More stories

  • in

    Novel and disappearing climates in the global surface ocean from 1800 to 2100

    1.IPCC. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).
    Google Scholar 
    2.Dunne, J. P. et al. GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: Carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).Article 
    ADS 

    Google Scholar 
    3.Jiang, L.-Q., Carter, B. R., Feely, R. A., Lauvset, S. K. & Olsen, A. Surface ocean pH and buffer capacity: Past, present and future. Nat. Sci. Rep. 9, 18624 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    4.Caldeira, K. & Wickett, M. E. Oceanography: Anthropogenic carbon and ocean pH. Nature 425, 365–365 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    5.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    6.Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 
    7.Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. U. S. A. 104, 5738–5742 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    8.Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).Article 

    Google Scholar 
    9.Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).PubMed 
    Article 

    Google Scholar 
    10.Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).Article 
    ADS 

    Google Scholar 
    11.Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    12.Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Bell, G. & Collins, S. Adaptation, extinction and global change. Evol. Appl. 1, 3–16 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Lancaster, L. T., Morrison, G. & Fitt, R. N. Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 20160046 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    16.Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Change 8, 499–503 (2018).Article 
    ADS 

    Google Scholar 
    17.Turk, D. et al. Time of emergence of surface ocean carbon dioxide trends in the North American coastal margins in support of ocean acidification observing system design. Front. Mar. Sci. 6, 91 (2019).Article 

    Google Scholar 
    18.Jiang, L.-Q. et al. Climatological distribution of aragonite saturation state in the global oceans. Global Biogeochem. Cycles 29, 1656–1673 (2015).CAS 
    Article 
    ADS 

    Google Scholar 
    19.Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    20.Feely, R. A., Doney, S. C. & Cooley, S. R. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22, 36–47 (2009).Article 

    Google Scholar 
    21.Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    22.Allen, A. P., Brown, J. H. & Gillooly, J. F. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297, 1545–1548 (2002).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    23.Donner, S. D. Coping with commitment: Projected thermal stress on coral reefs under different future scenarios. PLoS ONE 4, e5712 (2009).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    24.Walsh, P. J. & Louise Milligan, C. Coordination of metabolism and intracellular acid–base status: Ionic regulation and metabolic consequences. Can. J. Zool. 67, 2994–3004 (1989).CAS 
    Article 

    Google Scholar 
    25.Nilsson, G. E. et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat. Clim. Change 2, 201–204 (2012).CAS 
    Article 
    ADS 

    Google Scholar 
    26.Clark, T. D. et al. Ocean acidification does not impair the behaviour of coral reef fishes. Nature 577, 370–375 (2020).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    27.Waldbusser, G. G. et al. A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity. Geophys. Res. Lett. 40, 2171–2176 (2013).CAS 
    Article 
    ADS 

    Google Scholar 
    28.Waldbusser, G. G. et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2015).CAS 
    Article 
    ADS 

    Google Scholar 
    29.Dunne, J. P. et al. GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).Article 
    ADS 

    Google Scholar 
    30.Mahony, C. R., Cannon, A. J., Wang, T. & Aitken, S. N. A closer look at novel climates: New methods and insights at continental to landscape scales. Glob. Change Biol. https://doi.org/10.1111/gcb.13645 (2017).Article 

    Google Scholar 
    31.Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    32.Sanderson, B. M., O’Neill, B. C. & Tebaldi, C. What would it take to achieve the Paris temperature targets?. Geophys. Res. Lett. 43, 7133–7142 (2016).Article 
    ADS 

    Google Scholar 
    33.Friedlingstein, P. et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 7, 709–715 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    34.Steele, J. H., Brink, K. H. & Scott, B. E. Comparison of marine and terrestrial ecosystems: Suggestions of an evolutionary perspective influenced by environmental variation. ICES J. Mar. Sci. 76, 50–59 (2019).Article 

    Google Scholar 
    35.Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Kelly, M. W. & Hofmann, G. E. Adaptation and the physiology of ocean acidification. Funct. Ecol. 27, 980–990 (2013).Article 

    Google Scholar 
    37.Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    39.Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
    Google Scholar 
    40.Donelson, J. M., Salinas, S., Munday, P. L. & Shama, L. N. S. Transgenerational plasticity and climate change experiments: Where do we go from here?. Glob. Change Biol. 24, 13–34 (2018).Article 
    ADS 

    Google Scholar 
    41.Ross, P. M., Parker, L. & Byrne, M. Transgenerational responses of molluscs and echinoderms to changing ocean conditions. ICES J. Mar. Sci. 73, 537–549 (2016).Article 

    Google Scholar 
    42.Eirin-Lopez, J. M. & Putnam, H. M. Marine environmental epigenetics. Ann. Rev. Mar. Sci. 11, 335–368 (2019).PubMed 
    Article 

    Google Scholar 
    43.Baumann, H. & Smith, E. M. Quantifying metabolically driven pH and oxygen fluctuations in US nearshore habitats at diel to interannual time scales. Estuaries Coasts 41, 1102–1117 (2018).CAS 
    Article 

    Google Scholar 
    44.Chan, F. et al. Persistent spatial structuring of coastal ocean acidification in the California Current System. Sci. Rep. 7, 1–7 (2017).Article 
    CAS 

    Google Scholar 
    45.Steinacher, M. et al. Projected 21st century decrease in marine productivity: A multi-model analysis. Biogeosciences 7, 27 (2010).Article 

    Google Scholar 
    46.Gruber, N. Warming up, turning sour, losing breath: Ocean biogeochemistry under global change. Philos. Trans. A Math. Phys. Eng. Sci. 369, 1980–1996 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    47.Wang, D., Gouhier, T. C., Menge, B. A. & Ganguly, A. R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    48.Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    49.Bopp, L. et al. Potential impact of climate change on marine export production. Global Biogeochem. Cycles 15, 81–99 (2001).CAS 
    Article 
    ADS 

    Google Scholar 
    50.Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. U. S. A. 105, 15452–15457 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    52.Curry, R., Dickson, B. & Yashayaev, I. A change in the freshwater balance of the Atlantic Ocean over the past four decades. Nature 426, 826–829 (2003).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    53.Briggs, J. C. Marine centres of origin as evolutionary engines. J. Biogeogr. 30, 1–18 (2003).Article 

    Google Scholar 
    54.Bowen, B. W., Rocha, L. A., Toonen, R. J., Karl, S. A. & ToBo Laboratory. The origins of tropical marine biodiversity. Trends Ecol. Evol. 28, 359–366 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Burke, L. M., Reytar, K., Spalding, M. & Perry, A. Reefs at Risk Revisited in the Coral Triangle (World Resources Institute, 2012).
    Google Scholar 
    56.Boyd, P. W., Lennartz, S. T., Glover, D. M. & Doney, S. C. Biological ramifications of climate-change-mediated oceanic multi-stressors. Nat. Clim. Chang. 5, 71 (2014).Article 
    ADS 

    Google Scholar 
    57.Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    58.Bakker, D. C. E. et al. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 8, 383–413 (2016).Article 
    ADS 

    Google Scholar 
    59.Lauvset, S. K. et al. A new global interior ocean mapped climatology: The 1 × 1 GLODAP version 2. Earth Syst. Sci. Data 8, 325–340 (2016).Article 
    ADS 

    Google Scholar 
    60.Carter, B. R. et al. Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate. Limnol. Oceanogr. Methods 16, 119–131 (2017).Article 
    CAS 

    Google Scholar 
    61.Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).CAS 
    Article 

    Google Scholar 
    62.Dickson, A. G. Standard potential of the reaction: AgCl (s) + 12H2 (g) = Ag (s) + HCl (aq), and and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).CAS 
    Article 

    Google Scholar 
    63.Perez, F. F. & Fraga, F. Association constant of fluoride and hydrogen ions in seawater. Mar. Chem. 21, 161–168 (1987).CAS 
    Article 

    Google Scholar 
    64.Uppström, L. R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161–162 (1974).Article 
    ADS 

    Google Scholar 
    65.van Heuven, S. et al. MATLAB Program Developed for CO2 System Calculations (Carbon Dioxide Information Analysis Center, 2011). https://doi.org/10.3334/cdiac/otg.co2sys_matlab_v1.1Book 

    Google Scholar 
    66.Lewis, E., Wallace, D. & Allison, L. J. Program Developed for CO2 System Calculations (ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U. S. Department of Energy, 1998). https://doi.org/10.2172/63971267.Orr, J. C., Epitalon, J.-M., Dickson, A. G. & Gattuso, J.-P. Routine uncertainty propagation for the marine carbon dioxide system. Mar. Chem. 207, 84–107 (2018).CAS 
    Article 

    Google Scholar 
    68.IPCC. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014).
    Google Scholar 
    69.NOAA. Extended Reconstructed Sea Surface Temperature (ERSST.v5) (National Centers for Environmental Information, 2017). www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst70.Takahashi, T. et al. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Mar. Chem. 164, 95–125 (2014).CAS 
    Article 

    Google Scholar 
    71.Locarnini, R. A. et al. World Ocean Atlas 2013, Volume 1: Temperature (NOAA Atlas NESDIS 73, 2013).
    Google Scholar 
    72.Barth, A., Beckers, J.-M., Troupin, C., Alvera-Azcárate, A. & Vandenbulcke, L. Divand-1.0: n-dimensional variational data analysis for ocean observations. Geosci. Model Dev. 7, 225–241 (2014).Article 
    ADS 

    Google Scholar 
    73.HOTS, station ALOHA. HOTS (Hawaii Ocean Time Series), station ALOHA. http://hahana.soest.hawaii.edu/hot/hot-dogs/bextraction.html (2018).74.UNH_CML. CML (University of New Hampshire Coastal Marine Laboratory), Salisbury, J. UNH CML Station—Coastal Marine Laboratory. http://www.neracoos.org/erddap/tabledap/UNH_CML.html (2019).75.BBH. BBH (Boothbay Harbor) Sea Water Temperature Record in Maine. https://www.maine.gov/dmr/science-research/weather-tides/bbhenv.html (2019).76.Sutton, A. J. et al. High-Resolution Ocean and Atmosphere pCO2 Time-Series Measurements from Mooring NH_70W_43N (NCEI Accession 0115402). (NOAA (National Oceanic and Atmospheric Administration) National Centers for Environmental Information, 2014). https://www.nodc.noaa.gov/archive/arc0062/0115402/8.8/data/0-data/ More

  • in

    Predation by avian predators may have initiated the evolution of myrmecomorph spiders

    1.McIver, D. J. & Stonedahl, G. Myrmecomorphy: Morphological and behavioral mimicry of ants. Annual Rev. Entomol. 38, 351–377. https://doi.org/10.1146/annurev.en.38.010193.002031 (1993).Article 

    Google Scholar 
    2.Cushing, P. E. Spider-ant associations: An updated review of myrmecomorphy, myrmecophily, and myrmecophagy in spiders. Psyche 2012, 151989. https://doi.org/10.1155/2012/151989 (2012).Article 

    Google Scholar 
    3.Jackson, R. R., Nelson, X. J. & Salm, K. The natural history of Myrmarachne melanotarsa, a social ant-mimicking jumping spider. N. Z. J. Zool. 35, 225–235. https://doi.org/10.1080/03014220809510118 (2008).Article 

    Google Scholar 
    4.Nelson, J. X., Jackson, R. R., Li, D., Barrion, T. A. & Edwards, B. G. Innate aversion to ants (Hymenoptera: Formicidae) and ant mimics: Experimental findings from mantises (Mantodea). Biol. J. Linnean Soc. 88, 23–32. https://doi.org/10.1111/j.1095-8312.2006.00598.x (2006).Article 

    Google Scholar 
    5.Pekár, S. & Jarab, M. Life-history constraints in inaccurate Batesian myrmecomorphic spiders (Araneae: Corinnidae, Gnaphosidae). Eur. J. Entomol. 108, 255–260. https://doi.org/10.14411/eje.2011.034 (2011).Article 

    Google Scholar 
    6.Pekár, S. & Jarab, M. Assessment of color and behavioral resemblance to models by inaccurate myrmecomorphic spiders (Araneae). Invertebr. Biol. 130, 83–90. https://doi.org/10.1111/j.1744-7410.2010.00217.x (2011).Article 

    Google Scholar 
    7.Pekár, S. & Král, J. Mimicry complex in two central European zodariid spiders (Araneae: Zodariidae): How Zodarion deceives ants. Biol. J. Linnean Soc. 75, 517–532. https://doi.org/10.1046/j.1095-8312.2002.00043.x (2002).Article 

    Google Scholar 
    8.Hölldobler, B. Communication between ants and their guests. Sci. Am. 224, 86–95 (1971).Article 

    Google Scholar 
    9.Jackson, R. R. & Wilcox, R. S. Aggressive mimicry, prey-specific predatory behaviour and predator recognition in the predator-prey interactions of Portia fimbriata and Euryattus sp., jumping spiders from Queensland. Behav. Ecol. Sociobiol. 26, 111–119. https://doi.org/10.1007/BF00171580 (1990).Article 

    Google Scholar 
    10.Hölldobler, B. Host finding by odor in the myrmecophilic beetle Atemeles pubicollis Bris. (Staphylinidae). Science 166, 757–758. https://doi.org/10.1126/science.166.3906.757 (1969).ADS 
    Article 
    PubMed 

    Google Scholar 
    11.Elgar, A. M. & Allan, A. R. Chemical mimicry of the ant Oecophylla smaragdina by the myrmecophilous spider Cosmophasis bitaeniata: Is it colony-specific?. J. Ethol. 24, 239–246. https://doi.org/10.1007/s10164-005-0188-9 (2006).Article 

    Google Scholar 
    12.von Beeren, C., Hashim, R. & Witte, V. The social integration of a myrmecophilous spider does not depend exclusively on chemical mimicry. J. Chem. Ecol. 38, 262–271. https://doi.org/10.1007/s10886-012-0083-0 (2012).CAS 
    Article 

    Google Scholar 
    13.Nelson, X. J. & Jackson, R. R. Vision-based innate aversion to ants and ant mimics. Behav. Ecol. 17, 676–681. https://doi.org/10.1093/beheco/ark017 (2006).Article 

    Google Scholar 
    14.Edmunds, M. Does mimicry of ants reduce predation by wasps on salticid spiders?. Mem. Queensl. Mus. 33, 23–32 (1993).
    Google Scholar 
    15.Huang, J. N., Cheng, R. C., Li, D. & Tso, I. M. Salticid predation as one potential driving force of ant mimicry in jumping spiders. Proc. R. Soc. B 278, 1356–1364. https://doi.org/10.1098/rspb.2010.1896 (2011).Article 
    PubMed 

    Google Scholar 
    16.Lindström, L. Experimental approaches to studying the initial evolution of conspicuous aposematic signalling. Evol. Ecol. 13, 605–618. https://doi.org/10.1023/A:1011004129607 (1999).Article 

    Google Scholar 
    17.Ruxton, G. D., Allen, W. L., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry (Oxford University Press, 2019).
    Google Scholar 
    18.Veselý, P. & Fuchs, R. Newly emerged Batesian mimicry protects only unfamiliar prey. Evol. Ecol. 23, 919–929. https://doi.org/10.1007/s10682-008-9281-1 (2009).Article 

    Google Scholar 
    19.Nelson, X. J. & Jackson, R. R. Collective Batesian mimicry of ant groups by aggregating spiders. Anim. Behav. 78, 123–129. https://doi.org/10.1016/j.anbehav.2009.04.005 (2009).Article 

    Google Scholar 
    20.Cramp, S. & Brooks, D. J. Handbook of the Birds of Europe, the Middle East and North Africa. The Birds of the Western Palearctic. Warbles Vol. VI (Oxford University Press, 1992).
    Google Scholar 
    21.Cramp, S. & Perrins, C. M. Handbook of the Birds of Europe, the Middle East and North Africa. The Birds of the Western Palearctic. Flycatchers to Shrikes Vol. VII (Oxford University Press, 1993).
    Google Scholar 
    22.Cramp, S. & Simmons, K. E. L. Handbook of the Birds of Europe, the Middle East and North Africa: The Birds of the Western Palearctic. Terns to woodpeckers Vol. IV (Oxford University Press, 1985).
    Google Scholar 
    23.Cramp, S., Perrins, C. M. & Brooks, D. J. Handbook of the birds of Europe, the Middle East, and North Africa: The birds of the Western Palearctic. Crows to finches Vol. VIII (Oxford University Press, 1994).
    Google Scholar 
    24.Veselý, P., Luhanová, D., Prášková, M. & Fuchs, R. Generalization of mimics imperfect in colour patterns: The point of view of wild avian predators. Ethology 119, 138–145. https://doi.org/10.1111/j.1095-8312.2010.01463.x (2013).Article 

    Google Scholar 
    25.Průchová, A., Nedvěd, O., Veselý, P., Ernestová, B. & Fuchs, R. Visual warning signals of the ladybird Harmonia axyridis: The avian predators’ point of view. Entomol. Exp. Appl. 151, 128–134. https://doi.org/10.1111/eea.12176 (2014).Article 

    Google Scholar 
    26.Kevan, P. G., Chittka, L. & Dyer, A. G. Limits to the salience of ultraviolet: Lessons from colour vision in bees and birds. J. Exp. Biol. 204, 2571–2580 (2001).CAS 
    Article 

    Google Scholar 
    27.Pekár, S., Petráková, L., Bulbert, M. W., Whiting, M. J. & Herberstein, M. E. The golden mimicry complex uses a wide spectrum of defence to deter a community of predators. Elife 6, e22089. https://doi.org/10.7554/eLife.22089 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Uma, D., Durkee, C., Herzner, G. & Weiss, M. Double deception: Ant-mimicking spiders elude both visually-and chemically-oriented predators. PLoS ONE 8, e79660. https://doi.org/10.1371/journal.pone.0079660 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Lindström, L., Alatalo, R. V., Lyytinen, A. & Mappes, J. The effect of alternative prey on the dynamics of imperfect Batesian and Müllerian mimicries. Evolution 58, 1294–1302. https://doi.org/10.1111/j.0014-3820.2004.tb01708.x (2004).Article 
    PubMed 

    Google Scholar 
    30.McNab, B. K. Physiological convergence amongst ant-eating and termite-eating mammals. J. Zool. Lond. 203, 485–510. https://doi.org/10.1111/j.1469-7998.1984.tb02345.x (1984).Article 

    Google Scholar 
    31.Naef-Daenzer, L., Naef-Daenzer, B. & Nager, R. G. Prey selection and foraging performance of breeding Great Tits Parus major in relation to food availability. J. Avian Biol. 31, 206–214. https://doi.org/10.1034/j.1600-048X.2000.310212.x (2000).Article 

    Google Scholar 
    32.Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. 40, 135–145. https://doi.org/10.1111/j.1600-048X.2009.04362.x (2009).Article 

    Google Scholar 
    33.Svádová, K. et al. Role of different colours of aposematic insects in learning, memory and generalization of naïve bird predators. Anim. Behav. 77, 327–336. https://doi.org/10.1016/j.anbehav.2008.09.034 (2009).Article 

    Google Scholar 
    34.Sendoya, S. F., Freitas, A. V. & Oliveira, P. S. Egg-laying butterflies distinguish predaceous ants by sight. Am. Nat. 174, 134–140. https://doi.org/10.1086/599302 (2009).Article 
    PubMed 

    Google Scholar 
    35.Exnerová, A. et al. Different reactions to aposematic prey in 2 geographically distant populations of great tits. Behav. Ecol. 26, 1361–1370. https://doi.org/10.1093/beheco/arv086 (2015).Article 

    Google Scholar 
    36.Harrap, S. & Quinn, D. Chickadees, Tits, Nuthatches & Treecreepers (Princeton University Press, 1995).
    Google Scholar 
    37.Pagani-Núñez, E., Ruiz, Í., Quesada, J., Negro, J. J. & Senar, J. C. The diet of Great Tit Parus major nestlings in a Mediterranean Iberian forest: The important role of spiders. Anim. Biodivers. Conserv. 34, 355–361 (2011).
    Google Scholar 
    38.Exnerová, A. et al. Reactions of passerine birds to aposematic and non-aposematic firebugs (Pyrrhocoris apterus; Heteroptera). Biol. J. Linnean Soc. 78, 517–525. https://doi.org/10.1046/j.0024-4066.2002.00161.x (2003).Article 

    Google Scholar 
    39.Exnerová, A. et al. Importance of colour in the reaction of passerine predators to aposematic prey: Experiments with mutants of Pyrrhocoris apterus (Heteroptera). Biol. J. Linnean Soc. 88, 143–153. https://doi.org/10.1111/j.1095-8312.2006.00611.x (2006).Article 

    Google Scholar 
    40.Cibulková, A., Veselý, P. & Fuchs, R. Importance of conspicuous colours in warning signals: The great tit’s (Parus major) point of view. Evol. Ecol. 28, 427–439. https://doi.org/10.1007/s10682-014-9690-2 (2014).Article 

    Google Scholar 
    41.Prokopová, M., Veselý, P., Fuchs, R. & Zrzavý, J. The role of size and colour pattern in protection of developmental stages of the red firebug (Pyrrhocoris apterus) against avian predators. Biol. J. Linnean Soc. 100, 890–898. https://doi.org/10.1111/j.1095-8312.2010.01463.x (2010).Article 

    Google Scholar 
    42.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org.43.Yamasaki, T. Studies on taxonomy, biogeography and mimicry of the genus Myrmarachne in Southeast Asia. Acta Arachnol. 64, 49–56 (2015).Article 

    Google Scholar 
    44.Nelson, X. J. & Jackson, R. R. How spiders practice aggressive and Batesian mimicry. Curr. Zool. 58, 620–629. https://doi.org/10.1093/czoolo/58.4.620 (2012).Article 

    Google Scholar  More

  • in

    Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification

    1.Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).Article 
    CAS 

    Google Scholar 
    2.Bindoff, N. L. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 447–588 (IPCC, 2019).3.Pörtner, H.-O. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 35–74 (IPCC, 2019).4.Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).CAS 
    Article 

    Google Scholar 
    5.Cai, W. J. et al. Acidification of subsurface coastal waters enhanced by eutrophication. Nat. Geosci. 4, 766–770 (2011).CAS 
    Article 

    Google Scholar 
    6.Wallace, R. B., Baumann, H., Grear, J. S., Aller, R. C. & Gobler, C. J. Coastal ocean acidification: the other eutrophication problem. Estuar. Coast. Shelf Sci. 148, 1–13 (2014).CAS 
    Article 

    Google Scholar 
    7.Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).Article 

    Google Scholar 
    8.Schlichting, C. D. & Pigliucci, M. Phenotypic Evolution: A Reaction Norm Perspective (Sinauer Associates, 1998).9.Kelly, M. W. & Hofmann, G. E. Adaptation and the physiology of ocean acidification. Funct. Ecol. 27, 980–990 (2013).Article 

    Google Scholar 
    10.Pespeni, M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl Acad. Sci. USA 110, 6937–6942 (2013).CAS 
    Article 

    Google Scholar 
    11.Thor, P. & Dupont, S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob. Change Biol. 21, 2261–2271 (2015).Article 

    Google Scholar 
    12.Donelson, J. M., Salinas, S., Munday, P. L. & Shama, L. N. S. Transgenerational plasticity and climate change experiments: where do we go from here? Glob. Change Biol. 24, 13–34 (2018).Article 

    Google Scholar 
    13.Chevin, L. M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).Article 
    CAS 

    Google Scholar 
    14.Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).15.Byrne, M. in Oceanography and Marine Biology: An Annual Review Vol. 49 (eds Gibson, R. N. et al.) Ch. 1 (CRC Press, 2011).16.Whiteley, N. M. Physiological and ecological responses of crustaceans to ocean acidification. Mar. Ecol. Prog. Ser. 430, 257–271 (2011).CAS 
    Article 

    Google Scholar 
    17.Cripps, G., Lindeque, P. & Flynn, K. J. Have we been underestimating the effects of ocean acidification in zooplankton? Glob. Change Biol. 20, 3377–3385 (2014).Article 

    Google Scholar 
    18.Baumann, H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can. J. Zool. 97, 399–408 (2019).Article 

    Google Scholar 
    19.Gibbin, E. M. et al. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? J. Exp. Biol. 220, 551–563 (2017).
    Google Scholar 
    20.Gibbin, E. M., Massamba N’Siala, G., Chakravarti, L. J., Jarrold, M. D. & Calosi, P. The evolution of phenotypic plasticity under global change. Sci. Rep. 7, 17253 (2017).Article 
    CAS 

    Google Scholar 
    21.Gonzalez, A., Ophelie, R., Ferriere, R. & Hochberg, M. E. Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. Philos. Trans. R. Soc. Lond. B 368, 20120404 (2012).Article 

    Google Scholar 
    22.Bell, G. & Gonzalez, A. Evolutionary rescue can prevent extinction following environmental change. Ecol. Lett. 12, 942–948 (2009).Article 

    Google Scholar 
    23.Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).Article 

    Google Scholar 
    24.Hardy, A. The Open Sea: The World of Plankton (Fontana Collins, 1970).25.Huys, R. & Boxshall, G. A. Copepod Evolution (The Ray Society, 1991).26.Beaugrand, G. & Reid, P. C. Long-term changes in phytoplankton, zooplankton and salmon related to climate. Glob. Change Biol. 9, 801–817 (2003).Article 

    Google Scholar 
    27.Möllmann, C., Müller-Karulis, B., Kornilovs, G. & St John, M. A. Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES J. Mar. Sci. 65, 302–310 (2008).Article 

    Google Scholar 
    28.Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Annu. Rev. Mar. Sci. 9, 413–444 (2017).Article 

    Google Scholar 
    29.Mauchline, J. (ed.) The Biology of Calanoid Copepods (Academic Press, 1998).30.Turner, J. T. The Feeding Ecology of Some Zooplankters That Are Important Prey Items of Larval Fish. NOAA NMFS Technical Report (1984).31.Rice, E., Dam, H. G. & Stewart, G. Impact of climate change on estuarine zooplankton: surface water warming in Long Island Sound is associated with changes in copepod size and community structure. Estuaries Coast 38, 13–23 (2015).Article 

    Google Scholar 
    32.Gobler, C. J. & Baumann, H. Hypoxia and acidification in marine ecosystems: coupled dynamics and effects on ocean life. Biol. Lett. 12, 20150976 (2016).Article 
    CAS 

    Google Scholar 
    33.Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. Lond. B 283, 20152592 (2016).
    Google Scholar 
    34.Burt, A. Perspective: the evolution of fitness. Evolution 49, 1–8 (1995).
    Google Scholar 
    35.Hendry, A. P. & Gonzalez, A. Whither adaptation? Biol. Philos. 23, 673–699 (2008).Article 

    Google Scholar 
    36.Arnold, S. J., Pfrender, M. E. & Jones, A. G. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112–113, 9–32 (2001).Article 

    Google Scholar 
    37.Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation (Sinauer Associates, 2001).38.Sasaki, M. C. & Dam, H. G. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Glob. Change Biol. 25, 4147–4164 (2019).Article 

    Google Scholar 
    39.Luikart, G., England, P. R., Tallmon, D., Jordan, S. & Taberlet, P. The power and promise of population genomics: from genotyping to genome typing. Nat. Rev. Genet. 4, 981–994 (2003).CAS 
    Article 

    Google Scholar 
    40.Black, W. C. IV, Baer, C. F., Antolin, M. F. & DuTeau, N. M. Population genomics: genome-wide sampling of insect populations. Annu. Rev. Entomol. 46, 441–469 (2001).CAS 
    Article 

    Google Scholar 
    41.Brennan, R. et al. Loss and recovery of transcriptional plasticity after long-term adaptation to global change conditions in a marine copepod. Preprint at bioRxiv https://doi.org/10.1101/2020.01.29.925396 (2020).42.Kingsolver, J. G. & Pfennig, D. W. Patterns and power of phenotypic selection in nature. Bioscience 57, 561–572 (2007).Article 

    Google Scholar 
    43.Crespi, B. J. & Bookstein, F. L. A path-analytic model for the measurement of selection on morphology. Evolution 43, 18–28 (1989).Article 

    Google Scholar 
    44.Pigliucci, M. & Kaplan, J. Making Sense of Evolution (Univ. Chicago Press, 2006); https://doi.org/10.7208/chicago/9780226668352.001.000145.Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).Article 

    Google Scholar 
    46.Riebesell, U. & Gattuso, J. Lessons learned from ocean acidification research. Nat. Clim. Change 5, 2014–2016 (2015).Article 
    CAS 

    Google Scholar 
    47.Langer, J. A. F., Meunier, C. L., Ecker, U. & Horn, H. G. Acclimation and adaptation of the coastal calanoid copepod Acartia tonsa to ocean acidification: a long-term laboratory investigation. Mar. Ecol. Prog. Ser. 619, 35–51 (2019).CAS 
    Article 

    Google Scholar 
    48.De Wit, P., Dupont, S. & Thor, P. Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes. Evol. Appl. 9, 1112–1123 (2016).Article 
    CAS 

    Google Scholar 
    49.Chakravarti, L. J. et al. Can trans-generational experiments be used to enhance species resilience to ocean warming and acidification? Evol. Appl. 9, 1133–1146 (2016).CAS 
    Article 

    Google Scholar 
    50.Carrier-Belleau, C., Drolet, D., McKindsey, C. W. & Archambault, P. Environmental stressors, complex interactions and marine benthic communities’ responses. Sci. Rep. 11, 4194 (2021).CAS 
    Article 

    Google Scholar 
    51.Dam, H. G. & Baumann, H. in Climate Change Impacts on Fisheries and Aquaculture: A Global Analysis (eds Phillips, B. F. and Pérez-Ramírez, M.) 851–874 (Wiley, 2017).52.Bell, G. Evolutionary rescue and the limits of adaptation. Philos. Trans. R. Soc. Lond. B 368, 20120080 (2013).Article 

    Google Scholar 
    53.Falconer, D. S. Introduction to Quantitative Genetics (Longman Scientific and Technical, 1989).54.Angilletta, M. J. Jr Estimating and comparing thermal performance curves. J. Therm. Biol. 31, 541–545 (2006).Article 

    Google Scholar 
    55.Feinberg, L. R. & Dam, H. G. Effects of diet on dimensions, density and sinking rates of fecal pellets of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 175, 87–96 (1998).Article 

    Google Scholar 
    56.Pierrot, D., Lewis, E. & Wallace, D. W. R. MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 2006); https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a57.Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean (p_{{mathrm{CO}}_2}) calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).58.Dickson, A. G. Standard potential of the reaction: AgCl(s) + 12H2 (g) = Ag(s) + HCl (aq), and the standard acidity constant of the ion HSO4– in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).CAS 
    Article 

    Google Scholar 
    59.Uppström, L. R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161–162 (1974).Article 

    Google Scholar 
    60.Murray, C. S. & Baumann, H. You better repeat it: complex CO2× temperature effects in Atlantic silverside offspring revealed by serial experimentation. Diversity 10, 69 (2018).CAS 
    Article 

    Google Scholar 
    61.Schank, J. C. & Koehnle, T. J. Pseudoreplication is a Pseudoproblem. J. Comp. Psychol. 123, 421–433 (2009).Article 

    Google Scholar 
    62.Oksanen, L. Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94, 27–38 (2001).Article 

    Google Scholar 
    63.Therneau, T. A Package for Survival Analysis in R. R package 3.2-11 (2021); https://CRAN.R-project.org/package=survival64.Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).Article 

    Google Scholar 
    65.Rosseel, Y. lvaan: an R package for structural equation modeling. J. Stat. Softw. https://doi.org/10.18637/jss.v048.i02 (2012).66.Epskamp, S., Stuber, S., Nak, J., Veenman, M. & Jorgensen, T. D. semPlot: Path Diagrams and Visual Analysis of Various SEM Packages’ Output. (2019); https://CRAN.R-project.org/package=semPlot67.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    Article 

    Google Scholar 
    68.Jørgensen, T. S. et al. The genome and mRNA transcriptome of the cosmopolitan calanoid copepod Acartia tonsa Dana improve the understanding of copepod genome size evolution. Genome Biol. Evol. 11, 1440–1450 (2019).Article 
    CAS 

    Google Scholar 
    69.Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).70.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 
    CAS 

    Google Scholar 
    71.Kofler, R. et al. Popoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS One 6, e15925 (2011).CAS 
    Article 

    Google Scholar 
    72.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020); https://www.R-project.org/73.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B 73, 3–36 (2011).Article 

    Google Scholar 
    74.Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 149 (2018).Article 

    Google Scholar 
    75.Dam, H. G. et al. Data and code repository for ‘Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification’. Zenodo https://doi.org/10.5281/zenodo.5115103 (2021). More

  • in

    Causes of admission, length of stay and outcomes for common kestrels in rehabilitation centres in the Czech Republic

    1.McClure, C. J. W. et al. State of the world’s raptors: Distributions, threats, and conservation recommendations. Biol. Conserv. 227, 390–402 (2018).Article 

    Google Scholar 
    2.Bernardino, J. et al. Bird collisions with power lines: State of the art and priority areas for research. Biol. Conserv. 222, 1–13 (2018).Article 

    Google Scholar 
    3.Hager, S. B. Human-related threats to urban raptors. J. Raptor Res. 43, 210–226 (2009).Article 

    Google Scholar 
    4.Molina-López, R. A., Casal, J. & Darwich, L. Causes of morbidity in wild raptor populations admitted at a wildlife rehabilitation centre in Spain from 1995–2007: A long term retrospective study. PLoS ONE 6, e24603. https://doi.org/10.1371/journal.pone.0024603 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Rodríguez, B., Rodríguez, A., Siverio, F. & Siverio, M. Causes of raptor admissions to a wildlife rehabilitation centre in Tenerife (Canary Islands). J. Raptor Res. 44, 30–39 (2010).Article 

    Google Scholar 
    6.Komnenou, A. T., Georgopoulou, I., Savvas, I. & Dessiris, A. (2005) A retrospective study of presentation, treatment, and outcome of fre-ranging raptors in Greece. J. Zoo. Wildl. Med. 36, 222–228 (2005).PubMed 
    Article 

    Google Scholar 
    7.Harris, M. C. § Sleeman, J. M. Morbidity and mortality of Bald Eagles (Haliaeetus leucocephalus) and Peregrine Falcons (Falco peregrinus) admitted to the wildlife center of Virginia, 1993–2003. J.Zoo Wildl. Med. 38, 62–66 (2007).8.IUCN Red List. 2020. Common kestrel [online]. [vid. 31st 11. 2020]. Available from: https://www.iucnredlist.org/species/22696362/935564299.Smallwood, J. A. et al. Why are American kestrel (Falco sparverius) populations declining in North America? Evidence from nest-box programs. J. Raptor Res. 43, 274–282 (2009).Article 

    Google Scholar 
    10.Wendell, M. D., Sleeman, J. M. & Kratz, G. Retrospective study of morbidity and mortality of raptors admitted to Colorado State University Veterinary Teaching Hospital during1995 to 1998. J. Wildl. Dis. 38, 101–106 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Costantini, D., Dell Omo, G., La Fata, I. & Casagrande, S. Reproductive performance of Eurasian Kestrel Falco tinnunculus in an agricultural landscape with a mosaic of land uses. Ibis 156, 768–776 (2014).12.Buck, A., Carrillo-Hidalgo, J., Camarero, P. R. & Mateo, R. Organochlorine pesticides and polychlorinated biphenyls in common kestrel eggs from the Canary Islands: Spatio temporal variations and effects on egg shell and reproduction. Chemosphere 261, 127722; https://doi.org/10.1016/j.chemosphere.2020.127722 (2020).13.Wienburg, C. L. & Shore, R. F. Factors influencing liver PCB concentrations in sparrowhawks (Accipiter nisus), kestrels (Falco tinnunculus) and herons (Ardea cinerea) in Britain. Environ. Pollut. 132, 41–50 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Pain, D. J. & Amiardtriquet, C. Lead poisoning of raptors in France and elsewhere. Ecotoxicol. Environ. Saf. 25, 183–192 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Newton, I., Wyllie, I. & Dale, L. Trends in the numbers and mortality patterns of sparrowhawks (Accipiter nisus) and kestrels (Falco tinnunculus) in Britain, as revealed by carcass analyses. J. Zool. 248, 139–147 (1999).Article 

    Google Scholar 
    16.Burfield, I. J. The conservation status and trends of raptors and owls in Europe. Ambio 37, 401–407 (2008).PubMed 
    Article 

    Google Scholar 
    17.González, L. M. et al. Causes and spatio-temporal variations of non-natural mortality in the vulnerable Spanish imperial eagle Aquila Adalbert during a recovery period. Oryx 41, 495–502 (2007).Article 

    Google Scholar 
    18.Sumasgutner, P., Schulze, C. H., Krenn, H. W. & Gamauf, A. Conservation related conflicts in nest-site selection of the Eurasian kestrel (Falco tinnunculus) and the distribution of its avian prey. Landscape Urban. Plan. 127, 94–103 (2014).Article 

    Google Scholar 
    19.Sumasgutner, P., Adrion, M. & Gamauf, A. Carotenoid coloration and health status of urban Eurasian kestrels (Falco tinnunculus). PLoS ONE 13, e0191956. https://doi.org/10.1371/journal.pone.0191956 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Rejt, L., Rutkowvsi, R. & Gryczynska-Siemiatkowska, A. Genetic variability of urban kestrels in Warsaw – preliminary data. Zool. Pol. 49, 199–209 (2004).
    Google Scholar 
    21.Riddle, G. S.The kestrel in Ayrshire 1970–1978. The Journal of the Scottish Ornithologists´ Club 10, 200–216 (1979).22.Forero, M. G., Tella, J. L., Donázar, J. A. & Hiraldo, F. Canister specific competition and nest site availability explain the decrease of lesser kestrel Falcon populations?. Biol. Conserv. 78, 289–293 (1996).Article 

    Google Scholar 
    23.Medica, D. L., Clauser, R. & Bildstein, K. Prevalence of West Nile Virus antibodies in a breeding population of American kestrels (Falco sparverius) in Pennsylvania. J. Wildl. Dis. 43, 538–541 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Griffith, J. E., Dhand, N. K., Krockenberger, M. B. & Higgins, D. P. A retrospective study of admission trends of koalas to a rehabilitation facility over 30 years. J. Wildl. Dis. 49, 18–28 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Long, R. B., Krumlauff, K. & Young, A. M. Characterizing trends in human-wildlife conflicts in the American Midwest using wildlife rehabilitation records. PLoS ONE 15, e0238805. https://doi.org/10.1371/journal.pone.0238805 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Lukesova, G., Voslarova, E., Vecerek, V. & Vucinic, M. Trends in intake and outcomes for European hedgehog (Erinaceus europaeus) in the Czech rescue centres. PLoS One 16, e0248422; https://doi.org/10.1371/journal.pone.0248422 (2021).27.Crespo Martínez, J., Izquierdo Rosique, A. & Surroca Royo, M. Causes of admission and final dispositions of hedgehogs admitted to three Wildlife Rehabilitation Centres in eastern Spain. Hystrix 25, 107–110 (2014).28.Kelly, A. & Bland, M. Admissions, diagnoses, and outcomes for Eurasian sparrowhawks (Accipiter nisus) brought to a wildlife rehabilitation centre in England. J. Raptor. Res. 40, 231–235 (2006).Article 

    Google Scholar 
    29.Kübler, S., Kupko, S. & Zeller, U. The kestrel (Falco tinnunculus L.) in Berlin: Investigation of breeding biology and feeding ecology. J. Ornithol. 146, 271–278 (2005).Article 

    Google Scholar 
    30.Carrillo, J. & González-Dávila, E. Impact of weather on breeding success of the Eurasian kestrel Falco tinnunculus in a semi-arid island habitat. Ardea 98, 51–58 (2010).Article 

    Google Scholar 
    31.Carrillo, J. & Aparicio, J. M. Nest defense behavior of the Eurasian kestrel (Falco tinnunculus) against human predators. Ethology 107, 865–875 (2001).Article 

    Google Scholar 
    32.Strasser, E. H. & Heath, J. S. Reproductive failure of a human – tolerant species, the American kestrel, is associated with stress and human disturbance. J. Appl. Ecol. 50, 912–919 (2013).Article 

    Google Scholar 
    33.Baudains, T. P. & Lloyd, P. Habituation and habitat changes can moderate the impacts of human disturbance on shorebird breeding performance. Anim. Conserv. 1, 400–407 (2007).Article 

    Google Scholar 
    34.French, S. S., González-Suárez, M., Young, J. K., Durham, S. & Gerber, L. R. Human disturbance influences reproductive success and growth rate in California Sea Lions (Zalophus californianus). PLoS ONE 6, e17686. https://doi.org/10.1371/journal.pone.0017686 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Halfwerk, W., Holleman, L. J. M., Lessells, C., Kate, M. & Slabbekoorn, H. Negative impact of traffic noise on avian reproductive success: Traffic noise and avian reproductive success. J. Appl. Ecol. 48, 210–219 (2011).Article 

    Google Scholar 
    36.Ponce, C., Alonso, J. C., Argandoña, G., García Fernández, A. & Carrasco, M. Carcass removal by scavengers and search accuracy affect bird mortality estimates at power lines: Bias sources affecting power-line bird mortality estimates. Anim. Conserv. 13, 603–612 (2010).Article 

    Google Scholar 
    37.Lasch, U., Zerbe, S. & Lenk, M. Electrocution of raptors at power lines in Central Kazakhstan. Waldokologie Online 9, 95–100 (2010).
    Google Scholar 
    38.Rubolini, D., Bassi, E., Bogliani, G., Galeotti, P. & Garavaglia, R. Eagle Owl Bubo bubo and power line interactions in the Italian Alps. Bird Conserv. Int. 11, 19–324 (2001).Article 

    Google Scholar 
    39.López-López, P., Ferrer, M., Madero, A., Casado, E. & McGrady, M. Solving man-induced large-scale conservation problems: the Spanish Imperial Eagle and power lines. PLoS ONE 6, e17196. https://doi.org/10.1371/journal.pone.0017196 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Bevanger, K. Biological and conservation aspects of bird mortality caused by electricity power lines: A review. Biol. Conserv. 86, 67–76 (1998).Article 

    Google Scholar 
    41.Janss, G. F. E. Avian mortality from power lines: A morphological approach of a species-specific mortality. Biol. Conserv. 95, 353–359 (2000).Article 

    Google Scholar 
    42.Eccleston, D.T. & Harness, R. E. Raptor electrocutions and power line collisions in Birds of Prey (ed. Eccleston, D.T. & Harness, R. E) 273–302 (Sarasola J, Grande J &Negro J, 2018).43.Bevanger, K. (2008) Bird interactions with utility structures: Collision and electrocution, causes and mitigating measures. Ibis 136, 412–425 (2008).Article 

    Google Scholar 
    44.Guil, F. et al. Minimising mortality in endangered raptors due to power lines: The importance of spatial aggregation to optimize the application of mitigation measures. PLoS ONE 6, e28212. https://doi.org/10.1371/journal.pone.0028212 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Sergio, F., Marchesi, L., Pedrini, P., Ferrer, M. & Penteriani, V. Electrocution alters the distribution and density of a top predator, the eagle owl Bubo bubo: Effects of electrocution on eagle owls. J. Appl. Ecol. 41, 836–845 (2004).Article 

    Google Scholar 
    46.Mañosa, S. Strategies to identify dangerous electricity pylons for birds. Biodivers. Conserv. 10, 1997–2012 (2001).Article 

    Google Scholar 
    47.Guyonne, F. E. & Ferrer, M. Mitigation of raptor electrocution on steel power poles. Wildl. Society Bulletin 27, 263–273 (1999).
    Google Scholar 
    48.Zoubi, M. Y. A., Hamidan, N. A., Baker, M. A. A. & Amr, Z. Causes of raptor admissions to rehabilitation in Jordan. J. Raptor Res. 54, 273–278 (2020).Article 

    Google Scholar 
    49.Montesdeoca, N., Calabuig, P., Corbera, J. A., Rocha, J. & Orós, J. Final outcome of raptors admitted to the Tafira Wildlife Rehabilitation Centre, Gran Canaria Island, Spain (2003–2013). Anim. Biodivers. Conserv. 40, 211–220 (2017).Article 

    Google Scholar 
    50.Cooper, J. E. Raptor care and rehabilitation: precedents, progress and potential. J. Raptor Res. 21, 21–26 (1987).
    Google Scholar 
    51.Lam, S. W., Leenen, L. P. H., van Solinge, W. W., Hietbrink, F. & Huisman, A. Evaluation of hematological parameters on admission for the prediction of 7-day in-hospital mortality in a large trauma cohort. Clin. Chem. Lab. Med. 49, 493–499 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Sara, R. & Craig, G. A. A retrospective study of mortality and rehabilitation of raptors in the southern United States. J. Raptor Res. 38, 77–81 (2004).
    Google Scholar 
    53.Goldberg, H. K. Hearing impairment: a family crisis. Soc. Work Health Care 5, 33–40 (1979).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Molina-López, R. A., Mañosa, S., Torres-Riera, A., Pomarol, M. & Darwich, L. Morbidity, outcomes and cost-benefit analysis of wildlife rehabilitation in Catalonia (Spain). PLoS ONE 12, e0181331. https://doi.org/10.1371/journal.pone.0181331 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Molony, S.E., Baker, P. J., Garland, L., Cuthill, I. C. & Harris, S. 2007. Factors that can be used to predict release rates for wildlife casualties. Anim. Welfare 16, 361–367 (2007).56.Kirkwood, J. & Best, R. Treatment and rehabilitation of wildlife casualties: legal and ethical aspects. Practice 20, 214–216 (1998).Article 

    Google Scholar 
    57.Naldo, J. L. & Samour, J. H. Causes of morbidity and mortality in falcons in Saudi Arabia. J. Avian Med. Surg. 18, 229–241 (2004).Article 

    Google Scholar 
    58.Pain, D. J., Mateo, R. § Green, R. E. Effects of lead from ammunition on birds and other wildlife: A review and update. Ambio 48, 935–953 (2019).59.Thompson, L. J., Hoffman, B. & Brown, M. Causes of admissions to a raptor rehabilitation centre in KwaZulu-Natal South Africa. Afr. Zool. 48, 359–366 (2013).Article 

    Google Scholar 
    60.Tintó, A., Real, J. & Mañosa, S. Predicting and correcting electrocution of birds in Mediterranean areas. J. Wildl. Manage. 74, 1852–1862 (2010).Article 

    Google Scholar 
    61.Kemper, M. K., Court, G. S. & Beck, J. A. Estimating raptor electrocution mortality on distribution power lines in Alberta Canada. J. Wildl. Manage. 77, 1342–1352 (2013).Article 

    Google Scholar 
    62.Csermely, D. Duration of the rehabilitation period and familiarity with the prey affect the predatory behavior of captive wild kestrels (Falco tinnunculus). B. Zool. 60, 211–214 (1993).Article 

    Google Scholar 
    63.Fischer, D., Hampel, M. R. & Lierz, M. Monitoring of rehabilitated and evaluated grapevine medium Telemetry as success control. Tierarztl. Prax. K. H. 42, 29–35 (2014).CAS 
    Article 

    Google Scholar 
    64.Republic, C. Act on the protection of animals against cruelty. Collection of Law. 50, 1284–1290 (1992).
    Google Scholar  More

  • in

    Intraspecific variation in metal tolerance modulate competition between two marine diatoms

    1.Blowes SA, Supp SR, Antão LH, Bates A, Bruelheide H, Chase JM, et al. The geography of biodiversity change in marine and terrestrial assemblages. Science. 2019;366:339–45.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Blanck H. A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum Ecol Risk Assess. 2002;8:1003–34.Article 

    Google Scholar 
    3.Tlili A, Berard A, Blanck H, Bouchez A, Cássio F, Eriksson KM, et al. Pollution‐induced community tolerance (PICT): towards an ecologically relevant risk assessment of chemicals in aquatic systems. Freshwat Biol. 2016;61:2141–51.CAS 
    Article 

    Google Scholar 
    4.Duxbury T. Ecological aspects of heavy metal responses in microorganisms. In: Marshall KC, editor. Adv Microb Ecol. New York, USA: Springer; 1985. pp. 185–235.5.Carlson HK, Price MN, Callaghan M, Aaring A, Chakraborty R, Liu H, et al. The selective pressures on the microbial community in a metal-contaminated aquifer. ISME J. 2019;13:937–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, McArthur J. Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environ Sci Technol. 2005;39:3671–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science. 2005;309:1387–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Falkowski PG, Barber RT, Smetacek VV. Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science. 1998;281:200–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Field CB, Michael JB, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Reusch TB, Dierking J, Andersson HC, Bonsdorff E, Carstensen J, Casini M, et al. The Baltic Sea as a time machine for the future coastal ocean. Sci Adv. 2018;4:eaar8195.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Lehtonen KK, Bignert A, Bradshaw C, Broeg K, Schiedek D. Chemical pollution and ecotoxicology. In: Snoeijs-Leijonmalm PSH, Radziejewska T, editors. Biological oceanography of the Baltic Sea. Dordrecht, The Netherlands: Springer Nature; 2017. pp. 547–89.12.Moffett JW, Brand LE, Croot PL, Barbeau KA. Cu speciation and cyanobacterial distribution in harbors subject to anthropogenic Cu inputs. Limnol Oceanogr. 1997;42:789–99.CAS 
    Article 

    Google Scholar 
    13.Echeveste P, Agusti S, Tovar-Sanchez A. Toxic thresholds of cadmium and lead to oceanic phytoplankton: cell size and ocean basin-dependent effects. Environ Toxicol Chem. 2012;31:1887–94.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Tsiola A, Toncelli C, Fodelianakis S, Michoud G, Bucheli TD, Gavriilidou A, et al. Low-dose addition of silver nanoparticles stresses marine plankton communities. Environ Sci Nano. 2018;5:1965–80.CAS 
    Article 

    Google Scholar 
    15.Brand LE, Sunda WG, Guillard RR. Reduction of marine phytoplankton reproduction rates by copper and cadmium. J Exp Mar Biol Ecol. 1986;96:225–50.CAS 
    Article 

    Google Scholar 
    16.Andersson B, Godhe A, Filipsson HL, Rengefors K, Berglund O. Differences in metal tolerance among strains, populations, and species of marine diatoms-importance of exponential growth for quantification. Aquat Toxicol. 2020;226:105551.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Ning W, Nielsen A, Ivarsson LN, Jilbert T, Åkesson C, Slomp C, et al. Anthropogenic and climatic impacts on a coastal environment in the Baltic Sea over the last 1000 years. Anthropocene. 2018;21:66–79.Article 

    Google Scholar 
    18.Novotny A, Zamora-Terol S, Winder M. DNA metabarcoding reveals trophic niche diversity of micro and mesozooplankton species. Proc R Soc B. 2021;288:20210908.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Horvatić J, Peršić V. The effect of Ni 2+, Co 2+, Zn 2+, Cd 2+ and Hg 2+ on the growth rate of marine diatom Phaeodactylum tricornutum Bohlin: microplate growth inhibition test. Bull Environ Contam Toxicol. 2007;79:494–8.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    20.Terseleer N, Bruggeman J, Lancelot C, Gypens N. Trait‐based representation of diatom functional diversity in a plankton functional type model of the eutrophied southern North Sea. Limnol Oceanogr. 2014;59:1958–72.Article 

    Google Scholar 
    21.Litchman E, Klausmeier CA, Schofield OM, Falkowski PG. The role of functional traits and trade‐offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett. 2007;10:1170–81.PubMed 
    Article 

    Google Scholar 
    22.Ehrlich E, Kath NJ, Gaedke U. The shape of a defense-growth trade-off governs seasonal trait dynamics in natural phytoplankton. ISME J. 2020;14:1451–62.23.Lohbeck KT, Riebesell U, Reusch TB. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci. 2012;5:346.CAS 
    Article 

    Google Scholar 
    24.Gross S, Kourtchenko O, Rajala T, Andersson B, Fernandez L, Blomberg A, et al. Optimization of a high‐throughput phenotyping method for chain‐forming phytoplankton species. Limnol Oceanogr Methods. 2017;16:57–67.Article 

    Google Scholar 
    25.Rynearson TA, Armbrust EV. DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii. Limnol Oceanogr. 2000;45:1329–40.Article 

    Google Scholar 
    26.Kremp A, Oja J, LeTortorec AH, Hakanen P, Tahvanainen P, Tuimala J, et al. Diverse seed banks favour adaptation of microalgal populations to future climate conditions. Environ Microbiol. 2016;18:679–91.PubMed 
    Article 

    Google Scholar 
    27.Sjöqvist C, Godhe A, Jonsson PR, Sundqvist L, Kremp A. Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea-Baltic Sea salinity gradient. Mol Ecol. 2015;24:2871–85.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Rengefors K, Logares R, Laybourn‐Parry J, Gast RJ. Evidence of concurrent local adaptation and high phenotypic plasticity in a polar microeukaryote. Environ Microbiol. 2015;17:1510–9.PubMed 
    Article 

    Google Scholar 
    29.Ajani PA, Petrou K, Larsson ME, Nielsen DA, Burke J, Murray SA. Phenotypic trait variability as an indication of adaptive capacity in a cosmopolitan marine diatom. Environ Microbiol. 2020;23:207–23.30.Collins S, Schaum CE. Diverse strategies link growth rate and competitive ability in phytoplankton responses to changes in CO2 levels. bioRxiv. 2019. https://doi.org/10.1101/651471.31.Baert JM, De Laender F, Sabbe K, Janssen CR. Biodiversity increases functional and compositional resistance, but decreases resilience in phytoplankton communities. Ecology. 2016;97:3433–40.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Tatters AO, Roleda MY, Schnetzer A, Fu F, Hurd CL, Boyd PW, et al. Short-and long-term conditioning of a temperate marine diatom community to acidification and warming. Philos Trans R Soc Lond B Biol Sc. 2013;368:20120437.Article 

    Google Scholar 
    33.Collins S. Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc R Soc B. 2011;278:247–55.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Legrand C, Rengefors K, Fistarol GO, Graneli E. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia. 2003;42:406–19.Article 

    Google Scholar 
    35.Powell N, Shilton AN, Pratt S, Chisti Y. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol. 2008;42:5958–62.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.OECD. Test no. 201: alga, growth inhibition test. 2006. https://www.oecd-ilibrary.org/content/publication/9789264069923-en.37.Anderson SI, Rynearson TA. Variability approaching the thermal limits can drive diatom community dynamics. Limnol Oceanogr. 2020;65:1961–73.CAS 
    Article 

    Google Scholar 
    38.Spilling K, Markager S. Ecophysiological growth characteristics and modeling of the onset of the spring bloom in the Baltic Sea. J Mar Syst. 2008;73:323–37.Article 

    Google Scholar 
    39.Behrenfeld MJ. Abandoning Sverdrup’s Critical Depth Hypothesis on phytoplankton blooms. Ecology. 2010;91:977–89.PubMed 
    Article 

    Google Scholar 
    40.Follows MJ, Dutkiewicz S, Grant S, Chisholm SW. Emergent biogeography of microbial communities in a model ocean. Science. 2007;315:1843–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Abner B, Morel F, Moffett J. Trace metal control of phytochelatin production in coastal waters. Limnol Oceanogr. 1997;42:601–8.Article 

    Google Scholar 
    42.Behra R, Genoni GP, Joseph AL. Effect of atrazine on growth, photosynthesis, and between-strain variability in scenedesmus subspicatus (Chlorophyceae). Arch Environ Contamin Toxicol. 1999;37:36–41.CAS 
    Article 

    Google Scholar 
    43.Tiam SK, Lavoie I, Doose C, Hamilton PB, Fortin C. Morphological, physiological and molecular responses of Nitzschia palea under cadmium stress. Ecotoxicology. 2018;27:675–88.44.Härnström K, Ellegaard M, Andersen TJ, Godhe A. Hundred years of genetic structure in a sediment revived diatom population. Proc Natl Acad Sci USA. 2011;108:4252–7.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Guillard RR Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH, editors. Culture of marine invertebrate animals. Boston, MA: Springer; 1975. pp. 29–60.46.Leal PP, Hurd CL, Sander SG, Armstrong E, Roleda MY. Copper ecotoxicology of marine algae: a methodological appraisal. Chem Ecol. 2016;32:786–800.CAS 
    Article 

    Google Scholar 
    47.Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. Biovolume calculation for pelagic and benthic microalgae. J Phycol. 1999;35:403–24.Article 

    Google Scholar 
    48.Schreiber U. Chlorophyll fluorescence: new instruments for special applications. In: Garab G, editor. Photosynthesis: mechanisms and effects. Springer, Dordrecht: Springer; 1998. pp. 4253–8.49.MacIntyre HL, Cullen JJ. Using cultures to investigate the physiological ecology of microalgae. In Andersen RA, editor. Algal culturing techniques. Burlington, Mass: Elsevier; 2005. p. 287–326.50.Caceres C, Taboada FG, Höfer J, Anadon R. Phytoplankton growth and microzooplankton grazing in the subtropical Northeast Atlantic. Plos ONE. 2013;8:e69159.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018. https://www.R-project.org/.52.Ritz C, Baty F, Streibig JC, Gerhard D. Dose-response analysis using R. PloS ONE. 2015;10:e0146021.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Wickham H. ggplot2. WIREs Comp Stat. 2011;3:180–5.54.Pinheiro J, Bates D, DebRoy S, Sarkar D, The R Core Team. nlme: Linear and Nonlinear Mixed Effects Models [Internet]. 2021. Available from: https://CRAN.R-project.org/package=nlme.55.Wolf KK, Romanelli E, Rost B, John U, Collins S, Weigand H, et al. Company matters: the presence of other genotypes alters traits and intraspecific selection in an Arctic diatom under climate change. Glob Change Biol. 2019;25:2869–84.Article 

    Google Scholar 
    56.Venuleo M, Raven JA, Giordano M. Intraspecific chemical communication in microalgae. N Phytol. 2017;215:516–30.Article 

    Google Scholar 
    57.Esteves-Ferreira AA, Inaba M, Obata T, Fort A, Fleming GT, Araújo WL, et al. A novel mechanism, linked to cell density, largely controls cell division in Synechocystis. Plant Physiol. 2017;174:2166–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Gallo C, d’Ippolito G, Nuzzo G, Sardo A, Fontana A. Autoinhibitory sterol sulfates mediate programmed cell death in a bloom-forming marine diatom. Nat Commun. 2017;8:1–11.CAS 
    Article 

    Google Scholar 
    59.Gresham D, Dunham MJ. The enduring utility of continuous culturing in experimental evolution. Genomics. 2014;104:399–405.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Descamps-Julien B, Gonzalez A. Stable coexistence in a fluctuating environment: an experimental demonstration. Ecology. 2005;86:2815–24.Article 

    Google Scholar 
    61.Wang NX, Huang B, Xu S, Wei ZB, Miao AJ, Ji R, et al. Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii. Aquat Toxicol. 2014;157:167–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Lee J-W, Helmann JD. Functional specialization within the Fur family of metalloregulators. BioMetals. 2007;20:485.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Reusch TB, Boyd PW. Experimental evolution meets marine phytoplankton. Evolution. 2013;67:1849–59.PubMed 
    Article 

    Google Scholar 
    64.Walworth NG, Zakem EJ, Dunne JP, Collins S, Levine NM. Microbial evolutionary strategies in a dynamic ocean. Proc Natl Acad Sci USA. 2020;117:5943–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Schaum C-E, Barton S, Bestion E, Buckling A, Garcia-Carreras B, Lopez P, et al. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nat Ecol Evol. 2017;1:1–7.Article 

    Google Scholar 
    66.Collins S, Rost B, Rynearson TA. Evolutionary potential of marine phytoplankton under ocean acidification. Evol Appl. 2014;7:140–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Rynearson TA, Armbrust EV. Genetic differentiation among populations of the planktonic marine diatom ditylum brightwellii (bacillariophyceae) 1. J Phycol. 2004;40:34–43.Article 

    Google Scholar 
    68.Soldo D, Behra R. Long-term effects of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver. Aquat Toxicol. 2000;47:181–9.CAS 
    Article 

    Google Scholar 
    69.Stokes PM. Multiple metal tolerance in copper tolerant green algae. J Plant Nutr. 1981;3:667–78.CAS 
    Article 

    Google Scholar 
    70.Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11:371–84.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Ma J, Zhou B, Chen F, Pan K. How marine diatoms cope with metal challenge: Insights from the morphotype-dependent metal tolerance in Phaeodactylum tricornutum. Ecotoxicol Environ Saf. 2020;208:111715.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    72.Egardt J, Larsen MM, Lassen P, Dahllöf I. Release of PAHs and heavy metals in coastal environments linked to leisure boats. Mar Pollut Bull. 2018;127:664–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Falkowski PG, LaRoche J. Acclimation to spectral irradiance in algae. J Phycol. 1991;27:8–14.Article 

    Google Scholar 
    74.Beardall J, Young E, Roberts S. Approaches for determining phytoplankton nutrient limitation. Aquat Sci. 2001;63:44–69.CAS 
    Article 

    Google Scholar 
    75.Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, et al. Marine phytoplankton temperature versus growth responses from polar to tropical waters–outcome of a scientific community-wide study. PloS ONE. 2013;8:e63091.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Johnson HL, Stauber JL, Adams MS, Jolley DF. Copper and zinc tolerance of two tropical microalgae after copper acclimation. Environ Toxicol. 2007;22:234–44.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Cid A, Herrero C, Torres E, Abalde J. Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aquat Toxicol. 1995;31:165–74.CAS 
    Article 

    Google Scholar 
    78.Masmoudi S, Nguyen-Deroche N, Caruso A, Ayadi H, Morant-Manceau A, Tremblin G, et al. Cadmium, copper, sodium and zinc effects on diatoms: from heaven to hell—a review. Cryptogam Algol. 2013;34:185–225.Article 

    Google Scholar  More

  • in

    Fire-derived phosphorus fertilization of African tropical forests

    Study siteThe study was carried out in post-agriculture forests at different growth stages near the forest reserve of Yoko (N00°17′; E25°18′; mean elevation 435 m a.s.l.), situated between 29 and 39 km south east of Kisangani, in the Democratic Republic of the Congo. We set up 15 (40 × 40 m) plots, set out in triplicate along five successional stages (15 plots): agriculture and 5, 12, 20, 60 years old secondary forest (respectively, 5 yrs, 12 yrs, 20 yrs, 60 yrs). Additionally, soils were also characterized in three agricultural plots (Ag). We interviewed owners, farmers, and local experts to determine the time-since-disturbance of all plots. Tree height measurements were recorded at the plot level for 20% of individuals of each diameter class. The climax vegetation in the region is classified as semi-deciduous tropical. Climate falls within the Af-type following the Köppen-Geiger classification33. Annual rainfall ranges from 1418 to 1915 mm with mean monthly temperatures varying from 23.7 to 26.2 °C. Throughout the year, the region is marked by a long and a short rainy season interrupted by two small dry seasons December–January and June–August. Soils in the region are highly weathered Oxisols, being poor in nutrients, with low pH and dominated by sandy texture.Sampling and sample analysisThroughfall and bulk precipitation was collected weekly using polyethylene (PE) funnels supported by a wooden pole of 1.5 m height to which a PE tube was attached and draining into 5 L PE container. A nylon mesh was placed in the neck of the funnel to avoid contamination by large particles. The container was buried in the soil and covered by leaves to avoid the growth of algae and to keep the samples cool. We installed eight throughfall collectors in each plot as two rows of four collectors, with approximately 8 m distance between all collectors. On every sampling occasion, the water volume in each collector was measured in the field, and recipients, funnels and mesh were replaced, rinsed with distilled water. A volume-weighted composite sample of the devices per plot was made. All samples were stored in a freezer immediately and sent in batch to Belgium for chemical analysis. The volume-weighted composite samples were first filtered using a nylon membrane filter of 0.45 µm before freezing. Total phosphorus was measured by inductively coupled plasma atomic emission spectroscopy (ICP AES, IRIS interpid II XSP, Thermo Scientific, USA). Although we acknowledge the potential for microbial activity in the collectors during a 1-week, dark, in situ storage of the samples, the use of total phosphorus concentration and lack of algal growth allow for complete phosphorus recovery.Following analysis, the samples from the replicate field sites per forest stage were pooled into ‘weekly’ forest-type samples, and these were subsequently analyzed for dissolved black carbon (DBC). In short, the pooled water samples were acidified to pH 2 and analyzed for dissolved organic carbon (DOC) concentration via high-temperature catalytic oxidation on Shimadzu TOC-L total organic carbon analyzer following established methodology34. DOC was isolated from the water samples by solid phase extraction (SPE) following Dittmar et al.35. Briefly, SPE cartridges (Varian Bond Elut PPL, 1 g, 6 mL) were conditioned sequentially with methanol, ultrapure water, and ultrapure water acidified to pH 2 using concentrated HCl, then passed through the SPE cartridges by gravity. SPE cartridges were dried under a stream of high-purity N2 gas. DOC was eluted from the SPE cartridge with methanol (SPE-DOC) and stored at −20 °C until further analysis. DBC was quantified using the benzenepolycarboxylic acid (BPCA) method as detailed in Wagner et al.20. The BPCA approach to quantifying DBC involves chemothermal oxidation of condensed aromatic DOC compounds to benzenehexacarboxylic acid (B6CA) and benzenepentacarboxylic acid (B5CA) products. The B6CA and B5CA oxidation products are robustly measured and derive exclusively from pyrogenic sources36. Condensed aromatic DBC, as measured using the BPCA method, is ubiquitous in aquatic environments globally21,37,38,39. DBC has also been quantified in throughfall and stemflow in longleaf pine forests that undergo regular prescribed burning40. Therefore, we use the BPCA method as a proxy for carbon inputs from biomass burning in the current study. To analyze our samples for BPCAs, aliquots of SPE-DOC (~0.5 mg C equivalents) were combined with concentrated HNO3 in flame-sealed glass ampoules and heated to 160 °C for 6 h. The resultant BPCA-containing residue was dried and re-dissolved in mobile phase for subsequent analysis. Individual BPCAs were separated and quantified using an HPLC system (UltiMate 3000, Thermo Fisher, Germany) (CV  More

  • in

    Spatial distribution of anti-Toxoplasma gondii antibody-positive wild boars in Gifu Prefecture, Japan

    1.Robert-Gangneux, F. & Darde, M. L. Epidemiology of and diagnostic strategies for Toxoplasmosis. Clin. Microbiol. Rev. 25, 264–296 (2012).CAS 
    Article 

    Google Scholar 
    2.VanWormer, E., Fritz, H., Shapiro, K., Mazet, J. A. K. & Conrad, P. A. Molecules to modeling: Toxoplasma gondii oocysts at the human–animal–environment interface. Comp. Immunol. Microbiol. Infect. Dis. 36, 217–231 (2013).Article 

    Google Scholar 
    3.Cook, A. J. C. Sources of toxoplasma infection in pregnant women: European multicentre case-control study Commentary: Congenital toxoplasmosis—further thought for food. BMJ 321, 142–147 (2000).CAS 
    Article 

    Google Scholar 
    4.Spalding, S. M., Amendoeira, M. R. R., Klein, C. H. & Ribeiro, L. C. Serological screening and toxoplasmosis exposure factors among pregnant women in South of Brazil. Rev. Soc. Bras. Med. Trop. 38, 173–177 (2005).Article 

    Google Scholar 
    5.Jones, J. L. et al. Risk factors for Toxoplasma gondii infection in the United States. Clin. Infect. Dis. 49, 878–884 (2009).Article 

    Google Scholar 
    6.Egorov, A. I. et al. Environmental risk factors for Toxoplasma gondii infections and the impact of latent infections on allostatic load in residents of Central North Carolina. BMC Infect. Dis. 18, 421. https://doi.org/10.1186/s12879-018-3343-y (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Shapiro, K. et al. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol. 15, e00049; https://doi.org/10.1016/j.fawpar. (2019).8.Hill, D. et al. Identification of a sporozoite-specific antigen from Toxoplasma gondii. J. Parasitol. 97, 328–337 (2011).CAS 
    Article 

    Google Scholar 
    9.Ballari, S. A. & Barrios-García, M. N. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges: A review of wild boar Sus scrofa diet. Mamm. Rev. 44, 124–134 (2014).Article 

    Google Scholar 
    10.Kodera, Y., Kanzaki, N., Ishikawa, N. & Minagawa, A. Food habits of wild boar (Sus scrofa) inhabiting Iwami District, Shimane Prefecture, western Japan (In Japanese). Mamm. Sci. 53, 279–287 (2013).
    Google Scholar 
    11.Chambers, L. K., Singleton, G. R. & Krebs, C. J. Movements and social organization of wild house mice (Mus domesticus) in the wheatlands of northwestern Victoria, Australia. J. Mammal. 81, 59–69 (2000).12.Oka, T. Home range and mating system of two sympatric field mouse species, Apodemus speciosus and Apodemus argenteus. Ecol. Res. 7, 163–169 (1992).Article 

    Google Scholar 
    13.Yatake, H., Nashimoto, M., Shimano, K., Matuki, R. & Shiraki, S. Present status and subjects of estimation methods of Japanese hare (Lepus brachyurus) density (in Japanese). Mamm. Sci. 42, 23–34 (2002).
    Google Scholar 
    14.Setoguchi, M. Utilization of holes and home ranges in the Japanese long-tailed mice (Apodemus argenteus) (in Japanese). Jap. J. Ecol. 31, 385–394 (1981).
    Google Scholar 
    15.Rostami, A. et al. The global seroprevalence of Toxoplasma gondii among wild boars: A systematic review and meta-analysis. Vet. Parasitol. 244, 12–20 (2017).Article 

    Google Scholar 
    16.Lopez, A. L., Pineda, E., Garakian, A. & Cherry, J. D. Effect of heat inactivation of serum on Bordetella pertussis antibody determination by enzyme-linked immunosorbent assay. Diagn. Microbiol. Infect. Dis. 30, 21–24 (1998).CAS 
    Article 

    Google Scholar 
    17.Taniguchi, Y. et al. A Toxoplasma gondii strain isolated in Okinawa, Japan shows high virulence in Microminipigs. Parasitol. Int. 72, 101935; https://doi.org/10.1016/j.parint.2019.101935 (2019).18.Tadano, R., Nagai, A. & Moribe, J. Local-scale genetic structure in the Japanese wild boar (Sus scrofa leucomystax): insights from autosomal microsatellites. Conserv. Genet. 17, 1125–1135 (2016).Article 

    Google Scholar 
    19.Ikeda, T., Asano, M., Kuninaga, N. & Suzuki, M. Monitoring relative abundance index and age ratios of wild boar (Sus scrofa) in small scale population in Gifu Prefecture, Japan during classical swine fever outbreak. J. Vet. Med. Sci. 82, 861–865 (2020).Article 

    Google Scholar 
    20.Matsuo, K., Uetsu, H., Takashima, Y. & Abe, N. High Occurrence of Sarcocystis infection in sika deer Cervus nippon centralis and Japanese wild boar Sus scrofa leucomystax and molecular characterization of Sarcocystis and Hepatozoon isolates from their muscles (in Japanese). Jpn. J. Zoo. Wildl. Med. 21, 35–40 (2016).Article 

    Google Scholar 
    21.Ogedengbe, M. E. et al. Molecular phylogenetic analyses of tissue coccidia (sarcocystidae; apicomplexa) based on nuclear 18s rDNA and mitochondrial COI sequences confirms the paraphyly of the genus Hammondia. Parasitol. Open 2, e2; https://doi.org/10.1017/pao.2015.7 (2016).22.Moon, M. H. Serological cross-reactivity between Sarcocystis and Toxoplasma in pigs. Kor. J. Parasitol. 25, 188–194 (1987).Article 

    Google Scholar 
    23.Dubey, J. P. et al. All about Toxoplasma gondii infections in pigs: 2009–2020. Vet. Parasitol. 288, 109185 (2020).24.Puchalska, M. et al. Prevalence of Toxoplasma gondii antibodies in wild boar (Sus scrofa) from Strzałowo Forest Division, Warmia and Mazury Region, Poland. Ann. Agric. Environ. Med. 28, 237–242 (2021).25.Dubey, J. P. et al. Genotyping of viable Toxoplasma gondii from the first national survey of feral swine revealed evidence for sylvatic transmission cycle, and presence of highly virulent parasite genotypes. Parasitology 147, 295–302 (2020).CAS 
    Article 

    Google Scholar 
    26.Kia, E. B., Mirhendi, H., Rezaeian, M., Zahabiun, F. & Sharbatkhori, M. First molecular identification of Sarcocystis miescheriana (Protozoa, Apicomplexa) from wild boar (Sus scrofa) in Iran. Exp. Parasitol. 127, 724–726 (2011).CAS 
    Article 

    Google Scholar 
    27.Coelho, C. et al. Unraveling Sarcocystis miescheriana and Sarcocystis suihominis infections in wild boar. Vet. Parasitol. 212, 100–104 (2015).Article 

    Google Scholar 
    28.Gazzonis, A. L. et al. Prevalence and molecular characterization of Sarcocystis miescheriana and Sarcocystis suihominis in wild boars (Sus scrofa) in Italy. Parasitol. Res. 118, 1271–1287 (2019).Article 

    Google Scholar 
    29.Huang, Z. et al. Morphological and molecular characterizations of Sarcocystis miescheriana and Sarcocystis suihominis in domestic pigs (Sus scrofa) in China. Parasitol. Res. 118, 3491–3496 (2019).Article 

    Google Scholar 
    30.Matsuo, K. et al. Seroprevalence of Toxoplasma gondii infection in cattle, horses, pigs and chickens in Japan. Parasitol. Int. 63, 638–639 (2014).Article 

    Google Scholar 
    31.Singer, F., Otto, D., Tipton, A. & Hable, C. Home ranges, movements, and habitat use of European wild boar in Tennessee. J. Wildl. Manag. 45, 343–353 (1981).Article 

    Google Scholar 
    32.Hollings, T., Jones, M., Mooney, N. & McCallum, H. Wildlife disease ecology in changing landscapes: Mesopredator release and toxoplasmosis. Int. J. Parasitol. Parasites Wildl. 2, 110–118 (2013).Article 

    Google Scholar 
    33.Maeda, T., Nakashita, R., Shionosaki, K., Yamada, F. & Watari, Y. Predation on endangered species by human-subsidized domestic cats on Tokunoshima Island. Sci. Rep. 9, 16200. https://doi.org/10.1038/s41598-019-52472-3 (2019).34.QGIS Development Team. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. http://www.qgis.org/en/site/ (2021).35.Verma, S. K., Lindsay, D. S., Grigg, M. E. & Dubey, J. P. Isolation, culture and cryopreservation of Sarcocystis species. Curr. Protoc. Microbiol. https://doi.org/10.1002/cpmc.32 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).37.Robin, X. et al. pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics 12, 77 (2011).Article 

    Google Scholar  More

  • in

    Moisture modulates soil reservoirs of active DNA and RNA viruses

    A diverse and active DNA virosphereWe first leveraged two existing metagenomes that were constructed from the Konza native prairie soil14,15 to screen for viral sequences at the site. Each of the metagenomes was obtained from a composite of all the replicate soils collected at ambient field moisture conditions. One of the metagenomes was de novo assembled from deep sequence data (1.1 Tb)14 and the second was a hybrid assembly of short and long reads (267.0 Gb)16. The combination of the two metagenomes was used to maximize the coverage of viral sequences from the Konza prairie site. To balance between the detection limits of the viral detection tools and the wide range of viral genome size, the viral contigs > 2.5 kb in length were combined with those obtained from screening of the two largest public viral databases (i.e., IMG/VR17 and NCBI Virus16) to further increase the coverage of DNA viral sequences. We acknowledge that the length cutoff of 2.5 kb would preclude detection of some ssDNA viruses with small segmented genome sizes (e.g., Nanoviridae18). As a result, a DNA viral database for the site was curated that included 726,108 de-replicated viral contigs. The DNA viral database then served as a scaffold for mapping of metatranscriptome and metaproteome datasets to determine the activities of soil DNA viruses and their responses to differences in soil moisture. This approach was also recently applied to detect the transcriptional activity of marine prokaryotic and eukaryotic viruses19,20,21,22 and giant viruses in soil5.The metatranscriptome reads from both wet and dry treatments were mapped to a total of 416 unique DNA viral contigs using stringent criteria (% sequence identity > 95% and % sequence coverage > 80%). The 416 DNA viral contigs with an average sequence length of 19 kb were highly diverse and grouped into 139 clusters, with 111 of the clusters being singletons (Supplementary Data 1).We aimed to assign putative host taxa to the viral clusters by combining several approaches: CRISPR spacer matching, and screening for host and viral sequence similarities to respective databases (details in ‘Methods’). As a result, we assigned putative viral host taxa to 160 out of the 416 transcribed DNA viral contigs. Some of these were assigned to more than one host (Supplementary Data 1), resulting in a total of 181 virus–host pairings (Fig. 1a). Of these, 79 host–virus pairs were detected only in the dry soil treatment, 51 were only in the wet soil treatment, and an additional 51 were found in both dry and wet treatments (Fig. 1a). Consistent with previous reports4, the majority of the transcribed DNA viral contigs were annotated as bacteriophage sequences. Different sets of transcribed DNA viral contigs were unique to wet or dry soils and assigned to specific hosts at the phylum level, whereas others were shared (Fig. 1a). However, the dominant soil taxa, i.e., Proteobacteria and Actinobacteria that were previously identified by 16S rRNA gene sequencing in this soil environment, were predicted as hosts under both wet and dry conditions (Supplementary Fig. 1a). Eukaryotic DNA viruses, such as Bracovirus and Ichnovirus belonging to a family of insect viruses within the Polydnaviridae family, were also transcribed in the soils (Fig. 1a and Supplementary Data 1). Most of these insect viruses were only detected in dry soil conditions. These differences in virus–host pairings suggest that some of the respective hosts were impacted differently by the dry and wet incubation conditions.Fig. 1: Transcribed DNA viral communities and their responses to wet and dry soil conditions.a An alluvium plot that illustrates pairings of the transcribed DNA viral contigs to putative host phyla. The transcribed DNA viral community was comprised of viral contigs from the curated DNA viral databases that were mapped by quality-filtered metatranscriptomic reads. The alluvia are colored by host taxa (first x axis of each sub-panel) assigned to respective transcribed DNA viral contigs (second x axis of each sub-panel). b A Venn diagram showing the number of unique transcribed DNA viral contigs detected in both wet and dry soils and ones exclusively detected in one of the soils. c Number of unique DNA viral contigs detected. A t-Test shows significantly more DNA contigs were transcribed in dry soil (p = 0.044). d Number of transcripts that mapped to the DNA viral contigs. For panels (c) and (d), the two independent field sites of Konza Experimental Field Station are indicated as site A (circles) and site C (triangles), with the wet soil in blue and dry soil in red.Full size imageThere were 21 DNA viral contigs that were assigned to hosts across multiple bacterial phyla suggesting the presence of viral generalists1,23 (Supplementary Data 1). We recognize that host assignment based on CRISPR spacer matching, however, is limited to detection of recent or historical virus–host interactions that were captured at the time of sampling24. As bioinformatics assignment of virus–host linkages only suggests possible pairings based on sequence features, there are also chances of introducing false positives. However, we applied the most stringent criteria possible to provide confident host assignments.Increased activity of a subset of DNA viruses in wet soilSoil moisture has a strong influence on the community structures of transcribed DNA viruses. The majority of the transcriptionally active DNA viral contigs were unique to wet or dry conditions, with only 111 viral contigs (~ 26.7%) detected in both wet and dry soils, suggesting that the different soil moisture conditions may shape the activity of the DNA viral community differently (Fig. 1b). Interestingly, although a significantly higher number of transcribed DNA viral contigs were detected in dry soils (Fig. 1b, c), the levels of transcriptional activity were significantly higher (based on the normalized abundance of RNA reads that mapped to the viral contigs) for DNA viruses in wet soils irrespective of sampling site location (Fig. 1d). DNA viral contigs with mapped transcripts could represent either prophages that are passively replicated along with their host genomes, or (lytic) viruses that are actively regulating early/middle/late expression of viral gene clusters25. In soil, a lysogenic lifestyle is considered to be an adaptive strategy for viruses to cope with long periods of low host activity26,27. Therefore, the 1.5-fold increase in the number of transcribed DNA viral contigs representing transcriptionally active DNA viruses, but with lower levels of overall transcription, in dry soil suggests that the increase was due to a higher prevalence of lysogeny in dry conditions. This hypothesis is strengthened by our finding of a 20-fold increase in transcripts for lysogenic markers (i.e., integrase and excisionase) in one of our replicates (A-2) in dry compared to wet conditions (Supplementary Data 2). High number of lysogenic phages were also previously reported in dry Antarctic soils using a cultivation-independent induction assay28. By contrast, under wet soil conditions we found a 2-fold increase in transcription of fewer viral contigs representing a subset of DNA viruses, suggesting that those viruses were more transcriptionally active in response to higher soil moisture. In addition, there was a higher correlation between prokaryotic abundances, as estimated by 16S rRNA gene sequencing, with DNA viral transcript counts in wet soils (R2 = 0.593, Supplementary Fig. 1d) in comparison to dry soils (R2 = 0.069, Supplementary Fig. 1d), supporting this hypothesis.We then identified which soil DNA viruses were most transcriptionally active and how they responded to the differences in soil moisture. As the majority of the transcribed DNA viral contigs (97%) were environmental viruses with unclassified taxonomy assignment, we were not able to calculate the taxonomic abundance of each and instead compared the differential abundances of the transcribed viral contigs. There were four DNA viral contigs with significantly different levels of transcription under wet and dry conditions (VC_1, VC_19, VC_282, VC_412; Fig. 2a). Contigs VC_1 and VC_19 correspond to unclassified viral contigs deposited in IMG/VR (identifiers of ‘REF:2547132004_2547132004’ and ‘3300010038_Ga0126315_10000854’) that were previously detected in metagenomes from the Rifle site29 and from serpentine soil in the UC McLaughlin Reserve30, respectively. Contigs VC_282 and VC_412 were extracted from our Kansas metagenomes. Contigs VC_1 and VC_19 had significantly higher levels of transcriptional activity in wet soils compared to dry soils (p  More