Flight performance and the factors affecting the flight behaviour of Philaenus spumarius the main vector of Xylella fastidiosa in Europe
1.EFSA. Effectiveness of in planta control measures for Xylella fastidiosa. EFSA J. 17(5). https://doi.org/10.2903/j.efsa.2019.5666 (2019).2.Hopkins, D. L. Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Annu. Rev. Phytopathol. 27(1), 271–290. https://doi.org/10.1146/annurev.py.27.090189.001415 (1989).Article
Google Scholar
3.Saponari, M., Boscia, D., Nigro, F. & Martelli, G. P. Identification of Dna sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). J. Plant Pathol. 95(3), 668. https://doi.org/10.4454/JPP.V95I3.035 (2013).Article
Google Scholar
4.EPPO. Xylella fastidiosa in EPPO region. EPPO Bulletin. 49(2) (2019).5.Fierro, A., Liccardo, A. & Porcelli, F. A lattice model to manage the vector and the infection of the Xylella fastidiosa on olive trees. Sci. Rep. 9, 8723. https://doi.org/10.1038/s41598-019-44997-4 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
6.Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D. & Saldarelli, P. Xylella fastidiosa in olive in apulia: Where we stand. Phytopathology 109(2), 175–186. https://doi.org/10.1094/PHYTO-08-18-0319-FI (2019).CAS
Article
PubMed
Google Scholar
7.Mannino, M. R. et al. Horizon scanning for plant health: Report on 2017–2020 activities. EFSA Support. Publ. https://doi.org/10.2903/sp.efsa.2021.EN-2010 (2021).Article
Google Scholar
8.EFSA. Scientific opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA J. 13(1), 3989. https://doi.org/10.2903/j.efsa.2015.3989 (2015).9.Cornara, D. et al. An overview on the worldwide vectors of Xylella fastidiosa. Entomol. Gen. 39(3–4), 157–181. https://doi.org/10.1127/entomologia/2019/0811 (2019).Article
Google Scholar
10.Finke, D. L. Contrasting the consumptive and non-consumptive cascading effects of natural enemies on vector-borne pathogens. Entomol. Exp. Appl. 144, 45–55. https://doi.org/10.1111/j.1570-7458.2012.01258.x (2012).Article
Google Scholar
11.Martini, X., Hoffmann, M., Coy, M. R., Stelinski, L. L. & Pelz-Stelinski, K. S. Infection of an insect vector with a bacterial plant pathogen increases its propensity for dispersal. PLoS ONE 10(6), 1–16. https://doi.org/10.1371/journal.pone.0129373 (2015).CAS
Article
Google Scholar
12.Almeida, R. P. P. et al. Addressing the new global threat of Xylella fastidiosa. Phytopathology 109(2), 172–174. https://doi.org/10.1094/PHYTO-12-18-0488-FI (2019).CAS
Article
PubMed
Google Scholar
13.Cornara, D., Bosco, D. & Fereres, A. Philaenus spumarius: When an old acquaintance becomes a new threat to European agriculture. J. Pest. Sci. 91(3), 957–972. https://doi.org/10.1007/s10340-018-0966-0 (2018).Article
Google Scholar
14.Halkka, O., Raatikainen, M., Vasarainen, A. & Heinonen, L. Ecology and ecological genetics of Philaenus spumarius (L.) (Homoptera). Ann. Zool. Fenn. 4, 1–18 (1967).
Google Scholar
15.Lavigne, R. Biology of Philaenus leucophthalmus (L.) in Massachusetts. J. Econ. Entomol. 52(5), 904–907. https://doi.org/10.1093/jee/52.5.904 (1959).Article
Google Scholar
16.Ossiannilsson, F. The Auchenorrhyncha (Homoptera) of Fennoscandia and Denmark. Part 2: The families Cicadidae, Cercopidae, Membracidae, and Cicadellidae (excl. Deltocephalinae). Fauna Entomol. Scand. 7(2), 223–593 (1981).
Google Scholar
17.Weaver, C. R. The seasonal behavior of meadow spittlebug and its relation to a control method. J. Econ. Entomol. 44(3), 350–353. https://doi.org/10.1093/jee/44.3.350 (1951).MathSciNet
CAS
Article
Google Scholar
18.Weaver, C. R. & King, D. R. Meadow spittlebug, Philaenus leucophthalmus (L.). Research Bulletin; Ohio Agricultural Experiment Station. (ed. Wooster, OH, USA, 1954).19.Drosopoulos, S. & Asche, M. Biosystematic studies on the spittlebug genus Philaenus with the description of a new species. Zool. J. Linn. Soc. 101(2), 169–177. https://doi.org/10.1111/j.1096-3642.1991.tb00891.x (2008).Article
Google Scholar
20.Grant, J. F., Lambdin, P. L. & Folium, R. A. Infestation levels and seasonal incidence of the meadow spittlebug (Homoptera: cercopidae) on musk thistle in Tennessee. J. Agric. Urban Entomol. 15, 83–91 (1998).
Google Scholar
21.Halkka, O. Equilibrium populations of Philaenus spumarius L. Nature 193(4810), 93–94. https://doi.org/10.1038/193093a0 (1962).ADS
Article
Google Scholar
22.Freeman, J. A. Studies in the distribution of insects by Aerial currents. J. Anim. Ecol. 14, 128 (1945).Article
Google Scholar
23.Reynolds, D. R., Chapman, J. W. & Stewart, A. J. A. Windborne migration of Auchenorrhyncha (Hemiptera) over Britain. Eur. J. Entomol. 114, 554–564. https://doi.org/10.14411/eje.2017.070 (2017).Article
Google Scholar
24.Gutierrez, A. P., Nix, H. A., Havenstein, D. E. & Moore, P. A. The ecology of Aphis Craccivora Koch and subterranean clover stunt virus in south-east Australia. III. A regional perspective of the phenology and migration of the Cowpea Aphid. J. Appl. Ecol. 11(1), 21–35. https://doi.org/10.2307/2402002 (1974).Article
Google Scholar
25.Pienkowski, R. L. & Medler, J. T. Synoptic weather conditions associated with long-range movement of the potato leafhopper, Empoasca fabae, into Wisconsin. Ann. Entomol. Soc. Am. 57(5), 588–591. https://doi.org/10.1093/aesa/57.5.588 (1964).Article
Google Scholar
26.Drake, V. A. Radar observations of moths migrating in a nocturnal low-level jet. Ecol. Entomol. 10(3), 259–265. https://doi.org/10.1111/j.1365-2311.1985.tb00722.x (1985).Article
Google Scholar
27.Wallin, J. R. & Loonan, D. V. Low-level jet winds, aphid vectors, local weather, and barley yellow dwarf virus outbreaks. Phytopathology 61(9), 1068. https://doi.org/10.1094/PHYTO-61-1068 (1971).Article
Google Scholar
28.Sedlacek, J. D. & Freytag, P. H. Aspects of the field biology of the Blackfaced Leafhopper (Homoptera: Cicadellidae) in corn and pastures in Kentucky. J. Econ. Entomol. 79(3), 605–613. https://doi.org/10.1093/jee/79.3.605 (1986).Article
Google Scholar
29.Zhu, M., Radcliffe, E. B., Ragsdale, D. W., MacRae, I. V. & Seeley, M. W. Low-level jet streams associated with spring aphid migration and current season spread of potato viruses in the U.S. northern Great Plains. Agric. For. Meteorol. 138(1–4), 192–202. https://doi.org/10.1016/j.agrformet.2006.05.001 (2006).ADS
Article
Google Scholar
30.Bodino, N. et al. Dispersal of Philaenus spumarius (Hemiptera: Aphrophoridae), a vector of Xylella fastidiosa, in olive grove and meadow agroecosystems. Environ. Entomol. https://doi.org/10.1093/ee/nvaa140 (2020).Article
PubMed Central
Google Scholar
31.Lago, C. et al. Dispersal of Neophilaenus campestris, a vector of Xylella fastidiosa, from olive groves to over-summering hosts. J. Appl. Entomol. https://doi.org/10.1111/jen.12888 (2021).Article
Google Scholar
32.Minter, M. et al. The tethered flight technique as a tool for studying life-history strategies associated with migration in insects. Ecol. Entomol. 43(4), 397–411. https://doi.org/10.1111/een.12521 (2018).Article
PubMed
PubMed Central
Google Scholar
33.Ávalos-Masó, J. A., Martí-Campoy, A. & Soto, T. A. Study of the flying ability of Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) adults using a computer-monitored flight mill. Bull. Entomol. Res. 104(4), 462–470. https://doi.org/10.1017/S0007485314000121 (2014).Article
Google Scholar
34.Yu, E. Y., Gassmann, A. J. & Sappington, T. W. Using flight mills to measure flight propensity and performance of western corn rootworm, diabrotica virgifera virgifera (Leconte). J. Vis. Exp. 152, e59196. https://doi.org/10.3791/59196 (2019).Article
Google Scholar
35.Riley, J. R., Downham, M. C. A. & Cooter, R. J. Comparison of the performance of Cicadulina leafhoppers on flight mills with that to be expected in free flight. Entomol. Exp. Appl. 83(3), 317–322. https://doi.org/10.1046/j.1570-7458.1997.00186.x (1997).Article
Google Scholar
36.Zhang, Y., Wang, L., Wu, K., Wyckhuys, K. A. G. & Heimpel, G. E. Flight performance of the Soybean Aphid, Aphis glycines (Hemiptera: Aphididae) under different temperature and humidity regimens. Environ. Entomol. 37(2), 301–306. https://doi.org/10.1603/0046-225X(2008)37[301:FPOTSA]2.0.CO;2 (2008).Article
PubMed
Google Scholar
37.Cheng, Y., Luo, L., Jiang, X. & Sappington, T. Synchronized oviposition triggered by migratory flight intensifies larval outbreaks of beet. PLoS ONE https://doi.org/10.1371/journal.pone.0031562 (2012).Article
PubMed
PubMed Central
Google Scholar
38.Jones, C. M. et al. Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest. Mol. Ecol. 24(19), 4901–4911. https://doi.org/10.1111/mec.13362 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
39.White, S. M., Bullock, J. M., Hooftman, D. A. P. & Chapman, D. S. Modelling the spread and control of Xylella fastidiosa in the early stages of invasion in Apulia, Italy. Biol. Invasions 19(6), 1825–1837. https://doi.org/10.1007/s10530-017-1393-5 (2017).Article
PubMed
PubMed Central
Google Scholar
40.Jones, V. P., Naranjo, S. E. & Smith, T. J. Insect ecology and behavior: Laboratory flight mill studies. Accessed 22 July 2021. (2010). http://entomology.tfrec.wsu.edu/VPJ_Lab/Flight-Mill41.Martí-Campoy, A. et al. Design of a computerised flight mill device to measure the flight potential of different insects. Sensors (Switzerland) 16(4), 485. https://doi.org/10.3390/s16040485 (2016).ADS
Article
Google Scholar
42.Kees, A. M., Hefty, A. R., Venette, R. C., Seybold, S. J. & Aukema, B. H. Flight capacity of the walnut twig beetle (coleoptera: Scolytidae) on a laboratory flight mill. Environ. Entomol. 46(3), 633–641. https://doi.org/10.1093/ee/nvx055 (2017).Article
PubMed
Google Scholar
43.Morente, M. et al. Distribution and relative abundance of insect vectors of Xylella fastidiosa in olive groves of the Iberian peninsula. Insects 9(4), 175. https://doi.org/10.3390/insects9040175 (2018).Article
PubMed Central
Google Scholar
44.Morente, M., Cornara, D., Moreno, A. & Fereres, A. Continuous indoor rearing of Philaenus spumarius, the main European vector of Xylella fastidiosa. J. Appl. Entomol. 142(9), 901–904. https://doi.org/10.1111/jen.12553 (2018).Article
Google Scholar
45.Guthery, F. S., Burnham, K. P. & Anderson, D. R. Model Selection and multimodel inference: A practical information-theoretic approach. J. Wildl. Manag. 67, 655 (2003).Article
Google Scholar
46.Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (ed. Springer Sci. Bus. Media, 2009).47.Strona, G., Carstens, C. J. & Beck, P. S. A. Network analysis reveals why Xylella fastidiosa will persist in Europe. Sci. Rep. 7(1), 1–8. https://doi.org/10.1038/s41598-017-00077-z (2017).CAS
Article
Google Scholar
48.Whittaker, J. B. Density regulation in a population of Philaenus spumarius (L.) (Homoptera: Cercopidae). J. Anim. Ecol. 42(1), 163–172. https://doi.org/10.2307/3410 (1973).Article
Google Scholar
49.Wiman, N. G., Walton, V. M., Shearer, P. W., Rondon, S. I. & Lee, J. C. Factors affecting flight capacity of brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). J. Pest Sci. 88(1), 37–47. https://doi.org/10.1007/s10340-014-0582-6 (2015).Article
Google Scholar
50.Strona, G. et al. Small world in the real world: Long distance dispersal governs epidemic dynamics in agricultural landscapes. Epidemics 30, 100384. https://doi.org/10.1016/j.epidem.2020.100384 (2020).Article
PubMed
PubMed Central
Google Scholar
51.Irwin, M. E. & Tresh, J. M. Long-range aerial dispersal of cereal aphids as virus vectors in North America. Philos. Trans. R. Soc. London. B Biol. Sci. 321(1207), 421–446. https://doi.org/10.1098/rstb.1988.0101 (1988).ADS
Article
Google Scholar
52.Chapman, J. W., Reynolds, D. R. & Wilson, K. Long-range seasonal migration in insects: Mechanisms, evolutionary drivers and ecological consequences. Ecol. Lett. 18(3), 287–302. https://doi.org/10.1111/ele.12407 (2015).Article
PubMed
Google Scholar
53.Fereres, A., Irwin, M. E. & Kampmeier, G. E. Aphid movement: Process and consecuences. in Aphids as crop pests. (ed.2 Emden, H. F. van, Harrington, R.). 196–224. https://doi.org/10.1079/9781780647098.0196 (CABI Publishing, 2017).54.Petrovskii, S., Mashanova, A. & Jansen, V. A. A. Variation in individual walking behavior creates the impression of a Levy flight. PNAS 108, 8704–8707. https://doi.org/10.1073/pnas.1015208108 (2011).ADS
Article
PubMed
PubMed Central
Google Scholar
55.Okano, K. Sublethal effects of a neonicotinoid insecticide on the sharpshooter vectors of Xylella fastidiosa. Doctoral dissertation (UC Berkeley, 2009).56.Robinet, C., David, G. & Jactel, H. Modeling the distances traveled by flying insects based on the combination of flight mill and mark-release-recapture experiments. Ecol. Modell. 402, 85–92. https://doi.org/10.1016/j.ecolmodel.2019.04.006 (2019).Article
Google Scholar
57.Taylor, R. A. J., Bauer, L. S., Poland, T. M. & Windell, K. N. Flight performance of agrilus planipennis (Coleoptera: Buprestidae) on a flight mill and in free flight. J. Insect Behav. 23(2), 128–148. https://doi.org/10.1007/s10905-010-9202-3 (2010).Article
Google Scholar
58.Srygley, R. B. & Lorch, P. D. Coping with uncertainty: Nutrient deficiencies motivate insect migration at a cost to immunity. Integr. Comp. Biol. 53, 1002–1013. https://doi.org/10.1093/icb/ict047 (2013).CAS
Article
PubMed
Google Scholar
59.Nilakhe, S. S. & Buainain, C. M. Observations on movement of spittlebug adults. Pesqui. Agropecuária Bras. Brasília 23, 123–134 (1988).
Google Scholar
60.Neuman-Lee, L. A., Hopkins, G. R., Brodie, E. D. & French, S. S. Sublethal contaminant exposure alters behavior in a common insect: Important implications for trophic transfer. J. Environ. Sci. Heal. Part B Pestic. Food Contam. Wastes 48(6), 442–448. https://doi.org/10.1080/03601234.2013.761839 (2013).CAS
Article
Google Scholar
61.Wilson, D. M. The central nervous control of flight in a locust. J. Exp. Biol. 38(2), 471–490 (1961).Article
Google Scholar
62.Yamanaka, T., Tatsuki, S. & Shimada, M. Flight characteristics and dispersal patterns of fall webworm (Lepidoptera: Arctiidae) males. Environ. Entomol. 30(6), 1150–1157. https://doi.org/10.1603/0046-225X-30.6.1150 (2001).Article
Google Scholar
63.Blackmer, J. L., Hagler, J. R., Simmons, G. S. & Henneberry, T. J. Dispersal of Homalodisca vitripennis (Homoptera: Cicacellidae) from a point release site in citrus. Environ. Entomol. 35(6), 1617–1625. https://doi.org/10.1093/ee/35.6.1617 (2006).Article
Google Scholar
64.Bodino, N. et al. Phenology, seasonal abundance and stage-structure of spittlebug (Hemiptera: Aphrophoridae) populations in olive groves in Italy. Sci. Rep. 9(1), 1–17. https://doi.org/10.1038/s41598-019-54279-8 (2019).CAS
Article
Google Scholar
65.Minuz, R. L., Isidoro, N., Casavecchia, S., Burgio, G. & Riolo, P. Sex-dispersal differences of four phloem-feeding vectors and their relationship to wild-plant abundance in vineyard agroecosystems. J. Econ. Entomol. 106(6), 2296–2309. https://doi.org/10.1603/ec13244 (2013).CAS
Article
PubMed
Google Scholar
66.Waloff, N. Dispersal by flight of leafhoppers (Auchenorrhyncha: Homoptera). J. Appl. Ecol. 10, 705 (1973).Article
Google Scholar
67.Johnson, C. G. Physiological factors in insect migration by flight. Nature 198(4879), 423–427. https://doi.org/10.1038/198423a0 (1963).ADS
Article
Google Scholar
68.Drake, V. A. & Gatehouse, A. G. Insect Migration. Tracking Resources through Space and Time. (ed. Cambridge University Press). 7(3) Cambridge UK. https://doi.org/10.1007/s10841-006-9039-4 (1995).69.Sappington, T. W. & Showers, W. B. Reproductive maturity, mating status, and long-duration flight behavior of agrotis ipsilon (Lepidoptera: Noctuidae) and the conceptual misuse of the oogenesis flight syndrome by entomologists. Environ. Entomol. 21(4), 677–688. https://doi.org/10.1093/ee/21.4.677 (1992).Article
Google Scholar
70.Zhao, X. C. et al. Does the onset of sexual maturation terminate the expression of migratory behaviour in moths? A study of the oriental armyworm, Mythimna separata. J Insect Physiol. 55(11), 1039–432009. https://doi.org/10.1016/j.jinsphys.2009.07.007 (2009).CAS
Article
PubMed
Google Scholar
71.Tigreros, N. & Davidowitz, G. Flight-fecundity tradeoffs in wing-monomorphic insects. Adv. Insect Phys. 56, 1–41. https://doi.org/10.1016/bs.aiip.2019.02.001 (2019).Article
Google Scholar
72.Drake, V. A. & Farrow, R. A. The influence of atmospheric structure and motions on insect migration. Ann. Rev. Entomol. 33(1), 183–210. https://doi.org/10.1146/annurev.en.33.010188.001151 (1988).Article
Google Scholar
73.Burt, P. J. A. & Pedgley, D. E. Nocturnal insect migration: Effects of local winds. Adv. Ecol. Res. 27, 61–92. https://doi.org/10.1016/S0065-2504(08)60006-9 (1997).Article
Google Scholar
74.Gordh, G. & McKirdy, S. The Handbook of Plant Biosecurity (Springer, 2014). https://doi.org/10.1007/978-94-007-7365-3Book
Google Scholar More