More stories

  • in

    Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist

    1.Redecker D, Kodner R, Graham LE. Glomalean fungi from the Ordovician. Science. 2000;289:1920–1.CAS 
    PubMed 

    Google Scholar 
    2.Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol. 2008;6:763–75.CAS 
    PubMed 

    Google Scholar 
    3.Raven JA, Lambers H, Smith SE, Westoby M. Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. N Phytol. 2018;217:1420–7.CAS 

    Google Scholar 
    4.Field KJ, Pressel S. Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. N Phytol. 2018;220:996–1011.CAS 

    Google Scholar 
    5.Harrison MJ, Vanbuuren ML. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature. 1995;378:626–9.CAS 
    PubMed 

    Google Scholar 
    6.Smith SE, Jakobsen I, Gronlund M, Smith FA. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011;156:1050–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Zhang L, Feng G, Declerck S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J. 2018;12:23–51.
    Google Scholar 
    8.Zhang L, Xu MG, Liu Y, Zhang FS, Hodge A, Feng G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. N Phytol. 2016;210:1022–32.CAS 

    Google Scholar 
    9.Koide RT, Kabir Z. Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. N Phytol. 2000;148:511–7.CAS 

    Google Scholar 
    10.Jiang FY, Zhang L, Zhou JC, George TS, Feng G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. N Phytol. 2021;230:304–15.CAS 

    Google Scholar 
    11.Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA. 2013;110:20117–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sanchez-Garcia M, et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun. 2020;11:5125.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Johansen A, Jakobsen I, Jensen ES. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol Fert Soils. 1993;16:66–70.CAS 

    Google Scholar 
    14.Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. N Phytol. 2019;223:1127–42.CAS 

    Google Scholar 
    15.Johansen A, Jensen ES. Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biol Biochem. 1996;28:73–81.CAS 

    Google Scholar 
    16.Hodge A, Campbell CD, Fitter AH. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature. 2001;413:297–9.CAS 
    PubMed 

    Google Scholar 
    17.Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH. Competition between roots and soil micro-organisms for nutrients from nitrogen-rich patches of varying complexity. J Ecol. 2000;88:150–64.
    Google Scholar 
    18.Bukovská P, Bonkowski M, Konvalinková T, Beskid O, Hujslová M, Püschel D, et al. Utilization of organic nitrogen by arbuscular mycorrhizal fungi–is there a specific role for protists and ammonia oxidizers? Mycorrhiza. 2018;28:465.PubMed 

    Google Scholar 
    19.Püschel D, Janoušková M, Hujslová M, Slavíková R, Gryndlerová H, Jansa J. Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Ecol Evol. 2016;6:4332–46.PubMed 
    PubMed Central 

    Google Scholar 
    20.Bukovská P, Rozmoš M, Kotianová M, Gančarčíková K, Dudáš M, Hršelová H, et al. Arbuscular mycorrhiza mediates efficient recycling from soil to plants of nitrogen bound in chitin. Front Microbiol. 2021;12:574060.PubMed 
    PubMed Central 

    Google Scholar 
    21.Bunn RA, Simpson DT, Bullington LS, Lekberg Y, Janos DP. Revisiting the ‘direct mineral cycling’ hypothesis: arbuscular mycorrhizal fungi colonize leaf litter, but why? ISME J. 2019;13:1891–8.PubMed 
    PubMed Central 

    Google Scholar 
    22.Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ Microbiol. 2013;15:1870–81.CAS 
    PubMed 

    Google Scholar 
    23.Herman DJ, Firestone MK, Nuccio E, Hodge A. Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiol Ecol. 2012;80:236–47.CAS 
    PubMed 

    Google Scholar 
    24.Emmett BD, Lévesque-Tremblay V, Harrison MJ. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J. 2021;e-pub ahead of print 1 March 2021; https://doi.org/10.1038/s41396-021-00920-2.25.Trap J, Bonkowski M, Plassard C, Villenave C, Blanchart E. Ecological importance of soil bacterivores for ecosystem functions. Plant Soil. 2016;398:1–24.CAS 

    Google Scholar 
    26.Jansa J, Hodge A. Swimming, gliding, or hyphal riding? On microbial migration along the arbuscular mycorrhizal hyphal highway and functional consequences thereof. N Phytol. 2021;230:14–6.
    Google Scholar 
    27.Morin E, Miyauchi S, San Clemente H, Chen ECH, Pelin A, de la Providencia I, et al. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. N Phytol. 2019;222:1584–98.CAS 

    Google Scholar 
    28.Gil-Cardeza ML, Calonne-Salmon M, Gomez E, Declerck S. Short-term chromium (VI) exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Chemosphere. 2017;187:27–34.CAS 
    PubMed 

    Google Scholar 
    29.Voets L, Dupre de Boulois H, Renard L, Strullu DG, Declerck S. Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett. 2005;248:111–8.CAS 
    PubMed 

    Google Scholar 
    30.Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–2.CAS 
    PubMed 

    Google Scholar 
    31.van’t Padje A, Galvez LO, Klein M, Hink MA, Postma M, Shimizu T, et al. Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies. ISME J. 2021;15:435–49.PubMed 

    Google Scholar 
    32.Gryndler M, Šmilauer P, Püschel D, Bukovská P, Hršelová H, Hujslová M, et al. Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza. 2018;28:435–50.PubMed 

    Google Scholar 
    33.Jansa J, Šmilauer P, Borovička J, Hršelová H, Forczek ST, Slámová K, et al. Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth. Mycorrhiza. 2020;30:63–77.PubMed 

    Google Scholar 
    34.Bukovská P, Püschel D, Hršelová H, Jansa J, Gryndler M. Can inoculation with living soil standardize microbial communities in soilless potting substrates? Appl Soil Ecol. 2016;108:278–87.
    Google Scholar 
    35.Cranenbrouck S, Voets L, Bivort C, Renard L, Strullu DG, Declerck S. Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Strullu DG, Fortin JA, (eds.). In vitro culture of mycorrhizas. Berlin: Springer; 2005. p. 341–75. pp
    Google Scholar 
    36.Ohno T, Zibilske LM. Determination of low concentrations of phosphorus is soil extracts using malachite green. Soil Sci Soc Am J. 1991;55:892–5.CAS 

    Google Scholar 
    37.Püschel D, Janoušková M, Voříšková A, Gryndlerová H, Vosátka M, Jansa J. Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Front Plant Sci. 2017;8:390.PubMed 
    PubMed Central 

    Google Scholar 
    38.Phillips DL, Gregg JW. Uncertainty in source partitioning using stable isotopes. Oecologia 2001;127:171–9.PubMed 

    Google Scholar 
    39.Perez-Tienda J, Valderas A, Camanes G, Garcia-Agustin P, Ferrol N. Kinetics of NH4+ uptake by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mycorrhiza. 2012;22:485–91.CAS 
    PubMed 

    Google Scholar 
    40.He XX, Chen YQ, Liu SJ, Gunina A, Wang XL, Chen W, et al. Cooperation of earthworm and arbuscular mycorrhizae enhanced plant N uptake by balancing absorption and supply of ammonia. Soil Biol Biochem. 2018;116:351–9.CAS 

    Google Scholar 
    41.Hestrin R, Weber PK, Pett-Ridge J, Lehmann J. Plants and mycorrhizal symbionts acquire substantial soil nitrogen from gaseous ammonia transport. New Phytol. 2021;e-pub ahead of print 2 June 2021; https://doi.org/10.1111/nph.1752742.Everett DH, Wynne-Jones WFK. The dissociation of the ammonium ion and the basic strength of ammonia in water. P R Soc Lond A Mat. 1938;169:190–204.CAS 

    Google Scholar 
    43.Bidondo LF, Colombo R, Bompadre J, Benavides M, Scorza V, Silvani V, et al. Cultivable bacteria associated with infective propagules of arbuscular mycorrhizal fungi. Implications for mycorrhizal activity. Appl Soil Ecol. 2016;105:86–90.
    Google Scholar 
    44.Cruz AF, Ishii T. Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens. Biol Open. 2012;1:52–7.PubMed 

    Google Scholar 
    45.Scheublin TR, Sanders IR, Keel C, van der Meer JR. Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J. 2010;4:752–63.PubMed 

    Google Scholar 
    46.Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett. 2006;254:34–40.CAS 
    PubMed 

    Google Scholar 
    47.Jaderlund L, Arthurson V, Granhall U, Jansson JK. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. FEMS Microbiol Lett. 2008;287:174–80.PubMed 

    Google Scholar 
    48.Larsen J, Jaramillo-Lopez P, Najera-Rincon M, Gonzalez-Esquivel CE. Biotic interactions in the rhizosphere in relation to plant and soil nutrient dynamics. J Soil Sci Plant Nut. 2015;15:449–63.
    Google Scholar 
    49.Mansfeld-Giese K, Larsen J, Bodker L. Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol. 2002;41:133–40.CAS 
    PubMed 

    Google Scholar 
    50.Hildebrandt U, Janetta K, Bothe H. Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol. 2002;68:1919–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Cruz AF, Horii S, Ochiai S, Yasuda A, Ishii T. Isolation and analysis of bacteria associated with spores of Gigaspora margarita. J Appl Microbiol. 2008;104:1711–7.CAS 
    PubMed 

    Google Scholar 
    52.Luthfiana N, Inamura N, Tantriani, Sato T, Saito K, Oikawa A, et al. Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency. Mycorrhiza. 2021;31:403–12.CAS 
    PubMed 

    Google Scholar 
    53.Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Averill C, Turner BL, Finzi AC. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature. 2014;505:543–5.CAS 
    PubMed 

    Google Scholar 
    55.Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U. Soil fertility and biodiversity in organic farming. Science 2002;296:1694–7.PubMed 

    Google Scholar 
    56.Cavagnaro TR. Biologically regulated nutrient supply systems: compost and arbuscular mycorrhizas—a review. Adv Agron. 2015;129:293–321.
    Google Scholar  More

  • in

    Confirmation of Oryctes rhinoceros nudivirus infections in G-haplotype coconut rhinoceros beetles (Oryctes rhinoceros) from Palauan PCR-positive populations

    Insects and virusOryctes rhinoceros was collected from Amami, Kagoshima, Japan in 2017 and Ishigaki, Okinawa, Japan in 2018. The insects were brought back to the lab in Tokyo and maintained in a moisture mushroom mat substrate (Mushroom Mat, Tsukiyono Kinokoen, Japan) which was also served as food for larvae. The temperature was held at 25–30 °C with a 16-h light / 8-h dark photoperiod. To collect eggs, 2 or 3 female adults were put in a plastic case containing a moisture mushroom mat substrate with a male adult beetle. The insect jelly (Dorcus Jelly, Fujikon, Japan) was provided ad libitum as food for adults. After 2 weeks, we collected eggs, and about 10 eggs were placed in a plastic cup with a moisture mushroom mat substrate until hatched larvae developed to the second instar. This strain was used in all bioassays in this study. All Japanese O. rhinoceros were confirmed as CRB-G.The OrNV-X2B isolate used in this study was originally isolated from Philippine CRB and obtained from AgResearch in New Zealand.Cell culturesFRI-AnCu-35 (AnCu35) cells were obtained from Genebank of NARO (Tsukuba, Japan)27. This continuous cell line was developed from embryos of the cupreous chafer, Anomala cuprea (Coleptera: Scarabaeidae). The cells were maintained as adherent cultures in 25 cm2 tissue culture flasks (Falcon, Corning, USA) at 25 °C in 5 ml of 10% Fetal Bovine Serum (Gibco, Thermo Fisher Scientific, USA) supplemented Grace’s insect medium (Gibco). Cells were passaged in the above culture medium until the cell monolayer reached 70% confluence.DNA extraction and identification of haplotypes in Palauan populationCRB specimens were collected in Palau using pheromone traps containing ethyl 4-methyloctanoate (ChemTica Internacional, Costa Rica). Adults were dissected to collect midgut and gut tissues to avoid cross contamination between dissection of individuals, which were immediately soaked into 0.1 μg/ml gentamicin solution to prevent bacterial contamination during transportation at room temperature. Specimens were stored at − 30 °C after arrival to Tokyo. The tissues were homogenized in cell lysis solution (10 mM Tris–HCl, 100 mM EDTA, 1% SDS, pH 8.0) using pestles in 1.5 ml microcentrifuge tubes. Homogenates were centrifuged at 12,000× g for 5 min at 4 °C. Proteinase K (200 µg/ml final concentration) (Nippon Gene Co. Ltd., Japan) was added to the supernatant and incubated at 50 °C for 5 h. To remove contaminating RNA, RNase A solution (100 µg/ml final concentration) (Nippon Gene Co. Ltd.) was added. After a 30 min incubation at 37 °C, the mixture was placed on ice and supplemented with 200 μl of Protein Precipitation Solution (Qiagen, Germany), and then centrifuged at 17,000× g for 15 min at 4 °C. The supernatant was isopropanol-precipitated, pelleted by centrifugation, and washed with 70% ethanol. Finally, precipitated DNA was dissolved in distilled MilliQ water. The concentrations of each DNA solution were measured by using NanoVue Plus (GE Healthcare, Buckinghamshire, England, UK). The sample DNA was diluted to 10 ng/μl and used for PCR. The following primer pair was used to amplify a 523 bp fragment of the COI gene: C1-J-1718Oryctes (5′-GGAGGTTTCGGAAATTGACTTGTTCC-3′) and C1-N-2191Oryctes (5′-CCAGGTAGAATTAAAATRTATACCTC-3′)9. Each 10 μl PCR reaction contained: 5 μl Emerald Amp (Takara, Japan), 0.3 μl forward primer (10 μM), 0.3 μl reverse primer (10 μM), 3.4 μl Milli-Q water (Merck Millipore, USA), and 1 µl template DNA. PCR amplifications were performed in a Life ECO thermocycler (Bioer Technology, China) with a cycling profile of 35 cycles of 94 °C denaturation (30 s), 50 °C annealing (45 s), 72 °C extension (1 min) with an initial denaturation of 3 min at 94 °C and a final extension of 5 min at 72 °C. A 5 μl aliquot of each PCR amplicon was checked by agarose gel electrophoresis (1.5%, 1 × TBE), stained with Midori green (Nippon Genetics, Japan) and fluorescence visualized over UV light. Photographs were recorded using an E-BOX-VX2 /20 M (E & M, Japan).For direct sequencing, the PCR products were purified using a QIAquick PCR Purification Kit (Qiagen). The purified DNA was sequenced using BigDye Terminator Kit ver. 3.1 (Applied Biosystems, USA) and performed by the 3700 DNA analyzer (Applied Biosystems). The obtained sequences were analyzed using MEGA X software28 and the G haplotype was identified by the presence of the (A→G) point mutation in the COI region as previously described9.Virus detection in Palauan populationUsing the same samples as above, virus detection was carried out by PCR. The following primer pair was used to amplify a 944 bp fragment of the OrNV-gp054 gene (GrBNV-gp83-like protein): OrNV15a (5′-ATTACGTCGTAGAGGCAATC-3′) and OrNV15b (5′-ATGATCGATTCGTCTATGG-3′)29. PCR amplifications were performed as above.Transmission electron microscopy (TEM) was also used for detection of OrNV within a subset of PCR positive CRB tissue samples. After washing in phosphate-buffered saline (PBS), midgut and fat body samples of Palauan CRB adults from Melekeok and Aimeliik (respectively; two each), were subjected to following resin fixation as described previously30: tissues were fixed in 5% glutaraldehyde for 1 h, rinsed 4 times with Millonig’s phosphate buffer (0.18% NaH2PO4 × H2O, 2.33% Na2HPO4 × 7H2O, 0.5% NaCl, pH 7.4), post-fixed and stained in 1% OsO4 for 2 h and dehydrated in an ethanol series. Following the final dehydration step, the ethanol was replaced by QY-1 (Nisshin EM, Tokyo), and the tissues were embedded in epoxy resin comprising 47% TAAB EPON812, 19% DDSA, 32% MNA and 2% DMP30 (Nisshin EM, Tokyo). Then, they were cut into 70 nm thick sections with a diamond knife on an Ultracut N ultramicrotome (Leica, Vienna, Austria), attached to grids and observed using TEM (JEM-1400Plus, JEOL, Japan).Isolation of OrNV from Palauan samples and infectivity to Japanese CRB larvaeVirus isolation was carried out using a modification of a method previously described23. The frozen tissues of two virus positive CRB-G from Melekeok were washed with PBS twice, and after grounding with 1 ml PBS by pestles, centrifuged at 6,000 g × 5 min at 4 °C. The supernatant was filtered by 0.45 µm pore sized filter (Merck, USA) and transferred to a 1.5 ml ultracentrifuge tube in a clean bench. Virus was pelleted by centrifugation at 4 °C, 98,600 g for 30 min using a TLA55 rotor. After separation, the supernatant was discarded and the pellet was suspended in 500 μl of PBS and designated as “virus solution”. A portion of this solution (30 µl/larva) was intrahemocoelically injected into 82nd instar CRB to evaluate its infectivity. This experiment had no biological replicates due to the very small amount of inoculum available. Intrahemocoelically injected larvae were reared in the insect rearing mat at 25 °C for two weeks. Following death, larval cadavers were immediately dissected to collect midgut for following RNA extraction to detect expression of a viral gene, and electron microscopy observation. Total RNA was extracted from larval tissue samples using ISOGEN (Nippon Gene Co. Ltd., Tokyo, Japan), as described in the manufactural protocol. The total RNA samples were treated with RNAse-free recombinant DNAse I (TaKaRa, Japan) to remove the contaminating DNAs. The DNAse I treated total RNA samples (approximately 100 ng/µl) were used as templates for cDNA synthesis using a TaKaRa RNA PCR Kit (AMV) ver. 3.0 (TaKaRa, Japan). PCR reactions were conducted as above using OrNV15a and b primers (detects gene GrBNV-gp83-like gene). This experiment was conducted in triplicate.Inoculum preparation using FRI-AnCu-35 cellsOrNV isolates were propagated using the FRI-AnCu-35 (AnCu35) cell line for further analyses following methods previously described for the DSIR-Ha-1179 cell line system9,12. AnCu35 was a Coleopteran cell line readily available in Japan, and was inoculated with the Palau OrNV solution prepared above and the OrNV-X2B isolate which was provided by AgResearch, New Zealand. When the cell culture reached 25% confluency, a 100 µl aliquot of virus solution was inoculated and incubated at 25 °C. The virus-treated cells were observed by optical microscope.Quantification of viral copy number using qPCR was conducted as follows. To measure the amount of OrNV virus produced by the AnCu35 cell line, DNA was extracted as described above for tissue samples from 1.5 ml of the virus treated cell’s suspension at 10 dpi (3 suspensions per each virus isolate). The extracted DNA was subjected to quantitative PCR (qPCR) following previously described methods31. The primer pair for qPCR was designed from the genome sequence of the P74 homolog of OrNV, a viral structural protein that is conserved widely among nudiviruses, polydnaviruses and baculoviruses32, to amplify a region of 82 bp of OrNV-X2B-gp120 (OrNV-p74_f2026: 5′-ATCGCCGGTGTGTTTATGG-3′, OrNV-p74_r2107: 5′-AGAGGGCTAACGCTACGAC-3′). The qPCR reaction was performed by using Step One Plus Real-Time PCR System (Life Technologies, USA). The reaction mixture contained 10 ng of template DNA, 5 µl of FastStart Universal SYBR Green Master Mix (ROX) (Roche, Switzerland), 0.3 µl forward primer (10 µM), 0.3 µl reverse primer (10 µM), and 3.4 µl Milli-Q water. The qPCR cycle condition was as follows: 95 °C 10 min; 40 cycle of 95 °C 15 s, 60 °C 1 min. At the end of the cycles, a dissociation curve analysis of the amplified product was performed as follows: 95 °C 15 s, 60 °C 1 min, 95 °C 15 s. The Ct value of each sample DNA was measured twice using two wells as technical replicates. The quantity of the viral genome (ng) in each sample was calculated from a standard curve generated from 29.7 to 29.7 × 10–5 ng of purified PCR amplicon from the OrNV P74 gene. The viral copies in 1 ng of sample DNA was estimated from the molecular weight of qPCR target region (p74). The virus titer was determined from average copy numbers of three virus suspensions as follows. The p74 qPCR amplicon was 83 bp, and the molecular weight of the amplicon was calculated as the length of dsDNA (83 bp) × 330 daltons × 2 nt/bp = 54,780 daltons (g/mol). DNA weight of 1 copy of virus genome was calculated as 54,780 g/mol/Avogadro constant (6.023 × 1023 molecules/mol) = 9.095 × 10–20 g/ molecule. Amplicons of the above region was purified by QIA quick PCR purification kit (Qiagen) and 29.7 ng/ul of DNA was obtained for use as a quantification standard. This is equivalent to 3.266 × 1011 copies of p74 gene (because the amplicon is 9.095 × 10–20 g/copy). Based on qPCR using the serial dilutions (× 10 – 105) of the standard DNA prepared above, Ct values were examined by each concentration of viral DNA. Ct-value = − 3.3112x – 1.4219 (x: diluton factor of 10x). Accordingly, copy number of p74 = 3.266 × 1011+x. Viral copy number (copy number of p74 genes) was calculated from Ct-value from the above formula.Viral replication in CRB larvae by time course and killing speedField collected CRB-G larvae from Japan were inoculated with the OrNV-Palau1 and -X2B isolates to examine establishment of infection over time using qPCR. The inoculum was prepared from supernatant collected from OrNV infected AnCu35 cell cultures at 10 dpi, passed through a 0.45 µm filter, and preserved at 4 °C until use.Second instar CRB was inoculated intrahemocoelically with 30 μl of the virus solution prepared from cell-culture per larva using a microinjector (Kiya Kogyo Seisakusho, Japan) fitted with a micro-syringe (Ito Seisakusho, Japan). The virus doses of OrNV-Palau1 and -X2B strains used for inoculation were confirmed to be comparable by absolute quantification using the above qPCR method (Palau1: 3.1 × 105 copies/ng, X2B: 3.3 × 105copies/ng; the mean titer of 3 DNA templates, respectively). As a mock treatment, CRB was injected with 30 µl PBS. The inoculated larvae were kept individually in plastic containers with a rearing mat in a 25 °C incubator. The samples were collected at 3, 6, and 9 dpi (25–30 larvae per time point) into 15 ml tubes and stored at − 30 °C until the DNA was extracted as above. Total DNA was extracted from whole, individual larvae which were dissected to remove midgut contents to prevent interference to Taq polymerase, and subjected to qPCR as above. Changes in viral copy number within the same virus strain over time were analyzed by one-way, nonparametric Steel–Dwass tests using JMP@ 9.0.0 software (SAS Institute, Cary, NC). Differences in virus copy number between strains were analyzed in the same way, but to correct for errors in the test values due to multiple comparisons, Bonferroni’s correction was used to set the α-value for the test at 0.008333. Ten larvae were inoculated and examined per each treatment-time point with three replications.To estimate killing speed, CRB-G larvae from Japan were inoculated with the OrNV-Palau1 and -X2B isolates as described previously. Intrahemocoelically inoculated larvae were reared individually in plastic containers with a rearing mat in a 25 °C incubator. Mortality of inoculated larvae were observed every day. Forty larvae were examined in a replicate with three replications carried out for virus treatments (total 120 larvae). The mock PBS inoculation treatment was done only once (total 37 larvae).Genome sequencingGenome sequencing of the OrNV-Palau1 isolate and X2B isolate was conducted. For obtaining high quality DNA, virus particles were purified, from 3 mL of AnCu35 culture supernatant collected six days after inoculation with OrNV. Virus containing supernatant was transferred to Ultra-Clear polyallomer tubes (Beckman Coulter, USA) with a 20–50% (w/w) sucrose density gradient and subjected to ultracentrifugation at 72,100 g, 4 °C, for 1 h. After ultracentrifugation, the white virus band was collected in a 1.5 ml tube. The solution was then subjected to ultracentrifugation at 110,000 g, 4 °C for 1 h to precipitate the viral particles33. Then, DNA was extracted from purified OrNV virions as described above. For the sequencing analysis, DNA libraries were prepared using the Nextera XT DNA Library Prep Kit (Illumina, USA). Amplified libraries were sequenced on Illumina HiSeq 2500 instrument using paired-end 2 × 150 bp chemistry which was performed by Novogene (Beijing, China). Contigs of each strain from NGS reads were generated by assembly using Unicycler (version 0.4.8)34. The gaps between contigs were further closed with Sanger sequences obtained by PCR direct sequencing using appropriate specific primers, and the sequence was aligned by minimap2 (version 2.17)35. The assembly and sequences of contigs were also confirmed by mapping to the OrNV isolate Solomon Islands genome sequence (GenBank accession no. MN623374.1) with NGS reads and Sanger sequences using minimap2. The mapped reads (SAM files) were converted to BAM format using SAMtools (version 1.10)36. After the sorting and indexing of BAM files, the consensus sequences were generated using bcftools (version 1.10.2)37.ORFs of at least 50 codons in size that possessed significant amino acid sequence similarity with ORFs from OrNV-Ma07 were identified with Lasergene GeneQuest (DNAStar, v. 17) and BLASTp. ORFs with no significant matches to other sequences also were selected for annotation if (a) they did not overlap a larger ORF by  > 75 bp, and (b) they were predicted to be protein-encoding by both the fgenesV0 (http://www.softberry.com/berry.phtml?topic=index&group=programs&subgroup=gfindv) and Vgas38 programs.OrNV genome sequences were compared by pairwise alignment using the Martinez/Needleman-Wunsch method as implemented in Lasergene MegAlign 15. Pairwise sequence identities were determined from these alignments as previously described39. Differences in ORF content and distribution of selected OrNV genomic regions were visualized with Mauve version 2015022640.Phylogenetic inferenceTo infer the relationships among OrNV isolates on the basis of nucleotide sequence alignments, the DNA polymerase ORFs of completely sequenced isolates (Table 2), OrNV-PV50516, and a set of nine isolates from Indonesia17 were aligned by MUSCLE as implemented in Lasergene MegAlign Pro v. 17 (DNAStar). Phylogeny was inferred by maximum likelihood using MEGA X28 with the Tamura-Nei (TN93) model41, with ambiguous data eliminated prior to analysis. Tree reliability was evaluated by bootstrap with 500 replicates. More

  • in

    Genome-wide analysis reveals associations between climate and regional patterns of adaptive divergence and dispersal in American pikas

    Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alexander DH, Shringarpure SS, Novembre J, Lange K (2015) Admixture 1.3 software manual. UCLA Hum Genet Softw Distrib, Los Angeles
    Google Scholar 
    Angert AL, Bontrager MG, Ågren J (2020) What do we really know about adaptation at range edges? Annu Rev Ecol Evol Syst 51:341–361Article 

    Google Scholar 
    Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species–climate impact models under climate change. Glob Change Biol 11:1504–1513Article 

    Google Scholar 
    Astle W, Balding DJ (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24:451–471Article 

    Google Scholar 
    Attard CRM, Beheregaray LB, Möller LM (2018) Genotyping-by-sequencing for estimating relatedness in nonmodel organisms: Avoiding the trap of precise bias. Mol Ecol Resour 18:381–390CAS 
    PubMed 
    Article 

    Google Scholar 
    Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA et al. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:1–7Article 
    CAS 

    Google Scholar 
    Barbosa S, Mestre F, White TA, Paupério J, Alves PC, Searle JB (2018) Integrative approaches to guide conservation decisions: Using genomics to define conservation units and functional corridors. Mol Ecol 27:3452–3465PubMed 
    Article 

    Google Scholar 
    Beever EA, Brussard PF, Berger J (2003) Patterns of apparent extirpation among isolated populations of pikas (Ochotona princeps) in the Great Basin. J Mammal 84:37–54Article 

    Google Scholar 
    Beever EA, Ray C, Mote PW, Wilkening JL (2010) Testing alternative models of climate-mediated extirpations. Ecol Appl 20:164–178PubMed 
    Article 

    Google Scholar 
    Beever EA, Ray C, Wilkening JL, Brussard PF, Mote PW (2011) Contemporary climate change alters the pace and drivers of extinction. Glob Change Biol 17:2054–2070Article 

    Google Scholar 
    Beever EA, Perrine JD, Rickman T, Flores M, Clark JP, Waters C et al. (2016) Pika (Ochotona princeps) losses from two isolated regions reflect temperature and water balance, but reflect habitat area in a mainland region. J Mammal 97:1495–1511Article 

    Google Scholar 
    Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blois JL, Williams JW, Fitzpatrick MC, Jackson ST, Ferrier S (2013) Space can substitute for time in predicting climate-change effects on biodiversity. Proc Natl Acad Sci USA 110:9374–9379CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Browning SR (2008) Missing data imputation and haplotype phase inference for genome-wide association studies. Hum Genet 124:439–450CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calkins MT, Beever EA, Boykin KG, Frey JK, Andersen MC (2012) Not-so-splendid isolation: modeling climate-mediated range collapse of a montane mammal Ochotona princeps across numerous ecoregions. Ecography 35:780–791Article 

    Google Scholar 
    Carlson SM, Cunningham CJ, Westley PAH (2014) Evolutionary rescue in a changing world. Trends Ecol Evol 29:521–530PubMed 
    Article 

    Google Scholar 
    Castillo JA, Epps CW, Davis AR, Cushman SA (2014) Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 23:843–856PubMed 
    Article 

    Google Scholar 
    Castillo JA, Epps CW, Jeffress MR, Ray C, Rodhouse TJ, Schwalm D (2016) Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas. Ecol Appl 26:1660–1676PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Ceballos G, Ehrlich PR, Raven PH (2020) Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc Natl Acad Sci USA 117:13596–13602CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chapman JA, Flux JE (1990) Rabbits, hares and pikas: status survey and conservation action plan. IUCN.Chypre M, Zaidi N, Smans K (2012) ATP-citrate lyase: a mini-review. Biochem Biophys Res Commun 422:1–4CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4Article 

    Google Scholar 
    Eckert CG, Samis EK, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188CAS 
    PubMed 
    Article 

    Google Scholar 
    Erb LP, Ray C, Guralnick R (2011) On the generality of a climate-mediated shift in the distribution of the American pika (Ochotona princeps). Ecology 92:1730–1735PubMed 
    Article 

    Google Scholar 
    Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501Article 

    Google Scholar 
    Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S (2018) Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol Appl 11:1035–1052PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Franks SJ, Hoffmann AA (2012) Genetics of climate change adaptation. Annu Rev Genet 46:185–208CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Frichot E, François O (2015) LEA: an R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929Article 

    Google Scholar 
    Frichot E, Schoville SD, Bouchard G, François O (2013) Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 30:1687–1699CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Galbreath KE, Hafner DJ, Zamudio KR (2009) When cold is better: climate-driven elevation shifts yield complex patterns of diversification and demography in an Alpine specialist (American Pika, Ochotona Princeps). Evolution 63:2848–2863CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gautier M (2015) Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics 201:1555–1579CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ et al. (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gradogna A, Gavazzo P, Boccaccio A, Pusch M (2017) Subunit‐dependent oxidative stress sensitivity of LRRC8 volume‐regulated anion channels. J Physiol 595:6719–6733CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hafner DJ, Sullivan RM (1995) Historical and ecological biogeography of Nearctic pikas (Lagomorpha: Ochotonidae). J Mammal 76:302–321Article 

    Google Scholar 
    Hafner DJ, Smith AT (2010) Revision of the subspecies of the American pika, Ochotona princeps (Lagomorpha: Ochotonidae). J Mammal 91:401–417Article 

    Google Scholar 
    Hanson JO, Marques A, Veríssimo A, Camacho-Sanchez M, Velo-Antón G, Martínez-Solano Í et al. (2020) Conservation planning for adaptive and neutral evolutionary processes. J Appl Ecol 57:2159–2169Article 

    Google Scholar 
    Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 7:1008–1025PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. BMC Evol Biol 8:289PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Henry P, Russello MA (2013) Adaptive divergence along environmental gradients in a climate-change-sensitive mammal. Ecol Evol 3:3906–3917CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henry P, Sim Z, Russello MA (2012) Genetic evidence for restricted dispersal along continuous altitudinal gradients in a climate change-sensitive mammal: the American pika. PLoS One 7:e39077CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276Article 

    Google Scholar 
    Hinzpeter A, Lipecka J, Brouillard F, Baudoin-Legros M, Dadlez M, Edelman A et al. (2006) Association between Hsp90 and the ClC-2 chloride channel upregulates channel function. Am J Physiol Cell Physiol 290:C45–56CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hoban S (2018) Integrative conservation genetics: Prioritizing populations using climate predictions, adaptive potential and habitat connectivity. Mol Ecol Resour 18:14–17PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Holbrook JD, DeYoung RW, Janecka JE, Tewes ME, Honeycutt RL, Young JH (2012) Genetic diversity, population structure, and movements of mountain lions (Puma concolor) in Texas. J Mammal 93:989–1000Article 

    Google Scholar 
    IPCC (2014) AR5 Synthesis Report: Climate Change 2014. IPCC.Jentsch TJ, Lutter D, Planells-Cases R, Ullrich F, Voss FK (2016) VRAC: molecular identification as LRRC8 heteromers with differential functions. Pflüg Arch Eur J Physiol 468:385–393CAS 
    Article 

    Google Scholar 
    Johnston AN, Bruggeman JE, Beers AT, Beever EA, Christophersen RG, Ransom JI (2019) Ecological consequences of anomalies in atmospheric moisture and snowpack. Ecology 100:e02638PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Johnston KM, Freund KA, Schmitz OJ (2012) Projected range shifting by montane mammals under climate change: implications for Cascadia’s National Parks. Ecosphere 3:art97Article 

    Google Scholar 
    Kilham L (1958) Territorial behavior in pikas. J Mammal 39:307–307Article 

    Google Scholar 
    Kimura M (1971) Theoretical foundation of population genetics at the molecular level. Theor Popul Biol 2:174–208CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Klingler KB, Jahner JP, Parchman TL, Ray C, Peacock MM (2021) Genomic variation in the American pika: signatures of geographic isolation and implications for conservation. BMC Ecol Evol 21:2CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lambers JHR (2015) Extinction risks from climate change. Science 348:501–502CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet 7:295–302Article 

    Google Scholar 
    Latch EK, Scognamillo DG, Fike JA, Chamberlain MJ, Rhodes Jr OE (2008) Deciphering ecological barriers to North American River Otter (Lontra canadensis) gene flow in the Louisiana landscape. J Hered 99:265–274CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Lee KM, Coop G (2017) Distinguishing among modes of convergent adaptation using population genomic data. Genetics 207:1591–1619PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee KM, Coop G (2019) Population genomics perspectives on convergent adaptation. Philos Trans R Soc B Biol Sci 374:20180236Article 

    Google Scholar 
    Lemay MA, Russello MA (2015) Genetic evidence for ecological divergence in kokanee salmon. Mol Ecol 24:798–811CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv13033997 Q-Bio.MacArthur RA, Wang LCH (1974) Behavioral thermoregulation in the pika Ochotona princeps: a field study using radiotelemetry. Can J Zool 52:353–358CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    McCain CM (2019) Assessing the risks to United States and Canadian mammals caused by climate change using a trait-mediated model. J Mammal 100:1808–1817
    Google Scholar 
    Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794Article 

    Google Scholar 
    Morin PA, Luikart G, Wayne RK, the SNP Workshop Group (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216Article 

    Google Scholar 
    Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science 341:504–508CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264CAS 
    PubMed 
    Article 

    Google Scholar 
    Morrison SF, Hik DS (2007) Demographic analysis of a declining pika Ochotona collaris population: linking survival to broad-scale climate patterns via spring snowmelt patterns. J Anim Ecol 76:899–907PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Moyer‐Horner L, Mathewson PD, Jones GM, Kearney MR, Porter WP (2015) Modeling behavioral thermoregulation in a climate change sentinel. Ecol Evol 5:5810–5822PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mussmann SM, Douglas MR, Chafin TK, Douglas ME (2019) BA3-SNPs: contemporary migration reconfigured in BayesAss for next-generation sequence data. Methods Ecol Evol 10:1808–1813Article 

    Google Scholar 
    Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669Article 

    Google Scholar 
    Paz-Vinas I, Loot G, Hermoso V, Veyssière C, Poulet N, Grenouillet G et al. (2018) Systematic conservation planning for intraspecific genetic diversity. Proc R Soc B Biol Sci 285:20172746Article 

    Google Scholar 
    Peacock MM (1997) Determining natal dispersal patterns in a population of North American pikas (Ochotona princeps) using direct mark-resight and indirect genetic methods. Behav Ecol 8:340–350Article 

    Google Scholar 
    Peacock MM, Smith AT (1997) Nonrandom mating in pikas Ochotona princeps: evidence for inbreeding between individuals of intermediate relatedness. Mol Ecol 6:801–811CAS 
    PubMed 
    Article 

    Google Scholar 
    Pew J, Muir PH, Wang J, Frasier TR (2015) related: an R package for analysing pairwise relatedness from codominant molecular markers. Mol Ecol Resour 15:557–561PubMed 
    Article 

    Google Scholar 
    Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in ecology. Springer New York, New York, NY, p 110–135Chapter 

    Google Scholar 
    Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/Rankin AM, Galbreath KE, Teeter KC (2017) Signatures of adaptive molecular evolution in American pikas (Ochotona princeps). J Mammal 98:1156–1167Article 

    Google Scholar 
    Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Razgour O, Taggart JB, Manel S, Juste J, Ibáñez C, Rebelo H et al. (2018) An integrated framework to identify wildlife populations under threat from climate change. Mol Ecol Resour 18:18–31PubMed 
    Article 

    Google Scholar 
    Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24:4348–4370PubMed 
    Article 

    Google Scholar 
    Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185Article 

    Google Scholar 
    Robson KM, Lamb CT, Russello MA (2016) Low genetic diversity, restricted dispersal, and elevation-specific patterns of population decline in American pikas in an atypical environment. J Mammal 97:464–472Article 

    Google Scholar 
    Rochette NC, Rivera‐Colón AG, Catchen JM (2019) Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol Ecol 28:4737–4754CAS 
    PubMed 
    Article 

    Google Scholar 
    Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106PubMed 
    Article 

    Google Scholar 
    Rubidge EM, Patton JL, Lim M, Burton AC, Brashares JS, Moritz C (2012) Climate-induced range contraction drives genetic erosion in an alpine mammal. Nat Clim Change 2:285–288Article 

    Google Scholar 
    Russello MA, Waterhouse MD, Etter PD, Johnson EA (2015) From promise to practice: pairing non-invasive sampling with genomics in conservation. PeerJ 3:e1106PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820CAS 
    PubMed 
    Article 

    Google Scholar 
    Sjodin BMF, Galbreath KE, Lanier HC, Russello MA (2021) Chromosome-level reference genome assembly for the American pika (Ochotona princeps). J Hered https://doi.org/10.1093/jhered/esab031Smith AT (1974b) The distribution and dispersal of pikas: influences of behavior and climate. Ecology 55:1368–1376Article 

    Google Scholar 
    Smith AT (1974a) The distribution and dispersal of pikas: consequences of insular population structure. Ecology 55:1112–1119Article 

    Google Scholar 
    Smith AT (2020) Conservation status of American pikas (Ochotona princeps). J Mammal 101:1466–1488Article 

    Google Scholar 
    Smith AT, Ivins BL (1983) Colonization in a pika population: dispersal vs philopatry. Behav Ecol Sociobiol 13:37–47Article 

    Google Scholar 
    Smith AT, Weston ML (1990) Ochotona princeps. Mamm Species 352:1–8.Article 

    Google Scholar 
    Smith AT, Millar CI (2018) American pika (Ochotona princeps) population survival in winters with low or no snowpack. West North Am Nat 78:126–132Article 

    Google Scholar 
    La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. Proc R Soc B Biol Sci 277:3401–3410Article 

    Google Scholar 
    Stern DL (2013) The genetic causes of convergent evolution. Nat Rev Genet 14:751–764CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Stewart JAE, Wright DH, Heckman KA (2017) Apparent climate-mediated loss and fragmentation of core habitat of the American pika in the Northern Sierra Nevada, California, USA. PLoS One 12:e0181834PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stewart JAE, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE et al. (2015) Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr 42:880–890Article 

    Google Scholar 
    Varner J, Dearing MD (2014) The importance of biologically relevant microclimates in habitat suitability assessments. PLoS One 9:e104648PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Waldvogel A-M, Feldmeyer B, Rolshausen G, Exposito‐Alonso M, Rellstab C, Kofler R et al. (2020) Evolutionary genomics can improve prediction of species’ responses to climate change. Evol Lett 4:4–18PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang T, Hamann A, Spittlehouse DL, Murdock TQ (2012) ClimateWNA—high-resolution spatial climate data for Western North America. J Appl Meteorol Climatol 51:16–29Article 

    Google Scholar 
    Waterhouse MD, Erb LP, Beever EA, Russello MA (2018) Adaptive population divergence and directional gene flow across steep elevational gradients in a climate-sensitive mammal. Mol Ecol 27:2512–2528PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CAS 
    PubMed 

    Google Scholar 
    Wiens JJ (2016) Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol 14:e2001104PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wilkening JL, Ray C (2016) Characterizing predictors of survival in the American pika (Ochotona princeps). J Mammal 97:1366–1375Article 

    Google Scholar 
    Wilkening JL, Ray C, Beever EA, Brussard PF (2011) Modeling contemporary range retraction in Great Basin pikas (Ochotona princeps) using data on microclimate and microhabitat. Quat Int 235:77–88Article 

    Google Scholar 
    Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wogan GOU, Wang IJ (2018) The value of space-for-time substitution for studying fine-scale microevolutionary processes. Ecography 41:1456–1468Article 

    Google Scholar 
    Yandow LH, Chalfoun AD, Doak DF (2015) Climate tolerances and habitat requirements jointly shape the elevational distribution of the American pika (Ochotona princeps), with implications for climate change effects. PLoS One 10:e0131082PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zgurski JM, Hik DS (2012) Polygynandry and even-sexed dispersal in a population of collared pikas, Ochotona collaris. Anim Behav 83:1075–1082Article 

    Google Scholar 
    Zhang D, Pan J, Cao J, Cao Y, Zhou H (2020) Screening of drought-resistance related genes and analysis of promising regulatory pathway in camel renal medulla. Genomics 112:2633–2639CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Lethal microbial blooms delayed freshwater ecosystem recovery following the end-Permian extinction

    1.Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: causes, consequences, and controls. Microb. Ecol. 65, 995–1010 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Visser, P. M. et al. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54, 145–159 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Lürling, M., Mendes e Mello, M., van Oosterhout, F., de Senerpont Domis, L. & Marinho, M. M. Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated temperature. Front. Microbiol. 9, 1851 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Low-Décarie, E., Fussmann, G. F. & Bell, G. Aquatic primary production in a high-CO2 world. Trends Ecol. Evol. 29, 223–232 (2014).PubMed 
    Article 

    Google Scholar 
    5.Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in earth history. PNAS 113, E6325–E6334 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Sun, Y. D. et al. Lethally hot temperatures during the Early Triassic Greenhouse. Science 338, 366–370 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Frank, T. D. et al. Pace, magnitude, and nature of terrestrial climate change through the end Permian extinction in southeastern Gondwana. Geology 49, https://doi.org/10.1130/G48795.1 (2021).8.Wu, Y. et al. Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction. Nat. Commun. 12, 2137 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Mays, C. et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bull. 132, 1489–1513 (2020).CAS 
    Article 

    Google Scholar 
    11.Chu, D. et al. Ecological disturbance in tropical peatlands prior to marine Permian-Triassic mass extinction. Geology 48, 288–292 (2020).ADS 
    Article 

    Google Scholar 
    12.Retallack, G. J., Veevers, J. J. & Morante, R. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. GSA Bull. 108, 195–207 (1996).CAS 
    Article 

    Google Scholar 
    13.Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Fielding, C. R. et al. Sedimentology of the continental end-Permian extinction event in the Sydney Basin, eastern Australia. Sedimentology 68, 30–62 (2021).CAS 
    Article 

    Google Scholar 
    15.Metcalfe, I., Crowley, J. L., Nicoll, R. S. & Schmitz, M. High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res. 28, 61–81 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).CAS 
    Article 

    Google Scholar 
    17.McLoughlin, S. et al. Dwelling in the dead zone—vertebrate burrows immediately succeeding the end-Permian extinction event in Australia. Palaios 35, 342–357 (2020).ADS 
    Article 

    Google Scholar 
    18.Lamb, A. L., Wilson, G. P. & Leng, M. J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Sci. Rev. 75, 29–57 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Mays, C., Vajda, V. & McLoughlin, S. Permian–Triassic non-marine algae of Gondwana—distributions, natural affinities and ecological implications. Earth-Sci. Rev. 212, 103382 (2021).CAS 
    Article 

    Google Scholar 
    20.McLoughlin, S. et al. Age and paleoenvironmental significance of the Frazer Beach Member—a new lithostratigraphic unit overlying the end-Permian extinction horizon in the Sydney Basin, Australia. Front. Earth Sci. 8, 600976 (2021).Article 

    Google Scholar 
    21.Huber, J. K. A postglacial pollen and nonsiliceous algae record from Gegoka Lake, Lake County, Minnesota. J. Paleolimnol. 16, 23–35 (1996).ADS 
    Article 

    Google Scholar 
    22.Woodward, C. A. & Shulmeister, J. A Holocene record of human induced and natural environmental change from Lake Forsyth (Te Wairewa), New Zealand. J. Paleolimnol. 34, 481–501 (2005).ADS 
    Article 

    Google Scholar 
    23.Pacton, M., Gorin, G. & Fiet, N. Occurrence of photosynthetic microbial mats in a Lower Cretaceous black shale (central Italy): a shallow-water deposit. Facies 55, 401–419 (2009).Article 

    Google Scholar 
    24.Pacton, M., Gorin, G. E. & Vasconcelos, C. Amorphous organic matter—Experimental data on formation and the role of microbes. Rev. Palaeobot. Palynol. 166, 253–267 (2011).Article 

    Google Scholar 
    25.Tyson, R. V. Sedimentary Organic Matter: Organic Facies and Palynofacies (Chapman & Hall, 1995).26.Retallack, G. J. Earliest Triassic claystone breccias and soil-erosion crisis. J. Sediment. Res. 75, 679–695 (2005).ADS 
    Article 

    Google Scholar 
    27.Augland, L. E. et al. The main pulse of the Siberian Traps expanded in size and composition. Sci. Rep. 9, 18723 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Retallack, G. J. Post-apocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin. Aust. GSA Bull. 111, 52–70 (1999).CAS 
    Article 

    Google Scholar 
    29.Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. The hydrological legacy of deforestation on global wetlands. Science 346, 844–847 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Stevenson, R. J. & Smol, J. P. In Freshwater Algae of North America: Ecology and Classification (eds Wehr, J. D., Sheath, R. G. & Kociolek, P.) Ch. 21, 921–962 (Academic Press, 2015).31.Lindström, S., Bjerager, M., Alsen, P., Sanei, H. & Bojesen-Koefoed, J. The Smithian–Spathian boundary in North Greenland: implications for extreme global climate changes. Geol. Mag. 157, 1547–1567 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    32.de Leeuw, J. W., Versteegh, G. J. M. & van Bergen, P. F. in Plants and Climate Change, Plant Ecology (eds Rozema, J., Aerts, R. & Cornelissen, H.) Vol. 182, 209–233 (Springer, 2006).33.Baudelet, P.-H., Ricochon, G., Linder, M. & Muniglia, L. A new insight into cell walls of Chlorophyta. Algal Res 25, 333–371 (2017).Article 

    Google Scholar 
    34.Graham, L. E. & Gray, J. In Plants Invade the Land: Evolutionary and Environmental Perspectives (eds Gensel, P. G. & Edwards, D.) 140–158 (Columbia University Press, 2001).35.Demura, M., Ioki, M., Kawachi, M., Nakajima, N. & Watanabe, M. M. Desiccation tolerance of Botryococcus braunii (Trebouxiophyceae, Chlorophyta) and extreme temperature tolerance of dehydrated cells. J. Appl. Phycol. 26, 49–53 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Del Cortona, A. et al. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. PNAS 117, 2551–2559 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Wheeler, A., Van de Wetering, N., Esterle, J. S. & Götz, A. E. Palaeoenvironmental changes recorded in the palynology and palynofacies of a Late Permian Marker Mudstone (Galilee Basin, Australia). Palaeoworld 29, 439–452 (2020).Article 

    Google Scholar 
    38.Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).Article 

    Google Scholar 
    39.Low-Décarie, E., Fussmann, G. F. & Bell, G. The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Glob. Change Biol. 17, 2525–2535 (2011).ADS 
    Article 

    Google Scholar 
    40.von Alvensleben, N., Magnusson, M. & Heimann, K. Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. J. Appl. Phycol. 28, 861–876 (2016).Article 
    CAS 

    Google Scholar 
    41.Chu, D. et al. Microbial mats in the terrestrial Lower Triassic of North China and implications for the Permian–Triassic mass extinction. Palaeogeog. Palaeoclimatol. Palaeoecol. 474, 214–231 (2017).ADS 
    Article 

    Google Scholar 
    42.Guo, W. et al. Secular variations of ichnofossils from the terrestrial Late Permian–Middle Triassic succession at the Shichuanhe section in Shaanxi Province, North China. Glob. Planet. Change 181, 102978 (2019).Article 

    Google Scholar 
    43.Lee, J. Y. et al. Future global climate: Scenario-based projections and near-term information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V., et al.) 195 pp. (Cambridge University Press, 2021).44.de Jersey, N. J. Palynology of the Permian-Triassic transition in the western Bowen Basin. Geol. Surv. Qld. Publ. 374, 1–39 (1979).
    Google Scholar 
    45.Lindström, S. & McLoughlin, S. Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: Implications for palynofloristic turnover across Gondwana. Rev. Palaeobot. Palynol. 145, 89–122 (2007).Article 

    Google Scholar 
    46.Grebe, H. Permian plant microfossils from the Newcastle Coal Measures/Narrabeen Group Boundary, Lake Munmorah, New South Wales. Rec. Geol. Surv. NSW 12, 125–136 (1970).
    Google Scholar 
    47.Mishra, S. et al. A new acritarch spike of Leiosphaeridia dessicata comb. nov. emend. from the Upper Permian and Lower Triassic sequence of India (Pranhita-Godavari Basin): its origin and palaeoecological significance. Palaeogeog. Palaeoclimatol. Palaeoecol. 567, 110274 (2021).ADS 
    Article 

    Google Scholar 
    48.Grice, K. et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307, 706–709 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Kershaw, S. et al. Microbialites and global environmental change across the Permian–Triassic boundary: a synthesis. Geobiology 10, 25–47 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Schneebeli-Hermann, E. et al. Palynofacies analysis of the Permian–Triassic transition in the Amb section (Salt Range, Pakistan): implications for the anoxia on the South Tethyan Margin. J. Asian Earth Sci. 60, 225–234 (2012).ADS 
    Article 

    Google Scholar 
    51.van Soelen, E. E. & Kürschner, W. M. Late Permian to Early Triassic changes in acritarch assemblages and morphology in the Boreal Arctic: new data from the Finnmark Platform. Palaeogeog. Palaeoclimatol. Palaeoecol. 505, 120–127 (2018).ADS 
    Article 

    Google Scholar 
    52.Spina, A., Cirilli, S., Utting, J. & Jansonius, J. Palynology of the Permian and Triassic of the Tesero and Bulla sections (Western Dolomites, Italy) and consideration about the enigmatic species Reduviasporonites chalastus. Rev. Palaeobot. Palynol. 218, 3–14 (2015).Article 

    Google Scholar 
    53.Thomas, B. M. et al. Unique marine Permian‐Triassic boundary section from Western Australia. Aust. J. Earth Sci. 51, 423–430 (2004).ADS 
    Article 

    Google Scholar 
    54.Schneebeli-Hermann, E. & Bucher, H. Palynostratigraphy at the Permian-Triassic boundary of the Amb section, Salt Range, Pakistan. Palynology 39, 1–18 (2015).Article 

    Google Scholar 
    55.Lei, Y. et al. Phytoplankton (acritarch) community changes during the Permian-Triassic transition in South China. Palaeogeog. Palaeoclimatol. Palaeoecol. 519, 84–94 (2019).ADS 
    Article 

    Google Scholar 
    56.Algeo, T. J. et al. Plankton and productivity during the Permian–Triassic boundary crisis: An analysis of organic carbon fluxes. Glob. Planet. Change 105, 52–67 (2013).ADS 
    Article 

    Google Scholar 
    57.van Soelen, E. E., Twitchett, R. J. & Kürschner, W. M. Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event. Climate 14, 441–453 (2018).
    Google Scholar 
    58.Kaiho, K. et al. Effects of soil erosion and anoxic–euxinic ocean in the Permian–Triassic marine crisis. Heliyon 2, e00137 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Bond, D. P. G. & Grasby, S. E. On the causes of mass extinctions. Palaeogeog. Palaeoclimatol. Palaeoecol. 478, 3–29 (2017).ADS 
    Article 

    Google Scholar 
    60.Lindström, S., Erlström, M., Piasecki, S., Nielsen, L. H. & Mathiesen, A. Palynology and terrestrial ecosystem change of the Middle Triassic to lowermost Jurassic succession of the eastern Danish Basin. Rev. Palaeobot. Palynol. 244, 65–95 (2017).Article 

    Google Scholar 
    61.Garel, S. et al. Paleohydrological and paleoenvironmental changes recorded in terrestrial sediments of the Paleocene–Eocene boundary (Normandy, France). Palaeogeog. Palaeoclimatol. Palaeoecol. 376, 184–199 (2013).ADS 
    Article 

    Google Scholar 
    62.van de Schootbrugge, B. & Gollner, S. In Ecosystem Paleobiology and Geobiology, The Paleontological Society Papers (eds Bush, A. M., Pruss, S. B. & Payne, J. L.) 19, 87–114 (The Paleontological Society, 2013).63.Mata, S. A. & Bottjer, D. J. Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 10, 3–24 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Peterffy, O., Calner, M. & Vajda, V. Early Jurassic microbial mats—a potential response to reduced biotic activity in the aftermath of the end-Triassic mass extinction event. Palaeogeog. Palaeoclimatol. Palaeoecol. 464, 76–85 (2016).ADS 
    Article 

    Google Scholar 
    65.Schoene, B. et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 3636, 862–866 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    66.Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Vajda, V., Ocampo, A., Ferrow, E. & Bender Koch, C. Nano particles as the primary cause for long-term sunlight suppression at high southern latitudes following the Chicxulub impact—evidence from ejecta deposits in Belize and Mexico. Gondwana Res. 27, 1079–1088 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Sepúlveda, J., Wendler, J. E., Summons, R. E. & Hinrichs, K.-U. Rapid resurgence of marine productivity after the Cretaceous-Paleogene mass extinction. Science 326, 129–132 (2009).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    69.Bralower, T. J. et al. Origin of a global carbonate layer deposited in the aftermath of the Cretaceous-Paleogene boundary impact. Earth Planet. Sci. Lett. 548, 116476 (2020).CAS 
    Article 

    Google Scholar 
    70.Schaefer, B. et al. Microbial life in the nascent Chicxulub crater. Geology 48, 328–332 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Milligan, J. N., Royer, D. L., Franks, P. J., Upchurch, G. R. & McKee, M. L. No evidence for a large atmospheric CO2 spike across the Cretaceous‐Paleogene boundary. Geophys. Res. Lett. 46, 3462–3472 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    72.Strother, P. K. & Wellman, C. H. The Nonesuch Formation Lagerstätte: a rare window into freshwater life one billion years ago. J. Geol. Soc. 178, jgs2020–jgs2133 (2021).Article 

    Google Scholar 
    73.Sepkoski, J. J., Bambach, R. K. & Droser, M. L. In Cycles and Events in Stratigraphy (eds Einsele, G., Ricken, W. & Seilacher, A.) 298–312 (Springer-Verlag, 1991).74.Tyson, R. V. Calibration of hydrogen indices with microscopy: a review, reanalysis and new results using the fluorescence scale. Org. Geochem. 37, 45–63 (2006).CAS 
    Article 

    Google Scholar 
    75.Benninghoff, W. S. Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities. Pollen et. Spores 4, 332–333 (1962).
    Google Scholar 
    76.Maher, L. J. Statistics for microfossil concentration measurements employing samples spiked with marker grains. Rev. Palaeobot. Palynol. 32, 153–191 (1981).Article 

    Google Scholar 
    77.Simpson, M. G. Plant Systematics (Academic Press, 2019).78.Evitt, W. R. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II. PNAS 49, 298–302 (1963).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Rampino, M. R. & Eshet, Y. The fungal and acritarch events as time markers for the latest Permian mass extinction: an update. Geosci. Front. 9, 147–154 (2018).Article 

    Google Scholar 
    80.Combaz, A. Les palynofaciès. Rev. Micropaléontol. 7, 205–218 (1964).
    Google Scholar 
    81.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).
    Google Scholar 
    82.Wei, W. & Algeo, T. J. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochim. Cosmochim. Acta 287, 341–366 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    83.Rowe, H., Hughes, N. & Robinson, K. The quantification and application of handheld energy-dispersive x-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry. Chem. Geol. 324–325, 122–131 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    84.Blakey, R. C. Global paleogeography and tectonics in deep time. https://deeptimemaps.com/global-series-details/. Accessed 16 June 2020 (2016).85.Zhuravlev, A. Y. & Wood, R. A. Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. Geology 24, 311–314 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    86.Zhang, W., Shi, X., Jiang, G., Tang, D. & Wang, X. Mass-occurrence of oncoids at the Cambrian Series 2–Series 3 transition: Implications for microbial resurgence following an Early Cambrian extinction. Gondwana Res. 28, 432–450 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    87.Vecoli, M. Fossil microphytoplankton dynamics across the Ordovician–Silurian boundary. Rev. Palaeobot. Palynol. 148, 91–107 (2008).Article 

    Google Scholar 
    88.Xie, S. et al. Contrasting microbial community changes during mass extinctions at the Middle/Late Permian and Permian/Triassic boundaries. Earth Planet. Sci. Lett. 460, 180–191 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    89.Eshet, Y., Rampino, M. R. & Visscher, H. Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology 23, 967–970 (1995).ADS 
    Article 

    Google Scholar 
    90.Richoz, S. et al. Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nat. Geosci. 5, 662–667 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    91.Lindström, S. et al. No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass extinction. Geology 40, 531–534 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    92.van de Schootbrugge, B. et al. End-Triassic calcification crisis and blooms of organic-walled “disaster species”. Palaeogeog. Palaeoclimatol. Palaeoecol. 244, 126–141 (2007).ADS 
    Article 

    Google Scholar 
    93.Slater, S. M., Twitchett, R. J., Danise, S. & Vajda, V. Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia. Nat. Geosci. 12, 462–467 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    94.Polgári, M. et al. Mineral and chemostratigraphy of a Toarcian black shale hosting Mn-carbonate microbialites (Úrkút, Hungary). Palaeogeog. Palaeoclimatol. Palaeoecol. 459, 99–120 (2016).ADS 
    Article 

    Google Scholar 
    95.Xu, W. et al. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event. Nat. Geosci. 10, 129–134 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    96.Kashiyama, Y. et al. Diazotrophic cyanobacteria as the major photoautotrophs during mid-Cretaceous oceanic anoxic events: nitrogen and carbon isotopic evidence from sedimentary porphyrin. Org. Geochem. 39, 532–549 (2008).CAS 
    Article 

    Google Scholar 
    97.Jarvis, I. et al. Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) oceanic anoxic event. Cretac. Res 9, 3–103 (1988).Article 

    Google Scholar 
    98.Layeb, M., Ben Fadhel, M., Layeb-Tounsi, Y. & Ben Youssef, M. First microbialites associated to organic-rich facies of the Oceanic Anoxic Event 2 (Northern Tunisia, Cenomanian–Turonian transition). Arab. J. Geosci. 7, 3349–3363 (2014).CAS 
    Article 

    Google Scholar 
    99.Pearce, M. A., Jarvis, I. & Tocher, B. A. The Cenomanian–Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: new insights from the dinocyst and geochemical records. Palaeogeog. Palaeoclimatol. Palaeoecol. 280, 207–234 (2009).ADS 
    Article 

    Google Scholar 
    100.Kuypers, M. M. M., Pancost, R. D., Nijenhuis, I. A. & Sinninghe Damsté, J. S. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography 17, 1051 (2002).ADS 
    Article 

    Google Scholar 
    101.Dodsworth, P., Eldrett, J. S. & Hart, M. B. Cretaceous Oceanic Anoxic Event 2 in eastern England: further palynological and geochemical data from Melton Ross. figshare https://doi.org/10.6084/m9.figshare.c.4987205.v3 (2020).102.Schwab, K. W., Bayliss, G. S., Smith, M. A. & Yoder, N. B. Mushroom and broccoli-head shaped algal fragments from the Eagle Ford Shale of south Texas and Coahuila, Mexico. Search and Discovery 70134 (2013).103.Lyson, T. R. et al. Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science 366, 977–983 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Scasso, R. A. et al. A high-resolution record of environmental changes from a Cretaceous-Paleogene section of Seymour Island. Antarctica. Palaeogeog. Palaeoclimatol. Palaeoecol. 555, 109844 (2020).ADS 
    Article 

    Google Scholar 
    105.Sosa-Montes de Oca, C. et al. Minor changes in biomarker assemblages in the aftermath of the Cretaceous-Paleogene mass extinction event at the Agost distal section (Spain). Palaeogeog. Palaeoclimatol. Palaeoecol. 569, 110310 (2021).ADS 
    Article 

    Google Scholar 
    106.Sluijs, A. et al. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature 450, 1218–1222 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Junium, C. K., Dickson, A. J. & Uveges, B. T. Perturbation to the nitrogen cycle during rapid Early Eocene global warming. Nat. Commun. 9, 3186 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    108.Pagani, M. et al. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature 442, 671–675 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Kender, S. et al. Marine and terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene–Eocene transition. Earth Planet. Sci. Lett. 353–354, 108–120 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    110.Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Tot. Environ. 409, 1739–1745 (2011).CAS 
    Article 

    Google Scholar  More

  • in

    A symbiotic aphid selfishly manipulates attending ants via dopamine in honeydew

    1.Darwin, C. On the origin of species. (D. Appleton and Co., 1871). https://doi.org/10.5962/bhl.title.28875.2.Thompson, J. N. Mutualistic webs of species. Science (80–) 312, 372–373 (2006).CAS 
    Article 

    Google Scholar 
    3.Bronstein, J. L. The exploitation of mutualisms. Ecol. Lett. 4, 277–287 (2001).Article 

    Google Scholar 
    4.Bshary, R. & Grutter, A. S. Experimental evidence that partner choice is a driving force in the payoff distribution among cooperators or mutualists: The cleaner fish case. Ecol. Lett. 5, 130–136 (2002).Article 

    Google Scholar 
    5.Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume–rhizobium mutualism. Nature 425, 78–81 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Heil, M., Barajas-Barron, A., Orona-Tamayo, D., Wielsch, N. & Svatos, A. Partner manipulation stabilises a horizontally transmitted mutualism. Ecol. Lett. 17, 185–192 (2014).Article 

    Google Scholar 
    7.Hindsbo, O. Effects of Polymorphus (Acanthocephala) on colour and behaviour of Gammarus lacustris. Nature 238, 333 (1972).ADS 
    Article 

    Google Scholar 
    8.Thomas, F., Renaud, F., de Meeus, T. & Poulin, R. Manipulation of host behaviour by parasites: Ecosystem engineering in the intertidal zone?. Proc. R. Soc. B Biol. Sci. 265, 1091–1096 (1998).Article 

    Google Scholar 
    9.Thomas, F. et al. Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts?. J. Evol. Biol. 15, 356–361 (2002).Article 

    Google Scholar 
    10.Kadoya, E. Z., Ishii, H. S. & Williams, N. M. Host manipulation of bumble bee queens by Sphaerularia nematodes indirectly affects foraging of non-host workers. Ecology 96, 1361–1370 (2015).Article 

    Google Scholar 
    11.Hojo, M. K., Pierce, N. E. & Tsuji, K. Lycaenid caterpillar secretions manipulate attendant ant behavior. Curr. Biol. 25, 2260–2264 (2015).CAS 
    Article 

    Google Scholar 
    12.Poulin, R., Brodeur, J. & Moore, J. Parasite manipulation of host behaviour: Should hosts always lose?. Oikos 70, 479 (1994).Article 

    Google Scholar 
    13.Heil, M. et al. Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. Proc. Natl. Acad. Sci. USA. 106, 18091–18096 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Watanabe, S., Murakami, T., Yoshimura, J. & Hasegawa, E. Color polymorphism in an aphid is maintained by attending ants. Sci. Adv. 2, (2016).15.Watanabe, S., Yoshimura, J. & Hasegawa, E. Ants improve the reproduction of inferior morphs to maintain a polymorphism in symbiont aphids. Sci. Rep. 8, (2018).16.Sakata, H. Density-dependent predation of the ant Lasius niger (Hymenoptera: Formicidae) on two attended aphids Lachnus tropicalis and Myzocallis kuricola (Homoptera: Aphididae). Res. Popul. Ecol. (Kyoto) 37, 159–164 (1995).Article 

    Google Scholar 
    17.Evans, P. D. Biogenic Amines in the insect nervous system. Adv. In Insect Phys. 15, 317–473 (1980).CAS 
    Article 

    Google Scholar 
    18.Aonuma, H. & Watanabe, T. Octopaminergic system in the brain controls aggressive motivation in the ant Formica japonica. Acta Biol. Hung. 63, 63–68 (2012).Article 

    Google Scholar 
    19.Stevenson, P. A., Dyakonova, V., Rillich, J. & Schildberger, K. Octopamine and experience-dependent modulation of aggression in crickets. J. Neurosci. 25, 1431–1441 (2005).CAS 
    Article 

    Google Scholar 
    20.Kostowski, W. & Tarchalska, B. The effects of some drugs affecting brain 5-HT on the aggressive behaviour and spontaneous electrical activity of the central nervous system of the ant Formica rufa. Brain Res. 38, 143–149 (1972).CAS 
    Article 

    Google Scholar 
    21.Szczuka, A. et al. The effects of serotonin, dopamine, octopamine and tyramine on behavior of workers of the ant Formica polyctena during dyadic aggression tests. Acta Neurobiol. Exp. (Wars) 73, 495–520 (2013).
    Google Scholar 
    22.Way, M. J. Mutualism between ants and honeydew-producing homoptera. Annu. Rev. Entomol. 8, 307–344 (1963).Article 

    Google Scholar 
    23.Hafer-Hahmann, N. Behavior out of control: Experimental evolution of resistance to host manipulation. Ecol. Evol. 9, 7237–7245 (2019).Article 

    Google Scholar 
    24.Martinez, J., Fleury, F. & Varaldi, J. Heritable variation in an extended phenotype: The case of a parasitoid manipulated by a virus. J. Evol. Biol. 25, 54–65 (2012).Article 

    Google Scholar 
    25.Engelstädter, J. & Hurst, G. D. D. The ecology and evolution of microbes that manipulate host reproduction. Annu. Rev. Ecol. Evol. Syst. 40, 127–149 (2009).Article 

    Google Scholar 
    26.Rosenthal, G. G. & Servedio, M. R. Chase-away sexual selection: Resistance to ‘resistance’. Evolution (N.Y.) 53, 296 (1999).
    Google Scholar 
    27.Woodring, J., Wiedemann, R., Fischer, M. K., Hoffmann, K. H. & Völkl, W. Honeydew amino acids in relation to sugars and their role in the establishment of ant-attendance hierarchy in eight species of aphids feeding on tansy (Tanacetum vulgare). Physiol. Entomol. 29, 311–319 (2004).CAS 
    Article 

    Google Scholar 
    28.Stadler, B. & Dixon, A. F. G. Ecology and evolution of aphid-ant interactions. Annu. Rev. Ecol. Evol. Syst. 36, 345–372 (2005).Article 

    Google Scholar 
    29.Tsuji, K. & Dobata, S. Social cancer and the biology of the clonal ant Pristomyrmex punctatus (Hymenoptera: Formicidae). Myrmecological News 15, 91–99 (2011).
    Google Scholar 
    30.Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).Article 

    Google Scholar 
    31.Agawa, H. & Kawata, M. The effect of color polymorphism on mortality in the aphid Macrosiphoniella yomogicola. Ecol. Res. 10, 301–306 (1995).Article 

    Google Scholar 
    32.Watanabe, S., Murakami, Y. & Hasegawa, E. Effects of attending ant species on the fate of colonies of an aphid, Macrosiphoniella yomogicola (Matsumura) (Homoptera: Aphididae), in an ant-aphid symbiosis. Entomol. News 128, 325 (2019).Article 

    Google Scholar 
    33.Wada-Katsumata, A., Yamaoka, R. & Aonuma, H. Social interactions influence dopamine and octopamine homeostasis in the brain of the ant Formica japonica. J. Exp. Biol. 214, 1707–1713 (2011).CAS 
    Article 

    Google Scholar 
    34.Aonuma, H. & Watanabe, T. Changes in the content of brain biogenic amine associated with early colony establishment in the queen of the ant, formica japonica. PLoS One 7, (2012).35.Aonuma, H. Serotonergic control in initiating defensive responses to unexpected tactile stimuli in the trap-jaw ant Odontomachus kuroiwae. J. Exp. Biol. 223, jeb228874 (2020).Article 

    Google Scholar 
    36.R Core Team. R: A Language and Environment for Statistical Computing. (2020).37.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    38.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).39.Hothorn, T. & Hornik, K. exactRankTests: Exact Distributions for Rank and Permutation Tests. (2019). More

  • in

    The cichlid oral and pharyngeal jaws are evolutionarily and genetically coupled

    Macro- and micro-evolutionary integration between jaw complexesWe examined phenotypic associations between the lower oral and pharyngeal jaws (LOJ and LPJ, respectively) of 88 cichlid species from across Africa, primarily sampling from lakes in the East African Rift Valley: lakes Malawi, Tanganyika, and Victoria (Supplementary Data 1). We characterized jaw shapes based on 107 individuals using 3D geometric morphometrics by placing landmarks in positions that capture functionally (e.g., bony processes, sutures, etc.) and developmentally (e.g., distinct cellular origins) important aspects of morphology, including placing mirrored landmarks across midlines to gain symmetric configurations (Fig. 1e, Supplementary Fig. 1). We conducted a Procrustes superimposition, removed the effects of allometry to account for size differences, and then removed the effects of asymmetry to account for developmental noise. We performed a two-block partial least squares (PLS) analysis on the species mean landmark configurations and corrected for phylogenetic non-independence using a Bayesian time-calibrated tree31. We found the LOJ and LPJ were evolutionarily correlated (r-PLS = 0.482, P = 0.002, effect size (Z) = 2.585), but some taxa, particularly those with unique diets and/or modes of feeding, appeared to deviate from the best-fit line, indicating lower levels (or different patterns) of integration between jaws (Fig. 2a). Indeed, we found numerous taxa, typically from Lake Malawi, whereby covariation between the LOJ and LPJ appeared much different relative to other African cichlids. Taxa placed far from the best-fit line either (1) exhibited a specialized feeding morphology to better exploit an foraging niche shared with many competitors (i.e., Labeotropheus, algae; Copadichromis, zooplankton; Taeniolethrinops, insects), or (2) exhibited a specialized feeding morphology to take advantage of a more challenging food source (i.e., Trematocranus, snails). However, not all taxa that consume specialized prey were far from the best-fit line; Pungu, (primarily a sponge-feeder) and Perissodus (a scale-feeder), while exhibiting specialized feeding apparatuses to consume such prey, exhibited a relationship between their LOJ and LPJ that was in-line with other African cichlids (Supplementary Fig. 2). We also noted, that while Malawi cichlids exhibit a range of LOJ-LPJ relationships (from weak to strong), most Tanganyikan cichlids reside close to the best-fit line. However, when we examine the strength of integration in the Tanganyika group (n = 29, r-PLS = 0.698, P = 0.001, Z = 2.954) and Malawi group (n = 40, r-PLS = 0.541, P = 0.020, Z = 2.155), despite Tangyanika cichlids exhibiting higher Z-scores, consistent with stronger integration, a statistical comparison between groups finds no significant difference (Z pairwise = 1.188, P = 0.235). Comparisons between Tanganyikan and Malawi cichlids should not be influenced by sampling bias, as principal components analyses (PCA) on the LOJ and LPJ landmark data (Supplementary Data 2 and 3) showed that our sampling of Tanganyikan cichlids includes many species with extreme morphologies that reside at the outer edges of LOJ and LPJ morphospace (Supplementary Fig. 3). Indeed, cichlids from Lake Tanganyika exhibited similar LOJ morphological disparity (Malawi Procrustes variance (PV) = 0.074; Tanganyika PV = 0.057, P = 0.253) and greater LPJ morphological disparity (Malawi PV = 0.015; Tanganyika PV = 0.023, P = 0.012), relative to cichlids from Lake Malawi. Taken together, this indicates that while Tanganyikan cichlids exhibit comparable (i.e., LOJ), or greater (i.e., LPJ) morphological variation compared to Malawi cichlids, covariation between LOJ and LPJ shapes was generally similar between groups.Fig. 2: Phylogenetic two-block partial least squares analysis to assess macroevolutionary associations between lower oral and pharyngeal jaws.a Jaw shape associations across a broad sample of African cichlids (n = 88). Taxa from Lake Malawi are placed into two groups based on phylogenetic position: an mbuna ‘rock-dwellers’ group, and a non-mbuna group consisting of the utaka ‘sand-dwellers’ alongside other benthic species88. b Jaw shape associations across the Tropheops sp. species complex from across a depth gradient (n = 22). Oral and pharyngeal jaw wireframes denote morphologies at either end of the correlational axis. Source data are provided as a Source Data file.Full size imageWe next investigated the degree of integration at lower taxonomic levels. First, we analyzed the jaws of cichlids within the Tropheops species complex from Lake Malawi that is diverse and known to partition habitat by depth32,33. While Tropheops exhibited strong integration between jaws in on our macroevolutionary assessment, species within this genus occupy a broader niche space. Investigating integration within such a species complex provided an opportunity to understand whether habitat differences could lead to differences in integration between jaw complexes. Using the same landmarking procedure as described above, we characterized shape variation in the LOJs and LPJs of 22 wild-caught Tropheops taxa from 60 individuals, concentrating on members from localities across the southern portion of Lake Malawi (Supplementary Data 4). We again performed a two-block PLS analysis on the mean landmark configurations and accounted for phylogenetic non-independence using an amplified fragment length polymorphism tree33. Again, we found the LOJ and LPJ were evolutionarily correlated (r-PLS = 0.795, P = 0.006, Z = 2.521), indicating jaw integration does not appear to vary by habitat (Fig. 2b).Finally, we measured and compared integration between a species pair that exhibited relatively strong versus weak covariation between LOJ and LPJ shapes in our macroevolutionary assessments, Tropheops sp. ‘red cheek’ (TRC, relatively stronger integration) and Labeotropheus fuelleborni (LF, relatively weaker integration). Using the same landmarking protocol we performed separate two-block PLS analyses between LOJs and LPJs of LF and TRC (Supplementary Data 5). Notably, we found strong and significant integration between jaw complexes in TRC (n = 11, r-PLS = 0.957, P = 0.001, Z = 3.038; Fig. 3a) relative to LF (n = 17, r-PLS = 0.669, P = 0.22, Z = 0.794; Fig. 3b). Further, we found the effect sizes of jaw integration within TRC and LF to be statistically distinct (Z pairwise = 1.678, P = 0.047). Altogether, our data support the assertion that the LOJ and LPJ are evolutionarily integrated at multiple taxonomic levels, but they also appear to indicate that certain taxa, such as Labeotropheus, can more readily generate adaptive morphological variation in each jaw complex independently.Fig. 3: Two-block partial least squares analysis to assess microevolutionary associations between lower oral and pharyngeal jaws.a Shape associations among Tropheops sp. “red cheek” (TRC) individuals (n = 11). b Shape associations among Labeotropheus fuelleborni (LF) individuals (n = 17). c Shape associations among members of a hybrid cross between TRC and LF (n = 409). Oral and pharyngeal jaw wireframes denote morphologies at either end of the correlational axis. Source data are provided as a Source Data file.Full size imageGenetic basis for oral and pharyngeal jaw shape covariationTo understand whether phenotypic covariation between the LOJ and LPJ is genetically determined we performed a quantitative trait loci (QTL) analysis to identify prospective genomic regions involved in jaw shape variation for both the LOJ and LPJ. Specifically, we extended an existing genetic cross between the more strongly integrated TRC and the more weakly integrated LF to the F5 generation. Details of the pedigree may be found in34 and in the supplement. For this experiment, we genotyped 636 F5 hybrids and produced a genetic map containing 812 single-nucleotide polymorphisms (SNPs) spread across 24 linkage groups (Supplementary Data 6). With a total length of 1431 cM, our high-resolution linkage map contained a marker every 1.83 cM, on average, allowing us to leverage the increased number of recombination events that occurred to reach an F5 population. We then characterized LOJ and LPJ shape in 409 F5 hybrids using the same landmarking scheme described above, and performed a two-block PLS analysis. In concordance with our findings from natural populations, we documented an association between jaw complexes in this laboratory pedigree (r-PLS = 0.491, P = 0.001, effect size = 6.189; Fig. 3c).We next performed a PCA on the hybrid landmark configurations to distill the data down to a series of orthogonal axes that best explain shape variation among individuals. We extracted the first two PCs from the LOJ and LPJ as each axis represented more than 10% of the shape variation (Supplementary Data 7; Supplementary Figs. 4 and 5). The first axis of the LOJ reflected more general variation in depth, width, and length of the element (41.8% of variation), while the second axis reflected more specific variation in the length of the ascending arm of the articular––the process for which jaw closing muscles attach (12.7% of variation). The first axis of the LPJ reflected width, length, and wing process size (33.7% of variation), while the second axis reflected depth and the size of the anterior keel – the process for which the pharyngeal jaw pharyngohyoideus muscle attaches and controls jaw adduction (14.2% of variation). We then utilized these PC scores as traits to run in our QTL analyses to investigate the genetic basis for variation in these structures.QTL mapping implicates pleiotropic control of LOJ and LPJ shape variationIntegration between LOJ and LJP shapes in the F5 predicts that this pattern of covariation will be reflected in the genotype-phenotype map. Specifically, we predict that we will find overlapping QTL for both jaws. We used a multiple QTL mapping (MQM) approach to test this prediction. Specifically, we performed QTL scans for all four traits and quantitatively assessed the evidence for significant QTL marker(s) using a permutation procedure that reshuffles the phenotypic data relative to genotypic data 1000 times to generate a null distribution, disassociating any possible relationship between genotype and phenotype, to then compare the empirical distribution against35. Once candidate QTL markers were identified, we calculated an approximate Bayesian credible interval to determine the region in which a potential candidate locus would reside. We uncovered a total of five QTL for LOJ traits, and four QTL for LPJ traits (Fig. 4a; Supplementary Data 8). While most QTL localize to different linkage groups, we also identified some QTL that colocalized. Two traits (LOJ PC1, LPJ PC1) share a marker on LG4, while three traits (LOJ PC1, LOJ PC2, LPJ PC1) colocalized to the same markers on LG7. These data are consistent with pleiotropy on LG7 and possibly LG4.Fig. 4: Genetic analyses to identify regions of the genome responsible for major changes in jaw shape.All plots are based on 409 LFxTRC F5 hybrids. a QTL analysis to identify positions in the genome most associated with each trait. b Pleiotropy analysis on linkage group seven to determine whether the oral jaw PC1 trait colocalizes to the same region as the pharyngeal jaw PC1 trait. Significance was determined using a likelihood ratio test (LLRT). c Pleiotropy analysis on linkage group seven to determine whether the oral jaw PC2 trait colocalizes to the same region as the pharyngeal jaw PC1 trait. Significance was determined using a LLRT. d Fine mapping all traits across the entirety of LG7. Values furthest from 0 reflect the largest differences between hybrids with LF and TRC genotypes at a given marker. We find peak genotype-phenotype association at ~50 mb that coincides with our Bayes credible interval (grey bar). Intervals that surround the average phenotypic effect line denote standard error of the mean. e Fine mapping all traits across the Bayes credible interval. Population level genetic diversity (FST) data are applied to the map (black dots) with the opacity of each SNP dependent on the degree of segregation between LF and TRC, with those falling above an empirical Z-score threshold of 0.6 determined to be significant, and those above 0.9 deemed highly significant (green lines). Within the credible interval there are four SNPs with FST values of 1.0, but a single SNP that falls within a genotype-phenotype peak residing within an intron of dym (black circle). Source data are provided as a Source Data file.Full size imageWe then quantitatively assessed the evidence for pleiotropy using a likelihood ratio test (LLRT) to compare the null hypothesis of a common pleiotropic QTL to the alternative hypothesis that they are affected by separate QTL36,37. The overlap on LG4 at a single marker (43.57 cM) was deemed significant (LLRT = 1.85, P = 0.03), indicating that we can reject the null hypothesis and that these peaks likely represent separate QTL for each trait (Supplementary Fig. 6). The three traits that overlap on LG7 spanned two markers (19.12 cM–28.04 cM) and were all deemed non-significant (LOJpc1-LPJpc1: LLRT = 0.02, P = 0.66, Fig. 4b; LOJpc2-LPJpc1: LLRT = 0.20, P = 0.41, Fig. 4c), leading us to accept the null hypothesis and conclude that this interval likely contains a single pleiotropic QTL. Whether a single gene, or multiple closely linked genes drive this pleiotropic signal requires a fine-mapping approach.Notably, this locus on LG7 has been implicated previously in underlying LOJ and LPJ shape in another Lake Malawi cichlid cross between LF and Maylandia zebra38,39. Maylandia species, like Tropheops, were generally more integrated in our macroevolutionary analysis (Fig. 2a), and thus another cross between LF and a species with higher integration values point to the same locus. This suggests that the genetic mechanism of integration may be conserved.Fine mapping identifies two candidate genes critical for bone formationTo gain insights into which gene(s) may be pleiotropically regulating LOJ and LPJ jaw shape variation on LG7 we constructed a fine map with greater marker density to investigate genotype-phenotype associations with greater resolution. To that end, we anchored QTL intervals to particular stretches of physical sequence of the Maylandia zebra genome40. We then identified additional RAD-seq SNPs across the linkage group of interest and genotyped them in the F5. Based on this we created two fine maps: the first spanned the entirety of LG7 group with an average spacing of around one marker every 490 kb (Supplementary Data 9), the second matched the QTL marker range revealed by the Bayesian credible interval analysis with an average spacing of around one marker every 180 kb (Supplementary Data 10). We also calculated FST from a panel of wild-caught LF (n = 20) and TRC (n = 20), and primarily focused on FST values of 1.0 that would indicate complete segregation of a SNP between LF and TRC. At every marker on our LG7 fine maps, we calculated the difference in the values of our three colocalized traits between those hybrids homozygous for the LF allele and those homozygous for the TRC allele.We identified a small region on LG7 that exhibited large differences in the average phenotypic effect of those hybrids with either LF or TRC alleles. In our full LG7 map we identified a ~2 mb region (46.7 mb–48.7 mb) that peaked in all three traits (Fig. 4d; Supplementary Data 11). Notably, the traces of all three traits across our LG7 fine maps track together in an almost identical fashion. In our fine map that centered on the Bayes credible interval, we found evidence for both large phenotypic effects among all traits, and the presence of several FST markers approaching or equal to 1.0 (Fig. 4e; Supplementary Data 12). One marker combined an FST score of 1.0, indicating complete segregation of that allele between LF and TRC, with high average phenotypic effects across all traits (Supplementary Fig. 7). This SNP fell within an intron of dymeclin (dym), a gene that is necessary for correct organization of Golgi apparatus and controls endochondral bone formation during early development. Dym is critical for chondrocyte development and previous research using the zebrafish model found an expression pattern that spanned the presumptive mandibular and ceratobranchial regions at larval stages41. Mutations in this gene lead to profound effects on the size and shape of bones due to misregulated chondrocyte development42. Just downstream (8 kb, Supplementary Fig. 7) of dym is mothers against decapentaplegic homolog 7 (smad7), an antagonist of both TGF-β and BMP signaling and a suppressor of bone formation. As an inhibitory Smad, smad7 negatively regulates genes from the BMP and TGF-β signaling pathways (i.e., bmp-2, -4, -7, nodal, etc.) that are known to shape phenotypic differences in the craniofacial skeleton across a wide range of taxa including cichlids25,38,43, Geospiza finches44,45, and Anolis lizards46, primarily because these genes have the capacity to influence size in structures of trophic importance such as the mandible47. Both of these genes represent good candidates for controlling shape variation in the LOJ and the LPJ simultaneously. While two of the three traits peak at the dym SNP, when considering markers just outside the credible interval another peak is visible (especially for LOJ PC1) that sits close to notch1a, a gene involved in skeletal development and homeostasis. Notch1a is flanked by two fully segregated FST markers. The upstream marker is around ~60 kb from the promoter region, while the downstream marker resides around ~52 kb away from the gene within an intron of kcnt1, a gene involved in potassium channel development that appears to regulate brain function48. While kcnt1 reflects a poor candidate gene for our analysis, the intronic SNP could act as a distant enhancer of notch1a. Thus, given the combined results from QTL and fine-mapping, dym and smad7 represent strong candidates, but we cannot rule out notch1a.Correlated expression of key genes between LOJ and LPJWe used quantitative real-time PCR (qPCR) to assess and compare the expression levels of dym, smad7, and notch1a in the LOJ and LPJ of three mbuna genera from lake Malawi (Tropheops n = 6, Labeotropheus n = 8, Maylandia n = 8). We used Labeotropheus and Tropheops to complement our quantitative genetic analysis, and all three taxa were represented in our phenotypic assessments of integration, permitting a comparison between macroevolutionary associations of the LOJ and LPJ with the underlying genetic architecture and expression for jaw complex correlation. We collected tissue samples from young juveniles of these four taxa, taking the LOJ and LPJ, alongside the caudal fin to act as an internal control, and performed a phenol/chloroform RNA extraction. We designed primers with high amplification efficiency ( >90%) for our three genes (Supplementary Data 13), and used β-actin as our control gene. We calculated relative expression of the LOJ and LPJ using the 2-ΔΔCT method49, and compared expression across taxa and between tissues (Supplementary Data 14 and 15).We initially compared tissue level expression levels between Labeotropheus and Tropheops and found small differences in dym expression, with LF typically exhibiting slightly higher levels (t-test LOJ t = 2.863, P = 0.014; LPJ t = 1.212, P = 0.249; Fig. 5a). These results are consistent with previous expression studies that demonstrated how Labeotropheus typically has up-regulated bone and collagen markers and as a consequence has greater bone deposition and a more robust craniofacial skeleton50,51. Expression level differences were also noted for notch1a and smad7 (Fig. 5b-c); both showed reduced expression in LF, which is expected based on each genes role as negative regulators of bone formation52,53. While the differences between species were fairly small in smad7 between taxa (t-test LOJ t = −1.869, P = 0.086; LPJ t = −0.359, P = 0.726), they were more notable in notch1a (t-test LOJ t = −1.947, P = 0.080; LPJ t = −3.221, P = 0.009). Notch1a is involved in skeletal remodeling, previous research has shown LF exhibits a minimal plastic response to environmental stimuli51. Thus, the relatively low expression of notch1a in Labeotropheus compared to Tropheops is consistent with this observation. While only representing a single life-history stage, the expression differences between species suggest that all three genes may underlie the development of species-specific shapes for the LOJ and/or LPJ. However, visualizing the data this way cannot speak to whether one or more of these loci underlie the covariation of the jaws.Fig. 5: Comparing expression levels of dym, smad7, and notch1a via qPCR in the oral and pharyngeal jaws.a dym bar plot; (b) notch1a bar plot; (c), smad7 bar plot; (d), dym scatter plot; (e), notch1a scatter plot; (f), smad7 scatter plot. a–c bar plots depict mean relative expression levels, error bars denote standard error. d–f Scatterplots depict relative expression levels of the LOJ and LPJ, error bounds surrounding the linear regression line denote standard error. e inset, linear regression for each genus. Three cichlid taxa were included: Labeotropheus n = 8, Tropheops n = 6, Maylandia n = 8. Bar plot significance determined via t-tests: ●P  More

  • in

    Neofunctionalization of an ancient domain allows parasites to avoid intraspecific competition by manipulating host behaviour

    1.Gause, G. F. & Witt, A. A. Behavior of mixed populations and the problem of natural selection. Am. Nat. 69, 596–609 (1935).Article 

    Google Scholar 
    2.Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).Article 

    Google Scholar 
    3.Ayala, F. J. Experimental invalidation of the principle of competitive exclusion. Nature 224, 1076–1079 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Bengtsson, J. Interspecific competition increases local extinction rate in a metapopulation system. Nature 340, 713–715 (1989).ADS 
    Article 

    Google Scholar 
    5.Bolnick, D. I. Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature 410, 463–466 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Collins, S. Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc. Biol. Sci. 278, 247–255 (2011).PubMed 

    Google Scholar 
    7.Osmond, M. M. & de Mazancourt, C. How competition affects evolutionary rescue. Philos. Trans. R. Soc. B 368, 20120085 (2013).Article 

    Google Scholar 
    8.Birch, L. C. Selection in Drosophila pseudoobscura in relation to crowding. Evolution 9, 389–399 (1955).Article 

    Google Scholar 
    9.Martin, M. J., Perez-Tome, J. M. & Toro, M. A. Competition and genotypic variability in Drosophila melanogaster. Heredity 60, 119–123 (1988).PubMed 
    Article 

    Google Scholar 
    10.Harvey, J. A., Poelman, E. H. & Tanaka, T. Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 58, 333–351 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Pennacchio, F. & Strand, M. R. Evolution of developmental strategies in parasitic hymenoptera. Annu. Rev. Entomol. 51, 233–258 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Van Alphen, J. J. & Visser, M. E. Superparasitism as an adaptive strategy for insect parasitoids. Annu. Rev. Entomol. 35, 59–79 (1990).PubMed 
    Article 

    Google Scholar 
    13.Varaldi, J. et al. Infectious behavior in a parasitoid. Science 302, 1930–1930 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Dorn, S. & Beckage, N. E. Superparasitism in gregarious hymenopteran parasitoids: ecological, behavioural and physiological perspectives. Physiol. Entomol. 32, 199–211 (2007).Article 

    Google Scholar 
    15.Gandon, S., Rivero, A. & Varaldi, J. Superparasitism evolution: adaptation or manipulation? Am. Nat. 167, E1–E22 (2006).PubMed 
    Article 

    Google Scholar 
    16.Speirs, D. C., Sherratt, T. N. & Hubbard, S. F. Parasitoid diets: does superparasitism pay? Trends Ecol. Evol. 6, 22–25 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Tracy Reynolds, K. & Hardy, I. C. Superparasitism: a non-adaptive strategy? Trends Ecol. Evol. 19, 347–348 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Pan, M., Liu, T. & Nansen, C. Avoidance of parasitized host by female wasps of Aphidius gifuensis (Hymenoptera: Braconidae): the role of natal rearing effects and host availability? Insect Sci. 25, 1035–1044 (2018).PubMed 
    Article 

    Google Scholar 
    19.Potting, R. P. J., Snellen, H. M. & Vet, L. E. M. Fitness consequences of superparasitism and mechanism of host discrimination in the stem borer parasitoid Cotesia flavipes. Entomol. Exp. Appl. 82, 341–348 (1997).Article 

    Google Scholar 
    20.Mackauer, B. B. Influence of superparasitism on development rate and adult size in a solitary parasitoid wasp, Aphidius ervi. Funct. Ecol. 6, 302–307 (1992).Article 

    Google Scholar 
    21.Keasar, T. et al. Costs and consequences of superparasitism in the polyembryonic parasitoid Copidosoma koehleri (Hymenoptera: Encyrtidae). Ecol. Entomol. 31, 277–283 (2006).Article 

    Google Scholar 
    22.Silva-Torres, C. S. A., Ramos, I. T., Torres, J. B. & Barros, R. Superparasitism and host size effects in Oomyzus sokolowskii, a parasitoid of diamondback moth. Entomol. Exp. Appl. 133, 65–73 (2009).Article 

    Google Scholar 
    23.Wylie, H. G. Delayed development of Microctonus vittatae (Hymenoptera: Braconidae) in superparasitized adults of Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Can. Entomol. 115, 441–442 (1983).Article 

    Google Scholar 
    24.White, J. A. & Andow, D. A. Benefits of self-superparasitism in a polyembryonic parasitoid. Biol. Control 46, 133–139 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Yamada, Y. Y. & Sugaura, K. Evidence for adaptive self-superparasitism in the dryinid parasitoid Haplogonatopus atratus when conspecifics are present. Oikos 103, 175–181 (2003).Article 

    Google Scholar 
    26.Varaldi, J., Fouillet, P., Bouletreau, M. & Fleury, F. Superparasitism acceptance and patch-leaving mechanisms in parasitoids: a comparison between two sympatric wasps. Anim. Behav. 69, 1227–1234 (2005).Article 

    Google Scholar 
    27.Varaldi, J., Patot, S., Nardin, M. & Gandon, S. A virus-shaping reproductive strategy in a Drosophila parasitoid. Adv. Parasitol. 70, 333–363 (2009).PubMed 
    Article 

    Google Scholar 
    28.Carton, Y., Bouletreau, M., van Alphen, J. J. M. & van Lenteren, J. C. The Drosophila parasitic wasps. in The Genetics and Biology of Drosophila (eds Ashburner, M., Carson, H. L. & Thompson, J. N.) 347–394 (Academic Press, 1986).29.Kacsoh, B. Z., Lynch, Z. R., Mortimer, N. T. & Schlenke, T. A. Fruit flies medicate offspring after seeing parasites. Science 339, 947–950 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Krzemien, J. et al. Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446, 325–328 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Kraaijeveld, A. R. & Godfray, H. C. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389, 278–280 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Hwang, R. Y. et al. Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr. Biol. 17, 2105–2116 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Mortimer, N. T. et al. Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity. Proc. Natl Acad. Sci. USA 110, 9427–9432 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Huang, J. et al. Two novel venom proteins underlie divergent parasitic strategies between a generalist and a specialist parasite. Nat. Commun. 12, 234 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Martinson, E. O., Mrinalini, Kelkar, Y. D., Chang, C. H. & Werren, J. H. The evolution of venom by co-option of single-copy genes. Curr. Biol. 27, 2007–2013 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell. Dev. Biol. 21, 247–269 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Moon, S. Y. & Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13, 13–22 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Xu, J. et al. RhoGAPs attenuate cell proliferation by direct interaction with p53 tetramerization domain. Cell Rep. 3, 1526–1538 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Hinge, A. et al. p190-B RhoGAP and intracellular cytokine signals balance hematopoietic stem and progenitor cell self-renewal and differentiation. Nat. Commun. 8, 14382 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Werner, E. GTPases and reactive oxygen species: switches for killing and signaling. J. Cell Sci. 117, 143–153 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Bailey, A. P. et al. Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell 163, 340–353 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Boguski, M. S. & McCormick, F. Proteins regulating Ras and its relatives. Nature 366, 643–654 (1993).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Rittinger, K. et al. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature 388, 693–697 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Outreman, Y., Le Ralec, A., Plantegenest, M., Chaubet, B. & Pierre, J. S. Superparasitism limitation in an aphid parasitoid: cornicle secretion avoidance and host discrimination ability. J. Insect Physiol. 47, 339–348 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Hofsvang, T. Discrimination between unparasitized and parasitized hosts in hymenopterous parasitoids. Acta Entomol. Bohemosl 87, 161–175 (1990).
    Google Scholar 
    47.van Lenteren, J. C. in Semiochemicals: Their Role in Pest Control (eds Nordlund, D. A., Jones, R. L. & Lewis, W. J.) 153–179 (Wiley and Sons, 1981).48.Ganesalingam, V. K. Mechanism of discrimination between parasitized and unparasitized hosts by Venturia canescens (hymenoptera: Ichneumonidae). Entomol. Exp. Appl. 17, 36–44 (2011).Article 

    Google Scholar 
    49.Hoffmeister, T. S. & Roitberg, B. D. To mark the host or the patch: decisions of a parasitoid searching for concealed host larvae. Evol. Ecol. 11, 145–168 (1997).Article 

    Google Scholar 
    50.Agboka, K. et al. Self-, intra-, and interspecific host discrimination in Telenomus busseolae Gahan and T. isis Polaszek (Hymenoptera: Scelionidae), sympatric egg parasitoids of the African cereal stem borer Sesamia calamistis Hampson (Lepidoptera: Noctuidae). J. Insect Behav. 15, 1–12 (2002).Article 

    Google Scholar 
    51.Liang, Q., Jia, Y. & Liu, T. Self- and conspecific discrimination between unparasitized and parasitized green peach aphid (Hemiptera: Aphididae), by Aphelinus asychis (Hymenoptera: Aphelinidae). J. Econ. Entomol. 110, 430–437 (2017).PubMed 

    Google Scholar 
    52.Gandon, S., Varaldi, J., Fleury, F. & Rivero, A. Evolution and manipulation of parasitoid egg load. Evolution 63, 2974–2984 (2009).PubMed 
    Article 

    Google Scholar 
    53.Hughes, D. P. & Libersat, F. Neuroparasitology of parasite-insect associations. Annu. Rev. Entomol. 63, 471–487 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Sberro, H. et al. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell 178, 1245–1259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Zuzarte-Luis, V. & Mota, M. M. Parasite sensing of host nutrients and environmental cues. Cell Host Microbe 23, 749–758 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Cox, F. E. G. Parasites affect behavior of mice. Nature 294, 515–515 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Elya, C. et al. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. eLife 7, e34414 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Hoover, K. et al. A gene for an extended phenotype. Science 333, 1401–140 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Mcallister, M. K. & Roitberg, B. D. Adaptive suicidal-behavior in pea aphids. Nature 328, 797–799 (1987).ADS 
    Article 

    Google Scholar 
    60.Maure, F., Brodeur, J., Droit, A., Doyon, J. & Thomas, F. Bodyguard manipulation in a multipredator context: different processes, same effect. Behav. Process. 99, 81–86 (2013).Article 

    Google Scholar 
    61.Mohan, P. & Sinu, P. A. Parasitoid wasp usurps its host to guard its pupa against hyperparasitoids and induces rapid behavioral changes in the parasitized host. PLoS ONE 12, e0178108 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Muller, C. B. & Schmidhempel, P. Exploitation of cold temperature as defense against parasitoids in bumblebees. Nature 363, 65–67 (1993).ADS 
    Article 

    Google Scholar 
    63.Noubade, R. et al. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature 509, 235–239 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Louradour, I. et al. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. eLife 6, e25496 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Sinenko, S. A., Shim, J. & Banerjee, U. Oxidative stress in the haematopoietic niche regulates the cellular immune response in. Drosoph. EMBO Rep. 13, 83–89 (2012).CAS 
    Article 

    Google Scholar 
    66.Wang, Y. et al. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217, 1915–1928 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Colinet, D. et al. Extracellular superoxide dismutase in insects: characterization, function, and interspecific variation in parasitoid wasp venom. J. Biol. Chem. 286, 40110–40121 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Colinet, D. et al. Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. Insect Biochem. Mol. Biol. 43, 601–611 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Carton, Y., Frey, F. & Nappi, A. Genetic determinism of the cellular immune reaction in Drosophila melanogaster. Heredity 69, 393–399 (1992).PubMed 
    Article 

    Google Scholar 
    70.Colinet, D., Schmitz, A., Depoix, D., Crochard, D. & Poirie, M. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog. 3, 2029–2037 (2007).CAS 
    Article 

    Google Scholar 
    71.Colinet, D. et al. The origin of intraspecific variation of virulence in an eukaryotic immune suppressive parasite. PLoS Pathog. 6, e1001206 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Schlenke, T. A., Morales, J., Govind, S. & Clark, A. G. Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathog. 3, 1486–1501 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    73.Anderl, I. et al. Transdifferentiation and proliferation in two distinct hemocyte lineages in Drosophila melanogaster larvae after wasp infection. PLoS Pathog. 12, e1005746 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.Forbes, A. A. et al. Revisiting the particular role of host shifts in initiating insect speciation. Evolution 71, 1126–1137 (2017).PubMed 
    Article 

    Google Scholar 
    75.Allio, R. et al. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 12, 354 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).PubMed 
    Article 

    Google Scholar 
    77.Svanbäck, R. & Bolnick, D. I. Intraspecific competition drives increased resource use diversity within a natural population. P. Roy. Soc. B-Biol. Sci. 274, 839–844 (2007).
    Google Scholar 
    78.Laskowski, K. L. & Bell, A. M. Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecol. Lett. 16, 746–753 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Huang, J., Reilein, A. & Kalderon, D. Yorkie and Hedgehog independently restrict BMP production in escort cells to permit germline differentiation in the Drosophila ovary. Development 144, 2584–2594 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Phylogenet. Evol. 35, 543–548 (2017).Article 
    CAS 

    Google Scholar 
    86.Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 110, 462–467 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Werren, J. H. et al. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327, 343–348 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Consortium, H. G. S. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931–949 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    93.Geib, S. M., Liang, G. H., Murphy, T. D. & Sim, S. B. Whole genome sequencing of the braconid parasitoid wasp Fopius arisanus, an important biocontrol agent of pest tepritid fruit flies. G3-Genes Genom. Genet. 7, 2407–2411 (2017).CAS 

    Google Scholar 
    94.Standage, D. S. et al. Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Mol. Ecol. 25, 1769–1784 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Lindsey, A. R. et al. Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum. BMC Biol. 16, 54 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    96.Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Korf, I. Gene finding in novel genomes. BMC Biol. 5, 59 (2004).
    Google Scholar 
    98.Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    100.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25, 402–408 (2001).CAS 
    Article 

    Google Scholar 
    105.Zhang, X. S., Wang, T., Lin, X. W., Denlinger, D. L. & Xu, W. H. Reactive oxygen species extend insect life span using components of the insulin-signaling pathway. Proc. Natl Acad. Sci. USA 114, 7832–7840 (2017).Article 
    CAS 

    Google Scholar  More

  • in

    High turn-over rates at the upper range limit and elevational source-sink dynamics in a widespread songbird

    1.Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford University Press, 2003).
    Google Scholar 
    2.Sexton, J. P., McIntyre, P., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).Article 

    Google Scholar 
    3.Holt, R. D., Keitt, T. H., Lewis, M. A., Maurer, B. A. & Taper, M. L. Theoretical models of species’ borders: single species approaches. Oikos 108, 18–27 (2005).Article 

    Google Scholar 
    4.Gaston, K. J. Geographic range limits: Achieving synthesis. Proc. R. Soc. Lond. B 276, 1395–1406 (2009).
    Google Scholar 
    5.Parmesan, C. et al. Empirical perspectives on species borders: From traditional biogeography to global change. Oikos 108, 58–75 (2005).Article 

    Google Scholar 
    6.Travis, J. M. J. & Dytham, C. In Dispersal Ecology and Evolution (eds Clobert, J. et al.) 337–348 (Oxford University Press, 2012).Chapter 

    Google Scholar 
    7.Kirkpatrick, M. & Barton, N. H. Evolution of a species’ range. Am. Nat. 150, 1–23 (1997).PubMed 
    Article 
    CAS 

    Google Scholar 
    8.Case, T. J. & Taper, M. L. Interspecific competition, environmental gradients, gene flow, and the coevolution of species’ borders. Am. Nat. 155, 583–605 (2000).PubMed 
    Article 
    CAS 

    Google Scholar 
    9.Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8, 224–239 (2005).Article 

    Google Scholar 
    10.Hargreaves, A. L., Eckert, C. G. & Bailey, J. Evolution of dispersal and mating systems along geographic gradients. Implications for shifting ranges. Funct. Ecol. 28, 5–21 (2014).Article 

    Google Scholar 
    11.Hille, S. M. & Cooper, C. B. Elevational trends in life histories. Revising the pace-of-life framework. Biol. Rev. Camb. Philos. Soc. 90, 204–213 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Boyle, W. A., Sandercock, B. K. & Martin, K. Patterns and drivers of intraspecific variation in avian life history along elevational gradients: A meta-analysis. Biol. Rev. 91, 469–482 (2016).Article 

    Google Scholar 
    13.Badyaev, A. V. & Ghalambor, C. K. Evolution of life histories along elevational gradients: Trade-off between parental care and fecundity. Ecology 82, 2948–2960 (2001).Article 

    Google Scholar 
    14.Bears, H., Martin, K. & White, G. C. Breeding in high-elevation habitat results in shift to slower life-history strategy within a single species. J. Anim. Ecol. 78, 365–375 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Caro, L. M., Caycedo-Rosales, P. C., Bowie, R. C. K., Slabbekoorn, H. & Cadena, C. D. Ecological speciation along an elevational gradient in a tropical passerine bird?. J. Evol. Biol. 26, 357 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    16.Branch, C. L., Jahner, J. P., Kozlovsky, D. Y., Parchman, T. L. & Pravosudov, V. V. Absence of population structure across elevational gradients despite large phenotypic variation in mountain chickadees (Poecile gambeli). R. Soc. Open Sci. 4, 170057. https://doi.org/10.1098/rsos.170057 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Chamberlain, D. E. et al. The altitudinal frontier in avian climate impact research. Ibis 154, 205–209 (2012).Article 

    Google Scholar 
    18.Hargreaves, A. L., Samis, K. E. & Eckert, C. G. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183, 157–173 (2014).PubMed 
    Article 

    Google Scholar 
    19.Graham, C. H., Silva, N. & Velásquez-Tibatá, J. Evaluating the potential causes of range limits of birds of the Colombian Andes. J. Biogeogr. 37, 1863–1875 (2010).
    Google Scholar 
    20.Popy, S., Bordignon, L. & Prodon, R. A weak upward elevational shift in the distributions of breeding birds in the Italian Alps. J. Biogeogr. 37, 57–67 (2010).Article 

    Google Scholar 
    21.Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    22.Maggini, R. et al. Are Swiss birds tracking climate change?. Ecol. Model. 222, 21–32 (2011).Article 

    Google Scholar 
    23.Pearce-Higgins, J. W. & Green, R. E. Climate Change and Birds: Impacts and Conservation Responses (Cambridge University Press, 2014).Book 

    Google Scholar 
    24.Knaus, P. et al. Schweizer Brutvogelatlas 2013–2016. Verbreitung und Bestandsentwicklung der Vögel in der Schweiz und im Fürstentum Liechtenstein (Schweizerische Vogelwarte, 2018).
    Google Scholar 
    25.Chamberlain, D. E., Fuller, R. J., Bunce, R. G. H., Duckworth, J. C. & Shrubb, M. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 37, 771–788 (2000).Article 

    Google Scholar 
    26.Chamberlain, D. & Pearce-Higgins, J. Impacts of climate change on upland birds. Complex interactions, compensatory mechanisms and the need for long-term data. Ibis 155, 451–455 (2013).Article 

    Google Scholar 
    27.Sergio, F. & Newton, I. Occupancy as a measure of territory quality. J. Anim. Ecol. 72, 857–865 (2003).Article 

    Google Scholar 
    28.Fretwell, S. D. & Lucas, H. L. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor. 19, 16–36 (1969).Article 

    Google Scholar 
    29.Grüebler, M. U., Korner-Nievergelt, F. & von Hirschheydt, J. The reproductive benefits of livestock farming in barn swallows Hirundo rustica: Quality of nest site or foraging habitat?. J. Appl. Ecol. 47, 1340–1347 (2010).Article 

    Google Scholar 
    30.Schaub, M. & von Hirschheydt, J. Effects of current reproduction on apparent survival, breeding dispersal, and future reproduction in barn swallows assessed by multistate capture-recapture models. J. Anim. Ecol. 78, 625–635 (2009).PubMed 
    Article 

    Google Scholar 
    31.Furrer, R. D. & Pasinelli, G. Empirical evidence for source-sink populations: A review on occurrence, assessments and implications. Biol. Rev. Camb. Philos. Soc. 91, 782–795 (2016).PubMed 
    Article 

    Google Scholar 
    32.Plard, F., Turek, D., Grüebler, M. U. & Schaub, M. IPM2: Toward better understanding and forecasting of population dynamics. Ecol. Monogr. 8, e01364. https://doi.org/10.1002/ecm.1364 (2019).Article 

    Google Scholar 
    33.Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of pre- and post-fledging timing decisions in a double-brooded passerine. Ecology 89, 2736–2745 (2008).PubMed 
    Article 

    Google Scholar 
    34.Grüebler, M. U., Morand, M. & Naef-Daenzer, B. A predictive model of the density of airborne insects in agricultural environments. Agric. Ecosyst. Environ. 123, 75–80 (2008).Article 

    Google Scholar 
    35.Jenni-Eiermann, S., Glaus, E., Grüebler, M. U., Schwabl, H. & Jenni, L. Glucocorticoid response to food availability in breeding barn swallows (Hirundo rustica). Gen. Comp. Endocrinol. 155, 558–565 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    36.Schifferli, L., Grüebler, M. U., Meijer, H. A. J., Visser, G. H. & Naef-Daenzer, B. Barn Swallow Hirundo rustica parents work harder when foraging conditions are good. Ibis 156, 777–787 (2014).Article 

    Google Scholar 
    37.Shields, W. M. Factors Affecting nest and site fidelity in Adirondack barn swallows (Hirundo rustica). Auk 101, 780–789 (1984).Article 

    Google Scholar 
    38.Saino, N., Calza, S., Ninni, P. & Møller, A. P. Barn swallows trade survival against offspring condition and immunocompetence. J. Anim. Ecol. 68, 999–1009 (1999).Article 

    Google Scholar 
    39.Turner, A. The Barn Swallow (T & A D Poyser, 2006).
    Google Scholar 
    40.Newton, I. The Migration Ecology of Birds 1st edn. (Academic Press, 2007).
    Google Scholar 
    41.Ambrosini, R. & Saino, N. Environmental effects at two nested spatial scales on habitat choice and breeding performance of barn swallow. Evol. Ecol. 24, 491–508 (2010).Article 

    Google Scholar 
    42.Ambrosini, R. et al. The distribution and colony size of barn swallows in relation to agricultural land use. J. Appl. Ecol. 39, 524–534 (2002).Article 

    Google Scholar 
    43.Evans, K. L., Bradbury, R. B. & Wilson, J. D. Selection of hedgerows by Swallows Hirundo rustica foraging on farmland: the influence of local habitat and weather. Bird Study 50, 8–14 (2003).Article 

    Google Scholar 
    44.Newton, I. Population Limitation in Bird (Academic Press, 1998).
    Google Scholar 
    45.Paradis, E., Baillie, S. R., Sutherland, W. J. & Gregory, R. D. Patterns of natal and breeding dispersal in birds. J. Anim. Ecol. 67, 518–536 (1998).Article 

    Google Scholar 
    46.Scandolara, C. et al. Context-, phenotype-, and kin-dependent natal dispersal of barn swallows (Hirundo rustica). Behav. Ecol. 25, 180–190 (2014).Article 

    Google Scholar 
    47.Schaub, M., von Hirschheydt, J. & Grüebler, M. U. Differential contribution of demographic rate synchrony to population synchrony in barn swallows. J. Anim. Ecol. 84, 1530–1541 (2015).PubMed 
    Article 

    Google Scholar 
    48.Camfield, A. F., Pearson, S. F. & Martin, K. Life history variation between high and low elevation subspecies of horned larks Eremophila spp. J. Avian Biol. 41, 273–281 (2010).Article 

    Google Scholar 
    49.Møller, A. P. Phenotype-dependent arrival time and its consequences in a migratory bird. Behav. Ecol. Sociobiol. 35, 115–122 (1994).Article 

    Google Scholar 
    50.Møller, A. P. Sexual Selection and the Barn Swallow (Oxford University Press, 1994).
    Google Scholar 
    51.Lerche-Jørgensen, M., Korner-Nievergelt, F., Tøttrup, A. P., Willemoes, M. & Thorup, K. Early returning long-distance migrant males do pay a survival cost. Ecol. Evol. 8, 11434–11449. https://doi.org/10.1002/ece3.4569 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Pulliam, H. R. On the relationship between niche and distribution. Ecol. Lett. 3, 349–361 (2000).Article 

    Google Scholar 
    53.Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article 

    Google Scholar 
    54.Møller, A. P., de Lope, F. & Saino, N. Parasitism, immunity, and arrival date in a migratory bird, the barn swallow. Ecology 85, 206–219 (2004).Article 

    Google Scholar 
    55.Huntley, B., Green, R. E., Collingham, Y. C. & Willis, S. G. A Climatic Atlas of European Breeding Birds (Lynx Edicions, 2007).
    Google Scholar 
    56.Scridel, D. et al. A review and meta-analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis 160, 489–515 (2018).Article 

    Google Scholar 
    57.Cormack, R. M. Estimates of survival from the sighting of marked animals. Biometrika 51, 429–438 (1964).MATH 
    Article 

    Google Scholar 
    58.Jolly, G. Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52, 225–247 (1965).MathSciNet 
    PubMed 
    MATH 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    59.Seber, G. A. F. A note on the multiple-recapture census. Biometrika 52, 249–259 (1965).MathSciNet 
    PubMed 
    MATH 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    60.Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).Article 

    Google Scholar 
    61.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    62.Saino, N., Martinelli, R. & Romano, M. Ecological and phenological covariates of offspring sex ratio in barn swallows. Evol. Ecol. 22, 659–674 (2008).Article 

    Google Scholar 
    63.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).64.Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2007).
    Google Scholar  More