1.Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–73. https://doi.org/10.1038/nature04514.CAS
Article
PubMed
Google Scholar
2.Stocker TF, et al. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA; 2013.3.Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304:1623–7. https://doi.org/10.1126/science.1097396.CAS
Article
PubMed
Google Scholar
4.Trumbore SE. Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci USA. 1997;94:8284–91. https://doi.org/10.1073/pnas.94.16.8284.CAS
Article
PubMed
PubMed Central
Google Scholar
5.Schlesinger WH, Andrews JA. Soil respiration and the global carbon cycle. Biogeochemistry. 2000;48:7–20. https://doi.org/10.1023/A:1006247623877.CAS
Article
Google Scholar
6.Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol. 2010;8:779–90. https://doi.org/10.1038/nrmicro2439.CAS
Article
PubMed
Google Scholar
7.Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541 https://doi.org/10.1038/ncomms10541.CAS
Article
PubMed
PubMed Central
Google Scholar
8.Liu Y-R, Delgado-Baquerizo M, Wang JT, Hu HW, Yang Z, He JZ. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol Biochem. 2018;118:35–41. https://doi.org/10.1016/j.soilbio.2017.12.003.9.McGuire KL, Treseder KK. Microbial communities and their relevance for ecosystem models: Decomposition as a case study. Soil Biol Biochem. 2010;42:529–35. https://doi.org/10.1016/j.soilbio.2009.11.016.10.Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW. et al. Winter forest soil respiration controlled by climate and microbial community composition. Nature. 2006;439:711–4. https://doi.org/10.1038/nature04555.CAS
Article
PubMed
Google Scholar
11.Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nature Clim Change. 2013;3:909–12. https://doi.org/10.1038/nclimate1951.12.Delgado‐Baquerizo M, Maestre FT, Reich PB, Trivedi P, Osanai Y, Liu YR, et al. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecol Monogr. 2016;86:373–90.Article
Google Scholar
13.Maaroufi NI, Long JR de. Global change impacts on forest soils: linkage between soil biota and carbon-nitrogen-phosphorus stoichiometry. Front For Glob Change. 2020;3. https://doi.org/10.3389/ffgc.2020.00016.14.Gottschall F, Davids S, Newiger-Dous TE, Auge H, Cesarz S, Eisenhauer N. Tree species identity determines wood decomposition via microclimatic effects. Ecol Evol. 2019;9:12113–27. https://doi.org/10.1002/ece3.5665.Article
PubMed
PubMed Central
Google Scholar
15.Durán J, Delgado-Baquerizo M. Vegetation structure determines the spatial variability of soil biodiversity across biomes. Sci Rep. 2020;10:21500. https://doi.org/10.1038/s41598-020-78483-z.CAS
Article
PubMed
PubMed Central
Google Scholar
16.Beugnon R, et al. Abiotic and biotic drivers of scale-dependent tree trait effects on soil microbial biomass and soil carbon concentration (in press).17.Pei Z, Eichenberg D, Bruelheide H, Kröber W, Kühn P, Li Y, et al. Soil and tree species traits both shape soil microbial communities during early growth of Chinese subtropical forests. Soil Biol Biochem. 2016;96:180–90. https://doi.org/10.1016/j.soilbio.2016.02.004.18.Xu S, Eisenhauer N, Ferlian O, Zhang J, Zhou G, Lu X. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity-ecosystem functioning experiments. Proc Biol Sci. 2020;287:20202063. https://doi.org/10.1098/rspb.2020.2063.CAS
Article
PubMed
Google Scholar
19.Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun. 2015;6:6707. https://doi.org/10.1038/ncomms7707.CAS
Article
PubMed
Google Scholar
20.Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA. et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56. https://doi.org/10.1038/nature10386.CAS
Article
PubMed
Google Scholar
21.Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci Rep. 2017;7:44641. https://doi.org/10.1038/srep44641.CAS
Article
PubMed
PubMed Central
Google Scholar
22.Huang Y, Ma Y, Zhao K, Niklaus PA, Schmid B, He JS. Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. J Plant Ecol. 2017;10:28–35. https://doi.org/10.1093/jpe/rtw115.Article
Google Scholar
23.Fornara DA, Tilman D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol. 2008;96:314–22. https://doi.org/10.1111/j.1365-2745.2007.01345.x.CAS
Article
Google Scholar
24.Chen C, Chen HYH, Chen X, Huang Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat Commun. 2019;10:1332. https://doi.org/10.1038/s41467-019-09258-y.CAS
Article
PubMed
PubMed Central
Google Scholar
25.Thoms C, Gattinger A, Jacob M, Thomas FM, Gleixner G. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol Biochem. 2010;42:1558–65. https://doi.org/10.1016/j.soilbio.2010.05.030.CAS
Article
Google Scholar
26.Rousk J, Brookes PC, Bååth E. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol Biochem. 2010;42:926–34. https://doi.org/10.1016/j.soilbio.2010.02.009.27.Miltner A, Bombach P, Schmidt-Brücken B, Kästner M. SOM genesis: microbial biomass as a significant source. Biogeochemistry. 2012;111:41–55. https://doi.org/10.1007/s10533-011-9658-z.CAS
Article
Google Scholar
28.Delgado-Baquerizo M, Reich PB, Khachane AN, Campbell CD, Thomas N, Freitag TE. et al. It is elemental: soil nutrient stoichiometry drives bacterial diversity. Environ Microbiol. 2017;19:1176–88. https://doi.org/10.1111/1462-2920.13642.CAS
Article
PubMed
Google Scholar
29.Fanin N, Barantal S, Fromin N, Schimann H, Schevin P, Hättenschwiler S. Distinct microbial limitations in litter and underlying soil revealed by carbon and nutrient fertilization in a tropical rainforest. PLoS ONE. 2012;7:e49990. https://doi.org/10.1371/journal.pone.0049990.CAS
Article
PubMed
PubMed Central
Google Scholar
30.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7. https://doi.org/10.1126/science.aaf4507.CAS
Article
PubMed
Google Scholar
31.Cao J, Jia X, Pang S, Hu Y, Li Y, Wang Q. Functional structure, taxonomic composition and the dominant assembly processes of soil prokaryotic community along an altitudinal gradient. Appl Soil Ecol. 2020;155:103647. https://doi.org/10.1016/j.apsoil.2020.103647.Article
Google Scholar
32.Bao Y, Guo Z, Chen R, Wu M, Li Z, Lin X. et al. Functional community composition has less environmental variability than taxonomic composition in straw-degrading bacteria. Biol Fertil Soils. 2020;56:869–74. https://doi.org/10.1007/s00374-020-01455-y.CAS
Article
Google Scholar
33.Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 2018;12:2470–8. https://doi.org/10.1038/s41396-018-0158-1.CAS
Article
PubMed
PubMed Central
Google Scholar
34.Kuang J, Huang L, He Z, Chen L, Hua Z, Jia P. et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 2016;10:1527–39. https://doi.org/10.1038/ismej.2015.201.CAS
Article
PubMed
PubMed Central
Google Scholar
35.Jurburg SD, Salles JF. Functional Redundancy and Ecosystem Function—The Soil Microbiota as a Case Study. In: Lo Y-H, Blanco JA, Roy S, editors. Biodiversity in Ecosystems—Linking Structure and Function. Rijeka, Croatia, InTech; 2015.36.Chen Q-L, Ding J, Li CY, Yan ZZ, He JZ, Hu HW. Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Sci Total Environ. 2020;734:139479. https://doi.org/10.1016/j.scitotenv.2020.139479.CAS
Article
PubMed
Google Scholar
37.Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, Jeffries TC. et al. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. ISME J. 2016;10:2593–604. https://doi.org/10.1038/ismej.2016.65.CAS
Article
PubMed
PubMed Central
Google Scholar
38.Hale L, Feng W, Yin H, Guo X, Zhou X, Bracho R. et al. Tundra microbial community taxa and traits predict decomposition parameters of stable, old soil organic carbon. ISME J. 2019;13:2901–15. https://doi.org/10.1038/s41396-019-0485-x.CAS
Article
PubMed
PubMed Central
Google Scholar
39.Chen J, Sinsabaugh RL. Linking microbial functional gene abundance and soil extracellular enzyme activity: Implications for soil carbon dynamics. Glob Change Biol. 2021;27:1322–5. https://doi.org/10.1111/gcb.15506.Article
Google Scholar
40.Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology. Nat Geosci. 2010;3:336–40. https://doi.org/10.1038/ngeo846.41.Eisenhauer N, Bessler H, Engels C, Gleixner G, Habekost M, Milcu A. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology. 2010;91:485–96. https://doi.org/10.1890/08-2338.1.CAS
Article
PubMed
Google Scholar
42.Bonner MT, Shoo LP, Brackin R, Schmidt S. Relationship between microbial composition and substrate use efficiency in a tropical soil. Geoderma. 2018;315:96–103. https://doi.org/10.1016/j.geoderma.2017.11.026.CAS
Article
Google Scholar
43.Bárány A, Szili-Kovács T, Krett G, Füzy A, Márialigeti K, Borsodi AK. Metabolic activity and genetic diversity of microbial communities inhabiting the rhizosphere of halophyton plants. Acta Microbiol Immunol Hung. 2014;61:347–61. https://doi.org/10.1556/AMicr.61.2014.3.8.CAS
Article
PubMed
Google Scholar
44.Chodak M, Klimek B, Niklińska M. Composition and activity of soil microbial communities in different types of temperate forests. Biol Fertil Soils. 2016;52:1093–104. https://doi.org/10.1007/s00374-016-1144-2.CAS
Article
Google Scholar
45.Lagomarsino A, Knapp BA, Moscatelli MC, De Angelis P, Grego S, Insam H. Structural and functional diversity of soil microbes is affected by elevated [CO2] and N addition in a poplar plantation. J Soils Sediments. 2007;7:399–405. https://doi.org/10.1065/jss2007.04.223.46.Crowther TW, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365. https://doi.org/10.1126/science.aav0550.47.Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB. et al. Understanding how microbiomes influence the systems they inhabit. Nat Microbiol. 2018;3:977–82. https://doi.org/10.1038/s41564-018-0201-z.CAS
Article
PubMed
Google Scholar
48.Malik AA, Martiny J, Brodie EL, Martiny AC, Treseder KK, Allison SD. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:1–9. https://doi.org/10.1038/s41396-019-0510-0.CAS
Article
PubMed
Google Scholar
49.Sainte-Marie J, Barrandon M, Saint-André L, Gelhaye E, Martin F, Derrien D. C-STABILITY an innovative modeling framework to leverage the continuous representation of organic matter. Nat Commun. 2021;12:810. https://doi.org/10.1038/s41467-021-21079-6.CAS
Article
PubMed
PubMed Central
Google Scholar
50.Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F. et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical C hina. Methods Ecol Evol. 2014;5:74–89. https://doi.org/10.1111/2041-210X.12126.Article
Google Scholar
51.Yu G, Chen Z, Piao S, Peng C, Ciais P, Wang Q. et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc Natl Acad Sci USA. 2014;111:4910–5. https://doi.org/10.1073/pnas.1317065111.CAS
Article
PubMed
PubMed Central
Google Scholar
52.Bradstreet RB. Determination of Nitro Nitrogen by Kjeldahl Method. Anal Chem. 1954;26:235–6.CAS
Article
Google Scholar
53.Frostegård Å, Tunlid A, Bååth E. Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Methods. 1991;14:151–63. https://doi.org/10.1016/0167-7012(91)90018-L.54.Ruess L, Chamberlain PM. The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol Biochem. 2010;42:1898–910. https://doi.org/10.1016/j.soilbio.2010.07.020.55.Scheu S. Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biol Biochem. 1992;24:1113–8. https://doi.org/10.1016/0038-0717(92)90061-2.Article
Google Scholar
56.Schöps R, Goldmann K, Herz K, Lentendu G, Schöning I, Bruelheide H. et al. Land-use intensity rather than plant functional identity shapes bacterial and fungal rhizosphere communities. Front Microbiol. 2018;9:2711. https://doi.org/10.3389/fmicb.2018.02711.Article
PubMed
PubMed Central
Google Scholar
57.Nawaz A, et al. DNA- and RNA- Derived Fungal Communities in Subsurface Aquifers Only Partly Overlap but React Similarly to Environmental Factors. Microorganisms. 2019;7. https://doi.org/10.3390/microorganisms7090341.58.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. https://doi.org/10.1038/s41587-019-0209-9.CAS
Article
PubMed
PubMed Central
Google Scholar
59.Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 2011;17:10. https://doi.org/10.14806/ej.17.1.200.60.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.CAS
Article
PubMed
PubMed Central
Google Scholar
61.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. https://doi.org/10.1371/journal.pone.0061217.CAS
Article
PubMed
PubMed Central
Google Scholar
62.Lahti L, Shetty S, Blake T, Salojarvi J. Microbiome R package. Tools Microbiome Anal R. 2017;1:504.63.Liang Y, Liu X, Singletary MA, Wang K, Mattes TE. Relationships between the Abundance and Expression of Functional Genes from Vinyl Chloride (VC)-Degrading Bacteria and Geochemical Parameters at VC-Contaminated Sites. Environ Sci Technol. 2017;51:12164–74. https://doi.org/10.1021/acs.est.7b03521.CAS
Article
PubMed
Google Scholar
64.Zheng B, Zhu Y, Sardans J, Peñuelas J, Su J. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci China Life Sci. 2018;61:1451–62. https://doi.org/10.1007/s11427-018-9364-7.CAS
Article
PubMed
Google Scholar
65.Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol. 2003;69:3593–9. https://doi.org/10.1128/aem.69.6.3593-3599.2003.CAS
Article
PubMed
PubMed Central
Google Scholar
66.Rosseel Y. Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA). J Stat Softw. 2012;48:1–36.Article
Google Scholar
67.Paterson E, Osler G, Dawson LA, Gebbing T, Sim A, Ord B. Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: Independent of the presence of roots and mycorrhizal fungi. Soil Biol Biochem. 2008;40:1103–13. https://doi.org/10.1016/j.soilbio.2007.12.003.68.Kramer S, Dibbern D, Moll J, Huenninghaus M, Koller R, Krueger D. et al. Resource Partitioning between Bacteria, Fungi, and Protists in the Detritusphere of an Agricultural Soil. Front Microbiol. 2016;7:1524. https://doi.org/10.3389/fmicb.2016.01524.Article
PubMed
PubMed Central
Google Scholar
69.Berg B. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecol Manag. 2000;133:13–22. https://doi.org/10.1016/S0378-1127(99)00294-7.Article
Google Scholar
70.Moretto AS, Distel RA, Didoné NG. Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Appl Soil Ecol. 2001;18:31–7. https://doi.org/10.1016/S0929-1393(01)00151-2.Article
Google Scholar
71.Kyker-Snowman E, Wieder WR, Frey SD, Grandy AS. Stoichiometrically coupled carbon and nitrogen cycling in the MIcrobial-MIneral Carbon Stabilization model version 1.0 (MIMICS-CN v1.0). Geosci Model Dev. 2020;13:4413–34. https://doi.org/10.5194/gmd-13-4413-2020.CAS
Article
Google Scholar
72.Buckeridge KM, Mason KE, McNamara NP, Ostle N, Puissant J, Goodall T. et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun Earth Environ. 2020;1:36. https://doi.org/10.1038/s43247-020-00031-4.Article
Google Scholar
73.Cesarz S, Craven D, Auge H, Bruelheide H, Castagneyrol B, Hector A, et al.. Biotic and abiotic drivers of soil microbial functions across tree diversity experiments. bioRXiv 2020. https://doi.org/10.1101/2020.01.30.927277.74.Tedersoo L, Bahram M, Cajthaml T, Põlme S, Hiiesalu I, Anslan S. et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J. 2016;10:346–62. https://doi.org/10.1038/ismej.2015.116.CAS
Article
PubMed
Google Scholar
75.Huang Y, Chen Y, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science. 2018;362:80–3. https://doi.org/10.1126/science.aat6405.CAS
Article
PubMed
Google Scholar
76.Chapman SK, Newman GS, Hart SC, Schweitzer JA, Koch GW. Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition. PLoS ONE. 2013;8:e62671. https://doi.org/10.1371/journal.pone.0062671.CAS
Article
PubMed
PubMed Central
Google Scholar
77.Eisenhauer N, Dobies T, Cesarz S, Hobbie SE, Meyer RJ, Worm K. et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc Natl Acad Sci USA. 2013;110:6889–94. https://doi.org/10.1073/pnas.1217382110.Article
PubMed
PubMed Central
Google Scholar
78.Brandt BW, Kelpin FDL, van Leeuwen IMM, Kooijman SALM. Modelling microbial adaptation to changing availability of substrates. Water Res. 2004;38:1003–13. https://doi.org/10.1016/j.watres.2003.09.037.CAS
Article
PubMed
Google Scholar
79.Hooper DU, BIGNELL DE, BROWN VK, BRUSSARD L, MARK DANGERFIELD J, WALL DH, et al. Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems: Patterns, Mechanisms, and Feedbacks. BioScience. 2000;50:1049.Article
Google Scholar
80.Domke GM, Oswalt SN, Walters BF, Morin RS. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc Natl Acad Sci USA. 2020;117:24649–51. https://doi.org/10.1073/pnas.2010840117.CAS
Article
PubMed
PubMed Central
Google Scholar
81.Tong X, Brandt M, Yue Y, Ciais P, Rudbeck Jepsen M, Penuelas J. et al. Forest management in southern China generates short term extensive carbon sequestration. Nat Commun. 2020;11:129. https://doi.org/10.1038/s41467-019-13798-8.CAS
Article
PubMed
PubMed Central
Google Scholar
82.Veldkamp E, Schmidt M, Powers JS, Corre MD. Deforestation and reforestation impacts on soils in the tropics. Nat Rev Earth Environ. 2020;1:590–605. https://doi.org/10.1038/s43017-020-0091-5.Article
Google Scholar
83.Lewis SL, Wheeler CE, Mitchard ETA, Koch A. Restoring natural forests is the best way to remove atmospheric carbon. Nature. 2019;568:25–8. https://doi.org/10.1038/d41586-019-01026-8.CAS
Article
PubMed
Google Scholar More