More stories

  • in

    ROV assessment of mesophotic fish and associated habitats across the continental shelf of the Amathole region

    1.Milligan, R. J., Spence, G., Roberts, J. M. & Bailey, D. M. Fish communities associated with cold-water corals vary with depth and substratum type. Deep Sea Res. Part I Oceanogr. Res. Pap. 114, 43–54 (2016).ADS 
    Article 

    Google Scholar 
    2.Anderson, T. J., Syms, C., Roberts, D. A. & Howard, D. F. Multi-scale fish-habitat associations and the use of habitat surrogates to predict the organisation and abundance of deep-water fish assemblages. J. Exp. Mar. Bio. Ecol. 379, 34–42 (2009).Article 

    Google Scholar 
    3.Agardy, T., di Sciara, G. N. & Christie, P. Mind the gap: Addressing the shortcomings of marine protected areas through large scale marine spatial planning. Mar. Policy 35, 226–232 (2011).Article 

    Google Scholar 
    4.Hinderstein, L. M. et al. Mesophotic coral ecosystems: Characterization, ecology, and management. Coral Reefs 29, 247–251 (2010).ADS 
    Article 

    Google Scholar 
    5.Baldwin, C. C., Tornabene, L. & Robertson, D. R. Below the mesophotic. Sci. Rep. 8, 1–13 (2018).
    Google Scholar 
    6.Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).Article 

    Google Scholar 
    7.Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361(6399), 281–284 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Cerrano, C. et al. Temperate mesophotic ecosystems: gaps and perspectives of an emerging conservation challenge for the Mediterranean Sea. Eur. Zool. J. 86, 370–388 (2019).Article 

    Google Scholar 
    9.Williams, J., Jordan, A., Harasti, D., Davies, P. & Ingleton, T. Taking a deeper look: Quantifying the differences in fish assemblages between shallow and mesophotic temperate rocky reefs. PLoS ONE 14, e0206778 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Bio. Ecol. 375, 1–8 (2009).Article 

    Google Scholar 
    11.Armstrong, R. A., Pizarro, O. & Roman, C. Underwater robotic technology for imaging mesophotic coral ecosystems. in Mesophotic Coral Ecosystems. 973–988. (Springer, 2019).12.Stoner, A. W., Ryer, C. H., Parker, S. J., Auster, P. J. & Wakefield, W. W. Evaluating the role of fish behavior in surveys conducted with underwater vehicles. Can. J. Fish. Aquat. Sci. 65, 1230–1243 (2008).Article 

    Google Scholar 
    13.Durden, J. M. et al. Perspectives in visual imaging for marine biology and ecology: From acquisition to understanding. Oceanogr. Mar. Biol. Annu. Rev. 54, 1–72 (2016).
    Google Scholar 
    14.Stevens, T. & Connolly, R. M. Local-scale mapping of benthic habitats to assess representation in a marine protected area. Mar. Freshw. Res. 56, 111–123 (2005).Article 

    Google Scholar 
    15.Bernard, A. T. et al. New possibilities for research on reef fish across the continental shelf of South Africa. S. Afr. J. Sci. 110, 1–5. https://doi.org/10.1590/sajs.2014/a0079 (2014).Article 

    Google Scholar 
    16.Rees, S. E., Foster, N. L., Langmead, O., Pittman, S. & Johnson, D. E. Defining the qualitative elements of Aichi Biodiversity Target 11 with regard to the marine and coastal environment in order to strengthen global efforts for marine biodiversity conservation outlined in the United Nations Sustainable Development Goal 14. Mar. Policy 93, 241–250 (2018).Article 

    Google Scholar 
    17.South African National Biodiversity Institute. South Africa Announces New Marine Protected Area Network. https://www.sanbi.org/media/south-africa-announces-new-marine-protected-area-network/. (2018).18.der Bank, V., Harris, L., Atkinson, L., Kirkman, S., & Karenyi, N. Marine Realm in South African National Biodiversity Assessment 2018 Technical Report. Vol. 4 (South African National Biodiversity Institute, 2019).19.Sink, K. The marine protected areas debate: Implications for the proposed Phakisa marine protected areas network. S. Afr. J. Sci. 112, 9–10 (2016).Article 

    Google Scholar 
    20.Turpie, J. K., Beckley, L. E. & Katua, S. M. Biogeography and the selection of priority areas for conservation of South African coastal fishes. Biol. Conserv. 92, 59–72 (2000).Article 

    Google Scholar 
    21.Götz, A. & Phillips, M. SAEON Elwandle Applies Expertise to Marine Protected Area Management in Amathole. http://www.saeon.ac.za/enewsletter/archives/2016/august2016/doc03 (2019).22.DEA (Department of Environmental Affairs). Notice Declaring the Amathole Offshore Marine Protected Area Under Section 22A of the National Environmental Management: Protected Areas Act, 2003 (Act No.57 of 2003). Government Gazette, Republic of South Africa (2016).23.Green, A. N. et al. Relict and contemporary influences on the postglacial geomorphology and evolution of a current swept shelf: The Eastern Cape Coast, South Africa. Mar. Geol. 427, 106230 (2020).ADS 
    Article 

    Google Scholar 
    24.Parker, D., Winker, H., Attwood, C. & Kerwath, S. Dark times for dageraad Chrysoblephus cristiceps: Evidence for stock collapse. Afr. J. Mar. Sci. 38, 341–349. https://doi.org/10.2989/1814232X.2016.1200142 (2016).Article 

    Google Scholar 
    25.Kerwath, S. et al. Tracking the decline of the world’s largest seabream against policy adjustments. Mar. Ecol. Prog. Ser. 610, 163–173. https://doi.org/10.3354/meps12853 (2019).ADS 
    Article 

    Google Scholar 
    26.African Coelacanth Ecosystem Programme Project. African Coelacanth Ecosystem Programme Project Overviews 2017/2018. (2018).27.Donovan, B. A Retrospective Assessment of the Port Alfred Linefishery with Respect to the Changes in the South African Fisheries Management Environment (Rhodes University, 2010).
    Google Scholar 
    28.International Union for Conservation of Nature and Natural Resources. The IUCN Red List of Threatened Species (IUCN Global Species Programme Red List Unit, 2017).
    Google Scholar 
    29.Götz, A., Kerwath, S. E., Attwood, C. G. & Sauer, W. H. H. Effects of fishing on population structure and life history of roman Chrysoblephus laticeps (Sparidae). Mar. Ecol. Prog. Ser. 362, 245–259 (2008).ADS 
    Article 

    Google Scholar 
    30.McCord, M. & Zweig, T. Fisheries: Facts and Trends. http://awsassets.wwf.org.za/downloads/wwf_a4_fish_facts_report_lr.pdf (2011).31.Southern African Marine Linefish Species Profiles (South African Association for Marine Biological Research, 2013).32.Smith, J. L. B. Smiths’ Sea Fishes. https://doi.org/10.1007/978-3-642-82858-4 (Springer, 1986).33.Compagno, L. J. V., Ebert, D. A. & Smale, M. J. Guide to the Sharks and Rays of Southern Africa (Struik, 1989).
    Google Scholar 
    34.Peres, M. B. & Klippel, S. Reproductive biology of Southwestern Atlantic wreckfish, Polyprion americanus (Teleostei: Polyprionidae). Environ. Biol. Fish. 68, 163–173 (2003).Article 

    Google Scholar 
    35.Baillon, S., Hamel, J.-F., Wareham, V. E. & Mercier, A. Deep cold-water corals as nurseries for fish larvae. Front. Ecol. Environ. 10, 351–356 (2012).Article 

    Google Scholar 
    36.Sink, K. J., Boshoff, W., Samaai, T., Timm, P. G. & Kerwath, S. E. Observations of the habitats and biodiversity of the submarine canyons at Sodwana Bay: Coelacanth research. S. Afr. J. Sci. 102, 466–474 (2006).
    Google Scholar 
    37.Heemstra, P. C. & Heemstra, E. Coastal Fishes of Southern Africa (National Inquiry Services Centre, 2004).
    Google Scholar 
    38.Epstein, H. E. & Kingsford, M. J. Are soft coral habitats unfavourable? A closer look at the association between reef fishes and their habitat. Environ. Biol. Fish. 102, 479–497. https://doi.org/10.1007/s10641-019-0845-4 (2019).Article 

    Google Scholar 
    39.Booth, A. J. & Buxton, C. D. The biology of the panga, Pterogymnus laniarius (Teleostei: Sparidae), on the Agulhas Bank, South Africa. Environ. Biol. Fish. 49, 207–226 (1997).Article 

    Google Scholar 
    40.Turner, J. A., Babcock, R. C., Hovey, R. & Kendrick, G. A. Deep thinking: A systematic review of mesophotic coral ecosystems. ICES J. Mar. Sci. 74, 2309–2320. https://doi.org/10.1093/icesjms/fsx085 (2017).Article 

    Google Scholar 
    41.Heyns, E., Bernard, A. T., Richoux, N. & Götz, A. Depth-related distribution patterns of subtidal macrobenthos in a well-established marine protected area. Mar. Biol. 163, 39. https://doi.org/10.1007/s00227-016-2816-z (2016).CAS 
    Article 

    Google Scholar 
    42.Bridge, T. C. L. et al. Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30, 143–153 (2011).ADS 
    Article 

    Google Scholar 
    43.Doty, M. S. & Oguri, M. The Island mass effect. ICES J. Mar. Sci. 22, 33–37 (1956).Article 

    Google Scholar 
    44.Fabricius, K. E., Logan, M., Weeks, S. & Brodie, J. The effects of river run-off on water clarity across the central Great Barrier Reef. Mar. Pollut. Bull. 84, 191–200 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Foster, M. S. Rhodoliths: Between rocks and soft places. J. Phycol. 37, 659–667 (2001).Article 

    Google Scholar 
    46.Littler, M. M., Littler, D. S. & Dennis Hanisak, M. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Bio. Ecol. 150, 163–182 (1991).Article 

    Google Scholar 
    47.Tait, R. V. & Dipper, F. Elements of marine ecology (Butterworth-Heinemann, 1998).
    Google Scholar 
    48.Williams, A. & Bax, N. J. Delineating fish-habitat associations for spatially based management: An example from the south-eastern Australian continental shelf. Mar. Freshw. Res. 52, 513 (2001).Article 

    Google Scholar 
    49.Pearson, R. & Stevens, T. Distinct cross-shelf gradient in mesophotic reef fish assemblages in subtropical eastern Australia. Mar. Ecol. Prog. Ser. 532, 185–196 (2015).ADS 
    Article 

    Google Scholar 
    50.MacDonald, C., Bridge, T. & Jones, G. Depth, bay position and habitat structure as determinants of coral reef fish distributions: Are deep reefs a potential refuge?. Mar. Ecol. Prog. Ser. 561, 217–231 (2016).ADS 
    Article 

    Google Scholar 
    51.Fukunaga, A., Kosaki, R. K. & Wagner, D. Changes in mesophotic reef fish assemblages along depth and geographical gradients in the Northwestern Hawaiian Islands. Coral Reefs 36, 785–790 (2017).ADS 
    Article 

    Google Scholar 
    52.Sih, T. L., Cappo, M. & Kingsford, M. Deep-reef fish assemblages of the Great Barrier Reef shelf-break (Australia). Sci. Rep. 7, 10886 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Colwell, R. K. & Lees, D. C. The mid-domain effect: Geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Colwell, R. K., Rahbek, C. & Gotelli, N. J. The mid-domain effect and species richness patterns: What have we learned so far?. Am. Nat. 163, E1-23 (2004).PubMed 
    Article 

    Google Scholar 
    55.Makwela, M. S. et al. Notes on a remotely operated vehicle survey to describe reef ichthyofauna and habitats—Agulhas Bank, South Africa. Bothalia 46, 1–7 (2016).Article 

    Google Scholar 
    56.Quantum GIS Development Team. Quantum GIS Geographic Information System. (2002).57.Kleczkowski, M., Babcock, R. C. & Clapin, G. Density and size of reef fishes in and around a temperate marine reserve. Mar. Freshw. Res. 59, 165 (2008).Article 

    Google Scholar 
    58.Althaus, F. et al. A standardised vocabulary for identifying benthic biota and substrata from underwater imagery: The CATAMI classification scheme. PLoS ONE 10, e0141039 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (R Foundation for Statistical Computing, 2020).60.Charrad, M., Ghazzali, N., Boiteau, V. & Maintainer, A. N. NbClust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1 (2014).Article 

    Google Scholar 
    61.Liaw, A. & Wiener, M. Classification and regression by randomForest. R. News 2, 18–22 (2002).
    Google Scholar 
    62.De’ath, G. Multivariate regression trees: A new technique for modeling species-environment relationships. Ecology 83, 1105 (2002).
    Google Scholar 
    63.Zuur, A. F. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).MATH 
    Book 

    Google Scholar 
    64.South African National Biodiversity Institute. https://www.sanbi.org/. (2021). More

  • in

    Microbial transfers from permanent grassland ecosystems to milk in dairy farms in the Comté cheese area

    1.Mauchamp, L., Mouly, A., Badot, P.-M. & Gillet, F. Impact of nitrogen inputs on multiple facets of plant biodiversity in mountain grasslands: Does nutrient source matter?. Appl. Veg. Sci. 19, 206–217 (2016).Article 

    Google Scholar 
    2.Mesbahi, G., Michelot-Antalik, A., Goulnik, J. & Plantureux, S. Permanent grassland classifications predict agronomic and environmental characteristics well, but not ecological characteristics. Ecol. Indic. 110, 105956 (2020).Article 

    Google Scholar 
    3.Karimi, B. et al. Biogeography of soil microbial habitats across France. Glob. Ecol. Biogeogr. 29, 1399–1411 (2020).Article 

    Google Scholar 
    4.Mahaut, L., Fort, F., Violle, C. & Freschet, G. T. Multiple facets of diversity effects on plant productivity: Species richness, functional diversity, species identity and intraspecific competition. Funct. Ecol. 34, 287–298 (2020).Article 

    Google Scholar 
    5.Tilman, D. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 
    6.van der Heijden, M. G. A., Bardgett, R. D. & van Straalen, N. M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Tardy, V. et al. Stability of soil microbial structure and activity depends on microbial diversity: Linking microbial diversity and stability. Environ. Microbiol. Rep. 6, 173–183 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Fierer, N., Barberan, A. & Laughlin, D. C. Seeing the forest for the genes: Using metagenomics to infer the aggregated traits of microbial communities. Front. Microbiol. 5, 614 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Loreau, M. Linking biodiversity and ecosystems: Towards a unifying ecological theory. Philos. Trans. R. Soc. B 365, 49–60 (2010).Article 

    Google Scholar 
    11.Buchin, S., Martin, B., Dupont, D., Bornard, A. & Achilleos, C. Influence of the composition of Alpine highland pasture on the chemical, rheological and sensory properties of cheese. J. Dairy Res. 66, 579–588 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Bugaud, C., Buchin, S., Hauwy, A. & Coulon, J.-B. Flavour and texture of cheeses according to grazing type: The Abundance cheese. INRA Prod. Anim. 15, 31–36 (2002).Article 

    Google Scholar 
    13.Monnet, J. C., Berodier, F. & Badot, P. M. Characterization and localization of a cheese georegion using edaphic criteria (Jura Mountains, France). J. Dairy Sci. 83, 1692–1704 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Mariotte, P., Vandenberghe, C., Kardol, P., Hagedorn, F. & Buttler, A. Subordinate plant species enhance community resistance against drought in semi-natural grasslands. J. Ecol. 101, 763–773 (2013).Article 

    Google Scholar 
    15.Montel, M.-C. et al. Traditional cheeses: Rich and diverse microbiota with associated benefits. Int. J. Food Microbiol. 177, 136–154 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Bouton, Y., Guyot, P., Berthier, F., & Beuvier, E. Investigation of bacterial community development from raw milk and starter to curd and mature Comte cheese. in Cheese ripening and technology: abstracts of IDF symposium held in Banff, Canada, March 2000 (ed. International Dairy Federation) 85 (Brussel, Belgium, 2000).17.Demarigny, Y., Beuvier, E., Buchin, S., Pochet, S. & Grappin, R. Influence of raw milk microflora on the characteristics of Swiss-type cheese. Lait 77, 151–167 (1997).CAS 
    Article 

    Google Scholar 
    18.Bouton, Y., Buchin, S., Duboz, G., Pochet, S. & Beuvier, E. Effect of mesophilic lactobacilli and enterococci adjunct cultures on the final characteristics of a microfiltered milk Swiss-type cheese. Food Microbiol. 26, 183–191 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Vacheyrou, M. et al. Cultivable microbial communities in raw cow milk and potential transfers from stables of sixteen French farms. Int. J. Food Microbiol. 146, 253–262 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Verdier-Metz, I. et al. Cow teat skin, a potential source of diverse microbial populations for cheese production. Appl. Environ. Microbiol. 78, 326–333 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Doyle, C. J., Gleeson, D., O’Toole, P. W. & Cotter, P. D. Impacts of seasonal housing and teat preparation on raw milk microbiota: A high-throughput sequencing study. Appl. Environ. Microbiol. 83(e02694–16), e02694-e2716 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Frétin, M. et al. Bacterial community assembly from cow teat skin to ripened cheeses is influenced by grazing systems. Sci. Rep. 8, 200 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Falentin, H. et al. Bovine teat microbiome analysis revealed reduced alpha diversity and significant changes in taxonomic profiles in quarters with a history of mastitis. Front. Microbiol. 7, 480 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Dequiedt, S. et al. Biogeographical patterns of soil bacterial communities. Environ. Microbiol. Rep. 1, 251–255 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Sadet-Bourgeteau, S. et al. Lasting effect of repeated application of organic waste products on microbial communities in arable soils. Appl. Soil Ecol. 125, 278–287 (2018).Article 

    Google Scholar 
    28.Nacke, H. et al. Pyrosequencing-based assessment of bacterial community structure along different management types in german forest and grassland soils. PLoS ONE 6, e17000 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Coolon, J. D., Jones, K. L., Todd, T. C., Blair, J. M. & Herman, M. A. Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in Tallgrass Prairie. PLoS ONE 8, e67884 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Toyota, K. & Kuninaga, S. Comparison of soil microbial community between soils amended with or without farmyard manure. Appl. Soil Ecol. 33, 39–48 (2006).Article 

    Google Scholar 
    31.Garnier, E. & Navas, M.-L. A trait-based approach to comparative functional plant ecology: Concepts, methods and applications for agroecology: A review. Agron. Sustain. Dev. 32, 365–399 (2012).Article 

    Google Scholar 
    32.Mauchamp, L., Mouly, A., Badot, P.-M. & Gillet, F. Impact of management type and intensity on multiple facets of grassland biodiversity in the French Jura Mountains. Appl. Veg. Sci. 17, 645–657 (2014).Article 

    Google Scholar 
    33.ChytrĂœ, M. et al. European map of alien plant invasions based on the quantitative assessment across habitats. Divers. Distrib. 15, 98–107 (2009).Article 

    Google Scholar 
    34.Klaudisová, M., Hejcman, M. & PavlƯ, V. Long-term residual effect of short-term fertilizer application on Ca, N and P concentrations in grasses Nardus stricta L. and Avenella flexuosa L. Nutr. Cycl. Agroecosyst. 85, 187–193 (2009).Article 
    CAS 

    Google Scholar 
    35.Terrat, S. et al. Mapping and predictive variations of soil bacterial richness across France. PLoS ONE 12, e0186766 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Terrat, S. et al. Improving soil bacterial taxa–area relationships assessment using DNA meta-barcoding. Heredity 114, 468–475 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Navråtilovå, D. et al. Diversity of fungi and bacteria in species-rich grasslands increases with plant diversity in shoots but not in roots and soil. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy208 (2018).Article 

    Google Scholar 
    38.Zhang, Q. et al. Niche differentiation in the composition, predicted function, and co-occurrence networks in bacterial communities associated with antarctic vascular plants. Front. Microbiol. 11, 1036 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Falardeau, J., Keeney, K., Trmčić, A., Kitts, D. & Wang, S. Farm-to-fork profiling of bacterial communities associated with an artisan cheese production facility. Food Microbiol. 83, 48–58 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Plassart, P. et al. Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect. Sci. Rep. 9, 605 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Rastogi, G., Coaker, G. L. & Leveau, J. H. J. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol. Lett. 348, 1–10 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Andrews, T., Neher, D. A., Weicht, T. R. & Barlow, J. W. Mammary microbiome of lactating organic dairy cows varies by time, tissue site, and infection status. PLoS ONE 14, e0225001 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Karimi, B. et al. Biogeography of soil bacteria and archaea across France. Sci. Adv. 4, 1808 (2018).ADS 
    Article 

    Google Scholar 
    44.Lewin, G. R. et al. Evolution and ecology of Actinobacteria and their bioenergy applications. Annu. Rev. Microbiol. 70, 235–254 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Li, N. et al. Variation in raw milk microbiota throughout 12 months and the impact of weather conditions. Sci. Rep. 8, 2371 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Lavoie, K., Touchette, M., St-Gelais, D. & Labrie, S. Characterization of the fungal microflora in raw milk and specialty cheeses of the province of Quebec. Dairy Sci. Technol. 92, 455–468 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Verdier-Metz, I. & Monsallier, F. Place des pñturages des bovins dans les flux microbiens laitiers. Fourrages 6, 1–10 (2012).
    Google Scholar 
    48.Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Mallet, A. et al. Quantitative and qualitative microbial analysis of raw milk reveals substantial diversity influenced by herd management practices. Int. Dairy J. 27, 13–21 (2012).Article 

    Google Scholar 
    51.Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. Metz 15, 259–263 (2006).ADS 
    Article 

    Google Scholar 
    52.Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.QGIS.org. QGIS Geographic Information System. QGIS Association. http://www.qgis.org (2021).54.Homburger, H. & Hofer, G. Diversity change of mountain hay meadows in the Swiss Alps. Basic Appl. Ecol. 13, 132–138 (2012).Article 

    Google Scholar 
    55.Gillet, F., Mauchamp, L., Badot, P.-M. & Mouly, A. Recent changes in mountain grasslands: a vegetation resampling study. Ecol. Evol. 6, 2333–2345 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Maabel, E. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39, 97–114 (1979).Article 

    Google Scholar 
    57.Jost, L. The relation between evenness and diversity. Diversity 26, 207–230 (2010).Article 

    Google Scholar 
    58.ChemidlinPrévost-Bouré, N. et al. Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE 6, e24166 (2011).ADS 
    Article 
    CAS 

    Google Scholar 
    59.Djemiel, C. et al. BIOCOM-PIPE: A new user-friendly metabarcoding pipeline for the characterization of microbial diversity from 16S, 18S and 23S rRNA gene amplicons. BMC Bioinform. 21, 492. https://doi.org/10.1186/s12859-020-03829-3 (2020).CAS 
    Article 

    Google Scholar 
    60.Cole, J. R. et al. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Bardou, P., Mariette, J., Escudié, F., Djemiel, C. & Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 15, 293 (2014).Article 

    Google Scholar 
    62.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan (2020).63.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Asnicar, F., Weingart, G., Tickle, T. L., Huttenhower, C. & Segata, N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3, e1029. https://doi.org/10.7717/peerj.1029 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Yekutieli, D. & Benjamini, Y. The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29, 1165–1188 (2001).MathSciNet 
    MATH 

    Google Scholar 
    66.Gysi, D. M., Voigt, A., Fragoso, T. M., Almaas, E. & Nowick, K. wTO: an R package for computing weighted topological overlap and a consensus network with integrated visualization tool. BMC Bioinform. 19, 392 (2018).Article 

    Google Scholar 
    67.Kursa, M. B. & Rudnicki, W. R. Feature Selection with the Boruta Package. J. Stat. Soft. 36, 11 (2010).Article 

    Google Scholar  More

  • in

    Prokaryotic viruses impact functional microorganisms in nutrient removal and carbon cycle in wastewater treatment plants

    AS systems display many novel and a high fraction of shared virusesWe used metagenomic sequencing of 30 Gb of sequences per sample to characterize the composition of viral concentrates across six WWTPs (see Methods). After assembly and mapping of reads, 24–34% of the total sequence information could be classified as viral using two different identification pipelines (see Methods). By combining the results of these two pipelines, the final data set consisted of 50,037 viral contigs with an N50 >20 kb. To evaluate whether our sequencing effort sufficiently sampled the viromes, all six WWTP samples were subsampled iteratively to evaluate the saturation dynamics. Rarefaction curves of the number of viral contigs, reached a plateau ~15 Gb of sequencing data for all six samples (Fig. 1a), indicating adequate recovery of prokaryotic viruses in these AS systems at the sequencing depth (30 Gb per sample) in this study.Fig. 1: Compositional variation in viromes among wastewater treatment plants.a Rarefaction curve of each sample. b Rank-abundance curve of each sample. c PCoA analysis of viromes based on the relative abundance of viral genera. d Relative abundance and appearance of dominant viral genera in each WWTP. White color denotes no appearance in this WWTP. Source data are provided as a Source Data file.Full size imageViral contigs were further classified into 8756 viral clusters (VC, equivalent to viral genera) using vConTACT2 by calculating the gene-content-based distance between viral contigs (~40% proteome similarity)11, and each VC was assigned an ID for identification (mean length = 15.2 kb, mean genera size = 3). Compared with the current number of viral sequences from AS systems, our sequencing data increase the AS virome database (N = 2103 in the IMG/VR database v.2.0)10 by 12-fold at the genus level and by 23-fold at the species-level (95% identity, 80% coverage). Comparison with NCBI RefSeq viral genome database showed that across the six AS systems, only 0.4–1.6% of total viral contigs (coverage percentage) could be assigned to a known viral family. Similar to previously described viral metagenomes from the soil, freshwater, and marine system7,12,13, this limited annotation highlights substantial uncharacterized viral diversity in AS communities. Among these recognizable viruses, members of the family Podoviridae (short-tailed phages from the Caudovirales order) were the most prevalent, comprising on average 41.3% of these viral contigs (coverage percentage) across the six WWTPs.All samples displayed high but variable diversity of viral genera with Shannon’s diversity index H’ ranging from 5.22 to 7.14 and Pielou’s evenness index J’ ranging from 0.71 to 0.86 (Supplementary Data 1). These differences are evident in rank-abundance curves, which show that each sample has different viral frequency patterns (Fig. 1b). Most viruses occurred at low frequency with the relative abundance of individual genera diminishing below 0.1% after counting the top 138 viral genera.Principal coordinate analysis (PCoA) of the Bray–Curtis dissimilarity based on the relative abundance of viral genera suggested that most samples are divergent from each other (Fig. 1c), with only two pairs of AS viromes, ST and STL as well as SK and SWH, displaying higher similarity to each other.The overall variability in the viromes is also reflected in different dominance patterns. Each AS sample yielded a different dominant viral genus, and while these were also abundant in some WWTPs, they were below the detection limit in others (Fig. 1d). Although high relative abundance across all WWTPs indicates linkage to consistently abundant hosts, highly variable occurrence suggests that host populations are also more dynamic.Although the viromes appear overall variable in rank abundance, many viral genera were shared across the WWTPs. Fifty-three viral genera were detected in all samples and were thus considered to be common members of the AS viromes, accounting for 1.7–5.4% of viral contigs (coverage percentage) in each WWTP (Fig. 2). Thirteen of these common viral genera were also present in AS viromes in the IMG/VR database v.2.010. Of the total of 8756 unique viral genera collected across samples, STL and ST contained the largest fraction (5245 and 5149 genera, respectively) and shared most viral genera (N = 2885) with each other, far exceeding the number of all the other shared or unique viral genera (Fig. 2). These two WWTPs also had only 45 and 64 site-specific viral genera, consistent with the pattern in the PCoA virome profile. On the other hand, SWH possessed the most unique viral genera (N = 323), making up 11.0% of the total (Fig. 2). In fact, only relatively few viral genera were found exclusively in one of the WWTPs.Fig. 2: Shared viral genera in each WWTP.The UpSet55 chart shows the total number of viral genera and their sharedness in each WWTP. The bar chart on the top right shows the distribution of predicted hosts for common viral genera in all WWTPs. Shared viral genera between ST and STL were labeled orange and shared viral genera in all WWTPs were labeled red. Source data are provided as a Source Data file.Full size imageOverall, these results suggest that the virome across WWTPs consists of many shared genera. The lack of detection of some viral genera in the AS virome of one WWTP may be primarily due to the biological variation in the grab samples and/or the technical variation. Hence, if such technical and biological variations are taken into account, the virome shared among all AS maybe even more diverse.Viruses infect a broad spectrum of bacteria and archaeaTo examine putative host associations of all 50,037 viral contigs in the six WWTPs, we amassed a database of approximately three million CRISPR-Cas spacers from the NCBI prokaryotic complete genomes and metagenomes database (https://www.ncbi.nlm.nih.gov/assembly/). Host prediction was performed by matching CRISPR-Cas spacers at a sequence identity above 97%, sequence coverage over 90% in length, and mismatches 1000 ORFs in each sample were found in the following categories, L: replication, recombination, and repair, M: cell wall/membrane/envelope biogenesis, and K: transcription, confirming that the main functions sustain viral reproduction and transcription. It is noteworthy that viruses encode on average 541 ORFs (1.4% of annotated viral ORFs) in each sample in category G: carbohydrate transport and metabolism. After removing redundant viral ORFs, most unique ORFs (N = 1610) were classified into the glycoside hydrolases (GH) module24 (Fig. 5b). These GHs may be involved in the digestion of capsules to allow the viral tail to reach its membrane receptor on the host. The high representation of this function may be explained by the prevalence of biofilm formation among AS microbes and has previously also been noted among mangrove sediment viruses25.Fig. 5: Distribution of auxiliary metabolic genes (AMGs) relevant to the carbon cycle and nutrient removal.a Boxplot of the overall gene profile for six WWTPs was summarized both as viral ORF hits and viral ORF relative abundance (ORF hits to each COG function class/total ORFs that have hits to eggNOG database). Data in a are presented as mean values (center) and 25%, 75% percentiles (bounds of box). The minima and maxima represent the range of the data. b Number of unique viral ORFs related to each CAZy function class was shown in a descendant order. Source data are provided as a Source Data file.Full size imagePrevious work has shown that many prokaryotic viruses carry auxiliary metabolic genes (AMGs), which can modulate host energy metabolism to provide an energetic advantage during viral genome and protein synthesis26. Broadly speaking, AMGs refer to all metabolic genes in lytic phages27, i.e., all genes in categories C, E, F, G, H, I, and P. Though only about a quarter of the viral ORFs have annotations in the eggNOG database, our data reveal a large repertoire of potential AMGs in the AS viromes (Fig. 5a). For example, 72 ORFs in total are potentially involved with carbon fixation pathways and 35 of them annotate as photosynthetic carbon fixation pathways in KEGG28. Moreover, 10 viral ORFs belong to CobS genes, which are essential for the biosynthesis of cobalamin. Cobalamin biosynthesis pathway is usually not complete in bacterial genomes29, and these viral encoded CobS genes could possibly assist the host metabolic capability. Seven viral genes encode adenylyl-sulfate kinase (CysC), which could facilitate host’s assimilatory sulfate reduction. By modulating host metabolism during infection, AMGs could alter the specific functions of their hosts in WWTPs and therefore influence carbon cycling and the removal of nutrients.Viromes are shared between WWTPs and the water environmentTo investigate whether the WWTP viral genera also occur in other habitats, we compared all viral sequences recovered here with the IMG/VR database v.2.0, which consists of 735,112 viral contigs predicted from metagenomic data10. Viral sequences from five ecosystems (AS, AD, solid waste, freshwater, marine) were included for comparison. For AS (N = 2103), AD (N = 8580), and solid waste (N = 5760), all viral sequences were subjected to our viral clustering pipeline, whereas for freshwater and marine environments, we each randomly selected 50,037 viral sequences to match the number in our samples (N = 50,037).Results showed that viral genera in our samples were shared among multiple environments. There was considerable overlap between WWTPs and freshwater (N = 402) and marine (N = 172) environments (Fig. 6). Moreover, 200, 273, and 244 viral genera were shared with AS, AD, and solid waste, respectively (Fig. 6). This represents a higher number than with marine viromes, and if normalized against the dataset size, there is also a larger fraction of connections than with freshwater viromes. When hosts were predicted for these shared viral genera, Proteobacteria was the most shared host phylum, followed by Firmicutes, Actinobacteria, Bacteroidetes, and Cyanobacteria (Supplementary Data 2). At the genus level, Bacillus was the most abundant between our samples and marine, AD, and AS environments, while Streptomyces displayed a higher prevalence between our samples and freshwater and solid waste environments (Supplementary Data 3). Although it is difficult to identify the source and sink dynamics, AS and AD are typical processes in WWTPs, and solid waste viral sequences mainly stem from compost and leachate microbial communities. The considerable sharing of viromes between WWTPs and marine water may be caused by Hong Kong’s extensive application of marine water for toilet flushing, causing the influent sewage of WWTPs to contain a sizable amount of marine water. These data thus suggest that viruses are extensively shared and that the same viral genera may manipulate microbial communities in these different environments.Fig. 6: Connections between viral genera in AS samples and in five ecosystems from IMG/VR database.Pairwise connections were shown in a Circos56 plot between samples and different ecosystems, including AS, AD, solid waste, freshwater, and marine water. Source data are provided as a Source Data file.Full size imageHi-C validation of virus–host interactions in AS systemHigh throughput chromosome conformation capture (Hi-C) method was used to validate the virus–host connections predicted by our CRISPR-based methods using an additional sample in December 2020 at ST WWTP, by referring to viral contigs and host genome bins obtained from direct sequencing using Illumina and Nanopore metagenomic sequencing (Fig. 7).Fig. 7: General workflow to validate the precision of CRISPR-based methods in the present study.For Illumina data, 91% precision was observed. For Nanopore data, 94% precision was observed. Source data are provided as a Source Data file.Full size imageAs for Illumina metagenomic sequencing, 4578 viral contigs were identified and 1695 of them were deconvoluted in Hi-C data to have virus–host interactions with 197 host bins (Supplementary Data 9). To compare the Hi-C results with the CRISPR-based methods, 21 viruses were predicted by BLASTn-short to link with spacers in eight bins (Supplementary Data 10).As for hybrid assembly using both Nanopore and Illumina reads, 2593 viral contigs were identified and 989 of them were deconvoluted in Hi-C data to have virus–host interactions with 144 host bins (Supplementary Data 11). To compare the Hi-C results with the CRISPR-based methods, 28 viruses were predicted by BLASTn-short to link with spacers in 10 bins (Supplementary Data 12).Results show that CRISPR-based results have very high accuracy. For Illumina data, of the 21 virus–host connections predicted using CRISPR spacers, 11 are simultaneously found in Hi-C data and 10 are not detected in Hi-C data. Of 11 detected connections, only 1 is different in Hi-C data and 10 are the same (91% precision) (Supplementary Data 13). Also for the Nanopore/Illumina hybrid data, of the 28 virus–host connections predicted using CRISPR spacers, 16 are simultaneously found in Hi-C data and 12 are not detected in Hi-C data. Of 16 detected connections, only 1 is different in Hi-C data, 15 are the same (94% precision) (Supplementary Data 14).It should be noticed that some of the predicted CRISPR-based virus–host interactions are undetected in Hi-C data. CRISPR spacers represent a collection of memories regarding past virus invasions, whereas Hi-C data provide a snapshot of ongoing virus–host interactions. Also, Hi-C crosslinking may not be 100% efficient and might miss some of the virus–host interactions. More

  • in

    Marauding elephants, menacing macaques and epicurean bears

    BOOK REVIEW
    13 September 2021

    Marauding elephants, menacing macaques and epicurean bears

    As humans encroach on the habitat of wild animals, is it any surprise that they advance upon ours?

    Josie Glausiusz

    0

    Josie Glausiusz

    Josie Glausiusz is a science journalist in Israel.Twitter: @josiegz

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    An adult male elephant wanders through the town of Siliguri, India, in February 2016.Credit: Diptendu Dutta/AFP/Getty

    Fuzz: When Nature Breaks the Law Mary Roach W. W. Norton (2021)On 8 September 1488, the French fiefdom of Beaujeu issued an unusual order. Curates were charged with warning slugs three times “to cease from vexing the people by corroding and consuming the herbs of the fields and the vines, and to depart”. Mary Roach cites this episode in her introduction to Fuzz: When Nature Breaks the Law — eliciting the first laugh of many in a book in which she turns her deft wit on the destruction and death that results from human–wildlife conflict. It is a fitting sequel to her previous ‘science-ofs’: Stiff (about cadavers), Spook (the afterlife), Bonk (sex), Gulp (eating) and Grunt (combat).Beyond medieval proceedings against slugs, caterpillars and weevils, Roach addresses more modern resolutions to our rivalry with species that “regularly commit acts that put them at odds with humans”. Travelling from the alleyways of Aspen, Colorado, where epicurean bears forage among restaurant dustbins, to “leopard-terrorized hamlets” in the Himalayas, she investigates how wild creatures from cougars to crows menace humans, their crops and their property.Fundamentally, she asks: when we encroach on the habitat of wild creatures, is it any surprise that they advance on ours? Perhaps nowhere is this collision clearer than in the Indian region of North Bengal, where, each year, dozens of people die after elephant attacks. Elephants there forage at night and sleep by day in patches of teak and red sandalwood trees, the remnants of forests that once stretched from the state of Assam to the eastern border of Nepal. This elephant corridor was fractured by imperialist-era tea estates and more recently by military bases. As the population of elephants in the remaining pockets spikes, the animals are wandering into villages, eating crops and grain stores.
    The long goodbye
    A bull elephant in must — the periodic hormonal tumult signified by frequent erections and ogling eyeballs — is highly aggressive and can crush people. Roach accompanies researchers from the Wildlife Institute of India in Dehradun to visit “awareness camps”, where they teach villagers to stay calm and call the local Elephant Squad so that rangers can herd roving elephants back into the forest. Even better, conservationist Dipanjan Naha tells her, would be to install seismic sensors to warn of approaching elephant footfalls. But, as one officer notes: “We are disturbing them.”In India, where in Hindu tradition elephants are the incarnation of the god Ganesha, it is customary to offer compensation to the families of those killed by elephants, and by leopards. In the United States, by contrast, the focus is not on compensation but on euthanizing the few bears who attack and kill humans. With bears, too, habitat fragmentation as well as climate change appear to play a major part in the conflict with humans. Major highways on the US–Canada border might restrict the movement of black bears. In California, drought is pushing bears into urban areas and, during a record-breaking heatwave earlier this year, into the waters of Lake Tahoe.

    Pushed into urban areas by encroaching development, bears raid bins for food.Credit: Tomas Hulik ARTpoint/Shutterstock

    Once upon a time, bears in the forests around Aspen, Colorado, dined well on acorns, chokecherries and “the outrageous fecundity of crabapple trees”. Roach watches them in the wee hours gorging instead on crab legs and cabbage leaves, tossed out by the city’s restaurants. Stewart Breck at the National Wildlife Research Center in Fort Collins, Colorado, argues that limiting the availability of human food can reduce the need to kill or ward off marauding bears. But replacing busted bear-resistant dumpsters, hiring staff to enforce bin-locking laws, and issuing tickets to restaurants and “alpha residents” who ignore local waste-disposal ordinances isn’t easy: “the county is home to about as many billionaires as bears,” Roach writes.Complex trade-offsOften, it’s our meddling that created the threat in the first place, as when humans introduce animals that inflict unbridled harm upon native species. Case in point: carnivorous stoat (Mustela erminea), that were shipped from Europe to New Zealand in the late nineteenth century to control rabbits, themselves originally imported for food and sport. Stoats, which are agile climbers and swimmers, now prey upon New Zealand’s birds, eating eggs and chicks of tree-trunk-nesting mohua (Mohoua ochrocephala), kākā (Nestor meridionalis) and yellow-crowned kākāriki (Cyanoramphus auriceps), as well as coastal-dwelling endangered hoiho (Megadyptes antipodes).
    Conservation: Backyard jungles
    New Zealand launched the Predator Free 2050 programme to protect native biodiversity by eradicating stoats and two other invasive predators, rats and brushtail possums (Trichosurus vulpecula). The effort relies on humane trapping as well as helicopter drops of a biodegradable toxin called 1080. The programme has led to some small predator-free havens such as Tiritiri Matangi island, but 1080 also kills deer and native kea birds (Nestor notabilis).Such trade-offs are complex, and Roach does a fine job of weighing human needs against those of pests and predators. After all, it can be ruinous for Indian villagers to have their granaries looted by elephants and dangerous for people in Delhi to be attacked by hordes of macaques. (Roach is at her most entertaining when she attempts to track down Ishwar Singh, chief wildlife warden for the Delhi government and an expert on macaque contraception. He finally answers her call with two words, “laparoscopic sterilization”, before slamming down the phone.)But the biggest pest is clearly us. As a 2020 report by the conservation group WWF shows, populations of wild mammals, birds, fish, amphibians and reptiles have dropped by 68% on average since 1970, and one million wildlife species are in danger of extinction, because of burned forests, overfished seas, and the destruction of wild areas. There’s no mirth in that.

    Nature 597, 325-326 (2021)
    doi: https://doi.org/10.1038/d41586-021-02484-9

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Among the warriors

    Conservation: Backyard jungles

    The long goodbye

    Down the hatch

    Subjects

    Ecology

    Environmental sciences

    Latest on:

    Ecology

    Pollination advantage of rare plants unveiled
    News & Views 08 SEP 21

    Pollinators contribute to the maintenance of flowering plant diversity
    Article 08 SEP 21

    Widespread woody plant use of water stored in bedrock
    Article 08 SEP 21

    Environmental sciences

    Spacefarers, protect our planet from falling debris
    Correspondence 07 SEP 21

    Australian bush fires and fuel loads
    Correspondence 31 AUG 21

    Boost for Africa’s research must protect its biodiversity
    Correspondence 31 AUG 21

    Jobs

    Reseacher, indefinite-term employment, RIKEN(21W19)

    RIKEN
    Saitama, Japan

    Post-Doc : Chemical characterization and hydrogeological modeling of fractured aquifers. Application to Volvic volcanic watershed

    Université Bourgogne Franche-Comté (UBFC)
    BESANCON, France

    Lab Manager (f/m/div)

    Max Planck Institute of Biophysics (MPIBP)
    Frankfurt am Main, Germany

    International PhD Program in Quantum Materials

    The University of British Columbia (UBC)
    Vancouver, Canada More

  • in

    Climate change and the increase of human population will threaten conservation of Asian cobras

    1.Reading, C. J. et al. Are snake populations in widespread decline?. Biol. Lett. 6, 777–780 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Gibbons, J. W. et al. The Global Decline of Reptiles, DĂ©ja Vu Amphibians. Bioscience 50, 653–666 (2000).Article 

    Google Scholar 
    3.Wilcove, D. S., Rothstein, D., Dubow, J., Phillips, A. & Losos, E. Quantifying threats to imperiled species in the United States. Bioscience 48, 607–615 (1998).Article 

    Google Scholar 
    4.Stenseth, N. C. et al. Ecological effects of climate fluctuations. Science 297, 1292–1296 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.IUCN. Wildlife in a Changing World: An Analysis of the 2008 IUCN Red List of Threatened Species. (IUCN, 2009).6.Needleman, R. K., Neylan, I. P. & Erickson, T. Potential environmental and ecological effects of global climate change on venomous terrestrial species in the wilderness. Wilderness Environ. Med. 29, 226–238 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Segura, C., Feriche, M., Pleguezuelos, J. M. & Santos, X. Specialist and generalist species in habitat use: Implications for conservation assessment in snakes. J. Nat. Hist. 41, 2765–2774 (2007).Article 

    Google Scholar 
    8.Moreno-Rueda, G., Pleguezuelos, J. M. & Alaminos, E. Climate warming and activity period extension in the Mediterranean snake Malpolon monspessulanus. Clim. Change 92, 235–242 (2009).ADS 
    Article 

    Google Scholar 
    9.Brown, G. P. & Shine, R. Effects of nest temperature and moisture on phenotypic traits of hatchling snakes (Tropidonophis mairii, Colubridae) from tropical Australia. Biol. J. Linn. Soc. 89, 159–168 (2006).Article 

    Google Scholar 
    10.Lourenço-de-Moraes, R. et al. Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Sci. Rep. 9, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    11.Uetz, P., Freed, P. & HoĆĄek, J. The Reptile Database. http://www.reptile-database.org (2019).12.Wallach, V., WĂŒster, W. & Broadley, D. G. In praise of subgenera: Taxonomic status of cobras of the genus. Zootaxa 2236, 26–36 (2009).Article 

    Google Scholar 
    13.WĂŒster, W. Taxonomic changes and toxinology: Systematic revisions of the Asiatic cobras (Naja naja species complex). Toxicon 34, 399–406 (1996).PubMed 
    Article 

    Google Scholar 
    14.WĂŒster, W., Thorpe, R. S., Cox, M., Jintakune, P. & Nabhitabhata, J. Population systematics of the snake genus Naja (Reptilia: Serpentes: Elapidae) in Indochina: Multivariate morphometrics and comparative mitochondrial DNA sequencing (cytochrome oxidase I). J. Evol. Biol. 8, 493–510 (1995).Article 

    Google Scholar 
    15.Smith, M. A. The Fauna of British India Vol. 3 (Taylor and Francis, 1943).
    Google Scholar 
    16.WĂŒster, W. & Thorpe, R. S. Asiatic Cobras: Population systematics of the Naja naja Species Complex (Serpentes: Elapidae) in India and Central Asia. Herpetologica 48, 69–85 (1992).
    Google Scholar 
    17.IUCN. The IUCN Red List of Threatened Species. Version 2019-3. https://www.iucnredlist.org (2019).18.Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–243 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).CAS 
    Article 

    Google Scholar 
    20.United Nations. World Population Prospects 2019. Department of Economic and Social Affairs. World Population Prospects 2019. (2019).21.UNESCAP. Factsheet: Urbanization trends in Asia and the Pacific 4 (2013).22.Zhou, Z. & Jiang, Z. International trade status and crisis for snake species in China. Conserv. Biol. 18, 1386–1394 (2004).Article 

    Google Scholar 
    23.Li, Y. & Li, D. The dynamics of trade in live wildlife across the Guangxi border between China and Vietnam during 1993–1996 and its control strategies. Biodivers. Conserv. 7, 895–914 (1998).Article 

    Google Scholar 
    24.CITES. CITES Appendices I, II, and III. (2019).25.GutiĂ©rrez, J. M., Williams, D., Fan, H. W. & Warrell, D. A. Snakebite envenoming from a global perspective: Towards an integrated approach. Toxicon 56, 1223–1235 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Kasturiratne, A. et al. The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 5, 1591–1604 (2008).Article 

    Google Scholar 
    27.Longbottom, J. et al. Vulnerability to snakebite envenoming: A global mapping of hotspots. Lancet 392, 673–684 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Warrell, D. A. Clinical toxicology of snakebite in Asia. In Handbook of Clinical Toxicology of Animal Venoms and Poisons (eds Meier, J. & White, J.) 493–594 (CRC Press, 1995).
    Google Scholar 
    29.Seto, K. C., GĂŒneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 109, 16083–16088 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Yue, S., BoneBrake, T. C. & GiBSon, L. Human-snake conflict patterns in a dense urban-forest mosaic landscape. Herpetol. Conserv. Biol. 14, 143–154 (2019).
    Google Scholar 
    31.Yousefi, M., Kafash, A., Khani, A. & Nabati, N. Applying species distribution models in public health research by predicting snakebite risk using venomous snakes’ habitat suitability as an indicating factor. Sci. Rep. 10, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    32.Slowinski, J. B. & WĂŒster, W. A New Cobra (Elapidae: Naja) from Myanmar (Burma). Herpetologica 56, 257–270 (2000).
    Google Scholar 
    33.WĂŒster, W. & Thorpe, R. S. Population affinities of the asiatic cobra (Naja naja) species complex in south-east Asia: Reliability and random resampling. Biol. J. Linn. Soc. 36, 391–409 (1989).Article 

    Google Scholar 
    34.WĂŒster, W., Warrell, D. A., Cox, M. J., Jintakune, P. & Nabhitabhata, J. Redescription of Naja siamensis (Serpentes: Elapidae), a widely overlooked spitting cobra from S.E. Asia: Geographic variation, medical importance and designation of a neotype. J. Zool. 243, 771–788 (1997).Article 

    Google Scholar 
    35.Kuch, U. et al. A new species of krait (Squamata: Elapidae) from the Red River System of Northern Vietnam. Copeia 2005, 818–833 (2005).Article 

    Google Scholar 
    36.JournĂ©, V., Barnagaud, J. Y., Bernard, C., Crochet, P. A. & Morin, X. Correlative climatic niche models predict real and virtual species distributions equally well. Ecology 101, 1–14 (2020).Article 

    Google Scholar 
    37.Kelly, M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos. Trans. R. Soc. B 374, 20180176 (2019).Article 

    Google Scholar 
    38.Siqueira, L. H. C. & Marques, O. A. V. Effects of Urbanization on Bothrops jararaca Populations in São Paulo Municipality, Southeastern Brazil. J. Herpetol. 52, 299–306 (2018).Article 

    Google Scholar 
    39.Santra, V. et al. Confirmation of Naja oxiana in Himachal Pradesh, India. Herpetol. Bull. https://doi.org/10.33256/hb150.2628 (2019).Article 

    Google Scholar 
    40.IUCN Standards and Petitions Committee. Guidelines for Using the IUCN Red List Categories and Criteria, Vol. 1 (2019).41.IUCN. Guidelines for Application of IUCN Red List Criteria At Regional And National Levels. (IUCN, 2012).42.Colwell, R. K., Brehm, G., CardelĂșs, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    43.Sahlean, T. C., Gherghel, I., PapeƟ, M., Strugariu, A. & Zamfirescu, ƞR. Refining climate change projections for organisms with low dispersal abilities: A case study of the Caspian whip snake. PLoS ONE 9, e91994 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Wolfe, A. K., Fleming, P. A. & Bateman, P. W. Impacts of translocation on a large urban-adapted venomous snake. Wildl. Res. 45, 316–324 (2018).Article 

    Google Scholar 
    45.Visser, M. E. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. B Biol. Sci. 275, 649–659 (2008).Article 

    Google Scholar 
    46.Chen, C., Qu, Y., Zhou, X. & Wang, Y. Human overexploitation and extinction risk correlates of Chinese snakes. Ecography (Cop.) 42, 1777–1788 (2019).Article 

    Google Scholar 
    47.CITES. Full CITES Trade Database 2000–2018. https://trade.cites.org/ (2018).48.Braimoh, A. K., Subramanian, S. M., Elliot, W. & Gasparatos, A. Climate and Human-Related Drivers of Biodiversity Decline in Southeast Asia. (United Nations University Institute of Advanced Studies, 2010) https://unu.edu/publications/articles/unraveling-the-drivers-of-southeast-asia-biodiversity-loss.html#info.49.Wood, S., Sebastian, K. & Scherr, S. Pilot Analysis of Global Ecosystems: Agroecosystems: A Joint Study (International Food Policy Research Institute and World Resources Institute, 2000).
    Google Scholar 
    50.Castelletta, M., Sodhi, N. S. & Subaraj, R. Heavy extinctions of forest avifauna in Singapore: Lessons for biodiversity conservation in Southeast Asia. Conserv. Biol. 14, 1870–1880 (2000).Article 

    Google Scholar 
    51.Zhao, S. et al. Land use change in Asia and the ecological consequences. Ecol. Res. 21, 890–896 (2006).Article 

    Google Scholar 
    52.Estoque, R. C. & Murayama, Y. Trends and spatial patterns of urbanization in Asia and Africa: A comparative analysis. In Urban Development in Asia and Africa 393–414 (2017).53.Shankar, P. G., Singh, A., Ganesh, S. R. & Whitaker, R. Factors influencing human hostility to King Cobras (Ophiophagus hannah) in the Western Ghats of India. Hamadryad 36, 91–100 (2013).
    Google Scholar 
    54.United Nations. Progress Towards the Sustainable Development Goals. https://undocs.org/en/E/2020/57 (2020).55.Nori, J., Carrasco, P. A. & Leynaud, G. C. Venomous snakes and climate change: Ophidism as a dynamic problem. Clim. Change 122, 67–80 (2014).ADS 
    Article 

    Google Scholar 
    56.Organization, W. H. Snakebite Envenoming: A Strategy for Prevention and Control (World Health Organization, 2019).
    Google Scholar 
    57.Zancolli, G. et al. When one phenotype is not enough: Divergent evolutionary trajectories govern venom variation in a widespread rattlesnake species. Proc. R. Soc. B Biol. Sci. 286, 20182735 (2019).CAS 
    Article 

    Google Scholar 
    58.WĂŒster, W. & Thorpe, R. S. Systematics and biogeography of the Asiatic cobra (Naja naja) species complex in the Philippine Islands. In Vertebrates in the Tropics (eds Peters, G. & Hutterer, R.) 333–344 (Museum Alexander Koenig, 1990).
    Google Scholar 
    59.Kazemi, E., Kaboli, M., Khosravi, R. & Khorasani, N. Evaluating the importance of environmental variables on spatial distribution of caspian cobra naja oxiana (Eichwald, 1831) in Iran. Asian Herpetol. Res. 10, 129–138 (2019).
    Google Scholar 
    60.Khan, M. The snakebite problem in Pakistan. Bull. Chicago Herp. Soc 49, 165–167 (2014).
    Google Scholar 
    61.Showler, D. A. A Checklist of the Amphibians and Reptiles of the Republic of Uzbekistan with a Review and Summary of Species Distribution. https://www.sustainablehoubaramanagement.org/wp-content/uploads/2018/09/Uzbekistan-Amphibian-Reptile-Checklist-14Sept2018-PDF.pdf (2018).62.Prakash, S., Kumar Mishra, A. & Raziuddin, M. A new record of cream coloured morph of Naja kaouthia Lesson, 1831 (Reptilia, Serpentes, Elapidae) from Hazaribag, Jharkhand, India. Biodivers. J. 3, 153–155 (2012).
    Google Scholar 
    63.Kazemi, E., Nazarizadeh, M., Fatemizadeh, F., Khani, A. & Kaboli, M. The phylogeny, phylogeography, and diversification history of the westernmost Asian cobra (Serpentes: Elapidae: Naja oxiana) in the Trans-Caspian region. Ecol. Evol. https://doi.org/10.1002/ece3.7144 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Bivand, R. et al. Tools for Handling Spatial Objects. (2019).65.Lima-Ribeiro, M. et al. The ecoClimate Database. http://ecoclimate.org.66.Rangel, T. F. & Loyola, R. D. Labeling ecological niche models. Nat. Conserv. 10, 119–126 (2012).Article 

    Google Scholar 
    67.Beaumont, L. J., Hughes, L. & Poulsen, M. Predicting species distributions: Use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecol. Model. 186, 251–270 (2005).Article 

    Google Scholar 
    68.Hijmans, R. J. et al. Geographic Data Analysis and Modeling. https://cran.r-project.org/package=raster (2019).69.Bivand, R. et al. Bindings for the ‘Geospatial’ Data Abstraction Library Version. Cran (2019).70.Pebesma, E. et al. Classes and Methods for Spatial Data. (R News, 2019).71.Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. Species Distribution Modeling. (2017).72.Sharma, S. K. et al. Venomous Snakes of Nepal. (2013).73.Whitaker, R. & Captain, A. Snakes of India: The Field Guide. Draco Books (Chennai), (2008).74.Gao, J. Downscaling Global Spatial Population Projections from 1/8-degree to 1-km Grid Cells. NCAR Technical Note NCAR/TN-537+STR https://sedac.ciesin.columbia.edu/data/set/popdynamics-pop-projection-ssp-downscaled-1km-2010-2100. https://doi.org/10.5065/D60Z721H (2017).75.van Vuuren, D. P. et al. A new scenario framework for Climate Change Research: Scenario matrix architecture. Clim. Change 122, 373–386 (2014).Article 

    Google Scholar  More

  • in

    Warming climate challenges breeding

    1.Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics, 4th edn (Longman, 1996).2.Xiong, W. et al. Nat. Plants https://doi.org/10.1038/s41477-021-00988-w (2021).3.Tadesse, W. et al. Crop Breed Genet Genom. 1, e190005 (2019).
    Google Scholar 
    4.Li, X., Guo, T., Mu, Q., Li, X. & Yu, J. Proc. Natl Acad. Sci. USA 115, 6679–6684 (2018).CAS 
    Article 

    Google Scholar 
    5.Anderson, D. R. Model Based Inference in the Life Sciences (Springer, 2008).6.Zhao, Y. et al. Sci. Adv. 7, eabf9106 (2021).CAS 
    Article 

    Google Scholar 
    7.Shi, L., Li, B., Kim, C., Kellnhofer, P. & Matusik, W. Nature 591, 234–239 (2021).CAS 
    Article 

    Google Scholar 
    8.Li, J. et al. Mol. Ecol. 28, 3544–3560 (2019).CAS 
    Article 

    Google Scholar 
    9.CGIAR. One CGIAR, https://www.cgiar.org/food-security-impact/one-cgiar/ More

  • in

    Ectomycorrhizal access to organic nitrogen mediates CO2 fertilization response in a dominant temperate tree

    1.Campbell, J. E. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84–87 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Schwalm, C. R. et al. Modeling suggests fossil fuel emissions have been driving increased land carbon uptake since the turn of the 20th Century. Sci. Rep. 10, 9059 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).ADS 
    Article 

    Google Scholar 
    5.Ellsworth, D. S. et al. Elevated CO2 does not increase eucalypt forest productivity on a low-phosphorus soil. Nat. Clim. Change 7, 279–282 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Hararuk, O., Campbell, E. M., Antos, J. A. & Parish, R. Tree rings provide no evidence of a CO2 fertilization effect in old-growth subalpine forests of western Canada. Glob. Change Biol. 25, 1222–1234 (2019).ADS 
    Article 

    Google Scholar 
    7.Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).ADS 
    Article 

    Google Scholar 
    9.Koven, C. D. et al. Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 earth system models. Biogeosciences 12, 5211–5228 (2015).ADS 
    Article 

    Google Scholar 
    10.Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).Article 

    Google Scholar 
    11.Sigurdsson, B. D., Medhurst, J. L., Wallin, G., Eggertsson, O. & Linder, S. Growth of mature boreal Norway spruce was not affected by elevated [CO2] and/or air temperature unless nutrient availability was improved. Tree Physiol. 33, 1192–1205 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. N. Phytol. 229, 2413–2445 (2021).CAS 
    Article 

    Google Scholar 
    13.Gedalof, Z. & Berg, A. A. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Glob. Biogeochem. Cycles 24, (2010).14.van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8, 24–28 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    15.Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Giguùre-Croteau, C. et al. North America’s oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster. Proc. Natl Acad. Sci. USA 116, 2749–2754 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Walker, A. P. et al. Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nat. Commun. 10, 454 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. https://doi.org/10.1038/s41561-019-0530-4 (2020).19.Schimel, J. P. & Bennett, J. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85, 591–602 (2004).Article 

    Google Scholar 
    20.Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).Article 

    Google Scholar 
    21.Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).ADS 
    Article 

    Google Scholar 
    22.NĂ€sholm, T., Kielland, K. & Ganeteg, U. Uptake of organic nitrogen by plants. N. Phytol. 182, 31–48 (2009).Article 
    CAS 

    Google Scholar 
    23.Lindahl, B. D. & Tunlid, A. Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs. N. Phytol. 205, 1443–1447 (2015).CAS 
    Article 

    Google Scholar 
    24.Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Terrer, C. et al. Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. N. Phytol. 217, 507–522 (2018).CAS 
    Article 

    Google Scholar 
    26.Sulman, B. N. et al. Diverse Mycorrhizal associations enhance terrestrial C storage in a global model. Glob. Biogeochem. Cycles 33, 501–523 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Smith, S. E. & Read, D. J. Mycorrhizal symbiosis. (Academic Press, 2010).30.Pellitier, P. T. & Zak, D. R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. N. Phytol. 217, 68–73 (2018).CAS 
    Article 

    Google Scholar 
    31.Phillips, R. P. et al. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol. Lett. 15, 1042–1049 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Christian, N. & Bever, J. D. Carbon allocation and competition maintain variation in plant root mutualisms. Ecol. Evol. 8, 5792–5800 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Hortal, S. et al. Role of plant–fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi. ISME J. 11, 2666–2676 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Bogar, L. et al. Plant-mediated partner discrimination in ectomycorrhizal mutualisms. Mycorrhiza 29, 97–111 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Bödeker, I. T. M., Nygren, C. M. R., Taylor, A. F. S., Olson, Å. & Lindahl, B. D. ClassII peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. ISME J. 3, 1387–1395 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Hobbie, E. A. & Agerer, R. Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327, 71–83 (2010).CAS 
    Article 

    Google Scholar 
    38.Koide, R. T., Fernandez, C. & Malcolm, G. Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. N. Phytol. 201, 433–439 (2014).Article 

    Google Scholar 
    39.Lindahl, B. D. et al. A group of ectomycorrhizal fungi restricts organic matter accumulation in boreal forest. Ecol. Lett. 24, 1341–1351 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.van der Linde, S. et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature 558, 243–248 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    41.Read, D. J. & Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance? N. Phytol. 157, 475–492 (2003).CAS 
    Article 

    Google Scholar 
    42.Bödeker, I. T. M. et al. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. N. Phytol. 203, 245–256 (2014).Article 
    CAS 

    Google Scholar 
    43.Bogar, L. & Peay, K. Processes maintaining the coexistence of ectomycorrhizal fungi at a fine spatial scale. in Biogeography of Mycorrhizal Symbiosis (ed. Tedersoo, L.) vol. 230 79–105 (Springer, 2017).44.Xu, K. et al. Tree-ring widths are good proxies of annual variation in forest productivity in temperate forests. Sci. Rep. 7, 1945 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Nehrbass‐Ahles, C. et al. The influence of sampling design on tree-ring-based quantification of forest growth. Glob. Change Biol. 20, 2867–2885 (2014).ADS 
    Article 

    Google Scholar 
    46.Mathias, J. M. & Thomas, R. B. Disentangling the effects of acidic air pollution, atmospheric CO2, and climate change on recent growth of red spruce trees in the Central Appalachian Mountains. Glob. Change Biol. 24, 3938–3953 (2018).ADS 
    Article 

    Google Scholar 
    47.Fierer, N., Barberán, A. & Laughlin, D. C. Seeing the forest for the genes: using metagenomics to infer the aggregated traits of microbial communities. Front. Microbiol. 5, 614 (2014).48.Zak, D. R. & Pregitzer, K. S. Spatial and temporal variability of nitrogen cycling in northern lower Michigan. Science 36, 367–380 (1990).
    Google Scholar 
    49.Zak, D. R., Pregitzer, K. S. & Host, G. E. Landscape variation in nitrogen mineralization and nitrification. Can. J. Res. 16, 1258–1263 (1986).Article 

    Google Scholar 
    50.Chen, J. & Gupta, A. K. Parametric Statistical Change Point Analysis: With Applications to Genetics, Medicine, and Finance. (Springer Science & Business Media, 2011).51.Thomas, R. Q., Canham, C. D., Weathers, K. C. & Goodale, C. L. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 3, 13–17 (2010).ADS 
    Article 
    CAS 

    Google Scholar 
    52.Pellitier, P. T., Zak, D. R., Argiroff, W. A. & Upchurch, R. A. Coupled shifts in ectomycorrhizal communities and plant uptake of organic nitrogen along a soil gradient: an isotopic perspective. Ecosystems (2021).53.Sterkenburg, E., Clemmensen, K. E., Ekblad, A., Finlay, R. D. & Lindahl, B. D. Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest. ISME J. 12, 2187–2197 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Lilleskov, E. A., Hobbie, E. A. & Fahey, T. J. Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. N. Phytol. 154, 219–231 (2002).CAS 
    Article 

    Google Scholar 
    55.Kohler, A. et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 47, 410–415 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Moeller, H. V., Peay, K. G. & Fukami, T. Ectomycorrhizal fungal traits reflect environmental conditions along a coastal California edaphic gradient. FEMS Microbiol. Ecol. 87, 797–806 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Defrenne, C. E. et al. Shifts in Ectomycorrhizal fungal communities and exploration types relate to the environment and fine-root traits across interior douglas-fir forests of Western Canada. Front. Plant Sci. 10, 643 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Fawal, N. et al. PeroxiBase: a database for large-scale evolutionary analysis of peroxidases. Nucleic Acids Res. 41, D441–D444 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Garajova, S. et al. Single-domain flavoenzymes trigger lytic polysaccharide monooxygenases for oxidative degradation of cellulose. Sci. Rep. 6, 28276 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Janusz, G. et al. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 41, 941–962 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. N. Phytol. 209, 1705–1719 (2016).CAS 
    Article 

    Google Scholar 
    63.Baldrian, P. Fungal laccases – occurrence and properties. FEMS Microbiol. Rev. 30, 215–242 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Fernandez, C. W. & Kennedy, P. G. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? N. Phytol. 209, 1382–1394 (2016).CAS 
    Article 

    Google Scholar 
    65.Reich, P. B. et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440, 922–925 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Oren, R. et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411, 469–472 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Andrew, C. & Lilleskov, E. A. Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric CO2 and O3. Ecol. Lett. 12, 813–822 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.NĂ€sholm, T. et al. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? N. Phytol. 198, 214–221 (2013).Article 
    CAS 

    Google Scholar 
    70.Finzi, A. C. et al. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc. Natl Acad. Sci. USA 104, 14014–14019 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Merkel, D. Soil Nutrients in Glaciated Michigan Landscapes: Distribution of Nutrients and Relationships with Stand Productivity. (Doctoral Thesis Submitted to Michigan State University, 1988).72.Host, G. E. & Pregitzer, K. S. Geomorphic influences on ground-flora and overstory composition in upland forests of northwestern lower Michigan. Can. J. Res. 22, 1547–1555 (1992).Article 

    Google Scholar 
    73.Edwards, I. P. & Zak, D. R. Phylogenetic similarity and structure of Agaricomycotina communities across a forested landscape. Mol. Ecol. 19, 1469–1482 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Medlyn, B. E. et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Change 5, 528–534 (2015).ADS 
    Article 

    Google Scholar 
    76.Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.McClaugherty, C. A., Pastor, J., Aber, J. D. & Melillo, J. M. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66, 266–275 (1985).Article 

    Google Scholar 
    78.Pastor, J., Aber, J. D., McClaugherty, C. A. & Melillo, J. M. Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65, 256–268 (1984).CAS 
    Article 

    Google Scholar 
    79.Serra-Maluquer, X., Mencuccini, M. & Martínez-Vilalta, J. Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula. Oecologia 187, 343–354 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Vitousek, P. Nutrient cycling and nutrient use efficiency. Am. Nat. 119, 553–572 (1982).Article 

    Google Scholar 
    81.Darrouzet-Nardi, A., Ladd, M. P. & Weintraub, M. N. Fluorescent microplate analysis of amino acids and other primary amines in soils. Soil Biol. Biochem. 57, 78–82 (2013).CAS 
    Article 

    Google Scholar 
    82.Ibåñez, I., Zak, D. R., Burton, A. J. & Pregitzer, K. S. Anthropogenic nitrogen deposition ameliorates the decline in tree growth caused by a drier climate. Ecology 99, 411–420 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Lines, E. R., Zavala, M. A., Purves, D. W. & Coomes, D. A. Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob. Ecol. Biogeogr. 21, 1017–1028 (2012).Article 

    Google Scholar 
    84.Taylor, D. L. et al. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for illumina amplicon sequencing. Appl. Environ. Microbiol. 82, 7217–7226 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Konar, A. et al. High-quality genetic mapping with ddRADseq in the non-model tree Quercus rubra. BMC Genomics 18, 417 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Sork, V. L. et al. First draft assembly and annotation of the genome of a California Endemic oak. Genes|Genomes|Genet. 6, 3485–3495 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Treiber, M. L., Taft, D. H., Korf, I., Mills, D. A. & Lemay, D. G. Pre- and post-sequencing recommendations for functional annotation of human fecal metagenomes. BMC Bioinforma. 21, 74 (2020).CAS 
    Article 

    Google Scholar 
    93.Peng, M. et al. Comparative analysis of basidiomycete transcriptomes reveals a core set of expressed genes encoding plant biomass degrading enzymes. Fungal Genet. Biol. 112, 40–46 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Floudas, D. et al. Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi. ISME J. https://doi.org/10.1038/s41396-020-0667-6 (2020).95.Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807–D811 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. Understanding sequencing data as compositions: an outlook and review. Bioinformatics 34, 2870–2878 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).Article 

    Google Scholar 
    98.Duhamel, M. et al. Plant selection initiates alternative successional trajectories in the soil microbial community after disturbance. Ecol. Monogr. 89, e01367 (2019).Article 

    Google Scholar 
    99.Qin, C., Zhu, K., Chiariello, N. R., Field, C. B. & Peay, K. G. Fire history and plant community composition outweigh decadal multi-factor global change as drivers of microbial composition in an annual grassland. J. Ecol. 108, 611–625 (2020).CAS 
    Article 

    Google Scholar 
    100.Oksanen, J., et al. Package vegan.101.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).ADS 
    Article 

    Google Scholar 
    102.Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Linde, A. V. D. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583–639 (2002).MathSciNet 
    MATH 
    Article 

    Google Scholar  More

  • in

    Puffins and friends suffer in washing-machine waves

    .readcube-buybox { display: none !important;}

    After cyclones in the north Atlantic, droves of emaciated, dead seabirds can wash ashore on North American and European beaches. New research probes the cause of these mass-mortality events, called winter wrecks, and suggests that climate change might worsen the pattern1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-02494-7

    References1.Clairbaux, M. et al. Curr. Biol. https://doi.org/10.1016/j.cub.2021.06.059 (2021)Article 

    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    Preventing spillover as a key strategy against pandemics
    Correspondence 14 SEP 21

    Pollination advantage of rare plants unveiled
    News & Views 08 SEP 21

    Pollinators contribute to the maintenance of flowering plant diversity
    Article 08 SEP 21

    Jobs

    Postdoctoral fellow

    Dalhousie University
    Halifax, Canada

    Postdoctoral Research Fellowship in Pharmacogenomics and Clinical Pharmacology with a Focus on Adverse Drug Reactions

    The University of British Columbia (UBC)
    Vancouver, Canada

    English Speaking Secretary for the Institute Director

    JĂŒlich Research Centre (FZJ)
    Aachen, Germany

    Officer for Strategic Support of Research Grant Applications

    German Cancer Research Center in the Helmholtz Association (DKFZ)
    Heidelberg, Germany More