Intraspecific variation in metal tolerance modulate competition between two marine diatoms
1.Blowes SA, Supp SR, Antão LH, Bates A, Bruelheide H, Chase JM, et al. The geography of biodiversity change in marine and terrestrial assemblages. Science. 2019;366:339–45.CAS
PubMed
Article
PubMed Central
Google Scholar
2.Blanck H. A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum Ecol Risk Assess. 2002;8:1003–34.Article
Google Scholar
3.Tlili A, Berard A, Blanck H, Bouchez A, Cássio F, Eriksson KM, et al. Pollution‐induced community tolerance (PICT): towards an ecologically relevant risk assessment of chemicals in aquatic systems. Freshwat Biol. 2016;61:2141–51.CAS
Article
Google Scholar
4.Duxbury T. Ecological aspects of heavy metal responses in microorganisms. In: Marshall KC, editor. Adv Microb Ecol. New York, USA: Springer; 1985. pp. 185–235.5.Carlson HK, Price MN, Callaghan M, Aaring A, Chakraborty R, Liu H, et al. The selective pressures on the microbial community in a metal-contaminated aquifer. ISME J. 2019;13:937–49.CAS
PubMed
Article
PubMed Central
Google Scholar
6.Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, McArthur J. Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environ Sci Technol. 2005;39:3671–8.CAS
PubMed
Article
PubMed Central
Google Scholar
7.Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science. 2005;309:1387–90.CAS
PubMed
Article
PubMed Central
Google Scholar
8.Falkowski PG, Barber RT, Smetacek VV. Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science. 1998;281:200–7.CAS
PubMed
Article
PubMed Central
Google Scholar
9.Field CB, Michael JB, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40.CAS
PubMed
Article
PubMed Central
Google Scholar
10.Reusch TB, Dierking J, Andersson HC, Bonsdorff E, Carstensen J, Casini M, et al. The Baltic Sea as a time machine for the future coastal ocean. Sci Adv. 2018;4:eaar8195.PubMed
PubMed Central
Article
CAS
Google Scholar
11.Lehtonen KK, Bignert A, Bradshaw C, Broeg K, Schiedek D. Chemical pollution and ecotoxicology. In: Snoeijs-Leijonmalm PSH, Radziejewska T, editors. Biological oceanography of the Baltic Sea. Dordrecht, The Netherlands: Springer Nature; 2017. pp. 547–89.12.Moffett JW, Brand LE, Croot PL, Barbeau KA. Cu speciation and cyanobacterial distribution in harbors subject to anthropogenic Cu inputs. Limnol Oceanogr. 1997;42:789–99.CAS
Article
Google Scholar
13.Echeveste P, Agusti S, Tovar-Sanchez A. Toxic thresholds of cadmium and lead to oceanic phytoplankton: cell size and ocean basin-dependent effects. Environ Toxicol Chem. 2012;31:1887–94.CAS
PubMed
Article
PubMed Central
Google Scholar
14.Tsiola A, Toncelli C, Fodelianakis S, Michoud G, Bucheli TD, Gavriilidou A, et al. Low-dose addition of silver nanoparticles stresses marine plankton communities. Environ Sci Nano. 2018;5:1965–80.CAS
Article
Google Scholar
15.Brand LE, Sunda WG, Guillard RR. Reduction of marine phytoplankton reproduction rates by copper and cadmium. J Exp Mar Biol Ecol. 1986;96:225–50.CAS
Article
Google Scholar
16.Andersson B, Godhe A, Filipsson HL, Rengefors K, Berglund O. Differences in metal tolerance among strains, populations, and species of marine diatoms-importance of exponential growth for quantification. Aquat Toxicol. 2020;226:105551.CAS
PubMed
Article
PubMed Central
Google Scholar
17.Ning W, Nielsen A, Ivarsson LN, Jilbert T, Åkesson C, Slomp C, et al. Anthropogenic and climatic impacts on a coastal environment in the Baltic Sea over the last 1000 years. Anthropocene. 2018;21:66–79.Article
Google Scholar
18.Novotny A, Zamora-Terol S, Winder M. DNA metabarcoding reveals trophic niche diversity of micro and mesozooplankton species. Proc R Soc B. 2021;288:20210908.PubMed
PubMed Central
Article
Google Scholar
19.Horvatić J, Peršić V. The effect of Ni 2+, Co 2+, Zn 2+, Cd 2+ and Hg 2+ on the growth rate of marine diatom Phaeodactylum tricornutum Bohlin: microplate growth inhibition test. Bull Environ Contam Toxicol. 2007;79:494–8.PubMed
Article
CAS
PubMed Central
Google Scholar
20.Terseleer N, Bruggeman J, Lancelot C, Gypens N. Trait‐based representation of diatom functional diversity in a plankton functional type model of the eutrophied southern North Sea. Limnol Oceanogr. 2014;59:1958–72.Article
Google Scholar
21.Litchman E, Klausmeier CA, Schofield OM, Falkowski PG. The role of functional traits and trade‐offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett. 2007;10:1170–81.PubMed
Article
Google Scholar
22.Ehrlich E, Kath NJ, Gaedke U. The shape of a defense-growth trade-off governs seasonal trait dynamics in natural phytoplankton. ISME J. 2020;14:1451–62.23.Lohbeck KT, Riebesell U, Reusch TB. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci. 2012;5:346.CAS
Article
Google Scholar
24.Gross S, Kourtchenko O, Rajala T, Andersson B, Fernandez L, Blomberg A, et al. Optimization of a high‐throughput phenotyping method for chain‐forming phytoplankton species. Limnol Oceanogr Methods. 2017;16:57–67.Article
Google Scholar
25.Rynearson TA, Armbrust EV. DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii. Limnol Oceanogr. 2000;45:1329–40.Article
Google Scholar
26.Kremp A, Oja J, LeTortorec AH, Hakanen P, Tahvanainen P, Tuimala J, et al. Diverse seed banks favour adaptation of microalgal populations to future climate conditions. Environ Microbiol. 2016;18:679–91.PubMed
Article
Google Scholar
27.Sjöqvist C, Godhe A, Jonsson PR, Sundqvist L, Kremp A. Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea-Baltic Sea salinity gradient. Mol Ecol. 2015;24:2871–85.PubMed
PubMed Central
Article
Google Scholar
28.Rengefors K, Logares R, Laybourn‐Parry J, Gast RJ. Evidence of concurrent local adaptation and high phenotypic plasticity in a polar microeukaryote. Environ Microbiol. 2015;17:1510–9.PubMed
Article
Google Scholar
29.Ajani PA, Petrou K, Larsson ME, Nielsen DA, Burke J, Murray SA. Phenotypic trait variability as an indication of adaptive capacity in a cosmopolitan marine diatom. Environ Microbiol. 2020;23:207–23.30.Collins S, Schaum CE. Diverse strategies link growth rate and competitive ability in phytoplankton responses to changes in CO2 levels. bioRxiv. 2019. https://doi.org/10.1101/651471.31.Baert JM, De Laender F, Sabbe K, Janssen CR. Biodiversity increases functional and compositional resistance, but decreases resilience in phytoplankton communities. Ecology. 2016;97:3433–40.PubMed
Article
PubMed Central
Google Scholar
32.Tatters AO, Roleda MY, Schnetzer A, Fu F, Hurd CL, Boyd PW, et al. Short-and long-term conditioning of a temperate marine diatom community to acidification and warming. Philos Trans R Soc Lond B Biol Sc. 2013;368:20120437.Article
Google Scholar
33.Collins S. Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc R Soc B. 2011;278:247–55.PubMed
Article
PubMed Central
Google Scholar
34.Legrand C, Rengefors K, Fistarol GO, Graneli E. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia. 2003;42:406–19.Article
Google Scholar
35.Powell N, Shilton AN, Pratt S, Chisti Y. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol. 2008;42:5958–62.CAS
PubMed
Article
PubMed Central
Google Scholar
36.OECD. Test no. 201: alga, growth inhibition test. 2006. https://www.oecd-ilibrary.org/content/publication/9789264069923-en.37.Anderson SI, Rynearson TA. Variability approaching the thermal limits can drive diatom community dynamics. Limnol Oceanogr. 2020;65:1961–73.CAS
Article
Google Scholar
38.Spilling K, Markager S. Ecophysiological growth characteristics and modeling of the onset of the spring bloom in the Baltic Sea. J Mar Syst. 2008;73:323–37.Article
Google Scholar
39.Behrenfeld MJ. Abandoning Sverdrup’s Critical Depth Hypothesis on phytoplankton blooms. Ecology. 2010;91:977–89.PubMed
Article
Google Scholar
40.Follows MJ, Dutkiewicz S, Grant S, Chisholm SW. Emergent biogeography of microbial communities in a model ocean. Science. 2007;315:1843–6.CAS
PubMed
Article
PubMed Central
Google Scholar
41.Abner B, Morel F, Moffett J. Trace metal control of phytochelatin production in coastal waters. Limnol Oceanogr. 1997;42:601–8.Article
Google Scholar
42.Behra R, Genoni GP, Joseph AL. Effect of atrazine on growth, photosynthesis, and between-strain variability in scenedesmus subspicatus (Chlorophyceae). Arch Environ Contamin Toxicol. 1999;37:36–41.CAS
Article
Google Scholar
43.Tiam SK, Lavoie I, Doose C, Hamilton PB, Fortin C. Morphological, physiological and molecular responses of Nitzschia palea under cadmium stress. Ecotoxicology. 2018;27:675–88.44.Härnström K, Ellegaard M, Andersen TJ, Godhe A. Hundred years of genetic structure in a sediment revived diatom population. Proc Natl Acad Sci USA. 2011;108:4252–7.PubMed
PubMed Central
Article
Google Scholar
45.Guillard RR Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH, editors. Culture of marine invertebrate animals. Boston, MA: Springer; 1975. pp. 29–60.46.Leal PP, Hurd CL, Sander SG, Armstrong E, Roleda MY. Copper ecotoxicology of marine algae: a methodological appraisal. Chem Ecol. 2016;32:786–800.CAS
Article
Google Scholar
47.Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. Biovolume calculation for pelagic and benthic microalgae. J Phycol. 1999;35:403–24.Article
Google Scholar
48.Schreiber U. Chlorophyll fluorescence: new instruments for special applications. In: Garab G, editor. Photosynthesis: mechanisms and effects. Springer, Dordrecht: Springer; 1998. pp. 4253–8.49.MacIntyre HL, Cullen JJ. Using cultures to investigate the physiological ecology of microalgae. In Andersen RA, editor. Algal culturing techniques. Burlington, Mass: Elsevier; 2005. p. 287–326.50.Caceres C, Taboada FG, Höfer J, Anadon R. Phytoplankton growth and microzooplankton grazing in the subtropical Northeast Atlantic. Plos ONE. 2013;8:e69159.CAS
PubMed
PubMed Central
Article
Google Scholar
51.R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018. https://www.R-project.org/.52.Ritz C, Baty F, Streibig JC, Gerhard D. Dose-response analysis using R. PloS ONE. 2015;10:e0146021.PubMed
PubMed Central
Article
CAS
Google Scholar
53.Wickham H. ggplot2. WIREs Comp Stat. 2011;3:180–5.54.Pinheiro J, Bates D, DebRoy S, Sarkar D, The R Core Team. nlme: Linear and Nonlinear Mixed Effects Models [Internet]. 2021. Available from: https://CRAN.R-project.org/package=nlme.55.Wolf KK, Romanelli E, Rost B, John U, Collins S, Weigand H, et al. Company matters: the presence of other genotypes alters traits and intraspecific selection in an Arctic diatom under climate change. Glob Change Biol. 2019;25:2869–84.Article
Google Scholar
56.Venuleo M, Raven JA, Giordano M. Intraspecific chemical communication in microalgae. N Phytol. 2017;215:516–30.Article
Google Scholar
57.Esteves-Ferreira AA, Inaba M, Obata T, Fort A, Fleming GT, Araújo WL, et al. A novel mechanism, linked to cell density, largely controls cell division in Synechocystis. Plant Physiol. 2017;174:2166–82.CAS
PubMed
PubMed Central
Article
Google Scholar
58.Gallo C, d’Ippolito G, Nuzzo G, Sardo A, Fontana A. Autoinhibitory sterol sulfates mediate programmed cell death in a bloom-forming marine diatom. Nat Commun. 2017;8:1–11.CAS
Article
Google Scholar
59.Gresham D, Dunham MJ. The enduring utility of continuous culturing in experimental evolution. Genomics. 2014;104:399–405.CAS
PubMed
Article
PubMed Central
Google Scholar
60.Descamps-Julien B, Gonzalez A. Stable coexistence in a fluctuating environment: an experimental demonstration. Ecology. 2005;86:2815–24.Article
Google Scholar
61.Wang NX, Huang B, Xu S, Wei ZB, Miao AJ, Ji R, et al. Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii. Aquat Toxicol. 2014;157:167–74.CAS
PubMed
Article
Google Scholar
62.Lee J-W, Helmann JD. Functional specialization within the Fur family of metalloregulators. BioMetals. 2007;20:485.CAS
PubMed
Article
Google Scholar
63.Reusch TB, Boyd PW. Experimental evolution meets marine phytoplankton. Evolution. 2013;67:1849–59.PubMed
Article
Google Scholar
64.Walworth NG, Zakem EJ, Dunne JP, Collins S, Levine NM. Microbial evolutionary strategies in a dynamic ocean. Proc Natl Acad Sci USA. 2020;117:5943–8.CAS
PubMed
PubMed Central
Article
Google Scholar
65.Schaum C-E, Barton S, Bestion E, Buckling A, Garcia-Carreras B, Lopez P, et al. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nat Ecol Evol. 2017;1:1–7.Article
Google Scholar
66.Collins S, Rost B, Rynearson TA. Evolutionary potential of marine phytoplankton under ocean acidification. Evol Appl. 2014;7:140–55.CAS
PubMed
Article
Google Scholar
67.Rynearson TA, Armbrust EV. Genetic differentiation among populations of the planktonic marine diatom ditylum brightwellii (bacillariophyceae) 1. J Phycol. 2004;40:34–43.Article
Google Scholar
68.Soldo D, Behra R. Long-term effects of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver. Aquat Toxicol. 2000;47:181–9.CAS
Article
Google Scholar
69.Stokes PM. Multiple metal tolerance in copper tolerant green algae. J Plant Nutr. 1981;3:667–78.CAS
Article
Google Scholar
70.Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11:371–84.CAS
PubMed
Article
PubMed Central
Google Scholar
71.Ma J, Zhou B, Chen F, Pan K. How marine diatoms cope with metal challenge: Insights from the morphotype-dependent metal tolerance in Phaeodactylum tricornutum. Ecotoxicol Environ Saf. 2020;208:111715.PubMed
Article
CAS
PubMed Central
Google Scholar
72.Egardt J, Larsen MM, Lassen P, Dahllöf I. Release of PAHs and heavy metals in coastal environments linked to leisure boats. Mar Pollut Bull. 2018;127:664–71.CAS
PubMed
Article
PubMed Central
Google Scholar
73.Falkowski PG, LaRoche J. Acclimation to spectral irradiance in algae. J Phycol. 1991;27:8–14.Article
Google Scholar
74.Beardall J, Young E, Roberts S. Approaches for determining phytoplankton nutrient limitation. Aquat Sci. 2001;63:44–69.CAS
Article
Google Scholar
75.Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, et al. Marine phytoplankton temperature versus growth responses from polar to tropical waters–outcome of a scientific community-wide study. PloS ONE. 2013;8:e63091.CAS
PubMed
PubMed Central
Article
Google Scholar
76.Johnson HL, Stauber JL, Adams MS, Jolley DF. Copper and zinc tolerance of two tropical microalgae after copper acclimation. Environ Toxicol. 2007;22:234–44.CAS
PubMed
Article
PubMed Central
Google Scholar
77.Cid A, Herrero C, Torres E, Abalde J. Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aquat Toxicol. 1995;31:165–74.CAS
Article
Google Scholar
78.Masmoudi S, Nguyen-Deroche N, Caruso A, Ayadi H, Morant-Manceau A, Tremblin G, et al. Cadmium, copper, sodium and zinc effects on diatoms: from heaven to hell—a review. Cryptogam Algol. 2013;34:185–225.Article
Google Scholar More