Metal bioaccumulation alleviates the negative effects of herbivory on plant growth
1.Pollard, A. J., Reeves, R. & Baker, A. J. M. Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci. 217–218, 8–17 (2014).PubMed
Article
CAS
PubMed Central
Google Scholar
2.Whiting, S. N. et al. Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor. Ecol. 12, 106–116 (2004).Article
Google Scholar
3.Baker, A. J. M. Accumulators and excluders—Strategies in the response of plants to heavy metals. J. Plant Nutr. 3, 643–654 (1981).CAS
Article
Google Scholar
4.Ernest, W. H. O. Evolution of metal hyperaccumulation and phytoremediation hype. New Phytol. 146, 357–358 (2000).Article
Google Scholar
5.Pollard, A. J., Powell, K. D., Harper, F. A. & Smith, J. A. C. The genetic basis of metal hyperaccumulation in plants. Crit. Rev. Plant Sci. 21, 539–566 (2002).CAS
Article
Google Scholar
6.Antosiewicz, D. M. Adaptation of plants to an environmental polluted with heavy metals. Acta Soc. Bot. Pol. 61, 281–299 (1992).CAS
Article
Google Scholar
7.Brooks, R. R., Lee, J., Reeves, R. D. & JaVré, T. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor. 7, 49–77 (1977).CAS
Article
Google Scholar
8.Jansen, S., Broadley, M., Robbrecht, E. & Smets, E. Aluminium hyperaccumulation in angiosperms: A review of its phylogenetic signifficance. Bot. Rev. 68, 235–269 (2002).Article
Google Scholar
9.van der Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, J. & Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 362, 319–334 (2013).Article
CAS
Google Scholar
10.Metali, F., Salim, K. A. & Burslem, D. F. R. P. Evidence of foliar aluminium accumulation in local, regional and global datasets of wild plants. New Phytol. 193, 637–649 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
11.Noret, N., Meerts, P., Vanhaelen, M., Dos Santos, A. & Escarré, J. Do metal-rich plants deter herbivores? A field test of the defence hypothesis. Oecologia 152, 92–100 (2007).ADS
PubMed
Article
PubMed Central
Google Scholar
12.Martens, S. N. & Boyd, R. S. The ecological significance of nickel hyperaccumulation: A plant chemical defense. Oecologia 98, 379–384 (1994).ADS
PubMed
Article
PubMed Central
Google Scholar
13.Boyd, R. S. & Martens, S. N. The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8, 1–7 (1998).CAS
Article
Google Scholar
14.Hanson, B. et al. Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol. 159, 461–469 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
15.Rascio, N. & Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting?. Plant Sci. 180, 169–181 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
16.Freeman, J. L., Garcia, D., Kim, D., Hopf, A. & Salt, D. E. Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol. 137, 1082–1091 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
17.Vesk, P. A. & Reichman, S. M. Hyperaccumulators and herbivores—A Bayesian meta-analysis of feeding choice trials. J. Chem. Ecol. 35, 289–296 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
18.Pollard, A. J. & Baker, A. J. M. Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytol. 135, 655–658 (1997).CAS
Article
Google Scholar
19.Ribeiro, S. P. & Brown, V. K. Insect herbivory in tree crowns of Tabebuia aurea and T. ochracea (Bignoniaceae): Contrasting the Brazilian Cerrado with the wetland Pantanal Matogrossense. Selbyana 20, 159–170 (1999).
Google Scholar
20.Strauss, S. Y., Rudgers, J. A., Lau, J. A. & Irwin, R. E. Direct and ecological costs of resistance to herbivory. Trends Ecol. Evol. 17, 278–285 (2002).Article
Google Scholar
21.Hossain, M. A., Piyatida, P., Teixeria da Silva, J. A. & Fujita, M. Molecular mechanism of heavy metal toxicity and tolerance in plants: Central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J. Bot. 2012, 01–37 (2012).Article
CAS
Google Scholar
22.McNaughton, S. J. Compensatory plant growth as a response to herbivory. Oikos 40, 329–336 (1983).Article
Google Scholar
23.Kozlov, M. V., Lanta, V., Zverev, V. E. & Zvereva, E. L. Delayed local responses of downy birch to damage by leafminers and leafrollers. Oikos 121, 428–434 (2012).Article
Google Scholar
24.Maestri, E., Marmiroli, M., Visioli, G. & Marmiroli, N. Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environ. Exp. Bot. 68, 1–13 (2010).CAS
Article
Google Scholar
25.Khan, A. et al. Heavy metals effects on plant growth and dietary intake of trace metals in vegetables cultivated in contaminated soil. Int. J. Environ. Sci. Technol. 16, 2295–2304 (2019).CAS
Article
Google Scholar
26.Barceló, J. & Poschenrieder, C. Respuestas de las plantas a la contaminación por metales pesados. Suelo y Planta 2, 345–361 (1992).
Google Scholar
27.Ribeiro, S. P. et al. Plant defense against leaf herbivory based on metal accumulation: Examples from a tropical high altitude ecosystem. Plant Spec. Biol. 32, 147–155 (2017).Article
Google Scholar
28.Boyd, R. S. & Martens, S. N. Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore. Oikos 70, 21–25 (1994).CAS
Article
Google Scholar
29.Boyd, R. S. & Jhee, E. M. A test of elemental defence against slugs by Ni in hyperaccumulator and non-hyperaccumulator Streptanthus species. Chemoecology 15, 179–185 (2005).CAS
Article
Google Scholar
30.Freeman, J. L. et al. Selenium accumulation protects plants from herbivory by Orthoptera due to toxicity and deterrence. New Phytol. 175, 490–500 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
31.Mathews, S., Ma, L. Q., Rathinasabapathi, C. & Stamps, R. H. Arsenic reduced scale-insect infestation on arsenic hyperaccumulator Pteris vittata L. Environ. Exp. Bot. 65, 282–286 (2009).CAS
Article
Google Scholar
32.Coleman, C. M., Boyd, R. S. & Eubanks, M. D. Extending the elemental defense hypothesis: Dietary metal concentrations below hyperaccumulator levels could harm herbivores. J. Chem. Ecol. 31, 1669–1681 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
33.Scheirs, J., Vandevyvere, I., Wollaert, K., Blust, R. & De Bruyn, L. Plant-mediated effects of heavy metal pollution on host choice of a grass miner. Environ. Pollut. 143, 138–145 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
34.Boyd, R. S. The defence hypothesis of elemental hyperaccumulation: Status, challenges and new directions. Plant Soil 293, 53–176 (2007).Article
CAS
Google Scholar
35.Porto, M. L. & Silva, M. F. F. Tipos de vegetação metalófila em áreas da Serra de Carajás e de Minas Gerais, Brasil. Acta Bot. Bras. 3, 13–21 (1989).Article
Google Scholar
36.Teixeira, W. A. & Lemos-Filho, J. P. Metais pesados em folhas de espécies lenhosas colonizadoras de uma área de mineração de ferro em Itabirito, Minas Gerais. Rev. Arvore 22, 381–388 (1998).
Google Scholar
37.Lorenzi, H. Árvores Brasileiras: Manual De Identificação e Cultivo de Plantas Arbóreas Nativas Do Brasil Vol. 3 (Nova Odessa: Instituto Plantarum, 2009)38.Pérez, J. F. M. et al. Sistema de manejo para a candeia—Eremanthus erythropappus (DC.) Macleish—a opção do sistema de corte seletivo. Cerne 10, 257–273 (2004).
Google Scholar
39.Keane, B., Collier, M., Shann, J. & Rogstad, S. Metal content of dandelion (Taraxacum officinale) leaves in relation to soil contamination and airborne particulate matter. Sci. Total Environ. 281, 63–78 (2001).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
40.Assunção, A. G. L., Schat, H. & Aarts, M. G. M. Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol. 159, 351–360 (2003).PubMed
Article
CAS
PubMed Central
Google Scholar
41.Basta, N. T., Ryan, J. A. & Chaney, R. L. Trace element chemistry in residual-treated soil: Key concepts and metal bioavailability. J. Environ. Qual. 34, 49–63 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
42.Evans, L. J. Chemistry of metal retention by soils—Several processes are explained. Environ. Sci. Technol. 23, 1046–1056 (1989).ADS
CAS
Article
Google Scholar
43.Campos, N. B. Aptidão reprodutiva e estrutura da comunidade de um candeial com elevada mortalidade. Dissertation (Federal University of Ouro Preto, 2012).44.Pereira, J. A., Londe, V., Ribeiro, S. P. & De Sousa, H. C. Crown architecture and leaf anatomic traits influencing herbivory on Clethra scabra Pers.: Comparing adaptation to wetlands and drained habitats. Rev. Bras. Bot. 40, 481–490 (2017).Article
Google Scholar
45.Koslov, M. V., Zverev, V. & Zvereva, E. L. Combined effects of environmental disturbance and climate warming on insect herbivory in mountain birch in subarctic forests: Results of 26-year monitoring. Sci. Total Environ. 601–602, 802–811 (2017).ADS
Article
CAS
Google Scholar
46.Mendes, G. & Cornelissen, T. G. Effects of plant quality and ant defence on herbivory rates in a neotropical ant-plant. Ecol. Entomol. 2017, 1–8 (2017).
Google Scholar
47.Jhee, E. M., Boyd, R. S. & Eubanks, M. D. Effectiveness of metal-metal and metal-organic compund combinations against Plutella xylostella: Implications for plant elemental defense. J. Chem. Ecol. 32, 239–259 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
48.Boyd, R. S. Plant defense using toxic inorganic ions: Conceptual models of the defensive enhancement and joint effects hypotheses. Plant Sci. 195, 88–95 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
49.Bronstein, J. L. Conditional outcomes in mutualistic interactions. TREE 9, 214–217 (1994).CAS
PubMed
PubMed Central
Google Scholar
50.Monteiro, I., Viana-Junior, A. B., Solar, R. R. C., Neves, F. S. & DeSouza, O. Disturbance-modulated symbioses in termitophily. Ecol. Evol. 7, 10829–10838 (2017).PubMed
PubMed Central
Article
Google Scholar
51.Trumble, J. T., Kolodnyhirsch, D. M. & Ting, I. P. Plant compensation for arthropod herbivory. Annu. Rev. Entomol. 38, 93–119 (1993).Article
Google Scholar
52.Stowe, K. A., Marquis, R. J., Hochwender, C. G. & Simms, E. L. The evolutionary ecology of tolerance to consumer damage. Annu. Rev. Ecol. Syst. 31, 565–595 (2000).Article
Google Scholar
53.Poveda, K., Steffan-Dewenter, I., Scheu, S. & Tscharntke, T. Effects of below- and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia 135, 601–605 (2003).ADS
PubMed
Article
PubMed Central
Google Scholar
54.Tozer, K. N. et al. Growth responses of diploid and tetraploid perennial ryegrass (Lolium perenne) to soil-moisture deficit, defoliation and a root-feeding invertebrate. Crop Pasture Sci. 68, 632–642 (2017).Article
Google Scholar
55.Yuan, J., Wang, P. & Yang, Y. Effects of simulated herbivory on the vegetative reproduction and compensatory growth of Hordeum brevisubulatum at different ontogenic stages. Int. J. Environ. Res. Public Health 16, 1663 (2019).PubMed Central
Article
Google Scholar
56.Seneviratne, M. et al. Heavy metal induced oxidative stress on seed germination and seedling development: A critical review. Environ. Geochem. Health. 41, 1813–1831 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
57.Poschenrieder, C., Tolrà, R. & Barceló, J. Can metals defend plants against biotic stress?. Trends Plant Sci. 11, 288–295 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
58.Coleman, J. E. Zinc proteins: Enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem. 61, 897–946 (1992).CAS
PubMed
Article
PubMed Central
Google Scholar
59.Jansen, S., Watanabe, T., Dessein, S., Smetes, E. & Robbrecht, E. A comparative study of metal levels in leaves of some Al-accumulating Rubiaceae. Ann. Bot. 91, 657–663 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Gall, J. E., Boyd, R. S. & Rajakaruna, N. Transfer of heavy metals through terrestrial food webs: A review. Environ. Monit. Asses. 187, 1–21 (2015).CAS
Article
Google Scholar
61.Poschenrieder, C., Gunsé, B., Corrales, I. & Barceló, J. A glance into aluminum toxicity and resistance in plants. Sci. Total. Environ. 400, 356–368 (2008).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
62.Janssens, T. K. S., Roelofs, D. & Van Straalen, N. M. Molecular mechanisms of heavy metal tolerance and evolution in invertebrates. Insect Sci. 16, 3–18 (2009).CAS
Article
Google Scholar
63.Hodson, M. E. Effects of heavy metals and metalloids on soil organisms. In Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Environmental Pollution (ed Alloway, B. J.) Vol. 22, 141–160 (Springer, 2012).64.Rahman, M. et al. Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: Current status and opportunities. Int. J. Mol. Sci. 19, 1–28 (2018).ADS
Google Scholar
65.Kidd, P. S., Llugany, M., Poschenrieder, C., Gunsé, B. & Barceló, J. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 52, 1339–1352 (2001).CAS
PubMed
PubMed Central
Google Scholar
66.Epstein, E. Silicon: Its manifold roles in plants. Ann. Appl. Biol. 155, 155–160 (2009).CAS
Article
Google Scholar
67.Grevenstuk, T. & Romano, A. Aluminium speciation and internal detoxification mechanisms in plants: Where do we stand?. Metallomics 5, 1584–1594 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
68.Panda, S. K., Baluška, F. & Matsumoto, H. Aluminum stress signaling in plants. Plant Signal Behav. 4, 592–597 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
69.Borgström, P., Bommarco, R., Viketoft, M. & Strengbom, J. Below-ground herbivory mitigates biomass loss from above-ground herbivory of nitrogen fertilized plants. Sci. Rep. 10, 12752 (2020).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
70.Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I. & Martínez-Estévez, M. Aluminum, a friend or foe of higher plants in acid soils. Front. Plant Sci. 8, 1–18 (2017).Article
Google Scholar
71.Massad, T. J. Ontogenetic differences of herbivory on woody and herbaceous plants: A meta-analysis demonstrating unique effects of herbivory on the young and the old, the slow and the fast. Oecologia 172, 1–10 (2013).ADS
PubMed
Article
PubMed Central
Google Scholar
72.Messias, M. C. T. B. et al. Phanerogamic flora and vegetation of Itacolomi State Park, Minas Gerais, Brazil. Biota Neotrop. 17, 1–38 (2017).Article
Google Scholar
73.Peron, M. V. Listagem preliminar da flora fanerogâmica dos campos rupestres do Parque Estadual do Itacolomi–Ouro Preto/Mariana, MG. Rodriguésia 67, 63–69 (1989).Article
Google Scholar
74.Almeida, F. F. M. Províncias estruturais brasileiras. In SBG, Simpósio de Geologia do Nordeste, 8, Campina Grande, PB. Atas Campina Grande 363–391 (1977).75.Machado, N., Schrank, A., Noce, C. M. & Gauthier, G. Ages of detrital zircon from Archean-Paleoproterozoic sequences: Implications for Greenstone Belt setting and evolution of a Transamazonian foreland basin in Quadrilatero Ferrifero, southeast Brazil. Earth Planet Sci. Lett. 141, 259–276 (1996).ADS
CAS
Article
Google Scholar
76.Ribeiro, S. P. & Basset, Y. Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: The importance of leaf sclerophylly. Ecography 30, 663–672 (2007).Article
Google Scholar
77.Ribeiro, S. P. & Basset, Y. Effects of sclerophylly and host choice on gall densities and herbivory distribution in an Australian subtropical forest. Austral. Ecol. 441, 219–226 (2016).Article
Google Scholar
78.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH
Google Scholar
79.R Core Team. R: A Language and Environment for Statistical Computing (R Found Stat Comp, 2020) https://www.R-project.org/. More
