1.Barnosky, A. D. et al. Has the Earthâs sixth mass extinction already arrived?. Nature 471(7336), 51â57 (2011).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
2.Ripple, W. J. et al. Status and ecological effects of the worldâs largest carnivores. Science 343, 151â163 (2014).CASÂ
ArticleÂ
Google ScholarÂ
3.Haswell, P. M., Kusak, J. & Hayward, M. W. Large carnivore impacts are context-dependent. Food Webs 12, 3â13. https://doi.org/10.1016/j.fooweb.2016.02.005 (2017).ArticleÂ
Google ScholarÂ
4.Barbosa, P. & Castellanos, I. Ecology of PredatorâPrey Interactions (Oxford University Press, 2005).
Google ScholarÂ
5.Terborgh, J. & Estes, J. A. Trophic Cascades: Predator, Prey, and the Changing Dynamics of Nature (Island Press, 2010).
Google ScholarÂ
6.Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301â306 (2011).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
7.Crooks, K. R. & SoulĂ©, M. E. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400, 563â566 (1999).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
8.Ritchie, E. G. & Johnson, C. N. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12(9), 982â998. https://doi.org/10.1111/j.1461-0248.2009.01347.x (2009).ArticleÂ
PubMedÂ
Google ScholarÂ
9.Jachowski, D. S. et al. Identifying mesopredator release in multi-predator systems: A review of evidence from North America. Mamm. Rev. 50, 367â381. https://doi.org/10.1111/mam.12207 (2020).ArticleÂ
Google ScholarÂ
10.Letnic, M., Ritchie, E. G. & Dickman, C. R. Top predators as biodiversity regulators: The dingo Canis lupus dingo as a case study. Biol. Rev. 87(2), 390â413. https://doi.org/10.1111/j.1469-185X.2011.00203.x (2012).ArticleÂ
PubMedÂ
Google ScholarÂ
11.Glen, A. S. & Dickman, C. R. Complex interactions among mammalian carnivores in Australia, and their implications for wildlife management. Biol. Rev. 80(3), 387â401 (2005).PubMedÂ
ArticleÂ
Google ScholarÂ
12.Allen, B. L. et al. Can we save large carnivores without losing large carnivore science?. Food Webs. 12, 64â75 (2017).ArticleÂ
Google ScholarÂ
13.Allen, B. L. & Leung, K.-P. The (non)effects of lethal population control on the diet of Australian dingoes. PLoS ONE 9(9), e108251. https://doi.org/10.1371/journal.pone.0108251 (2014).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
14.Wallach, A. D. Australia should enlist dingoes to control invasive species. The Conversation 2014. https://theconversation.com/australia-should-enlist-dingoes-to-control-invasive-species-24807. Accessed 26 March, 2014.15.Letnic, M. & Feit, B. Like cats and dogs: dingoes can keep feral cats in check. The Conversation. 2019. https://theconversation.com/like-cats-and-dogs-dingoes-can-keep-feral-cats-in-check-114748. Accessed 4 April 2019.16.Newsome, T. Thinking big gives top predators the competitive edge. The Conversation 2017. https://theconversation.com/thinking-big-gives-top-predators-the-competitive-edge-78106. Accessed 24 May 2017.17.Johnson, C. & VanDerWal, J. Evidence that dingoes limit the abundance of a mesopredator in eastern Australian forests. J Appl Ecol. 46, 641â646 (2009).ArticleÂ
Google ScholarÂ
18.Rolls, E. C. They All Ran Wild: The Animals and Plants that Plague Australia (Angus & Robertson Publishers, 1969).
Google ScholarÂ
19.Balme, J., OâConnor, S. & Fallon, S. New dates on dingo bones from Madura Cave provide oldest firm evidence for arrival of the species in Australia. Sci. Rep. 8(1), 9933. https://doi.org/10.1038/s41598-018-28324-x (2018).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
20.Fleming, P. J. S., Allen, B. L. & Ballard, G. Seven considerations about dingoes as biodiversity engineers: The socioecological niches of dogs in Australia. Aust. Mammal. 34(1), 119â131 (2012).ArticleÂ
Google ScholarÂ
21.Corbett, L. K. The Dingo in Australia and Asia 2nd edn. (J.B. Books, South Australia, 2001).
Google ScholarÂ
22.Fleming, P. J. S. et al. Management of wild canids in Australia: Free-ranging dogs and red foxes. In Carnivores of Australia: Past, Present and Future (eds Glen, A. S. & Dickman, C. R.) 105â149 (CSIRO Publishing, 2014).
Google ScholarÂ
23.Doherty, T. S. et al. Impacts and management of feral cats Felis catus in Australia. Mamm. Rev. 42, 83â97 (2017).ArticleÂ
Google ScholarÂ
24.Brook, L. A., Johnson, C. N. & Ritchie, E. G. Effects of predator control on behaviour of an apex predator and indirect consequences for mesopredator suppression. J. Appl. Ecol. 49(6), 1278â1286. https://doi.org/10.1111/j.1365-2664.2012.02207.x (2012).ArticleÂ
Google ScholarÂ
25.Letnic, M., Koch, F., Gordon, C., Crowther, M. & Dickman, C. Keystone effects of an alien top-predator stem extinctions of native mammals. Proc. R. Soc. B Biol. Sci. 276, 3249â3256 (2009).ArticleÂ
Google ScholarÂ
26.Wallach, A. D., Johnson, C. N., Ritchie, E. G. & OâNeill, A. J. Predator control promotes invasive dominated ecological states. Ecol. Lett. 13, 1008â1018 (2010).PubMedÂ
Google ScholarÂ
27.Leo, V., Reading, R. P., Gordon, C. & Letnic, M. Apex predator suppression is linked to restructuring of ecosystems via multiple ecological pathways. Oikos 128, 630â639. https://doi.org/10.1111/oik.05546 (2019).ArticleÂ
Google ScholarÂ
28.Johnson, C. Australiaâs Mammal Extinctions: A 50,000 Year History (Cambridge University Press, 2006).
Google ScholarÂ
29.Read, J. L. & Scoleri, V. Ecological implications of reptile mesopredator release in arid South Australia. J. Herpetol. 49(1), 64â69. https://doi.org/10.1670/13-208 (2015).ArticleÂ
Google ScholarÂ
30.Sutherland, D. R., Glen, A. S. & de Tores, P. J. Could controlling mammalian carnivores lead to mesopredator release of carnivorous reptiles?. Proc. R. Soc. B 278(1706), 641â648. https://doi.org/10.1098/rspb.2010.2103 (2010).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
31.Davis, N. E. et al. Interspecific and geographic variation in the diets of sympatric carnivores: Dingoes/wild dogs and red foxes in south-eastern Australia. PLoS ONE 10(3), e0120975. https://doi.org/10.1371/journal.pone.0120975 (2015).CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
32.Paltridge, R. The diets of cats, foxes and dingoes in relation to prey availability in the Tanami Desert, Northern Territory. Wildl. Res. 29, 389â403 (2002).ArticleÂ
Google ScholarÂ
33.Cupples, J. B., Crowther, M. S., Story, G. & Letnic, M. Dietary overlap and prey selectivity among sympatric carnivores: Could dingoes suppress foxes through competition for prey?. J. Mammal. 92(3), 590â600. https://doi.org/10.1644/10-MAMM-A-164.1 (2011).ArticleÂ
Google ScholarÂ
34.Glen, A. S., Pennay, M., Dickman, C. R., Wintle, B. A. & Firestone, K. B. Diets of sympatric native and introduced carnivores in the Barrington Tops, eastern Australia. Aust. Ecol. 36(3), 290â296. https://doi.org/10.1111/j.1442-9993.2010.02149.x (2011).ArticleÂ
Google ScholarÂ
35.Moseby, K. E., Neilly, H., Read, J. L. & Crisp, H. A. Interactions between a top order predator and exotic mesopredators in the Australian rangelands. Int. J. Ecol. 2012; Article ID 250352.36.Allen, B. L. & Fleming, P. J. S. Reintroducing the dingo: The risk of dingo predation to threatened vertebrates of western New South Wales. Wildl. Res. 39(1), 35â50 (2012).ArticleÂ
Google ScholarÂ
37.Glen, A. S. & Woodman, A. P. What Impact Does Altering Dingo Populations Have on Trophic Structure? (Environmental Evidence Australia, 2013).
Google ScholarÂ
38.Allen, B. L., Allen, L. R. & Leung, K.-P. Interactions between two naturalised invasive predators in Australia: Are feral cats suppressed by dingoes?. Biol. Invasions 17, 761â776. https://doi.org/10.1007/s10530-014-0767-1 (2015).ArticleÂ
Google ScholarÂ
39.Arthur, A. D., Catling, P. C. & Reid, A. Relative influence of habitat structure, species interactions and rainfall on the post-fire population dynamics of ground-dwelling vertebrates. Aust. Ecol. 37(8), 958â970 (2013).ArticleÂ
Google ScholarÂ
40.Claridge, A. W., Cunningham, R. B., Catling, P. C. & Reid, A. M. Trends in the activity levels of forest-dwelling vertebrate fauna against a background of intensive baiting for foxes. For. Ecol. Manag. 260(5), 822â832. https://doi.org/10.1016/j.foreco.2010.05.041 (2010).ArticleÂ
Google ScholarÂ
41.Stobo-Wilson, A. M. et al. Habitat structural complexity explains patterns of feral cat and dingo occurrence in monsoonal Australia. Divers. Distrib. 247, 108638. https://doi.org/10.1111/ddi.13065 (2020).ArticleÂ
Google ScholarÂ
42.Pavey, C. R., Eldridge, S. R. & Heywood, M. Population dynamics and prey selection of native and introduced predators during a rodent outbreak in arid Australia. J. Mammal. 89(3), 674â683 (2008).ArticleÂ
Google ScholarÂ
43.Greenville, A. C., Wardle, G. M., Tamayo, B. & Dickman, C. R. Bottom-up and top-down processes interact to modify intraguild interactions in resource-pulse environments. Oecologia 175(4), 1349â1358. https://doi.org/10.1007/s00442-014-2977-8 (2014).ADSÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
44.Allen, B. L. et al. Does lethal control of top-predators release mesopredators? A re-evaluation of three Australian case studies. Ecol. Manag. Restor. 15(3), 191â195. https://doi.org/10.1111/emr.12118 (2014).ArticleÂ
Google ScholarÂ
45.Allen, B. L. et al. As clear as mud: A critical review of evidence for the ecological roles of Australian dingoes. Biol. Conserv. 159, 158â174 (2013).ArticleÂ
Google ScholarÂ
46.Hayward, M. W. & Marlow, N. Will dingoes really conserve wildlife and can our methods tell?. J. Appl. Ecol. 51(4), 835â838. https://doi.org/10.1111/1365-2664.12250 (2014).ArticleÂ
Google ScholarÂ
47.Newsome, T. M., Greenville, A. C., Letnic, M., Ritchie, E. G. & Dickman, C. R. The case for a dingo reintroduction in Australia remains strong: A reply to Morgan et al., 2016. Food Webs https://doi.org/10.1016/j.fooweb.2017.02.001 (2017).ArticleÂ
Google ScholarÂ
48.Letnic, M., Crowther, M. S., Dickman, C. R. & Ritchie, E. Demonising the dingo: How much wild dogma is enough?. Curr. Zool. 57(5), 668â670 (2011).ArticleÂ
Google ScholarÂ
49.Glen, A. S. Enough dogma: Seeking the middle ground on the role of dingoes. Curr. Zool. 58(6), 856â858 (2012).ArticleÂ
Google ScholarÂ
50.Johnson, C. N. et al. Experiments in no-impact control of dingoes: Comment on Allen et al. 2013. Front. Zool. 11, 17 (2014).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
51.Nimmo, D. G., Watson, S. J., Forsyth, D. M. & Bradshaw, C. J. A. Dingoes can help conserve wildlife and our methods can tell. J. Appl. Ecol. 52(2), 281â285. https://doi.org/10.1111/1365-2664.12369 (2015).ArticleÂ
Google ScholarÂ
52.Allen, B. L. et al. Top-predators as biodiversity regulators: Contemporary issues affecting knowledge and management of dingoes in Australia. In Biodiversity Enrichment in a Diverse World. Chapter 4 (ed. Lameed, G. A.) 85â132 (InTech Publishing, 2012).
Google ScholarÂ
53.Platt, J. R. Strong inference: Certain systematic methods of scientific thinking may produce much more rapid progress than others. Science 146(3642), 347â353 (1964).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
54.Caughley, G. Analysis of Vertebrate Populations (Wiley, 1977).
Google ScholarÂ
55.Krebs, C. J. Ecology: The Experimental Analysis of Distribution and Abundance 6th edn. (Benjamin-Cummings Publishing, 2008).
Google ScholarÂ
56.Hone, J. Wildlife Damage Control (CSIRO Publishing, 2007).BookÂ
Google ScholarÂ
57.Fox, G. A., Negrete-Yankelevich, S. & Sosa, V. J. Ecological Statistics: Contemporary Theory and Application (Oxford University Press, 2015).MATHÂ
BookÂ
Google ScholarÂ
58.Kershaw, K. A. Quantitative and Dynamic Ecology (Edward Arnold Publishers, 1969).
Google ScholarÂ
59.Li, J. C. R. Introduction to Statistical Inference (Edwards Bos Distributors, 1957).BookÂ
Google ScholarÂ
60.Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).BookÂ
Google ScholarÂ
61.Shadish, W. R., Cook, T. D. & Campbell, D. T. Experimental and Quasi-experimental Designs for Generalized Casual Inference 2nd edn. (Houghton, Mifflin and Company, 2002).
Google ScholarÂ
62.Underwood, A. J. Experiments in Ecology (Cambridge University Press, 1997).
Google ScholarÂ
63.Allen, B. L., Allen, L. R., Engeman, R. M. & Leung, L.K.-P. Intraguild relationships between sympatric predators exposed to lethal control: Predator manipulation experiments. Front. Zool. 10, 39 (2013).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
64.Allen, B. L., Allen, L. R., Engeman, R. M. & Leung, L.K.-P. Sympatric prey responses to lethal top-predator control: Predator manipulation experiments. Front. Zool. 11, 56 (2014).ArticleÂ
Google ScholarÂ
65.Eldridge, S. R., Shakeshaft, B. J. & Nano, T. J. The impact of wild dog control on cattle, native and introduced herbivores and introduced predators in central Australia. Final report to the Bureau of Rural Sciences. Alice Springs: Parks and Wildlife Commission of the Northern Territory; 2002.66.Kennedy, M., Phillips, B., Legge, S., Murphy, S. & Faulkner, R. Do dingoes suppress the activity of feral cats in northern Australia?. Austral Ecol. 37(1), 134â139 (2012).ArticleÂ
Google ScholarÂ
67.Allen, B. L., Allen, L. R., Engeman, R. M. & Leung, L. K.-P. Reply to the criticism by Johnson et al. (2014) on the report by Allen et al. (2013). Front. Zool. 2014. http://www.frontiersinzoology.com/content/11/1/7/comments#1982699. Accessed 1st June 2014.68.Newsome, T. M. et al. Resolving the value of the dingo in ecological restoration. Restor. Ecol. 23(3), 201â208. https://doi.org/10.1111/rec.12186 (2015).ArticleÂ
Google ScholarÂ
69.Glen, A. S., Dickman, C. R., SoulĂ©, M. E. & Mackey, B. G. Evaluating the role of the dingo as a trophic regulator in Australian ecosystems. Austral Ecol. 32(5), 492â501 (2007).ArticleÂ
Google ScholarÂ
70.Mitchell, B. & Balogh, S. Monitoring techniques for vertebrate pests: wild dogs. Orange: NSW Department of Primary Industries, Bureau of Rural Sciences; 2007.71.Letnic, M. & Koch, F. Are dingoes a trophic regulator in arid Australia? A comparison of mammal communities on either side of the dingo fence. Austral Ecol. 35(2), 267â175 (2010).ArticleÂ
Google ScholarÂ
72.Contos, P. & Letnic, M. Top-down effects of a large mammalian carnivore in arid Australia extend to epigeic arthropod assemblages. J. Arid Environ. (in press). https://doi.org/10.1016/j.jaridenv.2019.03.002.73.Mills, C. H., Wijas, B., Gordon, C. E., Lyons, M., Feit, A., Wilkinson, A., et al. Two alternate states: Shrub, bird and mammal assemblages differ on either side of the Dingo Barrier Fence. Aust Zool. (in press). https://doi.org/10.7882/az.2021.005.74.Engeman, R. M., Allen, L. R. & Allen, B. L. Study design concepts for inferring functional roles of mammalian top predators. Food Webs. 12, 56â63 (2017).ArticleÂ
Google ScholarÂ
75.Kennedy, M. S., Kreplins, T. L., OâLeary, R. A. & Fleming, P. A. Responses of dingo (Canis familiaris) populations to landscape-scale baiting. Food Webs. (in press). https://doi.org/10.1016/j.fooweb.2021.e00195.76.Allen, L. R. Is landscape-scale wild dog control best practice?. Australas. J. Environ. Manag. 24(1), 5â15 (2017).ArticleÂ
Google ScholarÂ
77.Ballard, G., Fleming, P. J. S., Meek, P. D. & Doak, S. Aerial baiting and wild dog mortality in south-eastern Australia. Wildl. Res. 47(2), 99â105. https://doi.org/10.1071/WR18188 (2020).ArticleÂ
Google ScholarÂ
78.Smith, D. & Allen, B. L. Habitat use by yellow-footed rock-wallabies in predator exclusion fences. J. Arid Environ. (in press).79.Smith, D., King, R. & Allen, B. L. Impacts of exclusion fencing on target and non-target fauna: A global review. Biol. Rev. 95(6), 1590â1606 (2020).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
80.Smith, D., Waddell, K. & Allen, B. L. Expansion of vertebrate pest exclusion fencing and its potential benefits for threatened fauna recovery in Australia. Animals 10, 1550 (2020).PubMed CentralÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
81.Clark, P., Clark, E. & Allen, B. L. Sheep, dingoes and kangaroos: New challenges and a change of direction 20 years on. In Advances in Conservation Through Sustainable Use of Wildlife (eds Baxter, G. et al.) 173â178 (University of Queensland, 2018).
Google ScholarÂ
82.Allen, L. R. The Impact of Wild Dog Predation and Wild Dog Control on Beef Cattle: Large-Scale Manipulative Experiments Examining the Impact of and Response to Lethal Control (LAP Lambert Academic Publishing, 2013).
Google ScholarÂ
83.Allen, L. R. Demographic and functional responses of wild dogs to poison baiting. Ecol. Manag. Restor. 16(1), 58â66 (2015).ArticleÂ
Google ScholarÂ
84.Eldridge, S. R., Bird, P. L., Brook, A., Campbell, G., Miller, H. A., Read, J. L., et al. The effect of wild dog control on cattle production and biodiversity in the South Australian arid zone: Final report. Port Augusta, South Australia: South Australian Arid Lands Natural Resources Management Board; 2016.85.Fancourt, B. A., Cremasco, P., Wilson, C. & Gentle, M. N. Do introduced apex predators suppress introduced mesopredators? A multiscale spatiotemporal study of dingoes and feral cats in Australia suggests not. J. Appl. Ecol. 56(12), 2584â2595. https://doi.org/10.1111/1365-2664.13514 (2019).ArticleÂ
Google ScholarÂ
86.Allen, B. L., Engeman, R. M. & Allen, L. R. Wild dogma I: An examination of recent âevidenceâ for dingo regulation of invasive mesopredator release in Australia. Curr. Zool. 57(5), 568â583 (2011).ArticleÂ
Google ScholarÂ
87.Allen, L. R. & Engeman, R. M. Evaluating and validating abundance monitoring methods in the absence of populations of known size: Review and application to a passive tracking index. Environ. Sci. Pollut. Res. 22, 2907â2915. https://doi.org/10.1007/s11356-014-3567-3 (2014).ArticleÂ
Google ScholarÂ
88.Caughley, G. Analysis of Vertebrate Populations, reprinted with corrections. (Wiley, 1980).
Google ScholarÂ
89.Wysong, M. L. et al. Space use and habitat selection of an invasive mesopredator and sympatric, native apex predator. Mov. Ecol. 8(1), 18. https://doi.org/10.1186/s40462-020-00203-z (2020).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
90.Ritchie, E. G. et al. Ecosystem restoration with teeth: What role for predators?. Trends Ecol. Evol. 27(5), 265â271 (2012).PubMedÂ
ArticleÂ
Google ScholarÂ
91.Letnic, M. Stop poisoning dingoes to protect native animals. University of New South Wales, Sydney, available at http://newsroom.unsw.edu.au/news/science/stop-poisoning-dingoes-protect-native-mammals. Accessed 1 April 2014: UNSW Newsroom; 2014.92.Ritchie, E. G. The worldâs top predators are in decline, and itâs hurting us too. The Conversation. 2014. http://theconversation.com/the-worlds-top-predators-are-in-decline-and-its-hurting-us-too-21830. Accessed 10 January 2014.93.Brown, J. S., Laundre, J. W. & Gurung, M. The ecology of fear: Optimal foraging, game theory, and trophic interactions. J. Mammal. 80, 385â399 (1999).ArticleÂ
Google ScholarÂ
94.LaundrĂ©, J. W. et al. The landscape of fear: The missing link to understand top-down and bottom-up controls of prey abundance?. Ecology 95(5), 1141â1152. https://doi.org/10.1890/13-1083.1 (2014).ArticleÂ
PubMedÂ
Google ScholarÂ
95.Haswell, P. M., Jones, K. A., Kusak, J. & Hayward, M. W. Fear, foraging and olfaction: How mesopredators avoid costly interactions with apex predators. Oecologia https://doi.org/10.1007/s00442-018-4133-3 (2018).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
96.Colman, N. J., Gordon, C. E., Crowther, M. S. & Letnic, M. Lethal control of an apex predator has unintended cascading effects on forest mammal assemblages. Proc. R. Soc. B Biol. Sci. 281(1782), 20133094. https://doi.org/10.1098/rspb.2013.3094 (2014).CASÂ
ArticleÂ
Google ScholarÂ
97.Sheriff, M. J., Peacor, S., Hawlena, D. & Thaker, M. Non-consumptive predator effects on prey population size: A dearth of evidence. J. Anim. Ecol. 89, 1302â1316. https://doi.org/10.1111/1365-2656.13213 (2020).ArticleÂ
PubMedÂ
Google ScholarÂ
98.Fleming, P. J. S. et al. Roles for the Canidae in food webs reviewed: Where do they fit?. Food Webs. 12(Supplement C), 14â34. https://doi.org/10.1016/j.fooweb.2017.03.001 (2017).ArticleÂ
Google ScholarÂ
99.Wang, Y. & Fisher, D. Dingoes affect activity of feral cats, but do not exclude them from the habitat of an endangered macropod. Wildl. Res. 39, 611â620 (2012).ArticleÂ
Google ScholarÂ
100.Hayward, M. W. et al. Ecologists need robust survey designs, sampling and analytical methods. J. Appl. Ecol. 52(2), 286â290. https://doi.org/10.1111/1365-2664.12408 (2015).ArticleÂ
Google ScholarÂ
101.Johnson, C. N. & Ritchie, E. The dingo and biodiversity conservation: response to Fleming et al. (2012). Aust. Mammal. 35(1), 8â14 (2013).ArticleÂ
Google ScholarÂ
102.Wallach, A. D. & OâNeill, A. J. Threatened species indicate hot-spots of top-down regulation. Anim. Biodivers. Conserv. 32(2), 127â133 (2009).
Google ScholarÂ
103.Feit, B., Feit, A. & Letnic, M. Apex predators decouple population dynamics between mesopredators and their prey. Ecosystems. (in press). https://doi.org/10.1007/s10021-019-00360-2.104.Gordon, C. E., Moore, B. D. & Letnic, M. Temporal and spatial trends in the abundances of an apex predator, introduced mesopredator and ground-nesting bird are consistent with the mesopredator release hypothesis. Biodivers. Conserv. https://doi.org/10.1007/s10531-017-1309-9 (2017).ArticleÂ
Google ScholarÂ
105.Letnic, M. et al. Does a top predator suppress the abundance of an invasive mesopredator at a continental scale?. Glob. Ecol. Biogeogr. 20(2), 343â353 (2011).ArticleÂ
Google ScholarÂ
106.Rees, J. D., Kingsford, R. T. & Letnic, M. Changes in desert avifauna associated with the functional extinction of a terrestrial top predator. Ecography 42(1), 67â76. https://doi.org/10.1111/ecog.03661 (2019).ArticleÂ
Google ScholarÂ
107.Allen, B. L. et al. Large carnivore science: Non-experimental studies are useful, but experiments are better. Food Webs 13, 49â50 (2017).ArticleÂ
Google ScholarÂ
108.Allen, B. L., Engeman, R. M. & Allen, L. R. Wild dogma II: The role and implications of wild dogma for wild dog management in Australia. Curr. Zool. 57(6), 737â740 (2011).ArticleÂ
Google ScholarÂ
109.Fleming, P. J. S., Allen, B. L. & Ballard, G. Cautionary considerations for positive dingo management: A response to the Johnson and Ritchie critique of Fleming et al. (2012). Aust Mammal. 35(1), 15â22 (2013).ArticleÂ
Google ScholarÂ
110.Allen, B. L. Did dingo control cause the elimination of kowaris through mesopredator release effects? A response to Wallach and OâNeill (2009). Anim. Biodivers. Conserv. 33(2), 1â4 (2010).
Google ScholarÂ
111.Woinarski, J. C. Z. et al. Reading the black book: The number, timing, distribution and causes of listed extinctions in Australia. Biol. Conserv. 239, 108261. https://doi.org/10.1016/j.biocon.2019.108261 (2019).ArticleÂ
Google ScholarÂ
112.Kearney, S. G., Cawardine, J., Reside, A. E., Fisher, D., Maron, M., Doherty, T. S., et al. The threats to Australiaâs imperilled species and implications for a national conservation response. Pac. Conserv. Biol. (in press). https://doi.org/10.1071/PC18024.113.Burbidge, A. A. & McKenzie, N. L. Patterns in the modern decline of Western Australiaâs vertebrate fauna: Causes and conservation implications. Biol. Conserv. 50, 143â198 (1989).ArticleÂ
Google ScholarÂ
114.Lunney, D. Causes of the extinction of native mammals of the western division of New South Wales: An ecological interpretation of the nineteenth century historical record. Rangel. J. 23(1), 44â70 (2001).ArticleÂ
Google ScholarÂ
115.Cremona, T., Crowther, M. S. & Webb, J. K. High mortality and small population size prevents population recovery of a reintroduced mesopredator. Anim. Conserv. 20, 555â563. https://doi.org/10.1111/acv.12358 (2017).ArticleÂ
Google ScholarÂ
116.Bannister, H. L., Lynch, C. E. & Moseby, K. E. Predator swamping and supplementary feeding do not improve reintroduction success for a threatened Australian mammal, Bettongia lesueur. Aust. Mammal. 38, 177â187 (2016).ArticleÂ
Google ScholarÂ
117.Mori, E. et al. Spatiotemporal mechanisms of coexistence in an European mammal community in a protected area of southern Italy. J. Zool. 310(3), 232â245. https://doi.org/10.1111/jzo.12743 (2020).ArticleÂ
Google ScholarÂ
118.Saggiomo, L. Mesopredator Release and Competitive Exclusion: A Global Review and Potential for European Carnivores [Masters] (Alma Mater Studiorum University, 2014).
Google ScholarÂ
119.Gigliotti, L. C. et al. Context dependency of top-down, bottom-up and density-dependent influences on cheetah demography. J. Anim. Ecol. 89, 449â459. https://doi.org/10.1111/1365-2656.13099 (2020).ArticleÂ
PubMedÂ
Google ScholarÂ
120.Cozzi, G. et al. Fear of the dark or dinner by moonlight? Reduced temporal partitioning among Africaâs large carnivores. Ecology 93(12), 2590â2599. https://doi.org/10.1890/12-0017.1 (2012).ArticleÂ
PubMedÂ
Google ScholarÂ
121.Rafiq, K. et al. Spatial and temporal overlaps between leopards (Panthera pardus) and their competitors in the African large predator guild. J. Zool. 311(4), 246â259. https://doi.org/10.1111/jzo.12781 (2020).ArticleÂ
Google ScholarÂ
122.Comley, J., Joubert, C. J., Mgqatsa, N. & Parker, D. M. Lions do not change rivers: Complex African savannas preclude top-down forcing by large predators. J. Nat. Conserv. 56, 125844 (2020).ArticleÂ
Google ScholarÂ
123.Allen, M. L., Peterson, B. & Krofel, M. No respect for apex carnivores: Distribution and activity patterns of honey badgers in the Serengeti. Mamm. Biol. 89, 90â94. https://doi.org/10.1016/j.mambio.2018.01.001 (2018).ArticleÂ
Google ScholarÂ
124.Vitekere, K. et al. Dynamic in species estimates of carnivores (leopard cat, red fox, and north Chinese leopard): A multi-year assessment of occupancy and coexistence in the Tieqiaoshan Nature Reserve, Shanxi Province, China. Animals 10(8), 1333. https://doi.org/10.3390/ani10081333 (2020).ArticleÂ
PubMed CentralÂ
PubMedÂ
Google ScholarÂ
125.Brodie, J. F. & Giordano, A. Lack of trophic release with large mammal predators and prey in Borneo. Biol. Conserv. 63, 58â67. https://doi.org/10.1016/j.biocon.2013.01.003 (2013).ArticleÂ
Google ScholarÂ
126.Lahkar, D., Ahmed, M. F., Begum, R. H., Das, S. K. & Harihar, A. Inferring patterns of sympatry among large carnivores in Manas National ParkâA prey-rich habitat influenced by anthropogenic disturbances. Anim. Conserv. (in press). https://doi.org/10.1111/acv.12662.127.Gehrt, S. D. & Prange, S. Interference competition between coyotes and raccoons: A test of the mesopredator release hypothesis. Behav. Ecol. 18(1), 204â214 (2007).ArticleÂ
Google ScholarÂ
128.Dias, D. M., Massara, R. L., de Campos, C. B. & Rodrigues, F. H. G. Feline predatorâprey relationships in a semi-arid biome in Brazil. J. Zool. (in press). https://doi.org/10.1111/jzo.12647.129.Foster, V. C. et al. Jaguar and puma activity patterns and predatorâprey interactions in four Brazilian biomes. Biotropica 45(3), 373â379. https://doi.org/10.1111/btp.12021 (2013).ArticleÂ
Google ScholarÂ
130.Allen, L. R. Best practice baiting: Dispersal and seasonal movement of wild dogs (Canis lupus familiaris). Technical highlights: Invasive plant and animal research 2008â09. Brisbane: QLD Department of Employment, Economic Development and Innovation; 2009. 61â62.131.Fleming, P., Corbett, L., Harden, R. & Thomson, P. Managing the impacts of dingoes and other wild dogs. Bomford M, editor. Canberra: Bureau of Rural Sciences; 2001.132.Thomas, L. et al. Distance software: Design and analysis of distance sampling surveys for estimating population size. J. Appl. Ecol. 47, 5â14 (2010).PubMedÂ
ArticleÂ
Google ScholarÂ
133.Ruette, S., Stahl, P. & Albaret, M. Applying distance-sampling methods to spotlight counts of red foxes. J. Appl. Ecol. 40, 32â43 (2003).ArticleÂ
Google ScholarÂ
134.Engeman, R. Indexing principles and a widely applicable paradigm for indexing animal populations. Wildl. Res. 32(3), 202â210 (2005).ArticleÂ
Google ScholarÂ
135.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2020. More