More stories

  • in

    Validating species distribution models to illuminate coastal fireflies in the South Pacific (Coleoptera: Lampyridae)

    1.Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).Article 

    Google Scholar 
    2.Maschinski, J. et al. Sinking ships: Conservation options for endemic taxa threatened by sea level rise. Clim. Change 107, 147–167 (2011).ADS 
    Article 

    Google Scholar 
    3.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Heaney, L. R., Balete, D. S. & Rickart, E. A. Models of oceanic island biogeography: Changing perspectives on biodiversity dynamics in archipelagoes. Front. Biogeogr. 5, 249–257 (2013).Article 

    Google Scholar 
    5.Keppel, G., Lowe, A. J. & Possingham, H. P. Changing perspectives on the biogeography of the tropical South Pacific: Influences of dispersal, vicariance and extinction. J. Biogeogr. 36, 1035–1054 (2009).Article 

    Google Scholar 
    6.Laurance, W. F. Beyond Island biogeography theory. In The Theory of Island Biogeography Revisited (eds Losos, jB. & Ricklefs, R. E.) 214–237 (Princeton University Press, 2010).
    Google Scholar 
    7.Cheesman, L. E. Biogeographical significance of Aneityum Island, New Hebrides. Nature 180, 903–904 (1957).ADS 
    Article 

    Google Scholar 
    8.Cox, B. T. M. & Burns, K. C. Convergent evolution of gigantism in the flora of an isolated archipelago. Evol. Ecol. 31, 741–752 (2017).Article 

    Google Scholar 
    9.Hamilton, A. M., Klein, E. R. & Austin, C. C. Biogeographic breaks in Vanuatu, a nascent oceanic archipelago. Pac. Sci. 64, 149–159 (2010).Article 

    Google Scholar 
    10.Coleman, P. J. Geology of the Solomon and New Hebrides islands, as part of the Melanesian re-entrant, Southwest Pacific. Pac. Sci. 24, 289–314 (1970).
    Google Scholar 
    11.Valente, L. et al. A simple dynamic model explains the diversity of island birds worldwide. Nature 579, 92–96 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Keppel, G., Buckley, Y. M. & Possingham, H. P. Drivers of lowland rain forest community assembly, species diversity and forest structure on islands in the tropical South Pacific. Ecology 98, 87–95 (2010).Article 

    Google Scholar 
    13.Cheng, L. Insects in marine environments. Marine Insects 1, 1–4 (1976).
    Google Scholar 
    14.Ballantyne, L. A. & Buck, E. Taxonomy and behavior of Luciola (Luciola) aphrogeneia, a new surf firefly from Papua New Guinea. Trans. Am. Entomol. Soc. 105, 117–137 (1979).
    Google Scholar 
    15.Doyen, J. T. Marine beetles (Coleoptera excluding Staphylinidae). In Marine Insects (ed. Cheng, L.) 497–519 (American Elsevier, 1976).16.Topp, W. & Ring, R. A. Adaptations of Coleoptera to the marine environment. II. Observations on rove beetles (Staphylinidae) from rocky shores. Can. J. Zool. 66, 2469–2474 (1988).Article 

    Google Scholar 
    17.Lloyd, J. E. Fireflies (Coleoptera: Lampyridae). In Encyclopedia of Entomology 429–1452 (Springer Dordrecht, 2008).18.McDermott, F. A. Photuris bethaniensis, a new Lampyrid firefly. Proc. U. S. Natl. Mus. 103, 35–37 (1953).Article 

    Google Scholar 
    19.Vaz, S. et al. On the intertidal firefly genus Micronaspis Green, 1948, with a new species and a phylogeny of Cratomorphini based on adult and larval traits (Coleoptera: Lampyridae). Zool. Anz. 292, 64–91 (2021).Article 

    Google Scholar 
    20.Ballantyne, L. A. & Lambkin, C. Systematics of Indo-Pacific fireflies with a redefinition of Australasian Atyphella Olliff, Madagascan Photurolociola Pic, and description of seven new genera from the Luciolinae (Coleoptera: Lampyridae). Zootaxa 1997, 1–188 (2009).Article 

    Google Scholar 
    21.Ballantyne, L. A. et al. The Luciolinae of SE Asia and the Australopacific region: A revisionary checklist (Coleoptera: Lampyridae) including description of three new genera and 13 new species. Zootaxa 4687, 1–174 (2019).Article 

    Google Scholar 
    22.Saxton, N. A., Powell, G. S., Martin, G. J. & Bybee, S. M. Two new species of coastal Atyphella Ollliff (Lampyridae: Luciolinae). Zootaxa 4722, 270–276 (2020).Article 

    Google Scholar 
    23.Gassner, P. et al. Marine Atlas. Maximizing Benefits for Vanuatu. https://grid.cld.bz/Marine-Atlas-Maximizing-Benefits-for-Vanuatu1/10/ (2019).24.Saxton, N. A., Powell, G. S., Serrano, S. J., Monson, A. K. & Bybee, S. M. Natural history and ecological niche modelling of coastal Atyphella Olliff larvae (Lampyridae: Luciolinae) in Vanuatu. J. Nat. Hist. 53, 2271–2280 (2019).Article 

    Google Scholar 
    25.Rhoden, C. M., Peterman, W. E. & Taylor, C. A. Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 5, e3632 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    27.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    28.Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).Article 

    Google Scholar 
    29.Stas, M. et al. An evaluation of species distribution models to estimate tree diversity at genus level in a heterogeneous urban-rural landscape. Landsc. Urban Plan. 198, 103770 (2020).Article 

    Google Scholar 
    30.Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785 (2006).Article 

    Google Scholar 
    31.Hernandez, P. A. et al. Predicting species distributions in poorly-studied landscapes. Biodivers. Conserv. 17, 1353–1366 (2008).Article 

    Google Scholar 
    32.Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).Article 

    Google Scholar 
    33.Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Silva, D. P., Aguiar, A. G. & Simião-Ferreira, J. Assessing the distribution and conservation status of a long-horned beetle with species distribution models. J. Insect Conserv. 20, 611–620 (2016).Article 

    Google Scholar 
    35.Cardoso, P., Erwin, T. L., Borges, P. A. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).Article 

    Google Scholar 
    36.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article 

    Google Scholar 
    37.Lomolino, M. V. Conservation biogeography. In Frontiers of Biogeography: new directions in the geography of nature (eds. Lomolino, M. V. & Heaney, L. R.) 293–296 (Sinauer Associates, Sunderland, Massachusetts, 2004).38.Whittaker, R. J. et al. Conservation biogeography: Assessment and prospect. Divers. Distrib. 11, 3–23 (2005).Article 

    Google Scholar 
    39.Cui, S., Luo, X., Li, C., Hu, H. & Jiang, Z. Predicting the potential distribution of white-lipped deer using the MaxEnt model. Biodivers. Sci. 26, 171 (2018).Article 

    Google Scholar 
    40.Moreno, R., Zamora, R., Molina, J. R., Vasquez, A. & Herrera, M. Á. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent). Ecol. Inform. 6, 364–370 (2011).Article 

    Google Scholar 
    41.Raman, S., Shameer, T. T., Sanil, R., Usha, P. & Kumar, S. Protrusive influence of climate change on the ecological niche of endemic brown mongoose (Herpestes fuscus fuscus): A MaxEnt approach from Western Ghats, India. Model. Earth Syst. Environ. 6, 1795–1806 (2020).Article 

    Google Scholar 
    42.Abdelaal, M., Fois, M., Fenu, G. & Bacchetta, G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép, Egypt. Ecol. Inform. 50, 68–75 (2019).Article 

    Google Scholar 
    43.Kumar, S. & Stohlgren, T. J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J. Ecol. Nat. 1, 094–098 (2009).
    Google Scholar 
    44.Yang, X. Q., Kushwaha, S. P. S., Saran, S., Xu, J. & Roy, P. S. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. Lesser Himalayan foothills. Ecol. Eng. 51, 83–87 (2013).CAS 
    Article 

    Google Scholar 
    45.New, T. R. Conserving narrow range endemic insects in the face of climate change: Options for some Australian butterflies. J. Insect Conserv. 12, 585–589 (2008).Article 

    Google Scholar 
    46.Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 20, 1–9 (2014).Article 

    Google Scholar 
    47.Hijmans, R. J., Cameron, S. & Parra, J. WorldClim, Version 1.4 (University of California, 2005).
    Google Scholar 
    48.Hijmans, R. J. et al. DIVA-GIS. Version, 7.5. A Geographic Information System for the Analysis of Species Distribution Data. http://www.diva-gis.org (2012).49.Phillips, S. J., Dudik, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the 21st International Conference on Machine Learning 655–662 (2004).50.Merow, C., Smith, M. J. & Silander, J. A. Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).Article 

    Google Scholar 
    51.Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).Article 

    Google Scholar 
    52.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project (2020).53.Phillips, S. J. A brief tutorial on Maxent. AT&T Res. 190, 231–259 (2005).
    Google Scholar 
    54.RStudio Team RStudio: Integrated Development Environment for R. RStudio, PBC. http://www.rstudio.com/ (2020).55.Zizka, A., Antonelli, A. & Silvestro, D. Sampbias: Evaluating geographic sampling bias in biological collections. Ecography 44, 25–32 (2020).Article 

    Google Scholar 
    56.Almeida, M. C., Cortes, L. G. & De Marco Junior, P. New records and a niche model for the distribution of two Neotropical damselflies: Schistolobos boliviensis and Tuberculobasis inversa (Odonata: Coenagrionidae). Insect Conserv. Divers. 3, 252–256 (2010).Article 

    Google Scholar 
    57.De Siqueira, M. F., Durigan, G., de Marco Júnior, P. & Peterson, A. T. Something from nothing: Using landscape similarity and ecological niche modeling to find rare plant species. J. Nat. Conserv. 17, 25–32 (2009).Article 

    Google Scholar 
    58.Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).Article 

    Google Scholar 
    59.McCune, J. L. Species distribution models predict rare species occurrences despite significant effects of landscape context. J. Appl. Ecol. 53, 1871–1879 (2016).Article 

    Google Scholar 
    60.Rinnhofer, L. J. et al. Iterative species distribution modelling and ground validation in endemism research: An Alpine jumping bristletail example. Biodiversity 21, 2845–2863 (2012).
    Google Scholar 
    61.Peterman, W. E., Crawford, J. A. & Kuhns, A. R. Using species distribution and occupancy modeling to guide survey efforts and assess species status. J. Nat. Conserv. 21, 114–121 (2013).Article 

    Google Scholar 
    62.Searcy, C. A. & Shaffer, H. B. Field validation supports novel niche modeling strategies in a cryptic endangered amphibian. Ecography 37, 983–992 (2014).Article 

    Google Scholar 
    63.Virzi, T., Lockwood, J. L., Lathrop, R. G., Grodsky, S. M. & Drake, D. Predicting American Oystercatcher (Haematopus palliatus) breeding distribution in an urbanized coastal ecosystem using maximum entropy modeling. Waterbirds 40, 104–122 (2017).Article 

    Google Scholar 
    64.Greaves, G. J., Mathieu, R. & Seddon, P. J. Predictive modelling and ground validation of the spatial distribution of the New Zealand long-tailed bat (Chalinolobus tuberculatus). Biol. Conserv. 132, 211–221 (2006).Article 

    Google Scholar 
    65.Raxworthy, C. J. et al. Predicting distributions of known and unknown reptile species in Madagascar. Nature 426, 837–841 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Thorn, J. S., Nijman, V., Smith, D. & Nekaris, K. A. I. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Divers. Distrib. 15, 289–298 (2009).Article 

    Google Scholar 
    67.Faith, D. et al. Bridging the biodiversity data gaps: Recommendations to meet users’ data needs. Biodivers. Inform. 8, 41–58 (2013).Article 

    Google Scholar 
    68.Pyke, G. H. & Ehrlich, P. R. Biological collections and ecological/environmental research: A review, some observations and a look to the future. Biology 85, 247–266 (2010).
    Google Scholar 
    69.Boakes, E. H. et al. Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379 (2013).Article 

    Google Scholar 
    71.Fourcade, Y., Engler, J. O., Rödder, D. & Secondi, J. Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias. PLoS ONE 9, e97122 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.National Integrated Coastal Management Framework. National Integrated Coastal Management Framework and Implementation Strategy for Vanuatu. https://extwprlegs1.fao.org/docs/pdf/van171039.pdf (2010).73.Department of Environmental and Protection and Conservation. Coastal Development. https://environment.gov.vu/images/EIA/EIA_G%20Coastal%20development.pdf (2017). More

  • in

    Increased ranking change in wheat breeding under climate change

    1.Reynolds, M. P. et al. Improving global integration of crop research. Science 357, 359–360 (2017).CAS 
    Article 

    Google Scholar 
    2.Braun, H., Atlin, G. & Payne, T. Multi-location testing as a tool to identify plant response to global climate change. in Climate Change and Crop Production (ed. Reynolds, M. P.) 115–138 (CABI, 2010).3.Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012).Article 

    Google Scholar 
    4.Liu, B. et al. Similar estimates of temperature impacts on global wheat yield by three independent methods. Nat. Clim. Change 6, 1130–1136 (2016).Article 

    Google Scholar 
    5.Lobell, D. B. & Field, C. B. Global scale climate–crop yield relationships and the impacts of recent warming. Environ. Res. Lett. 2, 14–21 (2007).Article 

    Google Scholar 
    6.Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Change 5, 143–147 (2015).Article 

    Google Scholar 
    7.Crespo-Herrera, L. A. et al. Genetic yield gains in CIMMYT’s international elite spring wheat yield trials by modeling the genotype × environment interaction. Crop Sci. 57, 789–801 (2017).Article 

    Google Scholar 
    8.Tester, M. & Langridge, P. Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).CAS 
    Article 

    Google Scholar 
    9.Rosegrant, M. W. & Cline, S. A. Global food security: challenges and polices. Science 302, 1917–1919 (2003).CAS 
    Article 

    Google Scholar 
    10.Li, Y., Suontama, M., Burdon, R. D. & Dungey, H. S. Genotype by environment interactions in forest tree breeding: review of methodology and perspective on research and application. Tree Genet. Genomes 13, 60 (2017).Article 

    Google Scholar 
    11.Mishra, R. M. et al. Crossover interactions for grain yield in multienvironmental trials of winter wheat. Crop Sci. 46, 1291–1298 (2006).Article 

    Google Scholar 
    12.Allard, R. W. & Bradshaw, A. D. Implications of genotype–environmental interactions in applied plant breeding. Crop Sci. 4, 503–508 (1964).Article 

    Google Scholar 
    13.Reynolds, M. P., Hays, D. & Chapman, S. Breeding for adaptation to heat and drought stress. in Climate Change and Crop Production (ed. Reynolds, M. P.) 71–91 (CABI, 2010).14.Leon, N., Jannink, J., Edwards, J. W. & Kaeppler, S. M. Introduction to a special issue on genotype by environment interaction. Crop Sci. 56, 2081–2089 (2016).Article 

    Google Scholar 
    15.Reynolds, M. & Langridge, P. Physiological breeding. Curr. Opin. Plant Biol. 31, 162–171 (2016).Article 

    Google Scholar 
    16.Gourdji, S. M., Mathews, K. L., Reynolds, M., Crossa, J. & Lobell, D. B. An assessment of wheat yield sensitivity and breeding gains in hot environments. Proc. R. Soc. B. 2018, 20122190 (2012).
    Google Scholar 
    17.Pingali, P. L. Green revolution: impacts, limits, and the path ahead. Proc. Natl Acad. Sci. USA 109, 12302–12308 (2012).CAS 
    Article 

    Google Scholar 
    18.Sharma, R. C. et al. Genetic gains for grain yield in CIMMYT spring bred wheat across international environment. Crop Sci. 52, 1522–1533 (2012).Article 

    Google Scholar 
    19.Boehm Jr, J. D., Ibba, M., Kiszonas, A. & Morris, C. F. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm. II. Dough strength and pan bread quality. Crop Sci. 57, 1485–1498 (2017).Article 

    Google Scholar 
    20.Lillemo, M., van Ginkel, M., Trethowan, R. M., Hernandez, E. & Crossa, J. Differential adaptation of CIMMYT bread wheat to global high temperature environments. Crop Sci. 45, 2443–2453 (2005).Article 

    Google Scholar 
    21.Manes, Y. et al. Genetic yield gains of the CIMMYT international semi-arid wheat yield trials from 1994 to 2010. Crop Sci. 52, 1543–1552 (2012).Article 

    Google Scholar 
    22.You, L. et al. Spatial Production Allocation Model (SPAM) 2005 V3.2 International Food Policy Research Institute (IFPRI), International Institute fo Applied Systems Analysis (IIASA) (2017).23.Finlay, K. W. & Wilkinson, G. N. The analysis of adaptation in a plant-breeding programme. Aus. J. Agric. Res. 14, 742–754 (1963).Article 

    Google Scholar 
    24.De los Campos et al. A data-driven simulation platform to predict cultivars’ performance under uncertain weather conditions. Nat. Commun. 11, 4876 (2020).Article 

    Google Scholar 
    25.Lantican, M. A. et al. Impacts of International Wheat Improvement Research 1994–2014 (CIMMYT, 2016).26.Dreccer, M. F., Bonnett, D. & Lafarge, T. Plant breeding under a changing climate. in Encyclopedia of Sustainability Science and Technology (ed. Meyers, R. A.) 8013–8024 (Springer, 2012).27.Laiding, F., Drobek, T. & Meyer, U. Genotypic and environmental variability of yield for cultivars from 30 different crops in German official variety trials. Plant Breed. 127, 541–547 (2008).Article 

    Google Scholar 
    28.Allard, R. W. Principles of Plant Breeding 2nd edn (John Wiley & Sons, 1999).29.Kusmec, A., Srinivasan, S., Nettleton, D. & Schnable, P. S. Distinct genetic architectures for phenotype means and plasticities in Zea mays. Nat. Plants 3, 715–723 (2017).CAS 
    Article 

    Google Scholar 
    30.Gauch, H. G. Statistical Analysis of Regional Yield Trials: AMMI Analysis of Factorial Designs (Elsevier, 1992). More

  • in

    The declining tropical carbon sink

    1.Lapola, D. M. et al. Proc. Natl Acad. Sci. USA 115, 11671–11679 (2018).CAS 
    Article 

    Google Scholar 
    2.Phillips, O. L., Brienen, R. J. W. & the RAINFOR collaboration. Carbon Balance Manag. 12, 1 (2017)..3.Hubau, W. et al. Nature 579, 80–87 (2020).CAS 
    Article 

    Google Scholar 
    4.Fleischer, K. et al. Nat. Geosci. 12, 736–741 (2019).CAS 
    Article 

    Google Scholar 
    5.Huntingford, C. et al. Nat. Geosci. 6, 268–273 (2013).CAS 
    Article 

    Google Scholar 
    6.Koch, A., Hubau, W. & Lewis, S. L. Earth’s Future 9, e2020EF001874 (2021).CAS 
    Article 

    Google Scholar 
    7.Eyring, V. et al. Geosci. Model Dev. 9, 1937–1958 (2016).Article 

    Google Scholar 
    8.Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. (IPCC, 2019).9.Friend, A. D. et al. Proc. Natl Acad. Sci. USA 111, 3280–3285 (2014).CAS 
    Article 

    Google Scholar 
    10.Pugh, T. A. M. et al. Biogeosciences https://doi.org/10.5194/bg-17-3961-2020 (2020).Article 

    Google Scholar 
    11.Hartmann, H., Adams, H. D., Anderegg, W. R. L., Jansen, S. & Zeppel, M. J. B. New Phytol. 205, 965–969 (2015).Article 

    Google Scholar 
    12.Scheiter, S., Langan, L. & Higgins, S. I. New Phytol. 198, 957–969 (2013).Article 

    Google Scholar  More

  • in

    Using the IUCN Red List to map threats to terrestrial vertebrates at global scale

    Species-level dataSpecies range maps were derived from BirdLife International and NatureServe50 and the IUCN51. The threat data were from the IUCN Threats Classification Scheme (Version 3.2), which contains 11 primary threat classes and almost 50 subclasses52. In Red List assessments, assessors assign those threats that impact the species. For birds, the scope of the impact is also recorded categorically as the percentage of the species population that the threat impacts (unknown, negligible, 90%) and the severity, describing the scale of the impact on population declines: unknown, no decline, negligible declines, fluctuations, slow but significant declines (30%).Model development approachWe designed our analytical framework with three considerations in mind. First, the threat location information is limited: for each species, the data only describe whether a species is threatened by a given activity anywhere within its range (data on the timing, scope and severity of threats are available only for birds and are not spatially explicit). Second, we wanted to compare the spatial patterns of threat against independent data on spatial distributions of human activities. Third, for many activities, the relationship between human activity (for example, hunting or invasive species and diseases) and biodiversity response is poorly understood. We therefore chose not to incorporate known patterns of human activity as explanatory variables in our models.In the absence of global datasets on the spatial patterns of the impact probability of each threat, we used a simulation approach to develop our models and assess the ability of different model parameterizations to reproduce our simulated threat. This process had four steps (Extended Data Fig. 1).Simulated threat intensity mapsFirst, we simulated a continuous synthetic threat across sub-Saharan Africa. The concept behind this is that a credible model should be able to reproduce a ‘true’, synthetic threat pattern on the basis of information comparable to that available in the Red List. To test this, we generated a set of synthetic, continuous surfaces of threat intensity with different levels of spatial autocorrelation and random variation (Supplementary Fig. 1). This was achieved by taking a grid of 50 km × 50 km (2,500 km2) pixels across the Afrotropic biogeographic realm (i.e., sub-Saharan Africa). Threat intensity was modelled as a vector of random variables, Z, one for each pixel i, generated with a correlation structure given by the distance matrix between points weighted by a scalar value, r, indicating the degree of correlation (equations (1–3)). Four values of r were used: 1 × 10−6, which yields very strong autocorrelation; 1 × 10−4, which yields strong autocorrelation; 0.05, which yields moderate autocorrelation; and 0.3, which produces a low-correlation, localized pattern (Supplementary Fig. 1). The model included the following equations:$${mathbf{Z}}(r) = U^{mathrm{T}}{mathrm{Norm}}left( {n,0,1} right)$$
    (1)
    $$W = UU^{ast}$$
    (2)
    $$W = {mathrm{e}}^{left( { – rD} right)}$$
    (3)
    where r is a scalar determining the degree of spatial autocorrelation (as r decreases, the autocorrelation increases), D is the Euclidean distance matrix between each pair of pixels, W is the matrix of weights for the threat intensity, U and U* are the upper triangular factors of the Choleski decomposition of W and its conjugate transpose, UT is the transpose of U and n is the number of pixels.We chose the Afrotropic biogeographic realm (sub-Saharan Africa) as our geography within which to develop the modelling approach because it permitted more rapid iterations than a global-scale simulation while also retaining characteristics of importance for the model evaluation such as strong environmental gradients and heterogeneity in species richness. However, for the simulation, no information from the geography or overlapping species ranges was used, except the spatial configuration of the polygons. Thus, the use of the Afrotropic realm was purely to avoid generating thousands of complex geometries for the purpose of the simulation. Using a real geography and actual species ranges ensures that our simulation contains conditions that are observed in reality (for example, areas of high and low species richness also observed in the real world). We took the simulated threat maps generated through this process to be our ‘true’ likelihood of a randomly drawn species that occurs in that location being impacted by the synthetic threat (Supplementary Fig. 1).Simulating the red-listing processSecond, we wanted to simulate the red-listing process whereby experts evaluate whether a threat is impacting a species on the basis of the overall threat intensity within its range. For this, we used the range maps for all mammal species in Africa and assigned a binary threat classification (that is, affected or not affected) to each species on the basis of the values of the synthetic threat within each species’ range. We assumed that the binary assessment of threat for a species is based on whether the level of impact across a proportion of its range is judged as significant. This step was intended to replicate the real red-listing process, where assessors define threats that impact the species on the basis of an assessment of the information available on threatening mechanisms and species responses. In practice, this was done by overlaying the real range maps for mammals over the four simulated threat surfaces and assessing the intensity of synthetic threat within each species range map. We wanted to assign species impacts considering that species will be more likely to be impacted if a greater part of their range has a high threat intensity. Understanding how to set a threshold for what intensity would constitute sufficient threat to be assessed as affected is a complicated exercise. We thus tested three thresholds to capture different assumptions. These thresholds were chosen after discussion with leading experts on the red-listing process. More specifically, we calculated the 25th, 50th and 75th percentiles of threat intensity across pixels within the species range. We then used a stochastic test to convert these quantiles to binary threat class, C. For each species, we produced a set of ten draws from a uniform distribution bounded by 0 and 1. If over half of the draws were lower than the threat intensity quantile, the species was classified as threatened for that percentile.The above simulation assumes perfect knowledge of the threat intensities across the species range, which might not always be the case in the actual red-listing process. In real life, certain areas within species ranges are less well known for a suite of different reasons. To incorporate some uncertainty about the knowledge of the red-listing experts about the ‘true’ threat intensity, we constructed a layer to describe the spatial data uncertainty associated with the Red List. This aspect was intended to simulate the imperfect knowledge of the simulated ‘Red List assessors’. This layer was calculated as the proportion of species present in a given location that are categorized as Data Deficient—in other words, there is insufficient information known about the species to assess its extinction risk using the IUCN Red List Criteria (Extended Data Fig. 7). Then, when calculating the 25th, 50th and 75th percentiles of threat intensity across each range, we weighted this calculation by one minus the proportion of Data Deficient species, so that more uncertain places (those with a greater proportion of Data Deficient species) contributed less to the calculation than locations where knowledge was more certain. These were then converted to a binary threat class accounting for uncertainty in expert knowledge among the simulated ‘assessors’, CUncertain, using the same stochastic process described above for the calculation of C.This step produced, for each species, a threat classification analogous to the threat classification assigned by experts as part of the IUCN Red List process. Six sets of threat classifications were produced for each synthetic threat surface, on the basis of the 25th, 50th and 75th percentiles with perfect (C0.25, C0.5 and C0.75) or uncertain (CUncertain-0.25, CUncertain-0.5 and CUncertain-0.75) spatial knowledge.Model formulation and selectionThird, using all species polygons with assigned threat assessments from step 2 (that is, affected or not affected), we fitted nine candidate models and predicted the estimated probability of impact for each grid cell. Then, in a fourth step, we compared the predicted probabilities of impact produced in step 3 with the original synthetic threat maps created in step 1 to test the predictive ability of our models.The Red List threat assessment does not contain information on where in the range the impact occurs. Therefore, a species with a very small range provides higher spatial precision about the location of the impact, whereas a species with a large range may be impacted anywhere within a wide region. To address this lack of precision in the impact location, we took the area of each species range to serve as a proxy for the spatial certainty of the impact information. The certainty that a species was impacted or not impacted in a given cell depended on its range size, R. The models we evaluated therefore incorporated R in different ways (Supplementary Table 1).The models were fitted as a binomial regression with a logit link function. For each pixel, the model predicts the probability of impact, PTh—in other words, the probability that if you sampled a species at random from those that occur in that pixel, the species would be impacted by the activity being considered. To account for uncertainties in the simulation of the threat assessment process (thresholds for impact and perfect or imperfect knowledge), models were fitted to the six sets of threat codes (C0.25, C0.5, C0.75, CUncertain-0.25, CUncertain-0.5 and CUncertain-0.75), and the root mean squared error (RMSE) was calculated between PTh and the simulated threat intensity, Z(r), for each value of r. For each simulation, we ranked the different models according to their model fit as measured by the RMSE. We assessed these ranks across all simulations and sets of threat codes. We evaluated the models on the basis of the ranks of RMSE, across the threat code sets and threat intensity maps. Rank distributions for each model are shown in Extended Data Fig. 2, and the results from these models are shown in Supplementary Tables 1 and 2.All models were correlated (Pearson’s r2  > 0.5), albeit with some variation between model types and across the simulation parameters (Supplementary Fig. 2). However, some models had greater predictive accuracy when evaluated using the RMSE. The top four ranking models were, in order of decreasing summed rank, (1) inverse of cube root of range size as a weight, (2) inverse 2.5 root of range size as a weight, (3) inverse square root of range size as a weight and (4) inverse natural logarithm of range size as a weight. The fact that these four models showed good model fit suggests that the best model structure had a measure of range size as a weight but that the model was not particularly sensitive to the transformation of range size.The best-fitting model across the range of simulation parameters was an intercept-only logistic regression where the response variable was the binary threat code (1 = threatened, 0 = not threatened) for each species in the pixel and where the inverse cube root of the range size of each species was used as a weight. The model was concordant across the set of simulated datasets with a relationship that was predominantly linear with r2 between 0.47 and 0.7, depending on simulation parameters for Z(r) in 0.05, 10−4 and 10−6, centred around unity and with the RMSE ranging between 0.129 and 0.337 depending on simulation parameters (Supplementary Figs. 2 and 3). The choice of the inverse cube root range size weight was based on the performance of this against eight other model types (Supplementary Fig. 4 and Supplementary Table 1).We conducted a decomposition of variance in model performance using a binomial regression model, with RMSE as the dependent variable and model type, knowledge level and autocorrelation structure as the independent factorial variables. This showed that knowledge about the threats underlying each species range and how that threat information is used in the assessment explained the vast majority (94.7%) of the variation in RMSE outcomes (Supplementary Fig. 4).For birds, further information on the scope of the threat was available as an ordinal variable describing the fraction of range that the threat covers. We explored the use of scope in our models but concluded that to avoid arbitrary decisions about the scope of non-threatened species (where they are either not threatened anywhere or threatened in only a small part of their range), and for consistency with other taxonomic groups, we would model birds using the same model structure as used for mammals and amphibians (see the Supplementary Methods for further details).Mapping probability of impactOnce the best-performing model was identified using the simulated data, we then used this model on the actual Red List threat and range data to develop threat maps. This model produced threat maps for each taxonomic group (amphibians, birds and mammals) of the probability of impact, PTh, for each individual threat. For a given pixel, threat and taxonomic group, this estimates the probability that a randomly sampled species with a range overlapping with that pixel is being impacted by the threat, while taking into account spatial imprecision in the Red List data.Threat maps were generated using range map data and threat assessments from the IUCN Red List18. We intersected range maps for 22,898 extant terrestrial amphibians (n = 6,458), birds (n = 10,928; excluding the spatial areas within the range that are associated with ‘Passage’—where the species is known or thought very likely to occur regularly during relatively short periods of the year on migration) and mammals (n = 5,512; including those with uncertain ranges) with a global 50 km × 50 km (2,500 km2) resolution, equal-area grid for the terrestrial world. This provided, for each 50 km × 50 km pixel, a list of the species whose range overlapped it, along with the associated range size of each species. For each pixel and taxonomic group (amphibians, birds and mammals) independently, we then modelled the probability of impact, PTh,Activity (for example, PTh,Logging for logging, PTh,Agriculture for agriculture or PTh,Pollution for pollution), for each of the six threats: agriculture, hunting and trapping, logging, pollution, invasive species and diseases, and climate change. We focused on these as the six main threats as defined by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services4, but our methodological framework is flexible and could be expanded to other threats in the IUCN classification19. We used only taxonomic groups with a sufficiently high total number of species and where they have been comprehensively assessed so that potential biases associated with the groups of species prioritized by experts are avoided.Calculating uncertainties for the threat probabilityWe estimated a measure of uncertainty associated with our impact probability predictions using maps of the proportions of Data Deficient species in each cell within each taxonomic class (amphibians, birds or mammals) as a measure of knowledge certainty in that cell. The rationale for this approach is that places with more Data Deficient species with unknown threatened status should have greater uncertainty in the probability of impact. We therefore created greater variation in the data where there were more Data Deficient species. We used the knowledge-certainty map to probabilistically draw a sample of 100 threat codes for each species, on the basis of the median Data Deficiency across the species range. The random sample changed the species threat code with a probability related to the proportion of Data Deficient species within its range. If the median proportion of Data Deficient species was zero, then we assumed that there was a small probability (0.005) that the species could have been incorrectly coded. Where the median proportion was greater than zero, the probability increased linearly. So, for a species with 5% Data Deficient species within its range, the sample changed the species threat code with a probability close to 5%; if the median proportion was equal to 0.5, then the probability of the species being incorrectly assigned was equal to 0.5. We then fitted the impact probability model with each of the 100 species threat codes and generated a distribution of predicted threat probabilities in each grid cell, from which we took the 95% confidence intervals as the uncertainty estimates (Extended Data Figs. 8–10).Evaluating modelled threat patternsWe evaluated the spatial patterns of threat on the basis of the real Red List threat assessment data against empirical data in two independent ways. First, we compared the probability of impact from logging and agriculture combined within forested biomes (that is, corresponding to remotely detected forest loss, which we refer to as the probability of impact from forest loss, PTh,Forest-loss) with data on forest cover change10. Forest cover change was aggregated from their native 30 m × 30 m (900 m2) resolution pixels to our 50 km × 50 km resolution pixels using Google Earth Engine. For each 50 km × 50 km pixel, we calculated the total area lost between 2000 and 2013 and the area lost as a proportion of the area in 2000. We restricted our analysis to forested biomes: (1) tropical and subtropical moist broadleaf forests, (2) tropical and subtropical dry broadleaf forests, (3) tropical and subtropical coniferous forests, (4) temperate broadleaf and mixed forests, (5) temperate coniferous forests and (6) boreal forests/taiga, following the World Wildlife Fund’s ecoregions classification53. The relationship between forest loss and the probability of impact from forest loss as captured by agriculture and logging overall showed a significant positive correlation: PTh,Forest-loss increased with increasing forest cover loss (P  More

  • in

    Bioclimatic and anthropogenic variables shape the occurrence of Batrachochytrium dendrobatidis over a large latitudinal gradient

    1.Collins, J. P., & Crump, M. L. Extinction in Our Times: Global Amphibian Decline. (2009).2.Catenazzi, A. State of the world’s amphibians. Annu. Rev. Environ. Resour. 40, 91–119 (2015).Article 

    Google Scholar 
    3.González-del-Pliego, P. et al. Phylogenetic and trait-based prediction of extinction risk for data deficient amphibians. Curr. Biol. 29, 1557–1563 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Lips, K. R. et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. PNAS 102, 3165–3170 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    5.Lips, K. R., Diffendorfer, J., Mendelson, J. R. & Sears, M. W. Riding the wave: Reconciling the roles of disease and climate change in amphibian declines. PLoS Biol. 6, e72 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. PNAS 95, 9031–9036 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Longcore, J. E., Pessier, A. P. & Nichols, D. K. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91, 219–227 (1999).Article 

    Google Scholar 
    8.Berger, L. et al. History and recent progress on chytridiomycosis in amphibians. Fungal Ecol. 19, 89–99 (2016).Article 

    Google Scholar 
    9.Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. PNAS 110, 15325–15329 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Lambert, M. R. et al. Comment on “Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity”. Science https://doi.org/10.1126/science.aay1838 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Scheele, B. C. et al. Response to Comment on “Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity”. Science https://doi.org/10.1126/science.aay2905 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Puschendorf, R. et al. Distribution models for the amphibian chytrid Batrachochytrium dendrobatidis in Costa Rica: Proposing climatic refuges as a conservation tool. Divers. Distrib. 15, 401–408 (2009).Article 

    Google Scholar 
    14.Zumbado-Ulate, H. et al. Endemic infection of Batrachochytrium dendrobatidis in Costa Rica: Implications for amphibian conservation at regional and species level. Diversity 11, 129 (2019).Article 

    Google Scholar 
    15.Crawford, A. J., Lips, K. R. & Bermingham, E. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. PNAS 107, 13777–13782 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Woodhams, D. C. et al. Chytridiomycosis and amphibian population declines continue to spread eastward in Panama. EcoHealth 5, 268–274 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Catenazzi, A., Lehr, E., Rodriguez, L. & Vredenburg, V. Batrachochytrium dendrobatidis and the collapse of anuran species richness and abundance in the upper Manu National Park, southeastern Peru. Conserv. Biol. 25, 382–391 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Voyles, J. et al. Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326, 582–585 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.James, T. et al. Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: Lessons from the first 15 years of amphibian chytridiomycosis research. Ecol. Evol. 5, 4079–4097 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Soto-Azat, C. et al. Xenopus laevis and emerging amphibian pathogens in Chile. EcoHealth 13, 775–783 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Ron, S. Predicting the distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the new world. Biotropica 37, 209–221 (2005).Article 

    Google Scholar 
    22.Rödder, D., Kielgast, J. & Lötters, S. Future potential distribution of the emerging amphibian chytrid fungus under anthropogenic climate change. Dis. Aquat. Org. 92, 201–207 (2010).Article 

    Google Scholar 
    23.Murray, K. A. et al. Assessing spatial patterns of disease risk to biodiversity: Implications for the management of the amphibian pathogen, Batrachochytrium dendrobatidis. J. Appl. Ecol. 48, 163–173 (2011).Article 

    Google Scholar 
    24.Liu, X., Rohr, J. & Li, Y. Climate, vegetation, introduced hosts and trade shape a global wildlife pandemic. Proc. Biol. Sci. 280, 20122506 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    25.Olson, D. H. et al. Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE 8, e56802 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Penner, J. et al. West Africa—A safe haven for frogs? A sub-continental assessment of the chytrid fungus (Batrachochytrium dendrobatidis). PLoS ONE 8, e56236 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Xie, G. Y., Olson, D. H. & Blaustein, A. R. Projecting the global distribution of the emerging amphibian fungal pathogen, Batrachochytrium dendrobatidis, based on IPCC climate futures. PLoS ONE 11, e0160746 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Harris, R. N. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Searle, C. L. et al. Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen. Conserv. Biol. 25, 965–974 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Farrer, R. et al. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. PNAS 108, 18732–18736 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Lips, K. R. Overview of chytrid emergence and impacts on amphibians. Philos. Trans. R. Soc. B. 371, 20150465 (2016).Article 

    Google Scholar 
    32.Bolom-Huet, R., Pineda, E., Díaz-Fleischer, F., Muñoz-Alonso, A. L. & Galindo-González, J. Known and estimated distribution in Mexico of Batrachochytrium dendrobatidis, a pathogenic fungus of amphibians. Biotropica 51, 731–746 (2019).Article 

    Google Scholar 
    33.Zumbado-Ulate, H., García-Rodríguez, A. & Searle, C. L. Species distribution models predict the geographic expansion of an enzootic amphibian pathogen. Biotropica 53, 221–231 (2021).Article 

    Google Scholar 
    34.Berger, L. et al. Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aust. Vet. J. 82, 434–439 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Clare, F. C. et al. Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Philos. Trans. R. Soc. B. 371, 20150454 (2016).Article 
    CAS 

    Google Scholar 
    36.Bacigalupe, L. D., Soto-Azat, C., García-Vera, C., Barría-Oyarzo, I. & Rezende, E. L. Effects of amphibian phylogeny, climate and human impact on the occurrence of the amphibian-killing chytrid fungus. Glob. Change Biol. 23, 3543–3553 (2017).ADS 
    Article 

    Google Scholar 
    37.Raffel, T., Michel, P., Sites, W. & Rohr, J. What drives chytrid infections in newt populations? Associations with substrate, temperature, and shade. EcoHealth 7, 526–536 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Hudson, M. et al. Reservoir frogs: Seasonality of Batrachochytrium dendrobatidis infection in robber frogs. PeerJ 7, e7021 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Kriger, K. M. & Hero, J. M. Large-scale seasonal variation in the prevalence and severity of chytridiomycosis. J. Zool. 271, 352–359 (2007).
    Google Scholar 
    41.Longo, A. V., Burrowes, P. A. & Joglar, R. L. Seasonality of Batrachochytrium dendrobatidis infection in direct-developing frogs suggests a mechanism for persistence. Dis. Aquat. Org. 92, 253–260 (2010).Article 

    Google Scholar 
    42.Zumbado-Ulate, H., Bolaños, F., Gutiérrez-Espeleta, G. & Puschendorf, R. Extremely low prevalence of Batrachochytrium dendrobatidis in frog populations from Neotropical dry forest of Costa Rica supports the existence of a climatic refuge from disease. EcoHealth 11, 593–602 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Bacigalupe, L. D. et al. The amphibian-killing fungus in a biodiversity hotspot: Identifying and validating high-risk areas and refugia. Ecosphere. 10, e02724 (2019).Article 

    Google Scholar 
    44.Flechas, S. V. et al. Current and predicted distribution of the pathogenic fungus Batrachochytrium dendrobatidis in Colombia, a hotspot of amphibian biodiversity. Biotropica 49, 685–694 (2017).Article 

    Google Scholar 
    45.Lampo, M. et al. Batrachochytrium dendrobatidis in Venezuela. Herpetol. Rev. 39, 449 (2008).
    Google Scholar 
    46.Valenzuela-Sánchez, A. et al. Genomic epidemiology of the emerging pathogen Batrachochytrium dendrobatidis from native and invasive amphibian species in Chile. Transbound. Emerg. Dis. 65, 309–314 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.O’Hanlon, S. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Soto-Azat, C. et al. The population decline and extinction of Darwin’s frogs. PLoS ONE 8, e66957 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Soto-Azat, C. et al. ASG Chile leads update of the extinction risk of Chilean amphibians for the IUCN red list of threatened speciesTM. FrogLog 23, 6–7 (2015).
    Google Scholar 
    50.Mora, M. et al. High abundance of invasive African clawed frog Xenopus laevis in Chile: Challenges for their control and updated invasive distribution. Manag. Biol. Invasions. 10, 377–388 (2019).Article 

    Google Scholar 
    51.Solís, R., Penna, M., De la Riva, I., Fisher, M. & Bosch, J. Presence of Batrachochytrium dendrobatdis in anurans from the Andes highlands of northern Chile. Herpetol. J. 24, 55–59 (2015).
    Google Scholar 
    52.Soto-Azat, C. et al. Is Chytridiomycosis driving Darwin’s frogs to extinction?. PLoS ONE 8, e79862 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Valenzuela-Sánchez, A. et al. Cryptic disease-induced mortality may cause host extinction in an apparently stable host–parasite system. Proc. Biol. Sci. 284, 20171176 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    54.Lips, K. R., Reeve, J. D. & Witters, L. R. Ecological traits predicting amphibian population declines in Central America. Conserv. Biol. 17, 1078–1088 (2003).Article 

    Google Scholar 
    55.Hero, J. M., Williams, S. E. & Magnusson, W. E. Ecological traits of declining amphibians in upland areas of eastern Australia. J. Zool. 267(3), 221–232 (2005).Article 

    Google Scholar 
    56.Kriger, K. M. & Hero, J. M. Altitudinal distribution of chytrid (Batrachochytrium dendrobatidis) infection in subtropical Australian frogs. Austral. Ecol. 33(8), 1022–1032 (2008).Article 

    Google Scholar 
    57.Skerratt, L. F. et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4, 125 (2007).Article 

    Google Scholar 
    58.Langwig, K. et al. Context-dependent conservation responses to emerging wildlife diseases. Front. Ecol. Environ. 13, 195–202 (2015).Article 

    Google Scholar 
    59.Shaw, S. D. et al. The distribution and host range of Batrachochytrium dendrobatidis in New Zealand, 1930–2010. Ecology 94, 2108–2111 (2013).Article 

    Google Scholar 
    60.Ghirardi, R. et al. Endangered amphibians infected with the chytrid fungus Batrachochytrium dendrobatidis in austral temperate wetlands from Argentina. Herpetol. J. 24, 129–133 (2014).
    Google Scholar 
    61.Bielby, J., Cooper, N., Cunningham, A., Garner, T. & Purvis, A. Predicting susceptibility to future declines in the world’s frogs. Conserv. Lett. 1, 82–90 (2008).Article 

    Google Scholar 
    62.Barrionuevo, S. & Mangione, S. Chytridiomycosis in two species of Telmatobius (Anura: Leptodactylidae) from Argentina. Dis. Aquat. Org. 73, 171–174 (2006).Article 

    Google Scholar 
    63.Seimon, T. A. et al. Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob. Change Biol. 13, 288–299 (2007).ADS 
    Article 

    Google Scholar 
    64.Burrowes, P. A. & De la Riva, I. Unraveling the historical prevalence of the invasive chytrid fungus in the Bolivian Andes: Implications in recent amphibian declines. Biol. Invasions. 19, 1781–1794 (2017).Article 

    Google Scholar 
    65.Vredenburg, V. T., Knapp, R., Tunstall, T. & Briggs, C. Dynamics of an emerging disease drive large-scale amphibian population extinctions. PNAS 107, 9689–9694 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Azat, C. et al. A flagship for Austral temperate forest conservation: an action plan for Darwin’s frogs bringing together key stakeholders. Oryx 55, 356–363 (2021). Article 

    Google Scholar 
    67.Pilliod, D. S. et al. Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads. Conserv. Biol. 24, 1259–1267 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Walker, S. F. et al. Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia. Ecol. Lett. 13, 372–382 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Kriger, K. M., Pereoglou, F. & Hero, J. M. Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in eastern Australia. Conserv. Biol. 21, 1280–1290 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Petersen, C. E., Lovich, R. E., Phillips, C. A., Dreslik, M. J. & Lannoo, M. J. Prevalence and seasonality of the amphibian chytrid fungus Batrachochytrium dendrobatidis along widely separated longitudes across the United States. EcoHealth 13, 368–382 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Thorpe, C. J. et al. Climate structuring of Batrachochytrium dendrobatidis infection in the threatened amphibians of the northern Western Ghats, India. R. Soc. Open Sci. 5, 180211 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Sonn, J. M., Utz, R. M. & Richards-Zawacki, C. L. Effects of latitudinal, seasonal, and daily temperature variations on chytrid fungal infections in a North American frog. Ecosphere 10, e02892 (2019).Article 

    Google Scholar 
    73.Raffel, T. R., Halstead, N. T., McMahon, T. A., Davis, A. K. & Rohr, J. R. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. Biol. Sci. 282, 20142039 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    74.Woodhams, D. C. & Alford, R. A. Ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland. Conserv. Biol. 19, 1449–1459 (2005).Article 

    Google Scholar 
    75.Adams, M. J. et al. Using occupancy models to understand the distribution of an amphibian pathogen, Batrachochytrium dendrobatidis. Ecol. Appl. 20, 289–302 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Fisher, M., Garner, T. & Walker, S. F. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 63, 291–310 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Schloegel, L. M. et al. Novel, panzootic and hybrid genotypes of amphibia chytridiomycosis associated with the bullfrog trade. Mol. Ecol. 21, 5162–5177 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Wilson, E. A., Briggs, C. J. & Dudley, T. L. Invasive African clawed frogs in California: A reservoir for or predator against the chytrid fungus?. PLoS ONE 13, e0191537 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    79.Becker, C. G., Longo, A. V., Haddad, C. F. & Zamudio, K. R. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc. Biol. Sci. 284, 20170582 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    80.McCoy, K. A. & Peralta, A. L. Pesticides could alter amphibian skin microbiomes and the effects of Batrachochytrium dendrobatidis. Front. Microbiol. 9, 748 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Ellis, E. & Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).Article 

    Google Scholar 
    82.Rohr, J., Halstead, N. & Raffel, T. Modelling the future distribution of the amphibian chytrid fungus: The influence of climate and human-associated factors. J. Appl. Ecol. 48, 174–176 (2011).Article 

    Google Scholar 
    83.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Echeverria, C., Coomes, D., Hall, M. & Newton, A. Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile. Ecol. Model. 212, 439–449 (2008).Article 

    Google Scholar 
    85.Rodriguez, D., Becker, C., Pupin, C., Haddad, F. & Zamudio, K. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol. Ecol. 23, 774–787 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Puschendorf, R., Hodgson, L., Alfors, R. A., Skerrat, L. F. & VanDerWal, J. Underestimated ranges and overlooked refuges from amphibian chytridiomycosis. Divers. Distrib. 19, 1313–1321 (2013).Article 

    Google Scholar 
    87.Scheele, B. C. et al. After the epidemic: Ongoing declines, stabilizations and recoveries in amphibians afflicted by chytridiomycosis. Biol. Conserv. 206, 37–46 (2017).Article 

    Google Scholar 
    88.Mendelson, J. R. III., Whitfield, S. M. & Sredl, M. J. A recovery engine strategy for amphibian conservation in the context of disease. Biol. Conserv. 236, 188–191 (2019).Article 

    Google Scholar 
    89.Van Rooij, P., Martel, A., Haesebrouck, F. & Pasmans, F. Amphibian chytridiomycosis: A review with focus on fungus-host interactions. Vet. Res. 46, 1–22 (2015).Article 
    CAS 

    Google Scholar 
    90.Christie, M. R. & Searle, C. L. Evolutionary rescue in a host–pathogen system results in coexistence not clearance. Evol. Appl. 11, 681–693 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Bletz, M. C. et al. Mitigating amphibian chytridiomycosis with bioaugmentation: Characteristics of effective probiotics and strategies for their selection and use. Ecol. Lett. 16, 807–820 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Bosch, J. et al. Successful elimination of a lethal wildlife infectious disease in nature. Biol. Lett. 11, 20150874 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    93.Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    94.Pellet, J. & Schmidt, B. R. Monitoring distributions using call surveys: Estimating site occupancy, detection probabilities and inferring absence. Biol. Conserv. 123, 27–35 (2005).Article 

    Google Scholar 
    95.Drechsler, A. & Bock, D. Ortmann’s funnel trap—A highly efficient tool for monitoring amphibian species. Herpetol. Notes. 3, 13–21 (2010).
    Google Scholar 
    96.Hudson, M. et al. Dynamics and genetics of a disease-driven species decline to near extinction: Lessons for conservation. Sci. Rep. 6, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    97.R Development Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (2019).98.Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904 (2002).Article 

    Google Scholar 
    99.Center for International Earth Science Information Network (CIESIN). Gridded Population of the World, Version 3 (GPWv3). https://doi.org/10.7927/H4639MPP (2005).100.Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 20, 1–9 (2014).Article 

    Google Scholar 
    101.Center for International Earth Science Information Network (CIESIN). Gridded Species Distribution: Global Amphibian Richness Grids. https://doi.org/10.7927/H4RR1W66 (2015).102.Fick, S. & Hijmans, R. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    103.ASTER. ASTER global digital elevation model V003. https://doi.org/10.5067/ASTER/ASTGTM (2018).104.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2018).105.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    106.Fox, J. Effect displays in R for generalised linear models. J. Stat. Softw. 8, 1–27 (2003).Article 

    Google Scholar 
    107.Carpenter, T. E. Methods to investigate spatial and temporal clustering in veterinary epidemiology. Prev. Vet. Med. 48, 303–320 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    108.Kulldorff, M. A spatial scan statistic. Commun. Stat-Theor. M. 26, 1481–1496 (1997).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    109.Kulldorff, M. Information Management Services, Inc. SaTScanTM v.9.4.4: software for the spatial and space-time scan statistics. http://www.satscan.org (2009). More

  • in

    Effects of water and nitrogen coupling on the photosynthetic characteristics, yield, and quality of Isatis indigotica

    Photosynthetic characteristicsWater and nitrogen coupling treatment had a significant effect on the photosynthetic characteristics (Fig. 1). Generally, the net photosynthetic rates of the treatments were in the following order: CK, W1N1, W1N3, W3N1, W3N3, W2N1, W1N2, W3N2, W2N3, and W2N2. The treatments with low water and low nitrogen had significantly lower net photosynthetic rates than W2N2. The stomatal conductance and transpiration rate changed in similar patterns. The net photosynthetic rate showed a unimodal trend with the increase of nitrogen application at the same irrigation level. Under the same nitrogen application level, the net photosynthetic rate increased first and then decreased slowly with the increase of irrigation amount, with the highest photosynthetic rates in the order of W2  > W3  > W1. The net photosynthetic rate was the highest, with a mean value was 13.87 μmol m−2 s−1, in treatment W2N2. The results showed that severe water stress and excessive nitrogen were not conducive to the absorption and utilization of water and nutrients by crop roots, which led to the decrease of the photosynthetic rate. The effect of water and nitrogen treatment on the intercellular CO2 concentration was significant (Fig. 1). Under the condition of excessive water or nitrogen, the photosynthesis of Isatis indigotica decreased, and the intercellular CO2 concentration showed a trend opposite to that of the net photosynthetic rate.Compared with N, P, and K deficiency treatments, water–N coupling could increase the Pn of crops, which was the same as that of other fruit trees and vegetables13. Accumulated photoassimilates in the third internode of the upper part of the main stems, as well as in the flag leaf sheath, are mobilized in a higher proportion and can contribute to grain filling in rice plants subjected to water stress in the tillering phase14. The Pn, Gs, and Tr of maize leaves at the seedling stage decreased significantly, while the Ci increased significantly when the nitrogen application rate was low15.The experiments with Isatis indigotica demonstrate that the Pn, Gs, and Tr under the same irrigation level first increased and then decreased with the increase of the nitrogen application rate. The net photosynthetic rate, transpiration rate, and stomatal conductance of Isatis indigotica were improved by rational nitrogen application. Studies have reported similar findings in Isatis indigotica; with the decrease of N level, the net photosynthetic rate, transpiration rate, and stomatal conductance of leaves gradually decreased, while the intercellular CO2 concentration increased16,17. Under reasonable water and nitrogen coordination conditions, the synergistic effect of water and nitrogen increased, which effectively promoted the photosynthesis of Isatis indigotica. Under the condition of too much nitrogen or too little water, the antagonism of water and nitrogen was obvious, and the photosynthesis of Isatis indigotica was inhibited to a certain extent.Yield and water use efficiencyThe Isatis indigotica yield values presented are the average of two consecutive years of water–nitrogen trials (Fig. 2). The I. indigotica yields differed significantly between the water–nitrogen treatments; the W2N2 and W2N3 treatments had the highest yields at 7277.5 and 6820.5 kg hm−2, respectively. The lowest yield of 3264.5 kg hm−2 was recorded in the control treatment. The yields of all treatments were significantly higher than that of the control treatment. The yields of the W2N2 and W2N3 treatments were significantly higher than those of the W1N1 and the W3N1 treatments. With the increase of the nitrogen application rate, the yield first increased and then decreased under the same irrigation conditions.The water use efficiency values of Isatis indigotica presented are the average of 2 consecutive years of water–nitrogen trials (Fig. 2). The water use efficiency of Isatis indigotica differed significantly between the water–nitrogen treatments; the W1N2 and W2N2 treatments had the highest yields at 20.78 and 19.63 kg mm−1 hm−2, respectively. The lowest yield of 13.65 kg mm−1 hm−2 was recorded in the W3N1 treatment. The water use efficiency values of the W1N2 and W2N2 treatments were significantly higher than that of the W3N3 treatment, which was the treatment with excess water and nitrogen fertilizer. The water use efficiency decreased with the increase of irrigation under the same nitrogen application conditions. The water use efficiency first increased and then decreased with the increase in nitrogen application rate under the same irrigation conditions. The W2N2 treatment had the highest yield and water use efficiency. Therefore, the water–nitrogen coupling mode of medium water and medium nitrogen application achieved the highest yield and effectively saved water. This was mainly due to the moderate water and nitrogen to promote the photosynthesis of Isatis indigotica and lead to more dry matter accumulation, so as to increase the yield.Generally, appropriate water deficits can improve crop yield and water use efficiency18,19, and rational fertilization can increase crop yield, such as in fruit trees and vegetables20,21,22. The yield increase in the current experiment was probably related to reasonable water stress and reasonable nitrogen application; the W2N2 treatment had the highest yield and water use efficiency. However, excessive water and nitrogen reduced the yield and water use efficiency of Isatis indigotica. This was consistent with recent research reports23,24. Compared with the local flooding irrigation and excessive nitrogen fertilizer mode, the W2N2 treatment with moderate water and nitrogen application not only obtained a high yield but also significantly improved the water use efficiency. This method could reduce the effect of excessive water and fertilizer application on soil productivity and would be a better water and nitrogen management model for local Isatis indigotica production.QualityThe Isatis indigotica quality values presented are the average of two consecutive years of water–nitrogen trials (Fig. 3). These quality indicators mainly include the following content indicators: indigo, indirubin, (R, S)-goitrin, and polysaccharides. The Isatis indigotica quality indicators differed significantly between the water–nitrogen treatments. The CK treatment had the highest values of all quality indicators. Each quality indicator decreased gradually with the increase of water content under the same nitrogen application conditions. Each quality indicator decreased gradually with the increase of nitrogen application under the same water conditions. The (R, S)-goitrin content of the W2N2 treatment decreased by 6.5% compared with CK and by 3.9% compared with the W1N1 treatment.Water is the medium for improving crop quality. Generally, the crop quality was improved by a suitable water deficit25,26,27 and reasonable fertilization28,29,30. The quality of Isatis indigotica in the current experiment increased gradually with the decrease of water. The water deficit treatment increased the content of effective components and improved the quality of Isatis indigotica. The content of the effective components in all treatments reached the pharmacopoeia standard12. The quality indicator values of each treatment in the current experiment were significantly lower than those of the CK treatment, but there was little difference in the quality indicator values between each treatment. Moreover, the yield of the control treatment was much lower than that of other treatments. Therefore, the effective quality content of the control treatment was lower than other treatments. Excessive water and nitrogen inputs were not conducive to quality, which was not consistent with recent research reports31. Generally, the water-nitrogen coupling type of W2N60 was antagonism basing on the average yield of winter wheat in the 10 years32. Some scholars have studied the irrigation of jujube that WUE and ANUE of jujube cannot reach the maximum at the same time. Different ratio of water and nitrogen will produce coupling and antagonism33. The results showed that total N applications over 200 kg ha−1 did not increase yield or quality. Water deficit treatment could be increased the content of effective components and improve the quality of Isatis indigotica. Due to the high evaporation, moderate water stress and effective use of nitrogen fertilizer, the active components of Isatis indigotica were easier to accumulate in its roots. The synergistic effect of water and nitrogen will lead to the accumulation of active components in Isatis indigotica. More

  • in

    Temporal analysis shows relaxed genetic erosion following improved stocking practices in a subarctic transnational brown trout population

    1.Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10(2), 121–139 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Leigh, D. M., Hendry, A. P., Vázquez-Domínguez, E. & Friesen, V. L. Estimated six per cent loss of genetic variation in wild populations since the industrial revolution. Evol. Appl. 12(8), 1505–1512 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Habel, J. C., Husemann, M., Finger, A., Danley, P. D. & Zachos, F. E. The relevance of time series in molecular ecology and conservation biology. Biol. Rev. 89(2), 484–492 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Klütsch, C. F. C. et al. Genetic changes caused by restocking and hydroelectric dams in demographically bottlenecked brown trout in a transnational subarctic riverine system. Ecol. Evol. 9(10), 6068–6081 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Hansen, M. M., Fraser, D. J., Meier, K. & Mensberg, K.-L.D. Sixty years of anthropogenic pressure: A spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines. Mol. Ecol. 18(12), 2549–2562 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Savary, R. et al. Stocking activities for the Arctic char in Lake Geneva: Genetic effects in space and time. Ecol. Evol. 7(14), 5201–5211 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689–692 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Perrier, C., Guyomard, R., Bagliniere, J.-L., Nikolic, N. & Evanno, G. Changes in the genetic structure of Atlantic salmon populations over four decades reveal substantial impacts of stocking and potential resiliency. Ecol. Evol. 3(7), 2334–2349 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Vøllestad, L. A. & Hesthagen, T. Stocking of freshwater fish in Norway: management goals and effects. Nordic J. Freshwater Res. 75, 143–152 (2001).
    Google Scholar 
    10.Christie, M. R., Marine, M. L., French, R. A., Waples, R. S. & Blouin, M. S. Effective size of a wild salmonid population is greatly reduced by hatchery supplementation. Heredity 109, 254–260 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Araki, H., Cooper, B. & Blouin, M. S. Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild. Biol. Lett. 5, 621–624 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.O’Sullivan, R. J. et al. Captive-bred Atlantic salmon released into the wild have fewer offspring than wild-bred fish and decrease population productivity. Proc. R. Soc. B 287, 20201671 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Amundsen, P.-A. et al. Invasion of vendace Coregonus albula in a subarctic watercourse. Biol. Conserv. 88(3), 405–413 (1999).Article 

    Google Scholar 
    14.Jensen, H., Bøhn, T., Amundsen, P.-A. & Aspholm, P. E. Feeding ecology of piscivorous brown trout (Salmo trutta L.) in a subarctic watercourse. Ann. Zool. Fenn. 41(1), 319–328 (2004).
    Google Scholar 
    15.Jensen, H. et al. Predation by brown trout (Salmo trutta) along a diversifying prey community gradient. Can. J. Fish. Aquat. Sci. 65, 1831–1841 (2008).Article 

    Google Scholar 
    16.Jensen, H. et al. Food consumption rates of piscivorous brown trout (Salmo trutta) foraging on contrasting coregonid prey. Fish. Manag. Ecol. 22, 295–306 (2015).Article 

    Google Scholar 
    17.Haugland, Ø. Langtidsstudie av næringsøkologi og vekst hos storørret i Pasvikvassdraget. Mastergradsoppgave i biologi (Universitetet i Tromsø, Fakultet for Biovitenskap, fiskeri og økonomi, Institutt for arktisk og marin biologi, 2014).18.Gossieaux, P., Bernatchez, L., Sirois, P. & Garant, D. Impacts of stocking and its intensity on effective population size in Brook Charr (Salvelinus fontinalis) populations. Conserv. Genet. 20(4), 729–742 (2019).Article 

    Google Scholar 
    19.Pinter, K., Epifanio, J. & Unfer, G. Release of hatchery-reared brown trout (Salmo trutta) as a threat to wild populations? A case study from Austria. Fish. Res. 219, 105296 (2019).Article 

    Google Scholar 
    20.Wringe, B. F., Purchase, C. F. & Fleming, I. A. In search of a “cultured fish phenotype”: A systematic review, meta-analysis and vote-counting analysis. Rev. Fish Biol. Fish. 26(3), 351–373 (2016).Article 

    Google Scholar 
    21.Gossieaux, P. et al. Effects of genetic origin on phenotypic divergence in Brook Trout populations stocked with domestic fish. Ecosphere 11(5), e03119 (2020).Article 

    Google Scholar 
    22.Fleming, I. A., Jonsson, B. & Gross, M. R. Phenotypic divergence of sea-ranched, farmed, and wild salmon. Can. J. Fish. Aquat. Sci. 51, 2808–2824 (1994).Article 

    Google Scholar 
    23.Heath, D. D., Heath, J. W., Bryden, C. A., Johnson, R. M. & Fox, C. W. Rapid evolution of egg size in captive salmon. Science 299, 1738–1740 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Naish, K. A., Seamons, T. R., Dauer, M. B., Hauser, L. & Quinn, T. P. Relationship between effective population size, inbreeding and adult fitness-related traits in a steelhead (Oncorhynchus mykiss) population released in the wild. Mol. Ecol. 22, 1295–1309 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Van Oosterhout, C., Weetman, D. & Hutchinson, W. F. Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol. Ecol. Notes 6(1), 255–256 (2006).Article 

    Google Scholar 
    26.Rousset, F. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8(6), 103–106 (2008).PubMed 
    Article 

    Google Scholar 
    27.Peakall, R. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    28.Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19), 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Szpiech, Z. A., Jacobsson, M. & Rosenberg, N. A. ADZE: A rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24(21), 2498–2504 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Waples, R. S. & Anderson, E. C. Purging putative siblings from population genetic data sets: A cautionary view. Mol. Ecol. 26(5), 1211–1224 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Pew, J., Muir, P. H., Wang, J. & Frasier, T. R. Related: An R package for analysing pairwise relatedness from codominant molecular markers. Mol. Ecol. Resour. 15(3), 557–561 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Piry, S., Luikart, G. & Cornuet, J.-M. Bottleneck: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Heredity 90(4), 502–503 (1999).Article 

    Google Scholar 
    35.Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4), 2001–2014 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Peery, M. Z. et al. Reliability of genetic bottleneck tests for detecting recent population declines. Mol. Ecol. 21(14), 3403–3418 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Luikart, G. Usefulness of molecular markers for detecting population bottlenecks and monitoring genetic change. Ph. D. Thesis. (University of Montana, 1997).38.Do, C. et al. NEESTIMATOR v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Waples, R. S. & Do, C. LDNE: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8, 753–756 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Zhdanova, O. L. & Pudovkin, A. I. Nb_HetEx: A program to estimate the effective number of breeders. J. Hered. 99(6), 694–695 (2008).PubMed 
    Article 

    Google Scholar 
    41.Nomura, T. Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol. Appl. 1, 462–474 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Jones, O. R. & Wang, J. COLONY: A program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Wang, J. A. comparison of single-sample estimators of effective population sizes from genetic data. Mol. Ecol. 25, 4692–4711 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Nei, M. & Chesser, R. K. Estimation of fixation indexes and gene diversities. Ann. Hum. Genet. 47(3), 253–259 (1983).CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    45.Jost, L. Gst and its relatives do not measure differentiation. Mol. Ecol. 17(18), 4015–4026 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodological) 57(1), 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    47.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2019).48.White, T., van der Ende, J. & Nichols, T. E. Beyond Bonferroni revisited: Concerns over inflated false positive research findings in the fields of conservation genetics, biology, and medicine. Conserv. Genet. 20, 927–937 (2019).Article 

    Google Scholar 
    49.Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164(4), 1567–1587 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9(5), 1322–1332 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. in 2010 Gateway Computing Environments Workshop (GCE) 1–8 (2010).52.Besnier, F. & Glover, K. A. ParallelStructure: A R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers. PLoS ONE 8(7), e70651 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Li, Y.-L. & Liu, J.-X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18(1), 176–177 (2018).PubMed 
    Article 

    Google Scholar 
    54.Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16(3), 608–627 (2016).PubMed 
    Article 

    Google Scholar 
    55.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15(5), 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Anderson, E. C. & Dunham, K. K. The influence of family groups on inferences made with the program structure. Mol. Ecol. Resour. 8, 1219–1229 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Dray, S. & Dufour, A. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22(4), 1–20 (2007).Article 

    Google Scholar 
    58.Levene, H. Robust tests for equality of variances. in Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (Olkin, I., Hotelling, H. et al. eds.). 278–292 (Stanford University Press, 1960).59.Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.4.0. https://CRAN.R-project.org/package=rstatix (2020).60.Wang, J. An estimator for pairwise relatedness using molecular markers. Genetics 160, 1203–1215 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.White, S. L., Miller, W. L., Dowell, S. A., Bartron, M. L. & Wagner, T. Limited hatchery introgression into wild brook trout (Salvelinus fontinalis) populations despite reoccurring stocking. Evol. Appl. 11(9), 1567–1581 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Lehnert, S. J. et al. Multiple decades of stocking has resulted in limited hatchery introgression in wild brook trout (Salvelinus fontinalis) populations of Nova Scotia. Evol. Appl. 13(5), 1069–1089 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Knudsen, C. M. et al. Comparison of life history traits between first-generation hatchery and wild upper Yakima River spring Chinook salmon. Trans. Am. Fish. Soc. 135, 1130–1144 (2006).Article 

    Google Scholar 
    64.Hansen, M. M. & Mensberg, K.-L.D. Admixture analysis of stocked brown trout populations using mapped microsatellite DNA markers: Indigenous trout persist in introgressed populations. Biol. Lett. 5, 656–659 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Christie, M. R., Ford, M. J. & Blouin, M. S. On the reproductive success of early-generation hatchery fish in the wild. Evol. Appl. 7, 883–896 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Fraser, D. J. et al. Population correlates of rapid captive-induced maladaptation in a wild fish. Evol. Appl. 12, 1305–1317 (2019).PubMed 
    Article 

    Google Scholar 
    67.Fischer, J. R. et al. Growth, condition, and trophic relations of stocked trout in southern Appalachian mountain streams. Trans. Am. Fish. Soc. 148, 771–784 (2019).CAS 
    Article 

    Google Scholar 
    68.Hendry, A. P. & Day, T. Population structure attributable to reproductive time: Isolation by time and adaptation by time. Mol. Ecol. 14, 901–916 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Gauthey, Z. et al. Brown trout spawning habitat selection and its effects on egg survival. Ecol. Freshwater Fish 26, 133–140 (2017).Article 

    Google Scholar 
    70.Dupont, P.-P., Bourret, V. & Bernatchez, L. Interplay between ecological, behavioural and historical factors in shaping the genetic structure of sympatric walleye populations (Sander vitreus). Mol. Ecol. 16, 937–951 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Sandoval-Castillo, J. et al. SWINGER: A user-friendly computer program to establish captive breeding groups that minimize relatedness without pedigree information. Mol. Ecol. Resour. 17, 278–287 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Spatiotemporal effects on dung beetle activities in island forests-home garden matrix in a tropical village landscape

    1.Chapin, F. S. & Díaz, S. Interactions between changing climate and biodiversity: Shaping humanity’s future. PNAS 2117, 6295–6296 (2020).Article 
    CAS 

    Google Scholar 
    2.Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Scranton, K. & Amarasekare, P. Predicting phenological shifts in a changing climate. PNAS 114, 13212–13217 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Madrigal-González, J. et al. Disentangling the relative role of climate change on tree growth in an extreme Mediterranean environment. Sci. Total Environ. 642, 619–628 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.Angilletta, M. J. Thermal adaptation: A Theoretical And Empirical Synthesis (Oxford University Press, 2009).Book 

    Google Scholar 
    6.Andresen, E. Effects of season and vegetation type on community organization of Dung beetles in a tropical dry forest. Biotropica 37, 291–300 (2005).Article 

    Google Scholar 
    7.Liberal, C. N., Farias, A. M. I. & Meiado, M. V. How habitat change and rainfall affect dung beetle diversity in Caatinga, a Brazilian semi-arid ecosystem. J. Insect Sci. 11, 114 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Nunes, C. A., Braga, R. F., Figueira, J. E. C., Neves, F. D. S. & Fernandes, G. W. Dung beetles along a tropical altitudinal gradient: Environmental filtering on taxonomic and functional diversity. PLoS One 11, e0157442 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.da Silva, P. G. & Cassenote, S. Environmental drivers of species composition and functional diversity of dung beetles along the Atlantic Forest-Pampa transition zone. Austral Ecol. 44, 786–799 (2019).Article 

    Google Scholar 
    10.Alvarado, F., Salomão, R. P., Hernandez-Rivera, Á. & de Araujo Lira, A. F. Different responses of dung beetle diversity and feeding guilds from natural and disturbed habitats across a subtropical elevational gradient. Acta Oecol. 104, 103533 (2020).Article 

    Google Scholar 
    11.Barragán, F., Moreno, C. E., Escobar, F., Halffter, G. & Navarrete, D. Negative impacts of human land use on dung beetle functional diversity. PLoS One 6, e17976 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Costa, C. et al. Variegated tropical landscapes conserve diverse dung beetle communities. PeerJ 5, e3125 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Gómez-Cifuentes, A., Gómez, V. C. G., Moreno, C. E. & Zurita, G. A. Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest: The role of microclimate and soil conditions. Basic Appl. Ecol. 34, 64–74 (2019).Article 

    Google Scholar 
    14.Salomão, R. P. et al. Urbanization effects on dung beetle assemblages in a tropical city. Ecol. Indic. 103, 665–675 (2019).Article 

    Google Scholar 
    15.Correa, C. M., Lara, M. A., Puker, A., Noriega, J. A. & Korasaki, V. Quantifying responses of dung beetle assemblages to cattle grazing removal over a short-term in introduced Brazilian pastures. Acta Oecol. 110, 103681 (2021).Article 

    Google Scholar 
    16.Romero-Alcaraz, E. & Avila, J. M. Effect of elevation and type of habitat on the abundance and diversity of scarabaeoid dung beetles (Scarabaeoidea) assemblages in a Mediterranean area from Southern Iberian Peninsula. Zool. Stud. 39, 351–359 (2000).
    Google Scholar 
    17.Halffter, G. & Arellano, L. Response of dung beetle diversity to human-induced changes in a tropical landscape. Biotropica 34, 144–154 (2002).Article 

    Google Scholar 
    18.Rios-Diaz, C. L. et al. Sheep herding in small grasslands promotes dung beetle diversity in a mountain forest landscape. J. Insect Conserv. 25, 13–26 (2021).Article 

    Google Scholar 
    19.Krell, F. T., Krell-Westerwalbesloh, S., Weiß, I., Eggleton, P. & Linsenmair, K. E. Spatial separation of Afrotropical dung beetle guilds: A trade-off between competitive superiority and energetic constraints (Coleoptera: Scarabaeidae). Ecography 26, 210–222 (2003).Article 

    Google Scholar 
    20.Verdú, J. R., Díaz, A. & Galante, E. Thermoregulatory strategies in two closely related sympatric Scarabaeus species (Coleoptera: Scarabaeinae). Physiol. Entomol. 29, 32–38 (2004).Article 

    Google Scholar 
    21.Verdú, J. R., Arellano, L. & Numa, C. Thermoregulation in endotermic dung beetles (Coleoptera: Scarabaeidae): Effect of body size and ecophysiological constraints in flight. J. Insect Physiol. 52, 854–860 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    22.Verdú, J. R., Arellano, L., Numa, C. & Micó, E. Roles of endothermy in niche differentiation for ball-rolling dung beetles (Coleoptera: Scarabaeidae) along an altitudinal gradient. Ecol. Entomol. 32, 544–551 (2007).Article 

    Google Scholar 
    23.Verdú, J. R., Alba-Tercedor, J. & Jiménez-Manrique, M. Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and microcomputer tomography. PLoS One 7, e33914 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Giménez-Gómez, V. C., Lomáscolo, S. B., Zurita, G. A. & Ocampo, F. Daily activity patterns and thermal tolerance of three sympatric dung beetle species (Scarabaeidae: Scarabaeinae: Eucraniini) from the Monte Desert, Argentina. Neotrop. Entomol. 47, 821–827 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Gómez, V. C. G., Verdú, J. R. & Zurita, G. A. Thermal niche helps to explain the ability of dung beetles to exploit disturbed habitats. Sci. Rep. 10, 1–14 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    26.Gotcha, N., Machekano, H., Cuthbert, R. N. & Nyamukondiwa, C. Heat tolerance may determine activity time in coprophagic beetle species (Coleoptera: Scarabaeidae). Insect Sci. 28, 1076–2086 (2020).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    27.Gallego, B., Verdú, J. R. & Lobo, J. M. Comparative thermoregulation between different species of dung beetles (Coleoptera: Geotrupinae). J. Therm. Biol. 74, 84–91 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Feer, F. Effects of dung beetles (Scarabaeidae) on seeds dispersed by howler monkeys (Alouatta seniculus) in the French Guianan rainforest. J. Trop. Ecol. 15, 1–14 (1999).Article 

    Google Scholar 
    29.Feer, F. & Pincebourne, S. Diel flight activity and ecological segregation within an assemblage of tropical forest dung and carrion beetles. J. Trop. Ecol. 21, 21–30 (2005).Article 

    Google Scholar 
    30.Niino, M. et al. Diel flight activity and habitat preference of dung beetles (Coleoptera: Scarabaeidae) in Peninsular Malaysia. Raffles Bull. Zool. 62, 795–804 (2014).
    Google Scholar 
    31.da Silva, P. G., Lobo, J. M. & Hernandez, M. I. M. The role of habitat and daily activity patterns in explaining the diversity of mountain Neotropical dung beetle assemblages. Austral Ecol. 44, 300–312 (2019).Article 

    Google Scholar 
    32.Cambefort, Y. Dung beetles in tropical savannas in Africa. In Dung Beetle Ecology (eds Hanski, I. & Camberfort, Y.) 156–178 (Princeton University Press, 1991).Chapter 

    Google Scholar 
    33.Hernández, M. I. M. The night and day of dung beetles (Coleoptera, Scarabaeidae) in the Serra do Japi, Brazil: Elytra colour related to daily activity. Rev. Bras. Entomol. 46, 597–600 (2002).Article 

    Google Scholar 
    34.Krell-Westerwalbesloh, S., Krell, F. T. & Eduard Linsenmair, K. Diel separation of Afrotropical dung beetle guilds—avoiding competition and neglecting resources (Coleoptera: Scarabaeoidea). J. Nat. Hist. 38, 2225–2249 (2004).Article 

    Google Scholar 
    35.Rajesh, T. P., Prashanth Ballullaya, U., Unni, A. P., Parvathy, S. & Sinu, P. A. Interactive effects of urbanization and year on invasive and native ant diversity of sacred groves of south India. Urban Ecosyst. 23, 1335–1348 (2020).Article 

    Google Scholar 
    36.Prashanth Ballullaya, U. et al. Stakeholder motivation for the conservation of sacred groves in south India: An analysis of environmental perceptions of rural and urban neighbourhood communities. Land Use Policy 89, 104–213 (2019).Article 

    Google Scholar 
    37.Manoj, K. et al. Diversity of platygastridae in leaf litter and understory layers of tropical rainforests of the Western Ghats biodiversity hotspot, India. Environ. Entomol. 46, 685–692 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Rajesh, T., Unni, A., Prashanth Ballullaya, U., Manoj, K. & Sinu, P. A. An insight into the quality of sacred groves—an island habitat—using leaf-litter ants as an indicator in a context of urbanization. J. Trop. Ecol. 37, 82–90. https://doi.org/10.1017/S0266467421000134 (2021).Article 

    Google Scholar 
    39.Asha, G., Navya, K. K., Rajesh, T. P. & Sinu, P. A. Roller dung beetles of dung piles suggest habitats are alike, but that of guarding pitfall traps suggest habitat are different. J. Trop. Ecol. https://doi.org/10.1017/S0266467421000225 (2021) (Accepted).Article 

    Google Scholar 
    40.Krell, F. T. Dung beetle sampling protocols. Denver Museum of Nature and Science Technical Report 6, 1–11 (2007).
    Google Scholar 
    41.Arrow, G. J. The Fauna of British India including Ceylon and Burma, Coleoptera: Lamellicornia (Coprinae) (Taylor and Francis, 1931).
    Google Scholar 
    42.Sabu, T. K., Vinod, K. V. & Vineesh, P. J. Guild structure, diversity and succession of dung beetles associated with Indian elephant dung in South Western Ghats forests. J. Insect Sci. 6, 6–17 (2006).Article 

    Google Scholar 
    43.Beiroz, W. et al. Dung beetle community dynamics in undisturbed tropical forests: Implications for ecological evaluations of land-use change. Insect Conserv. Divers. 10, 94–106 (2017).Article 

    Google Scholar 
    44.De Caceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.McGeoch, M. A., van Rensburg, B. J. & Botes, A. The verification and application of bioindicators: A case of study of dung beetles in a savanna ecosystem. J. Appl. Ecol. 39, 661–672 (2002).Article 

    Google Scholar 
    46.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: Interpolation and extrapolation for species diversity. R package version 2.0.12 (2016).47.Oksanen, J. et al. vegan: Community Ecology Package. R package, version 2.5‐3 (2018).48.Caveney, S., Scholtz, C. H. & McIntyre, P. Patterns of daily flight activity in Onitine dung beetles (Scarabaeinae: Onitini). Oecologia 103, 444–452 (1995).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Spector, S. & Ayzama, S. Rapid turnover and edge effects in dung beetle assemblages (Scarabaeidae) at a Bolivian Neotropical forest-savanna ecotone. Biotropica 35, 394–404 (2003).
    Google Scholar 
    50.Escobar, F. S. Diversity and composition of dung beetle (Scarabaeinae) assemblages in a heterogeneous Andean landscape. Trop. Zool. 17, 123–136 (2004).Article 

    Google Scholar 
    51.Lobo, J. M., Lumaret, J. P. & Jay-Robert, P. Sampling dung beetles in French Mediterranean area: Effects of abiotic factors and farm practices. Pedobiologia 42, 252–266 (1998).
    Google Scholar 
    52.Zamora, J., Verdu, J. R. & Galante, E. Species richness in Mediterranean agroecosystems: Spatial and temporal analysis for biodiversity conservation. Biol. Conserv. 134, 113–121 (2007).Article 

    Google Scholar 
    53.Calatayud, J. et al. Multidimensionality in the thermal niches of dung beetles could limit species’ responses to temperature changes. BioRxiv. https://doi.org/10.1101/2020.11.15.383612(2021) (2020).Article 

    Google Scholar 
    54.Iannuzzi, L., Salomão, R. P., Costa, F. C. & Liberal, C. N. Environmental patterns and daily activity of dung beetles (Coleoptera: Scarabaeidae) in the Atlantic Rainforest of Brazil. Entomotropica 31, 196–207 (2016).
    Google Scholar 
    55.Venugopal, K. S., Thomas, S. K. & Flemming, A. T. Diversity and community structure of dung beetles (Coleoptera: Scarabaeinae) associated with semi-urban fragmented agricultural land in the Malabar coast in southern India. JoTT 4, 2685–2692 (2012).
    Google Scholar 
    56.Price, P. W. Insect Ecology (Wiley, 1984).
    Google Scholar 
    57.Hanski, I. & Cambefort, Y. Dung Beetle Ecology (Princeton University Press, 1991).Book 

    Google Scholar 
    58.Finn, J. A. & Gittings, T. A review of competition in north temperate dung beetle communities. Ecol. Entomol. 28, 1–13 (2003).Article 

    Google Scholar 
    59.Doube, B. Dung beetles of southern Africa. In Dung Beetle Ecology (eds Hanski, I. & Cambefort, Y.) 133–155 (Princeton University Press, 1991).Chapter 

    Google Scholar 
    60.Gómez-Cifuentes, A., Munevar, A., Gimenez, V. C., Gatti, M. G. & Zurita, G. A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. J. Insect Conserv. 21, 147–156 (2017).Article 

    Google Scholar 
    61.Estrada, A. & Coates-Estrada, R. Howler monkeys (Alouatta palliate), dung beetles (Scarabaeidae) and seed dispersal-ecological interactions in the tropical rain-forest of Los-Tuxtlas, Mexico. J. Trop. Ecol. 7, 459–474 (1991).Article 

    Google Scholar 
    62.Slade, E. M., Mann, D. J., Villanueva, J. F. & Lewis, O. T. Experimental evidence for the effects of dung beetle functional group richness and composition on ecosystem function in a tropical forest. J. Anim. Ecol. 76, 1084–1104 (2007).Article 

    Google Scholar 
    63.Vinod, K. V. & Sabu, T. K. Species composition and community structure of dung beetles attracted to dung of gaur and elephant in the moist forests of South Western Ghats. J. Insect Sci. 7, 1–14 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Chao, A., Simon-Freeman, R. & Grether, G. Patterns of Niche partitioning and alternative reproductive strategies in an east African dung beetle assemblage. J. Insect Behav. 26, 525–539 (2013).Article 

    Google Scholar 
    65.Sowig, P. Habitat selection and offspring survival rate in three paracoprid dung beetles: The influence of soil type and soil moisture. Ecography 18, 147–154 (1995).Article 

    Google Scholar 
    66.Sowig, P. Brood care in the dung beetle Onthophagus vacca (Coleoptera: Scarabaeidae): The effect of soil moisture on time budget, nest structure, and reproductive success. Ecography 19, 254–258 (1996).
    Google Scholar 
    67.Nichols, E. et al. Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biol. Conserv. 141, 1461–1474 (2008).Article 

    Google Scholar 
    68.Latha, T. & Thomas, S. K. Edge effect on roller dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) in the moist South Western Ghats. J. Entomol. 8, 1044–1047 (2020).
    Google Scholar 
    69.Bartholomew, G. A. & Heinrich, B. Endothermy in African dung beetles during flight, ball making, and ball rolling. J. Exp. Biol. 73, 65–83 (1978).Article 

    Google Scholar 
    70.Boonrotpong, S., Sotthibandhu, S. & Pholpunthin, C. Species composition of dung beetles in the primary and secondary forests at Ton Nga Chang Wildlife Sanctuary. Sci. Asia 30, 59–65 (2004).Article 

    Google Scholar 
    71.Davis, A. J. Does reduced-impact logging help preserve biodiversity in tropical rainforest? A case study from Borneo using dung beetles (Coleoptera: Scarabaeoidea) as indicators. Environ. Entomol. 29, 467–475 (2000).Article 

    Google Scholar 
    72.Davis, A. J. et al. Dung beetles as indicators of change in the forests of northern Borneo. J. Appl. Ecol. 38, 593–616 (2001).Article 

    Google Scholar 
    73.Jayaprakash, S. B. Taxonomy guild structure and dung specificity of dung beetles in a coffee plantation belt in south Wayanad. Ph.D. thesis, University of Calicut. http://hdl.handle.net/10603/222605 (2018). More