More stories

  • in

    First microsatellite markers for the European Robin (Erithacus rubecula) and their application in analysis of parentage and genetic diversity

    1.Cramp, S. & Perrins, C. M. in The Birds of the Western Palearctic, Vol. 7 (eds. Cramp, S. & Perrins, C. M.) (Oxford University Press, 1993).2.Lack, D. Clutch and brood size in the Robin. Br. Birds 39(98–109), 130–135 (1946).
    Google Scholar 
    3.Lack, D. Further notes on clutch and brood size in the Robin. Br. Birds 41(98–104), 130–137 (1948).
    Google Scholar 
    4.Lack, D. The Life of Robin (Witherby, 1965).
    Google Scholar 
    5.Harper, D. G. C. Pairing strategies and mate choice in female Robins (Erithacus rubecula). Anim. Behav. 33, 862–875 (1985).Article 

    Google Scholar 
    6.Lebedeva, N. V. & Lomadze, N. H. in The Robin Erithacus Rubecula in the North-Western Caucasus (eds. Matishov, G. G. & Lebedeva, N. V.) 252–277 (SSC RAS Publishing, 2007).7.Knysh, N. P. Materials on the biology of Robin in forest-steppe deciduous forests of Sumy region. Berkut 17, 41–60 (2008).
    Google Scholar 
    8.Zimin V. B. in The Robin in the North of the Area, Vol. 1. Distribution. Number. Reproduction (ed. Zimin, V. B.) 401–422 (Karel’skiy nauchnyy centr RAN, 2009).9.Baranovskiy, A. V. & Ivanov, E. S. Features of reproductive biology of robins (Erithacus rubecula) in anthropogenic habitats (for example, the city of Ryazan). Principy èkologii 6, 17–25 (2017).
    Google Scholar 
    10.Wesołowski, T. Primeval conditions—What can we learn from them?. Ibis 149, 64–77 (2007).Article 

    Google Scholar 
    11.Tobias, J. & Seddon, N. Territoriality as a paternity guard in the European robin Erithacus rubecula. Anim. Behav. 60, 165–173 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Tobias, J. & Seddon, N. Female begging in European robins: Do neighbors eavesdrop for extrapair copulations?. Behav. Ecol. 13, 637–642 (2002).Article 

    Google Scholar 
    13.Lubjuhn, T., Strohbach, S., Brün, J., Gerken, T. & Epplen, J. T. Extra-pair paternity in great tits (Parus major)—A long term study. Behaviour 136, 1157–1172 (1999).Article 

    Google Scholar 
    14.Griffith, S. C., Owens, I. P. F. & Thuman, K. A. Extra pair paternity in birds: A review of interspecific variation and adaptive function. Mol. Ecol. 11, 2195–2212 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Cockburn, A. Prevalence of different modes of parental care in birds. Proc. Biol. Sci. 273, 1375–1383 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    16.Zagalska-Neubauer, M. & Dubiec, A. Techniki i markery molekularne w badaniach zmienności genetycznej ptaków. Not. Ornit. 48, 193–206 (2007).
    Google Scholar 
    17.Brouwer, L. & Griffith, S. C. Extra-pair paternity in birds. Mol. Ecol. 28, 4864–4882 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Petter, S. C., Miles, D. B. & White, M. M. Genetic evidence of mixed reproductive strategy in a monogamous bird. Condor 92, 702–708 (1990).Article 

    Google Scholar 
    19.Jennions, M. D. & Petrie, M. Why do females mate multiply? A review of the genetic benefits. Biol. Rev. 75, 21–64 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Akçay, E. & Roughgarden, J. Extra-pair paternity in birds: Review of the genetic benefits. Evol. Ecol. Res. 9, 855–868 (2007).
    Google Scholar 
    21.Dietzen, C., Witt, H.-H. & Wink, M. The phylogeographic differentiation of the European robin Erithacus rubecula on the Canary Islands revealed by mitochondrial DNA sequence data and morphometrics: Evidence for a new robin on Gran Canaria?. Avian Sci. 3, 115–131 (2003).
    Google Scholar 
    22.Rodrigues, P. et al. Phylogeography and genetic diversity of the Robin (Erithacus rubecula) in the Azores Islands: Evidence of a recent colonisation. J. Ornithol. 154, 889–900 (2013).Article 

    Google Scholar 
    23.Fulgione, D., Rippa, D., Manganiello, E., Caliendo, M. F. & Rastogi, R. K. Seasonal genetic structure analysis of a resident population of European Robin. Open Zool. J. 1, 11–17 (2008).CAS 
    Article 

    Google Scholar 
    24.Morin, P. A., Messier, J. & Woodruff, D. S. DNA extraction, amplification, and direct sequencing from hornbill feathers. J. Sci. Soc. Thail. 20, 31–41 (1994).CAS 
    Article 

    Google Scholar 
    25.Wright, T. F. et al. Microsatellite variation among divergent populations of stalk-eyed flies, genus Cyrtodiopsis. Genet. Res. 84, 27–40 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Yue, G.-H., Kovacs, B. & Orban, L. A new problem with cross-species amplification of microsatellites: Generation of non-homologous products. Dongwuxue Yanjiu 2, 131–140 (2010).
    Google Scholar 
    27.Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Dąbrowski, M. J., Bornelöv, S., Kruczyk, M., Baltzer, N. & Komorowski, J. ‘True’ null allele detection in microsatellite loci: A comparison of methods, assessment of difficulties and survey of possible improvements. Mol. Ecol. Resour. 15, 477–488 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Primmer, C. R., Møller, A. P. & Ellegren, H. A wide-range survey of cross-species microsatellite amplification in birds. Mol. Ecol. 5, 365–378 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Jaroszewicz, B. et al. Białowieża forest—A relic of the high naturalness of European forests. Forests 10, 849 (2019).Article 

    Google Scholar 
    31.Campos, A. R. et al. How do Robins Erithacus rubecula resident in Iberia respond to seasonal flooding by conspecific migrants?. Bird Study 58, 435–442 (2011).Article 

    Google Scholar 
    32.Owen, J. C. Collecting, processing, and storing avian blood: A review. J. Field Ornithol. 82, 339–354 (2011).Article 

    Google Scholar 
    33.Horváth, M. B., Martínez-Cruz, B., Negro, J. J., Kalmár, L. & Godoy, J. A. An overlooked DNA source for non-invasive genetic analysis in birds. J. Avian Biol. 36, 84–88 (2005).Article 

    Google Scholar 
    34.Faircloth, B. C. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour. 8, 92–94 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Schuelke, M. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18, 233–234 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Austin, J. D. et al. Permanent genetic resources added to Molecular Ecology Resources Database 1 February 2011–31 March 2011. Mol. Ecol. Resour. 11, 757–758 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Heredity 86, 248–249 (1995).Article 

    Google Scholar 
    39.Rousset, F. GENEPOP’007: A complete reimplementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 
    Article 

    Google Scholar 
    40.Goudet, J. FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. http://www.unil.ch/izea/softwares/fstat.htlm (2001).41.Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Grohme, M. A., Soler, R. F., Wink, M. & Frohme, M. Microsatellite marker discovery using single molecule real-time circular consensus sequencing on the Pacific Biosciences RS. Biotechniques 55, 253–256 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Liljegren, M. M., de Muinck, E. J. & Trosvik, P. Microsatellite length scoring by single molecule real time sequencing-effects of sequence structure and PCR regime. PLoS ONE 11, e0159232 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Dutta, N. et al. Microsatellite marker set for genetic diversity assessment of primitive Chitala chitala (Hamilton, 1822) derived through SMRT sequencing technology. Mol. Biol. Rep. 46, 41–49 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Corner, S., Yuzbasiyan-Gurkan, V., Agnew, D. & Venta, P. J. Development of a 12-plex of new microsatellite markers using a novel universal primer method to evaluate the genetic diversity of jaguars (Panthera onca) from North American zoological institutions. Conserv. Genet. Resour. 11, 487–497 (2019).Article 

    Google Scholar 
    47.Graham, B. A., Carpenter, A. M., Friesen, V. L. & Burg, T. M. A comparison of neutral genetic differentiation and genetic diversity among migratory and resident populations of Golden-crowned-Kinglets (Regulus satrapa). J. Ornithol. 161, 509–519 (2020).Article 

    Google Scholar 
    48.Bensch, S., Grahn, M., Müller, N., Gay, L. & Akesson, S. A. Genetic, morphological, and feather isotope variation of migratory willow warblers show gradual divergence in a ring. Mol. Ecol. 18, 3087–3096 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Kralj, J., Procházka, P., Fainová, D., Patzenhauerová, H. & Tutiš, V. Intraspecific variation in the wing shape and genetic differentiation of reed warblers Acrocephalus scirpaceus in Croatia. Acta Ornithol. 45, 51–58 (2010).Article 

    Google Scholar 
    50.Mettler, R. et al. Contrasting patterns of genetic differentiation among blackcaps (Sylvia atricapilla) with divergent migratory orientations in Europe. PLoS ONE 8, e81365 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Gyllensten, U., Jakonsson, S. & Temrin, H. No evidence for illegitimate young in monogamous and polygynous warblers. Nature 343, 168–170 (1990).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Gil, D., Slater, P. J. B. & Graves, J. A. Extrapair paternity and song characteristics in the willow warbler Phylloscopus trochilus. J. Avian Biol. 38, 291–297 (2007).Article 

    Google Scholar 
    53.Moskalenko, V. N., Belokon, M. M., Belokon, Y. S. & Goretskaia, M. I. Extrapair young in nests of the Wood Warbler (Phylloscopus sibilatrix) in the Middle Russia (poster). In 26th International Ornithological Congress (2014).54.Grendelmeier, A., Arlettaz, R., Olano-Marin, J. & Pasinelli, G. Experimentally provided conspecific cues boost bird territory density but not breeding performance. Behav. Ecol. 28, 174–185 (2017).Article 

    Google Scholar 
    55.Petrie, M. & Kempenaers, B. Extrapair paternity in birds: Explaining variation between species and populations. Trends Ecol. Evol. 13, 52–58 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Wagner, R. H. Hidden leks: sexual selection and the clustering of avian territories. Ornithol. Monogr. 49, 123–145 (1998).Article 

    Google Scholar 
    57.Fletcher, R. J. & Miller, C. W. On the evolution of hidden leks and the implications for reproductive and habitat selection behaviours. Anim. Behav. 71, 1247–1251 (2006).Article 

    Google Scholar 
    58.Broughton, R. K., Bubnicki, J. W. & Maziarz, M. Multi-scale settlement patterns of a migratory songbird in a European primeval forest. Behav. Ecol. Sociobiol. 74, 1–12 (2020).Article 

    Google Scholar  More

  • in

    Long-term trends in the body condition of parents and offspring of Tengmalm’s owls under fluctuating food conditions and climate change

    1.Brommer, J. E., Pietiäinen, H. & Kolunen, H. Reproduction and survival in a variable environment: Ural owls (Strix uralensis) and the three-year vole cycle. Auk 119, 544–550. https://doi.org/10.1642/0004-8038(2002)119[0544:rasiav]2.0.co;2 (2002).Article 

    Google Scholar 
    2.Begon, M., Townsend, C. R. & Harper, J. L. Ecology, Individuals, Populations and Communities 4th edn. (Blackwell, 2006).
    Google Scholar 
    3.Chang, A. M. & Wiebe, K. L. Body condition in snowy owls wintering on the prairies is greater in females and older individuals and may contribute to sex-biased mortality. Auk 133, 738–746. https://doi.org/10.1642/auk-16-60.1 (2016).Article 

    Google Scholar 
    4.McLean, N., van der Jeugd, H. P. & van de Pol, M. High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLoS ONE 13, e0192401. https://doi.org/10.1371/journal.pone.0192401 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.McLean, N. M., van der Jeugd, H. P., van Turnhout, C. A. M., Lefcheck, J. S. & van de Pol, M. Reduced avian body condition due to global warming has little reproductive or population consequences. Oikos 129, 714–730. https://doi.org/10.1111/oik.06802 (2020).Article 

    Google Scholar 
    6.Aubry, L. M. et al. Climate change, phenology, and habitat degradation: Drivers of gosling body condition and juvenile survival in lesser snow geese. Glob. Change Biol. 19, 149–160. https://doi.org/10.1111/gcb.12013 (2013).ADS 
    Article 

    Google Scholar 
    7.Gardner, J. L., Amano, T., Sutherland, W. J., Clayton, M. & Peters, A. Individual and demographic consequences of reduced body condition following repeated exposure to high temperatures. Ecology 97, 786–795. https://doi.org/10.1890/15-0642.1 (2016).Article 
    PubMed 

    Google Scholar 
    8.Newton, I. Population Limitation in Birds (Academic Press, 1998).
    Google Scholar 
    9.Dunn, P. O. & Møller, A. P. Effects of Climate Change on Birds 2nd edn. (Oxford University Press, 2019).Book 

    Google Scholar 
    10.Crossin, G. T. et al. A carryover effect of migration underlies individual variation in reproductive readiness and extreme egg size dimorphism in Macaroni penguins. Am. Nat. 176, 357–366. https://doi.org/10.1086/655223 (2010).Article 
    PubMed 

    Google Scholar 
    11.Clausen, K. K., Madsen, J. & Tombre, I. M. Carry-over or compensation? The impact of winter harshness and post-winter body condition on spring-fattening in a migratory goose species. PLoS ONE 10(7), e0132312. https://doi.org/10.1371/journal.pone.0132312 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Selonen, V., Wistbacka, R. & Korpimäki, E. Food abundance and weather modify reproduction of two arboreal squirrel species. J. Mammal. 97, 1376–1384. https://doi.org/10.1093/jmammal/gyw096 (2016).Article 

    Google Scholar 
    13.Harrison, X. A., Blount, J. D., Inger, R., Norris, D. R. & Bearhop, S. Carry-over effects as drivers of fitness differences in animals. J. Anim. Ecol. 80, 4–18. https://doi.org/10.1111/j.1365-2656.2010.01740.x (2011).Article 
    PubMed 

    Google Scholar 
    14.O’Connor, C. M., Norris, D. R., Crossin, G. T. & Cooke, S. J. Biological carryover effects: Linking common concepts and mechanisms in ecology and evolution. Ecosphere 5, 1–11. https://doi.org/10.1890/es13-00388.1 (2014).Article 

    Google Scholar 
    15.Montreuil-Spencer, C., Schoenemann, K., Lendvai, A. Z. & Bonier, F. Winter corticosterone and body condition predict breeding investment in a nonmigratory bird. Behav. Ecol. 30, 1642–1652. https://doi.org/10.1093/beheco/arz129 (2019).Article 

    Google Scholar 
    16.Korpimäki, E. Body mass of breeding Tengmalm’s owls Aegolius funereus: Seasonal, between-year, site and age-related variation. Ornis Scand. 21, 169–178. https://doi.org/10.2307/3676776 (1990).Article 

    Google Scholar 
    17.Dijkstra, C., Daan, S., Meijer, T., Cave, A. J. & Foppen, R. P. B. Daily and seasonal-variations in body-mass of the kestrel in relation to food availability and reproduction. Ardea 76, 127–140 (1988).
    Google Scholar 
    18.Pietiäinen, H. & Kolunen, H. Female body condition and breeding of the Ural owl Strix uralensis. Funct. Ecol. 7, 726–735. https://doi.org/10.2307/2390195 (1993).Article 

    Google Scholar 
    19.Wijnandts, H. Ecological energetics of the long-eared owl (Asio otus). Ardea 72, 1–92 (1984).
    Google Scholar 
    20.Korpimäki, E. & Hakkarainen, H. Fluctuating food supply affects the cluch size of Tengmalm’s owl independent of laying date. Oecologia 85, 543–552 (1991).ADS 
    Article 

    Google Scholar 
    21.Korpimäki, E. & Wiehn, J. Clutch size of kestrels: Seasonal decline and experimental evidence for food limitation under fluctuating food conditions. Oikos 83, 259–272. https://doi.org/10.2307/3546837 (1998).Article 

    Google Scholar 
    22.Pietiäinen, H. Seasonal and individual variation in the production of offspring in the Ural owl Strix uralensis. J. Anim. Ecol. 58, 905–920. https://doi.org/10.2307/5132 (1989).Article 

    Google Scholar 
    23.Wellicome, T. I. Effects of food on reproduction in burrowing owls (Athene cunicularia) during three stages of the breeding season (Ph.D. dissertation). (University of Alberta, 2000).24.Ilmonen, P. et al. Parental effort and blood parasitism in Tengmalm’s owl: Effects of natural and experimental variation in food abundance. Oikos 86, 79–86. https://doi.org/10.2307/3546571 (1999).Article 

    Google Scholar 
    25.Santangeli, A., Hakkarainen, H., Laaksonen, T. & Korpimäki, E. Home range size is determined by habitat composition but feeding rate by food availability in male Tengmalm’s owls. Anim. Behav. 83, 1115–1123. https://doi.org/10.1016/j.anbehav.2012.02.002 (2012).Article 

    Google Scholar 
    26.Griebel, R. L. & Savidge, J. A. Factors related to body condition of nestling burrowing owls in Buffalo Gap National Grassland, South Dakota. Wilson Bull. 115, 477–480. https://doi.org/10.1676/02-094 (2003).Article 

    Google Scholar 
    27.Valkama, J., Korpimäki, E., Holm, A. & Hakkarainen, H. Hatching asynchrony and brood reduction in Tengmalm’s owl Aegolius funereus: The role of temporal and spatial variation in food abundance. Oecologia 133, 334–341. https://doi.org/10.1007/s00442-002-1033-2 (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    28.König, C. & Weick, F. Owls of the World 2nd edn. (Yale University Press, 2008).
    Google Scholar 
    29.Mikkola, H. Owls of Europe (Poyser, 1983).
    Google Scholar 
    30.Korpimäki, E. On the Ecology and Biology of Tengmalm’s Owl (Aegolius funereus) in Southern Ostrobothnia and Soumenselkä, Western Finland Vol. 13, 1–84 (University of Oulu, 1981).
    Google Scholar 
    31.Korpimäki, E. Diet of breeding Tengmalm’s owls Aegolius funereus: Long-term changes and year-to-year variation under cyclic food conditions. Ornis Fenn. 65, 21–30 (1988).
    Google Scholar 
    32.Korpimäki, E. & Hakkarainen, H. The Boreal Owl: Ecology, Behaviour and Conservation of a Forest-Dwelling Predator (Cambridge University Press, 2012).Book 

    Google Scholar 
    33.Kouba, M., Bartoš, L., Šindelář, J. & Šťastný, K. Alloparental care and adoption in Tengmalm’s owl (Aegolius funereus). J. Ornithol. 158, 185–191. https://doi.org/10.1007/s10336-016-1381-z (2017).Article 

    Google Scholar 
    34.Eldegard, K. & Sonerud, G. A. Experimental increase in food supply influences the outcome of within-family conflicts in Tengmalm’s owl. Behav. Ecol. Sociobiol. 64, 815–826 (2010).Article 

    Google Scholar 
    35.Eldegard, K. & Sonerud, G. A. Sex roles during post-fledging care in birds: Female Tengmalm’s owls contribute little to food provisioning. J. Ornithol. 153, 385–398. https://doi.org/10.1007/s10336-011-0753-7 (2012).Article 

    Google Scholar 
    36.Kouba, M., Bartoš, L. & Šťastný, K. Differential movement patterns of juvenile Tengmalm’s owls (Aegolius funereus) during the post-fledging dependence period in two years with contrasting prey abundance. PLoS ONE 8(7), e67034. https://doi.org/10.1371/journal.pone.0067034 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Korpimäki, E. Fluctuating food abundance determines the lifetime reproductive success of male Tengmalm’s owls. J. Anim. Ecol. 61, 103–111 (1992).Article 

    Google Scholar 
    38.Kouba, M., Bartoš, L., Korpimäki, E. & Zárybnická, M. Factors affecting the duration of nestling period and fledging order in Tengmalm’s owl (Aegolius funereus): Effect of wing length and hatching sequence. PLoS ONE 10(3), e0121641. https://doi.org/10.1371/journal.pone.0121641 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Björklund, H., Saurola, P. & Valkama, J. Petolintuvuosi 2019 oli kohtalainen (Summary: Breeding and population trends of common raptors and owls in Finland in 2019). Yearb. Linnut Mag. 2019, 44–59 (2020).
    Google Scholar 
    40.Kouba, M., Bartoš, L., Bartošová, J., Hongisto, K. & Korpimäki, E. Interactive influences of fluctuations of main food resources and climate change on long-term population decline of Tengmalm’s owls in the boreal forest. Sci. Rep. 10, 20429. https://doi.org/10.1038/s41598-41020-77531-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Ferrero, J. J., Grande, J. M. & Negro, J. J. Copulation behavior of a potentially double-brooded bird of prey, the black-winged kite (Elanus caeruleus). J. Raptor Res. 37, 1–7 (2003).
    Google Scholar 
    42.Sergio, F. From individual behaviour to population pattern: Weather-dependent foraging and breeding performance in black kites. Anim. Behav. 66, 1109–1117. https://doi.org/10.1006/anbe.2003.2303 (2003).Article 

    Google Scholar 
    43.Korpimäki, E. Effects of age on breeding performance of Tengmalm’s owl Aegolius funereus in western Finland. Ornis Scand. 19, 21–26 (1988).Article 

    Google Scholar 
    44.Laaksonen, T., Korpimäki, E. & Hakkarainen, H. Interactive effects of parental age and environmental variation on the breeding performance of Tengmalm’s owls. J. Anim. Ecol. 71, 23–31. https://doi.org/10.1046/j.0021-8790.2001.00570.x (2002).Article 

    Google Scholar 
    45.Korpimäki, E. Highlights from a long-term study of Tengmalm’s owls: Cyclic fluctuations in vole abundance govern mating systems, population dynamics and demography. Brit. Birds 113, 316–333 (2020).
    Google Scholar 
    46.Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x (2009).Article 

    Google Scholar 
    47.Korpimäki, E., Norrdahl, K., Huitu, O. & Klemola, T. Predator-induced synchrony in population oscillations of coexisting small mammal species. Proc. R. Soc. B-Biol. Sci. 272, 193–202 (2005).Article 

    Google Scholar 
    48.Huitu, O., Norrdahl, K. & Korpimäki, E. Landscape effects on temporal and spatial properties of vole population fluctuations. Oecologia 135, 209–220. https://doi.org/10.1007/s00442-002-1171-6 (2003).ADS 
    Article 
    PubMed 

    Google Scholar 
    49.Schreiber-Gregory, D. N. & Jackson, H. M. Multicollinearity: What is it, why should we care, and how can it be controlled. In Proc. SAS R Global Forum 2017, Conference Paper 1404 (2017).50.Zuur, A., Ieno, E. N. & Smith, G. M. Analyzing Ecological Data (Springer, 2007).Book 

    Google Scholar 
    51.Tao, J., Littel, R., Patetta, M., Truxillo, C. & Wolfinger, R. Mixed Model Analyses Using the SAS System Course Notes (SAS Institute Inc., 2002).
    Google Scholar 
    52.Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretical Approach (Springer, 1998).Book 

    Google Scholar 
    53.Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    54.Vaida, F. & Blanchard, S. Conditional Akaike information for mixed-effects models. Biometrika 92, 351–370. https://doi.org/10.1093/biomet/92.2.351 (2005).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    55.Ward, E. J. A review and comparison of four commonly used Bayesian and maximum likelihood model selection tools. Ecol. Model. 211, 1–10. https://doi.org/10.1016/j.ecolmodel.2007.10.030 (2008).CAS 
    Article 

    Google Scholar 
    56.Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).MathSciNet 
    Article 

    Google Scholar 
    57.Christensen, W. Agreeing to disagree: Using SAS to make reasoned decisions when information criteria select different models. In SAS Conference Proceedings: Western Users of SAS Software 2018. September 5–7, 2018, Sacramento, California, Paper 099–2018 (2018).58.Posada, D. & Buckley, T. R. Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53, 793–808. https://doi.org/10.1080/10635150490522304 (2004).Article 
    PubMed 

    Google Scholar 
    59.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    60.Buckland, S. T., Burnham, K. P. & Augustin, N. H. Model selection: An integral part of inference. Biometrics 53, 603–618. https://doi.org/10.2307/2533961 (1997).Article 
    MATH 

    Google Scholar 
    61.Wagenmakers, E. J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196. https://doi.org/10.3758/bf03206482 (2004).Article 
    PubMed 

    Google Scholar 
    62.Lack, D. The Natural Regulation of Animal Numbers (Oxford University Press, 1954).
    Google Scholar 
    63.Korpela, K. et al. Nonlinear effects of climate on boreal rodent dynamics: Mild winters do not negate high-amplitude cycles. Glob. Change Biol. 19, 697–710. https://doi.org/10.1111/gcb.12099 (2013).ADS 
    Article 

    Google Scholar 
    64.Wiehn, J. & Korpimäki, E. Food limitation on brood size: Experimental evidence in the Eurasian kestrel. Ecology 78, 2043–2050. https://doi.org/10.2307/2265943 (1997).Article 

    Google Scholar 
    65.Korpimäki, E. & Lagerström, M. Survival and natal dispersal of fledglings of Tengmalm’s owl in relation to fluctuating food conditions and hatching date. J. Anim. Ecol. 57, 433–441 (1988).Article 

    Google Scholar 
    66.Norris, K. J. Female choice and the quality of parental care in the great tit Parus major. Behav. Ecol. Sociobiol. 27, 275–281 (1990).Article 

    Google Scholar 
    67.Naef-Daenzer, B., Widmer, F. & Nuber, M. Differential post-fledging survival of great and coal tits in relation to their condition and fledging date. J. Anim. Ecol. 70, 730–738. https://doi.org/10.1046/j.0021-8790.2001.00533.x (2001).Article 

    Google Scholar 
    68.Grüebler, M. U. & Naef-Daenzer, B. Postfledging parental effort in barn swallows: Evidence for a trade-off in the allocation of time between broods. Anim. Behav. 75, 1877–1884. https://doi.org/10.1016/j.anbehav.2007.12.002 (2008).Article 

    Google Scholar 
    69.Jones, T. M., Ward, M. P., Benson, T. J. & Brawn, J. D. Variation in nestling body condition and wing development predict cause-specific mortality in fledgling dickcissels. J. Avian Biol. 48, 439–447. https://doi.org/10.1111/jav.01143 (2017).Article 

    Google Scholar 
    70.Magrath, R. D. Nestling weight and juvenile survival in the blackbird, Turdus merula. J. Anim. Ecol. 60, 335–351. https://doi.org/10.2307/5464 (1991).Article 

    Google Scholar 
    71.Naef-Daenzer, B. & Grüebler, M. U. Post-fledging survival of altricial birds: Ecological determinants and adaptation. J. Field Ornithol. 87, 227–250. https://doi.org/10.1111/jofo.12157 (2016).Article 

    Google Scholar 
    72.Winkler, D. W., Luo, M. K. & Rakhimberdiev, E. Temperature effects on food supply and chick mortality in tree swallows (Tachycineta bicolor). Oecologia 173, 129–138. https://doi.org/10.1007/s00442-013-2605-z (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Hylton, R. A., Frederick, P. C., de la Fuente, T. E. & Spalding, M. G. Effects of nestling health on postfledging survival of wood storks. Condor 108, 97–106. https://doi.org/10.1650/0010-5422(2006)108[0097:Eonhop]2.0.Co;2 (2006).Article 

    Google Scholar 
    74.Imlay, T. L., Mann, H. A. R. & Leonard, M. L. No effect of insect abundance on nestling survival or mass for three aerial insectivores. Avian Conserv. Ecol. https://doi.org/10.5751/ace-01092-120219 (2017).Article 

    Google Scholar 
    75.Nooker, J. K., Dunn, P. O. & Whittingham, L. A. Effects of food abundance, weather, and female condition on reproduction in tree swallows (Tachycineta bicolor). Auk 122, 1225–1238. https://doi.org/10.1642/0004-8038(2005)122[1225:eofawa]2.0.co;2 (2005).Article 

    Google Scholar 
    76.Perrig, M., Gruebler, M. U., Keil, H. & Naef-Daenzer, B. Experimental food supplementation affects the physical development, behaviour and survival of little owl Athene noctua nestlings. Ibis 156, 755–767. https://doi.org/10.1111/ibi.12171 (2014).Article 

    Google Scholar 
    77.Perrig, M., Gruebler, M. U., Keil, H. & Naef-Daenzer, B. Post-fledging survival of little owls Athene noctua in relation to nestling food supply. Ibis 159, 532–540. https://doi.org/10.1111/ibi.12477 (2017).Article 

    Google Scholar 
    78.McDonald, P. G., Olsen, P. D. & Cockburn, A. Sex allocation and nestling survival in a dimorphic raptor: Does size matter? Behav. Ecol. 16, 922–930. https://doi.org/10.1093/beheco/ari071 (2005).Article 

    Google Scholar 
    79.Morosinotto, C. et al. Fledging mass is color morph specific and affects local recruitment in a wild bird. Am. Nat. 196, 609–619. https://doi.org/10.1086/710708 (2020).Article 
    PubMed 

    Google Scholar 
    80.Overskaug, K., Bolstad, J. P., Sunde, P. & Øien, I. J. Fledgling behavior and survival in northern tawny owls. Condor 101, 169–174 (1999).Article 

    Google Scholar 
    81.Todd, L. D., Poulin, R. G., Wellicome, T. I. & Brigham, R. M. Post-fledging survival of burrowing owls in Saskatchewan. J. Wildl. Manage. 67, 512–519. https://doi.org/10.2307/3802709 (2003).Article 

    Google Scholar 
    82.Cox, W. A., Thompson, F. R., Cox, A. S. & Faaborg, J. Post-fledging survival in passerine birds and the value of post-fledging studies to conservation. J. Wildl. Manage. 78, 183–193. https://doi.org/10.1002/jwmg.670 (2014).Article 

    Google Scholar 
    83.Korpimäki, E. Timing of breeding of Tengmalm’s owl Aegolius funereus in relation to vole dynamics in western Finland. Ibis 129, 58–68 (1987).Article 

    Google Scholar 
    84.Pigeault, R., Cozzarolo, C. S., Glaizot, O. & Christe, P. Effect of age, haemosporidian infection and body condition on pair composition and reproductive success in great tits Parus major. Ibis 162, 613–626. https://doi.org/10.1111/ibi.12774 (2020).Article 

    Google Scholar 
    85.Hakkarainen, H. & Korpimäki, E. The effect of female body-size on clutch volume of Tengmalm’s owls Aegolius funereus in varying food conditions. Ornis Fenn. 70, 189–195 (1993).
    Google Scholar 
    86.Hanauska-Brown, L. A., Dufty, A. M. & Roloff, G. J. Blood chemistry, cytology, and body condition in adult northern goshawks (Accipiter gentilis). J. Raptor Res. 37, 299–306 (2003).
    Google Scholar 
    87.Chastel, O., Weimerskirch, H. & Jouventin, P. Body condition and seabird reproductive performance: A study of three petrel species. Ecology 76, 2240–2246. https://doi.org/10.2307/1941698 (1995).Article 

    Google Scholar 
    88.Grilli, M. G., Pari, M. & Ibanez, A. Poor body conditions during the breeding period in a seabird population with low breeding success. Mar. Biol. https://doi.org/10.1007/s00227-018-3401-4 (2018).Article 

    Google Scholar 
    89.Toland, B. Hunting success of some Missouri raptors. Wilson Bull. 98, 116–125 (1986).
    Google Scholar 
    90.Masoero, G., Morosinotto, C., Laaksonen, T. & Korpimäki, E. Food hoarding of an avian predator: Sex- and age-related differences under fluctuating food conditions. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-00018-02571-x (2018).Article 

    Google Scholar 
    91.Masoero, G., Laaksonen, T., Morosinotto, C. & Korpimäki, E. Age and sex differences in numerical responses, dietary shifts, and total responses of a generalist predator to population dynamics of main prey. Oecologia 192, 699–711. https://doi.org/10.1007/s00442-020-04607-x (2020).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Norrdahl, K. & Korpimäki, E. Changes in population structure and reproduction during a 3-year population cycle of voles. Oikos 96, 331–345. https://doi.org/10.1034/j.1600-0706.2002.970319.x (2002).Article 

    Google Scholar 
    93.Merritt, J. F., Lima, M. & Bozinovic, F. Seasonal regulation in fluctuating small mammal populations: Feedback structure and climate. Oikos 94, 505–514. https://doi.org/10.1034/j.1600-0706.2001.940312.x (2001).Article 

    Google Scholar 
    94.Solonen, T. Overwinter population change of small mammals in southern Finland. Ann. Zool. Fenn. 43, 295–302 (2006).
    Google Scholar 
    95.Haapakoski, M. & Ylönen, H. Snow evens fragmentation effects and food determines overwintering success in ground-dwelling voles. Ecol. Res. 28, 307–315. https://doi.org/10.1007/s11284-012-1020-y (2013).Article 

    Google Scholar 
    96.Berlioz, J. & Bergman, G. (eds) Proc., XII International Ornithological Congress, Helsinki 5–12 Vol. 158, 586–591 (Tilgmannin Kirjapaino, 1960).
    Google Scholar 
    97.Fraixedas, S., Linden, A. & Lehikoinen, A. Population trends of common breeding forest birds in southern Finland are consistent with trends in forest management and climate change. Ornis Fenn. 92, 187–203 (2015).
    Google Scholar 
    98.Virkkala, R. Long-term decline of southern boreal forest birds: Consequence of habitat alteration or climate change? Biodivers. Conserv. 25, 151–167. https://doi.org/10.1007/s10531-015-1043-0 (2016).Article 

    Google Scholar 
    99.Björklund, H., Valkama, J., Tomppo, E. & Laaksonen, T. Habitat effects on the breeding performance of three forest-dwelling hawks. PLoS ONE 10(9), e0137877. https://doi.org/10.1371/journal.pone.0137877 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    100.Koskimäki, J. et al. Are habitat loss, predation risk and climate related to the drastic decline in a Siberian flying squirrel population? A 15-year study. Popul. Ecol. 56, 341–348. https://doi.org/10.1007/s10144-013-0411-4 (2014).Article 

    Google Scholar 
    101.Suzuki, N. & Parker, K. L. Proactive conservation of high-value habitat for woodland caribou and grizzly bears in the boreal zone of British Columbia, Canada. Biol. Conserv. 230, 91–103. https://doi.org/10.1016/j.biocon.2018.12.013 (2019).Article 

    Google Scholar 
    102.Venier, L. A. et al. Effects of natural resource development on the terrestrial biodiversity of Canadian boreal forests. Environ. Rev. 22, 457–490. https://doi.org/10.1139/er-2013-0075 (2014).Article 

    Google Scholar 
    103.Thomas, J. W. et al. A Conservation Strategy for the Northern Spotted Owl (US Government Printing Office 791-171/20026, 1990).
    Google Scholar 
    104.Laaksonen, T. & Lehikoinen, A. Population trends in boreal birds: Continuing declines in agricultural, northern, and long-distance migrant species. Biol. Conserv. 168, 99–107. https://doi.org/10.1016/j.biocon.2013.09.007 (2013).Article 

    Google Scholar  More

  • in

    Functional diversity outperforms taxonomic diversity in revealing short-term trampling effects

    1.Dengler, J. et al. Biodiversity of palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 182(1), 1–14 (2014).Article 

    Google Scholar 
    2.Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Torok, P. et al. Step(pe) up! Raising the profile of the Palaearctic natural grasslands. Biodivers. Conserv. 25(12), 2187–2195 (2016).Article 

    Google Scholar 
    4.Kuss, F. R. & Graefe, A. R. Effects of recreation trampling on natural area vegetation. J. Leis. Res. 17, 165–183 (1985).Article 

    Google Scholar 
    5.Buckley, R. C. & Pannell, J. Environmental impacts of tourism and recreation in national parks and conservation reserves. J. Tourism Stud. 1, 24–32 (1990).
    Google Scholar 
    6.Yorks, T. et al. Toleration of traffic by vegetation: Life form conclusions and summary extracts from a comprehensive data base. Environ. Manage. 21, 12–131 (1997).Article 

    Google Scholar 
    7.Gouvenain, R. C. Indirect impacts of soil trampling on tree growth and plant succession in the north cascade mountains of Washington (1996).8.Xu, L., Yu, F. H. & Drunen, E. V. Trampling, defoliation and physiological integration affect growth, morphological and mechanical properties of a root-suckering clonal tree. Ann. Bot. 109, 1001–1008 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Bayfield, N. G. Use and deterioration of some Scottish hill paths. J. Appl. Ecol. 10, 639–648 (1973).Article 

    Google Scholar 
    10.Liddle, M. J. A selective review of the ecological effects of human trampling on natural ecosystems. Biol. Cons. 7, 17–36 (1975).Article 

    Google Scholar 
    11.Frissell, S. S. Judging recreational impacts on wilderness campsites. J. Forest. 76, 481–483 (1978).
    Google Scholar 
    12.Wagar, J. A. How to predict which vegetated areas will stand up best under ‘active’ recreation. Am. Recreat. J. 1, 20–21 (1961).
    Google Scholar 
    13.Cole, D. N. & Bayfield, N. G. Recreational trampling of vegetation: Standard experimental procedures. Biol. Cons. 63(3), 209–215 (1993).Article 

    Google Scholar 
    14.Prescott, O. & Stewart, G. Assessing the impacts of human trampling on vegetation: A systematic review and meta-analysis of experimental evidence. PeerJ 2, e360 (2014).Article 

    Google Scholar 
    15.Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294, 804–808 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Vandewalle, M. et al. Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodivers. Conserv. 19, 2921–2947 (2010).Article 

    Google Scholar 
    17.Petchey, O. L. & Gaston, K. J. Functional diversity, species richness and composition. Ecol. Lett. 5, 402–411 (2002).Article 

    Google Scholar 
    18.Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48(5), 1079–1087 (2011).Article 

    Google Scholar 
    19.Mouillot, D. et al. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).PubMed 
    Article 

    Google Scholar 
    20.Carmona, C. P. et al. Traits without borders: Integrating functional diversity across scales. Trends Ecol. Evol. 31(5), 382–394 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Conradi, T. et al. Impacts of visitor trampling on the taxonomic and functional community structure of calcareous grassland. Appl. Veg. Sci. 18, 359–367 (2015).Article 

    Google Scholar 
    22.Pickering, C. M. & Barros, A. Using functional traits to assess the resistance of subalpine grassland to trampling by mountain biking and hiking. J. Environ. Manage. 164, 129–136 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Baraloto, C., Herault, B. & Paine, C. E. T. Contrasting taxonomic and functional responses of a tropic tree community to selective logging. J. Appl. Ecol. 49, 861–870 (2012).Article 

    Google Scholar 
    24.Magnago, L. F. S. et al. Functional attributes change but functional richness is unchanged after fragmentation of Brazilian Atlantic forests. J. Ecol. 102, 475–485 (2014).Article 

    Google Scholar 
    25.Marion, J. L. & Cole, D. N. Spatial and temporal variation in soil and vegetation impacts on campsites. Ecol. Appl. 6, 520–530 (1996).Article 

    Google Scholar 
    26.Roovers, P. et al. Experimental trampling and vegetation recovery in some forest and heathland communities. Appl. Veg. Sci. 7, 111–118 (2004).Article 

    Google Scholar 
    27.Conradi, T. et al. Impacts of visitor trampling on the taxonomic and functional community structure of calcareous grassland. Appl. Veg. Sci. 18(3), 359–367 (2015).Article 

    Google Scholar 
    28.Zamora, R. Functional equivalence in plant-animal interactions: Ecological and evolutionary consequences. Oikos 88(2), 442–447 (2000).Article 

    Google Scholar 
    29.Hubbell, S. P. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 19, 166–172 (2005).Article 

    Google Scholar 
    30.Mouchet, M. A. et al. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct. Ecol. 24, 867–876 (2010).Article 

    Google Scholar 
    31.Diaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl. Acad. Sci. U.S.A. 104, 20684–20689 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Suding, K. N. & Goldstein, L. J. Testing the Holy Grail framework: Using functional traits to predict ecosystem change. New Phytol. 180, 559–562 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.De Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).Article 

    Google Scholar 
    34.Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    35.Tian, K., Guo, H. J. & Yang, Y. M. Ecological structures and functions of plateau wetlands in China (Chinese Science Press, 2009).
    Google Scholar 
    36.Garnier, E. et al. standardized protocol for the determination of specific leaf size and leaf dry matter content. Funct. Ecol. 15, 688–695 (2001).Article 

    Google Scholar 
    37.Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article 

    Google Scholar 
    38.Mason, N. W. H. et al. An index of functional diversity. J. Veg. Sci. 14, 571–578 (2003).Article 

    Google Scholar 
    39.Villeger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed 
    Article 

    Google Scholar 
    40.Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).Article 

    Google Scholar 
    41.Cianciaruso, M. V. et al. Including intraspecific variability in functional diversity. Ecology 90, 81–89 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Lepš, J. et al. Community trait response to environment: Disentangling species turnover vs intraspecific trait variability effects. Ecography 34, 856–863 (2011).Article 

    Google Scholar 
    43.Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: A standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Pakeman, R. J. & Quested, H. M. Sampling plant functional traits: What proportion of the species need to be measured?. Appl. Veg. Sci. 10, 91–96 (2007).Article 

    Google Scholar 
    45.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    46.Oksanen, J., Blanchet, F. G., Friendly, M. et al. Vegan: Community Ecology Package. R package version 2.5–7 (2020).47.Laliberté, E., Legendre, P., Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0–12 (2014). More

  • in

    Fecal filtrate transplantation protects against necrotizing enterocolitis

    Initial clinical courseAmong the 75 cesarean-delivered preterm piglets, nine were excluded before randomization (e.g. failed resuscitation, stillbirth), whereas the remaining 66 animals were group allocated. An additional seven animals were euthanized preschedule for reasons not related to the interventions (respiratory failure, iatrogenic complications). Two animals were euthanized preschedule with clinical NEC signs (1 CON, 1 FFTr), whereas the remaining 57 animals survived until day 5. During the course of the experiment, we observed rectal bleeding in 31% (5/16) of CON and 19% (3/16) of FMT animals relative to 0% (0/13) in both FFT groups (p  More

  • in

    The importance of environmental microbes for Drosophila melanogaster during seasonal macronutrient variability

    1.Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. U.S.A. 101, 15718–15723 (2004).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.LeBlanc, J. G. et al. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 24, 160–168 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Huang, J. & Douglas, A. E. Consumption of dietary sugar by gut bacteria determines Drosophila lipid content. Biol. Lett. 11, 12–15 (2015).Article 
    CAS 

    Google Scholar 
    4.Storelli, G. et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14, 403–414 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Chandler, J. A., Lang, J., Bhatnagar, S., Eisen, J. A. & Kopp, A. Bacterial communities of diverse Drosophila species: Ecological context of a host-microbe model system. PLoS Genet. 7, e1002272 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Bing, X., Gerlach, J., Loeb, G. & Buchon, N. Nutrient-dependent impact of microbes on Drosophila suzukii development. MBio 9, e02199 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Wong, A. C. N., Chaston, J. M. & Douglas, A. E. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J. 7, 1922–1932 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Chandler, J. A., James, P. M., Jospin, G. & Lang, J. M. The bacterial communities of Drosophila suzukii collected from undamaged cherries. PeerJ 2, e474 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Kapun, M. et al. Genomic analysis of European Drosophila malanogaster populations revels longitudinal structure, continent-wide selection, and previously unknown DNA viruses. Mol. Biol. Evol. 37, 2661 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Morais, P. B., Martins, M. B., Klaczko, L. B., Mendonca-Hagler, L. C. & Hagler, A. N. Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila spp. Appl. Environ. Microbiol. 61, 4251–4257 (1995).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Wolda, H. Season fluctuations in rainfall, food and abundance of tropical insects. J. Anim. Ecol. 47, 369–381 (1978).Article 

    Google Scholar 
    12.Simpson, S. J., Sibly, R. M., Lee, K. P., Behmer, S. T. & Raubenheimer, D. Optimal foraging when regulating intake of multiple nutrients. Anim. Behav. 68, 1299–1311 (2004).Article 

    Google Scholar 
    13.Lee, K. P. et al. Lifespan and reproduction in Drosophila: New insights from nutritional geometry. Proc. Natl. Acad. Sci. U.S.A. 105, 2498–2503 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Lee, K. P., Kim, J. S. & Min, K. J. Sexual dimorphism in nutrient intake and life span is mediated by mating in Drosophila melanogaster. Anim. Behav. 86, 987–992 (2013).Article 

    Google Scholar 
    15.Wong, A. C. N., Dobson, A. J. & Douglas, A. E. Gut microbiota dictates the metabolic response of Drosophila to diet. J. Exp. Biol. 217, 1894–1901 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    16.Rodrigues, M. A. et al. Drosophila melanogaster larvae make nutritional choices that minimize developmental time. J. Insect Physiol. 81, 69–80 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Davies, L. R., Schou, M. F., Kristensen, T. N. & Loeschcke, V. Linking developmental diet to adult foraging choice in Drosophila melanogaster. J. Exp. Biol. 221, 175554 (2018).Article 

    Google Scholar 
    18Keebaugh, E. S., Yamada, R., Obadia, B., Ludington, W. B. & Ja, W. W. Microbial quantity impacts Drosophila nutrition, development, and lifespan. iScience 4, 247–259 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19Morimoto, J., Simpson, S. J. & Ponton, F. Direct and transgenerational effects of male and female gut microbiota in Drosophila melanogaster. Biol. Lett. 13, 20160966 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, 2012).Book 

    Google Scholar 
    21.Wong, A. C. N. et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr. Biol. 27, 2397–2404 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Andersen, L. H., Kristensen, T. N., Loeschcke, V., Toft, S. & Mayntz, D. Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult Drosophila melanogaster. J. Insect Physiol. 56, 336–340 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Kutz, T. C., Sgrò, C. M. & Mirth, C. K. Interacting with change: Diet mediates how larvae respond to their thermal environment. Funct. Ecol. 33, 1940–1951 (2019).Article 

    Google Scholar 
    24.Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Biol. Writing 5, 1–34 (1948).
    Google Scholar 
    25.Broderick, N. & Lemaitre, B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3, 307–321 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.De Ley, J. Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J. Gen. Microbiol. 24, 31–50 (1961).Article 

    Google Scholar 
    27Ameyama, M. Gluconobacter oxydans subsp. sphaericus, new subspecies isolated from grapes. Int. J. Syst. Bacteriol. 25, 365–370 (1948).Article 

    Google Scholar 
    28.Deppenmeier, U., Hoffmeister, M. & Prust, C. Biochemistry and biotechnological applications of Gluconobacter strains. Appl. Microbiol. Biotechnol. 60, 233–242 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Ryngajłło, M., Kubiak, K., Jędrzejczak-Krzepkowska, M., Jacek, P. & Bielecki, S. Comparative genomics of the Komagataeibacter strains—Efficient bionanocellulose producers. Microbiologyopen 8, 1–25 (2019).Article 
    CAS 

    Google Scholar 
    30.Gilbert, D. G. Dispersal of yeasts and bacteria by Drosophila in a temperate forest. Oecologia 46, 135–137 (1980).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Blum, J. E., Fischer, C. N., Miles, J. & Handelsman, J. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster. MBio 4, 1–8 (2013).CAS 
    Article 

    Google Scholar 
    32.Staubach, F., Baines, J. F., Künzel, S., Bik, E. M. & Petrov, D. A. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS ONE 8, e70749 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Wong, A. C. N. et al. The host as the driver of the microbiota in the gut and external environment of Drosophila melanogaster. Appl. Environ. Microbiol. 81, 6232–6240 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Pais, I. S., Valente, R. S., Sporniak, M. & Teixeira, L. Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biol. 16(7), e2005710 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Buchon, N., Broderick, N. A. & Lemaitre, B. Gut homeostasis in a microbial world: Insights from Drosophila melanogaster. Nat. Rev. Microbiol. 11, 615–626 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Wong, A. C. N., Ng, P. & Douglas, A. E. Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ. Microbiol. 13, 1889–1900 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Manteca, A. & Sanchez, J. Streptomyces development in colonies and soils. Appl. Environ. Microbiol. 75, 2920–2924 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Lee, K. P., Raubenheimer, D., Behmer, S. T. & Simpson, S. J. A correlation between macronutrient balancing and insect host-plant range: Evidence from the specialist caterpillar Spodoptera exempta (Walker). J. Insect Physiol. 49, 1161–1171 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Mevi-Schütz, J. & Erhardt, A. Larval nutrition affects female nectar amino acid preference in the map butterfly (Araschnia levana). Ecology 18, 2788–2794 (2003).Article 

    Google Scholar 
    40.Lee, K. P. The interactive effects of protein quality and macronutrient imbalance on nutrient balancing in an insect herbivore. J. Exp. Biol. 210, 3236–3244 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Fanson, B. G., Weldon, C. W., Pérez-Staples, D., Simpson, S. J. & Taylor, P. W. Nutrients, not caloric restriction, extend lifespan in Queensland fruit flies (Bactrocera tryoni). Aging Cell 8, 514–523 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Spor, A., Koren, O. & Ley, R. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol. 9, 279–290 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2007).ADS 
    Article 
    CAS 

    Google Scholar 
    44.Faith, J. J., McNulty, N. P., Rey, F. E. & Gordon, J. I. Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 333, 101–104 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Ridley, E. V., Wong, A. C. N., Westmiller, S. & Douglas, A. E. Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS ONE 7, e36765 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Nguyen, B. et al. Interactions between ecological factors in the developmental environment modulate pupal and adult traits in a polyphagous fly. Ecol. Evol. 9, 6342–6352 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Drew, R. A. I., Courtice, A. C. & Teakle, D. S. Bacteria as a natural source of food for adult fruit flies (Diptera, Tephritidae). Oecologia 60, 279–284 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48Lesperance, D. N. A. & Broderick, N. Gut bacteria mediate nutrient availability in Drosophila diets. Appl. Environ. Microbiol. 59, 211 (2020).
    Google Scholar 
    49.Kristensen, T. N. et al. Fitness components of Drosophila melanogaster developed on a standard laboratory diet or a typical natural food source. Insect Sci. 23, 771–779 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Harrison, A. P. & Pelczar, M. J. Damage and survival of bacteria during freeze-drying and during storage over a ten-year period. J. Gen. Microbiol. 30, 395–400 (1963).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Rubin, B. E. R. et al. Investigating the impact of storage conditions on microbial community composition in soil samples. PLoS ONE 8, 1–9 (2013).
    Google Scholar 
    52.Sharon, G. et al. Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 107, 20051–20056 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Xu, X., Feng, G., Liu, H. & Li, X. Control of spoilage microorganisms in Soybean milk by nipagin complex esters, nisin, sodium dehydroaceate and heat treatment. IPCBEE 67, 35 (2014).ADS 
    CAS 

    Google Scholar 
    54.Leftwich, P. T., Clarke, N. V. E., Hutchings, M. I. & Chapman, T. Gut microbiomes and reproductive isolation in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 114, 12767–12772 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Leftwich, P. T., Clarke, N. V. E., Hutchings, M. I. & Chapman, T. Reply to Obadia et al.: Effect of methyl paraben on host–microbiota interactions in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 20, E4549–E4550 (2018).Article 

    Google Scholar 
    56.Ward, D. V. et al. Evaluation of 16s rDNA-based community profiling for human microbiome research. PLoS ONE 7, e39315 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Caporaso, J. et al. Ultra-high-throughput microbial community analysis on Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 
    CAS 

    Google Scholar 
    60.Overgaard, J., Kristensen, T. N. & Sørensen, J. G. Validity of thermal ramping assays used to assess thermal tolerance in arthropods. PLoS ONE 7, 1–7 (2012).Article 
    CAS 

    Google Scholar 
    61.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). Accessed February 2021. https://www.R-project.org/.62RStudio Team. RStudio: Integrated Development for R (RStudio, PBC, 2020).
    Google Scholar 
    63McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Oksanen, J. et al. vegan: Community Ecology Package. R package 2.5-7 (2019). Accessed October 2019. https://CRAN.R-project.org/package=vegan.65.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer, 2016).MATH 
    Book 

    Google Scholar  More

  • in

    Relative density of United States forests has shifted to higher levels over last two decades with important implications for future dynamics

    1.Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    2.Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad. Sci. U. S. A. 116, 4382–4387 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    3.Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).Article 

    Google Scholar 
    4.Williams, C. A., Gu, H., MacLean, R., Masek, J. G. & Collatz, G. J. Disturbance and the carbon balance of US forests: A quantitative review of impacts from harvests, fires, insects, and droughts. Glob. Planet. Change 143, 66–80 (2016).Article 
    ADS 

    Google Scholar 
    5.Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    6.Lovett, G. M. et al. Nonnative forest insects and pathogens in the United States: Impacts and policy options. Ecol. Appl. 26, 1437–1455 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci Adv 7, eabe9829 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Nave, L. E. et al. Reforestation can sequester two petagrams of carbon in US topsoils in a century. Proc. Natl. Acad. Sci. U. S. A. 115, 2776–2781 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).PubMed 
    Article 

    Google Scholar 
    10.McCarthy, J. K., Dwyer, J. M. & Mokany, K. A regional-scale assessment of using metabolic scaling theory to predict ecosystem properties. Proc. Biol. Sci. 286, 20192221 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    11.Woodall, C. W., Miles, P. D. & Vissage, J. S. Determining maximum stand density index in mixed species stands for strategic-scale stocking assessments. For. Ecol. Manag. 216, 367–377 (2005).Article 

    Google Scholar 
    12.Reineke, L. H. Perfecting a stand-density index for even-aged forests. J. Agric. Res. 46, 627–638 (1933).
    Google Scholar 
    13.Long, J. N. A practical approach to density management. For. Chron. 61, 23–27 (1985).Article 

    Google Scholar 
    14.Domke, G. et al. Forests. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report (eds Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed, S. C., Romero-Lankao, P. & Zhu, Z.) 365–398 (US Global Change Research Program, 2018).15.Yoda, K., Kira, T., Ogawa, H. & Hozumi, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 14, 106–129 (1963).
    Google Scholar 
    16.Drew, T. J. & Flewelling, J. W. Stand density management: An alternative approach and its application to Douglas-fir plantations. For. Sci. 25, 518–532 (1979).
    Google Scholar 
    17.Bechtold, W. A. & Patterson, P. L. The Enhanced Forest Inventory and Analysis Program: National Sampling Design and Estimation Procedures. SRS GTR-80. USDA Forest Service, Southern Research Station, Asheville, North Carolina, USA. (2005). https://doi.org/10.2737/SRS-GTR-80.18.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    Article 

    Google Scholar 
    19.Andrews, C., Weiskittel, A., D’Amato, A. W. & Simons-Legaard, E. Variation in the maximum stand density index and its linkage to climate in mixed species forests of the North American Acadian Region. For. Ecol. Manag. 417, 90–102 (2018).Article 

    Google Scholar 
    20.Nagel, L. M. et al. Adaptive silviculture for climate change: A national experiment in manager–scientist partnerships to apply an adaptation framework. J. For. 115, 167–178 (2017).
    Google Scholar 
    21.Pretzsch, H. & Biber, P. A re-evaluation of the Reineke’s rule and stand density index. For. Sci. 51, 304–320 (2005).
    Google Scholar 
    22.Condés, S. et al. Climate influences on the maximum size-density relationship in Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands. For. Ecol. Manag. 385, 295–307 (2017).Article 

    Google Scholar 
    23.Ducey, M. J., Woodall, C. W. & Bravo-Oviedo, A. Climate and species functional traits influence maximum live tree stocking in the Lake States, USA. For. Ecol. Manag. 386, 51–61 (2017).Article 

    Google Scholar 
    24.Zhao, D., Bullock, B. P., Montes, C. R. & Wang, M. Rethinking maximum stand basal area and maximum SDI from the aspect of stand dynamics. For. Ecol. Manag. 475, 118462 (2020).Article 

    Google Scholar 
    25.Weiskittel, A. R. & Kuehne, C. Evaluating and modeling variation in site-level maximum carrying capacity of mixed-species forest stands in the Acadian Region of northeastern North America. For. Chron. 95, 171–182 (2019).Article 

    Google Scholar 
    26.Pretzsch, H. & del Río, M. Density regulation of mixed and mono-specific forest stands as a continuum: A new concept based on species-specific coefficients for density equivalence and density modification. For. Int. J. For. Res. 93, 1–15 (2020).
    Google Scholar 
    27.Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    28.Woodall, C. W., Perry, C. H. & Miles, P. D. The relative density of forests in the United States. For. Ecol. Manag. 226, 368–372 (2006).Article 

    Google Scholar 
    29.Venturas, M. D., Todd, H. N., Trugman, A. T. & Anderegg, W. R. L. Understanding and predicting forest mortality in the western United States using long-term forest inventory data and modeled hydraulic damage. New Phytol. 230, 1896–1910 (2020).PubMed 
    Article 

    Google Scholar 
    30.Higuera, P. E. & Abatzoglou, J. T. Record-setting climate enabled the extraordinary 2020 fire season in the western United States. Glob. Change Biol. 27, 1–2 (2021).Article 
    ADS 

    Google Scholar 
    31.Peters, M. P. & Iverson, L. R. Projected drought for the conterminous United States in the 21st century. In Effects of Drought on Forests and Rangelands in the United States (eds Vose, J. M., Peterson, D. L., Luce, C. H. & Patel-Weynand, T.) vol. Gen. Tech. Rep. WO-98 19–39 (USDA Forest Service, 2019).32.Coulston, J. W., Woodall, C. W., Domke, G. M. & Walters, B. F. Refined forest land use classification with implications for United States national carbon accounting. Land Use Policy 59, 536–542 (2016).Article 

    Google Scholar 
    33.Wear, D. N. & Coulston, J. W. From sink to source: Regional variation in U.S. forest carbon futures. Sci. Rep. 5, 16518 (2015).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    34.Senf, C., Sebald, J. & Seidl, R. Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth 4, 749–755 (2021).Article 

    Google Scholar 
    35.Morin, X., Fahse, L., Scherer-Lorenzen, M. & Bugmann, H. Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol. Lett. 14, 1211–1219 (2011).PubMed 
    Article 

    Google Scholar 
    36.Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. U. S. A. 114, 11645–11650 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    37.Gunn, J. S., Ducey, M. J. & Belair, E. Evaluating degradation in a North American temperate forest. For. Ecol. Manag. 432, 415–426 (2019).Article 

    Google Scholar 
    38.Domke, G. M., Oswalt, S. N., Walters, B. F. & Morin, R. S. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2010840117 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.King, D. I. & Schlossberg, S. Synthesis of the conservation value of the early-successional stage in forests of eastern North America. For. Ecol. Manag. 324, 186–195 (2014).Article 

    Google Scholar 
    40.Stephens, S. L. et al. Forest restoration and fuels reduction: Convergent or divergent?. Bioscience 71, 85–101 (2020).
    Google Scholar 
    41.Berner, L. T., Law, B. E., Meddens, A. J. H. & Hicke, J. A. Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003–2012). Environ. Res. Lett. 12, 065005 (2017).Article 
    ADS 

    Google Scholar 
    42.Stanke, H., Finley, A. O., Domke, G. M., Weed, A. S. & MacFarlane, D. W. Over half of western United States’ most abundant tree species in decline. Nat. Commun. 12, 451 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    43.Weiskittel, A. R., Gould, P. J. & Temesgen, H. Sources of variation in the self-thinning boundary line for three species with varying levels of shade tolerance. For. Sci. 55, 84–93 (2009).
    Google Scholar 
    44.Ducey, M. J. & Knapp, R. A. A stand density index for complex mixed species forests in the northeastern United States. For. Ecol. Manag. 260, 1613–1622 (2010).Article 

    Google Scholar 
    45.Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. & Neilson, E. T. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl. Acad. Sci. U. S. A. 105, 1551–1555 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    46.Seidl, R., Schelhaas, M.-J. & Lexer, M. J. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob. Change Biol. 17, 2842–2852 (2011).Article 
    ADS 

    Google Scholar 
    47.Nelson, M. D. et al. Defining the United States land base: A technical document supporting the USDA Forest Service 2020 RPA assessment. In Gen. Tech. Rep. NRS-191, Vol. 191, 1–70 (2020).48.Patterson, P. L. & Reams, G. A. Combining panels for forest inventory and analysis estimation. Gen. Tech. Rep. SRS-80. Asheville, NC: US Department of Agriculture, Forest Service, 79–84 (2005).49.Bailey, R. G. Delineation of ecosystem regions. Environ. Manag. 7, 365–373 (1983).Article 
    ADS 

    Google Scholar 
    50.Salas-Eljatib, C. & Weiskittel, A. R. Evaluation of modeling strategies for assessing self-thinning behavior and carrying capacity. Ecol. Evol. 8, 10768–10779 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Geraci, M. Linear quantile mixed models: The lqmm package for Laplace quantile regression. J. Stat. Softw. 57(13), 1–29. http://www.jstatsoft.org/v57/i13/ (2013).
    Google Scholar 
    52.R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    53.Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manag. 54, 1249–1266 (2014).Article 
    ADS 

    Google Scholar 
    55.De’ath, G. Boosted trees for ecological modeling and prediction. Ecology 88, 243–251 (2007).PubMed 
    Article 

    Google Scholar 
    56.Long, J. N. & Daniel, T. W. Assessment of growing stock in uneven-age stands. West. J. Appl. For. 11, 59–61 (1990).Article 

    Google Scholar 
    57.Yang, L. et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 146, 108–123 (2018).Article 
    ADS 

    Google Scholar  More

  • in

    Dangerous demographics in post-bleach corals reveal boom-bust versus protracted declines

    1.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Darling, E. S. et al. Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36, 561–575 (2017).ADS 
    Article 

    Google Scholar 
    4.McWilliam, M., Chase, T. J. & Hoogenboom, M. O. Neighbor diversity regulates the productivity of coral assemblages. Curr. Biol. 28, 3634–3639 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. 118, e2015265118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Gardner, T. A. Long-term region-wide declines in caribbean corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27—year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1208909109 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Madin, J. S. et al. Cumulative effects of cyclones and bleaching on coral cover and species richness at Lizard Island. Mar. Ecol. Prog. Ser. 604, 263–268 (2018).ADS 
    Article 

    Google Scholar 
    11.Dietzel, A., Bode, M., Connolly, S. R. & Hughes, T. P. Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef: Demographic change in Australia’s corals. Proc. R. Soc. B Biol. Sci. 287, 20201432 (2020).Article 

    Google Scholar 
    12.Claar, D. C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat. Commun. 11, 1–10 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    13.Claar, D. C. & Baum, J. K. Timing matters: Survey timing during extended heat stress can influence perceptions of coral susceptibility to bleaching. Coral Reefs 38, 559–565 (2019).ADS 
    Article 

    Google Scholar 
    14.Edmunds, P. J. Vital rates of small reef corals are associated with variation in climate. Limnol. Oceanogr. 66, 901–913 (2021).ADS 
    Article 

    Google Scholar 
    15.Hall, T. E. et al. Stony coral populations are more sensitive to changes in vital rates in disturbed environments. Ecol. Appl. 31, 1–11 (2021).Article 

    Google Scholar 
    16.Madin, J. S., Baird, A. H., Dornelas, M. & Connolly, S. R. Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol. Lett. 17, 1008–1015 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Edmunds, P. J. & Riegl, B. Urgent need for coral demography in a world where corals are disappearing. Mar. Ecol. Prog. Ser. 635, 233–242 (2020).ADS 
    Article 

    Google Scholar 
    18.Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Chang. 9, 40–43 (2019).ADS 
    Article 

    Google Scholar 
    19.Pratchett, M. et al. Spatial, temporal and taxonomic variation in coral growth—Implications for the structure and function of coral reef ecosystems. Oceanogr. Mar. Biol. Ann. Rev. 53, 215–295 (2015).
    Google Scholar 
    20.Cantin, N. E. & Lough, J. M. Surviving coral bleaching events: Porites growth anomalies on the great barrier reef. PLoS ONE 9, e88720 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Linares, C., Pratchett, M. S. & Coker, D. J. Recolonisation of Acropora hyacinthus following climate-induced coral bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 438, 97–104 (2011).ADS 
    Article 

    Google Scholar 
    22.Victor, S., Golbuu, Y., Yukihira, H. & Van Woesik, R. Acropora size-frequency distributions reflect spatially variable conditions on coral reefs of Palau. Bull. Mar. Sci. 85, 149–157 (2009).
    Google Scholar 
    23.Wilson, S. K., Robinson, J. P. W., Chong-Seng, K., Robinson, J. & Graham, N. A. J. Boom and bust of keystone structure on coral reefs. Coral Reefs 38, 625–635 (2019).ADS 
    Article 

    Google Scholar 
    24.Pratchett, M. S., McWilliam, M. J. & Riegl, B. Contrasting shifts in coral assemblages with increasing disturbances. Coral Reefs 39, 783–793 (2020).Article 

    Google Scholar 
    25.Loya, Y. et al. Coral bleaching: The winners and the losers. Ecol. Lett. 4, 122–131 (2001).Article 

    Google Scholar 
    26.Van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).ADS 
    Article 

    Google Scholar 
    27.McWilliam, M., Pratchett, M. S., Hoogenboom, M. O. & Hughes, T. P. Deficits in functional trait diversity following recovery on coral reefs. Proc. R. Soc. B Biol. Sci. 287, 20192628 (2020).Article 

    Google Scholar 
    28.Marshall, P. A. & Baird, A. H. Bleaching of corals on the Great Barrier Reef: Differential susceptibilities among taxa. Coral Reefs 19, 155–163 (2000).Article 

    Google Scholar 
    29.Graham, N. A. J., Cinner, J. E., Norström, A. V. & Nyström, M. Coral reefs as novel ecosystems: Embracing new futures. Curr. Opin. Environ. Sustain. 7, 9–14 (2014).Article 

    Google Scholar 
    30.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).CAS 
    Article 

    Google Scholar 
    31.Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Vercelloni, J. et al. Forecasting intensifying disturbance effects on coral reefs. Glob. Chang. Biol. 26, 2785–2797 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Team, R. C. R: A Language and Environment for Statistical Computing. (2020).35.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378 (2017).Article 

    Google Scholar 
    36.Evans, R. D. et al. Early recovery dynamics of turbid coral reefs after recurring bleaching events. J. Environ. Manag. 268, 110666 (2020).Article 

    Google Scholar 
    37.Carlot, J. et al. Juvenile corals underpin coral reef carbonate production after disturbance. Glob. Chang. Biol. 27, 2623–2632 (2021).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).Article 

    Google Scholar 
    39.Baird, A., Emslie, M. & Lewis, A. Extended periods of coral recruitment on the Great Barrier Reef. In Proc. 12th Int. Coral Reef Symp. (2012).40.Foster, N. L., Baums, I. B. & Mumby, P. J. Sexual vs. asexual reproduction in an ecosystem engineer: The massive coral Montastraea annularis. J. Anim. Ecol. 76, 384–391 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Edmunds, P. J. Patterns in the distribution of juvenile corals and coral reef community structure in St. John, US Virgin Islands. Mar. Ecol. Prog. Ser. 202, 113–124 (2000).ADS 
    Article 

    Google Scholar 
    42.Hughes, T. P., Linares, C., Dakos, V., van de Leemput, I. A. & van Nes, E. H. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol. Evol. 28, 149–155 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Young fishes persist despite coral loss on the Great Barrier Reef. Commun. Biol. 2, 1–7 (2019).Article 

    Google Scholar 
    46.Abràmoff, M. D., Hospitals, I., Magalhães, P. J. & Abràmoff, M. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar  More

  • in

    Humpback whale song recordings suggest common feeding ground occupation by multiple populations

    1.Clapham, P. J. Humpback whale: Megaptera novaeangliae. In Encyclopedia of Marine Mammals 489–492 (Elsevier, 2018).Chapter 

    Google Scholar 
    2.Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate?. Mar. Mamm. Sci. 15, 1228–1245 (1999).Article 

    Google Scholar 
    3.Geijer, C. K. A., Notarbartolo di Sciara, G. & Panigada, S. Mysticete migration revisited: Are Mediterranean fin whales an anomaly?. Mamm. Rev. 46, 284–296 (2016).Article 

    Google Scholar 
    4.Baker, C. S. & Herman, L. M. Aggressive behavior between humpback whales (Megaptera novaeangliae) wintering in Hawaiian waters. Can. J. Zool. 62, 1922–1937 (1984).Article 

    Google Scholar 
    5.Herman, L. M. The multiple functions of male song within the humpback whale (Megaptera novaeangliae) mating system: Review, evaluation, and synthesis. Biol. Rev. 92, 1795–1818 (2017).PubMed 
    Article 

    Google Scholar 
    6.Palsbøll, P. J., Clapham, P. J., Mattila, D. K. & Vasquez, O. Composition and dynamics of humpback whale competitive groups in the West Indies. Behaviour 122, 182–194 (1992).Article 

    Google Scholar 
    7.Payne, R. S. & Mcvay, S. Songs of Humpback Whales. Science 173, 585–597 (1971).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Kroodsma, D. E. & Byers, B. E. The function (s) of bird song. Am. Zool. 31, 318–328 (1991).Article 

    Google Scholar 
    9.Garland, E. C. et al. Dynamic horizontal cultural transmission of humpback whale song at the Ocean Basin Scale. Curr. Biol. 21, 687–691 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Noad, M. J. & Cato, D. H. Swimming speeds of singing and non-singing humpback whales during migration. Mar. Mamm. Sci. 23, 481–495 (2007).Article 

    Google Scholar 
    11.Smith, J. N., Goldizen, A. W., Dunlop, R. A. & Noad, M. J. Songs of male humpback whales, Megaptera novaeangliae, are involved in intersexual interactions. Anim. Behav. 76, 467–477 (2008).Article 

    Google Scholar 
    12.Ross-Marsh, E., Elwen, S., Prinsloo, A., James, B. & Gridley, T. Singing in South Africa: Monitoring the occurrence of humpback whale (Megaptera novaeangliae) song near the Western Cape. Bioacoustics 30, 163–179 (2020).Article 

    Google Scholar 
    13.Stimpert, A. K., Peavey, L. E., Friedlaender, A. S. & Nowacek, D. P. Humpback whale song and foraging behavior on an Antarctic feeding ground. PLoS ONE 7, e51214 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    14.Vu, E. T. et al. Humpback whale song occurs extensively on feeding grounds in the western North Atlantic Ocean. Aquat. Biol. 14, 175–183 (2012).Article 

    Google Scholar 
    15.McSweeney, D., Chu, K., Dolphin, W. & Guinee, L. North Pacific humpback whale songs: A comparison of southeast Alaskan feeding ground songs with Hawaiian wintering ground songs. Mar. Mamm. Sci. 5, 139–148 (1989).Article 

    Google Scholar 
    16.Kowarski, K., Evers, C., Moors-Murphy, H., Martin, B. & Denes, S. L. Singing through winter nights: Seasonal and diel occurrence of humpback whale (Megaptera novaeangliae) calls in and around the Gully MPA, offshore eastern Canada. Mar. Mamm. Sci. 34, 169–189 (2018).Article 

    Google Scholar 
    17.Clark, C. W. & Clapham, P. J. Acoustic monitoring on a humpback whale (Megaptera novaeangliae) feeding ground shows continual singing into late spring. Proc. R. Soc. B 271, 1051–1057 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.International Whaling Commission. Report on the workshop on the comprehensive assessment of Southern Hemisphere humpback whales. J. Cetac. Res. Manag. 3, 1–50 (2011).
    Google Scholar 
    19.International Whaling Commission. Annex H: Report of the Sub-Committee on Other Southern Hemisphere Whale Stocks. (2016).20.Garland, E. C. et al. Humpback whale song on the Southern Ocean feeding grounds: Implications for cultural transmission. PLoS ONE 8, e79422 (2013).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    21.Gabriele, C. & Frankel, A. The occurrence and significance of humpback whale songs in Glacier Bay, Southeastern Alaska. Arctic Res. USA 16, 42–47 (2002).
    Google Scholar 
    22.Payne, R. & Guinee, L. Humpback whales (Megaptera novaeangliae) songs as an indicator of stocks. In Communication and Behavior of Whales (ed. Payne, R.) 333–358 (Westview Press, 1983).
    Google Scholar 
    23.Payne, K. & Payne, R. Large scale changes over 19 years in songs of humpback whales in Bermuda. Z. Tierpsychol. 68, 89–114 (1985).Article 

    Google Scholar 
    24.Winn, H. et al. Song of the humpback whale—population comparisons. Behav. Ecol. Sociobiol. 8, 41–46 (1981).Article 

    Google Scholar 
    25.Winn, H. & Winn, L. The song of the humpback whale Megaptera novaeangliae in the West Indies. Mar. Biol. 47, 97–114 (1978).Article 

    Google Scholar 
    26.Cholewiak, D. M., Sousa-Lima, R. S. & Cerchio, S. Humpback whale song hierarchical structure: Historical context and discussion of current classification issues. Mar. Mamm. Sci. 29, E312–E332 (2013).Article 

    Google Scholar 
    27.Kowarski, K., Moors-Murphy, H., Maxner, E. & Cerchio, S. Western North Atlantic humpback whale fall and spring acoustic repertoire: Insight into onset and cessation of singing behavior. J. Acoust. Soc. Am. 145, 2305–2316 (2019).PubMed 
    Article 
    ADS 

    Google Scholar 
    28.Magnúsdóttir, E. E. & Lim, R. Subarctic singers: Humpback whale (Megaptera novaeangliae) song structure and progression from an Icelandic feeding ground during winter. PLoS ONE 14, e0210057 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Magnúsdóttir, E. E. et al. Humpback whale (Megaptera novaeangliae) song unit and phrase repertoire progression on a subarctic feeding ground. J. Acoust. Soc. Am. 138, 3362–3374 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    30.Mattila, D. K., Guinee, L. N. & Mayo, C. A. Humpback whale songs on a North Atlantic feeding ground. J. Mammal. 68, 880–883 (1987).Article 

    Google Scholar 
    31.Teschke, K., Pehlke, H., Deininger, M., Jerosch, K. & Brey, T. Scientific Background Document in Support of the Development of a CCAMLR MPA in the Weddell Sea (Antarctica)–Version 2016. (2016).32.Gridley, T., Silva, M., Wilkinson, C., Seakamela, S. & Elwen, S. H. Song recorded near a super-group of humpback whales on a mid-latitude feeding ground off South Africa. J. Acoust. Soc. Am. 143, 298–304 (2018).Article 
    ADS 

    Google Scholar 
    33.Spreen, G., Kaleschke, L. & Heygster, G. Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res.-Oceans 113, C02S03 (2008).Article 
    ADS 

    Google Scholar 
    34.Tynan, C. T. & Thiele, D. Report on Antarctic ice edge definition by the ad hoc working group on ice data collection in the Antarctic. Paper: SC/55/19, submitted to the Scientific Committee of the International Whaling Commission (2003).35.Dice, L. R. Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945).Article 

    Google Scholar 
    36.Kohonen, T. Median strings. Pattern Recogn. Lett. 3, 309–313 (1985).Article 
    ADS 

    Google Scholar 
    37.Schall, E. et al. Multi-year presence of humpback whales in the Atlantic sector of the Southern Ocean but not during El Niño. Commun. Biol. 4, 1–7 (2021).Article 

    Google Scholar 
    38.Ritschard, M. & Brumm, H. Zebra finch song reflects current food availability. Evol. Ecol. 26, 801–812 (2012).Article 

    Google Scholar 
    39.Darling, J. D., Acebes, J. M. V., Frey, O., Urbán, R. J. & Yamaguchi, M. Convergence and divergence of songs suggests ongoing, but annually variable, mixing of humpback whale populations throughout the North Pacific. Sci. Rep. 9, 1–14 (2019).ADS 

    Google Scholar 
    40.Schall, E. et al. Large-scale spatial variabilities in the humpback whale acoustic presence in the Atlantic sector of the Southern Ocean. R. Soc. Open Sci. 7, 201347 (2020).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    41.Van Opzeeland, I., Van Parijs, S., Kindermann, L., Burkhardt, E. & Boebel, O. Calling in the cold: Pervasive acoustic presence of humpback whales (Megaptera novaeangliae) in Antarctic coastal waters. PLoS ONE 8, 1–7 (2013).
    Google Scholar 
    42.Craig, A. S., Herman, L. M., Gabriele, C. M. & Pack, A. A. Migratory timing of humpback whales (Megaptera novaeangliae) in the central north Pacific varies with age, sex and reproductive status. Behaviour 140, 981–1001 (2003).Article 

    Google Scholar 
    43.Dawbin, W. Temporal segregation of humpback whales during migration in southern hemisphere waters. Mem. Qld. Mus. 42, 105–138 (1997).
    Google Scholar 
    44.Magnúsdóttir, E., Rasmussen, M., Lammers, M. & Svavarsson, J. Humpback whale songs during winter in subarctic waters. Polar Biol. 37, 427–433 (2014).Article 

    Google Scholar 
    45.Bombosch, A. et al. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys. Deep Sea Res. Part 1 91, 101–114 (2014).Article 

    Google Scholar 
    46.Thiele, D. et al. Seasonal variability in whale encounters in the Western Antarctic Peninsula. Deep Sea Research (Part II, Topical Studies in Oceanography) 51, 2311–2325 (2004).Article 
    ADS 

    Google Scholar 
    47.Brown, M. R., Corkeron, P. J., Hale, P. T., Schultz, K. W. & Bryden, M. M. Evidence for a sex-segregated migration in the humpback whale (Megaptera novaeangliae). Proc. R. Soc. Lond. B 259, 229–234 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    48.McDonald, M. A., Mesnick, S. L. & Hildebrand, J. A. Biogeographic characterisation of blue whale song worldwide: Using song to identify populations. J. Cetac. Res. Manage. 8, 55–65 (2006).
    Google Scholar 
    49.Thomisch, K. et al. Spatio-temporal patterns in acoustic presence and distribution of Antarctic blue whales Balaenoptera musculus intermedia in the Weddell Sea. Endanger. Species Res. 30, 239–253 (2016).Article 

    Google Scholar 
    50.Oleson, E. M., Širović, A., Bayless, A. R. & Hildebr, J. A. Synchronous seasonal change in fin whale song in the North Pacific. PLoS ONE 9, e115678 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    51.Simon, M., Stafford, K. M., Beedholm, K., Lee, C. M. & Madsen, P. T. Singing behavior of fin whales in the Davis Strait with implications for mating, migration and foraging. J. Acoust. Soc. Am. 128, 3200–3210 (2010).PubMed 
    Article 
    ADS 

    Google Scholar 
    52.Stafford, K. M. et al. Spitsbergen’s endangered bowhead whales sing through the polar night. Endanger. Species Res. 18, 95–103 (2012).Article 

    Google Scholar 
    53.Risch, D. et al. Minke whale acoustic behavior and multi-year seasonal and diel vocalization patterns in Massachusetts Bay, USA. Mar. Ecol. Prog. Ser. 489, 279–295 (2013).Article 
    ADS 

    Google Scholar 
    54.Brenowitz, E. A., Margoliash, D. & Nordeen, K. W. An introduction to birdsong and the avian song system. J. Neurobiol. 33, 495–500 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Tobias, J., Gamarra-Toledo, V., García-Olaechea, D., Pulgarin, P. & Seddon, N. Year-round resource defence and the evolution of male and female song in suboscine birds: Social armaments are mutual ornaments. J. Evol. Biol. 24, 2118–2138 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Vu, E. T., Clark, C., Catelani, K., Kellar, N. M. & Calambokidis, J. Seasonal blubber testosterone concentrations of male humpback whales (Megaptera novaeangliae). Mar. Mam. Sci. 31, 1258–1264 (2015).Article 

    Google Scholar 
    57.Yamada, K. & Soma, M. Diet and birdsong: Short-term nutritional enrichment improves songs of adult Bengalese finch males. J. Avian Biol. 47, 865–870 (2016).Article 

    Google Scholar 
    58.Casagrande, S., Pinxten, R., Zaid, E. & Eens, M. Positive effect of dietary lutein and cholesterol on the undirected song activity of an opportunistic breeder. PeerJ 4, e2512 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Weinrich, M. Humpback whale competitive groups observed on a high-latitude feeding ground. Mar. Mamm. Sci. 11, 251–254 (1995).Article 

    Google Scholar 
    60.Chittleborough, R. The breeding cycle of the female humpback whale, Megaptera nodosa (Bonnaterre). Mar. Freshw. Res. 9, 1–18 (1958).Article 

    Google Scholar 
    61.Chittleborough, R. Studies on the ovaries of the humback whale, Megaptera nodosa (bonnaterre), on the western Australian coast. Mar. Freshw. Res. 5, 35–63 (1954).Article 

    Google Scholar 
    62.Cerchio, S., Jacobsen, J. K. & Norris, T. F. Temporal and geographical variation in songs of humpback whales, Megaptera novaeangliae: Synchronous change in Hawaiian and Mexican breeding assemblages. Anim. Behav. 62, 313–329 (2001).Article 

    Google Scholar 
    63.Garland, E. C. et al. Quantifying humpback whale song sequences to understand the dynamics of song exchange at the ocean basin scale. J. Acoust. Soc. Am. 133, 560–569 (2013).PubMed 
    Article 
    ADS 

    Google Scholar 
    64.Allen, J. A., Garland, E. C., Dunlop, R. A. & Noad, M. J. Cultural revolutions reduce complexity in the songs of humpback whales. Proc. R. Soc. B 285, 20182088 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Stevick, P. T. et al. Migrations of individually identified humpback whales between the Antarctic Peninsula and South America. J. Cetac. Res. Manag. 6, 109–113 (2004).
    Google Scholar 
    66.Engel, M. et al. Mitochondrial DNA diversity of the Southwestern Atlantic humpback whale (Megaptera novaeangliae) breeding area off Brazil, and the potential connections to Antarctic feeding areas. Conserv. Genet. 9, 1253–1262 (2008).CAS 
    Article 

    Google Scholar 
    67.Amaral, A. R. et al. Population genetic structure among feeding aggregations of humpback whales in the Southern Ocean. Mar. Biol. 163, 1–13 (2016).Article 

    Google Scholar 
    68.Rekdahl, M. L. et al. Culturally transmitted song exchange between humpback whales (Megaptera novaeangliae) in the southeast Atlantic and southwest Indian Ocean basins. R. Soc. Open Sci. 5, 172305 (2018).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    69.Darling, J. D. & Sousa-Lima, R. S. Songs indicate interaction between humpback whale (Megaptera novaeangliae) populations in the western and eastern South Atlantic Ocean. Mar. Mamm. Sci. 21, 557–566 (2005).Article 

    Google Scholar 
    70.Razafindrakoto, Y., Cerchio, S., Collins, T., Rosenbaum, H. & Ngouessono, S. Similarity of humpback whale song from Madagascar and Gabon indicates significant contact between South Atlantic and southwest Indian Ocean populations. PLoS ONE 8, e79422 (2009).
    Google Scholar 
    71.Zerbini, A. et al. Migration and summer destinations of humpback whales (Megaptera novaeangliae) in the western South Atlantic Ocean. J. Cetac. Res. Manag. 3, 113–118 (2011).
    Google Scholar 
    72.Rosenbaum, H. C., Maxwell, S. M., Kershaw, F. & Mate, B. Long-range movement of humpback whales and their overlap with anthropogenic activity in the South Atlantic Ocean. Conserv. Biol. 28, 604–615 (2014).PubMed 
    Article 

    Google Scholar 
    73.Filun, D. et al. Frozen verses: Antarctic minke whales (Balaenoptera bonaerensis) call predominantly during austral winter. R. Soc. Open Sci. 7, 192112 (2020).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    74.Rettig, S. et al. In International Confence and Exhibition on Underwater Acoustics. (eds Papadakis, J. & Bjorno, L.) 1669–1674.75.Baumgartner, M. F. & Mussoline, S. E. A generalized baleen whale call detection and classification system. J. Acoust. Soc. Am. 129, 2889–2902 (2011).PubMed 
    Article 
    ADS 

    Google Scholar 
    76.Klinck, H. et al. Long-range underwater vocalizations of the crabeater seal (Lobodon carcinophaga). J. Acoust. Soc. Am. 128, 474–479 (2010).PubMed 
    Article 
    ADS 

    Google Scholar 
    77.Risch, D. et al. Mysterious bio-duck sound attributed to the Antarctic minke whale (Balaenoptera bonaerensis). Biol. Lett. 10, 20140175 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Schall, E. & Van Opzeeland, I. Calls produced by Ecotype C killer whales (Orcinus orca) off the Eckstrom iceshelf, Antarctica. Aquat. Mamm. 43, 117–126 (2017).Article 

    Google Scholar 
    79.Van Opzeeland, I. et al. Acoustic ecology of Antarctic pinnipeds. Mar. Ecol. Prog. Ser. 414, 267–291 (2010).Article 
    ADS 

    Google Scholar 
    80.Dunlop, R. A., Cato, D. H. & Noad, M. J. Non-song acoustic communication in migrating humpback whales (Megaptera novaeangliae). Mar. Mamm. Sci. 24, 613–629 (2008).Article 

    Google Scholar 
    81.Stimpert, A. K., Au, W. W., Parks, S. E., Hurst, T. & Wiley, D. N. Common humpback whale (Megaptera novaeangliae) sound types for passive acoustic monitoring. J. Acoust. Soc. Am. 129, 476–482 (2011).PubMed 
    Article 
    ADS 

    Google Scholar 
    82.Cavalieri, D., Parkinson, C., Gloersen, P. & Zwally, H. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 1996).
    Google Scholar 
    83.Greene, C. A., Gwyther, D. E. & Blankenship, D. D. Antarctic mapping tools for MATLAB. Comput. Geosci. 104, 151–157 (2017).Article 
    ADS 

    Google Scholar 
    84.Greene, C. A. Daily Antarctic Sea Ice Concentration (2020).85.Schall, E., Roca, I. & Van Opzeeland, I. Acoustic metrics to assess humpback whale song unit structure from the Atlantic sector of the Southern ocean. J. Acoust. Soc. Am. 149, 4649–4658 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    86.Dalla Rosa, L., Secchi, E., Maia, Y. G., Zerbini, A. & Heide-Jørgensen, M. Movements of satellite-monitored humpback whales on their feeding ground along the Antarctic Peninsula. Polar Biol. 31, 771–781 (2008).Article 

    Google Scholar 
    87.Zann, R. & Cash, E. Developmental stress impairs song complexity but not learning accuracy in non-domesticated zebra finches (Taeniopygia guttata). Behav. Ecol. Sociobiol. 62, 391–400 (2008).Article 

    Google Scholar 
    88.Woodgate, J. L., Mariette, M. M., Bennett, A. T., Griffith, S. C. & Buchanan, K. L. Male song structure predicts reproductive success in a wild zebra finch population. Anim. Behav. 83, 773–781 (2012).Article 

    Google Scholar 
    89.Boogert, N. J., Giraldeau, L.-A. & Lefebvre, L. Song complexity correlates with learning ability in zebra finch males. Anim. Behav. 76, 1735–1741 (2008).Article 

    Google Scholar 
    90.Templeton, C. N., Laland, K. N. & Boogert, N. J. Does song complexity correlate with problem-solving performance in flocks of zebra finches?. Anim. Behav. 92, 63–71 (2014).Article 

    Google Scholar 
    91.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018). https://www.R-project.org/.92.Suzuki, R., Terada, Y. & Shimodaira, H. pvclust: Hierarchical Clustering with P-values via Multiscale Bootstrap Resampling. R Package Version 2.2–0 (2019).93.Garland, E. C. et al. Improved versions of the Levenshtein distance method for comparing sequence information in animals’ vocalisations: Tests using humpback whale song. Behaviour 149, 1413–1441 (2012).Article 

    Google Scholar 
    94.Van der Loo, M. P. The stringdist package for approximate string matching. R J. 6, 111–122 (2014).Article 

    Google Scholar 
    95.Pawlowicz, R. M_Map: A Mapping Package for MATLAB v. Version 1.4m. www.eoas.ubc.ca/~rich/map.html (2020). More