1.Collins, J. P., & Crump, M. L. Extinction in Our Times: Global Amphibian Decline. (2009).2.Catenazzi, A. State of the world’s amphibians. Annu. Rev. Environ. Resour. 40, 91–119 (2015).Article
Google Scholar
3.González-del-Pliego, P. et al. Phylogenetic and trait-based prediction of extinction risk for data deficient amphibians. Curr. Biol. 29, 1557–1563 (2019).PubMed
Article
CAS
PubMed Central
Google Scholar
4.Lips, K. R. et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. PNAS 102, 3165–3170 (2006).ADS
Article
CAS
Google Scholar
5.Lips, K. R., Diffendorfer, J., Mendelson, J. R. & Sears, M. W. Riding the wave: Reconciling the roles of disease and climate change in amphibian declines. PLoS Biol. 6, e72 (2008).PubMed
PubMed Central
Article
CAS
Google Scholar
6.Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. PNAS 95, 9031–9036 (1998).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
7.Longcore, J. E., Pessier, A. P. & Nichols, D. K. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91, 219–227 (1999).Article
Google Scholar
8.Berger, L. et al. History and recent progress on chytridiomycosis in amphibians. Fungal Ecol. 19, 89–99 (2016).Article
Google Scholar
9.Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. PNAS 110, 15325–15329 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
10.Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
11.Lambert, M. R. et al. Comment on “Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity”. Science https://doi.org/10.1126/science.aay1838 (2020).Article
PubMed
PubMed Central
Google Scholar
12.Scheele, B. C. et al. Response to Comment on “Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity”. Science https://doi.org/10.1126/science.aay2905 (2020).Article
PubMed
PubMed Central
Google Scholar
13.Puschendorf, R. et al. Distribution models for the amphibian chytrid Batrachochytrium dendrobatidis in Costa Rica: Proposing climatic refuges as a conservation tool. Divers. Distrib. 15, 401–408 (2009).Article
Google Scholar
14.Zumbado-Ulate, H. et al. Endemic infection of Batrachochytrium dendrobatidis in Costa Rica: Implications for amphibian conservation at regional and species level. Diversity 11, 129 (2019).Article
Google Scholar
15.Crawford, A. J., Lips, K. R. & Bermingham, E. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. PNAS 107, 13777–13782 (2010).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
16.Woodhams, D. C. et al. Chytridiomycosis and amphibian population declines continue to spread eastward in Panama. EcoHealth 5, 268–274 (2008).PubMed
Article
PubMed Central
Google Scholar
17.Catenazzi, A., Lehr, E., Rodriguez, L. & Vredenburg, V. Batrachochytrium dendrobatidis and the collapse of anuran species richness and abundance in the upper Manu National Park, southeastern Peru. Conserv. Biol. 25, 382–391 (2011).PubMed
Article
PubMed Central
Google Scholar
18.Voyles, J. et al. Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326, 582–585 (2009).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
19.James, T. et al. Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: Lessons from the first 15 years of amphibian chytridiomycosis research. Ecol. Evol. 5, 4079–4097 (2015).PubMed
PubMed Central
Article
Google Scholar
20.Soto-Azat, C. et al. Xenopus laevis and emerging amphibian pathogens in Chile. EcoHealth 13, 775–783 (2016).PubMed
Article
PubMed Central
Google Scholar
21.Ron, S. Predicting the distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the new world. Biotropica 37, 209–221 (2005).Article
Google Scholar
22.Rödder, D., Kielgast, J. & Lötters, S. Future potential distribution of the emerging amphibian chytrid fungus under anthropogenic climate change. Dis. Aquat. Org. 92, 201–207 (2010).Article
Google Scholar
23.Murray, K. A. et al. Assessing spatial patterns of disease risk to biodiversity: Implications for the management of the amphibian pathogen, Batrachochytrium dendrobatidis. J. Appl. Ecol. 48, 163–173 (2011).Article
Google Scholar
24.Liu, X., Rohr, J. & Li, Y. Climate, vegetation, introduced hosts and trade shape a global wildlife pandemic. Proc. Biol. Sci. 280, 20122506 (2013).PubMed
PubMed Central
Google Scholar
25.Olson, D. H. et al. Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE 8, e56802 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
26.Penner, J. et al. West Africa—A safe haven for frogs? A sub-continental assessment of the chytrid fungus (Batrachochytrium dendrobatidis). PLoS ONE 8, e56236 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
27.Xie, G. Y., Olson, D. H. & Blaustein, A. R. Projecting the global distribution of the emerging amphibian fungal pathogen, Batrachochytrium dendrobatidis, based on IPCC climate futures. PLoS ONE 11, e0160746 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
28.Harris, R. N. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
29.Searle, C. L. et al. Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen. Conserv. Biol. 25, 965–974 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
30.Farrer, R. et al. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. PNAS 108, 18732–18736 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
31.Lips, K. R. Overview of chytrid emergence and impacts on amphibians. Philos. Trans. R. Soc. B. 371, 20150465 (2016).Article
Google Scholar
32.Bolom-Huet, R., Pineda, E., Díaz-Fleischer, F., Muñoz-Alonso, A. L. & Galindo-González, J. Known and estimated distribution in Mexico of Batrachochytrium dendrobatidis, a pathogenic fungus of amphibians. Biotropica 51, 731–746 (2019).Article
Google Scholar
33.Zumbado-Ulate, H., García-Rodríguez, A. & Searle, C. L. Species distribution models predict the geographic expansion of an enzootic amphibian pathogen. Biotropica 53, 221–231 (2021).Article
Google Scholar
34.Berger, L. et al. Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aust. Vet. J. 82, 434–439 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
35.Clare, F. C. et al. Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Philos. Trans. R. Soc. B. 371, 20150454 (2016).Article
CAS
Google Scholar
36.Bacigalupe, L. D., Soto-Azat, C., García-Vera, C., Barría-Oyarzo, I. & Rezende, E. L. Effects of amphibian phylogeny, climate and human impact on the occurrence of the amphibian-killing chytrid fungus. Glob. Change Biol. 23, 3543–3553 (2017).ADS
Article
Google Scholar
37.Raffel, T., Michel, P., Sites, W. & Rohr, J. What drives chytrid infections in newt populations? Associations with substrate, temperature, and shade. EcoHealth 7, 526–536 (2010).PubMed
Article
PubMed Central
Google Scholar
38.Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
39.Hudson, M. et al. Reservoir frogs: Seasonality of Batrachochytrium dendrobatidis infection in robber frogs. PeerJ 7, e7021 (2019).PubMed
PubMed Central
Article
Google Scholar
40.Kriger, K. M. & Hero, J. M. Large-scale seasonal variation in the prevalence and severity of chytridiomycosis. J. Zool. 271, 352–359 (2007).
Google Scholar
41.Longo, A. V., Burrowes, P. A. & Joglar, R. L. Seasonality of Batrachochytrium dendrobatidis infection in direct-developing frogs suggests a mechanism for persistence. Dis. Aquat. Org. 92, 253–260 (2010).Article
Google Scholar
42.Zumbado-Ulate, H., Bolaños, F., Gutiérrez-Espeleta, G. & Puschendorf, R. Extremely low prevalence of Batrachochytrium dendrobatidis in frog populations from Neotropical dry forest of Costa Rica supports the existence of a climatic refuge from disease. EcoHealth 11, 593–602 (2014).PubMed
Article
PubMed Central
Google Scholar
43.Bacigalupe, L. D. et al. The amphibian-killing fungus in a biodiversity hotspot: Identifying and validating high-risk areas and refugia. Ecosphere. 10, e02724 (2019).Article
Google Scholar
44.Flechas, S. V. et al. Current and predicted distribution of the pathogenic fungus Batrachochytrium dendrobatidis in Colombia, a hotspot of amphibian biodiversity. Biotropica 49, 685–694 (2017).Article
Google Scholar
45.Lampo, M. et al. Batrachochytrium dendrobatidis in Venezuela. Herpetol. Rev. 39, 449 (2008).
Google Scholar
46.Valenzuela-Sánchez, A. et al. Genomic epidemiology of the emerging pathogen Batrachochytrium dendrobatidis from native and invasive amphibian species in Chile. Transbound. Emerg. Dis. 65, 309–314 (2018).PubMed
Article
PubMed Central
Google Scholar
47.O’Hanlon, S. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
48.Soto-Azat, C. et al. The population decline and extinction of Darwin’s frogs. PLoS ONE 8, e66957 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
49.Soto-Azat, C. et al. ASG Chile leads update of the extinction risk of Chilean amphibians for the IUCN red list of threatened speciesTM. FrogLog 23, 6–7 (2015).
Google Scholar
50.Mora, M. et al. High abundance of invasive African clawed frog Xenopus laevis in Chile: Challenges for their control and updated invasive distribution. Manag. Biol. Invasions. 10, 377–388 (2019).Article
Google Scholar
51.Solís, R., Penna, M., De la Riva, I., Fisher, M. & Bosch, J. Presence of Batrachochytrium dendrobatdis in anurans from the Andes highlands of northern Chile. Herpetol. J. 24, 55–59 (2015).
Google Scholar
52.Soto-Azat, C. et al. Is Chytridiomycosis driving Darwin’s frogs to extinction?. PLoS ONE 8, e79862 (2013).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
53.Valenzuela-Sánchez, A. et al. Cryptic disease-induced mortality may cause host extinction in an apparently stable host–parasite system. Proc. Biol. Sci. 284, 20171176 (2017).PubMed
PubMed Central
Google Scholar
54.Lips, K. R., Reeve, J. D. & Witters, L. R. Ecological traits predicting amphibian population declines in Central America. Conserv. Biol. 17, 1078–1088 (2003).Article
Google Scholar
55.Hero, J. M., Williams, S. E. & Magnusson, W. E. Ecological traits of declining amphibians in upland areas of eastern Australia. J. Zool. 267(3), 221–232 (2005).Article
Google Scholar
56.Kriger, K. M. & Hero, J. M. Altitudinal distribution of chytrid (Batrachochytrium dendrobatidis) infection in subtropical Australian frogs. Austral. Ecol. 33(8), 1022–1032 (2008).Article
Google Scholar
57.Skerratt, L. F. et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4, 125 (2007).Article
Google Scholar
58.Langwig, K. et al. Context-dependent conservation responses to emerging wildlife diseases. Front. Ecol. Environ. 13, 195–202 (2015).Article
Google Scholar
59.Shaw, S. D. et al. The distribution and host range of Batrachochytrium dendrobatidis in New Zealand, 1930–2010. Ecology 94, 2108–2111 (2013).Article
Google Scholar
60.Ghirardi, R. et al. Endangered amphibians infected with the chytrid fungus Batrachochytrium dendrobatidis in austral temperate wetlands from Argentina. Herpetol. J. 24, 129–133 (2014).
Google Scholar
61.Bielby, J., Cooper, N., Cunningham, A., Garner, T. & Purvis, A. Predicting susceptibility to future declines in the world’s frogs. Conserv. Lett. 1, 82–90 (2008).Article
Google Scholar
62.Barrionuevo, S. & Mangione, S. Chytridiomycosis in two species of Telmatobius (Anura: Leptodactylidae) from Argentina. Dis. Aquat. Org. 73, 171–174 (2006).Article
Google Scholar
63.Seimon, T. A. et al. Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob. Change Biol. 13, 288–299 (2007).ADS
Article
Google Scholar
64.Burrowes, P. A. & De la Riva, I. Unraveling the historical prevalence of the invasive chytrid fungus in the Bolivian Andes: Implications in recent amphibian declines. Biol. Invasions. 19, 1781–1794 (2017).Article
Google Scholar
65.Vredenburg, V. T., Knapp, R., Tunstall, T. & Briggs, C. Dynamics of an emerging disease drive large-scale amphibian population extinctions. PNAS 107, 9689–9694 (2010).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
66.Azat, C. et al. A flagship for Austral temperate forest conservation: an action plan for Darwin’s frogs bringing together key stakeholders. Oryx 55, 356–363 (2021). Article
Google Scholar
67.Pilliod, D. S. et al. Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads. Conserv. Biol. 24, 1259–1267 (2010).PubMed
Article
PubMed Central
Google Scholar
68.Walker, S. F. et al. Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia. Ecol. Lett. 13, 372–382 (2010).PubMed
Article
PubMed Central
Google Scholar
69.Kriger, K. M., Pereoglou, F. & Hero, J. M. Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in eastern Australia. Conserv. Biol. 21, 1280–1290 (2007).PubMed
Article
PubMed Central
Google Scholar
70.Petersen, C. E., Lovich, R. E., Phillips, C. A., Dreslik, M. J. & Lannoo, M. J. Prevalence and seasonality of the amphibian chytrid fungus Batrachochytrium dendrobatidis along widely separated longitudes across the United States. EcoHealth 13, 368–382 (2016).PubMed
Article
PubMed Central
Google Scholar
71.Thorpe, C. J. et al. Climate structuring of Batrachochytrium dendrobatidis infection in the threatened amphibians of the northern Western Ghats, India. R. Soc. Open Sci. 5, 180211 (2018).ADS
PubMed
PubMed Central
Article
Google Scholar
72.Sonn, J. M., Utz, R. M. & Richards-Zawacki, C. L. Effects of latitudinal, seasonal, and daily temperature variations on chytrid fungal infections in a North American frog. Ecosphere 10, e02892 (2019).Article
Google Scholar
73.Raffel, T. R., Halstead, N. T., McMahon, T. A., Davis, A. K. & Rohr, J. R. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. Biol. Sci. 282, 20142039 (2015).PubMed
PubMed Central
Google Scholar
74.Woodhams, D. C. & Alford, R. A. Ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland. Conserv. Biol. 19, 1449–1459 (2005).Article
Google Scholar
75.Adams, M. J. et al. Using occupancy models to understand the distribution of an amphibian pathogen, Batrachochytrium dendrobatidis. Ecol. Appl. 20, 289–302 (2010).PubMed
Article
PubMed Central
Google Scholar
76.Fisher, M., Garner, T. & Walker, S. F. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 63, 291–310 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
77.Schloegel, L. M. et al. Novel, panzootic and hybrid genotypes of amphibia chytridiomycosis associated with the bullfrog trade. Mol. Ecol. 21, 5162–5177 (2012).PubMed
Article
PubMed Central
Google Scholar
78.Wilson, E. A., Briggs, C. J. & Dudley, T. L. Invasive African clawed frogs in California: A reservoir for or predator against the chytrid fungus?. PLoS ONE 13, e0191537 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
79.Becker, C. G., Longo, A. V., Haddad, C. F. & Zamudio, K. R. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc. Biol. Sci. 284, 20170582 (2017).PubMed
PubMed Central
Google Scholar
80.McCoy, K. A. & Peralta, A. L. Pesticides could alter amphibian skin microbiomes and the effects of Batrachochytrium dendrobatidis. Front. Microbiol. 9, 748 (2018).PubMed
PubMed Central
Article
Google Scholar
81.Ellis, E. & Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).Article
Google Scholar
82.Rohr, J., Halstead, N. & Raffel, T. Modelling the future distribution of the amphibian chytrid fungus: The influence of climate and human-associated factors. J. Appl. Ecol. 48, 174–176 (2011).Article
Google Scholar
83.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
84.Echeverria, C., Coomes, D., Hall, M. & Newton, A. Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile. Ecol. Model. 212, 439–449 (2008).Article
Google Scholar
85.Rodriguez, D., Becker, C., Pupin, C., Haddad, F. & Zamudio, K. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol. Ecol. 23, 774–787 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
86.Puschendorf, R., Hodgson, L., Alfors, R. A., Skerrat, L. F. & VanDerWal, J. Underestimated ranges and overlooked refuges from amphibian chytridiomycosis. Divers. Distrib. 19, 1313–1321 (2013).Article
Google Scholar
87.Scheele, B. C. et al. After the epidemic: Ongoing declines, stabilizations and recoveries in amphibians afflicted by chytridiomycosis. Biol. Conserv. 206, 37–46 (2017).Article
Google Scholar
88.Mendelson, J. R. III., Whitfield, S. M. & Sredl, M. J. A recovery engine strategy for amphibian conservation in the context of disease. Biol. Conserv. 236, 188–191 (2019).Article
Google Scholar
89.Van Rooij, P., Martel, A., Haesebrouck, F. & Pasmans, F. Amphibian chytridiomycosis: A review with focus on fungus-host interactions. Vet. Res. 46, 1–22 (2015).Article
CAS
Google Scholar
90.Christie, M. R. & Searle, C. L. Evolutionary rescue in a host–pathogen system results in coexistence not clearance. Evol. Appl. 11, 681–693 (2018).PubMed
Article
PubMed Central
Google Scholar
91.Bletz, M. C. et al. Mitigating amphibian chytridiomycosis with bioaugmentation: Characteristics of effective probiotics and strategies for their selection and use. Ecol. Lett. 16, 807–820 (2013).PubMed
Article
PubMed Central
Google Scholar
92.Bosch, J. et al. Successful elimination of a lethal wildlife infectious disease in nature. Biol. Lett. 11, 20150874 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
93.Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933–938 (2001).Article
Google Scholar
94.Pellet, J. & Schmidt, B. R. Monitoring distributions using call surveys: Estimating site occupancy, detection probabilities and inferring absence. Biol. Conserv. 123, 27–35 (2005).Article
Google Scholar
95.Drechsler, A. & Bock, D. Ortmann’s funnel trap—A highly efficient tool for monitoring amphibian species. Herpetol. Notes. 3, 13–21 (2010).
Google Scholar
96.Hudson, M. et al. Dynamics and genetics of a disease-driven species decline to near extinction: Lessons for conservation. Sci. Rep. 6, 1–13 (2016).Article
CAS
Google Scholar
97.R Development Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (2019).98.Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904 (2002).Article
Google Scholar
99.Center for International Earth Science Information Network (CIESIN). Gridded Population of the World, Version 3 (GPWv3). https://doi.org/10.7927/H4639MPP (2005).100.Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 20, 1–9 (2014).Article
Google Scholar
101.Center for International Earth Science Information Network (CIESIN). Gridded Species Distribution: Global Amphibian Richness Grids. https://doi.org/10.7927/H4RR1W66 (2015).102.Fick, S. & Hijmans, R. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article
Google Scholar
103.ASTER. ASTER global digital elevation model V003. https://doi.org/10.5067/ASTER/ASTGTM (2018).104.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2018).105.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article
Google Scholar
106.Fox, J. Effect displays in R for generalised linear models. J. Stat. Softw. 8, 1–27 (2003).Article
Google Scholar
107.Carpenter, T. E. Methods to investigate spatial and temporal clustering in veterinary epidemiology. Prev. Vet. Med. 48, 303–320 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
108.Kulldorff, M. A spatial scan statistic. Commun. Stat-Theor. M. 26, 1481–1496 (1997).MathSciNet
MATH
Article
Google Scholar
109.Kulldorff, M. Information Management Services, Inc. SaTScanTM v.9.4.4: software for the spatial and space-time scan statistics. http://www.satscan.org (2009). More