Phytoplankton communities in temporary ponds under different climate scenarios
1.Walther, G. R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS
CAS
PubMed
Article
Google Scholar
2.Mooij, W. M. et al. The impact of climate change on lakes in the Netherlands: A review. Aquat. Ecol. 39, 381–400 (2005).CAS
Article
Google Scholar
3.Walter, B., Peters, J. & van Beusekom, J. E. E. The effect of constant darkness and short light periods on the survival and physiological fitness of two phytoplankton species and their growth potential after re-illumination. Aquat. Ecol. 51, 591–603 (2017).CAS
Article
Google Scholar
4.Woodward, G., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization. Philos. Trans. R. Soc. B Biol. Sci. 365, 2093–2106 (2010).Article
Google Scholar
5.Wagner, H., Fanesi, A. & Wilhelm, C. Title: Freshwater phytoplankton responses to global warming. J. Plant Physiol. 203, 127–134 (2016).CAS
PubMed
Article
Google Scholar
6.Gilbert, J. A. Some phytoplankton like it hot. Nat. Clim. Change 3, 954–955 (2013).ADS
Article
Google Scholar
7.Hense, I., Meier, H. E. M. & Sonntag, S. Projected climate change impact on Baltic Sea cyanobacteria: Climate change impact on cyanobacteria. Clim. Change 119, 391–406 (2013).CAS
Article
Google Scholar
8.Trombetta, T. et al. Water temperature drives phytoplankton blooms in coastal waters. PLoS One 14, e0214933 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
9.Jin, P. & Agustí, S. Fast adaptation of tropical diatoms to increased warming with trade-offs. Sci. Rep. 8, 17771 (2018).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
10.Pinceel, T., Buschke, F., Weckx, M., Brendonck, L. & Vanschoenwinkel, B. Climate change jeopardizes the persistence of freshwater zooplankton by reducing both habitat suitability and demographic resilience. BMC Ecol. 18, 1–9 (2018).Article
Google Scholar
11.Shin, H. R. & Kneitel, J. M. Warming interacts with inundation timing to influence the species composition of California vernal pool communities. Hydrobiologia 843, 93–105 (2019).Article
Google Scholar
12.Montrone, A. et al. Climate change impacts on vernal pool hydrology and vegetation in northern California. J. Hydrol. 574, 1003–1013 (2019).ADS
Article
Google Scholar
13.Williams, D. D. The biology of temporary waters. Biol. Tempor. Waters https://doi.org/10.1093/acprof:oso/9780198528128.001.0001 (2007).Article
Google Scholar
14.Waterkeyn, A., Grillas, P., Vanschoenwinkel, B. & Brendonck, L. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshw. Biol. 53, 1808–1822 (2008).CAS
Article
Google Scholar
15.Lemmens, P. et al. How to maximally support local and regional biodiversity in applied conservation? Insights from pond management. PLoS One 8, e72538 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
16.Lischeid, G. et al. Natural ponds in an agricultural landscape: External drivers, internal processes, and the role of the terrestrial-aquatic interface. Limnologica 68, 5–16 (2018).CAS
Article
Google Scholar
17.Mancinelli, G., Mali, S. & Belmonte, G. Species richness and taxonomic distinctness of zooplankton in ponds and small lakes from Albania and North Macedonia: The role of bioclimatic factors. Water (Switzerland) 11, 2384 (2019).
Google Scholar
18.Gołdyn, B., Kowalczewska-Madura, K. & Celewicz-Gołdyn, S. Drought and deluge: Influence of environmental factors on water quality of kettle holes in two subsequent years with different precipitation. Limnologica 54, 14–22 (2015).Article
CAS
Google Scholar
19.Salmaso, N. & Tolotti, M. Phytoplankton and anthropogenic changes in pelagic environments. Hydrobiologia https://doi.org/10.1007/s10750-020-04323-w (2020).Article
PubMed
PubMed Central
Google Scholar
20.Celewicz, S., Czyż, M. J. & Gołdy, B. Feeding patterns in Eubranchipus grubii (Dybowski 1860) (Branchiopoda: Anostraca) and its potential influence on the phytoplankton communities of vernal pools. J. Limnol. 77, 276–284 (2018).Article
Google Scholar
21.Rasconi, S., Winter, K. & Kainz, M. J. Temperature increase and fluctuation induce phytoplankton biodiversity loss—Evidence from a multi-seasonal mesocosm experiment. Ecol. Evol. 7, 2936–2946 (2017).PubMed
PubMed Central
Article
Google Scholar
22.Celewicz-Goldyn, S. & Kuczynska-Kippen, N. Ecological value of macrophyte cover in creating habitat for microalgae (diatoms) and zooplankton (rotifers and crustaceans) in small field and forest water bodies. PLoS One 12, e0177317 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
23.Kozak, A., Celewicz-Gołdyn, S. & Kuczyńska-Kippen, N. Cyanobacteria in small water bodies: The effect of habitat and catchment area conditions. Sci. Total Environ. 646, 1578–1587 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
24.Iacarella, J. C., Barrow, J. L., Giani, A., Beisner, B. E. & Gregory-Eaves, I. Shifts in algal dominance in freshwater experimental ponds across differing levels of macrophytes and nutrients. Ecosphere 9, e02086 (2018).Article
Google Scholar
25.Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).ADS
CAS
Article
Google Scholar
26.Richardson, J. et al. Response of cyanobacteria and phytoplankton abundance to warming, extreme rainfall events and nutrient enrichment. Glob. Change Biol. 25, 3365–3380 (2019).ADS
Article
Google Scholar
27.De Senerpont Domis, L. N., Mooij, W. M. & Huisman, J. Climate-induced shifts in an experimental phytoplankton community: A mechanistic approach. Hydrobiologia 584, 403–413 (2007).Article
Google Scholar
28.Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
29.Hinder, S. L. et al. Changes in marine dinoflagellate and diatom abundance under climate change. Nat. Clim. Change 2, 271–275 (2012).ADS
Article
Google Scholar
30.Winder, M. & Sommer, U. Phytoplankton response to a changing climate. Hydrobiologia 698, 5–16 (2012).Article
Google Scholar
31.Machado, K. B., Vieira, L. C. G. & Nabout, J. C. Predicting the dynamics of taxonomic and functional phytoplankton compositions in different global warming scenarios. Hydrobiologia 830, 115–134 (2019).CAS
Article
Google Scholar
32.O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).Article
CAS
Google Scholar
33.Rasconi, S., Gall, A., Winter, K. & Kainz, M. J. Increasing water temperature triggers dominance of small freshwater plankton. PLoS One 10, e0140449 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
34.Wirth, C., Limberger, R. & Weisse, T. Temperature × light interaction and tolerance of high water temperature in the planktonic freshwater flagellates Cryptomonas (Cryptophyceae) and Dinobryon (Chrysophyceae). J. Phycol. 55, 404–414 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
35.Wang, H. et al. High antioxidant capability interacts with respiration to mediate two Alexandrium species growth exploitation of photoperiods and light intensities. Harmful Algae 82, 26–34 (2019).CAS
PubMed
Article
Google Scholar
36.Fakhri, M., Arifin, N. B., Budianto, B., Yuniarti, A. & Hariati, A. M. Effect of salinity and photoperiod on growth of microalgae Nannochloropsis sp. and Tetraselmis sp. Nat. Environ. Pollut. Technol. 14, 563–566 (2015).
Google Scholar
37.Torzillo, G., Sacchi, A. & Materassi, R. Temperature as an important factor affecting productivity and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. Bioresour. Technol. 38, 95–100 (1991).Article
Google Scholar
38.Shatwell, T., Köhler, J. & Nicklisch, A. Temperature and photoperiod interactions with phosphorus-limited growth and competition of two diatoms. PLoS One 9, e102367 (2014).ADS
PubMed
PubMed Central
Article
Google Scholar
39.Li, G., Talmy, D. & Campbell, D. A. Diatom growth responses to photoperiod and light are predictable from diel reductant generation. J. Phycol. 53, 95–107 (2017).CAS
PubMed
Article
Google Scholar
40.Reynolds, C. S. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Excellence in Ecology Vol. 77 (Ecology Institute, 1997).
Google Scholar
41.Elliott, J. A., Jones, I. D. & Thackeray, S. J. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559, 401–411 (2006).CAS
Article
Google Scholar
42.Jöhnk, K. D. et al. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol. 14, 495–512 (2008).ADS
Article
Google Scholar
43.Elliott, J. A. Is the future blue–green? A review of the current model predictions of how climate change could affect pelagic freshwater cyanobacteria. Water Res. 46, 1364–1371 (2012).CAS
PubMed
Article
Google Scholar
44.Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
45.Hansson, L. A. et al. Food-chain length alters community responses to global change in aquatic systems. Nat. Clim. Change 3, 228–233 (2013).ADS
Article
Google Scholar
46.Burgmer, T. & Hillebrand, H. Temperature mean and variance alter phytoplankton biomass and biodiversity in a long-term microcosm experiment. Oikos 120, 922–933 (2011).Article
Google Scholar
47.Hillebrand, H., Burgmer, T. & Biermann, E. Running to stand still: Temperature effects on species richness, species turnover, and functional community dynamics. Mar. Biol. 159, 2415–2422 (2012).Article
Google Scholar
48.Lewandowska, A. M. et al. Responses of primary productivity to increased temperature and phytoplankton diversity. J. Sea Res. 72, 87–93 (2012).ADS
Article
Google Scholar
49.Lewandowska, A. M., Hillebrand, H., Lengfellner, K. & Sommer, U. Temperature effects on phytoplankton diversity—The zooplankton link. J. Sea Res. 85, 359–364 (2014).ADS
Article
Google Scholar
50.Bergkemper, V., Stadler, P. & Weisse, T. Moderate weather extremes alter phytoplankton diversity—A microcosm study. Freshw. Biol. 63, 1211–1224 (2018).CAS
Article
Google Scholar
51.McMinn, A. & Martin, A. Dark survival in a warming world. Proc. R. Soc. B Biol. Sci. 280, 20122909 (2013).CAS
Article
Google Scholar
52.Waibel, A., Peter, H. & Sommaruga, R. Importance of mixotrophic flagellates during the ice-free season in lakes located along an elevational gradient. Aquat. Sci. 81, 1–10 (2019).CAS
Article
Google Scholar
53.Chen, B. Patterns of thermal limits of phytoplankton. J. Plankton Res. 37, 285–292 (2015).Article
Google Scholar
54.Reeves, S., McMinn, A. & Martin, A. The effect of prolonged darkness on the growth, recovery and survival of Antarctic sea ice diatoms. Polar Biol. 34, 1019–1032 (2011).Article
Google Scholar
55.van de Poll, W. H., Abdullah, E., Visser, R. J. W., Fischer, P. & Buma, A. G. J. Taxon-specific dark survival of diatoms and flagellates affects Arctic phytoplankton composition during the polar night and early spring. Limnol. Oceanogr. 65, 903–914 (2020).ADS
Article
Google Scholar
56.Poniewozik, M. & Juráň, J. Extremely high diversity of euglenophytes in a small pond in eastern Poland. Plant Ecol. Evol. 151, 18–34 (2018).Article
Google Scholar
57.Shafik, H. M., Herodek, S., Présing, M. & Vörös, L. Factors effecting growth and cell composition of cyanoprokaryote Cylindrospermopsis raciborskii (Wołoszyńska) Seenayya et Subba Raju. Algol. Stud. Hydrobiol. Suppl. 103, 75–93 (2001).
Google Scholar
58.Tang, E. P. Y. & Vincent, W. F. Effects of daylength and temperature on the growth and photosynthesis of an Arctic cyanobacterium, Schizothrix calcicola (Oscillatoriaceae). Eur. J. Phycol. 35, 263–272 (2000).Article
Google Scholar
59.Agasild, H., Zingel, P., Tõnno, I., Haberman, J. & Nõges, T. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia 584, 167–177 (2007).Article
Google Scholar
60.Gołdyn, R. & Kowalczewska-Madura, K. Interactions between phytoplankton and zooplankton in the hypertrophic Swarzȩdzkie Lake in western Poland. J. Plankton Res. 30, 33–42 (2008).Article
CAS
Google Scholar
61.Tovar-Sanchez, A., Duarte, C. M., Hernández-León, S. & Sañudo-Wilhelmy, S. A. Krill as a central node for iron cycling in the Southern Ocean. Geophys. Res. Lett. 34, L11601 (2007).ADS
Article
CAS
Google Scholar
62.Hunt, R. J. & Matveev, V. F. The effects of nutrients and zooplankton community structure on phytoplankton growth in a subtropical Australian reservoir: An enclosure study. Limnologica 35, 90–101 (2005).Article
Google Scholar
63.Yvon-Durocher, G. et al. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biol. 13, e1002324 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
64.Gołdyn, B., Chudzińska, M., Barałkiewicz, D. & Celewicz-Gołdyn, S. Heavy metal contents in the sediments of astatic ponds: Influence of geomorphology, hydroperiod, water chemistry and vegetation. Ecotoxicol. Environ. Saf. 118, 103–111 (2015).PubMed
Article
CAS
Google Scholar
65.IPCC. Climate Change 2007: The Physical Science Basis (Cambridge University Press, 2007).
Google Scholar
66.Christensen, J. H. & Christensen, O. B. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim. Change 81, 7–30 (2007).ADS
Article
Google Scholar
67.Beniston, M. et al. Future extreme events in European climate: An exploration of regional climate model projections. Clim. Change 81, 71–95 (2007).Article
Google Scholar
68.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Google Scholar
69.Arbizu, P. M. pairwiseAdonis: Pairwise Multilevel Comparison Using Adonis. R Packag. version 0.0.1. (2017).70.Rink, B. & Raak, C. J. F. Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 18, 138–148 (1999).Article
Google Scholar
71.Lepš, J. & Šmilauer, P. Multivariate Analysis of Ecological Data using CANOCO. Bulletin of the Ecological Society of America Vol. 87 (Cambridge University Press, 2003).MATH
Book
Google Scholar
72.Jongman, R. H. G., Ter Braak, C. J. F. & van Tongeren, O. F. R. Data Analysis in Community and Landscape Ecology. Data Analysis in Community and Landscape Ecology (Cambridge University Press, 1995). https://doi.org/10.1017/cbo9780511525575.Book
Google Scholar
73.ter Braak, J. F. C. & Šmilauer, P. Canoco Reference Manual and CanoDraw for Windows User’s Guide (Microcomputer Power, 2002).
Google Scholar
74.R Development Core Team. R: A Language and Environment for Statistical Computing (2020).75.Oksanen, J. et al. vegan: Community Ecology Package. R Packag. version 2.5-7 (2020). More