1.Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS
CAS
PubMed
Article
Google Scholar
2.DeLong, J. P. et al. The body size dependence of trophic cascades. Am. Nat. 185, https://doi.org/10.1086/679735 (2015).3.Ellner, S. P. et al. Habitat structure and population persistence in an experimental community. Nature 412, 538–543 (2001).ADS
CAS
PubMed
Article
Google Scholar
4.Lin Jiang & Peter J., Morin Predator diet Breadth Influences the relative importance of bottom-up and top-down control of prey biomass and diversity. Am. Nat. 165, 350–363 (2005).PubMed
Article
Google Scholar
5.Johnke, J. et al. Multiple micro-predators controlling bacterial communities in the environment. Curr. Opin. Biotechnol. 27, 185–190 (2014).CAS
PubMed
Article
Google Scholar
6.Suttle, C. A. Marine viruses: major players in the global ecosystem. Nat. Rev. Micro 5, 801–812 (2007).CAS
Article
Google Scholar
7.Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. Nat. Rev. Micro 3, 537–546 (2005).CAS
Article
Google Scholar
8.Rotem, O. et al. in The Prokaryotes: Deltaproteobacteria and 740 Epsilonproteobacteria (eds Rosenberg, R. et al.) 3–17 (Springer, 2014).9.Chen, H., Athar, R., Zheng, G. & Williams, H. N. Prey bacteria shape the community structure of their predators. ISME J. https://doi.org/10.1038/ismej.2011.4 (2011).10.Koval, S. F. et al. Bdellovibrio exovorus sp. nov., a novel predator of Caulobacter crescentus. Int. J. Syst. Evol. Microbiol 63, 146–151 (2012).PubMed
Article
PubMed Central
Google Scholar
11.Jurkevitch, E., Minz, D., Ramati, B. & Barel, G. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl. Environ. Microbiol. 66, 2365–2371 (2000).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
12.Kadouri, D. E., To, K., Shanks, R. M. Q. & Doi, Y. Predatory bacteria: a potential ally against multidrug-resistant gram-negative pathogens. PLoS ONE 8, e63397 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
13.Williams, H. N. et al. Halobacteriovorax, an underestimated predator on bacteria: potential impact relative to viruses on bacterial mortality. ISME J. 10, 491–499 (2016).CAS
PubMed
Article
Google Scholar
14.Feng, S. et al. Predation by Bdellovibrio bacteriovorus significantly reduces viability and alters the microbial community composition of activated sludge flocs and granules. FEMS Microbiol. Ecol. 93, fix020–fix020 (2017).Article
CAS
Google Scholar
15.Chauhan, A., Cherrier, J. & Williams, H. N. Impact of sideways and bottom-up control factors on bacterial community succession over a tidal cycle. Proc. Natl Acad. Sci. USA 106, 4301–4306 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
16.Kandel, P. P., Pasternak, Z., van Rijn, J., Nahum, O. & Jurkevitch, E. Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol. Ecol. 89, 149–161 (2014).CAS
PubMed
Article
Google Scholar
17.Li, N. & Williams, H. 454 Pyrosequencing reveals diversity of Bdellovibrio and like organisms in fresh and salt water. Antonie van Leeuwenhoek 107, 305–311 (2015).PubMed
Article
Google Scholar
18.Daims, H., Taylor, M. W. & Wagner, M. Wastewater treatment: a model system for microbial ecology. Trends Biotechnol. 24, 483–489 (2006).CAS
PubMed
Article
Google Scholar
19.Dolinšek, J., Lagkouvardos, I., Wanek, W., Wagner, M. & Daims, H. Interactions of nitrifying bacteria and heterotrophs: identification of a Micavibrio-like putative predator of Nitrospira spp. Appl. Environ. Microbiol. 79, 2027–2037 (2013).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
20.Yu, R., Zhang, S., Chen, Z. & Li, C. Isolation and application of predatory Bdellovibrio-and-like organisms for municipal waste sludge biolysis and dewaterability enhancement. Front. Env. Sci. Eng. 11, 10 (2017).Article
CAS
Google Scholar
21.Pineiro, S. et al. Niche partition of Bacteriovorax operational taxonomic units along salinity and temporal gradients in the chesapeake bay reveals distinct estuarine strains. Microb. Ecol. 65, 652–660 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
22.Cohen, Y. et al. Bacteria and microeukaryotes are differentially segregated in sympatric wastewater microhabitats. Environ. Microbiol. 21, 1757–1770 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
23.Mahmoud, K. K., McNeely, D., Elwood, C. & Koval, S. F. Design and performance of a 16S rRNA-targeted oligonucleotide probe for detection of members of the genus Bdellovibrio by fluorescence in situ hybridization. Appl. Environ. Microbiol. 73, 7488–7493 (2007).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
24.Albertsen, M., Karst, S. M., Ziegler, A. S., Kirkegaard, R. H. & Nielsen, P. H. Back to basics – the influence of DNA extraction and primer choice on phylogenetic analysis of activated sludge communities. PLOS ONE 10, e0132783 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
25.Welsh, R. M. et al. Bacterial predation in a marine host-associated microbiome. ISME J. 10, 1540–1544 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
26.Chow, C.-E. T., Kim, D. Y., Sachdeva, R., Caron, D. A. & Fuhrman, J. A. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 8, 816–829 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
27.Newman, M. E. J. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
28.Ju, F. & Zhang, T. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. ISME J. 9, 683–695 (2015).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
29.Tudor, J. J. & Conti, S. F. Characterization of bdellocysts of Bdellovibrio sp. J. Bacteriol. 131, 314–322 (1977).CAS
PubMed
PubMed Central
Article
Google Scholar
30.Eloe-Fadrosh, E. A., Ivanova, N. N., Woyke, T. & Kyrpides, N. C. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat. Microbiol. 1, 15032 (2016).CAS
PubMed
Article
Google Scholar
31.Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
32.Williams, H. N. The recovery of high numbers of bdellovibrios from the surface water microlayer. Can. J. Microbiol. 33, 572–575 (1987).Article
Google Scholar
33.Liu, L., Yang, J., Yu, Z. & Wilkinson, D. M. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J https://doi.org/10.1038/ismej.2015.29 (2015).34.Wilén, B.-M., Jin, B. & Lant, P. The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Res. 37, 2127–2139 (2003).PubMed
Article
CAS
PubMed Central
Google Scholar
35.Phuong, K., Kakii, K. & Nikata, T. Intergeneric coaggregation of non-flocculating Acinetobacter spp. isolates with other sludge-constituting bacteria. J. Biosci. Bioeng. 107, 394–400 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
36.Kadouri, D. & O’Toole, G. A. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl. Environ. Microbiol. 71, 4044–4051 (2005).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
37.Im, H., Dwidar, M. & Mitchell, R. J. Bdellovibrio bacteriovorus HD100, a predator of Gram-negative bacteria, benefits energetically from Staphylococcus aureus biofilms without predation. ISME J. https://doi.org/10.1038/s41396-018-0154-5 (2018).38.Feng, S., Tan, C. H., Cohen, Y. & Rice, S. A. Isolation of Bdellovibrio bacteriovorus from a tropical wastewater treatment plant and predation of mixed species biofilms assembled by the native community members. Environ. Microbiol. 18, 3923–3931 (2016).CAS
PubMed
Article
Google Scholar
39.Rice, T. D., Williams, H. N. & Turng, B. F. Susceptibility of bacteria in estuarine environments to autochthonous bdellovibrios. Microb. Ecol. 35, 256–264 (1998).CAS
PubMed
Article
Google Scholar
40.Szabó, E. et al. Comparison of the bacterial community composition in the granular and the suspended phase of sequencing batch reactors. AMB Express 7, 168 (2017).PubMed
PubMed Central
Article
Google Scholar
41.Wilén, B.-M., Jin, B. & Lant, P. Impacts of structural characteristics on activated sludge floc stability. Water Res. 37, 3632–3645 (2003).PubMed
Article
CAS
Google Scholar
42.Hahn, M. W. & Hofle, M. G. Flagellate predation on a bacterial model community: interplay of size-selective grazing, specific bacterial cell size, and bacterial community composition. Appl. Environ. Microbiol. 65, 4863–4872 (1999).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
43.Kadouri, D., Venzon, N. C. & O’Toole, G. A. Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl. Environ. Microbiol. 73, 605–614 (2007).ADS
CAS
PubMed
Article
Google Scholar
44.Dashiff, A., Junka, R., Libera, M. & Kadouri, D. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J. Appl. Microbiol. https://doi.org/10.1111/j.1365-2672.2010.04900.x (2011).45.Winder, M. Photosynthetic picoplankton dynamics in Lake Tahoe: temporal and spatial niche partitioning among prokaryotic and eukaryotic cells. J. Plankton Res. 31, 1307–1320 (2009).Article
Google Scholar
46.Dini-Andreote, F. et al. Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning. ISME J 8, 1989 (2014).47.Kelley, J., Turng, B., Williams, H. & Baer, M. Effects of temperature, salinity, and substrate on the colonization of surfaces in situ by aquatic bdellovibrios. Appl. Environ. Microbiol. 63, 84–90 (1997).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
48.Thingstad, T. A theoretical approach to structuring mechanisms in the pelagic food web. Hydrobiologia 363, 59–72 (1998).Article
Google Scholar
49.Shapiro, O. H., Kushmaro, A. & Brenner, A. Bacteriophage predation regulates microbial abundance and diversity in a full-scale bioreactor treating industrial wastewater. ISME J. 4, 327–336 (2009).PubMed
Article
Google Scholar
50.Dwidar, M., Nam, D. & Mitchell, R. J. Indole negatively impacts predation by Bdellovibrio bacteriovorus and its release from the bdelloplast. Environ. Microbiol. 17, 1009–1022 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
51.Mun, W. et al. Cyanide production by chromobacterium piscinae shields it from Bdellovibrio bacteriovorus HD100 predation. mBio https://doi.org/10.1128/mBio.01370-17 (2017).52.Sathyamoorthy, R. et al. To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators. ISME J. 15, 109–123 (2021).CAS
PubMed
Article
PubMed Central
Google Scholar
53.Winter, C., Bouvier, T., Weinbauer, M. G. & Thingstad, T. F. Trade-Offs between competition and defense specialists among unicellular planktonic organisms: the “Killing the Winner” hypothesis revisited. Microbiol. Molec. Biol. Rev. 74, 42–57 (2010).CAS
Article
Google Scholar
54.Chanyi, R. M., Ward, C., Pechey, A. & Koval, S. F. To invade or not to invade: two approaches to a prokaryotic predatory life cycle. Can. J. Microbiol. 59, 273–279 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
55.Lu, F. & Cai, J. The protective effect of Bdellovibrio-and-like organisms (BALO) on tilapia fish fillets against Salmonella enterica ssp. enterica serovar Typhimurium. Lett. Appl. Microbiol. 51, 625–631 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
56.Peura, S., Bertilsson, S., Jones, R. I. & Eiler, A. Resistant microbial cooccurrence patterns inferred by network topology. Appl. Environ. Microbiol. 81, 2090–2097 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
57.Meerburg, F. A. et al. High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables. Water Res. 100, 137–145 (2016).CAS
PubMed
Article
Google Scholar
58.de Celis, M. et al. Tuning up microbiome analysis to monitor WWTPs’ biological reactors functioning. Sci. Rep. 10, 1–8 (2020).ADS
Article
CAS
Google Scholar
59.Hashimoto, T., Diedrich, D. L. & Conti, S. F. Isolation of a bacteriophage for Bdellovibrio bacteriovorus. J. Virol. 5, 87–98 (1970).Article
Google Scholar
60.Varon, M. & Levisohn, R. Three-membered parasitic systems: a bacteriophage, Bdellovibrio bacteriovorus, and Escherichia coli. J. Virol. 9, 519–525 (1972).CAS
PubMed
PubMed Central
Article
Google Scholar
61.Johnke, J., Boen–igk, J., Harms, H. & Chatzinotas, A. Killing the killer: predation between protists and predatory bacteria. FEMS Microbiol. Lett. 364, fnx089–fnx089 (2017).Article
CAS
Google Scholar
62.Johnke, J. et al. A generalist protist predator enables coexistence in multitrophic predator–prey systems containing a phage and the bacterial predator Bdellovibrio. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00124 (2017).63.Berleman, J. E., Chumley, T., Cheung, P. & Kirby, J. R. Rippling is a predatory behavior in Myxococcus xanthus. J. Bacteriol. 188, 5888–5895 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
64.Shimkets, L. J. Social and developmental biology of myxobacteria. Microbiol. Rev. 54, 473–501 (1990).CAS
PubMed
PubMed Central
Article
Google Scholar
65.Friman, V.-P. & Buckling, A. Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities. ISME J. 8, 1820 (2014).66.Matassa, S., Verstraete, W., Pikaar, I. & Boon, N. Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. Water Res. 101, 137–146 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
67.Semblante, G. U. et al. The role of microbial diversity and composition in minimizing sludge production in the oxic-settling-anoxic process. Sci. Tot. Environ. 607–608, 558–567 (2017).Article
CAS
Google Scholar
68.Xia, Y., Kong, Y., Thomsen, T. R. & Halkjær Nielsen, P. Identification and ecophysiological characterization of epiphytic protein-hydrolyzing saprospiraceae (“Candidatus Epiflobacter” spp.) in activated sludge. Appl. Environ. Microbiol. 74, 2229–2238 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
69.Niu, T. et al. Effects of dissolved oxygen on performance and microbial community structure in a micro-aerobic hydrolysis sludge in situ reduction process. Water Res. 90, 369–377 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
70.Ju, F., Xia, Y., Guo, F., Wang, Z. & Zhang, T. Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants. Environ. Microbiol. 16, 2421–2432 (2014).CAS
PubMed
Article
Google Scholar
71.Günther, S. et al. Correlation of community dynamics and process parameters as a tool for the prediction of the stability of wastewater treatment. Environ. Sci. Technol. 46, 84–92 (2012).ADS
PubMed
Article
CAS
Google Scholar
72.Nettmann, E. et al. Development of a flow-fluorescence in situ hybridization protocol for the analysis of microbial communities in anaerobic fermentation liquor. BMC Microbiol. 13, 278–278 (2013).PubMed
PubMed Central
Article
CAS
Google Scholar
73.Kim, J. M. et al. Analysis of the fine-scale population structure of “Candidatus accumulibacter phosphatis” in enhanced biological phosphorus removal sludge, using fluorescence In Situ hybridization and flow cytometric sorting. Appl. Environl. Microbiol. 76, 3825–3835 (2010).ADS
CAS
Article
Google Scholar
74.Wallner, G., Erhart, R. & Amann, R. Flow cytometric analysis of activated sludge with rRNA-targeted probes. Appl. Environ. Microbiol. 61, 1859–1866 (1995).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
75.Pasternak, Z. et al. In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J. 8, 625–635 (2014).CAS
PubMed
Article
Google Scholar
76.Spencer, S. J. et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10, 427–436 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
77.Pernthaler, J. & Amann, R. Fate of heterotrophic microbes in pelagic habitats: focus on populations. Microbiol. Mol. Biol. Rev. 69, 440–461 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
78.Jurkevitch, E. In The Ecology of Predation at the Microscale (eds Mitchell, R. J.) 37–64 (Springer, 2020).79.Delmont, T. O. et al. Accessing the soil metagenome for studies of microbial diversity. Appl. Environ. Microbiol. 77, 1315–1324 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
80.Green, S. J., Venkatramanan, R. & Naqib, A. Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches. PloS ONE 10, e0128122 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
81.Schloss, P. D. et al. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
82.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590–D596 (2012).PubMed
PubMed Central
Article
CAS
Google Scholar
83.Huse, S. M., Welch, D. M., Morrison, H. G. & Sogin, M. L. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 12, 1889–1898 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
84.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
85.Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635 (2014).CAS
PubMed
Article
Google Scholar
86.McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLOS Comput. Biol. 10, e1003531 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
87.Mather, P. Computational Methods of Multivariate Analysis in Physical Geography (J Wiley and Sons, 1976).88.Berry, K. J. & Mielke, P. W. Computation of exact probability values for multi-response permutation procedures (MRPP). Commun. Stat. – Simul. Comput. 13, 417–432 (1984).MathSciNet
Article
Google Scholar
89.Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinf. 5, 113 (2004).Article
CAS
Google Scholar
90.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol https://doi.org/10.1093/molbev/mst197 (2013).91.Kendall, M. G. Rank Correlation Methods 2nd edn, (Hafner, 1955).92.Bastian, M., Heymann, S. & Jacomy, M. Gephi: an open source software for exploring and manipulating networks. Icwsm 8, 361–362 (2009).
Google Scholar
93.Sathyamoorthy, R. et al. Bacterial predation under changing viscosities. Environ. Microbiol. 21, 2997–3010 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
94.Jurkevitch, E. In Current Protocols in Microbiology (ed Coico, R. et al.) (John Wiley and Sons, 2012).95.Whelan, J. A., Russell, N. B. & Whelan, M. A. A method for the absolute quantification of cDNA using real-time PCR. J. Immunol. Methods 278, 261–269 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
96.Nakatsuji, T. et al. The microbiome extends to subepidermal compartments of normal skin. Nat. Commun. https://www.nature.com/articles/ncomms2441 (2013).97.Van Essche, M. et al. Development and performance of a quantitative PCR for the enumeration of Bdellovibrionaceae. Environ. Microbiol. Rep. 1, 228–233 (2009).PubMed
Article
CAS
PubMed Central
Google Scholar
98.Zheng, G., Wang, C., Williams, H. N. & Pineiro, S. A. Development and evaluation of a quantitative real-time PCR assay for the detection of saltwater. Bacteriovorax. Environ. Microbiol. 10, 2515–2526 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
99.Liu, Z. et al. Neutral mechanisms and niche differentiation in steady-state insular microbial communities revealed by single cell analysis. Environ. Microbiol. 21, 164–181 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
100.Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
101.Cichocki, N. et al. Bacterial mock communities as standards for reproducible cytometric microbiome analysis. Nat. Protoc. 15, 2788–2812 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar More