More stories

  • in

    Microsporidia MB is found predominantly associated with Anopheles gambiae s.s and Anopheles coluzzii in Ghana

    We make the first report of Microsporidia MB in An. gambiae s.s and An. coluzzii following identification of the symbiont in An. arabiensis. This does not only demonstrate the existence of the microsporidian in another predominant malaria vector species in Africa but also extends its incidence from East to West Africa. The prevalence of MB-positive mosquitoes was estimated to be 1.8%, which is within the rate of  More

  • in

    Study on hyperspectral estimation model of soil organic carbon content in the wheat field under different water treatments

    1.Aryal, D. R., De Jong, B. H., Ochoa-Gaona, S., Esparza-Olguin, L. & Mendoza-Vega, J. Carbon stocks and changes in tropical secondary forests of southern Mexico. Agr. Ecosyst. Environ. 195, 220–230 (2014).Article 

    Google Scholar 
    2.Aryal, D. R., De Jong, B. H., Ochoa-Gaona, S., Mendoza-Vega, J. & Esparza-Olguin, L. Successional and seasonal variation in litterfall and associated nutrient transfer in semi-evergreen tropical forests of SE Mexico. Nutr. Cycl. Agroecosys. 103(1), 45–60 (2015).CAS 
    Article 

    Google Scholar 
    3.Aryal, D. R. et al. Soil organic carbon depletion from forests to grasslands conversion in Mexico: A review. Trop. Agric. 8, 181 (2018).CAS 

    Google Scholar 
    4.Gao, W., Yang, J., Ren, S. R. & Liu, H. L. The trend of soil organic carbon, total nitrogen, and wheat and maize productivity under different long-term fertilizations in the upland fluvo-aquic soil of North China. Nutr. Cycl. Agroecosys. 103, 61–73 (2015).CAS 
    Article 

    Google Scholar 
    5.Qi, H., Paz-Kagan, T., Karnieli, A., Jin, X. & Li, S. Evaluating calibration methods for predicting soil available nutrients using hyperspectral VNIR data. Soil Till Res. 175, 267–275 (2018).Article 

    Google Scholar 
    6.Dong, X., Tian, J., Zhang, R., He, D. & Chen, Q. Study on the relationship between soil emissivity spectra and content of soil element. Spectrosc. Spect. Anal. 37(02), 557–564 (2017).CAS 

    Google Scholar 
    7.Kemper, T. & Sommer, S. Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environ. Sci. Technol. 36(12), 2742–2747 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Panigrahi, N. & Das, B. S. Canopy spectral reflectance as a predictor of soil water potential in rice. Water Resour. Res. 54(4), 2544–2560 (2018).ADS 
    Article 

    Google Scholar 
    9.Peddle, D. R., White, H. P., Soffer, R. J., Miller, J. R. & LeDrew, E. F. Reflectance processing of remote sensing spectroradiometer data. Comput. Geoences. 27(2), 203–213 (2001).ADS 

    Google Scholar 
    10.Ben-Dor, E. et al. Using imaging spectroscopy to study soil properties. Remote Sens. Environ. 113, S38–S55 (2009).Article 

    Google Scholar 
    11.Rossel, R. A., Walvoort, D. J., Mcbratney, A. B., Janik, L. J. & Skjemstad, J. O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131(1), 59–75 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Cheng, H. et al. Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy. Geoderma 336, 59–67 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Ding, J., Yang, A., Wang, J., Sagan, V. & Yu, D. Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy. PeerJ 6(3), e5714 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Gobrecht, A., Bendoula, R., Roger, J.-M. & Bellon-Maurel, V. A new optical method coupling light polarization and vis–NIR spectroscopy to improve the measurement of soil carbon content. Soil Till Res. 155, 461–470 (2016).Article 

    Google Scholar 
    15.Gu, X., Wang, Y., Song, X. & Xu, X. The Inversion Model of Soil Organic Matter of Cultivated Land Based on Hyperspectral Technology. Remote Sensing for Agriculture, Ecosystems, and Hydrology XVII (International Society for Optics and Photonics, 2015).
    Google Scholar 
    16.Nawar, S., Buddenbaum, H., Hill, J., Kozak, J. & Mouazen, A. M. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil Till Res. 155, 510–522 (2016).Article 

    Google Scholar 
    17.Yu, X., Liu, Q., Wang, Y., Liu, X. & Liu, X. Evaluation of MLSR and PLSR for estimating soil element contents using visible/near-infrared spectroscopy in apple orchards on the Jiaodong peninsula. CATENA 137, 340–349 (2016).CAS 
    Article 

    Google Scholar 
    18.Ji, W. J., Li, X., Li, C. X., Zhou, Y. & Shi, Z. Using different data mining algorithes to predict soil organic matter based on visible-near infrared spectroscopy. Spectrosc. Spect. Anal. 32(09), 2393–2397 (2012).CAS 

    Google Scholar 
    19.Douglas, R. K., Nawar, S., Alamar, M. C., Mouazen, A. M. & Coulon, F. Rapid prediction of total petroleum hydrocarbons concentration in contaminated soil using vis-NIR spectroscopy and regression techniques. Sci. Total Environ. 616, 147–155 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    20.Mouazen, A. M. & Al-Asadi, R. A. Influence of soil moisture content on assessment of bulk density with combined frequency domain reflectometry and visible and near infrared spectroscopy under semi field conditions. Soil Till Res. 176, 95–103 (2018).Article 

    Google Scholar 
    21.Rossel, R. A. & Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158(1), 46–54 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Nawar, S. & Mouazen, A. M. Comparison between random forests, artificial neural networks and gradient boosted machines methods of on-line vis-NIR spectroscopy measurements of soil total nitrogen and total carbon. Sensors. 17(10), 2428 (2017).ADS 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Wang, J., Chen, Y., Chen, F., Shi, T. & Wu, G. Wavelet-based coupling of leaf and canopy reflectance spectra to improve the estimation accuracy of foliar nitrogen concentration. Agr. Forest Meteorol. 248, 306–315 (2018).ADS 
    Article 

    Google Scholar 
    24.Hong, Y. et al. Combining fractional order derivative and spectral variable selection for organic matter estimation of homogeneous soil samples by vis–NIR spectroscopy. Remote Sens. 10(3), 479 (2018).ADS 
    Article 

    Google Scholar 
    25.Sorenson, P. T. et al. Monitoring organic carbon, total nitrogen, and pH for reclaimed soils using field reflectance spectroscopy. Can J Soil Sci. 97(2), 241–248 (2017).CAS 
    Article 

    Google Scholar 
    26.Gomez, C., Rossel, R. A. V. & Mcbratney, A. B. Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma 146(3–4), 403–411 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Shi, T. Z. et al. Comparison of multivariate methods for estimating soil total nitrogen with visible/near-infrared spectroscopy. Plant Soil. 366(1–2), 363–375 (2013).CAS 
    Article 

    Google Scholar 
    28.Stenberg, B., Rossel, R. A. V., Mouazen, A. M. & Wetterlind, J. Chapter five-visible and near infrared spectroscopy in soil science. Adv. Agron. 107, 163–215 (2010).CAS 
    Article 

    Google Scholar 
    29.Uddin, M. P., Mamun, M. A. & Hossain, M. A. PCA-based feature reduction for hyperspectral remote sensing image classification. IETE Tech. Rev. 5, 1–21 (2020).
    Google Scholar 
    30.Cambule, A. H., Rossiter, D. G., Stoorvogel, J. J. & Smaling, E. M. A. Building a near infrared spectral library for soil organic carbon estimation in the Limpopo National Park Mozambique. Geoderma 183, 41–48 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    31.Kawamura, K. et al. Vis-NIR spectroscopy and PLS regression with waveband selection for estimating the total C and N of paddy soils in Madagascar. Remote Sens. 9(10), 1081 (2017).ADS 
    Article 

    Google Scholar 
    32.Leone, A. P., Viscarra-Rossel, R. A., Amenta, P. & Buondonno, A. Prediction of soil properties with PLSR and vis-NIR spectroscopy: Application to mediterranean soils from southern Italy. Curr. Anal. Chem. 8(2), 283–299 (2012).CAS 
    Article 

    Google Scholar 
    33.Wang, S., Chen, Y., Wang, M., Zhao, Y. & Li, J. SPA-based methods for the quantitative estimation of the soil salt content in saline-alkali land from field spectroscopy data: A case study from the Yellow River irrigation regions. Remote Sens. 11(8), 967 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Barnes, E. M. et al. Remote- and ground-based sensor techniques to map soil properties. Photogramm. Eng Rem S. 69(6), 619–630 (2003).Article 

    Google Scholar 
    35.Priori, S. et al. Field-scale mapping of soil carbon stock with limited sampling by coupling gamma-ray and vis-NIR spectroscopy. Soil Sci Soc Am J. 80(4), 954–964 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Amin, I., Fikrat, F., Mammadov, E. & Babayev, M. Soil organic carbon prediction by vis-NIR spectroscopy: Case study the Kur-Aras plain Azerbaijan. Commun. Soil Sci. Plan. 51(6), 726–734 (2020).CAS 
    Article 

    Google Scholar 
    37.Yu, L. et al. Hyperspectral estimation of soil organic matter content based on partial least squares regression. Trans. CSAE. 31(14), 103–109 (2015).
    Google Scholar 
    38.Liu, Y. F., Lu, Y. N., Guo, L., Xiao, F. T. & Chen, Y. Y. Construction of calibration set based on the land use types in visible and near-infrared (VIS-NIR)model for soil organic matter estimation. Acta Pedol. Sin. 53, 332–341 (2016).
    Google Scholar 
    39.Zhou, X. M. & Zhang, T. Analysis of the April 2019 atmospheric circulation and weather. Meteor. Mon. 45(7), 1028–1036 (2019).
    Google Scholar 
    40.Guan, L. & Zhang, T. Analysis of the May 2019 atmospheric circulation and weather. Meteor. Mon. 45(8), 1181–1188 (2019).
    Google Scholar 
    41.Li, X., He, Y. & Wu, C. Non-destructive discrimination of paddy seeds of different storage age based on Vis/NIR spectroscopy. J. Stored Prod. Res. 44(3), 264–268 (2008).Article 

    Google Scholar 
    42.Boško, M. & Bensa, A. Prediction of soil organic carbon using VIS-NIR spectroscopy: Application to Red Mediterranean soils from Croatia. Eurasian J. Soil Sci. 6(4), 365–373 (2017).
    Google Scholar 
    43.McCarty, G. W., Reeves, J. B. III., Reeves, V. B., Follett, R. F. & Kimble, J. M. Mid-infrared and near-infrared diffuse reflectance spectroscopy for soil carbon measurement. Soil Sci. Soc. Am. J. 66(2), 640–646 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    44.Gholizadeh, A. et al. Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features. Soil Water Res. 10(4), 218–227 (2015).CAS 
    Article 

    Google Scholar 
    45.Wang, X., Xue, L., He, X. W. & Liu, M. H. Vitamin C content estimation of chilies using Vis/NIR spectroscopy. Int. Conf. Electr. Inf. Control Eng. 2011, 1894–1897 (2011).
    Google Scholar 
    46.Lee, K. S. et al. Wavelength identification and diffuse reflectance estimation for surface and profile soil properties. Am. Soc. Agric. Biol. Eng. 52(3), 683–695 (2009).CAS 

    Google Scholar  More

  • in

    Genome-wide analysis reveals associations between climate and regional patterns of adaptive divergence and dispersal in American pikas

    Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alexander DH, Shringarpure SS, Novembre J, Lange K (2015) Admixture 1.3 software manual. UCLA Hum Genet Softw Distrib, Los Angeles
    Google Scholar 
    Angert AL, Bontrager MG, Ågren J (2020) What do we really know about adaptation at range edges? Annu Rev Ecol Evol Syst 51:341–361Article 

    Google Scholar 
    Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species–climate impact models under climate change. Glob Change Biol 11:1504–1513Article 

    Google Scholar 
    Astle W, Balding DJ (2009) Population structure and cryptic relatedness in genetic association studies. Stat Sci 24:451–471Article 

    Google Scholar 
    Attard CRM, Beheregaray LB, Möller LM (2018) Genotyping-by-sequencing for estimating relatedness in nonmodel organisms: Avoiding the trap of precise bias. Mol Ecol Resour 18:381–390CAS 
    PubMed 
    Article 

    Google Scholar 
    Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA et al. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:1–7Article 
    CAS 

    Google Scholar 
    Barbosa S, Mestre F, White TA, Paupério J, Alves PC, Searle JB (2018) Integrative approaches to guide conservation decisions: Using genomics to define conservation units and functional corridors. Mol Ecol 27:3452–3465PubMed 
    Article 

    Google Scholar 
    Beever EA, Brussard PF, Berger J (2003) Patterns of apparent extirpation among isolated populations of pikas (Ochotona princeps) in the Great Basin. J Mammal 84:37–54Article 

    Google Scholar 
    Beever EA, Ray C, Mote PW, Wilkening JL (2010) Testing alternative models of climate-mediated extirpations. Ecol Appl 20:164–178PubMed 
    Article 

    Google Scholar 
    Beever EA, Ray C, Wilkening JL, Brussard PF, Mote PW (2011) Contemporary climate change alters the pace and drivers of extinction. Glob Change Biol 17:2054–2070Article 

    Google Scholar 
    Beever EA, Perrine JD, Rickman T, Flores M, Clark JP, Waters C et al. (2016) Pika (Ochotona princeps) losses from two isolated regions reflect temperature and water balance, but reflect habitat area in a mainland region. J Mammal 97:1495–1511Article 

    Google Scholar 
    Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blois JL, Williams JW, Fitzpatrick MC, Jackson ST, Ferrier S (2013) Space can substitute for time in predicting climate-change effects on biodiversity. Proc Natl Acad Sci USA 110:9374–9379CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Browning SR (2008) Missing data imputation and haplotype phase inference for genome-wide association studies. Hum Genet 124:439–450CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calkins MT, Beever EA, Boykin KG, Frey JK, Andersen MC (2012) Not-so-splendid isolation: modeling climate-mediated range collapse of a montane mammal Ochotona princeps across numerous ecoregions. Ecography 35:780–791Article 

    Google Scholar 
    Carlson SM, Cunningham CJ, Westley PAH (2014) Evolutionary rescue in a changing world. Trends Ecol Evol 29:521–530PubMed 
    Article 

    Google Scholar 
    Castillo JA, Epps CW, Davis AR, Cushman SA (2014) Landscape effects on gene flow for a climate-sensitive montane species, the American pika. Mol Ecol 23:843–856PubMed 
    Article 

    Google Scholar 
    Castillo JA, Epps CW, Jeffress MR, Ray C, Rodhouse TJ, Schwalm D (2016) Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas. Ecol Appl 26:1660–1676PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Ceballos G, Ehrlich PR, Raven PH (2020) Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc Natl Acad Sci USA 117:13596–13602CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1:e1400253PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chapman JA, Flux JE (1990) Rabbits, hares and pikas: status survey and conservation action plan. IUCN.Chypre M, Zaidi N, Smans K (2012) ATP-citrate lyase: a mini-review. Biochem Biophys Res Commun 422:1–4CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Diaz HF, Grosjean M, Graumlich L (2003) Climate variability and change in high elevation regions: past, present and future. Clim Change 59:1–4Article 

    Google Scholar 
    Eckert CG, Samis EK, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188CAS 
    PubMed 
    Article 

    Google Scholar 
    Erb LP, Ray C, Guralnick R (2011) On the generality of a climate-mediated shift in the distribution of the American pika (Ochotona princeps). Ecology 92:1730–1735PubMed 
    Article 

    Google Scholar 
    Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501Article 

    Google Scholar 
    Flanagan SP, Forester BR, Latch EK, Aitken SN, Hoban S (2018) Guidelines for planning genomic assessment and monitoring of locally adaptive variation to inform species conservation. Evol Appl 11:1035–1052PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Franks SJ, Hoffmann AA (2012) Genetics of climate change adaptation. Annu Rev Genet 46:185–208CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Frichot E, François O (2015) LEA: an R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929Article 

    Google Scholar 
    Frichot E, Schoville SD, Bouchard G, François O (2013) Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol 30:1687–1699CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Galbreath KE, Hafner DJ, Zamudio KR (2009) When cold is better: climate-driven elevation shifts yield complex patterns of diversification and demography in an Alpine specialist (American Pika, Ochotona Princeps). Evolution 63:2848–2863CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gautier M (2015) Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics 201:1555–1579CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ et al. (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36:3420–3435PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gradogna A, Gavazzo P, Boccaccio A, Pusch M (2017) Subunit‐dependent oxidative stress sensitivity of LRRC8 volume‐regulated anion channels. J Physiol 595:6719–6733CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hafner DJ, Sullivan RM (1995) Historical and ecological biogeography of Nearctic pikas (Lagomorpha: Ochotonidae). J Mammal 76:302–321Article 

    Google Scholar 
    Hafner DJ, Smith AT (2010) Revision of the subspecies of the American pika, Ochotona princeps (Lagomorpha: Ochotonidae). J Mammal 91:401–417Article 

    Google Scholar 
    Hanson JO, Marques A, Veríssimo A, Camacho-Sanchez M, Velo-Antón G, Martínez-Solano Í et al. (2020) Conservation planning for adaptive and neutral evolutionary processes. J Appl Ecol 57:2159–2169Article 

    Google Scholar 
    Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 7:1008–1025PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. BMC Evol Biol 8:289PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Henry P, Russello MA (2013) Adaptive divergence along environmental gradients in a climate-change-sensitive mammal. Ecol Evol 3:3906–3917CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henry P, Sim Z, Russello MA (2012) Genetic evidence for restricted dispersal along continuous altitudinal gradients in a climate change-sensitive mammal: the American pika. PLoS One 7:e39077CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276Article 

    Google Scholar 
    Hinzpeter A, Lipecka J, Brouillard F, Baudoin-Legros M, Dadlez M, Edelman A et al. (2006) Association between Hsp90 and the ClC-2 chloride channel upregulates channel function. Am J Physiol Cell Physiol 290:C45–56CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hoban S (2018) Integrative conservation genetics: Prioritizing populations using climate predictions, adaptive potential and habitat connectivity. Mol Ecol Resour 18:14–17PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Holbrook JD, DeYoung RW, Janecka JE, Tewes ME, Honeycutt RL, Young JH (2012) Genetic diversity, population structure, and movements of mountain lions (Puma concolor) in Texas. J Mammal 93:989–1000Article 

    Google Scholar 
    IPCC (2014) AR5 Synthesis Report: Climate Change 2014. IPCC.Jentsch TJ, Lutter D, Planells-Cases R, Ullrich F, Voss FK (2016) VRAC: molecular identification as LRRC8 heteromers with differential functions. Pflüg Arch Eur J Physiol 468:385–393CAS 
    Article 

    Google Scholar 
    Johnston AN, Bruggeman JE, Beers AT, Beever EA, Christophersen RG, Ransom JI (2019) Ecological consequences of anomalies in atmospheric moisture and snowpack. Ecology 100:e02638PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Johnston KM, Freund KA, Schmitz OJ (2012) Projected range shifting by montane mammals under climate change: implications for Cascadia’s National Parks. Ecosphere 3:art97Article 

    Google Scholar 
    Kilham L (1958) Territorial behavior in pikas. J Mammal 39:307–307Article 

    Google Scholar 
    Kimura M (1971) Theoretical foundation of population genetics at the molecular level. Theor Popul Biol 2:174–208CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Klingler KB, Jahner JP, Parchman TL, Ray C, Peacock MM (2021) Genomic variation in the American pika: signatures of geographic isolation and implications for conservation. BMC Ecol Evol 21:2CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lambers JHR (2015) Extinction risks from climate change. Science 348:501–502CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet 7:295–302Article 

    Google Scholar 
    Latch EK, Scognamillo DG, Fike JA, Chamberlain MJ, Rhodes Jr OE (2008) Deciphering ecological barriers to North American River Otter (Lontra canadensis) gene flow in the Louisiana landscape. J Hered 99:265–274CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Lee KM, Coop G (2017) Distinguishing among modes of convergent adaptation using population genomic data. Genetics 207:1591–1619PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee KM, Coop G (2019) Population genomics perspectives on convergent adaptation. Philos Trans R Soc B Biol Sci 374:20180236Article 

    Google Scholar 
    Lemay MA, Russello MA (2015) Genetic evidence for ecological divergence in kokanee salmon. Mol Ecol 24:798–811CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv13033997 Q-Bio.MacArthur RA, Wang LCH (1974) Behavioral thermoregulation in the pika Ochotona princeps: a field study using radiotelemetry. Can J Zool 52:353–358CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    McCain CM (2019) Assessing the risks to United States and Canadian mammals caused by climate change using a trait-mediated model. J Mammal 100:1808–1817
    Google Scholar 
    Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794Article 

    Google Scholar 
    Morin PA, Luikart G, Wayne RK, the SNP Workshop Group (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216Article 

    Google Scholar 
    Moritz C, Agudo R (2013) The future of species under climate change: resilience or decline? Science 341:504–508CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264CAS 
    PubMed 
    Article 

    Google Scholar 
    Morrison SF, Hik DS (2007) Demographic analysis of a declining pika Ochotona collaris population: linking survival to broad-scale climate patterns via spring snowmelt patterns. J Anim Ecol 76:899–907PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Moyer‐Horner L, Mathewson PD, Jones GM, Kearney MR, Porter WP (2015) Modeling behavioral thermoregulation in a climate change sentinel. Ecol Evol 5:5810–5822PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mussmann SM, Douglas MR, Chafin TK, Douglas ME (2019) BA3-SNPs: contemporary migration reconfigured in BayesAss for next-generation sequence data. Methods Ecol Evol 10:1808–1813Article 

    Google Scholar 
    Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669Article 

    Google Scholar 
    Paz-Vinas I, Loot G, Hermoso V, Veyssière C, Poulet N, Grenouillet G et al. (2018) Systematic conservation planning for intraspecific genetic diversity. Proc R Soc B Biol Sci 285:20172746Article 

    Google Scholar 
    Peacock MM (1997) Determining natal dispersal patterns in a population of North American pikas (Ochotona princeps) using direct mark-resight and indirect genetic methods. Behav Ecol 8:340–350Article 

    Google Scholar 
    Peacock MM, Smith AT (1997) Nonrandom mating in pikas Ochotona princeps: evidence for inbreeding between individuals of intermediate relatedness. Mol Ecol 6:801–811CAS 
    PubMed 
    Article 

    Google Scholar 
    Pew J, Muir PH, Wang J, Frasier TR (2015) related: an R package for analysing pairwise relatedness from codominant molecular markers. Mol Ecol Resour 15:557–561PubMed 
    Article 

    Google Scholar 
    Pickett STA (1989) Space-for-time substitution as an alternative to long-term studies. In: Likens GE (ed) Long-term studies in ecology. Springer New York, New York, NY, p 110–135Chapter 

    Google Scholar 
    Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/Rankin AM, Galbreath KE, Teeter KC (2017) Signatures of adaptive molecular evolution in American pikas (Ochotona princeps). J Mammal 98:1156–1167Article 

    Google Scholar 
    Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Razgour O, Taggart JB, Manel S, Juste J, Ibáñez C, Rebelo H et al. (2018) An integrated framework to identify wildlife populations under threat from climate change. Mol Ecol Resour 18:18–31PubMed 
    Article 

    Google Scholar 
    Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24:4348–4370PubMed 
    Article 

    Google Scholar 
    Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185Article 

    Google Scholar 
    Robson KM, Lamb CT, Russello MA (2016) Low genetic diversity, restricted dispersal, and elevation-specific patterns of population decline in American pikas in an atypical environment. J Mammal 97:464–472Article 

    Google Scholar 
    Rochette NC, Rivera‐Colón AG, Catchen JM (2019) Stacks 2: analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol Ecol 28:4737–4754CAS 
    PubMed 
    Article 

    Google Scholar 
    Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106PubMed 
    Article 

    Google Scholar 
    Rubidge EM, Patton JL, Lim M, Burton AC, Brashares JS, Moritz C (2012) Climate-induced range contraction drives genetic erosion in an alpine mammal. Nat Clim Change 2:285–288Article 

    Google Scholar 
    Russello MA, Waterhouse MD, Etter PD, Johnson EA (2015) From promise to practice: pairing non-invasive sampling with genomics in conservation. PeerJ 3:e1106PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820CAS 
    PubMed 
    Article 

    Google Scholar 
    Sjodin BMF, Galbreath KE, Lanier HC, Russello MA (2021) Chromosome-level reference genome assembly for the American pika (Ochotona princeps). J Hered https://doi.org/10.1093/jhered/esab031Smith AT (1974b) The distribution and dispersal of pikas: influences of behavior and climate. Ecology 55:1368–1376Article 

    Google Scholar 
    Smith AT (1974a) The distribution and dispersal of pikas: consequences of insular population structure. Ecology 55:1112–1119Article 

    Google Scholar 
    Smith AT (2020) Conservation status of American pikas (Ochotona princeps). J Mammal 101:1466–1488Article 

    Google Scholar 
    Smith AT, Ivins BL (1983) Colonization in a pika population: dispersal vs philopatry. Behav Ecol Sociobiol 13:37–47Article 

    Google Scholar 
    Smith AT, Weston ML (1990) Ochotona princeps. Mamm Species 352:1–8.Article 

    Google Scholar 
    Smith AT, Millar CI (2018) American pika (Ochotona princeps) population survival in winters with low or no snowpack. West North Am Nat 78:126–132Article 

    Google Scholar 
    La Sorte FA, Jetz W (2010) Projected range contractions of montane biodiversity under global warming. Proc R Soc B Biol Sci 277:3401–3410Article 

    Google Scholar 
    Stern DL (2013) The genetic causes of convergent evolution. Nat Rev Genet 14:751–764CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Stewart JAE, Wright DH, Heckman KA (2017) Apparent climate-mediated loss and fragmentation of core habitat of the American pika in the Northern Sierra Nevada, California, USA. PLoS One 12:e0181834PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stewart JAE, Perrine JD, Nichols LB, Thorne JH, Millar CI, Goehring KE et al. (2015) Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. J Biogeogr 42:880–890Article 

    Google Scholar 
    Varner J, Dearing MD (2014) The importance of biologically relevant microclimates in habitat suitability assessments. PLoS One 9:e104648PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Waldvogel A-M, Feldmeyer B, Rolshausen G, Exposito‐Alonso M, Rellstab C, Kofler R et al. (2020) Evolutionary genomics can improve prediction of species’ responses to climate change. Evol Lett 4:4–18PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang T, Hamann A, Spittlehouse DL, Murdock TQ (2012) ClimateWNA—high-resolution spatial climate data for Western North America. J Appl Meteorol Climatol 51:16–29Article 

    Google Scholar 
    Waterhouse MD, Erb LP, Beever EA, Russello MA (2018) Adaptive population divergence and directional gene flow across steep elevational gradients in a climate-sensitive mammal. Mol Ecol 27:2512–2528PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CAS 
    PubMed 

    Google Scholar 
    Wiens JJ (2016) Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol 14:e2001104PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wilkening JL, Ray C (2016) Characterizing predictors of survival in the American pika (Ochotona princeps). J Mammal 97:1366–1375Article 

    Google Scholar 
    Wilkening JL, Ray C, Beever EA, Brussard PF (2011) Modeling contemporary range retraction in Great Basin pikas (Ochotona princeps) using data on microclimate and microhabitat. Quat Int 235:77–88Article 

    Google Scholar 
    Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wogan GOU, Wang IJ (2018) The value of space-for-time substitution for studying fine-scale microevolutionary processes. Ecography 41:1456–1468Article 

    Google Scholar 
    Yandow LH, Chalfoun AD, Doak DF (2015) Climate tolerances and habitat requirements jointly shape the elevational distribution of the American pika (Ochotona princeps), with implications for climate change effects. PLoS One 10:e0131082PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zgurski JM, Hik DS (2012) Polygynandry and even-sexed dispersal in a population of collared pikas, Ochotona collaris. Anim Behav 83:1075–1082Article 

    Google Scholar 
    Zhang D, Pan J, Cao J, Cao Y, Zhou H (2020) Screening of drought-resistance related genes and analysis of promising regulatory pathway in camel renal medulla. Genomics 112:2633–2639CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Lethal microbial blooms delayed freshwater ecosystem recovery following the end-Permian extinction

    1.Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: causes, consequences, and controls. Microb. Ecol. 65, 995–1010 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Visser, P. M. et al. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54, 145–159 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Lürling, M., Mendes e Mello, M., van Oosterhout, F., de Senerpont Domis, L. & Marinho, M. M. Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated temperature. Front. Microbiol. 9, 1851 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Low-Décarie, E., Fussmann, G. F. & Bell, G. Aquatic primary production in a high-CO2 world. Trends Ecol. Evol. 29, 223–232 (2014).PubMed 
    Article 

    Google Scholar 
    5.Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in earth history. PNAS 113, E6325–E6334 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Sun, Y. D. et al. Lethally hot temperatures during the Early Triassic Greenhouse. Science 338, 366–370 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Frank, T. D. et al. Pace, magnitude, and nature of terrestrial climate change through the end Permian extinction in southeastern Gondwana. Geology 49, https://doi.org/10.1130/G48795.1 (2021).8.Wu, Y. et al. Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction. Nat. Commun. 12, 2137 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Mays, C. et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bull. 132, 1489–1513 (2020).CAS 
    Article 

    Google Scholar 
    11.Chu, D. et al. Ecological disturbance in tropical peatlands prior to marine Permian-Triassic mass extinction. Geology 48, 288–292 (2020).ADS 
    Article 

    Google Scholar 
    12.Retallack, G. J., Veevers, J. J. & Morante, R. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. GSA Bull. 108, 195–207 (1996).CAS 
    Article 

    Google Scholar 
    13.Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Fielding, C. R. et al. Sedimentology of the continental end-Permian extinction event in the Sydney Basin, eastern Australia. Sedimentology 68, 30–62 (2021).CAS 
    Article 

    Google Scholar 
    15.Metcalfe, I., Crowley, J. L., Nicoll, R. S. & Schmitz, M. High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res. 28, 61–81 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).CAS 
    Article 

    Google Scholar 
    17.McLoughlin, S. et al. Dwelling in the dead zone—vertebrate burrows immediately succeeding the end-Permian extinction event in Australia. Palaios 35, 342–357 (2020).ADS 
    Article 

    Google Scholar 
    18.Lamb, A. L., Wilson, G. P. & Leng, M. J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Sci. Rev. 75, 29–57 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Mays, C., Vajda, V. & McLoughlin, S. Permian–Triassic non-marine algae of Gondwana—distributions, natural affinities and ecological implications. Earth-Sci. Rev. 212, 103382 (2021).CAS 
    Article 

    Google Scholar 
    20.McLoughlin, S. et al. Age and paleoenvironmental significance of the Frazer Beach Member—a new lithostratigraphic unit overlying the end-Permian extinction horizon in the Sydney Basin, Australia. Front. Earth Sci. 8, 600976 (2021).Article 

    Google Scholar 
    21.Huber, J. K. A postglacial pollen and nonsiliceous algae record from Gegoka Lake, Lake County, Minnesota. J. Paleolimnol. 16, 23–35 (1996).ADS 
    Article 

    Google Scholar 
    22.Woodward, C. A. & Shulmeister, J. A Holocene record of human induced and natural environmental change from Lake Forsyth (Te Wairewa), New Zealand. J. Paleolimnol. 34, 481–501 (2005).ADS 
    Article 

    Google Scholar 
    23.Pacton, M., Gorin, G. & Fiet, N. Occurrence of photosynthetic microbial mats in a Lower Cretaceous black shale (central Italy): a shallow-water deposit. Facies 55, 401–419 (2009).Article 

    Google Scholar 
    24.Pacton, M., Gorin, G. E. & Vasconcelos, C. Amorphous organic matter—Experimental data on formation and the role of microbes. Rev. Palaeobot. Palynol. 166, 253–267 (2011).Article 

    Google Scholar 
    25.Tyson, R. V. Sedimentary Organic Matter: Organic Facies and Palynofacies (Chapman & Hall, 1995).26.Retallack, G. J. Earliest Triassic claystone breccias and soil-erosion crisis. J. Sediment. Res. 75, 679–695 (2005).ADS 
    Article 

    Google Scholar 
    27.Augland, L. E. et al. The main pulse of the Siberian Traps expanded in size and composition. Sci. Rep. 9, 18723 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Retallack, G. J. Post-apocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin. Aust. GSA Bull. 111, 52–70 (1999).CAS 
    Article 

    Google Scholar 
    29.Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. The hydrological legacy of deforestation on global wetlands. Science 346, 844–847 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Stevenson, R. J. & Smol, J. P. In Freshwater Algae of North America: Ecology and Classification (eds Wehr, J. D., Sheath, R. G. & Kociolek, P.) Ch. 21, 921–962 (Academic Press, 2015).31.Lindström, S., Bjerager, M., Alsen, P., Sanei, H. & Bojesen-Koefoed, J. The Smithian–Spathian boundary in North Greenland: implications for extreme global climate changes. Geol. Mag. 157, 1547–1567 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    32.de Leeuw, J. W., Versteegh, G. J. M. & van Bergen, P. F. in Plants and Climate Change, Plant Ecology (eds Rozema, J., Aerts, R. & Cornelissen, H.) Vol. 182, 209–233 (Springer, 2006).33.Baudelet, P.-H., Ricochon, G., Linder, M. & Muniglia, L. A new insight into cell walls of Chlorophyta. Algal Res 25, 333–371 (2017).Article 

    Google Scholar 
    34.Graham, L. E. & Gray, J. In Plants Invade the Land: Evolutionary and Environmental Perspectives (eds Gensel, P. G. & Edwards, D.) 140–158 (Columbia University Press, 2001).35.Demura, M., Ioki, M., Kawachi, M., Nakajima, N. & Watanabe, M. M. Desiccation tolerance of Botryococcus braunii (Trebouxiophyceae, Chlorophyta) and extreme temperature tolerance of dehydrated cells. J. Appl. Phycol. 26, 49–53 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Del Cortona, A. et al. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. PNAS 117, 2551–2559 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Wheeler, A., Van de Wetering, N., Esterle, J. S. & Götz, A. E. Palaeoenvironmental changes recorded in the palynology and palynofacies of a Late Permian Marker Mudstone (Galilee Basin, Australia). Palaeoworld 29, 439–452 (2020).Article 

    Google Scholar 
    38.Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).Article 

    Google Scholar 
    39.Low-Décarie, E., Fussmann, G. F. & Bell, G. The effect of elevated CO2 on growth and competition in experimental phytoplankton communities. Glob. Change Biol. 17, 2525–2535 (2011).ADS 
    Article 

    Google Scholar 
    40.von Alvensleben, N., Magnusson, M. & Heimann, K. Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. J. Appl. Phycol. 28, 861–876 (2016).Article 
    CAS 

    Google Scholar 
    41.Chu, D. et al. Microbial mats in the terrestrial Lower Triassic of North China and implications for the Permian–Triassic mass extinction. Palaeogeog. Palaeoclimatol. Palaeoecol. 474, 214–231 (2017).ADS 
    Article 

    Google Scholar 
    42.Guo, W. et al. Secular variations of ichnofossils from the terrestrial Late Permian–Middle Triassic succession at the Shichuanhe section in Shaanxi Province, North China. Glob. Planet. Change 181, 102978 (2019).Article 

    Google Scholar 
    43.Lee, J. Y. et al. Future global climate: Scenario-based projections and near-term information. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V., et al.) 195 pp. (Cambridge University Press, 2021).44.de Jersey, N. J. Palynology of the Permian-Triassic transition in the western Bowen Basin. Geol. Surv. Qld. Publ. 374, 1–39 (1979).
    Google Scholar 
    45.Lindström, S. & McLoughlin, S. Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: Implications for palynofloristic turnover across Gondwana. Rev. Palaeobot. Palynol. 145, 89–122 (2007).Article 

    Google Scholar 
    46.Grebe, H. Permian plant microfossils from the Newcastle Coal Measures/Narrabeen Group Boundary, Lake Munmorah, New South Wales. Rec. Geol. Surv. NSW 12, 125–136 (1970).
    Google Scholar 
    47.Mishra, S. et al. A new acritarch spike of Leiosphaeridia dessicata comb. nov. emend. from the Upper Permian and Lower Triassic sequence of India (Pranhita-Godavari Basin): its origin and palaeoecological significance. Palaeogeog. Palaeoclimatol. Palaeoecol. 567, 110274 (2021).ADS 
    Article 

    Google Scholar 
    48.Grice, K. et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307, 706–709 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Kershaw, S. et al. Microbialites and global environmental change across the Permian–Triassic boundary: a synthesis. Geobiology 10, 25–47 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Schneebeli-Hermann, E. et al. Palynofacies analysis of the Permian–Triassic transition in the Amb section (Salt Range, Pakistan): implications for the anoxia on the South Tethyan Margin. J. Asian Earth Sci. 60, 225–234 (2012).ADS 
    Article 

    Google Scholar 
    51.van Soelen, E. E. & Kürschner, W. M. Late Permian to Early Triassic changes in acritarch assemblages and morphology in the Boreal Arctic: new data from the Finnmark Platform. Palaeogeog. Palaeoclimatol. Palaeoecol. 505, 120–127 (2018).ADS 
    Article 

    Google Scholar 
    52.Spina, A., Cirilli, S., Utting, J. & Jansonius, J. Palynology of the Permian and Triassic of the Tesero and Bulla sections (Western Dolomites, Italy) and consideration about the enigmatic species Reduviasporonites chalastus. Rev. Palaeobot. Palynol. 218, 3–14 (2015).Article 

    Google Scholar 
    53.Thomas, B. M. et al. Unique marine Permian‐Triassic boundary section from Western Australia. Aust. J. Earth Sci. 51, 423–430 (2004).ADS 
    Article 

    Google Scholar 
    54.Schneebeli-Hermann, E. & Bucher, H. Palynostratigraphy at the Permian-Triassic boundary of the Amb section, Salt Range, Pakistan. Palynology 39, 1–18 (2015).Article 

    Google Scholar 
    55.Lei, Y. et al. Phytoplankton (acritarch) community changes during the Permian-Triassic transition in South China. Palaeogeog. Palaeoclimatol. Palaeoecol. 519, 84–94 (2019).ADS 
    Article 

    Google Scholar 
    56.Algeo, T. J. et al. Plankton and productivity during the Permian–Triassic boundary crisis: An analysis of organic carbon fluxes. Glob. Planet. Change 105, 52–67 (2013).ADS 
    Article 

    Google Scholar 
    57.van Soelen, E. E., Twitchett, R. J. & Kürschner, W. M. Salinity changes and anoxia resulting from enhanced run-off during the late Permian global warming and mass extinction event. Climate 14, 441–453 (2018).
    Google Scholar 
    58.Kaiho, K. et al. Effects of soil erosion and anoxic–euxinic ocean in the Permian–Triassic marine crisis. Heliyon 2, e00137 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Bond, D. P. G. & Grasby, S. E. On the causes of mass extinctions. Palaeogeog. Palaeoclimatol. Palaeoecol. 478, 3–29 (2017).ADS 
    Article 

    Google Scholar 
    60.Lindström, S., Erlström, M., Piasecki, S., Nielsen, L. H. & Mathiesen, A. Palynology and terrestrial ecosystem change of the Middle Triassic to lowermost Jurassic succession of the eastern Danish Basin. Rev. Palaeobot. Palynol. 244, 65–95 (2017).Article 

    Google Scholar 
    61.Garel, S. et al. Paleohydrological and paleoenvironmental changes recorded in terrestrial sediments of the Paleocene–Eocene boundary (Normandy, France). Palaeogeog. Palaeoclimatol. Palaeoecol. 376, 184–199 (2013).ADS 
    Article 

    Google Scholar 
    62.van de Schootbrugge, B. & Gollner, S. In Ecosystem Paleobiology and Geobiology, The Paleontological Society Papers (eds Bush, A. M., Pruss, S. B. & Payne, J. L.) 19, 87–114 (The Paleontological Society, 2013).63.Mata, S. A. & Bottjer, D. J. Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 10, 3–24 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Peterffy, O., Calner, M. & Vajda, V. Early Jurassic microbial mats—a potential response to reduced biotic activity in the aftermath of the end-Triassic mass extinction event. Palaeogeog. Palaeoclimatol. Palaeoecol. 464, 76–85 (2016).ADS 
    Article 

    Google Scholar 
    65.Schoene, B. et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 3636, 862–866 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    66.Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Vajda, V., Ocampo, A., Ferrow, E. & Bender Koch, C. Nano particles as the primary cause for long-term sunlight suppression at high southern latitudes following the Chicxulub impact—evidence from ejecta deposits in Belize and Mexico. Gondwana Res. 27, 1079–1088 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Sepúlveda, J., Wendler, J. E., Summons, R. E. & Hinrichs, K.-U. Rapid resurgence of marine productivity after the Cretaceous-Paleogene mass extinction. Science 326, 129–132 (2009).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    69.Bralower, T. J. et al. Origin of a global carbonate layer deposited in the aftermath of the Cretaceous-Paleogene boundary impact. Earth Planet. Sci. Lett. 548, 116476 (2020).CAS 
    Article 

    Google Scholar 
    70.Schaefer, B. et al. Microbial life in the nascent Chicxulub crater. Geology 48, 328–332 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Milligan, J. N., Royer, D. L., Franks, P. J., Upchurch, G. R. & McKee, M. L. No evidence for a large atmospheric CO2 spike across the Cretaceous‐Paleogene boundary. Geophys. Res. Lett. 46, 3462–3472 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    72.Strother, P. K. & Wellman, C. H. The Nonesuch Formation Lagerstätte: a rare window into freshwater life one billion years ago. J. Geol. Soc. 178, jgs2020–jgs2133 (2021).Article 

    Google Scholar 
    73.Sepkoski, J. J., Bambach, R. K. & Droser, M. L. In Cycles and Events in Stratigraphy (eds Einsele, G., Ricken, W. & Seilacher, A.) 298–312 (Springer-Verlag, 1991).74.Tyson, R. V. Calibration of hydrogen indices with microscopy: a review, reanalysis and new results using the fluorescence scale. Org. Geochem. 37, 45–63 (2006).CAS 
    Article 

    Google Scholar 
    75.Benninghoff, W. S. Calculation of pollen and spore density in sediments by addition of exotic pollen in known quantities. Pollen et. Spores 4, 332–333 (1962).
    Google Scholar 
    76.Maher, L. J. Statistics for microfossil concentration measurements employing samples spiked with marker grains. Rev. Palaeobot. Palynol. 32, 153–191 (1981).Article 

    Google Scholar 
    77.Simpson, M. G. Plant Systematics (Academic Press, 2019).78.Evitt, W. R. A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, II. PNAS 49, 298–302 (1963).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Rampino, M. R. & Eshet, Y. The fungal and acritarch events as time markers for the latest Permian mass extinction: an update. Geosci. Front. 9, 147–154 (2018).Article 

    Google Scholar 
    80.Combaz, A. Les palynofaciès. Rev. Micropaléontol. 7, 205–218 (1964).
    Google Scholar 
    81.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 4 (2001).
    Google Scholar 
    82.Wei, W. & Algeo, T. J. Elemental proxies for paleosalinity analysis of ancient shales and mudrocks. Geochim. Cosmochim. Acta 287, 341–366 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    83.Rowe, H., Hughes, N. & Robinson, K. The quantification and application of handheld energy-dispersive x-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry. Chem. Geol. 324–325, 122–131 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    84.Blakey, R. C. Global paleogeography and tectonics in deep time. https://deeptimemaps.com/global-series-details/. Accessed 16 June 2020 (2016).85.Zhuravlev, A. Y. & Wood, R. A. Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. Geology 24, 311–314 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    86.Zhang, W., Shi, X., Jiang, G., Tang, D. & Wang, X. Mass-occurrence of oncoids at the Cambrian Series 2–Series 3 transition: Implications for microbial resurgence following an Early Cambrian extinction. Gondwana Res. 28, 432–450 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    87.Vecoli, M. Fossil microphytoplankton dynamics across the Ordovician–Silurian boundary. Rev. Palaeobot. Palynol. 148, 91–107 (2008).Article 

    Google Scholar 
    88.Xie, S. et al. Contrasting microbial community changes during mass extinctions at the Middle/Late Permian and Permian/Triassic boundaries. Earth Planet. Sci. Lett. 460, 180–191 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    89.Eshet, Y., Rampino, M. R. & Visscher, H. Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology 23, 967–970 (1995).ADS 
    Article 

    Google Scholar 
    90.Richoz, S. et al. Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nat. Geosci. 5, 662–667 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    91.Lindström, S. et al. No causal link between terrestrial ecosystem change and methane release during the end-Triassic mass extinction. Geology 40, 531–534 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    92.van de Schootbrugge, B. et al. End-Triassic calcification crisis and blooms of organic-walled “disaster species”. Palaeogeog. Palaeoclimatol. Palaeoecol. 244, 126–141 (2007).ADS 
    Article 

    Google Scholar 
    93.Slater, S. M., Twitchett, R. J., Danise, S. & Vajda, V. Substantial vegetation response to Early Jurassic global warming with impacts on oceanic anoxia. Nat. Geosci. 12, 462–467 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    94.Polgári, M. et al. Mineral and chemostratigraphy of a Toarcian black shale hosting Mn-carbonate microbialites (Úrkút, Hungary). Palaeogeog. Palaeoclimatol. Palaeoecol. 459, 99–120 (2016).ADS 
    Article 

    Google Scholar 
    95.Xu, W. et al. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event. Nat. Geosci. 10, 129–134 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    96.Kashiyama, Y. et al. Diazotrophic cyanobacteria as the major photoautotrophs during mid-Cretaceous oceanic anoxic events: nitrogen and carbon isotopic evidence from sedimentary porphyrin. Org. Geochem. 39, 532–549 (2008).CAS 
    Article 

    Google Scholar 
    97.Jarvis, I. et al. Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) oceanic anoxic event. Cretac. Res 9, 3–103 (1988).Article 

    Google Scholar 
    98.Layeb, M., Ben Fadhel, M., Layeb-Tounsi, Y. & Ben Youssef, M. First microbialites associated to organic-rich facies of the Oceanic Anoxic Event 2 (Northern Tunisia, Cenomanian–Turonian transition). Arab. J. Geosci. 7, 3349–3363 (2014).CAS 
    Article 

    Google Scholar 
    99.Pearce, M. A., Jarvis, I. & Tocher, B. A. The Cenomanian–Turonian boundary event, OAE2 and palaeoenvironmental change in epicontinental seas: new insights from the dinocyst and geochemical records. Palaeogeog. Palaeoclimatol. Palaeoecol. 280, 207–234 (2009).ADS 
    Article 

    Google Scholar 
    100.Kuypers, M. M. M., Pancost, R. D., Nijenhuis, I. A. & Sinninghe Damsté, J. S. Enhanced productivity led to increased organic carbon burial in the euxinic North Atlantic basin during the late Cenomanian oceanic anoxic event. Paleoceanography 17, 1051 (2002).ADS 
    Article 

    Google Scholar 
    101.Dodsworth, P., Eldrett, J. S. & Hart, M. B. Cretaceous Oceanic Anoxic Event 2 in eastern England: further palynological and geochemical data from Melton Ross. figshare https://doi.org/10.6084/m9.figshare.c.4987205.v3 (2020).102.Schwab, K. W., Bayliss, G. S., Smith, M. A. & Yoder, N. B. Mushroom and broccoli-head shaped algal fragments from the Eagle Ford Shale of south Texas and Coahuila, Mexico. Search and Discovery 70134 (2013).103.Lyson, T. R. et al. Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science 366, 977–983 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Scasso, R. A. et al. A high-resolution record of environmental changes from a Cretaceous-Paleogene section of Seymour Island. Antarctica. Palaeogeog. Palaeoclimatol. Palaeoecol. 555, 109844 (2020).ADS 
    Article 

    Google Scholar 
    105.Sosa-Montes de Oca, C. et al. Minor changes in biomarker assemblages in the aftermath of the Cretaceous-Paleogene mass extinction event at the Agost distal section (Spain). Palaeogeog. Palaeoclimatol. Palaeoecol. 569, 110310 (2021).ADS 
    Article 

    Google Scholar 
    106.Sluijs, A. et al. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature 450, 1218–1222 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Junium, C. K., Dickson, A. J. & Uveges, B. T. Perturbation to the nitrogen cycle during rapid Early Eocene global warming. Nat. Commun. 9, 3186 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    108.Pagani, M. et al. Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum. Nature 442, 671–675 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Kender, S. et al. Marine and terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene–Eocene transition. Earth Planet. Sci. Lett. 353–354, 108–120 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    110.Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Tot. Environ. 409, 1739–1745 (2011).CAS 
    Article 

    Google Scholar  More

  • in

    A symbiotic aphid selfishly manipulates attending ants via dopamine in honeydew

    1.Darwin, C. On the origin of species. (D. Appleton and Co., 1871). https://doi.org/10.5962/bhl.title.28875.2.Thompson, J. N. Mutualistic webs of species. Science (80–) 312, 372–373 (2006).CAS 
    Article 

    Google Scholar 
    3.Bronstein, J. L. The exploitation of mutualisms. Ecol. Lett. 4, 277–287 (2001).Article 

    Google Scholar 
    4.Bshary, R. & Grutter, A. S. Experimental evidence that partner choice is a driving force in the payoff distribution among cooperators or mutualists: The cleaner fish case. Ecol. Lett. 5, 130–136 (2002).Article 

    Google Scholar 
    5.Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume–rhizobium mutualism. Nature 425, 78–81 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Heil, M., Barajas-Barron, A., Orona-Tamayo, D., Wielsch, N. & Svatos, A. Partner manipulation stabilises a horizontally transmitted mutualism. Ecol. Lett. 17, 185–192 (2014).Article 

    Google Scholar 
    7.Hindsbo, O. Effects of Polymorphus (Acanthocephala) on colour and behaviour of Gammarus lacustris. Nature 238, 333 (1972).ADS 
    Article 

    Google Scholar 
    8.Thomas, F., Renaud, F., de Meeus, T. & Poulin, R. Manipulation of host behaviour by parasites: Ecosystem engineering in the intertidal zone?. Proc. R. Soc. B Biol. Sci. 265, 1091–1096 (1998).Article 

    Google Scholar 
    9.Thomas, F. et al. Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts?. J. Evol. Biol. 15, 356–361 (2002).Article 

    Google Scholar 
    10.Kadoya, E. Z., Ishii, H. S. & Williams, N. M. Host manipulation of bumble bee queens by Sphaerularia nematodes indirectly affects foraging of non-host workers. Ecology 96, 1361–1370 (2015).Article 

    Google Scholar 
    11.Hojo, M. K., Pierce, N. E. & Tsuji, K. Lycaenid caterpillar secretions manipulate attendant ant behavior. Curr. Biol. 25, 2260–2264 (2015).CAS 
    Article 

    Google Scholar 
    12.Poulin, R., Brodeur, J. & Moore, J. Parasite manipulation of host behaviour: Should hosts always lose?. Oikos 70, 479 (1994).Article 

    Google Scholar 
    13.Heil, M. et al. Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. Proc. Natl. Acad. Sci. USA. 106, 18091–18096 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Watanabe, S., Murakami, T., Yoshimura, J. & Hasegawa, E. Color polymorphism in an aphid is maintained by attending ants. Sci. Adv. 2, (2016).15.Watanabe, S., Yoshimura, J. & Hasegawa, E. Ants improve the reproduction of inferior morphs to maintain a polymorphism in symbiont aphids. Sci. Rep. 8, (2018).16.Sakata, H. Density-dependent predation of the ant Lasius niger (Hymenoptera: Formicidae) on two attended aphids Lachnus tropicalis and Myzocallis kuricola (Homoptera: Aphididae). Res. Popul. Ecol. (Kyoto) 37, 159–164 (1995).Article 

    Google Scholar 
    17.Evans, P. D. Biogenic Amines in the insect nervous system. Adv. In Insect Phys. 15, 317–473 (1980).CAS 
    Article 

    Google Scholar 
    18.Aonuma, H. & Watanabe, T. Octopaminergic system in the brain controls aggressive motivation in the ant Formica japonica. Acta Biol. Hung. 63, 63–68 (2012).Article 

    Google Scholar 
    19.Stevenson, P. A., Dyakonova, V., Rillich, J. & Schildberger, K. Octopamine and experience-dependent modulation of aggression in crickets. J. Neurosci. 25, 1431–1441 (2005).CAS 
    Article 

    Google Scholar 
    20.Kostowski, W. & Tarchalska, B. The effects of some drugs affecting brain 5-HT on the aggressive behaviour and spontaneous electrical activity of the central nervous system of the ant Formica rufa. Brain Res. 38, 143–149 (1972).CAS 
    Article 

    Google Scholar 
    21.Szczuka, A. et al. The effects of serotonin, dopamine, octopamine and tyramine on behavior of workers of the ant Formica polyctena during dyadic aggression tests. Acta Neurobiol. Exp. (Wars) 73, 495–520 (2013).
    Google Scholar 
    22.Way, M. J. Mutualism between ants and honeydew-producing homoptera. Annu. Rev. Entomol. 8, 307–344 (1963).Article 

    Google Scholar 
    23.Hafer-Hahmann, N. Behavior out of control: Experimental evolution of resistance to host manipulation. Ecol. Evol. 9, 7237–7245 (2019).Article 

    Google Scholar 
    24.Martinez, J., Fleury, F. & Varaldi, J. Heritable variation in an extended phenotype: The case of a parasitoid manipulated by a virus. J. Evol. Biol. 25, 54–65 (2012).Article 

    Google Scholar 
    25.Engelstädter, J. & Hurst, G. D. D. The ecology and evolution of microbes that manipulate host reproduction. Annu. Rev. Ecol. Evol. Syst. 40, 127–149 (2009).Article 

    Google Scholar 
    26.Rosenthal, G. G. & Servedio, M. R. Chase-away sexual selection: Resistance to ‘resistance’. Evolution (N.Y.) 53, 296 (1999).
    Google Scholar 
    27.Woodring, J., Wiedemann, R., Fischer, M. K., Hoffmann, K. H. & Völkl, W. Honeydew amino acids in relation to sugars and their role in the establishment of ant-attendance hierarchy in eight species of aphids feeding on tansy (Tanacetum vulgare). Physiol. Entomol. 29, 311–319 (2004).CAS 
    Article 

    Google Scholar 
    28.Stadler, B. & Dixon, A. F. G. Ecology and evolution of aphid-ant interactions. Annu. Rev. Ecol. Evol. Syst. 36, 345–372 (2005).Article 

    Google Scholar 
    29.Tsuji, K. & Dobata, S. Social cancer and the biology of the clonal ant Pristomyrmex punctatus (Hymenoptera: Formicidae). Myrmecological News 15, 91–99 (2011).
    Google Scholar 
    30.Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).Article 

    Google Scholar 
    31.Agawa, H. & Kawata, M. The effect of color polymorphism on mortality in the aphid Macrosiphoniella yomogicola. Ecol. Res. 10, 301–306 (1995).Article 

    Google Scholar 
    32.Watanabe, S., Murakami, Y. & Hasegawa, E. Effects of attending ant species on the fate of colonies of an aphid, Macrosiphoniella yomogicola (Matsumura) (Homoptera: Aphididae), in an ant-aphid symbiosis. Entomol. News 128, 325 (2019).Article 

    Google Scholar 
    33.Wada-Katsumata, A., Yamaoka, R. & Aonuma, H. Social interactions influence dopamine and octopamine homeostasis in the brain of the ant Formica japonica. J. Exp. Biol. 214, 1707–1713 (2011).CAS 
    Article 

    Google Scholar 
    34.Aonuma, H. & Watanabe, T. Changes in the content of brain biogenic amine associated with early colony establishment in the queen of the ant, formica japonica. PLoS One 7, (2012).35.Aonuma, H. Serotonergic control in initiating defensive responses to unexpected tactile stimuli in the trap-jaw ant Odontomachus kuroiwae. J. Exp. Biol. 223, jeb228874 (2020).Article 

    Google Scholar 
    36.R Core Team. R: A Language and Environment for Statistical Computing. (2020).37.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using {lme4}. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    38.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002).39.Hothorn, T. & Hornik, K. exactRankTests: Exact Distributions for Rank and Permutation Tests. (2019). More

  • in

    Neofunctionalization of an ancient domain allows parasites to avoid intraspecific competition by manipulating host behaviour

    1.Gause, G. F. & Witt, A. A. Behavior of mixed populations and the problem of natural selection. Am. Nat. 69, 596–609 (1935).Article 

    Google Scholar 
    2.Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).Article 

    Google Scholar 
    3.Ayala, F. J. Experimental invalidation of the principle of competitive exclusion. Nature 224, 1076–1079 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Bengtsson, J. Interspecific competition increases local extinction rate in a metapopulation system. Nature 340, 713–715 (1989).ADS 
    Article 

    Google Scholar 
    5.Bolnick, D. I. Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature 410, 463–466 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Collins, S. Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc. Biol. Sci. 278, 247–255 (2011).PubMed 

    Google Scholar 
    7.Osmond, M. M. & de Mazancourt, C. How competition affects evolutionary rescue. Philos. Trans. R. Soc. B 368, 20120085 (2013).Article 

    Google Scholar 
    8.Birch, L. C. Selection in Drosophila pseudoobscura in relation to crowding. Evolution 9, 389–399 (1955).Article 

    Google Scholar 
    9.Martin, M. J., Perez-Tome, J. M. & Toro, M. A. Competition and genotypic variability in Drosophila melanogaster. Heredity 60, 119–123 (1988).PubMed 
    Article 

    Google Scholar 
    10.Harvey, J. A., Poelman, E. H. & Tanaka, T. Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 58, 333–351 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Pennacchio, F. & Strand, M. R. Evolution of developmental strategies in parasitic hymenoptera. Annu. Rev. Entomol. 51, 233–258 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Van Alphen, J. J. & Visser, M. E. Superparasitism as an adaptive strategy for insect parasitoids. Annu. Rev. Entomol. 35, 59–79 (1990).PubMed 
    Article 

    Google Scholar 
    13.Varaldi, J. et al. Infectious behavior in a parasitoid. Science 302, 1930–1930 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Dorn, S. & Beckage, N. E. Superparasitism in gregarious hymenopteran parasitoids: ecological, behavioural and physiological perspectives. Physiol. Entomol. 32, 199–211 (2007).Article 

    Google Scholar 
    15.Gandon, S., Rivero, A. & Varaldi, J. Superparasitism evolution: adaptation or manipulation? Am. Nat. 167, E1–E22 (2006).PubMed 
    Article 

    Google Scholar 
    16.Speirs, D. C., Sherratt, T. N. & Hubbard, S. F. Parasitoid diets: does superparasitism pay? Trends Ecol. Evol. 6, 22–25 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Tracy Reynolds, K. & Hardy, I. C. Superparasitism: a non-adaptive strategy? Trends Ecol. Evol. 19, 347–348 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Pan, M., Liu, T. & Nansen, C. Avoidance of parasitized host by female wasps of Aphidius gifuensis (Hymenoptera: Braconidae): the role of natal rearing effects and host availability? Insect Sci. 25, 1035–1044 (2018).PubMed 
    Article 

    Google Scholar 
    19.Potting, R. P. J., Snellen, H. M. & Vet, L. E. M. Fitness consequences of superparasitism and mechanism of host discrimination in the stem borer parasitoid Cotesia flavipes. Entomol. Exp. Appl. 82, 341–348 (1997).Article 

    Google Scholar 
    20.Mackauer, B. B. Influence of superparasitism on development rate and adult size in a solitary parasitoid wasp, Aphidius ervi. Funct. Ecol. 6, 302–307 (1992).Article 

    Google Scholar 
    21.Keasar, T. et al. Costs and consequences of superparasitism in the polyembryonic parasitoid Copidosoma koehleri (Hymenoptera: Encyrtidae). Ecol. Entomol. 31, 277–283 (2006).Article 

    Google Scholar 
    22.Silva-Torres, C. S. A., Ramos, I. T., Torres, J. B. & Barros, R. Superparasitism and host size effects in Oomyzus sokolowskii, a parasitoid of diamondback moth. Entomol. Exp. Appl. 133, 65–73 (2009).Article 

    Google Scholar 
    23.Wylie, H. G. Delayed development of Microctonus vittatae (Hymenoptera: Braconidae) in superparasitized adults of Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Can. Entomol. 115, 441–442 (1983).Article 

    Google Scholar 
    24.White, J. A. & Andow, D. A. Benefits of self-superparasitism in a polyembryonic parasitoid. Biol. Control 46, 133–139 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Yamada, Y. Y. & Sugaura, K. Evidence for adaptive self-superparasitism in the dryinid parasitoid Haplogonatopus atratus when conspecifics are present. Oikos 103, 175–181 (2003).Article 

    Google Scholar 
    26.Varaldi, J., Fouillet, P., Bouletreau, M. & Fleury, F. Superparasitism acceptance and patch-leaving mechanisms in parasitoids: a comparison between two sympatric wasps. Anim. Behav. 69, 1227–1234 (2005).Article 

    Google Scholar 
    27.Varaldi, J., Patot, S., Nardin, M. & Gandon, S. A virus-shaping reproductive strategy in a Drosophila parasitoid. Adv. Parasitol. 70, 333–363 (2009).PubMed 
    Article 

    Google Scholar 
    28.Carton, Y., Bouletreau, M., van Alphen, J. J. M. & van Lenteren, J. C. The Drosophila parasitic wasps. in The Genetics and Biology of Drosophila (eds Ashburner, M., Carson, H. L. & Thompson, J. N.) 347–394 (Academic Press, 1986).29.Kacsoh, B. Z., Lynch, Z. R., Mortimer, N. T. & Schlenke, T. A. Fruit flies medicate offspring after seeing parasites. Science 339, 947–950 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Krzemien, J. et al. Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446, 325–328 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Kraaijeveld, A. R. & Godfray, H. C. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389, 278–280 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Hwang, R. Y. et al. Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr. Biol. 17, 2105–2116 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Mortimer, N. T. et al. Parasitoid wasp venom SERCA regulates Drosophila calcium levels and inhibits cellular immunity. Proc. Natl Acad. Sci. USA 110, 9427–9432 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Huang, J. et al. Two novel venom proteins underlie divergent parasitic strategies between a generalist and a specialist parasite. Nat. Commun. 12, 234 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Martinson, E. O., Mrinalini, Kelkar, Y. D., Chang, C. H. & Werren, J. H. The evolution of venom by co-option of single-copy genes. Curr. Biol. 27, 2007–2013 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Jaffe, A. B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell. Dev. Biol. 21, 247–269 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Moon, S. Y. & Zheng, Y. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13, 13–22 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Xu, J. et al. RhoGAPs attenuate cell proliferation by direct interaction with p53 tetramerization domain. Cell Rep. 3, 1526–1538 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Hinge, A. et al. p190-B RhoGAP and intracellular cytokine signals balance hematopoietic stem and progenitor cell self-renewal and differentiation. Nat. Commun. 8, 14382 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Werner, E. GTPases and reactive oxygen species: switches for killing and signaling. J. Cell Sci. 117, 143–153 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Bailey, A. P. et al. Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell 163, 340–353 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Boguski, M. S. & McCormick, F. Proteins regulating Ras and its relatives. Nature 366, 643–654 (1993).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Rittinger, K. et al. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature 388, 693–697 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Simanshu, D. K., Nissley, D. V. & McCormick, F. RAS proteins and their regulators in human disease. Cell 170, 17–33 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Outreman, Y., Le Ralec, A., Plantegenest, M., Chaubet, B. & Pierre, J. S. Superparasitism limitation in an aphid parasitoid: cornicle secretion avoidance and host discrimination ability. J. Insect Physiol. 47, 339–348 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Hofsvang, T. Discrimination between unparasitized and parasitized hosts in hymenopterous parasitoids. Acta Entomol. Bohemosl 87, 161–175 (1990).
    Google Scholar 
    47.van Lenteren, J. C. in Semiochemicals: Their Role in Pest Control (eds Nordlund, D. A., Jones, R. L. & Lewis, W. J.) 153–179 (Wiley and Sons, 1981).48.Ganesalingam, V. K. Mechanism of discrimination between parasitized and unparasitized hosts by Venturia canescens (hymenoptera: Ichneumonidae). Entomol. Exp. Appl. 17, 36–44 (2011).Article 

    Google Scholar 
    49.Hoffmeister, T. S. & Roitberg, B. D. To mark the host or the patch: decisions of a parasitoid searching for concealed host larvae. Evol. Ecol. 11, 145–168 (1997).Article 

    Google Scholar 
    50.Agboka, K. et al. Self-, intra-, and interspecific host discrimination in Telenomus busseolae Gahan and T. isis Polaszek (Hymenoptera: Scelionidae), sympatric egg parasitoids of the African cereal stem borer Sesamia calamistis Hampson (Lepidoptera: Noctuidae). J. Insect Behav. 15, 1–12 (2002).Article 

    Google Scholar 
    51.Liang, Q., Jia, Y. & Liu, T. Self- and conspecific discrimination between unparasitized and parasitized green peach aphid (Hemiptera: Aphididae), by Aphelinus asychis (Hymenoptera: Aphelinidae). J. Econ. Entomol. 110, 430–437 (2017).PubMed 

    Google Scholar 
    52.Gandon, S., Varaldi, J., Fleury, F. & Rivero, A. Evolution and manipulation of parasitoid egg load. Evolution 63, 2974–2984 (2009).PubMed 
    Article 

    Google Scholar 
    53.Hughes, D. P. & Libersat, F. Neuroparasitology of parasite-insect associations. Annu. Rev. Entomol. 63, 471–487 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Sberro, H. et al. Large-scale analyses of human microbiomes reveal thousands of small, novel genes. Cell 178, 1245–1259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Zuzarte-Luis, V. & Mota, M. M. Parasite sensing of host nutrients and environmental cues. Cell Host Microbe 23, 749–758 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Cox, F. E. G. Parasites affect behavior of mice. Nature 294, 515–515 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Elya, C. et al. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. eLife 7, e34414 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Hoover, K. et al. A gene for an extended phenotype. Science 333, 1401–140 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Mcallister, M. K. & Roitberg, B. D. Adaptive suicidal-behavior in pea aphids. Nature 328, 797–799 (1987).ADS 
    Article 

    Google Scholar 
    60.Maure, F., Brodeur, J., Droit, A., Doyon, J. & Thomas, F. Bodyguard manipulation in a multipredator context: different processes, same effect. Behav. Process. 99, 81–86 (2013).Article 

    Google Scholar 
    61.Mohan, P. & Sinu, P. A. Parasitoid wasp usurps its host to guard its pupa against hyperparasitoids and induces rapid behavioral changes in the parasitized host. PLoS ONE 12, e0178108 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Muller, C. B. & Schmidhempel, P. Exploitation of cold temperature as defense against parasitoids in bumblebees. Nature 363, 65–67 (1993).ADS 
    Article 

    Google Scholar 
    63.Noubade, R. et al. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. Nature 509, 235–239 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Louradour, I. et al. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. eLife 6, e25496 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Sinenko, S. A., Shim, J. & Banerjee, U. Oxidative stress in the haematopoietic niche regulates the cellular immune response in. Drosoph. EMBO Rep. 13, 83–89 (2012).CAS 
    Article 

    Google Scholar 
    66.Wang, Y. et al. Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 217, 1915–1928 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Colinet, D. et al. Extracellular superoxide dismutase in insects: characterization, function, and interspecific variation in parasitoid wasp venom. J. Biol. Chem. 286, 40110–40121 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Colinet, D. et al. Extensive inter- and intraspecific venom variation in closely related parasites targeting the same host: the case of Leptopilina parasitoids of Drosophila. Insect Biochem. Mol. Biol. 43, 601–611 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Carton, Y., Frey, F. & Nappi, A. Genetic determinism of the cellular immune reaction in Drosophila melanogaster. Heredity 69, 393–399 (1992).PubMed 
    Article 

    Google Scholar 
    70.Colinet, D., Schmitz, A., Depoix, D., Crochard, D. & Poirie, M. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens. PLoS Pathog. 3, 2029–2037 (2007).CAS 
    Article 

    Google Scholar 
    71.Colinet, D. et al. The origin of intraspecific variation of virulence in an eukaryotic immune suppressive parasite. PLoS Pathog. 6, e1001206 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Schlenke, T. A., Morales, J., Govind, S. & Clark, A. G. Contrasting infection strategies in generalist and specialist wasp parasitoids of Drosophila melanogaster. PLoS Pathog. 3, 1486–1501 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    73.Anderl, I. et al. Transdifferentiation and proliferation in two distinct hemocyte lineages in Drosophila melanogaster larvae after wasp infection. PLoS Pathog. 12, e1005746 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.Forbes, A. A. et al. Revisiting the particular role of host shifts in initiating insect speciation. Evolution 71, 1126–1137 (2017).PubMed 
    Article 

    Google Scholar 
    75.Allio, R. et al. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 12, 354 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).PubMed 
    Article 

    Google Scholar 
    77.Svanbäck, R. & Bolnick, D. I. Intraspecific competition drives increased resource use diversity within a natural population. P. Roy. Soc. B-Biol. Sci. 274, 839–844 (2007).
    Google Scholar 
    78.Laskowski, K. L. & Bell, A. M. Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecol. Lett. 16, 746–753 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Huang, J., Reilein, A. & Kalderon, D. Yorkie and Hedgehog independently restrict BMP production in escort cells to permit germline differentiation in the Drosophila ovary. Development 144, 2584–2594 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 23, 1061–1067 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Phylogenet. Evol. 35, 543–548 (2017).Article 
    CAS 

    Google Scholar 
    86.Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 110, 462–467 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Werren, J. H. et al. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327, 343–348 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Consortium, H. G. S. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931–949 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    93.Geib, S. M., Liang, G. H., Murphy, T. D. & Sim, S. B. Whole genome sequencing of the braconid parasitoid wasp Fopius arisanus, an important biocontrol agent of pest tepritid fruit flies. G3-Genes Genom. Genet. 7, 2407–2411 (2017).CAS 

    Google Scholar 
    94.Standage, D. S. et al. Genome, transcriptome and methylome sequencing of a primitively eusocial wasp reveal a greatly reduced DNA methylation system in a social insect. Mol. Ecol. 25, 1769–1784 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Lindsey, A. R. et al. Comparative genomics of the miniature wasp and pest control agent Trichogramma pretiosum. BMC Biol. 16, 54 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    96.Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Korf, I. Gene finding in novel genomes. BMC Biol. 5, 59 (2004).
    Google Scholar 
    98.Marchler-Bauer, A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43, D222–D226 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    100.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16, 10881–10890 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25, 402–408 (2001).CAS 
    Article 

    Google Scholar 
    105.Zhang, X. S., Wang, T., Lin, X. W., Denlinger, D. L. & Xu, W. H. Reactive oxygen species extend insect life span using components of the insulin-signaling pathway. Proc. Natl Acad. Sci. USA 114, 7832–7840 (2017).Article 
    CAS 

    Google Scholar  More

  • in

    High turn-over rates at the upper range limit and elevational source-sink dynamics in a widespread songbird

    1.Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford University Press, 2003).
    Google Scholar 
    2.Sexton, J. P., McIntyre, P., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).Article 

    Google Scholar 
    3.Holt, R. D., Keitt, T. H., Lewis, M. A., Maurer, B. A. & Taper, M. L. Theoretical models of species’ borders: single species approaches. Oikos 108, 18–27 (2005).Article 

    Google Scholar 
    4.Gaston, K. J. Geographic range limits: Achieving synthesis. Proc. R. Soc. Lond. B 276, 1395–1406 (2009).
    Google Scholar 
    5.Parmesan, C. et al. Empirical perspectives on species borders: From traditional biogeography to global change. Oikos 108, 58–75 (2005).Article 

    Google Scholar 
    6.Travis, J. M. J. & Dytham, C. In Dispersal Ecology and Evolution (eds Clobert, J. et al.) 337–348 (Oxford University Press, 2012).Chapter 

    Google Scholar 
    7.Kirkpatrick, M. & Barton, N. H. Evolution of a species’ range. Am. Nat. 150, 1–23 (1997).PubMed 
    Article 
    CAS 

    Google Scholar 
    8.Case, T. J. & Taper, M. L. Interspecific competition, environmental gradients, gene flow, and the coevolution of species’ borders. Am. Nat. 155, 583–605 (2000).PubMed 
    Article 
    CAS 

    Google Scholar 
    9.Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8, 224–239 (2005).Article 

    Google Scholar 
    10.Hargreaves, A. L., Eckert, C. G. & Bailey, J. Evolution of dispersal and mating systems along geographic gradients. Implications for shifting ranges. Funct. Ecol. 28, 5–21 (2014).Article 

    Google Scholar 
    11.Hille, S. M. & Cooper, C. B. Elevational trends in life histories. Revising the pace-of-life framework. Biol. Rev. Camb. Philos. Soc. 90, 204–213 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Boyle, W. A., Sandercock, B. K. & Martin, K. Patterns and drivers of intraspecific variation in avian life history along elevational gradients: A meta-analysis. Biol. Rev. 91, 469–482 (2016).Article 

    Google Scholar 
    13.Badyaev, A. V. & Ghalambor, C. K. Evolution of life histories along elevational gradients: Trade-off between parental care and fecundity. Ecology 82, 2948–2960 (2001).Article 

    Google Scholar 
    14.Bears, H., Martin, K. & White, G. C. Breeding in high-elevation habitat results in shift to slower life-history strategy within a single species. J. Anim. Ecol. 78, 365–375 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Caro, L. M., Caycedo-Rosales, P. C., Bowie, R. C. K., Slabbekoorn, H. & Cadena, C. D. Ecological speciation along an elevational gradient in a tropical passerine bird?. J. Evol. Biol. 26, 357 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    16.Branch, C. L., Jahner, J. P., Kozlovsky, D. Y., Parchman, T. L. & Pravosudov, V. V. Absence of population structure across elevational gradients despite large phenotypic variation in mountain chickadees (Poecile gambeli). R. Soc. Open Sci. 4, 170057. https://doi.org/10.1098/rsos.170057 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Chamberlain, D. E. et al. The altitudinal frontier in avian climate impact research. Ibis 154, 205–209 (2012).Article 

    Google Scholar 
    18.Hargreaves, A. L., Samis, K. E. & Eckert, C. G. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183, 157–173 (2014).PubMed 
    Article 

    Google Scholar 
    19.Graham, C. H., Silva, N. & Velásquez-Tibatá, J. Evaluating the potential causes of range limits of birds of the Colombian Andes. J. Biogeogr. 37, 1863–1875 (2010).
    Google Scholar 
    20.Popy, S., Bordignon, L. & Prodon, R. A weak upward elevational shift in the distributions of breeding birds in the Italian Alps. J. Biogeogr. 37, 57–67 (2010).Article 

    Google Scholar 
    21.Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    22.Maggini, R. et al. Are Swiss birds tracking climate change?. Ecol. Model. 222, 21–32 (2011).Article 

    Google Scholar 
    23.Pearce-Higgins, J. W. & Green, R. E. Climate Change and Birds: Impacts and Conservation Responses (Cambridge University Press, 2014).Book 

    Google Scholar 
    24.Knaus, P. et al. Schweizer Brutvogelatlas 2013–2016. Verbreitung und Bestandsentwicklung der Vögel in der Schweiz und im Fürstentum Liechtenstein (Schweizerische Vogelwarte, 2018).
    Google Scholar 
    25.Chamberlain, D. E., Fuller, R. J., Bunce, R. G. H., Duckworth, J. C. & Shrubb, M. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 37, 771–788 (2000).Article 

    Google Scholar 
    26.Chamberlain, D. & Pearce-Higgins, J. Impacts of climate change on upland birds. Complex interactions, compensatory mechanisms and the need for long-term data. Ibis 155, 451–455 (2013).Article 

    Google Scholar 
    27.Sergio, F. & Newton, I. Occupancy as a measure of territory quality. J. Anim. Ecol. 72, 857–865 (2003).Article 

    Google Scholar 
    28.Fretwell, S. D. & Lucas, H. L. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheor. 19, 16–36 (1969).Article 

    Google Scholar 
    29.Grüebler, M. U., Korner-Nievergelt, F. & von Hirschheydt, J. The reproductive benefits of livestock farming in barn swallows Hirundo rustica: Quality of nest site or foraging habitat?. J. Appl. Ecol. 47, 1340–1347 (2010).Article 

    Google Scholar 
    30.Schaub, M. & von Hirschheydt, J. Effects of current reproduction on apparent survival, breeding dispersal, and future reproduction in barn swallows assessed by multistate capture-recapture models. J. Anim. Ecol. 78, 625–635 (2009).PubMed 
    Article 

    Google Scholar 
    31.Furrer, R. D. & Pasinelli, G. Empirical evidence for source-sink populations: A review on occurrence, assessments and implications. Biol. Rev. Camb. Philos. Soc. 91, 782–795 (2016).PubMed 
    Article 

    Google Scholar 
    32.Plard, F., Turek, D., Grüebler, M. U. & Schaub, M. IPM2: Toward better understanding and forecasting of population dynamics. Ecol. Monogr. 8, e01364. https://doi.org/10.1002/ecm.1364 (2019).Article 

    Google Scholar 
    33.Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of pre- and post-fledging timing decisions in a double-brooded passerine. Ecology 89, 2736–2745 (2008).PubMed 
    Article 

    Google Scholar 
    34.Grüebler, M. U., Morand, M. & Naef-Daenzer, B. A predictive model of the density of airborne insects in agricultural environments. Agric. Ecosyst. Environ. 123, 75–80 (2008).Article 

    Google Scholar 
    35.Jenni-Eiermann, S., Glaus, E., Grüebler, M. U., Schwabl, H. & Jenni, L. Glucocorticoid response to food availability in breeding barn swallows (Hirundo rustica). Gen. Comp. Endocrinol. 155, 558–565 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    36.Schifferli, L., Grüebler, M. U., Meijer, H. A. J., Visser, G. H. & Naef-Daenzer, B. Barn Swallow Hirundo rustica parents work harder when foraging conditions are good. Ibis 156, 777–787 (2014).Article 

    Google Scholar 
    37.Shields, W. M. Factors Affecting nest and site fidelity in Adirondack barn swallows (Hirundo rustica). Auk 101, 780–789 (1984).Article 

    Google Scholar 
    38.Saino, N., Calza, S., Ninni, P. & Møller, A. P. Barn swallows trade survival against offspring condition and immunocompetence. J. Anim. Ecol. 68, 999–1009 (1999).Article 

    Google Scholar 
    39.Turner, A. The Barn Swallow (T & A D Poyser, 2006).
    Google Scholar 
    40.Newton, I. The Migration Ecology of Birds 1st edn. (Academic Press, 2007).
    Google Scholar 
    41.Ambrosini, R. & Saino, N. Environmental effects at two nested spatial scales on habitat choice and breeding performance of barn swallow. Evol. Ecol. 24, 491–508 (2010).Article 

    Google Scholar 
    42.Ambrosini, R. et al. The distribution and colony size of barn swallows in relation to agricultural land use. J. Appl. Ecol. 39, 524–534 (2002).Article 

    Google Scholar 
    43.Evans, K. L., Bradbury, R. B. & Wilson, J. D. Selection of hedgerows by Swallows Hirundo rustica foraging on farmland: the influence of local habitat and weather. Bird Study 50, 8–14 (2003).Article 

    Google Scholar 
    44.Newton, I. Population Limitation in Bird (Academic Press, 1998).
    Google Scholar 
    45.Paradis, E., Baillie, S. R., Sutherland, W. J. & Gregory, R. D. Patterns of natal and breeding dispersal in birds. J. Anim. Ecol. 67, 518–536 (1998).Article 

    Google Scholar 
    46.Scandolara, C. et al. Context-, phenotype-, and kin-dependent natal dispersal of barn swallows (Hirundo rustica). Behav. Ecol. 25, 180–190 (2014).Article 

    Google Scholar 
    47.Schaub, M., von Hirschheydt, J. & Grüebler, M. U. Differential contribution of demographic rate synchrony to population synchrony in barn swallows. J. Anim. Ecol. 84, 1530–1541 (2015).PubMed 
    Article 

    Google Scholar 
    48.Camfield, A. F., Pearson, S. F. & Martin, K. Life history variation between high and low elevation subspecies of horned larks Eremophila spp. J. Avian Biol. 41, 273–281 (2010).Article 

    Google Scholar 
    49.Møller, A. P. Phenotype-dependent arrival time and its consequences in a migratory bird. Behav. Ecol. Sociobiol. 35, 115–122 (1994).Article 

    Google Scholar 
    50.Møller, A. P. Sexual Selection and the Barn Swallow (Oxford University Press, 1994).
    Google Scholar 
    51.Lerche-Jørgensen, M., Korner-Nievergelt, F., Tøttrup, A. P., Willemoes, M. & Thorup, K. Early returning long-distance migrant males do pay a survival cost. Ecol. Evol. 8, 11434–11449. https://doi.org/10.1002/ece3.4569 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Pulliam, H. R. On the relationship between niche and distribution. Ecol. Lett. 3, 349–361 (2000).Article 

    Google Scholar 
    53.Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article 

    Google Scholar 
    54.Møller, A. P., de Lope, F. & Saino, N. Parasitism, immunity, and arrival date in a migratory bird, the barn swallow. Ecology 85, 206–219 (2004).Article 

    Google Scholar 
    55.Huntley, B., Green, R. E., Collingham, Y. C. & Willis, S. G. A Climatic Atlas of European Breeding Birds (Lynx Edicions, 2007).
    Google Scholar 
    56.Scridel, D. et al. A review and meta-analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis 160, 489–515 (2018).Article 

    Google Scholar 
    57.Cormack, R. M. Estimates of survival from the sighting of marked animals. Biometrika 51, 429–438 (1964).MATH 
    Article 

    Google Scholar 
    58.Jolly, G. Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52, 225–247 (1965).MathSciNet 
    PubMed 
    MATH 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    59.Seber, G. A. F. A note on the multiple-recapture census. Biometrika 52, 249–259 (1965).MathSciNet 
    PubMed 
    MATH 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    60.Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).Article 

    Google Scholar 
    61.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    62.Saino, N., Martinelli, R. & Romano, M. Ecological and phenological covariates of offspring sex ratio in barn swallows. Evol. Ecol. 22, 659–674 (2008).Article 

    Google Scholar 
    63.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).64.Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2007).
    Google Scholar  More

  • in

    The influence of a lost society, the Sadlermiut, on the environment in the Canadian Arctic

    Understanding the ‘push’ and ‘pull’ influence of environment on the migration and sustainability of peoples in northern North America over the last millennia is arguably one of the most important elements of understanding how recent climate change may affect society and lead to genetic adaptations1,2. The timing of migration has often been associated with paleo- temperature reconstructions that link evidence of distinctive material culture3 as well as the impact of subsistence practices in areas where hunting camps were established4 with shifting conditions. For the Dorset people, who were reliant on ice-dependent species such as walrus5, climate may have served as a “push” factor that served as a mechanism for northern migration during periods of time such as the Medieval Climate Anomaly (MCA). Conversely, the Thule were able to take advantage of increased activity of belugas and narwhals during longer open-water seasons, and migrations associated with the Thule expansion (circa 1250 CE) may have followed this transition until cooling associated with the Little Ice Age in the fifteenth century3,6. The Sadlermiut of Southampton Island (Nunavut, Arctic Canada) have often been referred to as descendants of the Dorset culture7,8 even though recent genetic evidence suggests they were a long isolated Thule population9,10. Archaeological evidence of stone-carved tools for walrus hunting, which is much more related to Dorset cultural practices than Thule4,5, is a prominent feature of winter hunting camps concentrated on the eastern side of Southampton Island in proximity to polynyas and ample walrus hunting grounds. Small, shallow ponds that are widespread in this area were used as staging grounds for the cleaning and preparation of subsistence harvest, and serve as sedimentary archives of the past presence and influence of the Sadlermiut, and their cultural practices, on the landscape.High latitude freshwater ecosystems are often referred to as sentinels of environmental changes caused by climate variability and human activity11. Small and shallow lakes and ponds that characterize Arctic landscapes have a low resilience to buffer environmental change12,13,14, as well as catchment disturbances induced by prehistoric Inuit whalers15. Likewise, diffuse and point source disturbances can have disproportional effects due to the suboptimal environmental thresholds characteristic of biological communities of northern aquatic ecosystems16. Here, we show that a small subarctic pond in proximity of the archaeological site “Native Point” on Southampton Island evolved atypically after human activities initiated almost 800 years ago when Sadlermiut settled in the area. Our multi-proxy paleolimnological investigation uses geochemical and biological indicators to infer direct and indirect anthropogenic impacts. The lacustrine sediments collected from this site are highly sensitive environmental recorders that also allow us to pinpoint the first arrival of Sadlermiut culture, define their dietary shifts, and summarize the legacy of anthropogenic activities at “Native Point” since their first arrival.The legacy of the Sadlermiut on the environmentOne of the richest archaeological sites found in the Canadian Arctic, the “Native Point” site was occupied by the Sadlermiut ca. 1250–1325 CE until decimated by disease introduced by European whalers in 19033,4,5. The Sadlermiut village, referred to as the Tunermiut site4, consisted of numerous sod and winter houses that bordered a small shallow freshwater body (c. 20,000 m2), “Bung Stick Pond”. This site (Fig. 1A–C), and others in the well-known archaeological area of Native Point, offer a fascinating glimpse of an isolated society that evolved independently of modern-day Inuit and incorporated cultural elements of the Dorset peoples that vacated the area prior to the Thule migration10.Figure 1Bung Stick Pond and its catchment at Native Point, Southampton Island, Nunavut; (A) Aerial photo of Native Point (Orthoimage GéoBase, Natural Resources Canada), yellow circle—Bung Stick Pond; contains information licensed under the Open Government Licence—Canada; (B) Simplified geological map of Southampton Island17 and location of nine reference lakes and ponds; (Source: Geological Survey of Canada, “A” Series Map 1404A, 1977, 1 sheet, https://doi.org/10.4095/108900; contains information licensed under the Open Government Licence—Canada; georeferenced with Grass GIS 7.8.3; https://grass.osgeo.org/) (C) Photo of Bung Stick Pond facing northward, note scattered bones and antler fragments and partly paleozoic limestone gravel, informed consent for the publication of image has been obtained from Gabriel Bruce.Full size imageThe heavy influence of Sadlermiut families processing food and leaving the remains of butchered carcasses to degrade in the pond is both visible and likely the main contributing factor for the difference in water chemistry that persists until today (Fig. 2). Southampton Island is characterized by a short vegetation period, ultra-oligotrophic freshwater ecosystems, and low sedimentation rates18,19. As such, the lakes and ponds of the area have low nutrient concentrations (i.e. total N and P; see Fig. 2), and the concentration of ions is dependent on soluble bedrock geology in their catchment, basin evolution since the last glaciation, distance to shore, and inputs from wildlife14,18,20,21,22. Here, the water chemistry of our study site, Bung Stick Pond, is an order or magnitude higher in concentrations of nutrients and organic carbon than in other lakes and ponds investigated on Southampton Island during the sampling period (Fig. 2). The only other eutrophic systems known in the region are those affected by waterfowl colonies18. Furthermore, the pond is characterized by an unusual high alkalinity caused by the catchment’s surface geology, which consists of Paleozoic limestone.Figure 2Box and whiskers diagram of water chemistry of nine lakes and ponds sampled on Southampton Island compared to Bung Stick Pond (red circle) (see Fig. 1). Nutrient indicators (top row) and major ion concentrations (bottom row) in mg L−1.Full size imageThe arrival and harvesting practices of the SadlermiutThe sediment history collected from Bung Stick Pond offers the possibility to track the aquatic system’s evolution since the arrival of the Sadlermiut when the site was used by the community for butchering of the collected harvest (Fig. 3). There is little archaeological evidence to suggest that the diet of Sadlermiut contained fish or any plants4,5, and the pond’s littoral zone is littered with skulls/skeletons at the bottom (see Fig. 1C). The predominant role of marine resources in Sadlermiut culture is also mirrored by the stable isotope signal in their adult bone collagen measured from burials23,24,25 (Fig. 4). Similarly, the surplus of organic material from the decaying process of carcasses in or around Bung Stick Pond carried the species specific isotope signal in the sediment. In general, heavier isotopes of nitrogen are enriched in predators relative to its food, which leads to high values in top predators of a food web26,27,28,29,30. Carbon isotope ratios usually show much less trophic enrichment, however a secondary fractionation process causes a positive offset in bone collagen in relation to soft tissue26,27,28,29,30 and apparently sediment samples.Figure 3Nitrogen isotope analysis from paleo-Inuit harvesting sites and distinguishable phases at Bung Stick Pond cores. Inferred August air temperature based on chironomid remains from Southampton Island19. Earlier pronounced stable δ15N isotope record from sediment core tracingprehistoric Inuit whalers on Somerset Island15. Stable δ15N isotope record and TOC:TN-ratio from bulk sediment samples of core NP-3; iron (Fe) record from bulk sediment samples of core NP-2; selected relative abundance of chironomids of core NP-2, with Tanytarsus gracilentus (pale blue) and sum percentage of Paratanytarsus (dark blue); enumerated Daphnia ephippia (resting eggs) and Fabaeformiscandona harmsworthi (Ostracoda) valves of core NP-2 in individuals per cm3 with; adults (dark green), juveniles (pale green); interpreted activity phases I–IV at Native Point; sediment colors of age-corrected core NP-1.Full size imageFigure 4Relationship of δ13C and δ15N in organic material of sediment core NP-3 and bone collagen of the Sadlermiut and their potential diet. Circles indicate isotope excursion in organic material (sediment) in different time intervals; green (Phase 1):  1767 CE; triangles show isotope data from human skeletal remains (bone collagen) in Sadlermiut burials from Coltrain (up)23, (down)24,25; whisker plots indicate modern range of isotope composition in muscle and blubber tissue of mammals supposedly included in the Sadlermiut diet from Hudson Bay or the Canadian Arctic/reports26,27,28,29,30.Full size imageThe stratigraphic analysis of biological and geochemical indicators revealed four distinguishable phases that are attributable to the arrival and cultural practices of the Sadlermiut (Fig. 3). The reference condition of the pristine environment prior to Sadlermiut settlement (Phase 1; Fig. 3) is inferred by the low abundance of aquatic organisms (e.g., chironomids, cladocerans ephippia, ostracods) and δ15N values of around 8‰ at the base of the sediment core. During this time, the carbon:nitrogen ratio (TOC:TN) indicated mostly allochthonous inputs from the terrestrial environment31. An abrupt shift in geochemical indicators (Phase 2) suggests that the arrival of the Sadlermiut occurred between 1250 and 1300 CE. This period leads the earliest radiocarbon dated materials (1325 CE) found at the Sadlermiut heritage site4. Isotope analyses show a substantial increase in δ15N from about + 8 to + 19‰ (Fig. 3) and depletion of δ13C from about − 18 to − 21‰ (Fig.S2). Likewise, a decline in TOC:TN from 13 to 9 in bulk sediments indicates a large difference in the source of materials entering the lake and a sharp increase in aquatic production during this period32. Abnormally high iron concentrations were also observed starting from 1250 CE, potentially from blood washed into the system from butchered marine harvest.The onset of Phase 3 (~ 1400 CE) suggests that settlement of the Sadlermiut camp supplied less external materials to the lake basin and a shift in the harvest of the Sadlermiut from a diet primarily comprised of marine mammals (e.g., seals, whales), which are characterized by the heavier δ15N and depleted δ13C (see Figs. 3 & S2), to one dominated by a more terrestrial origin (i.e., caribou). The shift in isotopic indicators, including the decrease of TOC:TN, during Phase 3 is concurrent with loss of macrophyte habitat as inferred from the chironomid data, notably the reduction of Paratanytarsus from 35 to  2 (Table S5). The sediment concentrations of each of the metals showed major increases from pre-industrial (~ 1850) to modern times consistent with industrial air-borne pollution (Fig. 5). Ag and Zn increased beginning ~ 1750–1800, while Bi, Pb, Sb and Sn showed increases occurring after 1900. The most striking EF was for tin (Sn), which had a rapid rise in concentrations from about 1900 (Fig. 5) and an EF of 72. Other trace elements including As, Cd, Cu, and Se showed modest enrichment (EFs 1.6–1.9) in post-1900 horizons (Table S5). So far, there is only one reference in subarctic Hudson Bay region that significant anthropogenic enrichment of Pb in post-1900 horizons (EFs 2–5×) has occurred38. Enrichment of metals is better known from ice cores from the Devon Ice cap (Devon Island Nunavut, Arctic Canada), which are in good agreement or show higher EFs than observations in the NP2 core. Noteworthy are anthropogenic enrichment of As and Bi39, Sb40, Pb41, Ag and Thallium (Tl)42, which originate from urban and industrial areas and linked to coal combustion and metal smelting. The overall comparison of ice cap ice cores and NP-2 EFs suggests that the inputs of Ag, Bi, Pb, Sb, and Ag are influenced by long-range transport from Eurasian sources40,42. Historical profiles are not available for Sn in Arctic sediment, peat, or ice core archives. Elsewhere, peat cores in the UK record deposition of Sn from regional tin mining and smelting43.Figure 5Metal concentrations of industrial air-borne pollution in sediment core NP-2; concentrations in ppm; interpreted activity phases I–IV at Native Point; sediment colors of age-corrected core NP-1.Full size imageIn concert with recent anthropogenic deposition of contaminants, an eutrophication trend can be inferred from more abundant remains of aquatic microfauna (i.e., chironomids, cladocerans, and ostracods) in the uppermost lake sediments (Fig. 3). Likewise, the sediments are composed of highly organic material (mean 15 wt%), which accumulates toward the core top exceeding 30 wt% (Fig. 3).All these data indicate the extreme vulnerability and low resilience of small Arctic ponds as the effects of human activities at this site are still prevalent after more than 750 years. The sediment archive ipso facto records the influence of the Sadlermiut on the environment since their arrival and until the last of their population succumbed to disease in 1903. Furthermore, the continued contamination by airborne metal pollutants of remote Arctic landscapes since industrialisation is evident. More