 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stenson, P. D. et al. The Human Gene Mutation Database (HGMD®): Optimizing its use in a clinical diagnostic or research setting. Hum. Genet. 139, 1197–1207 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Naruse, K., Hori, H., Shimizu, N., Kohara, Y. & Takeda, H. Medaka genomics: A bridge between mutant phenotype and gene function. Mech. Dev. 121, 619–628 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chintalapati, M. & Moorjani, P. Evolution of the mutation rate across primates. Curr. Opin. Genet. Dev. 62, 58–64 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rodin, R. E. et al. The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat. Neurosci. 24, 176–185 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cayuela, H. et al. Thermal adaptation rather than demographic history drives genetic structure inferred by copy number variants in a marine fish. Mol. Ecol. 30, 1624–1641 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kess, T. et al. A putative structural variant and environmental variation associated with genomic divergence across the Northwest Atlantic in Atlantic Halibut. ICES J. Mar. Sci. 78, 2371–2384 (2021).Article 

    Google Scholar 
    Le Moan, A., Bekkevold, D. & Hemmer-Hansen, J. Evolution at two time frames: ancient structural variants involved in post-glacial divergence of the European plaice (Pleuronectes platessa). Heredity (Edinb). 126, 668–683 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ruigrok, M. et al. The relative power of structural genomic variation versus SNPs in explaining the quantitative trait growth in the marine teleost Chrysophrys auratus. Genes (Basel). 13, 1129 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De la Herran, R. et al. A chromosome-level genome assembly enables the identification of the follicle stimulating hormone receptor as the master sex determining gene in Solea senegalensis. Mol. Ecol. Resour. 00, 1–19 (2023).
    Google Scholar 
    Harrison, P. W. et al. The FAANG data portal: Global, open-access, “FAIR”, and richly validated genotype to phenotype data for high-quality functional annotation of animal genomes. Front. Genet. 12, 639238 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Figueras, A. et al. Whole genome sequencing of turbot (Scophthalmus maximus; Pleuronectiformes): A fish adapted to demersal life. DNA Res. 23, 181–192 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, J. S. et al. Conservation genomics of anadromous Atlantic salmon across its North American range: Outlier loci identify the same patterns of population structure as neutral loci. Mol. Ecol. 23, 5680–5697 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Barrio, A. M. et al. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. Elife 5, e12081 (2016).Article 

    Google Scholar 
    Pettersson, M. E. et al. A chromosome-level assembly of the Atlantic herring genome-detection of a supergene and other signals of selection. Genome Res. 29, 1919–1928 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bo, J. et al. Opah (Lampris megalopsis) genome sheds light on the evolution of aquatic endothermy. Zool. Res. 43, 26–29 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, S. et al. Resequencing and SNP discovery of Amur ide (Leuciscus waleckii) provides insights into local adaptations to extreme environments. Sci. Rep. 11, 5064 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meng, Z., Hu, P., Lei, J. & Jia, Y. Expression of insulin-like growth factors at mRNA levels during the metamorphic development of turbot (Scophthalmus maximus). Gen. Comp. Endocrinol. 235, 11–17 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Duan, C., Ren, H. & Gao, S. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: Roles in skeletal muscle growth and differentiation. Gen. Comp. Endocrinol. 167, 344–351 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Duan, C., Ding, J., Li, Q., Tsai, W. & Pozios, K. Insulin-like growth factor binding protein 2 is a growth inhibitory protein conserved in zebrafish. Proc. Natl. Acad. Sci. USA 96, 15274–15279 (1999).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Furqon, A., Gunawan, A., Ulupi, N., Suryati, T. & Sumantri, C. A Polymorphism of Insulin-like growth factor binding protein 2 gene associated with growth and body composition traits in Kampong Chickens. J. Vet. 19, 183 (2018).
    Google Scholar 
    Kibbey, M. M., Jameson, M. J., Eaton, E. M. & Rosenzweig, S. A. Insulin-like growth factor binding protein-2: Contributions of the C-terminal domain to insulin-like growth factor-1 binding. Mol. Pharmacol. 69, 833–845 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Coughlan, J. P. et al. Microsatellite DNA variation in wild populations and farmed strains of turbot from Ireland and Norway: A preliminary study. J. Fish Biol. 52, 916–922 (1998).Article 
    CAS 

    Google Scholar 
    Zhang, H. et al. Characterization and Identification of Single Nucleotide Polymorphism within the IGF-1R gene associated with growth traits of Odontobutis potamophila. J. World Aquac. Soc. 49, 366–379 (2018).Article 
    CAS 

    Google Scholar 
    Guo, L., Yang, S., Li, M. M., Meng, Z. N. & Lin, H. R. 2016) Divergence and polymorphism analysis of IGF1Ra and IGF1Rb from orange-spotted grouper, Epinephelus coioides (Hamilton). Genet. Mol. Res. 15, 1. https://doi.org/10.4238/gmr15048768 (2016).Article 
    CAS 

    Google Scholar 
    Yu, X. et al. Genome-wide association analysis of adaptation to oxygen stress in Nile tilapia (Oreochromis niloticus). BMC Genomics 22, 426 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harano, T. et al. Hemoglobin Kawachi [α44 (CE2) Pro → Arg]: A new hemoglobin variant of high oxygen affinity with amino acid substitution at α1β2 contact. Hemoglobin 6, 43–49 (1982).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alharby, E. et al. A homozygous potentially pathogenic variant in the PAXBP1 gene in a large family with global developmental delay and myopathic hypotonia. Clin. Genet. 92, 579–586 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ceinos, R. M. et al. Differential circadian and light-driven rhythmicity of clock gene expression and behaviour in the turbot, Scophthalmus maximus. PLoS ONE 14, e0219153 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nishiwaki-Ohkawa, T. & Yoshimura, T. Molecular basis for regulating seasonal reproduction in vertebrates. J. Endocrinol. 229, R117–R127 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wood, S. H. et al. Circadian clock mechanism driving mammalian photoperiodism. Nat. Commun. 11, 4291 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piovesan, D. et al. DisProt 7.0: A major update of the database of disordered proteins. Nucl. Acids Res. 45, 219–227 (2017).Article 

    Google Scholar 
    Pajkos, M. & Dosztányi, Z. Chapter Two – Functions of intrinsically disordered proteins through evolutionary lenses. in Dancing Protein Clouds: Intrinsically Disordered Proteins in the Norm and Pathology, Part C (ed. Uversky, V. N. B. T.-P. in M. B. and T. S.) vol. 183 45–74 (Academic Press, 2021).Malagrinò, F. et al. Understanding the binding induced folding of intrinsically disordered proteins by protein engineering: Caveats and pitfalls. Int. J. Mol. Sci. 21, 3484 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doyle, A., Cowan, M. E., Migaud, H., Wright, P. J. & Davie, A. Neuroendocrine regulation of reproduction in Atlantic cod (Gadus morhua): Evidence of Eya3 as an integrator of photoperiodic cues and nutritional regulation to initiate sexual maturation. Comput. Biochem. Physiol. -Part A Mol. Integr. Physiol. 260, 111000 (2021).Silver, S. J., Davies, E. L., Doyon, L. & Rebay, I. Functional dissection of eyes absent reveals new modes of regulation within the retinal determination gene network. Mol. Cell. Biol. 23, 5989–5999 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jin, M. & Mardon, G. Distinct biochemical activities of eyes absent during drosophila eye development. Sci. Rep. 6, 23228 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McGowan, K. L., Passow, C. N., Arias-Rodriguez, L., Tobler, M. & Kelley, J. L. Expression analyses of cave mollies (Poecilia mexicana) reveal key genes involved in the early evolution of eye regression. Biol. Lett. 15, 20190554 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cui, W. et al. Transcriptomic analysis reveals putative osmoregulation mechanisms in the kidney of euryhaline turbot Scophthalmus maximus responded to hypo-saline seawater. J. Oceanol. Limnol. 38, 467–479 (2020).Article 
    CAS 

    Google Scholar 
    Mármol-Sánchez, E., Quintanilla, R., Cardoso, T. F., Jordana Vidal, J. & Amills, M. Polymorphisms of the cryptochrome 2 and mitoguardin 2 genes are associated with the variation of lipid-related traits in Duroc pigs. Sci. Rep. 9, 9025 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takvam, M., Wood, C. M., Kryvi, H. & Nilsen, T. O. Ion transporters and osmoregulation in the didney of teleost fishes as a function of salinity. Front. Physiol. 12, 664588 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Engelund, M. B. & Madsen, S. S. The role of aquaporins in the kidney of euryhaline teleosts. Front. Physiol. 2, 51 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nam, B. H. et al. Identification and characterization of the prepro-vasoactive intestinal peptide gene from the teleost Paralichthys olivaceus. Vet. Immunol. Immunopathol. 127, 249–258 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Paladini, F. et al. Age-dependent association of idiopathic achalasia with vasoactive intestinal peptide receptor 1 gene. Neurogastroenterol. Motil. 21, 597–602 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hosseinpour, L., Nikbin, S., Hedayat-Evrigh, N. & Elyasi-Zarringhabaie, G. Association of polymorphisms of vasoactive intestinal peptide and its receptor with reproductive traits of turkey hens. South Afr. J. Anim. Sci. 50, 345–352 (2020).Article 
    CAS 

    Google Scholar 
    Pereiro, P., Figueras, A. & Novoa, B. A novel hepcidin-like in turbot (Scophthalmus maximus L.) highly expressed after pathogen challenge but not after iron overload. Fish Shellfish Immunol. 32, 879–889 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, J., Yu, L., Ping, L., Fei, M. & Sun, L. Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection. Fish Shellfish Immunol. 38, 127–134 (2014).Article 
    PubMed 

    Google Scholar  More

  • in

    Legally protect marine food web’s lower echelons

    Plankton are microscopic organisms at the base of aquatic food webs and therefore essential to all life on Earth. In our view, international legal protection of plankton is urgently needed because of their high susceptibility to the effects of climate change, including ocean warming and acidification.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Rodent activity in municipal waste collection premises in Singapore: an analysis of risk factors using mixed-effects modelling

    Commensal rodents serve as important reservoirs of rodent-borne pathogens. Efforts to reduce the risk of pathogen transmission include decimating rodent populations, altering access pathways, upholding good waste management practices and denying easy access to food sources. In our study, we examined the incidence of rodent activity in waste collection premises in public residential estates in Singapore and examined the factors associated with rodent activity to inform the priority of rodent control measures of resource limited municipal estate managers.Of the three types of waste collection premises, rodent activity had the highest incidence in refuse bin centres followed by CRCs and IRC bin chambers. Refuse bin centres are prone to refuse spillage because refuse is manually transferred from refuse collection carts into bulk bins and refuse compactors located within the centres. Bin centres tend to be larger than CRCs and IRC bin chambers and the storage of bulky waste that provide additional areas of rodent harbourage are a common sight in Singapore. IRC chambers and refuse bin centres in combination far outnumber CRCs, and the former two are a distinct characteristic of older public housing estates in Singapore. This suggests that older public housing estates have a higher propensity for rodent infestation compared to newer ones. Aging infrastructure can also provide a greater number of harbourage areas and alternate access pathways for rodent travel that increase their ability to obtain food sources. Our study findings were in support of previous studies which found that older infrastructure was associated with a greater likelihood of rodent activity22,23.We also found that the number of IRC bin chutes was positively associated with rodent infestation. Fluids from food waste in IRC bin chambers are drained directly into a sanitary line that is common to all other bin chambers within the same building. A possible explanation therefore is that rodents which find their way into the sanitary line can easily access all bin chambers in the same building. This suggests that preventing individual bin chamber access may reduce food availability to rodents which traverse the sanitary line in search of food sources.In the present study, we observed that rodent sightings were relatively higher in some months in the first half of the calendar year compared to the second half. Even though our estimates were positive, those for some months were not statistically significant. In Singapore, end-December, January to February are usually associated with increased food production due to the year-end (Christmas and New Year celebrations) and early-year (Chinese New Year) festivities. A proportionate increase in food waste over that period could improve survivability of rodents that leads to increased mating and reproduction. We therefore postulate that the higher seasonal rodent activity is plausible but recommend that future studies be conducted with sufficient longitude to examine the differences in the seasonal pattern across the three categories of premises more closely. A previous study in Harbin, China27 reported a seasonal pattern in the age composition of R. norvegicus while an ecological study on R. norvegicus in Salvador Brazil did not find any difference in the number of rats trapped between the dry and rainy seasons28. The inconsistent seasonal findings between studies could be due to the differences in the climate, degree of urbanization and environmental conditions of study locations.The relative rise in rodent activity in the first half of the year coupled with older estates being at greater risk of rodent activity suggest that municipal town councils which prioritize regular infrastructural repairs and improvements in older estates and complete them in the second half of each calendar year would help mitigate the anticipated rise in the first half of the new calendar year.In our study, we examined the relations between visual cues and rodent activity to help estate managers prioritise their control efforts. We found that rodent droppings were a common positive predictor of rodent activity across all three categories of waste collection premises. In particular, the odds of droppings in IRC bin chambers were the highest among the three categories of premises. We hypothesize that the probability of rodent dropping sightings was in part related to the accessibility of food waste and thus time spent by rodents within the respective waste collection premises. Each IRC chamber contains an open top bin that receives waste that is disposed down the IRC chamber chute. Food waste in IRC bin chambers are thus more easily accessed by rodents compared to in CRCs where waste is stored in a compactor and in bin centres where bulk bins are covered until the waste is compacted or collected.In Salvador, Brazil, the presence of Rattus norvegicus droppings were independently associated with an increased risk of Leptospira infection in humans29. Further research on site-specific Leptospira infection risks in Singapore are required to affirm the utility of droppings as an indicator for Leptospira infection risk. In addition, rub marks and gnaw marks were also positive predictors of rodent activity in CRCs and IRC bin chambers. A study in Chile reported that gnaw marks and holes, as well as grease or rub marks left behind by rodent travel were indicators of rodent activity30. A previous study carried out in an urban city in Taiwan reported that rodent droppings and rub marks were well correlated with rodent infestation31. Our findings, which were in support of these previous studies, suggest that estate managers can maximise the cost effectiveness of their resources by focusing their control efforts based on visual cues without relying solely on trapping activities for surveillance.We found a positive relationship between the number of rodent burrows and rodent activity in all three waste collection premises, though this was only significant for refuse bin centres. That the direction of effect for burrows was consistent these three premises, was a reassuring observation. It is possible that we did not have enough study power to establish the observed positive relations in CRCs and IRC bin chambers. Therefore future studies should seek to confirm our findings. R. norvegicus excavate extensive burrow systems that are able to house a large number of rats32. They exhibit a strong preference for creating burrows in loose soil and on sloping terrain33 and construct shallow burrows in close proximity to water bodies and food sources34. As rodent burrows are primarily used for nesting, food storage and harbourage purposes35, burrows can provide important information about the extent of rodent activity in an area and may be used as an indicator for estate managers to focus their investigations.A previous study in New York, United States found that the presence of numerous restaurants, or having older infrastructure were associated with increased levels of R. norvegicus22. Unexpectedly, we did not find any evidence that the number of dining establishments was associated with rodent activity. However, instances of rodent activity have been reported in food establishments in Singapore36,37,38. We hypothesize that rodent movement is restricted to the surrounding area of the food establishments due to the plethora of food available, with little reason for rodents to venture into waste collection premises. Future studies examining the relationship between rodent activity in food establishments and waste collection premises are required to confirm this.In our study, the presence of gnaw marks (aOR: 5.61), rub marks (aOR: 5.04) in CRCs and rodent droppings in CRCs (aOR: 6.20), IRC bin chambers (aOR: 90.84) and bin centres (aOR: 3.61) had the largest strengths of association with rodent activity. Comparatively, in a study in Johannesburg, South Africa, predictors such as dampness (aOR: 2.54) and cracks (aOR: 1.92) in homes had relatively smaller effects on rodent activity20, while a study in Salvador, Brazil found relatively larger effects of homes with dilapidated fences and walls (aOR: 8.95) and those built on earthen slopes (aOR: 4.95)21. This suggests that rodent activity can be strongly influenced by site- and setting-specific factors, and supports the body of evidence on the strong adaptability of rodents in our urban environment”.Urban environments have the capacity to alter the biology of the pathogens, hosts and vectors, which can influence disease transmission39. The proximate setting of dense urban environments allows for close contact between humans and synanthropic rodents, thereby increasing the transmission risk of zoonotic diseases4. In addition to causing diseases in human populations, urban rats are also known to compromise food safety, damage infrastructure and cause mental health distress25,40. The responsibility of rodent control in residential estates is important but may be one among many other competing public health and estate management responsibilities that municipal town councils have to undertake. Consequently, estate managers have to prioritize their limited resources in order to maximise the cost effectiveness of their resource allocation choices. Based on our study findings, we recommend that estate managers adopt a risk-based approach in vector control resource allocation in waste collection premises according to infrastructural age and visual cues for rodent activity.IRC bin chambers which are a distinct feature of the oldest residential buildings, were observed with a substantially higher odds of rodent activity compared to the other categories of waste collection premises. This suggests that rodent control resource allocation should be prioritized in older residential estates. The clear seasonal pattern of rodent activity in CRCs suggests that estate managers can increase their rodent control activities thereat in the first half of the year. Finally, easy access to food waste directly increases the probability of survival and consequently the rodent population size. Future research should examine the quality of municipal solid waste management and the waste processing flow in residential estates to determine how rodent access to food waste can be further minimized to reduce the population of rodents.Study strengths and limitationsWe analysed data from all public residential estates in Singapore; our findings are thus generalizable at the national level. The use of outcomes and independent measures from individual waste collection premises over multiple cycles of inspection provided stronger evidence for causal inferences. We analysed data over 12 months to account for within-year variations that could influence the outcome measure. Rodents were visually identified without molecular speciation because no trapping was carried out. Though the majority of rodents were observed to be Rattus norvegicus, which is the most common species of rodents in public housing estates in Singapore, we could not rule out misclassification of rodents. However, our findings remain relevant for municipal authorities seeking to prioritize resources for vector control in waste collection premises under their care. More

  • in

    Fungal parasitism on diatoms alters formation and bio–physical properties of sinking aggregates

    Falkowski, P. The power of plankton. Nature 483, 17–20 (2012).Article 

    Google Scholar 
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grossart, H. P. & Simon, M. Significance of limnetic organic aggregates (lake snow) for the sinking flux of particulate organic matter in a large lake. Aquat. Microb. Ecol. 15, 115–125 (1998).Article 

    Google Scholar 
    Weyhenmeyer, G. A. & Bloesch, J. The pattern of particle flux variability in Swedish and Swiss lakes. Sci. Total Environ. 266, 69–78 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fender, C. K. et al. Investigating particle size-flux relationships and the biological pump across a range of plankton ecosystem states from coastal to oligotrophic. Front. Marine Sci. 6, https://doi.org/10.3389/fmars.2019.00603 (2019).Iversen, M. H., Nowald, N., Ploug, H., Jackson, G. A. & Fischer, G. High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: Degradation processes and ballasting effects. Deep-Sea Res. Pt I Oceanogr. Res. Papers. 57, 771–784 (2010).Article 
    CAS 

    Google Scholar 
    Griffiths, J. R. et al. The importance of benthic–pelagic coupling for marine ecosystem functioning in a changing world. Glob. Change Biol. 23, 2179–2196 (2017).Article 

    Google Scholar 
    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jenny, J. P. et al. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob. Chang Biol. 22, 1481–1489 (2016).Article 
    PubMed 

    Google Scholar 
    Carstensen, J., Andersen, J. H., Gustafsson, B. G. & Conley, D. J. Deoxygenation of the Baltic Sea during the last century. Proc. Natl Acad. Sci. 111, 5628–5633 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon, M., Grossart, H. P., Schweitzer, B. & Ploug, H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat. Microb. Ecol. 28, 175–211 (2002).Article 

    Google Scholar 
    Burd, A. B. & Jackson, G. A. Particle aggregation. Ann. Rev. Mar. Sci. 1, 65–90 (2009).Article 
    PubMed 

    Google Scholar 
    Kiørboe, T., Lundsgaard, C., Olesen, M. & Hansen, J. L. S. Aggregation and sedimentation processes during a spring phytoplankton bloom: A field experiment to test coagulation theory. J. Mar. Res. 52, 297–323 (1994).Article 

    Google Scholar 
    Boyd, P. W. & Trull, T. W. Understanding the export of biogenic particles in oceanic waters: Is there consensus? Prog. Oceanogr. 72, 276–312 (2007).Article 

    Google Scholar 
    Legendre, L. & Rivkin, R. B. Fluxes of carbon in the upper ocean: regulation by food-web control nodes. Mar. Ecol. Prog. Ser. 242, 95–109 (2002).Article 

    Google Scholar 
    Kaneko, H. et al. Eukaryotic virus composition can predict the efficiency of carbon export in the global ocean. iScience 24, 102002 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H.-P. et al. Fungi in aquatic ecosystems. Nat. Rev. Microbiol. 17, 339–354 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Amend, A. et al. Fungi in the marine environment: Open questions and unsolved problems. mBio 10, e01189–01118 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ortiz-Álvarez, R., Triadó-Margarit, X., Camarero, L., Casamayor, E. O. & Catalan, J. High planktonic diversity in mountain lakes contains similar contributions of autotrophic, heterotrophic and parasitic eukaryotic life forms. Sci. Rep. 8, 4457 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gutiérrez, M. H., Pantoja, S., Tejos, E. & Quiñones, R. A. The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar. Biol. 158, 205–219 (2011).Article 

    Google Scholar 
    Edgcomb, V. P., Beaudoin, D., Gast, R., Biddle, J. F. & Teske, A. Marine subsurface eukaryotes: The fungal majority. Environ. Microbiol. 13, 172–183 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Frenken, T. et al. Integrating chytrid fungal parasites into plankton ecology: research gaps and needs. Environ. Microbiol. 19, 3802–3822 (2017).Article 
    PubMed 

    Google Scholar 
    Van den Wyngaert, S. et al. Seasonality of parasitic and saprotrophic zoosporic fungi: linking sequence data to ecological traits. ISME J. 16, 2242–2254 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gsell, A. S. et al. Long-term trends and seasonal variation in host density, temperature, and nutrients differentially affect chytrid fungi parasitising lake phytoplankton. Freshwat. Biol. https://doi.org/10.1111/fwb.13958 (2022).Gutiérrez, M. H., Jara, A. M. & Pantoja, S. Fungal parasites infect marine diatoms in the upwelling ecosystem of the Humboldt current system off central Chile. Environ. Microbiol. 18, 1646–1653 (2016).Article 
    PubMed 

    Google Scholar 
    Kilias, E. S. et al. Chytrid fungi distribution and co-occurrence with diatoms correlate with sea ice melt in the Arctic Ocean. Commun. Biol. 3, 183 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hassett, B. T., Ducluzeau, A. L. L., Collins, R. E. & Gradinger, R. Spatial distribution of aquatic marine fungi across the western Arctic and sub-arctic. Environ. Microbiol. 19, 475–484 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lepelletier, F. et al. Dinomyces arenysensis gen. et sp. nov. (Rhizophydiales, Dinomycetaceae fam. nov.), a chytrid infecting marine dinoflagellates. Protist 165, 230–244 (2014).Article 
    PubMed 

    Google Scholar 
    Hassett, B. T. & Gradinger, R. Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18, 2001–2009 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Le Calvez, T., Burgaud, G., Mahé, S., Barbier, G. & Vandenkoornhuyse, P. Fungal diversity in deep-sea hydrothermal ecosystems. Appl. Environ. Microbiol. 75, 6415–6421 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, T. A. et al. Molecular diversity and distribution of marine fungi across 130 european environmental samples. Proc. R. Soc. B Biol. Sci. 282, 20152243 (2015).Article 

    Google Scholar 
    Taylor, J. D. & Cunliffe, M. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J. 10, 2118–2128 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Comeau, A. M., Vincent, W. F., Bernier, L. & Lovejoy, C. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci. Rep. 6, 30120 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Y., Sen, B., He, Y., Xie, N. & Wang, G. Spatiotemporal distribution and assemblages of planktonic fungi in the coastal waters of the Bohai Sea. Front. Microbiol. 9, 584 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Z., Johnson, Z. I. & Wang, G. Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J. 4, 111–120 (2009).Article 
    PubMed 

    Google Scholar 
    Duan, Y. et al. A high-resolution time series reveals distinct seasonal patterns of planktonic fungi at a temperate coastal ocean site (Beaufort, North Carolina, USA). Appl. Environ. Microbiol. 84, e00967–00918 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cleary, A. C., Søreide, J. E., Freese, D., Niehoff, B. & Gabrielsen, T. M. Feeding by Calanus glacialis in a high arctic fjord: Potential seasonal importance of alternative prey. ICES J. Mar. Sci. 74, 1937–1946 (2017).Article 

    Google Scholar 
    Renaud, P. E., Morata, N., Carroll, M. L., Denisenko, S. G. & Reigstad, M. Pelagic–benthic coupling in the western Barents Sea: Processes and time scales. Deep Sea Res. Part II: Topical Stud. Oceanogr. 55, 2372–2380 (2008).Article 
    CAS 

    Google Scholar 
    Lepère, C., Ostrowski, M., Hartmann, M., Zubkov, M. V. & Scanlan, D. J. In situ associations between marine photosynthetic picoeukaryotes and potential parasites – a role for fungi? Environ. Microbiol. Rep. 8, 445–451 (2016).Article 
    PubMed 

    Google Scholar 
    Kagami, M., Gurung, T. B., Yoshida, T. & Urabe, J. To sink or to be lysed? Contrasting fate of two large phytoplankton species in Lake Biwa. Limnol. Oceanogr. 51, 2775–2786 (2006).Article 

    Google Scholar 
    Gerphagnon, M., Colombet, J., Latour, D. & Sime-Ngando, T. Spatial and temporal changes of parasitic chytrids of cyanobacteria. Sci. Rep. 7, 6056 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ibelings, B. W. et al. Chytrid infections and diatom spring blooms: Paradoxical effects of climate warming on fungal epidemics in lakes. Freshwat. Biol. 56, 754–766 (2011).Article 

    Google Scholar 
    Gsell, A. S. et al. Spatiotemporal variation in the distribution of chytrid parasites in diatom host populations. Freshwat. Biol. 58, 523–537 (2013).Article 

    Google Scholar 
    Grami, B. et al. Functional effects of parasites on food web properties during the spring diatom bloom in Lake Pavin: A linear inverse modeling analysis. PLOS ONE. 6, e23273 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Klawonn, I. et al. Characterizing the “fungal shunt”: Parasitic fungi on diatoms affect carbon flow and bacterial communities in aquatic microbial food webs. Proc. Natl Acad. Sci. 118, e2102225118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kagami, M., Miki, T. & Takimoto, G. Mycoloop: Chytrids in aquatic food webs. Front. Microbiol. 5, 166 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laundon, D. & Cunliffe, M. A call for a better understanding of aquatic chytrid biology. Front. Fungal Biol. 2, https://doi.org/10.3389/ffunb.2021.708813 (2021).Ploug, H., Iversen, M. H. & Fischer, G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria. Limnol. Oceanogr. 53, 1878–1886 (2008).Article 

    Google Scholar 
    Laurenceau-Cornec, E. C., Trull, T. W., Davies, D. M., De La Rocha, C. L. & Blain, S. Phytoplankton morphology controls on marine snow sinking velocity. Mar. Ecol. Prog. Ser. 520, 35–56 (2015).Article 

    Google Scholar 
    Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37 (2018).Article 

    Google Scholar 
    Alldredge, A. L., Gotschalk, C., Passow, U. & Riebesell, U. Mass aggregation of diatom blooms: Insights from a mesocosm study. Deep Sea Res. Part II: Topical Stud. Oceanogr. 42, 9–27 (1995).Article 
    CAS 

    Google Scholar 
    Seto, K., Van den Wyngaert, S., Degawa, Y. & Kagami, M. Taxonomic revision of the genus Zygorhizidium: Zygorhizidiales and Zygophlyctidales ord. nov. (Chytridiomycetes, Chytridiomycota). Fungal Syst. Evol. 5, 17–38 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Engel, A. in Practical Guidelines for the Analysis of Seawater (eds Wurl O & Raton B) (CRC Press, 2009).Cisternas-Novoa, C., Lee, C. & Engel, A. A semi-quantitative spectrophotometric, dye-binding assay for determination of Coomassie Blue stainable particles. Limnol. Oceanogr. Methods. 12, 604–616 (2014).Article 

    Google Scholar 
    Passow, U. & Alldredge, A. L. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnol. Oceanogr. 40, 1326–1335 (1995).Article 
    CAS 

    Google Scholar 
    Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates – potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085 (2013).Article 

    Google Scholar 
    van der Jagt, H., Friese, C., Stuut, J.-B. W., Fischer, G. & Iversen, M. H. The ballasting effect of Saharan dust deposition on aggregate dynamics and carbon export: Aggregation, settling, and scavenging potential of marine snow. Limnol. Oceanogr. 63, 1386–1394 (2018).Article 

    Google Scholar 
    Grossart, H. P. & Ploug, H. Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol. Oceanogr. 46, 267–277 (2001).Article 
    CAS 

    Google Scholar 
    Iversen, M. H. & Ploug, H. Ballast minerals and the sinking carbon flux in the ocean: Carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7, 2613–2624 (2010).Article 
    CAS 

    Google Scholar 
    Ploug, H. & Grossart, H. P. Bacterial growth and grazing on diatom aggregates: Respiratory carbon turnover as a function of aggregate size and sinking velocity. Limnol. Oceanogr. 45, 1467–1475 (2000).Article 
    CAS 

    Google Scholar 
    Belcher, A. et al. Depth-resolved particle-associated microbial respiration in the northeast Atlantic. Biogeosciences 13, 4927–4943 (2016).Article 

    Google Scholar 
    Ploug, H., Grossart, H. P., Azam, F. & Jørgensen, B. B. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: Implications for the carbon cycle in the ocean. Mar. Ecol. Prog. Ser. 179, 1–11 (1999).Article 
    CAS 

    Google Scholar 
    Turner, J. T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog. Oceanogr. 130, 205–248 (2015).Article 

    Google Scholar 
    Nguyen, T. T. H. et al. Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. Nat. Commun. 13, 1657 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zakem, E. J., Cael, B. B. & Levine, N. M. A unified theory for organic matter accumulation. Proc. Natl Acad. Sci. 118, e2016896118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alcolombri, U. et al. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 14, 775–780 (2021).Article 
    CAS 

    Google Scholar 
    Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210–1232 (2009).Article 
    CAS 

    Google Scholar 
    Henson, S., Le Moigne, F. & Giering, S. Drivers of carbon export efficiency in the global ocean. Glob. Biogeochem. Cycles. 33, 891–903 (2019).Article 
    CAS 

    Google Scholar 
    Gsell, A. S., De Senerpont Domis, L. N., Verhoeven, K. J. F., Van Donk, E. & Ibelings, B. W. Chytrid epidemics may increase genetic diversity of a diatom spring-bloom. ISME J. 7, 2057–2059 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Agha, R., Saebelfeld, M., Manthey, C., Rohrlack, T. & Wolinska, J. Chytrid parasitism facilitates trophic transfer between bloom-forming cyanobacteria and zooplankton (Daphnia). Sci. Rep. 6, 35039 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rasconi, S. et al. Parasitic chytrids upgrade and convey primary produced carbon during inedible algae proliferation. Protist 171, 125768 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Guidi, L. et al. Effects of phytoplankton community on production, size, and export of large aggregates: A world-ocean analysis. Limnol. Oceanogr. 54, 1951–1963 (2009).Article 

    Google Scholar 
    Boyd, P. W. & Newton, P. P. Does planktonic community structure determine downward particulate organic carbon flux in different oceanic provinces?. Deep-Sea Res. Pt I Oceanogr. Res. Papers. 46, 63–91 (1999).Article 
    CAS 

    Google Scholar 
    van der Jagt, H., Wiedmann, I., Hildebrandt, N., Niehoff, B. & Iversen, M. H. Aggregate feeding by the copepods Calanus and Pseudocalanus controls carbon flux attenuation in the arctic shelf sea during the productive period. Front. Mar. Sci. 7, 543124 (2020).Article 

    Google Scholar 
    Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).Article 

    Google Scholar 
    Cavan, E. L., Henson, S. A., Belcher, A. & Sanders, R. Role of zooplankton in determining the efficiency of the biological carbon pump. Biogeosciences 14, 177–186 (2017).Article 
    CAS 

    Google Scholar 
    Gachon, C. M. M., Küpper, H., Küpper, F. C. & Šetlík, I. Single-cell chlorophyll fluorescence kinetic microscopy of Pylaiella littoralis (Phaeophyceae) infected by Chytridium polysiphoniae (Chytridiomycota). Eur. J. Phycol. 41, 395–403 (2006).Article 

    Google Scholar 
    Senga, Y., Yabe, S., Nakamura, T. & Kagami, M. Influence of parasitic chytrids on the quantity and quality of algal dissolved organic matter (AOM). Water Res. 145, 346––353 (2018).Article 
    PubMed 

    Google Scholar 
    Roberts, C., Allen, R., Bird, K. E. & Cunliffe, M. Chytrid fungi shape bacterial communities on model particulate organic matter. Biol. Lett. 16, 20200368 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blackburn, N., Fenchel, T. & Mitchell, J. Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282, 2254–2256 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. 113, 1576–1581 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shibl, A. A. et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc. Natl Acad. Sci. 117, 27445–27455 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guidi, L. et al. Relationship between particle size distribution and flux in the mesopelagic zone. Deep-Sea Res. Part I Oceanogr. Res. Papers. 55, 1364–1374 (2008).Article 
    CAS 

    Google Scholar 
    Jackson, G. A. et al. Particle size spectra between 1 μm and 1 cm at Monterey Bay determined using multiple instruments. Deep-Sea Res. Pt I Oceanogr. Res. Papers. 44, 1739–1767 (1997).Article 

    Google Scholar 
    Frenken, T. et al. Warming accelerates termination of a phytoplankton spring bloom by fungal parasites. Glob. Change Biol. 22, 299–309 (2016).Article 

    Google Scholar 
    Mari, X., Passow, U., Migon, C., Burd, A. B. & Legendre, L. Transparent exopolymer particles: Effects on carbon cycling in the ocean. Prog. Oceanogr. 151, 13–37 (2017).Article 

    Google Scholar 
    Passow, U. Transparent exopolymer particles (TEP) in aquatic environments. Prog. Oceanogr. 55, 287–333 (2002).Article 

    Google Scholar 
    Prieto, L. et al. Scales and processes in the aggregation of diatom blooms: high time resolution and wide size range records in a mesocosm study. Deep-Sea Res. Pt I Oceanogr. Res. Papers. 49, 1233–1253 (2002).Article 

    Google Scholar 
    Kiørboe, T., Andersen, K. P. & Dam, H. G. Coagulation efficiency and aggregate formation in marine phytoplankton. Mar. Biol. 107, 235–245 (1990).Article 

    Google Scholar 
    Vidal-Melgosa, S. et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat. Commun. 12, 1150 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gärdes, A., Iversen, M. H., Grossart, H. P., Passow, U. & Ullrich, M. S. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J. 5, 436–445 (2011).Article 
    PubMed 

    Google Scholar 
    Grossart, H. P. & Simon, M. Interactions of planktonic algae and bacteria: Effects on algal growth and organic matter dynamics. Aquat. Microb. Ecol. 47, 163–176 (2007).Article 

    Google Scholar 
    Short, S. M. The ecology of viruses that infect eukaryotic algae. Environ. Microbiol. 14, 2253–2271 (2012).Article 
    PubMed 

    Google Scholar 
    Carlström, D. The crystal structure of α-chitin (Poly-N-acetyl-d-glucosamine). J. Biophysical Biochemical Cytol. 3, 669–683 (1957).Article 

    Google Scholar 
    Miklasz, K. A. & Denny, M. W. Diatom sinkings speeds: Improved predictions and insight from a modified Stokes’ law. Limnol. Oceanogr. 55, 2513–2525 (2010).Article 

    Google Scholar 
    Bidle, K. D. & Azam, F. Accelerated dissolution of diatom silica by marine bacterial assemblages. Nature 397, 508 (1999).Article 
    CAS 

    Google Scholar 
    Gerphagnon, M. et al. Comparison of sterol and fatty acid profiles of chytrids and their hosts reveals trophic upgrading of nutritionally inadequate phytoplankton by fungal parasites. Environ. Microbiol. 21, 949–958 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kagami, M., Von Elert, E., Ibelings, B. W., De Bruin, A. & Van Donk, E. The parasitic chytrid, Zygorhizidium, facilitates the growth of the cladoceran zooplankter, Daphnia, in cultures of the inedible alga, Asterionella. Proc. R. Soc. B Biol. Sci. 274, 1561–1566 (2007).Article 

    Google Scholar 
    Carney, L. T. & Lane, T. W. Parasites in algae mass culture. Front. Microbiol. 5, 1–8 (2014).Article 

    Google Scholar 
    Williams, D. M. Synedra, Ulnaria: definitions and descriptions – a partial resolution. Diatom Res. 26, 149–153 (2011).Article 

    Google Scholar 
    Arar, E. J. & Collins, G. B. Method 445.0: In vitro determination of chlorophyll and phaeophytin a in marine and freshwater algae by fluorescence. U.S. Environemental Protection Agency, Cinncinnati, Ohio Revision 1.2, 1–22 (1997).Klawonn, I., Dunker, S., Kagami, M., Grossart, H.-P., Van den Wyngaert, S. Intercomparison of two fluorescent dyes to visualize parasitic fungi (Chytridiomycota) on phytoplankton. Microb. Ecol. 85, 9–23 (2023).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alldredge, A. L. & Gotschalk, C. In situ settling behavior of marine snow. Limnol. Oceanogr. 33, 351 (1988).Article 

    Google Scholar 
    Jackson, G. A. Coagulation in a rotating cylinder. Limnol. Oceanogr. Methods. 13, e10018 (2015).Article 

    Google Scholar 
    Shanks, A. L. & Edmondson, E. W. Laboratory-made artificial marine snow: a biological model of the real thing. Mar. Biol. 101, 463–470 (1989).Article 

    Google Scholar 
    Cowen, R. K. & Guigand, C. M. In situ ichthyoplankton imaging system (ISIIS): system design and preliminary results. Limnol. Oceanogr. Methods. 6, 126–132 (2008).Article 

    Google Scholar 
    Jackson, G. A. & Burd, A. B. Simulating aggregate dynamics in ocean biogeochemical models. Prog. Oceanogr. 133, 55–65 (2015).Article 

    Google Scholar 
    Petrik, C. M., Jackson, G. A. & Checkley, D. M. Aggregates and their distributions determined from LOPC observations made using an autonomous profiling float. Deep-Sea Res. Pt I Oceanogr. Res. Papers. 74, 64–81 (2013).Article 

    Google Scholar 
    Johnson, C. P., Li, X. & Logan, B. E. Settling velocities of fractal aggregates. Environ. Sci. Technol. 30, 1911–1918 (1996).Article 
    CAS 

    Google Scholar 
    Laurenceau-Cornec, E. C. et al. New guidelines for the application of Stokes’ models to the sinking velocity of marine aggregates. Limnol. Oceanogr. 65, 1264–1285 (2020).Article 
    CAS 

    Google Scholar 
    Ploug, H. & Grossart, H. P. Bacterial production and respiration in suspended aggregates – A matter of the incubation method. Aquat. Microb. Ecol. 20, 21–29 (1999).Article 

    Google Scholar 
    Berggren, M., Lapierre, J.-F. & del Giorgio, P. A. Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. ISME J. 6, 984–993 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    R.CoreTeam. R: A language and environment for statistical computing. Vienna, Austria. Retrieved from https://www.R-project.org/ (2016). More

  • in

    Directional asymmetry in gonad length indicates moray eels (Teleostei, Anguilliformes, Muraenidae) are “right-gonadal”

    Graham, J. H., Raz, S., Hel-Or, H. & Nevo, E. Fluctuating asymmetry: Methods, theory, and applications. Symmetry 2(2), 466–540 (2010).ADS 
    MathSciNet 

    Google Scholar 
    Graham, J. H., Emlen, J. M., Freeman, D. C., Leamy, L. J. & Kieser, J. A. Directional asymmetry and the measurement of developmental instability. Biol. J. Lin. Soc. 64(1), 1–16 (1998).
    Google Scholar 
    Dongen, V., Lensm, L. & Molenberghs, G. Mixture analysis of asymmetry: Modelling directional asymmetry, antisymmetry and heterogeneity in fluctuating asymmetry. Ecol. Lett. 2(6), 387–396 (1999).
    Google Scholar 
    Palmer, A. R. Symmetry breaking and the evolution of development. Science 306(5697), 828–833 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Møller, A. P. Directional selection on directional asymmetry: Testes size and secondary sexual characters in birds. Proc. R. Soc. Lond. Ser. B Biol. Sci. 258(1352), 147–151 (1994).ADS 

    Google Scholar 
    Allenbach, D. M. Fluctuating asymmetry and exogenous stress in fishes: A review. Rev. Fish Biol. Fish. 21(3), 355–376 (2011).
    Google Scholar 
    Werner, Y. L., Rothenstein, D. & Sivan, N. Directional asymmetry in reptiles (Sauria: Gekkonidae: Ptyodactylus) and its possible evolutionary role, with implications for biometrical methodology. J. Zool. 225(4), 647–658 (1991).
    Google Scholar 
    Loehr, J. et al. Asymmetry in threespine stickleback lateral plates. J. Zool. 289(4), 279–284 (2013).
    Google Scholar 
    Bell, M. A., Khalef, V. & Travis, M. P. Directional asymmetry of pelvic vestiges in threespine stickleback. J. Exp. Zool. B Mol. Dev. Evol. 308(2), 189–199 (2007).PubMed 

    Google Scholar 
    Somarakis, S., Kostikas, I. & Tsimenides, N. Fluctuating asymmetry in the otoliths of larval fish as an indicator of condition: Conceptual and methodological aspects. J. Fish Biol. 51, 30–38 (1997).
    Google Scholar 
    Ratty, F. J., Laurs, R. M. & Kelly, R. M. Gonad morphology, histology, and spermatogenesis in South Pacific albacore tuna Thunnus alalunga (Scombridae). Fish. Bull. 88, 207–216 (1989).
    Google Scholar 
    Harrod, C. & Griffiths, D. Parasitism, space constraints, and gonad asymmetry in the pollan (Coregonus autumnalis). Can. J. Fish. Aquat. Sci. 62(12), 2796–2801 (2005).
    Google Scholar 
    Park, I. S., Zhang, C. I., Kim, Y. J. & Bang, I. C. Directional asymmetry of gonadal development in Ayu (Plecoglossus altivelis). Fish. Aquat. Sci. 8(4), 207–212 (2005).
    Google Scholar 
    Bernet, D., Wahli, T., Kueng, C. & Segner, H. Frequent and unexplained gonadal abnormalities in whitefish (central alpine Coregonus sp.) from an alpine oligotrophic lake in Switzerland. Dis. Aquat. Org. 61(1–2), 137–148 (2004).CAS 

    Google Scholar 
    Bittner, D. et al. How normal is abnormal? Discrimination between deformations and natural variation in gonad morphology of European whitefish Coregonus lavaretus. J. Fish Biol. 74(7), 1594–1614 (2009).CAS 
    PubMed 

    Google Scholar 
    Fricke, R., Eschmeyer, W. N. & R. van der Laan (eds) 2022. Eschmeyer’s Catalog of Fishes: Genera, Species, References. (http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp). Electronic version Accessed 31 12 2022).Chen, H. M., Shao, K. T. & Chen, C. T. A review of the muraenid eels (Family Muraenidae) from Taiwan with descriptions of twelve new records. Zool. Stud. 33(1), 44–64 (1994).
    Google Scholar 
    Chen, H. M., Loh, K. H. & Shao, K. T. A new species of moray eel, Gymnothorax taiwanensis (Anguilliformes: Muraenidae) from eastern Taiwan. Raffles Bull. Zool. 19, 131–134 (2008).
    Google Scholar 
    Loh, K. H., Shao, K. T. & Chen, H. M. Gymnothorax melanosomatus, a new moray eel (Teleostei: Anguilliformes: Muraenidae) from southeastern Taiwan. Zootaxa 3134(1), 43–52 (2011).
    Google Scholar 
    Loh, K. H., Shao, K. T., Ho, H. C., Lim, P. E. & Chen, H. M. A new species of moray eel (Anguilliformes: Muraenidae) from Taiwan, with comments on related elongate unpatterned species. Zootaxa 4060(1), 30–40 (2015).PubMed 

    Google Scholar 
    Huang, W. C., Mohapatra, A., Thu, P. T., Chen, H. M. & Liao, T. Y. A review of the genus Strophidon (Anguilliformes: Muraenidae), with description of a new species. J. Fish Biol. 97(5), 1462–1480 (2020).PubMed 

    Google Scholar 
    Huang, W. C., Smith, D. G., Loh, K. H. & Liao, T. Y. Two New Moray Eels of Genera Diaphenchelys and Gymnothorax (Anguilliformes: Muraenidae) from Taiwan and the Philippines. Zool. Stud. 60, e24 (2021).Matić-Skoko, S. et al. Mediterranean moray eel Muraena helena (Pisces: Muraenidae): biological indices for life history. Aquat. Biol. 13(3), 275–284 (2011).
    Google Scholar 
    Fishelson, L. Comparative gonad morphology and sexuality of the Muraenidae (Pisces, Teleostei). Copeia 1992, 197–209 (1992).Froese, R. & D. Pauly. Editors. 2022.FishBase. World Wide Web electronic publication. www.fishbase.org. Accessed March 2022.Almany, G. R. Differential effects of habitat complexity, predators and competitors on abundance of juvenile and adult coral reef fishes. Oecologia 141(1), 105–113 (2004).ADS 
    PubMed 

    Google Scholar 
    Hixon, M. A. & Beets, J. P. Predation, prey refuges, and the structure of coral-reef fish assemblages. Ecol. Monogr. 63(1), 77–101 (1993).
    Google Scholar 
    Muñoz, R. C. Evidence of natural predation on invasive lionfish, Pterois s, by the spotted moray eel, Gymnothorax moringa. Bull. Marine Sci. 93(3), 789–790 (2017).
    Google Scholar 
    Bos, A. R., Sanad, A. M. & Elsayed, K. Gymnothorax spp. (Muraenidae) as natural predators of the lionfish Pterois miles in its native biogeographical range. Environ. Biol. Fish. 100(6), 745–748 (2017).
    Google Scholar 
    Bshary, R., Hohner, A., Ait-el-Djoudi, K. & Fricke, H. Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea. PLoS Biol. 4(12), e431 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Hedrick, B. P., Antalek-Schrag, P., Conith, A. J., Natanson, L. J. & Brennan, P. L. Variability and asymmetry in the shape of the spiny dogfish vagina revealed by 2D and 3D geometric morphometrics. J. Zool. 308(1), 16–27 (2019).
    Google Scholar 
    Winters, G. H. Fecundity of the left and right ovaries of Grand Bank capelin (Mallotus villosus). J. Fish. Board Can. 28(7), 1029–1033 (1971).
    Google Scholar 
    Huang, L.Y. Reproductive biology of Gymnothorax reticularis from the waters off northeastern Taiwan. Master Thesis, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan (2008).Loh, K.H. Molecular phylogeny and reproductive biology of moray eels (Muraenidae) around Taiwan. Ph.D. Thesis, Department of Aquaculture, College of Life Sciences, National Taiwan Ocean University, Keelung, Taiwan (2009).Calhim, S. & Birkhead, T. R. Intraspecific variation in testis asymmetry in birds: evidence for naturally occurring compensation. Proc. R. Soc. B Biol. Sci. 276(1665), 2279–2284 (2009).
    Google Scholar 
    Palmer, A. R. What determines direction of asymmetry: Genes, environment or chance?. Philos. Trans. R. Soc. B Biol. Sci. 371(1710), 20150417 (2016).
    Google Scholar 
    Calhim, S. & Montgomerie, R. Testis asymmetry in birds: The influences of sexual and natural selection. J. Avian Biol. 46(2), 175–185 (2015).
    Google Scholar 
    Johnson, G. D. Revisions of anatomical descriptions of the pharyngeal jaw apparatus in moray eels of the family Muraenidae (Teleostei: Anguilliformes). Copeia 107(2), 341–357 (2019).MathSciNet 

    Google Scholar 
    Blackburn, D. G. Structure, function, and evolution of the oviducts of squamate reptiles, with special reference to viviparity and placentation. J. Exp. Zool. 282(4–5), 560–617 (1998).CAS 
    PubMed 

    Google Scholar 
    Guioli, S. et al. Gonadal asymmetry and sex determination in birds. Sex. Dev. 8(5), 227–242 (2014).CAS 
    PubMed 

    Google Scholar 
    Witschi, E. Origin of asymmetry in the reproductive system of birds. Am. J. Anat. 56(1), 119–141 (1935).
    Google Scholar 
    Ramirez-Llodra, E. et al. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences 7(9), 2851–2899 (2010).ADS 

    Google Scholar 
    Calhim, S., Pruett-Jones, S., Webster, M. S. & Rowe, M. Asymmetries in reproductive anatomy: insights from promiscuous songbirds. Biol. J. Lin. Soc. 128(3), 569–582 (2019).
    Google Scholar 
    Quillet, E., Labbe, L. & Queau, I. Asymmetry in sexual development of gonads in intersex rainbow trout. J. Fish Biol. 64(4), 1147–1151 (2004).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).Lin, Y. J., Qurban, M. A., Shen, K. N. & Chao, N. L. Delimitation of Tiger-tooth croaker Otolithes species (Teleostei: Sciaenidae) from the Western Arabian Gulf using an integrative approach, with a description of Otolithes arabicus sp. nov. Zool. Stud. 58, 10 (2019).
    Google Scholar 
    Bodenhofer, U., Bonatesta, E., Horejs-Kainrath, C. & Hochreiter, S. msa: An R package for multiple sequence alignment. Bioinformatics 31(24), 3997–9999 (2015).CAS 
    PubMed 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 

    Google Scholar 
    Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs E. & Wagner, H. vegan: Community Ecology Package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan (2020).Clarke, K. R. & Warwick, R. M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35(4), 523–531 (1998).
    Google Scholar 
    Murtagh, F. & Legendre, P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion?. J. Classif. 31(3), 274–295 (2014).MathSciNet 
    MATH 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).MATH 

    Google Scholar  More

  • in

    Sense of doubt: inaccurate and alternate locations of virtual magnetic displacements may give a distorted view of animal magnetoreception ability

    Fransson, T. et al. Magnetic cues trigger extensive refuelling. Nature 414, 35–36 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Boles, L. C. & Lohmann, K. J. True navigation and magnetic maps in spiny lobsters. Nature 421, 60–63 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Naisbett-Jones, L. C. & Lohmann, K. J. Magnetoreception and magnetic navigation in fishes: a half-century of discovery. J. Comp. Physiol. A 2021, 1–22 (2022).Xu, J. et al. Magnetic sensitivity of cryptochrome 4 from a migratory songbird. Nature 594, 535–540 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bellinger, M. R. et al. Conservation of magnetite biomineralization genes in all domains of life and implications for magnetic sensing. Proc. Natl Acad. Sci. USA 119, e2108655119 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boström, J. E., Åkesson, S. & Alerstam, T. Where on earth can animals use a geomagnetic bi-coordinate map for navigation? Ecography 35, 1039–1047 (2012).Article 

    Google Scholar 
    Muheim, R., Moore, F. & Phillips, J. Calibration of magnetic and celestial compass cues in migratory birds–a review of cue-conflict experiments. J. Exp. Biol. 209, 2–17 (2006).Article 
    PubMed 

    Google Scholar 
    Lohmann, K. J. & Lohmann, C. M. F. Sea turtles, lobsters, and oceanic magnetic maps. Mar. Freshw. Behav. Physiol. 39, 49–64 (2006).Freake, M. J., Muheim, R. & Phillips, J. B. Magnetic maps in animals: a theory comes of age? Q. Rev. Biol. 81, 327–347 (2006).Article 
    PubMed 

    Google Scholar 
    Johnsen, S. & Lohmann, K. J. The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 2005 69 6, 703–712 (2005).CAS 

    Google Scholar 
    Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016).Komolkin, A. V. et al. Theoretically possible spatial accuracy of geomagnetic maps used by migrating animals. J. R. Soc. Interface 14, 20161002 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, J. B., Borland, S. C., Freake, M. J., Brassart, J. & Kirschvink, J. L. ‘Fixed-axis’ magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J. Exp. Biol. 205, 3903–3914 (2002).Article 
    PubMed 

    Google Scholar 
    Kishkinev, D. et al. Navigation by extrapolation of geomagnetic cues in a migratory songbird. Curr. Biol. 31, 1563–1569.e4 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lohmann, K. J., Cain, S. D., Dodge, S. A. & Lohmann, C. M. F. Regional magnetic fields as navigational markers for sea turtles. Science 294, 364–366 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Boström, J. E. et al. Autumn migratory fuelling: a response to simulated magnetic displacements in juvenile wheatears, Oenanthe oenanthe. Behav. Ecol. Sociobiol. 64, 1725–1732 (2010).Article 

    Google Scholar 
    Lohmann, K. & Lohmann, C. Detection of magnetic inclination angle by sea turtles: a possible mechanism for determining latitude. J. Exp. Biol. 194, 23–32 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fuxjager, M. J., Eastwood, B. S. & Lohmann, K. J. Orientation of hatchling loggerhead sea turtles to regional magnetic fields along a transoceanic migratory pathway. J. Exp. Biol. 214, 2504–2508 (2011).Article 
    PubMed 

    Google Scholar 
    Putman, N. F., Endres, C. S., Lohmann, C. M. F. & Lohmann, K. J. Longitude perception and bicoordinate magnetic maps in sea turtles. Curr. Biol. 21, 463–466 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Scanlan, M. M., Putman, N. F., Pollock, A. M. & Noakes, D. L. G. Magnetic map in nonanadromous Atlantic salmon. Proc. Natl Acad. Sci. USA 23, 10995–10999 (2018).Article 

    Google Scholar 
    Pakhomov, A. et al. Magnetic map navigation in a migratory songbird requires trigeminal input. Sci. Rep. 8, 1–6 (2018).Article 
    CAS 

    Google Scholar 
    Chernetsov, N. et al. Migratory Eurasian reed warblers can use magnetic declination to solve the longitude problem. Curr. Biol. 27, 2647–2651.e2 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kishkinev, D., Chernetsov, N., Pakhomov, A., Heyers, D. & Mouritsen, H. Eurasian reed warblers compensate for virtual magnetic displacement. Curr. Biol. 25, R822–R824 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chernetsov, N., Pakhomov, A., Davydov, A., Cellarius, F. & Mouritsen, H. No evidence for the use of magnetic declination for migratory navigation in two songbird species. PLoS One 15, e0232136 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bulte, M., Heyers, D., Mouritsen, H. & Bairlein, F. Geomagnetic information modulates nocturnal migratory restlessness but not fueling in a long distance migratory songbird. J. Avian Biol. 48, 75–82 (2017).Article 

    Google Scholar 
    Kullberg, C., Lind, J., Fransson, T., Jakobsson, S. & Vallin, A. Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia). Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 373–378 (2003).Article 

    Google Scholar 
    Henshaw, I. et al. Food intake and fuel deposition in a migratory bird is affected by multiple as well as single-step changes in the magnetic field. J. Exp. Biol. 211, 649–653 (2008).Article 
    PubMed 

    Google Scholar 
    Henshaw, I., Fransson, T., Jakobsson, S., Jenni-Eiermann, S. & Kullberg, C. Information from the geomagnetic field triggers a reduced adrenocortical response in a migratory bird. J. Exp. Biol. 212, 2902–2907 (2009).Article 
    PubMed 

    Google Scholar 
    Henshaw, I., Fransson, T., Jakobsson, S. & Kullberg, C. Geomagnetic field affects spring migratory direction in a long distance migrant. Behav. Ecol. Sociobiol. 64, 1317–1323 (2010).Article 

    Google Scholar 
    Ilieva, M., Bianco, G. & Åkesson, S. Effect of geomagnetic field on migratory activity in a diurnal passerine migrant, the dunnock, Prunella modularis. Anim. Behav. 146, 79–85 (2018).Article 

    Google Scholar 
    Kullberg, C., Henshaw, I., Jakobsson, S., Johansson, P. & Fransson, T. Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect. Proc. R. Soc. B Biol. Sci. 274, 2145–2151 (2007).Article 

    Google Scholar 
    Boström, J. E., Kullberg, C. & Åkesson, S. Northern magnetic displacements trigger endogenous fuelling responses in a naive bird migrant. Behav. Ecol. Sociobiol. 66, 819–821 (2012).Article 

    Google Scholar 
    Ilieva, M., Bianco, G. & Åkesson, S. Does migratory distance affect fuelling in a medium-distance passerine migrant?: results from direct and step-wise simulated magnetic displacements. Biol. Open 5, 272–278 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Putman, N. F. et al. An inherited magnetic map guides ocean navigation in Juvenile Pacific Salmon. Curr. Biol. 24, 446–450 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Putman, N. F., Meinke, A. M. & Noakes, D. L. G. Rearing in a distorted magnetic field disrupts the ‘map sense’ of juvenile steelhead trout. Biol. Lett. 10, 20140169 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Putman, N. F., Williams, C. R., Gallagher, E. P. & Dittman, A. H. A sense of place: Pink salmon use a magnetic map for orientation. J. Exp. Biol. 223, jeb218735 (2020).Article 
    PubMed 

    Google Scholar 
    Naisbett-Jones, L. C., Putman, N. F., Stephenson, J. F., Ladak, S. & Young, K. A. A magnetic map leads juvenile European eels to the Gulf stream. Curr. Biol. 27, 1236–1240 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Keller, B. A., Putman, N. F., Grubbs, R. D., Portnoy, D. S. & Murphy, T. P. Map-like use of Earth’s magnetic field in sharks. Curr. Biol. 31, 2881–2886.e3 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Putman, N. F., Verley, P., Endres, C. S. & Lohmann, K. J. Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles. J. Exp. Biol. 218, 1044–1050 (2015).Article 
    PubMed 

    Google Scholar 
    Fuxjager, M. J., Davidoff, K. R., Mangiamele, L. A. & Lohmann, K. J. The geomagnetic environment in which sea turtle eggs incubate affects subsequent magnetic navigation behaviour of hatchlings. Proc. R. Soc. London Ser. B Biol. Sci. https://doi.org/10.1098/rspb.2014.1218 (2014).Lohmann, K. J., Lohmann, C. M. F., Ehrhart, L. M., Bagley, D. A. & Swing, T. Geomagnetic map used in sea-turtle navigation. Nature 428, 909–910 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Merrill, M. W. & Salmon, M. Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta) from the Gulf of Mexico. Mar. Biol. 158, 101–112 (2011).Article 

    Google Scholar 
    Wynn, J. et al. Magnetic stop signs signal a European songbird’s arrival at the breeding site after migration. Science 375, 446–449 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    McLaren, J., Schmaljohann, H. & Blasius, B. Self-correcting sun compass, spherical geometry and cue-transfers predict naïve migratory performance. PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/RS.3.RS-996110/V1 (2021).Wynn, J. et al. How might magnetic secular variation impact avian philopatry? J. Comp. Physiol. A Neuroethol. Sens., Neural, Behav. Physiol. 208, 145–154 (2022).Article 
    PubMed 

    Google Scholar 
    Walker, M. M. & Bitterman, M. E. Short communication: honeybees can be trained to respond to very small changes in geomagnetic field intensity. J. Exp. Biol. 145, 489–494 (1989).Article 

    Google Scholar 
    Semm, P. & Beason, R. C. Responses to small magnetic variations by the trigeminal system of the bobolink. Brain Res. Bull. 25, 735–740 (1990).Article 
    CAS 
    PubMed 

    Google Scholar 
    Phillips, J. B., Michael, A. E., Freake, J., Fischer, J. H. & Borland, A. S. C. Behavioral titration of a magnetic map coordinate. J. Comp. Physiol. A 157–160 (2002).Hays, G. C. et al. Travel routes to remote ocean targets reveal the map sense resolution for a marine migrant. J. R. Soc. Interface 19, 20210859 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fischer, J. H., Munro, U. & Phillips, J. B. Magnetic navigation by an avian migrant? Avian Migration. 423–432 https://doi.org/10.1007/978-3-662-05957-9_30 (2003).Deutschlander, M. E., Phillips, J. & Munro, U. Age-dependent orientation to magnetically-simulated geographic displacements in migratory Australian Silvereyes (Zosterops l. lateralis). Wilson J. Ornithol. 124, 467–477 (2012).Article 

    Google Scholar  More

  • in

    Individual structure mapping over six million trees for New York City USA

    Study area and field dataThe dataset was generated over NYC, located in the north-eastern United States (40.713° N, 74.006° W). NYC has a total area of 778.2 km2, which is composed of five boroughs, i.e. Brooklyn, Queens, Manhattan, Bronx, and Staten Island (Fig. 1). There were 296 field plots randomly sampled (Fig. 1a) and measured in the summer of 2013 over NYC following the i-Tree Eco protocols9 developed by the United State Department of Agriculture Forest Service (USFS). Each plot occupied a circular area of 404.7 m2. All the trees with a Diameter at Breast Height (DBH) larger than 2.54 cm were surveyed to record their tree height, species, DBH, and other structural attributes. Within all the 296 plots across NYC, there were 1,075 trees in 139 species surveyed. The species types with the top ten largest sample size were Acer platanoides (65 samples), Cedrus species (59 samples), Ailanthus altissima (58 samples), Sassafras albidum (56 samples), Quercus alba (51 samples), Betula lenta (42 samples), Robinia pseudoacacia (39 samples), Acer rubrum (38 samples), and Hardwood species (37 samples). Because the exact coordinates of individual trees were not collected, we mainly used the plot-level tree attributes (i.e. tree number, mean tree height, and maximum tree height) to validate LiDAR-derived products. Due to confidential requirements, the exact coordinates of field plots were not allowed to be released.Fig. 1The distribution of field plots across five regions in New York City (NYC) borough (a). The land cover map over the entire NYC with seven land cover types (b). The summary of identified trees from remotely sensed datasets across five regions (c), and the tree density map over each block group in NYC (d).Full size imageAerial image and land cover mapsA fine-resolution land cover dataset (0.91 m spatial resolution) provided via NYC OpenData (https://opendata.cityofnewyork.us/) was used to mask out non-vegetation areas. This land cover dataset was generated using an object-based image classification method5 from LiDAR data collected in 2010 and NAIP aerial imageries in 2009. This final land cover map includes seven classes, i.e., tree canopy, grass/shrub, bare earth, water, buildings, roads, and other paved surfaces (Fig. 1b). We regrouped the land cover map into vegetation (tree canopy and grass/shrub) and non-vegetation groups, and resampled the map into 1 m resolution to match with NAIP and LiDAR datasets. We also collected NAIP imagery in the summer of 2013 for tree structural estimation from the Google Earth Engine platform36. The NAIP image had a resolution of 1 m with four spectral bands (Red, Green, Blue, and Near Infrared). We further calculated the NDVI from the Red and Near Infrared bands of NAIP images for tree structural estimation.LiDAR data and processingThe LiDAR data were collected using a Leica ALS70 LiDAR system from two flight missions (https://noaa-nos-coastal-lidar-pds.s3.amazonaws.com/laz/geoid18/4920/index.html). The first LiDAR flight was taken on August 5th, 2013 at 2,286 m above ground level with an average side lap of 30%. The LiDAR data from this flight had a nominal pulse spacing of 0.91 m. The second flight was taken between March and April, 2014 at 2,286 m above ground level with an averaged side lap of 25% and a nominal pulse spacing of 0.7 m. According to the ground control survey, the LiDAR scan had a root mean square error accuracy of 9.25 cm. With up to 7 returns per pulse, the final LiDAR dataset has a point density of 5.9 points/m2.The tree structural information was mainly generated from LiDAR-derived CHM. The CHM was the difference between Digital Surface Model (DSM) and Digital Terrain Model (DTM) generated from LiDAR point clouds using the Kriging interpolation method37. All the raster layers (CHM, DSM, DTM) were generated at 1 m resolution using the LiDAR360 software (GreenValley International). We generated a Tree Canopy Cover (TCC) map by masking out non-vegetation land cover types from areas with CHM values larger than 2 m. The TCC was a binary map with the value of one indicating tree cover and zero indicating non-tree cover at 1 m resolution. The non-vegetation areas were derived from the land cover map (Fig. 1b). The 2 m tree canopy height threshold was chosen by referencing a commonly accepted canopy height threshold38.Individual tree segmentation and feature estimationIndividual tree crowns were segmented from LiDAR-derived CHM using the Marker-controlled Watershed Segmentation algorithm. This algorithm was widely adopted for LiDAR-based tree crown segmentation25,26,29 because it takes the advantages of both region-growing and edge-detection methods39. Due to the relatively low LiDAR point density, the CHM contained abnormal pits even after masking out non-tree-canopy pixels. We applied a Gaussian filter with two standard deviations to smooth the CHM and fill these pits in CHM. Then the segmentation was applied with a 3 × 3 moving window. Both smoothing and segmentation were conducted using the System for Automated Geoscientific Analyses software40. To refine the segmentation results, we deleted small segments with an area smaller than 1 m2 (one CHM pixel), which was most likely to be noise in CHM. We also visually examined and manually re-segmented extremely large segments by assuming most tree crowns should not exceed an area of 200 m2. The final tree crown dataset only contains segments with a maximum CHM value no less than 5 m because vegetation with lower height was mostly likely to be non-tree. All the post-segmentation operations were conducted in ESRI ArcMap 10.8.We estimated five tree structural features for each individual trees, which include tree top height, tree mean height, crown area, tree volume, and carbon storage. Tree top height (m) characterizes the height from ground to tree top, estimated as the maximum CHM value within each tree crown segment. Tree mean height (m) indicates the average height of the tree crown surface, calculated as the mean CHM values within each tree segment. Tree crown area (m2) is the total area of each tree crown segment. Tree volume (m3) is the volume of 3D space occupied by the tree crown25, which was calculated as the volume difference between crown surface (defined by CHM) and crown base (Eq. 1). Because the tree crown base height was difficult to estimate for individual trees due to the relatively low LiDAR point density, we used the 2 m to approximate the averaged crown base height according to Ma et al.25. The sensitivities of crown volume to the selection of crown base height from 1 m to 5 m was presented in the Technical Validation section.$$Volume={sum }_{i=1}^{n}left(CHMi-crown;base;heightright)times 1{m}^{2}$$
    (1)
    Where CHMi is the CHM values of the ith pixels within a tree segment, n is the total number of pixels within a tree segment. 1m2 is the area of each CHM pixel.The carbon storage (ton) was defined as the total carbon stock in both above- and below-ground biomass of each tree. The carbon storage was estimated in two steps: (1) calculating tree biomass from field measurements using allometric equations41; (2) running a regression between field measured carbon storage and LiDAR-derived tree structural features42 and applying the regression model to individual trees. In step (1), we applied species-specific allometric equations from i-Tree Eco database. There are more than 50 species-specific equations in i-Tree Eco, which can be summarised into four main equation forms with different coefficient values (Eqs. 2–5).$$Biomass=exp left({beta }_{1}+{beta }_{2}ast LNleft(DBHright)+frac{{sigma }^{2}}{2}right)$$
    (2)
    $$Biomass=exp left({beta }_{1}+{beta }_{2}ast LNleft({{rm{DBH}}}^{2}ast {rm{H}}right)+frac{{sigma }^{2}}{2}right)$$
    (3)
    $$Biomass={beta }_{1}ast left(DB{H}^{{beta }_{2}}right)$$
    (4)
    $$Biomass={beta }_{1}ast left({left({{rm{DBH}}}^{2}ast {rm{H}}right)}^{{beta }_{2}}right)$$
    (5)
    Where β1 and β2 are species-specific coefficients, DBH is diameter at breast height, H is tree top height, σ2 is the variance of model errors, which is applied to correct the potential underestimations when back-transforming predictions from logarithmic scale to original scale. For other species that were not included in the i-Tree Eco database, the averaged results from the four equations were applied. These allometric equations (Eqs. 2–5) estimate the entire tree biomass including both above- and below-ground biomass, and the final carbon storage for each field plot was converted to carbon by a factor of 0.541.In step 2), we compared different regression models to simulate carbon storage at plot scale using LiDAR data and NAIP imagery. First, we compared the single variable regression for carbon storage from NAIP-derived NDVI, LiDAR-derived TCC, LiDAR-derived CHMmean and CHMmax, respectively. The four metrics were calculated at 1 m resolution, masked out non-vegetation areas, and aggregated over each field plot. TCC was calculated as the percentage area with tree cover (CHM >2 m). CHMmean and CHMmax were calculated as the mean and maximum of all CHM values within each plot. We compared different regression algorithms, including linear, exponential, and quadratic regressions. We also compared the modelling efficiency and accuracy between using single and multiple variables by combing all the attributes together using the Random Forest regression model. Using the optimal regression model, we generated a carbon density map at 20 m spatial resolution (each pixel size is similar to the plot size of 404.7 m2) by dividing the total carbon storage by the pixel size (400 m2) in the unit of ton/ha (Eq. 6). More details of carbon density estimation can be found in our previous publication42. The carbon storage for each tree was calculated as the product of crown area and crown density (Eq. 7).$$Carbon;densityleft(ton/haright)=0.5ast Biomass(ton)/left(400left({m}^{2}right)ast 0.0001left(ha/{m}^{2}right)right)$$
    (6)
    $$Carbon;storageleft(tonright)=Crown;arealeft(haright)ast Carbon;density(ton/ha)$$
    (7)
    Where Biomass is the total biomass for each pixel, which was 400 m2. ha is short for hectare, which is 10000 m2.We further quantified the uncertainty range in carbon storage estimation by propagating the potential error in carbon density regression to tree level carbon storage estimation. We first calculated the 95% confidence interval of the best carbon density regression model, and applied the confidence interval to carbon storage estimation for individual trees. The predicted the upper and lower values for individual tree carbon storage were given in the final dataset and summarized in Table 1.Table 1 A summary of the individual tree carbon storage prediction (Carbon) and their lower (Carbon_lower) and upper (Carbon_upper) values. The minimum (min), maximum (max), mean, standard deviation (std), first quartile (q25), median, and third quartile (q75) values of individual tree carbon storage are presented.Full size tableBlock group level tree structure distribution mappingThree sets of tree structural parameters were mapped at block group level, including tree density (the number of trees in each hectare), tree height (m), and carbon density (ton/ha). The mean values of tree density, tree top height, and carbon density within each block group of NYC. The block group boundary was downloaded from https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.2014.html, which includes a total of 6392 block groups.We also estimated the potential tree height and carbon density at the census block group level. We assumed the 95% of the tree height and carbon storage values within each block group at mapping time were their potential values, which most trees can achieve during their life time. Then, we calculated the difference in tree height and carbon density between potential values (95%) and mapping time values (mean) over each block group, and used them as the extra carbon storage that trees could achieve during their life time. It is to be noticed that in this study we did not consider the carbon loss by tree degradation or removal, or extra carbon gain through the tree planting and management. More

  • in

    Quantifying the impact of the Grain-for-Green Program on ecosystem service scarcity value in Qinghai, China

    Fan, M. & Yu, X. Impacts of the grain for green program on the spatial pattern of land uses and ecosystem services in mountainous settlements in southwest china. Glob. Ecol. Conserv. 21, 806. https://doi.org/10.1016/j.gecco.2019.e00806 (2020).Article 

    Google Scholar 
    Huang, L., Shao, Q. & Liu, J. The spatial and temporal patterns of carbon sequestration by forestation in Jiangxi Province. Acta Ecol. Sin. 35, 2105–2118 (2015).
    Google Scholar 
    Wang, B., Gao, P., Niu, X. & Sun, J. Policy-driven china’s grain to green program: Implications for ecosystem services. Ecosyst. Serv. 27, 38–47. https://doi.org/10.1016/j.gecco.2019.e00806 (2017).Article 

    Google Scholar 
    Deng, L., Zhou-ping, S. & Li, R. Effects of the grain-for-green program on soil erosion in China. Int. J. Sediment Res. 27, 120–127. https://doi.org/10.1016/s1001-6279(12)60021-3 (2012).Article 

    Google Scholar 
    Cragun, D. et al. Qualitative comparative analysis: A hybrid method for identifying factors associated with program effectiveness. J. Mix. Methods Res. 10, 251–272. https://doi.org/10.1177/1558689815572023 (2016).Article 
    PubMed 

    Google Scholar 
    Biancardo, S. A. et al. An innovative framework for integrating cost-benefit analysis (cba) within building information modeling (bim). Socio-Econ. Plan. Sci. 85, 1014795. https://doi.org/10.1016/j.seps.2022.101495 (2022).Article 

    Google Scholar 
    Miller, C. J., Smith, S. N. & Pugatch, M. Experimental and quasi-experimental designs in implementation research. Psychiatry Res. 283, 112452. https://doi.org/10.1016/j.psychres.2019.06.027 (2020).Article 
    PubMed 

    Google Scholar 
    Park, S.-G. et al. Characteristics of the flow field inside and around a square fish cage considering the circular swimming pattern of a farmed fish school: Laboratory experiments and field observations. Ocean. Eng. 261, 112097. https://doi.org/10.1016/j.oceaneng.2022.112097 (2022).Article 

    Google Scholar 
    Zhou, F. & Wang, X. The carbon emissions trading scheme and green technology innovation in china: A new structural economics perspective. Econ. Anal. Policy 74, 365–381. https://doi.org/10.1016/j.eap.2022.03.007 (2022).Article 

    Google Scholar 
    Gharehgozli, O. An empirical comparison between a regression framework and the synthetic control method. Q. Rev. Econ. Financ. 81, 70–81. https://doi.org/10.1016/j.qref.2021.05.002 (2021).Article 

    Google Scholar 
    Salman, M., Long, X., Wang, G. & Zha, D. Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design. Energy Policy 168, 113128. https://doi.org/10.1016/j.enpol.2022.113128 (2022).Article 

    Google Scholar 
    Stanford, B., Zavaleta, E. & Millard-Ball, A. Where and why does restoration happen? Ecological and sociopolitical influences on stream restoration in coastal california. Biol. Conserv. 221, 219–227. https://doi.org/10.1016/j.biocon.2018.03.016 (2018).Article 

    Google Scholar 
    Milchakova, L., Bondareva, N. A. & Alexandrov, V. Core areas in the structure of the regional ecological framework of Sevastopol City. South Russia-Ecol. Dev. 17, 102–114. https://doi.org/10.18470/1992-1098-2022-2-102-114 (2022).Article 

    Google Scholar 
    Miller, R., Nielsen, E. & Huang, C.-H. Ecosystem service valuation through wildfire risk mitigation: Design, governance, and outcomes of the flagstaff watershed protection project (fwpp). Forests 8, 142. https://doi.org/10.3390/f8050142 (2017).Article 

    Google Scholar 
    Zhao, H. E. A. Spatiotemporal patterns of vegetation conversion under the grain for green program in southwest China. Conserv. Sci. Pract. 4, e604. https://doi.org/10.1111/csp2.604 (2022).Article 
    MathSciNet 

    Google Scholar 
    Guo, B., Xie, T. & Subrahmanyam, M. The impact of china’s grain for green program on rural economy and precipitation: A case study of Yan river basin in the loess plateau. Sustainability 11, 5336. https://doi.org/10.3390/su11195336 (2019).Article 

    Google Scholar 
    Zuo, Y., Cheng, J. & Fu, M. Analysis of land use change and the role of policy dimensions in ecologically complex areas: A case study in Chongqing. Land 11, 627. https://doi.org/10.3390/land11050627 (2022).Article 

    Google Scholar 
    Delang, C. O. The effects of china’s grain for green program on migration and remittance. Econ. Agrar. Recursos. Nat. 18, 117–132. https://doi.org/10.2004/ag.econ.281239 (2019).Article 

    Google Scholar 
    Treacy, P. E. A. Impacts of china’s grain for green program on migration and household income. Environ. Manage. 62, 489–499. https://doi.org/10.1007/s00267-018-1047-0 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Han, R., Guo, L., Xu, N. & Wang, D. The effect of the grain for green program on ecosystem health in the upper reaches of the Yangtze river basin: A case study of eastern Sichuan, China. Int. J. Environ. Res. Public Heal. 16, 2112. https://doi.org/10.3390/ijerph16122112 (2019).Article 

    Google Scholar 
    Zhang, X., Liu, K., Li, X., Wang, S. & Wang, J. Vulnerability assessment and its driving forces in terms of ndvi and gpp over the loess plateau, China. Phys. Chem. Earth Parts A/B/C 125, 103106. https://doi.org/10.1016/j.pce.2022.103106 (2022).Article 

    Google Scholar 
    Liu, L., Yan, J. & Li, S. Spatial-temporal characteristics of vegetation restoration in Qinghai Province from 2000 to 2009. Bull. Soil Water Conserv. 34, 263–267 (2014).ADS 
    CAS 

    Google Scholar 
    Shao, E. A. Q. Target-based assessment on effects of first-stage ecological conservation and restoration project in three-river source region, china and policy recommendations. Bull. Chin. Acad. Sci. (Chin. Vers.) 32, 35–44 (2017).
    Google Scholar 
    Guo, E. A. J. The dynamic evolution of the ecological footprint and ecological capacity of Qinghai Province. Sustainability 12, 3065. https://doi.org/10.3390/su12073065 (2020).Article 

    Google Scholar 
    Jiang, W., Yihe, L., Yuanxin, L. & Wenwen, G. Ecosystem service value of the Qinghai-Tibet plateau significantly increased during 25 years. Ecosyst. Serv. 44, 101146. https://doi.org/10.1016/j.ecoser.2020.101146 (2020).Article 

    Google Scholar 
    Xie, S. W. W. Research on the coupling coordination between economic development and ecological environment—a case study of ecological civilization construction of Qinghai Province. Plateau Sci. Res. 4, 36–45 (2020).
    Google Scholar 
    Jielan, L., Xingpeng, C., Yu, W. & Zilong, Z. Research on the sustainable development in Qinghai province based on systemdynamics. Resour. Sci. 31, 1624–1631 (2009).
    Google Scholar 
    Tabutin, E. T. D. The relationships between population growth and environment: From doctrinal to empirical. Revuet.-monde 33, 273–294 (1992).Article 
    CAS 

    Google Scholar 
    Fu, E. A. G. Impact of the grain for green program on forest cover in China. J. Environ. Econ. Policy 8, 231–249. https://doi.org/10.1080/21606544.2018.1552626 (2019).Article 

    Google Scholar 
    Jia, E. A. X. The tradeoff and synergy between ecosystem services in the grain-for-green areas in northern Shaanxi, China. Ecol. Indic. 43, 103–113. https://doi.org/10.1016/j.ecolind.2014.02.028 (2014).Article 

    Google Scholar 
    Deng, L., Guo-bin, L. & Zhou-ping, S. Land-use conversion and changing soil carbon stocks in China’s ‘grain-for-green’program: A synthesis. Glob. Chang. Biol. 20, 3544–3556. https://doi.org/10.1111/gcb.12508 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Deng, E. A. L. Past and future carbon sequestration benefits of China’s grain for green program. Glob. Environ. Chang. 47, 13–20. https://doi.org/10.1016/j.gloenvcha.2017.09.006 (2017).Article 

    Google Scholar 
    Cao, E. A. S. Payoff of the grain for green policy. J. Appl. Ecol. 57, 1180–1188. https://doi.org/10.1111/1365-2664.13608 (2020).Article 

    Google Scholar 
    Guo, H., Li, B., Hou, Y., Lu, S. & Nan, B. Rural households’ willingness to participate in the grain for green program again: A case study of Zhungeer, China. For. Policy Econ. 44, 42–49. https://doi.org/10.1016/j.forpol.2014.05.002 (2014).Article 

    Google Scholar 
    Li, E. A. Y. Coupling between the grain for green program and a household level-based agricultural eco-economic system in Ansai, Shaanxi Province of China. J. Arid Land 12, 199–214. https://doi.org/10.1007/s40333-020-0060-3 (2020).Article 

    Google Scholar 
    Li, Y., Feng, Y., Guo, X. & Peng, F. Changes in coastal city ecosystem service values based on land use—a case study of Yingkou, China. Land Use Policy 65, 287–293. https://doi.org/10.1016/j.landusepol.2017.04.021 (2017).Article 

    Google Scholar 
    Peng, E. A. J. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total. Environ. 607, 706–714. https://doi.org/10.1016/j.scitotenv.2017.06.218 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Costanza, E. A. R. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260. https://doi.org/10.1038/387253a0 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Wu, X., Wang, S., Fu, B., Liu, Y. & Zhu, Y. Land use optimization based on ecosystem service assessment: A case study in the yanhe watershed. Land Use Policy 72, 303–312. https://doi.org/10.1016/j.landusepol.2018.01.003 (2018).Article 

    Google Scholar 
    Zhou, E. A. Y. Land use-driven changes in ecosystem service values and simulation of future scenarios: A case study of the Qinghai–Tibet plateau. Sustainability 13, 4079. https://doi.org/10.3390/su13074079 (2021).Article 

    Google Scholar 
    Han, W. S. X. Z. Responses of ecosystem service to land use change in Qinghai province. Energies 9, 303. https://doi.org/10.1016/j.landusepol.2018.01.003 (2016).Article 

    Google Scholar 
    Shooshtari, S. J., Shayesteh, K., Gholamalifard, M., Azari, M. & López-Moreno, J. I. Land cover change modelling in hyrcanian forests, northern Iran: A landscape pattern and transformation analysis perspective. Cuader. De Investig. Geogr. 44, 743–761. https://doi.org/10.18172/cig.3279 (2018).Article 

    Google Scholar 
    Boerema, A., Rebelo, A. J., Bodi, M. B., Esler, K. J. & Meire, P. Are ecosystem services adequately quantified?. J. Appl. Ecol. 54, 358–370. https://doi.org/10.1111/1365-2664.12696 (2017).Article 

    Google Scholar 
    Costanza, E. A. R. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).Article 

    Google Scholar 
    Newton, E. A. A. Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J. For. Nat. Conserv. 44, 50–65. https://doi.org/10.1016/j.jnc.2018.02.009 (2018).Article 

    Google Scholar 
    Wang, L.-J., Ma, S., Zhao, Y.-G. & Zhang, J.-C. Ecological restoration projects did not increase the value of all ecosystem services in northeast china. For. Ecol. Manag. 495, 119340. https://doi.org/10.1016/j.foreco.2021.119340 (2021).Article 

    Google Scholar 
    Sun, X. & Li, F. Spatiotemporal assessment and trade-offs of multiple ecosystem services based on land use changes in zengcheng, china. Sci. Total Env. 609, 1569–1581. https://doi.org/10.1016/j.scitotenv.2017.07.221 (2017).Article 
    CAS 

    Google Scholar 
    Aulia, A., Sandhu, H. & Millington, A. Quantifying the economic value of ecosystem services in oil palm dominated landscapes in Riau Province in Sumatra, Indonesia. Land 9, 194. https://doi.org/10.3390/land9060194 (2020).Article 

    Google Scholar 
    Peng, E. A. J. Simulating the impact of grain-for-green programme on ecosystem services trade-offs in northwestern Yunnan, China. Ecosyst. Serv. 39, 100998 (2019).Article 

    Google Scholar 
    Shi, Y., Shi, D., Zhou, L. & Fang, R. Identification of ecosystem services supply and demand areas and simulation of ecosystem service flows in Shanghai. Ecol. Indic. 115, 106418. https://doi.org/10.1016/j.ecolind.2020.106418 (2020).Article 
    CAS 

    Google Scholar 
    Zoderer, B. M., Tasser, E., Carver, S. & Tappeiner, U. Stakeholder perspectives on ecosystem service supply and ecosystem service demand bundles. Ecosyst. Serv. 37, 100938. https://doi.org/10.1016/j.ecoser.2019.100938 (2019).Article 

    Google Scholar 
    Bryan, B. A., Ye, Y., Zhang, J. & Connor, J. D. Land-use change impacts on ecosystem services value: Incorporating the scarcity effects of supply and demand dynamics. Ecosyst. services 32, 144–157. https://doi.org/10.1016/j.ecoser.2018.07.002 (2018).Article 

    Google Scholar 
    Xiaojuan, Q. & Yufen, T. Coordinative development between population, economy, resources and environment in north-west area of china. China Popul. Resour. Environ. 18, P110-114 (2008).
    Google Scholar 
    Haiyang, Z., Zhang, Z. & Zhang, P. Rs-and gis-based evaluation and dynamic monitoring of land desertification in Qinghai Province. Arid Zone Res. 24, 153–158 (2007).
    Google Scholar 
    Kang, B. et al. Research on grassland ecosystem service value in china under climate change based on meta-analysis: A case study of Qinghai Province. Int. J. Clim. Chang. Strateg. Manag. https://doi.org/10.1108/ijccsm-06-2020-0073 (2020).Article 

    Google Scholar 
    Wang, X. & Zang, Y. Carbon footprint of the agricultural sector in Qinghai Province, China. Appl. Sci. 9, 2047. https://doi.org/10.3390/app9102047 (2019).Article 
    CAS 

    Google Scholar 
    Wei, E. A. W. The dynamic analysis and comparison of emergy ecological footprint for the qinghai–tibet plateau: A case study of Qinghai Province and Tibet. Sustainability 11, 5587. https://doi.org/10.3390/su11205587 (2019).Article 

    Google Scholar 
    Chen, E. A. W. An emergy accounting based regional sustainability evaluation: A case of Qinghai in China. Ecol. Indic. 88, 152–160. https://doi.org/10.1016/j.ecolind.2017.12.069 (2018).Article 

    Google Scholar 
    National Bureau of Statistics of China. Chinese Statistical Yearbook 2021 (China Statistics Press, 2021).
    Google Scholar 
    Statistics Bureau of Qinghai Province. Qinghai Statistical Yearbook 2021 (China Statistics Press, 2021).
    Google Scholar 
    Zhang, J. & Ren, Z. Spatiotemporal pattern and terrain gradient effect of land use change in Qinling-Bashan mountains. Trans. Chin. Soc. Agric. Eng. 32, 250–257 (2016).
    Google Scholar 
    Liao, K. The discussion and prospect for geo-informatic Tupu. Geo-inf. Sci. 1, 14–20 (2002).ADS 

    Google Scholar 
    Lu, X., Shi, Y., Chen, C. & Yu, M. Monitoring cropland transition and its impact on ecosystem services value in developed regions of china: A case study of Jiangsu Province. Land Use Policy 69, 25–40. https://doi.org/10.1016/j.landusepol.2017.08.035 (2017).Article 

    Google Scholar 
    Lyu, X., Shi, Y. Y., Huang, X. J., Sun, X. F. & Miao, Z. W. Geo-spectrum characteristics of land use change in Jiangsu Province, China. The J. Appl. Ecol. 27, 1077–1084. https://doi.org/10.13287/j.1001-9332.201604.006 (2016).Article 

    Google Scholar 
    Dong, S., Zhao, Y. & Li, X. Spatiotemporal patterns of land use change in plateau region based on the terrain gradient—a case study in Panxian county, Guizhou Province. Res. Soil Water Conserv. 24, 213–222 (2017).
    Google Scholar 
    Oneill, R. V., Riitters, K. H., Wickham, J. D. & Jones, K. B. Landscape pattern metrics and regional assessment. Ecosyst. Health 5, 225–233. https://doi.org/10.1046/j.1526-0992.1999.09942.x (1999).Article 

    Google Scholar 
    Xie, G. D., Zhang, C. X., Zhang, L. M., Chen, W. H. & Li, S. M Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 30, 1243 (2015).
    Google Scholar 
    Wang, Y., Erfu, D., Le, Y. & Liang, M. Land use/land cover change and the effects on ecosystem services in the Hengduan mountain region, China. Ecosyst. Serv. 34, 55–67. https://doi.org/10.1016/j.ecoser.2018.09.008 (2018).Article 

    Google Scholar 
    Li, R., Shi, Y., Feng, C.-C. & Guo, L. The spatial relationship between ecosystem service scarcity value and urbanization from the perspective of heterogeneity in typical arid and semiarid regions of china. Ecol. Indic. 132, 108299 (2021).Article 

    Google Scholar 
    Shi, Y., Feng, C.-C., Yu, Q. & Guo, L. Integrating supply and demand factors for estimating ecosystem services scarcity value and its response to urbanization in typical mountainous and hilly regions of south china. Sci. Total. Environ. 796, 149032 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Liu, C. F., Li, J. Z., Li, X. M., He, X. Y. & Chen, W. Selection of landscape metrics for urban forest based on simulated landscapes. J. Appl. Ecol. 20, 1125–1131 (2009).
    Google Scholar 
    Zhao, L., Fan, X., Lin, H. & Hong, T. W Hong Impact of expressways on land use changes, landscape patterns, and ecosystem services value in Nanping city, China. Pol. J. Environ. Stud. 30, 2935–2946. https://doi.org/10.15244/pjoes/128584 (2021).Article 

    Google Scholar 
    Xu, W., Dong, X. & Zhang, Z. Spatiotemporal scale effect of vegetation landscape pattern in Saihanba area. J. North-East For. Univ. 49, 106 (2021).
    Google Scholar 
    Schmidt, K., Sachse, R. & Walz, A. Current role of social benefits in ecosystem service assessments. Landsc. Urban Plan. 149, 49–64. https://doi.org/10.1016/j.landurbplan.2016.01.005 (2016).Article 

    Google Scholar 
    Akber, M., Khan, M., Islam-M, R., Munsur, R. & Mohammad, A. Impact of land use change on ecosystem services of southwest coastal bangladesh. J. land Use Science 13, 238–250. https://doi.org/10.1080/1747423x.2018.1529832 (2018).Article 

    Google Scholar 
    Wang, E. A. & Xiaobin, C. Linking land use change, ecosystem services and human well-being: A case study of the manas river basin of Xinjiang, China. Ecosyst. Serv. 27, 113–123. https://doi.org/10.1016/j.ecoser.2017.08.013 (2017).Article 

    Google Scholar 
    Ouyang, L. T., Xiao, W. & Yongh, L. X. Spatial interaction between urbanization and ecosystem services in chinese urban agglomerations. Land Use Policy 109, 105587. https://doi.org/10.1016/j.landusepol.2021.105587 (2021).Article 

    Google Scholar 
    Chen, G., Chi, J. & Li, W. X. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total. Environ. 669, 459–470. https://doi.org/10.1016/j.scitotenv.2019.03.139 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Singh, E. A. D. Distinct influences of land cover and land management on seasonal climate. J. Geophys. Res. Atmos. 123, 12017. https://doi.org/10.1029/2018JD028874 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diffenbaugh, N. S. Influence of modern land cover on the climate of the united states. Clim. Dyn. 33, 945–958. https://doi.org/10.1007/s00382-009-0566-z (2009).Article 

    Google Scholar  More