Long-term data reveal unimodal responses of ground beetle abundance to precipitation and land use but no changes in taxonomic and functional diversity
1.Wilson, E. O. The little things that run the world (The importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).Article
Google Scholar
2.Catalogue of Life. Catalogue of life: 2018 annual checklist. http://www.catalogueoflife.org/annual-checklist/2018/info/ac (2018).3.Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth?. Annu. Rev. Entomol. 63, 31–45 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
4.Dornelas, M. et al. BioTIME: A database of biodiversity time series for the Anthropocene. Glob. Ecol. Biogeogr. 27, 760–786 (2018).PubMed
PubMed Central
Article
Google Scholar
5.Magurran, A. E. et al. Long-term datasets in biodiversity research and monitoring: Assessing change in ecological communities through time. Trends Ecol. Evol. 25, 574–582 (2010).PubMed
Article
PubMed Central
Google Scholar
6.Nielsen, T. F., Sand-Jensen, K., Dornelas, M. & Bruun, H. H. More is less: Net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).Article
Google Scholar
7.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
8.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
9.Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
10.Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. PNAS 118, 1–10 (2021).
Google Scholar
11.Welti, E. A. R., Roeder, K. A., de Beurs, K. M., Joern, A. & Kaspari, M. Nutrient dilution and climate cycles underlie declines in a dominant insect herbivore. Proc. Natl. Acad. Sci. U. S. A. 117, 7271–7275 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
12.Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
13.Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl. Acad. Sci. U. S. A. 110, 19456 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
14.Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).PubMed
Article
PubMed Central
Google Scholar
15.Rada, S. et al. Protected areas do not mitigate biodiversity declines: A case study on butterflies. Divers. Distrib. 25, 217–224 (2019).Article
Google Scholar
16.Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
17.Magurran, A. E., Dornelas, M., Moyes, F. & Henderson, P. A. Temporal β diversity—A macroecological perspective. Glob. Ecol. Biogeogr. 28, 1949–1960 (2019).Article
Google Scholar
18.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed
Article
PubMed Central
Google Scholar
19.Múrria, C., Iturrarte, G. & Gutiérrez-Cánovas, C. A trait space at an overarching scale yields more conclusive macroecological patterns of functional diversity. Glob. Ecol. Biogeogr. 29, 1729–1742 (2020).Article
Google Scholar
20.Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).Article
Google Scholar
21.Schmera, D., Heino, J., Podani, J., Erős, T. & Dolédec, S. Functional diversity: A review of methodology and current knowledge in freshwater macroinvertebrate research. Hydrobiologia 787, 27–44 (2017).Article
Google Scholar
22.Frainer, A., McKie, B. G. & Malmqvist, B. When does diversity matter? Species functional diversity and ecosystem functioning across habitats and seasons in a field experiment. J. Anim. Ecol. 83, 460–469 (2014).PubMed
Article
PubMed Central
Google Scholar
23.Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).ADS
PubMed
PubMed Central
Article
Google Scholar
24.Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).Article
Google Scholar
25.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
26.Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
27.Habel, J. C., Samways, M. J. & Schmitt, T. Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 28, 1343–1360 (2019).Article
Google Scholar
28.Baranov, V., Jourdan, J., Pilotto, F., Wagner, R. & Haase, P. Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. Conserv. Biol. 34, 1241–1251 (2020).PubMed
Article
PubMed Central
Google Scholar
29.Halsch, C. A. et al. Insects and recent climate change. PNAS 118, 1–9 (2021).Article
CAS
Google Scholar
30.Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. PNAS 118, 1–6 (2021).Article
CAS
Google Scholar
31.Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
32.Jourdan, J., Baranov, V., Wagner, R., Plath, M. & Haase, P. Elevated temperatures translate into reduced dispersal abilities in a natural population of an aquatic insect. J. Anim. Ecol. 88, 1498–1509 (2019).PubMed
Article
PubMed Central
Google Scholar
33.Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 1–7 (2017).Article
Google Scholar
34.Habel, J. C., Ulrich, W., Biburger, N., Seibold, S. & Schmitt, T. Agricultural intensification drives butterfly decline. Insect Conserv. Divers. 12, 289–295 (2019).
Google Scholar
35.Januschke, K. & Verdonschot, R. C. M. Effects of river restoration on riparian ground beetles (Coleoptera: Carabidae) in Europe. Hydrobiologia 769, 93–104 (2016).Article
Google Scholar
36.Koivula, M. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions. ZooKeys 100, 287–317 (2011).Article
Google Scholar
37.Homburg, K., Homburg, N., Schäfer, F., Schuldt, A. & Assmann, T. Carabids.org—a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers. 7, 195–205 (2014).38.Kotze, D. J. et al. Forty years of carabid beetle research in Europe—from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys 100, 55–148 (2011).Article
Google Scholar
39.Rainio, J. & Niemelä, J. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodivers. Conserv. 12, 487–506 (2003).Article
Google Scholar
40.Pozsgai, G., Baird, J., Littlewood, N. A., Pakeman, R. J. & Young, M. R. Long-term changes in ground beetle (Coleoptera: Carabidae) assemblages in Scotland. Ecol. Entomol. 41, 157–167 (2016).Article
Google Scholar
41.Jambrošić, V. Ž & Šerić, J. L. Long term changes (1990–2016) in carabid beetle assemblages (Coleoptera: Carabidae) in protected forests on Dinaric Karst on Mountain Risnjak, Croatia. EJE 117, 56–67 (2020).
Google Scholar
42.Marrec, R. et al. Multiscale drivers of carabid beetle (Coleoptera: Carabidae) assemblages in small European woodlands. Glob. Ecol. Biogeogr. 30, 165–182 (2021).Article
Google Scholar
43.Ribera, I., Dolédec, S., Downie, I. S. & Foster, G. N. Effect of land disturbance and stress on species traits of ground beetle assemblages. Ecology 82, 1112–1129 (2001).Article
Google Scholar
44.Gobbi, M. & Fontaneto, D. Biodiversity of ground beetles (Coleoptera: Carabidae) in different habitats of the Italian Po lowland. Agric. Ecosyst. Environ. 127, 273–276 (2008).Article
Google Scholar
45.Cajaiba, R. L. et al. How informative is the response of Ground Beetles’ (Coleoptera: Carabidae) assemblages to anthropogenic land use changes? Insights for ecological status assessments from a case study in the Neotropics. Sci. Total Environ. 636, 1219–1227 (2018).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
46.Baulechner, D., Diekötter, T., Wolters, V. & Jauker, F. Converting arable land into flowering fields changes functional and phylogenetic community structure in ground beetles. Biol. Cons. 231, 51–58 (2019).Article
Google Scholar
47.Hallmann, C. A. et al. Declining abundance of beetles, moths and caddisflies in the Netherlands. Insect Conserv. Divers. 13, 127–139 (2020).Article
Google Scholar
48.Brooks, D. R. et al. Large carabid beetle declines in a United Kingdom monitoring network increases evidence for a widespread loss in insect biodiversity. J. Appl. Ecol. 49, 1009–1019 (2012).Article
Google Scholar
49.Kotze, D. J. & O’Hara, R. B. Species decline—but why? Explanations of carabid beetle (Coleoptera, Carabidae) declines in Europe. Oecologia 135, 138–148 (2003).ADS
PubMed
Article
PubMed Central
Google Scholar
50.Homburg, K. et al. Where have all the beetles gone? Long-term study reveals carabid species decline in a nature reserve in Northern Germany. Insect Conserv. Divers. 12, 268–277 (2019).
Google Scholar
51.Thiele, H. U. Carabid Beetles in their Environments: A Study on Habitat Selection by Adaptations in Physiology and Behaviour. (Springer, 1977). https://doi.org/10.1007/978-3-642-81154-8.52.Hengeveld, R. Dynamics of Dutch Beetle Species During the Twentieth Century (Coleoptera, Carabidae). J. Biogeogr. 12, 389–411 (1985).Article
Google Scholar
53.Engel, J. et al. Pitfall trap sampling bias depends on body mass, temperature, and trap number: Insights from an individual-based model. Ecosphere 8, e01790 (2017).Article
Google Scholar
54.Eyre, M. D., Rushton, S. P., Luff, M. L. & Telfer, M. G. Investigating the relationships between the distribution of British ground beetle species (Coleoptera, Carabidae) and temperature, precipitation and altitude. J. Biogeogr. 32, 973–983 (2005).Article
Google Scholar
55.Paetzold, A., Schubert, C. J. & Tockner, K. Aquatic terrestrial linkages along a braided-river: Riparian arthropods feeding on aquatic insects. Ecosystems 8, 748–759 (2005).Article
Google Scholar
56.Van Looy, K., Vanacker, S., Jochems, H., de Blust, G. & Dufrêne, M. Ground beetle habitat templets and riverbank integrity. River Res. Appl. 21, 1133–1146 (2005).Article
Google Scholar
57.Lambeets, K., Vandegehuchte, M. L., Maelfait, J.-P. & Bonte, D. Understanding the impact of flooding on trait-displacements and shifts in assemblage structure of predatory arthropods on river banks. J. Anim. Ecol. 77, 1162–1174 (2008).PubMed
Article
PubMed Central
Google Scholar
58.Kotze, D. J., Niemelä, J., O’Hara, R. B. & Turin, H. Testing abundance-range size relationships in European carabid beetles (Coleoptera, Carabidae). Ecography 26, 553–566 (2003).Article
Google Scholar
59.Barber, H. S. Traps for cave-inhabiting insects. J. Elisha Mitchell Sci. Soc. 46, 259–266 (1931).
Google Scholar
60.Dunger, W. Praktische Erfahrungen mit Bodenfallen. Entomologische Nachrichten 7, 41–46 (1963).
Google Scholar
61.Trautner, J. Handfänge als effektive und vergleichbare Methode zur Laufkäfer-Erfassung an Fließgewässern-Ergebnisse eines Tests an der Aich. Angewandte Carabidologie Supplement 1, 139–144 (1999).
Google Scholar
62.Trautner, J. Laufkäfer – Methoden der Bestandsaufnahme und Hinweise für die Auswertung bei Naturschutz- und Eingriffsplanungen. in Arten- und Biotopschutz in der Planung: Methodische Standards zur Erfassung von Tierartengruppen (ed. Trautner, J.) 145–162 (1992).63.Linke, S., Bailey, R. C. & Schwindt, J. Temporal variability of stream bioassessments using benthic macroinvertebrates. Freshw. Biol. 42, 575–584 (1999).Article
Google Scholar
64.Albrecht, L. Grundlagen, Ziele und Methodik der waldökologischen Forschung in Naturreservaten. vol. 1 (1990).65.Renner, K. Faunistisch-ökologische Untersuchungen der Käferfauna pflanzensoziologisch unterschiedlicher Biotope im Evessell-Buch bei Bielefeld-Sennestadt. Ber. Naturw. V. Bielefeld 145–176 (1980).66.Müller-Motzfeld, G. Die Käfer Mitteleuropas. vol. 2 (Springer Spektrum, 2004).67.Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).MathSciNet
MATH
Article
Google Scholar
68.Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication. (University of Illinois Press, 1949).69.Simpson, E. H. Measurement of diversity. Nature 163, 688 (1949).ADS
MATH
Article
Google Scholar
70.Pielou, E. C. Mathematical Ecology. (Wiley, 1977).71.Smith, B. & Wilson, J. B. A consumer’s guide to Evenness indices. Oikos 76, 70–82 (1996).Article
Google Scholar
72.Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article
Google Scholar
73.Schmera, D., Podani, J., Heino, J., Erős, T. & Poff, N. L. A proposed unified terminology of species traits in stream ecology. Freshw. Sci. 34, 823–830 (2015).Article
Google Scholar
74.Villéger, S., Grenouillet, G. & Brosse, S. Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Glob. Ecol. Biogeogr. 22, 671–681 (2013).Article
Google Scholar
75.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed
Article
PubMed Central
Google Scholar
76.Mason, N. W. H., Mouillot, D., Lee, W. G. & Wilson, J. B. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 111, 112–118 (2005).Article
Google Scholar
77.Pakeman, R. J. Functional trait metrics are sensitive to the completeness of the species’ trait data?. Methods Ecol. Evol. 5, 9–15 (2014).Article
Google Scholar
78.Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS 111, 13757–13762 (2014).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
79.Chevene, F., Doléadec, S. & Chessel, D. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 31, 295–309 (1994).Article
Google Scholar
80.Cornes, R. C., van der Schrier, G., van den Besselaar, E. J. M. & Jones, P. D. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391–9409 (2018).Article
Google Scholar
81.Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 113, 1–12 (2008).Article
Google Scholar
82.Jourdan, J. et al. Effects of changing climate on European stream invertebrate communities: A long-term data analysis. Sci. Total Environ. 621, 588–599 (2018).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
83.Büttner, G. Corine land cover and land cover change products. in Land Use and Land Cover Mapping in Europe: Practices & Trends (eds. Manakos, I. & Braun, M.) 55–74 (Springer Netherlands, 2014). https://doi.org/10.1007/978-94-007-7969-3_5.84.Erős, T., Czeglédi, I., Tóth, R. & Schmera, D. Multiple stressor effects on alpha, beta and zeta diversity of riverine fish. Sci. Total Environ. 748, 141407 (2020).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
85.Oksanen, J. et al. Vegan: Community ecology package. https://CRAN.R-project.org/package=vegan (2019).86.Sanders, H. L. Marine benthic diversity: A comparative study. Am. Nat. 102, 243–282 (1968).Article
Google Scholar
87.Maire, A., Thierry, E., Viechtbauer, W. & Daufresne, M. Poleward shift in large-river fish communities detected with a novel meta-analysis framework. Freshw. Biol. 64, 1143–1156 (2019).Article
Google Scholar
88.R Development Core Team. R: A language and environment for statistical computing. R Foundation For Statistical Computing, Vienna, Austria https://www.r-project.org/ (2019).89.Lahti, L. & Shetty, S. Microbiome R package. http://microbiome.github.io (2012).90.Laliberté, E., Legendre, P. & Shipley, B. FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. https://cran.r-project.org/web/packages/FD/citation.html (2014).91.Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article
Google Scholar
92.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Development Core Team. Nlme: linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlme (2020).93.Boscaini, A., Franceschini, A. & Maiolini, B. River ecotones: Carabid beetles as a tool for quality assessment. Hydrobiologia 422, 173–181 (2000).Article
Google Scholar
94.Magura, T., Lövei, G. L. & Tóthmérész, B. Does urbanization decrease diversity in ground beetle (Carabidae) assemblages?. Glob. Ecol. Biogeogr. 19, 16–26 (2010).Article
Google Scholar
95.Kędzior, R., Szwalec, A., Mundała, P. & Skalski, T. Ground beetle (Coleoptera, Carabidae) life history traits as indicators of habitat recovering processes in postindustrial areas. Ecol. Eng. 142, 105615 (2020).Article
Google Scholar
96.Post, D. M. The long and short of food-chain length. Trends Ecol. Evol. 17, 269–277 (2002).Article
Google Scholar
97.Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 11, 3486 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
98.Skarbek, C. J., Kobel-Lamparski, A. & Dormann, C. F. Trends in monthly abundance and species richness of carabids over 33 years at the Kaiserstuhl, southwest Germany. Basic Appl. Ecol. 50, 107–118 (2021).Article
Google Scholar
99.Chase, J. M. et al. Species richness change across spatial scales. Oikos 128, 1079–1091 (2019).Article
Google Scholar
100.Prather, R. M. & Kaspari, M. Plants regulate grassland arthropod communities through biomass, quality, and habitat heterogeneity. Ecosphere 10, e02909 (2019).Article
Google Scholar
101.Desender, K., Dekoninck, W., Dufrêne, M. & Maes, D. Changes in the distribution of carabid beetles in Belgium revisited: Have we halted the diversity loss?. Biol. Cons. 143, 1549–1557 (2010).Article
Google Scholar
102.Haase, P. et al. The next generation of site-based long-term ecological monitoring: Linking essential biodiversity variables and ecosystem integrity. Sci. Total Environ. 613–614, 1376–1384 (2018).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar More