1.Brevik, E. C. et al. The interdisciplinary nature of SOIL. Soil 1(1), 117–129. https://doi.org/10.5194/soil-1-117-2015 (2015).Article
Google Scholar
2.Liu, X. et al. Heavy metal concentrations of soils near the large opencast coal mine pits in China. Chemosphere 244, 125360. https://doi.org/10.1016/j.chemosphere.2019.125360 (2020).ADS
CAS
Article
PubMed
Google Scholar
3.Imin, B., Abliz, A., Shi, Q., Liu, S. & Hao, L. Quantitatively assessing the risks and possible sources of toxic metals in soil from an arid, coal-dependent industrial region in NW China. J. Geochem. Explor. https://doi.org/10.1016/j.gexplo.2020.106505 (2020).Article
Google Scholar
4.Doran, J. W. & Parkin, T. B. Defining and assessing soil quality. Defin. Soil Qual. Sustain. Environ. 35, 1–21. https://doi.org/10.2136/sssaspecpub35.c1 (1994).Article
Google Scholar
5.Sun, H. et al. Effects of soil quality on effective ingredients of Astragalus mongholicus from the main cultivation regions in China. Ecol. Indic. 114, 106296. https://doi.org/10.1016/j.ecolind.2020.106296 (2020).CAS
Article
Google Scholar
6.Alloway, B. J. Sources of Heavy Metals and Metalloids in Soils. Heavy Metals in Soils 11–50 (Springer, 2013).Book
Google Scholar
7.Yang, Q. Q. et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 642, 690–700. https://doi.org/10.1016/j.scitotenv.2018.06.068 (2018).ADS
CAS
Article
PubMed
Google Scholar
8.Huang, Y., Kuang, X., Cao, Y. & Bai, Z. The soil chemical properties of reclaimed land in an arid grassland dump in an opencast mining area in China. RSC Adv. 8(72), 41499–41508. https://doi.org/10.1039/c8ra08002j (2018).ADS
CAS
Article
Google Scholar
9.Liu, Z. J. et al. Soil quality assessment of Albic soils with different productivities for eastern China. Soil Till. Res. 140, 74–81. https://doi.org/10.1016/j.still.2014.02.010 (2014).Article
Google Scholar
10.Bhardwaj, A. K., Jasrotia, P., Hamilton, S. K. & Robertson, G. P. Ecological management of intensively cropped agro-ecosystems improves soil quality with sustained productivity. Agr. Ecosyst. Environ. 140(3–4), 419–429. https://doi.org/10.1016/j.agee.2011.01.005 (2011).Article
Google Scholar
11.Mendham, D. S. et al. Soil analyses as indicators of phosphorus response in young eucalypt plantations. Soil Sci. Soc. Am. J. 66(3), 959–968. https://doi.org/10.2136/sssaj2002.9590 (2002).ADS
CAS
Article
Google Scholar
12.Shukla, M. K., Lal, R. & Ebinger, M. Determining soil quality indicators by factor analysis. Soil Till. Res. 87(2), 194–204. https://doi.org/10.1016/j.still.2005.03.011 (2006).Article
Google Scholar
13.Vasu, D. et al. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau. India. Geoderma. 282, 70–79. https://doi.org/10.1016/j.geoderma.2016.07.010 (2016).ADS
CAS
Article
Google Scholar
14.Mishra, G. et al. Soil quality assessment under shifting cultivation and forests in Northeastern Himalaya of India. Arch. Agron. Soil Sci. 63(10), 1355–1368. https://doi.org/10.1080/03650340.2017.1281390 (2017).CAS
Article
Google Scholar
15.Li, X. Y., Wang, D. Y., Ren, Y. X., Wang, Z. M. & Zhou, Y. H. Soil quality assessment of croplands in the black soil zone of Jilin Province, China: Establishing a minimum data set model. Ecol. Indic. 107, 105251. https://doi.org/10.1016/j.ecolind.2019.03.028 (2019).CAS
Article
Google Scholar
16.Zhao, Q. Q. et al. Effects of freshwater inputs on soil quality in the Yellow River Delta. China. Ecol. Indic. 98, 619–626. https://doi.org/10.1016/j.ecolind.2018.11.041 (2019).CAS
Article
Google Scholar
17.Li, F. P., Liu, W., Lu, Z. B., Mao, L. C. & Xiao, Y. H. A multi-criteria evaluation system for arable land resource assessment. Environ. Monit. Assess. https://doi.org/10.1007/s10661-019-8023-x (2020).Article
PubMed
PubMed Central
Google Scholar
18.Raiesi, F. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecol. Indic. 75, 307–320. https://doi.org/10.1016/j.ecolind.2016.12.049 (2017).Article
Google Scholar
19.Zhou, Y. et al. Assessment of soil quality indexes for different land use types in typical steppe in the loess hilly area, China. Ecol. Indic. 118, 106743. https://doi.org/10.1016/j.ecolind.2020.106743 (2020).CAS
Article
Google Scholar
20.Cheng, W. et al. Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. J. Hazard. Mater. 387, 121666. https://doi.org/10.1016/j.jhazmat.2019.121666 (2020).CAS
Article
PubMed
Google Scholar
21.Zhao, X., Tong, M., He, Y., Han, X. & Wang, L. A comprehensive, locally adapted soil quality indexing under different land uses in a typical watershed of the eastern Qinghai-Tibet Plateau. Ecol. Ind. 125, 107445. https://doi.org/10.1016/j.ecolind.2021.107445 (2021).CAS
Article
Google Scholar
22.Zhang, W. S. et al. Comprehensive assessment methodology of soil quality under different land use conditions. Trans. Chin. Soc. Agric. Eng. 26(12), 311–318. https://doi.org/10.3969/j.issn.1002-6819.2010.12.053 (2010).Article
Google Scholar
23.Batjargal, T., Otgonjargal, E., Baek, K. & Yang, J. S. Assessment of metals contamination of soils in Ulaanbaatar, Mongolia. J. Hazard. Mater. 184(1–3), 872–876. https://doi.org/10.1016/j.jhazmat.2010.08.106 (2010).CAS
Article
PubMed
Google Scholar
24.Ngole-Jeme, V. M. Heavy metals in soils along unpaved roads in south west Cameroon: Contamination levels and health risks. Ambio 45(3), 374–386. https://doi.org/10.1007/s13280-015-0726-9 (2016).CAS
Article
PubMed
Google Scholar
25.China Soil Census Office. China Soil Census Data[M] (China National Agricultural Press, Beijing, 1997).26.Chen, H., Teng, Y., Lu, S., Wang, Y. & Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 512, 143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025 (2015).ADS
CAS
Article
PubMed
Google Scholar
27.Wang, Y., Duan, X. & Wang, L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Sci. Total Environ. 710, 134953. https://doi.org/10.1016/j.scitotenv.2019.134953 (2020).ADS
CAS
Article
PubMed
Google Scholar
28.Bao, S. D. Soil Agrochemical Analysis 25–114 (China Agricultural Press, 2000).
Google Scholar
29.Wang, M. E., Peng, C., & Chen, W. P. Impacts of industrial zone in arid area in Ningxia province on the accumulation of heavy metals in agricultural soils. Chin. J. Envir. Sci., 37(9), 3532–3539. https://doi.org/10.13227/j.hjkx.2016.09.035 (2016). Article
Google Scholar
30.Xu, Z. et al. Characteristics and sources of heavy metal pollution in desert steppe soil related to transportation and industrial activities. Environ. Sci. Pollut. Res. 27, 38835–38848. https://doi.org/10.1007/s11356-020-09877-9 (2020).CAS
Article
Google Scholar
31.Qi, Y. B. et al. Evaluating soil quality indices in an agricultural region of Jiangsu Province. China. Geoderma. 149(3–4), 325–334. https://doi.org/10.1016/j.geoderma.2008.12.015 (2009).ADS
Article
Google Scholar
32.Hu, Q., Chen, W. F., Song, X. L., Dong, Y. J. & Liu, Z. Q. Effects of reclamation/cultivation on soil quality of Saline-alkali Soils in the yellow river delta. Acta Pedol. Sin. 57(4), 824–833. https://doi.org/10.11766/trxb201905050105 (2020).Article
Google Scholar
33.Qu, X. G., Sun, Y. X. & Fu, X. Y. Soil quality and stripping depth evaluation of tillage layer for construction of Qingdao new airport. Bull. Soil Water Conserv. 38(4), 202–206. https://doi.org/10.13961/j.cnki.stbctb.2018.04.033 (2018).Article
Google Scholar
34.Abd-Elwahed, M. S. Influence of long-term wastewater irrigation on soil quality and its spatial distribution. Ann. Agric. Sci. 63(2), 191–199. https://doi.org/10.1016/j.aoas.2018.11.004 (2018).Article
Google Scholar
35.CNEMC (China National Environmental Monitoring Center). The Background Values of Elements in Chinese Soils. 330–493 (Environmental Science Press of China, 1990).36.Cheng, J. L., Shi, Z., Zhu, Y. W., Liu, C. & Li, H. Y. Differential characteristics and appraisal of heavy metals in agricultural soils of Zhejiang Province. J. Soil Water Conserv. 20(1), 103–107. https://doi.org/10.1016/S1872-2032(06)60052-8 (2006).Article
Google Scholar
37.Jin, G. Q. et al. Source apportionment of heavy metals in farmland soil with application of APCS-MLR model: A pilot study for restoration of farmland in Shaoxing City Zhejiang. China. Ecotox. Environ. Safe. 184, 109495. https://doi.org/10.1016/j.ecoenv.2019.109495 (2019).CAS
Article
Google Scholar
38.Marzaioli, R., D’Ascoli, R., De Pascale, R. A. & Rutigliano, F. A. Soil quality in a Mediterranean area of Southern Italy as related to different land use types. Appl. Soil Ecol. 44(3), 205–212. https://doi.org/10.1016/j.apsoil.2009.12.007 (2010).Article
Google Scholar
39.Zhao, N., Meng, P., Zhang, J. S., Lu, S. & Cheng, Z. Q. Soil quality assessment of Robinia psedudoacia plantations with various ages in the Grain-for-Green Program in hilly area of North China. Yingyong Shengtai Xuebao https://doi.org/10.13287/j.1001-9332.2014.0038 (2014).Article
PubMed
Google Scholar
40.Zheng, Q. et al. Comprehensive method for evaluating soil quality in cotton fields in Xinjiang. China. Chin. J. Appl. Ecol. 29(4), 1291–1301. https://doi.org/10.13287/j.1001-9332.201804.029 (2018).Article
Google Scholar
41.Turrión, M. B. et al. Soil phosphorus forms as quality indicators of soils under different vegetation covers. Sci. Total Environ. 378(1–2), 195–198. https://doi.org/10.1016/j.scitotenv.2007.01.037 (2007).ADS
CAS
Article
PubMed
Google Scholar
42.Barbosa, E. R. M. et al. Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of Savanna tree species. PLoS ONE 9(3), e92619. https://doi.org/10.1371/journal.pone.0092619 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
43.Marty, C., Houle, D., Gagnon, C. & Courchesne, F. The relationships of soil total nitrogen concentrations, pools and C: N ratios with climate, vegetation types and nitrate deposition in temperate and boreal forests of eastern Canada. CATENA 152, 163–172. https://doi.org/10.1016/j.catena.2017.01.014 (2017).CAS
Article
Google Scholar
44.Chen, Z. F. et al. Evaluation on cultivated-layer soil quality of sloping farmland in Yunnan based on soil management assessment framework (SMAF). Trans. Chin. Soc. Agric. Eng. 35(03), 256–267. https://doi.org/10.11975/j.issn.1002-6819.2019.03.032 (2019).Article
Google Scholar
45.Ding, J. X. et al. Spatial distribution of the herbaceous layer and its relationship to soil physical–chemical properties in the southern margin of the Gurbantonggut Desert, northwestern China. Acta Ecol. Sin. 36(5), 327–332. https://doi.org/10.1016/j.chnaes.2016.06.006 (2016).Article
Google Scholar
46.Güntner, A., Seibert, J. & Uhlenbrook, S. Modeling spatial patterns of saturated areas: An evaluation of different terrain indices. Water Resour. Res. https://doi.org/10.1029/2003wr002864 (2004).Article
Google Scholar
47.Yenilmez, F., Kuter, N., Emil, M. K. & Aksoy, A. Evaluation of pollution levels at an abandoned coal mine site in Turkey with the aid of GIS. Int. J. Coal Geol. 86(1), 12–19. https://doi.org/10.1016/j.coal.2010.11.012 (2011).CAS
Article
Google Scholar
48.Kronbauer, M. A. et al. Geochemistry of ultra-fine and nano-compounds in coal gasification ashes: A synoptic view. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2013.02.066 (2013).Article
PubMed
Google Scholar
49.Masto, R. E. et al. Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India. Solid. Earth. 6(3), 811. https://doi.org/10.5194/se-6-811-2015 (2015).ADS
Article
Google Scholar
50.Han, Y. et al. Effects of opencast coal mining on soil properties and plant communities of grassland. Chin. J. Ecol. 38(11), 3425–3422. https://doi.org/10.13292/j.1000-4890.201911.011 (2019).Article
Google Scholar
51.Liu, J., Wu, L. C., Chen, D., Li, M. & Wei, C. J. Soil quality assessment of different Camellia oleifera stands in mid-subtropical China. Appl. Soil Ecol. 113, 29–35. https://doi.org/10.1016/j.apsoil.2017.01.010 (2017).ADS
Article
Google Scholar
52.Yu, P. J., Liu, S. W., Zhang, L., Li, Q. & Zhou, D. W. Selecting the minimum data set and quantitative soil quality indexing of alkaline soils under different land uses in northeastern China. Sci. Total Environ. 616–617, 564–571. https://doi.org/10.1016/j.scitotenv.2017.10.301 (2018).ADS
CAS
Article
PubMed
Google Scholar
53.Liu, Q. Q., Zhang, T., Wang, C. & Liu, J. H. Comparison of vegetation composition and soil fertility quality inside and outside the wind farm. J. Inner Mongolia Agric. Univ. (nat. Sci. Edn.) 41(02), 30–36. https://doi.org/10.16853/j.cnki.1009-3575.2020.02.006 (2020).CAS
Article
Google Scholar
54.Sheldrick, W., Syers, J. K. & Lingard, J. Contribution of livestock excreta to nutrient balances. Nutr. Cycl. Agroecosys. 66(2), 119–131. https://doi.org/10.1023/a:1023944131188 (2003).Article
Google Scholar
55.Kasahara, M., Fujii, S., Tanikawa, T. & Mori, A. S. Ungulates decelerate litter decomposition by altering litter quality above and below ground. Eur. J. Forest Res. 135(5), 849–856. https://doi.org/10.1007/s10342-016-0978-3 (2016).Article
Google Scholar
56.Zhan, T. Y. et al. Meta-analysis demonstrating that moderate grazing can improve the soil quality across China’s grassland ecosystems. Appl. Soil Ecol. 147, 103438. https://doi.org/10.1016/j.apsoil.2019.103438 (2020).Article
Google Scholar
57.Liu, X. Y., Bai, Z. K., Zhou, W., Cao, Y. G. & Zhang, G. J. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau. China. Ecol. Eng. 98, 228–239. https://doi.org/10.1016/j.ecoleng.2016.10.078 (2017).Article
Google Scholar
58.Sun, L. et al. Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. CATENA 175, 101–109. https://doi.org/10.1016/j.catena.2018.12.014 (2019).CAS
Article
Google Scholar
59.Yang, S. L., Zhou, D. Q., Yu, H. Y., Wei, R. & Pan, B. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River. China. Environ. Pollut. 177, 64–70. https://doi.org/10.1016/j.envpol.2013.01.044 (2013).CAS
Article
PubMed
Google Scholar
60.Zhao, F. J., Ma, Y., Zhu, Y. G., Tang, Z. & McGrath, S. P. Soil Contamination in China: Current Status and Mitigation Strategies. Environ. Sci. Technol. 49(2), 750–759. https://doi.org/10.1021/es5047099 (2014).ADS
CAS
Article
Google Scholar
61.Wang, Y. Z., Duan, X. J. & Wang, L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.134953 (2019).Article
PubMed
PubMed Central
Google Scholar
62.Nehrani, S. H. et al. Quantification of soil quality under semi-arid agriculture in the northwest of Iran. Ecol. Indic. 108, 105770. https://doi.org/10.1016/j.ecolind.2019.105770 (2020).CAS
Article
Google Scholar
63.Huang, Y. et al. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manage. 207, 159–168. https://doi.org/10.1016/j.jenvman.2017.10.072 (2018).CAS
Article
PubMed
Google Scholar
64.Qu, C. S. et al. Spatial distribution, risk and potential sources of lead in soils in the vicinity of a historic industrial site. Chemosphere 205, 244–252. https://doi.org/10.1016/j.chemosphere.2018.04.119 (2018).ADS
CAS
Article
PubMed
Google Scholar
65.Charlesworth, S., Everett, M., McCarthy, R., Ordóñez, A. & de Miguel, E. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ. Int. 29(5), 563–573. https://doi.org/10.1016/s0160-4120(03)00015-1 (2003).CAS
Article
PubMed
Google Scholar
66.Liang, J. et al. Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem. Eng. J. 273, 101–110. https://doi.org/10.1016/j.cej.2015.03.069 (2015).CAS
Article
Google Scholar
67.Liang, J. et al. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan. China. Environ. Pollut. 225, 681–690. https://doi.org/10.1016/j.envpol.2017.03.057 (2017).CAS
Article
PubMed
Google Scholar
68.Chen, H., Lu, X. W., Li, L. Y., Gao, T. N. & Chang, Y. Y. Metal contamination in campus dust of Xi’an, China: A study based on multivariate statistics and spatial distribution. Sci. Total. Environ. 484, 27–35. https://doi.org/10.1016/j.scitotenv.2014.03.026 (2014).ADS
CAS
Article
PubMed
Google Scholar
69.Adachi, K. & Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 30(8), 1009–1017. https://doi.org/10.1016/j.envint.2004.04.004 (2004).CAS
Article
PubMed
Google Scholar
70.Garcia-Guinea, J. et al. Influence of accumulation of heaps of steel slag on the environment: Determination of heavy metals content in the soils. An. Acad. Bras. Cienc. 82(2), 267–277. https://doi.org/10.1590/S0001-37652010000200003 (2010).CAS
Article
PubMed
Google Scholar
71.Fan, X. G., Mi, W. B., Ma, Z. N. & Wang, T. Y. Spatial and temporal characteristics of heavy metal concentration of surface soil in Hebin industrial park in Shizuishan northwest China. Chin. J. Envir. Sci. 34(5), 1887–1894. https://doi.org/10.13227/j.hjkx.2013.05.033 (2013).Article
Google Scholar
72.Huang, T., Yue, X. J., Ge, X. Z. & Wang, X. D. Evaluation of soil quality on gully region of loess plateau based on principal component analysis. Agri. Res. Arid Areas. 28(03), 141–147. https://doi.org/10.1016/S1002-0160(10)60014-8 (2010).Article
Google Scholar
73.Jiang, L. B. et al. Co-pelletization of sewage sludge and biomass: The density and hardness of pellet. Bioresour. Technol. 166, 435–443. https://doi.org/10.1016/j.biortech.2014.05.077 (2014).CAS
Article
PubMed
Google Scholar
74.Oumenskou, H. et al. Multivariate statistical analysis for spatial evaluation of physicochemical properties of agricultural soils from Beni-Amir irrigated perimeter, Tadla plain, Morocco. Geol. Ecol. Landsc. 3(2), 83–94 (2019).Article
Google Scholar
75.Liu, Y., Wang, L., Liu, B. H. & Henderson, M. Observed changes in shallow soil temperatures in Northeast China, 1960–2007. Clim. Res. 67(1), 31–42. https://doi.org/10.3354/cr01351 (2016).Article
Google Scholar
76.Jiang, Y. F. et al. Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou. China. Ecotox. Environ. Safe. 126, 154–162. https://doi.org/10.1016/j.ecoenv.2015.12.037 (2016).CAS
Article
Google Scholar
77.Frohne, T. & Rinklebe, J. Biogeochemical fractions of mercury in soil profiles of two different floodplain ecosystems in Germany. Water Air Soil Poll. 224(6), 1591. https://doi.org/10.1007/s11270-013-1591-4 (2013).ADS
CAS
Article
Google Scholar
78.Stefanowicz, A. M., Kapusta, P., Zubek, S., Stanek, M. & Woch, M. W. Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn–Pb mining sites. Chemosphere 240, 124922. https://doi.org/10.1016/j.chemosphere.2019.124922 (2020).ADS
CAS
Article
PubMed
Google Scholar More