More stories

  • in

    Conservation needs to break free from global priority mapping

    1.Evans, M. Environ. Conserv. https://doi.org/10.1017/S0376892921000114 (2021).2.Brooks, T. M. et al. Science 313, 58–61 (2006).CAS 
    Article 

    Google Scholar 
    3.Margules, C. R. & Pressey, R. L. Nature 405, 243–253 (2000).CAS 
    Article 

    Google Scholar 
    4.Myers, N. Bioscience 53, 916–917 (2003).Article 

    Google Scholar 
    5.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Nature 403, 853–858 (2000).CAS 
    Article 

    Google Scholar 
    6.Hulme, M. Glob. Environ. Change 20, 558–564 (2010).Article 

    Google Scholar 
    7.Kullberg, P. & Moilanen, A. Nat. Conserv. 12, 3–10 (2014).Article 

    Google Scholar 
    8.McIntosh, E. J., Pressey, R. L., Lloyd, S., Smith, R. J. & Grenyer, R. Annu. Rev. Environ. Resour. 42, 677–697 (2017).Article 

    Google Scholar 
    9.Turnhout, E., Dewulf, A. & Hulme, M. Curr. Opin. Environ. Sustain. 18, 65–72 (2016).Article 

    Google Scholar 
    10.Evans, M. C., Davila, F., Toomey, A. & Wyborn, C. Nat. Ecol. Evol. 1, 1588 (2017).Article 

    Google Scholar 
    11.Halpern, B. S., Regan, H. M., Possingham, H. P. & McCarthy, M. A. Ecol. Lett. 9, 2–11 (2006).Article 

    Google Scholar 
    12.Mokany, K. et al. Proc. Natl Acad. Sci. USA 117, 9906–9911 (2020).CAS 
    Article 

    Google Scholar 
    13.Moffette, F., Alix-Garcia, J., Shea, K. & Pickens, A. H. Nat. Clim. Change 11, 172–178 (2021).Article 

    Google Scholar 
    14.zu Ermgassen, E. K. H. J. et al. Environ. Res. Lett. 15, 035003 (2020).Article 

    Google Scholar 
    15.Schmidt-Traub, G. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01533-w (2021).16.Obermeister, N. Sustain. Sci. 14, 843–856 (2019).Article 

    Google Scholar 
    17.Sinclair, S. P. et al. Conserv. Lett. 11, e12459 (2018).Article 

    Google Scholar 
    18.Mammides, C. et al. Biol. Conserv. 198, 78–83 (2016).Article 

    Google Scholar 
    19.Turnhout, E. & Boonman-Berson, S. Ecol. Soc. 16, 35 (2011).Article 

    Google Scholar 
    20.Malavasi, M. Biol. Conserv. 252, 108843 (2020).Article 

    Google Scholar 
    21.Lahsen, M. & Turnhout, E. Environ. Res. Lett. 16, 025008 (2021).Article 

    Google Scholar 
    22.Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Nat. Ecol. Evol. 2, 759–762 (2018).Article 

    Google Scholar 
    23.Popkin, G. Science https://doi.org/gpzx (24 October 2019).24.Tengö, M. et al. Curr. Opin. Environ. Sustain. 26–27, 17–25 (2017).Article 

    Google Scholar 
    25.Temper, L., del Bene, D. & Martinez-Alier, J. J. Political Ecol. 22, 255–278 (2015).
    Google Scholar  More

  • in

    The Chinese pond mussel Sinanodonta woodiana demographically outperforms European native mussels

    This study contributes to the understanding of the population dynamics of S. woodiana and its native counterparts during the early stages of invasion. It documents a self-sustaining population of S. woodiana in an area with cold and long winters and extends the known limits of its thermal tolerance. Comparison of demographic profiles shows a more favourable population structure in S. woodiana than in the native mussels, indicating possible future dominance shifts. This study also shows that S. woodiana is a habitat generalist concerning bottom sediments, and points to intentional introductions of adult individuals as an important and underappreciated route of dispersal of this invasive species.Thermal tolerance of S. woodiana
    The introduction of Sinanodonta woodiana in 2000 resulted in a long-term establishment of its reproducing population, as evidenced by a high proportion of females carrying glochidia (17 out of 21 in 2018) and the presence of juveniles (the smallest individual of 33 mm shell-length was collected in 2019). While the populations of native mussels might have been augmented with glochidia attached to the stocking fishes, this was less likely in S. woodiana. The species was not recorded in the vicinity before13, and given the distance of over 500 km over which the founding individuals were transported, their local availability was unlikely. In any case, as the stocking fishes originated only from local sources, which did not include heated-water hatcheries, any S. woodiana glochidia would have also been from locally-adapted populations.Winters in the study area are relatively cold and long. In 2000–2019, the mean temperature of the coldest month was − 3.7 °C, and the lowest mean monthly temperature was − 10.8 °C. The absolute minimum temperature was − 31.1 °C. Ice formed each year, on average for 73 days, with a maximum of 104 days. As far as we know, these are the most extreme climatic conditions in which an established population of this species was documented to date. Sinanodonta woodiana has been reported from Sweden, but no reproduction was observed there30. The populations in the Yenisei and Ob River basins inhabit heated water effluents9,31. The other population in northern Poland in a thermally-unpolluted water body is in a milder climate24. Thus, our study extends the known limits of cold tolerance of S. woodiana, indicating a shift in its realized niche32 or an ongoing in situ adaptation11.Furthermore, with the ongoing climate change, the abiotic conditions in the invaded range of S. woodiana increasingly match its physiological optimum33. In our study area during the time since mussel introduction, the mean annual temperature increased by 0.8 °C, the number of days with ice formation decreased by 21, and the number of days with temperatures over 15 °C (coinciding with the production of ripe glochidia by S. woodiana15) increased by nine. Sinanodonta woodiana survives at water temperatures up to 38 °C34 and has a higher tolerance to thermal stress than the native mussels21. In heated water bodies it reproduces throughout the year18 and occupies habitats with higher temperature ranges than the native unionids14, indicating that climate warming will increase its competitive advantage. Additionally, high mobility of S. woodiana and its tendency to burrow deeply into the sediments may help it better survive during drought episodes.As shown in our study, in suboptimal thermal conditions, S. woodiana can persist at low abundances for decades. Outbreaks of such sleeper populations (sensu35) are likely to be triggered by changes in the environment, e.g., rising temperatures.Population structure of S. woodiana in relation to native unionidsOver four study years, the relative frequency of S. woodiana increased from 2 to 9%. A comparison of shell-length distributions, approximating population age-structure, shows that smaller-sized mussels contributed a higher proportion of individuals in S. woodiana than in the native mussels in all study years, and this difference was increasing over time. This increase over time was possibly related to the removal of S. woodiana individuals, as hand-sampling tends to be biased towards larger individuals. On the other hand, the high mobility of this species and its striking burrowing behaviour, which lowers its detectability, might have counterbalanced this effect, as illustrated by the largest S. woodiana individual, with a shell length of 22.5 cm, found in the last study year. Nevertheless, it is possible that without the removal of individuals, the size structure would also shift towards larger sizes in S. woodiana, and its relative abundance at the study sites would increase even faster. Interestingly, a higher contribution of smaller-sized individuals in S. woodiana than in the native mussels was also observed in24, where no mussels were removed before the study. Thus, in both these studies, S. woodiana not only established viable populations but also showed higher potential for population growth than the native mussels. This is not surprising given that S. woodiana grows faster, matures earlier and produces more glochidia per female than the native unionids17,18,19,36. At increasing relative frequencies, its direct effects on the native unionids: competition for food, bottom space and host fish, filtering out sperm and larvae, and transmission of diseases6 will play an increasing role, and a dominance shift can be expected. This, in turn, is expected to affect ecosystem functioning, including changes in water transparency and nutrient availability25,37, benthic habitat modification38,39, and reduction in the condition of fish40. Additionally, S. woodiana invasion threatens the endangered European bitterling Rhodeus amarus16, and its massive die-offs negatively impact water quality and reverberate to terrestrial ecosystems41,42.The increasing prevalence of S. woodiana in invaded areas17,23,43,44 supports its predicted ability to effectively compete with native mussels. Our present study shows that demographic profiles of co-occurring mussel populations can indicate future dominance shifts already at initial invasion stages. However, as in many alien species45,46, the time-lag between the establishment of S. woodiana and the expression of its impacts can last decades, explaining why, despite its striking body-size (“a football-sized invasive mussel”47), the threats from its invasion are largely underestimated.Tolerance of S. woodiana for bottom sediment typeDespite a large number of studies documenting the spread of S. woodiana (for a recent summary, see, e.g.,11,48), not much is known on its preferences concerning bottom sediments. Sinanodonta woodiana is mainly reported from ponds and reservoirs, which suggests its preference for muddy sediments. However, its presence in these habitats is related to its mode of dispersal rather than habitat preferences. Basing on a study in a heated lakes system with various habitats, Kraszewski and Zdanowski14 suggested a preference of S. woodiana for sandy bottom substrates. The patchy distribution of sandy and muddy bottom substrates allowed us to test this hypothesis in the present study.According to expectations, based on the known preferences of the native species49, A. cygnea occurred predominantly at sites with a muddy bottom, U. pictorum at sites with a sandy bottom, and A. anatina occurred at similar densities on both bottom types. Contrary to expectations, however, S. woodiana did not show a preference for either bottom type. Although its overall density was higher at sites with a sandy than a muddy bottom, this difference was not significant. Sinanodonta woodiana can utilize a broad range of host-fish species15,16,17 and survive in a broad range of water-body types13. Our study indicates that it is also a habitat generalist concerning bottom sediments and adds to the suit of the known tolerances of this species.Intentional human-mediated dispersalThe global spread of S. woodiana is primarily due to the trade in freshwater fish7,9. Our study points to intentional introductions for water filtration as an additional route of dispersal of this species. Large individual sizes and arguably beautiful colouration of S. woodiana add to its perceived attractiveness, and some people are willing to undertake considerable efforts to obtain individuals of this species. Occasional long-distance translocations can cause the bridgehead effect46,50, in which the establishment of populations in new locations facilitates the further dispersal of the species and leads to a self-accelerating invasion process. The way humans interact with invasive species is one of the main determinants of their spread and establishment51,52. Our local interviews indicate that individuals from the study pond have already been transferred to nearby water bodies, and their filtering ability is highly appreciated. The propensity of people to acquire and translocate Sinanodonta mussels has been noted before13,17,24,53,54,55 and is probably more important than previously appreciated.Management implicationsEradication of established invasive bivalve populations is extremely difficult6. An apparently successful attempt to eradicate S. woodiana from invaded fish ponds involved lowering the water level and poisoning the fish and mussels10,47, but usually such measures cannot be applied. An alternative is the removal of individuals by hand harvesting. To be effective, however, it should cover the whole surface of the invaded water body and be repeated regularly. A related, commonly used practice in field research on invasive species is to remove the collected individuals from the study area. Our study shows that at least in S. woodiana, this is not likely to have any practical effect. We took out all individuals collected during four annual surveys from collection sites covering approximately 8% of the surface area of the pond. The relative frequency of S. woodiana increased while its densities and shell-length distributions remained unchanged. This was not unexpected, given a small proportion of the population sampled, combined with the high reproduction rates and mobility of this species. As sampling rarely includes more than 10% of the studied populations, alternatively to removing individuals from a study area, long-term studies involving marking and releasing them back might be considered. Knowledge of the biology of S. woodiana in the wild (e.g., growth rates, longevity, behavioural responses) is scarce, limiting our ability to manage and reduce its further spread.The priority, however, is to prevent introductions of S. woodiana to non-invaded water bodies. Fish trade remains its dominant dispersal route, so effective biosecurity measures are necessary. Well-coordinated monitoring programmes are needed for evidence-based management decisions56. Public participation is key to successful management of invasive species. Publicly accessible educational programmes explaining the problems of invasive species and increasing the appreciation of the native ones are required, especially when the invasive species elicit favourable reactions from people51, as is the case with S. woodiana.Sinanodonta woodiana does not yet have the status of a recognized pest. For example, it is not included in the list of invasive alien species of European Union concern57 and there are no regulations concerning this species in most countries. Our study documents the potential of S. woodiana to demographically outcompete native unionids. Combined with its recognized impacts and rates of spread, it highlights the need to urgently call the attention of policymakers and the public to the threats posed by S. woodiana to the integrity of freshwater ecosystems. More

  • in

    Cochlear shape distinguishes southern African early hominin taxa with unique auditory ecologies

    1.Spoor, F., Wood, B. A. & Zonneveld, F. Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion. Nature 369, 645–648 (1994).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Braga, J. et al. Disproportionate cochlear length in genus Homo shows a high phylogenetic signal during apes’ hearing evolution. PLoS ONE 10, e0127780 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Urciuoli, A. et al. The evolution of the vestibular apparatus in apes and humans. Elife 9, e51261 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Ward, D. L. et al. Early life malnutrition and fluctuating asymmetry in the rat bony labyrinth. Anat. Rec. https://doi.org/10.1002/ar.24601 (2021).Article 

    Google Scholar 
    5.Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J.-J. & Spoor, F. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J. Anat. 220, 529–543 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Grohé, C., Tseng, Z. J., Lebrun, R., Boistel, R. & Flynn, J. J. Bony labyrinth shape variation in extant Carnivora: A case study of Musteloidea. J. Anat. 228, 366–383 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Mennecart, B. et al. Bony labyrinth morphology clarifies the origin and evolution of deer. Sci. Rep. 7, 13176 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Vater, M. & Kössl, M. Comparative aspects of cochlear functional organization in mammals. Hear. Res. 273, 89–99 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Manoussaki, D. et al. The influence of cochlear shape on low-frequency hearing. Proc. Natl. Acad. Sci. U.S.A. 105, 6162–6166 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Wannaprasert, T. & Jeffery, N. Variations of mammalian cochlear shape in relation to hearing frequency and skull size. Trop. Nat. Hist. 15, 41–54 (2015).
    Google Scholar 
    11.Beaudet, A. The inner ear of the Paranthropus specimen DNH 22 from Drimolen, South Africa. Am. J. Phys. Anthropol. 170, 439–446 (2019).PubMed 
    Article 

    Google Scholar 
    12.Kendall, D. G. Shape manifolds, procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    13.Srivastava, A. & Klassen, E. Functional and Shape Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    14.Braga, J. et al. Efficacy of diffeomorphic surface matching and 3D geometric morphometrics for taxonomic discrimination of Early Pleistocene hominin mandibular molars. J. Hum. Evol. 130, 21–35 (2019).PubMed 
    Article 

    Google Scholar 
    15.Braga, J. et al. Cochlear shape reveals that the human organ of hearing is sex-typed from birth. Sci. Rep. 9, 10889 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Srivastava, A., Klassen, E., Joshi, S. H. & Jermyn, I. H. Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1415–1428 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Grine, F. E. The alpha taxonomy of Australopithecus africanus. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 73–104 (Springer, 2013).Chapter 

    Google Scholar 
    18.Grine, F. E., Delanty, M. M. & Wood, B. A. Variation in mandibular postcanine dental morphology and hominin species representation in Member 4, Sterkfontein, South Africa. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 125–146 (Springer, 2013).Chapter 

    Google Scholar 
    19.Clarke, R. J. Australopithecus from Sterkfontein caves, South Africa. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 105–123 (Springer, 2013).Chapter 

    Google Scholar 
    20.Wood, B. A. & Boyle, E. K. Hominin taxic diversity: Fact or fantasy?. Yearb. Phys. Anthropol. 159, S37–S78 (2016).Article 

    Google Scholar 
    21.Martin, J. M. et al. Drimolen cranium DNH 155 documents microevolution in an early hominin species. Nat. Ecol. Evol. 5, 38–45 (2020).PubMed 
    Article 

    Google Scholar 
    22.Rak, Y., Kimbel, W. H., Moggi-Cecchi, J., Lockwood, C. A. & Menter, C. The DNH 7 skull of Australopithecus robustus from Drimolen (Main Quarry). South Africa. J. Hum. Evol. 151, 102913 (2021).PubMed 

    Google Scholar 
    23.Moggi-Cecchi, J., Tobias, P. V. & Beynon, A. D. The mixed dentition and associated skull fragments of a juvenile fossil hominid from Sterkfontein South Africa. Am. J. Phys. Anthropol. 106, 425–465 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Curnoe, D. & Tobias, P. V. Description, new reconstruction, comparative anatomy, and classification of the Sterkfontein Stw 53 cranium, with discussions about the taxonomy of other southern African early Homo remains. J. Hum. Evol. 50, 36–77 (2006).PubMed 
    Article 

    Google Scholar 
    25.Clarke, R. J. Latest information on Sterkfontein’s Australopithecus skeleton and a new look at Australopithecus. S. Afr. J. Sci. 104, 443–449 (2008).ADS 
    Article 

    Google Scholar 
    26.Braga, J. et al. A new partial temporal bone of a juvenile hominin from the site of Kromdraai B (South Africa). J. Hum. Evol. 65, 447–456 (2013).PubMed 
    Article 

    Google Scholar 
    27.Lande, R. Natural selection and random genetic drift in phenotypic evolution. Evol. 30, 314–334 (1976).Article 

    Google Scholar 
    28.Bookstein, F. & Mitteroecker, P. Comparing covariance matrices by relative eigenanalysis, with applications to organismal biology. Evol. Biol. 41, 336–350 (2014).Article 

    Google Scholar 
    29.Le Maitre, A. & Mitteroecker, P. Multivariate comparison of variance in R. Methods Ecol. Evol. 10, 1380–1392 (2019).Article 

    Google Scholar 
    30.Beaulieu, J. M., Jhwueng, D. C., Boettiger, C. & O’Meara, B. C. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evol. 66, 2369–2383 (2012).Article 

    Google Scholar 
    31.Quam, R. et al. Early hominin auditory ossicles from South Africa. Proc. Natl. Acad. Sci. U.S.A. 110, 8847–8851 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Mongle, C. S., Strait, D. S. & Grine, F. E. Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J. Hum. Evol. 131, 28–39 (2020).Article 

    Google Scholar 
    33.Sponheimer, M. & Lee-Thorp, J. A. Biogeochemical evidence for the environments of early Homo in South Africa. In The First Humans: Origin and Early Evolution of the Genus Homo (eds Grine, F. E. et al.) 185–194 (Springer, 2009).Chapter 

    Google Scholar 
    34.Ni, G., Elliott, S. J., Ayat, M. & Teal, P. D. Modelling cochlear mechanics. Biomed. Res. Int. 2, 150637 (2014).
    Google Scholar 
    35.Cai, H., Manoussaki, D. & Chadwick, R. Effects of coiling on the micromechanics of the mammalian cochlea. J. R. Soc. Interface 2, 341–348 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Tang, Z. et al. Research on the characteristics of dynamic behavior of basilar membrane in spiral cochlea. J. Vibroengineering 19, 3809–3821 (2017).Article 

    Google Scholar 
    37.Osmanski, M. S., Song, X., Guo, Y. & Wang, X. Frequency discrimination in the common marmoset (Callithrix jacchus). Hear. Res. 341, 1–8 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Quam, R. M. et al. Early hominin auditory capacities. Sci. Adv. 1, e1500355 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Kojima, S. Comparison of auditory functions in the chimpanzee and human. Folia Primatol. 55, 62–72 (1990).CAS 
    Article 

    Google Scholar 
    40.Machens, C. K. et al. Single auditory neurons rapidly discriminate conspecific communication signals. Nat. Neurosci. 6, 341–342 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Zoloth, S. R. et al. Species-specific perceptual processing of vocal sounds by monkeys. Science 204, 870–873 (1979).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proc. R. Soc. Lond. B. 205, 581–598 (1979).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Broom, R. The Pleistocene anthropoid apes of South Africa. Nature 142, 377–379 (1938).ADS 
    Article 

    Google Scholar 
    44.Coqueugniot, H. et al. Early brain growth in Homo erectus and implications for cognitive ability. Nature 431, 299–302 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Carayon, D., Vaysse, F., Tramini, P., Dumoncel, J. & Esclassan, R. The age-related maturational pattern of the human subarcuate fossa. C. R. Palevol. 14, 139–145 (2015).Article 

    Google Scholar 
    46.Clarke, R.J. The cranium of the Swartkrans hominid SK 847 and its relevance to human origins. Ph.D. Thesis (University of the Witwatersrand,1977).47.Spoor, F. The comparative morphology and phylogeny of the human bony labyrinth. Ph.D. Thesis. (Utrecht University, 1993).48.Boyer, D. M. et al. Algorithms to automatically quantify the geometric similarity of anatomical surface. Proc. Natl. Acad. Sci. U.S.A. 108, 18221–18226 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Durrleman, S., Pennec, X., Trouvé, A., Ayache, N. & Braga, J. Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration. J. Hum. Evol. 62, 74–88 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Kim, K., Kim, P. T., Koo, J. & Pierrynowski, M. R. Frenet-Serret and the estimation of curvature and torsion. IEEE J. Select. Top. Sig. Process. 7, 646–654 (2013).ADS 
    Article 

    Google Scholar 
    51.Pietsch, M. et al. Spiral form of the human cochlea results from spatial constraints. Sci. Rep. 7, 7500 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Huang, W., Absil, P.-A., Gallivan, K. & Hand, P. ROPTLIB: an object-oriented C++ library for optimization on Riemannian manifolds (2016). https://www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html53.Dryden, I.L. & Mardia, K.V. Statistical Shape analysis, with Applications in R. Second Edition (John Wiley and Sons, 2016). R package version 1.2.6. https://cran.r-project.org/web/packages/shapes/index.html54.Kuhn, M. & Vaughan, D. Package ‘yardstick’. Tidy Characterizations of Model Performance. R package version 0.0.7. https://CRAN.R-project.org/package=yardstick (2020).55.Rosenberg, A. & Hirschberg, J. V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure. Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 410–420 (2007).56.Nowosad, J. & Stepinski., T.F. ,. Spatial association between regionalizations using the information-theoretical V-measure. Int. J. Geogr. Inf. Sci. 32, 1–16 (2018).Article 

    Google Scholar 
    57.Schlager, S. & Morpho, R. Shape analysis in R. In Statistical Shape and Deformation Analysis (eds Zheng, G. et al.) 217–256 (Academic Press, 2017).Chapter 

    Google Scholar 
    58.Adams, D., Collyer, M., Kaliontzopoulou, A. & Baken, E. Geomorph: Software for geometric morphometric analyses. R package version 3.3.2. https://cran.r-project.org/package=geomorph (2021).59.Cardini, A., O’Higgins, P. & Rohlf, F. J. Seeing distinct groups where there are none: Spurious patterns from between group PCA. Evol. Biol. 46, 303–316 (2019).Article 

    Google Scholar 
    60.Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 10, 639–650 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Fischer, A., Pollack, J., Thalmann, O., Nickel, B. & Pääbo, S. Demographic history and genetic differentiation in apes. Curr. Biol. 16, 1133–1138 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Fischer, A. et al. Bonobos fall within the genomic variation of chimpanzees. PLoS ONE 6, e21605 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Dos Reis, M. et al. Using phylogenomic data to explore the effects of relaxed clocks and calibration strategies on divergence time estimation: primates as a test case. Syst. Biol. 67, 594–615 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Rieux, A. & Balloux, F. Inferences from tip-calibrated phylogenies: A review and a practical guide. Mol. Ecol. 25, 1911–1924 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Near-daily reconstruction of tropical intertidal limpet life-history using secondary-ion mass spectrometry

    Ecology of Yellowfoot limpetIn the Tropical Pacific, sympatric limpets (Cellana melanostoma, Cellana exarata, Cellana sandwicensis, Cellana talcosa) inhabit the Hawaiian rocky intertidal ecosystem, where they graze on crustose coralline algae (CCA) and epibenthic microorganisms. Distribution ranges from the splash zone (upper-intertidal) to subtidal zone, and across the entire Hawaiian Archipelago26. They are dispersed across the majority of seamounts, atolls, and islands, however, not all species are present in every rocky intertidal locality, which reflects species-specific micro-habitat preferences.The reproduction cycles for each species appears to vary in time and space, and on-going long-term monitoring efforts are in progress to define this critical life-history trait. Previous studies on the yellowfoot limpet C. sandwicensis, reveal that reproduction is highly synchronized from December to March27,29. Gametogenesis also occurs from June to August, however, the level synchronicity and intensity of this second spawn period are inconsistent.These limpets are gonochoristic and considered to be sequential hermaphrodites44. The sex ratio is near 1:1(M:F) during spawning season, however, we have directly observed populations to maintain disproportionate sex ratios.Development of this broad-cast spawning limpet has been described from egg to post-larvae, where settlement occurs in less than 4 days post-fertilization29. This short larval duration ensures recruitment to the same localized intertidal environment, and reduces likelihood of hybridization between sympatric species with similar life-histories26.For wild limpets, growth rates shift through ontogeny—average monthly growth decreasing from 4–5 mm shell length (SL) as juveniles to 2–3 mm SL as adults27. Limpets also exhibit seasonal growth patterns—influenced by temperature and feeding28,37. Currently, growth rates of large individuals ( >50 mm SL) and species longevity are absent in the literature.Regional climate and coastal oceanographyKa’alawai is located on the south-facing shoreline of Oahu Island, Hawai’i (21°15’20.7“N 157°47’30.8“W). This area, defined as a rocky intertidal zone, is primarily comprised of basalt outcrops, boulders and benches, and supports a diverse community of epibenthic flora and fauna. The area is relatively easy to access by foot, and has been continuously exposed to various anthropogenic factors, which includes development, urban run-off, and subsistence fishing.The microclimate of the region is characterized by mild, wet winters (January to March) and dry, hot summers (July to September). The mean daily atmospheric temperature range and mean daily sea-surface temperature range are 18.44–31.38 °C and 22.67–30.18 °C, respectively. The annual precipitation is low relative to windward sides of the island, with maximum rainfall of 6.35 cm (data sources: US climate station USC00519397: Waikiki 717.2; PacIOOS Nearshore Sensor 04 (NS04): Waikiki Aquarium). Although freshwater input from precipitation along this coastline is considered to be marginal, the mixing of submarine groundwater discharge generates a unique geochemical profile for surface seawater at Ka’alawai. In particular, the mean surface salinity for this study site has been reported to be 25.4 ‰, which reflects this highly localized land-sea interaction45.The coastal oceanography of this region is predominantly influenced by wave, wind, and tidal forces. The south-shore region experiences a mixed tidal cycle—having both diurnal and semi-diurnal sinusoidal constituents per lunar day—with a tidal range of 58 cm and 91 cm during neap tide and spring tide, respectively; The trade winds from north-easterly direction (between 22.5°–67.5°) account for ~63% of the year with mean annual intensity around 5 m/s;46 and South swells with wave amplitudes of ~3 m are generated by storms in the Tasmanian Sea during Northern Hemisphere Summer47,48.Modern and historical specimensOn June 28th of 2018, live Yellowfoot limpet (Cellana sandwicensis) specimens CW1 and CW2 were collected from the rocky intertidal zone at Ka’alawai, Oahu, Hawai’i (Fig. 7). The animals were immediately sacrificed/dissected using scalpel blade, and measured for shell dimensions using a caliper. Limpets were weighed to determine gonadosomatic index, and gonads were preserved for histological examination. Shells were rinsed in an ultrasonic bath and air-dried.Fig. 7: Study site map.Hawaiian limpet specimens (Cellana sandwicensis) were collected along the rocky intertidal shoreline of Ka’alawai (Oahu, Hawaii). Instrumental sea-surface temperatures were measured in-situ by PacIOOS Nearshore Sensor 04 (NS04) at the Waikiki Aquarium.Full size imageA historical specimen BPBM (identification number 250851-200492) was loaned from the Bernice Pauahi Bishop Museum Malacology Department Collection. This specimen’s geographical and ecological origin is unknown, but was identified as C. sandwicensis by its characteristic shell morphology49. This specimen was selected for its large size to estimate life-expectancy of this limpet species, as well as to evaluate this method for paleoclimatology studies.Permission was not required to obtain specimens used in this study, and limpets were collected at a size exceeds the legal minimum shell length of 31.8 mm (Hawaii State Law is enforced by Department of Land and Natural Resources). Ethical approval was not required to conduct analysis.Characterization of shell microstructureShell microstructure was identified before isotopic analysis could be attempted. Each shell was cross-sectioned from anterior to posterior direction using a low speed saw (Isomet 1000, Buehler) equipped with a 0.5 mm diamond coated blade. Parallel cuts were made at the apex or maximal growth-axis to obtain two replicate 1.3 mm thick-sections per specimen. The first replicate thick-sections, prepared for micro-sampling, were further cut into More

  • in

    Tree diversity and soil chemical properties drive the linkages between soil microbial community and ecosystem functioning

    1.Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–73. https://doi.org/10.1038/nature04514.CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Stocker TF, et al. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA; 2013.3.Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304:1623–7. https://doi.org/10.1126/science.1097396.CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Trumbore SE. Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci USA. 1997;94:8284–91. https://doi.org/10.1073/pnas.94.16.8284.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Schlesinger WH, Andrews JA. Soil respiration and the global carbon cycle. Biogeochemistry. 2000;48:7–20. https://doi.org/10.1023/A:1006247623877.CAS 
    Article 

    Google Scholar 
    6.Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol. 2010;8:779–90. https://doi.org/10.1038/nrmicro2439.CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541 https://doi.org/10.1038/ncomms10541.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Liu Y-R, Delgado-Baquerizo M, Wang JT, Hu HW, Yang Z, He JZ. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol Biochem. 2018;118:35–41. https://doi.org/10.1016/j.soilbio.2017.12.003.9.McGuire KL, Treseder KK. Microbial communities and their relevance for ecosystem models: Decomposition as a case study. Soil Biol Biochem. 2010;42:529–35. https://doi.org/10.1016/j.soilbio.2009.11.016.10.Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW. et al. Winter forest soil respiration controlled by climate and microbial community composition. Nature. 2006;439:711–4. https://doi.org/10.1038/nature04555.CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nature Clim Change. 2013;3:909–12. https://doi.org/10.1038/nclimate1951.12.Delgado‐Baquerizo M, Maestre FT, Reich PB, Trivedi P, Osanai Y, Liu YR, et al. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecol Monogr. 2016;86:373–90.Article 

    Google Scholar 
    13.Maaroufi NI, Long JR de. Global change impacts on forest soils: linkage between soil biota and carbon-nitrogen-phosphorus stoichiometry. Front For Glob Change. 2020;3. https://doi.org/10.3389/ffgc.2020.00016.14.Gottschall F, Davids S, Newiger-Dous TE, Auge H, Cesarz S, Eisenhauer N. Tree species identity determines wood decomposition via microclimatic effects. Ecol Evol. 2019;9:12113–27. https://doi.org/10.1002/ece3.5665.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Durán J, Delgado-Baquerizo M. Vegetation structure determines the spatial variability of soil biodiversity across biomes. Sci Rep. 2020;10:21500. https://doi.org/10.1038/s41598-020-78483-z.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Beugnon R, et al. Abiotic and biotic drivers of scale-dependent tree trait effects on soil microbial biomass and soil carbon concentration (in press).17.Pei Z, Eichenberg D, Bruelheide H, Kröber W, Kühn P, Li Y, et al. Soil and tree species traits both shape soil microbial communities during early growth of Chinese subtropical forests. Soil Biol Biochem. 2016;96:180–90. https://doi.org/10.1016/j.soilbio.2016.02.004.18.Xu S, Eisenhauer N, Ferlian O, Zhang J, Zhou G, Lu X. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity-ecosystem functioning experiments. Proc Biol Sci. 2020;287:20202063. https://doi.org/10.1098/rspb.2020.2063.CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun. 2015;6:6707. https://doi.org/10.1038/ncomms7707.CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA. et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56. https://doi.org/10.1038/nature10386.CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci Rep. 2017;7:44641. https://doi.org/10.1038/srep44641.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Huang Y, Ma Y, Zhao K, Niklaus PA, Schmid B, He JS. Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. J Plant Ecol. 2017;10:28–35. https://doi.org/10.1093/jpe/rtw115.Article 

    Google Scholar 
    23.Fornara DA, Tilman D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol. 2008;96:314–22. https://doi.org/10.1111/j.1365-2745.2007.01345.x.CAS 
    Article 

    Google Scholar 
    24.Chen C, Chen HYH, Chen X, Huang Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat Commun. 2019;10:1332. https://doi.org/10.1038/s41467-019-09258-y.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Thoms C, Gattinger A, Jacob M, Thomas FM, Gleixner G. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol Biochem. 2010;42:1558–65. https://doi.org/10.1016/j.soilbio.2010.05.030.CAS 
    Article 

    Google Scholar 
    26.Rousk J, Brookes PC, Bååth E. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol Biochem. 2010;42:926–34. https://doi.org/10.1016/j.soilbio.2010.02.009.27.Miltner A, Bombach P, Schmidt-Brücken B, Kästner M. SOM genesis: microbial biomass as a significant source. Biogeochemistry. 2012;111:41–55. https://doi.org/10.1007/s10533-011-9658-z.CAS 
    Article 

    Google Scholar 
    28.Delgado-Baquerizo M, Reich PB, Khachane AN, Campbell CD, Thomas N, Freitag TE. et al. It is elemental: soil nutrient stoichiometry drives bacterial diversity. Environ Microbiol. 2017;19:1176–88. https://doi.org/10.1111/1462-2920.13642.CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Fanin N, Barantal S, Fromin N, Schimann H, Schevin P, Hättenschwiler S. Distinct microbial limitations in litter and underlying soil revealed by carbon and nutrient fertilization in a tropical rainforest. PLoS ONE. 2012;7:e49990. https://doi.org/10.1371/journal.pone.0049990.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7. https://doi.org/10.1126/science.aaf4507.CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Cao J, Jia X, Pang S, Hu Y, Li Y, Wang Q. Functional structure, taxonomic composition and the dominant assembly processes of soil prokaryotic community along an altitudinal gradient. Appl Soil Ecol. 2020;155:103647. https://doi.org/10.1016/j.apsoil.2020.103647.Article 

    Google Scholar 
    32.Bao Y, Guo Z, Chen R, Wu M, Li Z, Lin X. et al. Functional community composition has less environmental variability than taxonomic composition in straw-degrading bacteria. Biol Fertil Soils. 2020;56:869–74. https://doi.org/10.1007/s00374-020-01455-y.CAS 
    Article 

    Google Scholar 
    33.Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 2018;12:2470–8. https://doi.org/10.1038/s41396-018-0158-1.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Kuang J, Huang L, He Z, Chen L, Hua Z, Jia P. et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 2016;10:1527–39. https://doi.org/10.1038/ismej.2015.201.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Jurburg SD, Salles JF. Functional Redundancy and Ecosystem Function—The Soil Microbiota as a Case Study. In: Lo Y-H, Blanco JA, Roy S, editors. Biodiversity in Ecosystems—Linking Structure and Function. Rijeka, Croatia, InTech; 2015.36.Chen Q-L, Ding J, Li CY, Yan ZZ, He JZ, Hu HW. Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Sci Total Environ. 2020;734:139479. https://doi.org/10.1016/j.scitotenv.2020.139479.CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, Jeffries TC. et al. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. ISME J. 2016;10:2593–604. https://doi.org/10.1038/ismej.2016.65.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Hale L, Feng W, Yin H, Guo X, Zhou X, Bracho R. et al. Tundra microbial community taxa and traits predict decomposition parameters of stable, old soil organic carbon. ISME J. 2019;13:2901–15. https://doi.org/10.1038/s41396-019-0485-x.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Chen J, Sinsabaugh RL. Linking microbial functional gene abundance and soil extracellular enzyme activity: Implications for soil carbon dynamics. Glob Change Biol. 2021;27:1322–5. https://doi.org/10.1111/gcb.15506.Article 

    Google Scholar 
    40.Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology. Nat Geosci. 2010;3:336–40. https://doi.org/10.1038/ngeo846.41.Eisenhauer N, Bessler H, Engels C, Gleixner G, Habekost M, Milcu A. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology. 2010;91:485–96. https://doi.org/10.1890/08-2338.1.CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Bonner MT, Shoo LP, Brackin R, Schmidt S. Relationship between microbial composition and substrate use efficiency in a tropical soil. Geoderma. 2018;315:96–103. https://doi.org/10.1016/j.geoderma.2017.11.026.CAS 
    Article 

    Google Scholar 
    43.Bárány A, Szili-Kovács T, Krett G, Füzy A, Márialigeti K, Borsodi AK. Metabolic activity and genetic diversity of microbial communities inhabiting the rhizosphere of halophyton plants. Acta Microbiol Immunol Hung. 2014;61:347–61. https://doi.org/10.1556/AMicr.61.2014.3.8.CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Chodak M, Klimek B, Niklińska M. Composition and activity of soil microbial communities in different types of temperate forests. Biol Fertil Soils. 2016;52:1093–104. https://doi.org/10.1007/s00374-016-1144-2.CAS 
    Article 

    Google Scholar 
    45.Lagomarsino A, Knapp BA, Moscatelli MC, De Angelis P, Grego S, Insam H. Structural and functional diversity of soil microbes is affected by elevated [CO2] and N addition in a poplar plantation. J Soils Sediments. 2007;7:399–405. https://doi.org/10.1065/jss2007.04.223.46.Crowther TW, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365. https://doi.org/10.1126/science.aav0550.47.Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB. et al. Understanding how microbiomes influence the systems they inhabit. Nat Microbiol. 2018;3:977–82. https://doi.org/10.1038/s41564-018-0201-z.CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Malik AA, Martiny J, Brodie EL, Martiny AC, Treseder KK, Allison SD. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:1–9. https://doi.org/10.1038/s41396-019-0510-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Sainte-Marie J, Barrandon M, Saint-André L, Gelhaye E, Martin F, Derrien D. C-STABILITY an innovative modeling framework to leverage the continuous representation of organic matter. Nat Commun. 2021;12:810. https://doi.org/10.1038/s41467-021-21079-6.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F. et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical C hina. Methods Ecol Evol. 2014;5:74–89. https://doi.org/10.1111/2041-210X.12126.Article 

    Google Scholar 
    51.Yu G, Chen Z, Piao S, Peng C, Ciais P, Wang Q. et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc Natl Acad Sci USA. 2014;111:4910–5. https://doi.org/10.1073/pnas.1317065111.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Bradstreet RB. Determination of Nitro Nitrogen by Kjeldahl Method. Anal Chem. 1954;26:235–6.CAS 
    Article 

    Google Scholar 
    53.Frostegård Å, Tunlid A, Bååth E. Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Methods. 1991;14:151–63. https://doi.org/10.1016/0167-7012(91)90018-L.54.Ruess L, Chamberlain PM. The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol Biochem. 2010;42:1898–910. https://doi.org/10.1016/j.soilbio.2010.07.020.55.Scheu S. Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biol Biochem. 1992;24:1113–8. https://doi.org/10.1016/0038-0717(92)90061-2.Article 

    Google Scholar 
    56.Schöps R, Goldmann K, Herz K, Lentendu G, Schöning I, Bruelheide H. et al. Land-use intensity rather than plant functional identity shapes bacterial and fungal rhizosphere communities. Front Microbiol. 2018;9:2711. https://doi.org/10.3389/fmicb.2018.02711.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Nawaz A, et al. DNA- and RNA- Derived Fungal Communities in Subsurface Aquifers Only Partly Overlap but React Similarly to Environmental Factors. Microorganisms. 2019;7. https://doi.org/10.3390/microorganisms7090341.58.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. https://doi.org/10.1038/s41587-019-0209-9.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 2011;17:10. https://doi.org/10.14806/ej.17.1.200.60.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. https://doi.org/10.1371/journal.pone.0061217.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Lahti L, Shetty S, Blake T, Salojarvi J. Microbiome R package. Tools Microbiome Anal R. 2017;1:504.63.Liang Y, Liu X, Singletary MA, Wang K, Mattes TE. Relationships between the Abundance and Expression of Functional Genes from Vinyl Chloride (VC)-Degrading Bacteria and Geochemical Parameters at VC-Contaminated Sites. Environ Sci Technol. 2017;51:12164–74. https://doi.org/10.1021/acs.est.7b03521.CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Zheng B, Zhu Y, Sardans J, Peñuelas J, Su J. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci China Life Sci. 2018;61:1451–62. https://doi.org/10.1007/s11427-018-9364-7.CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol. 2003;69:3593–9. https://doi.org/10.1128/aem.69.6.3593-3599.2003.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Rosseel Y. Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA). J Stat Softw. 2012;48:1–36.Article 

    Google Scholar 
    67.Paterson E, Osler G, Dawson LA, Gebbing T, Sim A, Ord B. Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: Independent of the presence of roots and mycorrhizal fungi. Soil Biol Biochem. 2008;40:1103–13. https://doi.org/10.1016/j.soilbio.2007.12.003.68.Kramer S, Dibbern D, Moll J, Huenninghaus M, Koller R, Krueger D. et al. Resource Partitioning between Bacteria, Fungi, and Protists in the Detritusphere of an Agricultural Soil. Front Microbiol. 2016;7:1524. https://doi.org/10.3389/fmicb.2016.01524.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Berg B. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecol Manag. 2000;133:13–22. https://doi.org/10.1016/S0378-1127(99)00294-7.Article 

    Google Scholar 
    70.Moretto AS, Distel RA, Didoné NG. Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Appl Soil Ecol. 2001;18:31–7. https://doi.org/10.1016/S0929-1393(01)00151-2.Article 

    Google Scholar 
    71.Kyker-Snowman E, Wieder WR, Frey SD, Grandy AS. Stoichiometrically coupled carbon and nitrogen cycling in the MIcrobial-MIneral Carbon Stabilization model version 1.0 (MIMICS-CN v1.0). Geosci Model Dev. 2020;13:4413–34. https://doi.org/10.5194/gmd-13-4413-2020.CAS 
    Article 

    Google Scholar 
    72.Buckeridge KM, Mason KE, McNamara NP, Ostle N, Puissant J, Goodall T. et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun Earth Environ. 2020;1:36. https://doi.org/10.1038/s43247-020-00031-4.Article 

    Google Scholar 
    73.Cesarz S, Craven D, Auge H, Bruelheide H, Castagneyrol B, Hector A, et al.. Biotic and abiotic drivers of soil microbial functions across tree diversity experiments. bioRXiv 2020. https://doi.org/10.1101/2020.01.30.927277.74.Tedersoo L, Bahram M, Cajthaml T, Põlme S, Hiiesalu I, Anslan S. et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J. 2016;10:346–62. https://doi.org/10.1038/ismej.2015.116.CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Huang Y, Chen Y, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science. 2018;362:80–3. https://doi.org/10.1126/science.aat6405.CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Chapman SK, Newman GS, Hart SC, Schweitzer JA, Koch GW. Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition. PLoS ONE. 2013;8:e62671. https://doi.org/10.1371/journal.pone.0062671.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Eisenhauer N, Dobies T, Cesarz S, Hobbie SE, Meyer RJ, Worm K. et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc Natl Acad Sci USA. 2013;110:6889–94. https://doi.org/10.1073/pnas.1217382110.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Brandt BW, Kelpin FDL, van Leeuwen IMM, Kooijman SALM. Modelling microbial adaptation to changing availability of substrates. Water Res. 2004;38:1003–13. https://doi.org/10.1016/j.watres.2003.09.037.CAS 
    Article 
    PubMed 

    Google Scholar 
    79.Hooper DU, BIGNELL DE, BROWN VK, BRUSSARD L, MARK DANGERFIELD J, WALL DH, et al. Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems: Patterns, Mechanisms, and Feedbacks. BioScience. 2000;50:1049.Article 

    Google Scholar 
    80.Domke GM, Oswalt SN, Walters BF, Morin RS. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc Natl Acad Sci USA. 2020;117:24649–51. https://doi.org/10.1073/pnas.2010840117.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Tong X, Brandt M, Yue Y, Ciais P, Rudbeck Jepsen M, Penuelas J. et al. Forest management in southern China generates short term extensive carbon sequestration. Nat Commun. 2020;11:129. https://doi.org/10.1038/s41467-019-13798-8.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Veldkamp E, Schmidt M, Powers JS, Corre MD. Deforestation and reforestation impacts on soils in the tropics. Nat Rev Earth Environ. 2020;1:590–605. https://doi.org/10.1038/s43017-020-0091-5.Article 

    Google Scholar 
    83.Lewis SL, Wheeler CE, Mitchard ETA, Koch A. Restoring natural forests is the best way to remove atmospheric carbon. Nature. 2019;568:25–8. https://doi.org/10.1038/d41586-019-01026-8.CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    National climate and biodiversity strategies are hamstrung by a lack of maps

    1.Khan, M. & Schmidt-Traub, G. Use of Spatial Information in National Climate Strategies. An Analysis of Nationally Determined Contributions (NDCs) (SDSN, 2020); https://resources.unsdsn.org/use-of-spatial-information-in-national-climate-strategies2.Cadena, M. et al. Nature is counting on us: Mapping Progress to Achieve the Aichi Biodiversity Targets. NBSAP Forum https://go.nature.com/3B9vo5Z (2019).3.Díaz, S. et al. Science 366, eaax3100 (2019).Article 

    Google Scholar 
    4.First Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3 (CBD, 2021); https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf5.Clark, M. A. et al. Science 370, 705–708 (2020).CAS 
    Article 

    Google Scholar 
    6.Soterroni, A. C. et al. Env. Res. Lett. 13, 074021 (2018).Article 

    Google Scholar 
    7.Wallbott, L., Siciliano, G. & Lederer, M. Ecol. Soc. 24, 24 (2019).Article 

    Google Scholar 
    8.Brauman, K. A. et al. Global trends in nature’s contributions to people. Proc. Natl Acad. Sci. USA 117, 32799–32805 (2020).CAS 
    Article 

    Google Scholar 
    9.Jung, M. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01528-7 (2021).10.Sala, E. et al. Nature 592, 397–402 (2021).CAS 
    Article 

    Google Scholar 
    11.Global Biodiversity Outlook 5 (Secretariat of the Convention on Biological Diversity, 2020); https://go.nature.com/3z6jZls12.Schmidt-Traub, G. et al. Natl Sci. Rev. https://doi.org/gnr8 (2020).13.Schmidt-Traub, G., Adams, J. & Zhu, C. The EU and China must cooperate to green commodity supply chains. China Dialogue https://go.nature.com/3rfOpPN (2020).14.G7 2030 Nature Compact. G7 https://go.nature.com/3ilGLzj (2021). More

  • in

    Study of energetic properties of different tree organs in six Olea europaea L. cultivars

    1.European Commission. COM(2014) A policy framework for climate and energy in the period from 2020 to 2030. 1–18 (2012).2.Miranda, T. et al. Characterization and combustion of olive pomace and forest residue pellets. Fuel Process. Technol. 103, 91–96 (2012).CAS 
    Article 

    Google Scholar 
    3.Paiano, A. & Lagioia, G. Energy potential from residual biomass towards meeting the EU renewable energy and climate targets. The Italian case. Energy Policy 91, 161–173 (2020).Article 

    Google Scholar 
    4.Mehmood, M. A. et al. Biomass production for bioenergy using marginal lands. Sustain. Prod. Consum. 9, 3–21 (2017).Article 

    Google Scholar 
    5.Italian National Institute of Statistics ISTAT. Cultivations. At http://dati.istat.it/Index.aspx?DataSetCode=DCSP_COLTIVAZIONI (2020).6.Barbanera, M. et al. Characterization of pellets from mixing olive pomace and olive tree pruning. Renew. Energy 88, 185–191 (2016).CAS 
    Article 

    Google Scholar 
    7.Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30, 219–230 (2004).CAS 
    Article 

    Google Scholar 
    8.Telmo, C. & Lousada, J. Heating values of wood pellets from different species. Biomass Bioenerg. 35, 2634–2639 (2011).CAS 
    Article 

    Google Scholar 
    9.Zeng, W., Tang, S. & Xiao, Q. Calorific values and ash contents of different parts of Masson pine trees in southern China. J. For. Res. 25, 779–786 (2014).Article 

    Google Scholar 
    10.Yan, P., Xu, L. & He, N. Variation in the calorific values of different plants organs in China. PLoS ONE 13, e0199762 (2018).Article 

    Google Scholar 
    11.FAO. Crops. At http://www.fao.org/faostat/en/#data/QC (2019).12.Gorzynik-Debicka, M. et al. Potential health benefits of olive oil and plant polyphenols. Int. J. Mol. Sci. 19, 686 (2018).Article 

    Google Scholar 
    13.Various authors. Handbook for a sustainable management of the olive groves. At https://olive4climate.eu/wp-content/uploads/Olive-4-Climate-Handbook.pdf (2017).14.Beccali, M., Columba, P., D’Alberti, V. & Franzitta, V. Assessment of bioenergy potential in Sicily: A GIS-based support methodology. Biomass Bioenerg. 33, 79–87 (2009).Article 

    Google Scholar 
    15.Gucci, R. & Cantini, C. Pruning and Training Systems for Modern Olive Growing (Csiro Publishing, Clayton, 2000).Book 

    Google Scholar 
    16.Fernandez, E. R. et al. Evolution and sustainability of the olive production systems. Options Méditerranéennes Séries A Mediterranean Seminars 106, 11–42 (2013).
    Google Scholar 
    17.Di Blasi, C., Tanzi, V. & Lanzetta, M. A study on the production of agricultural residues in Italy. Biomass Bioenerg. 12, 321–331 (1997).Article 

    Google Scholar 
    18.Brunori, A. et al. Biomass and volume modeling in Olea europaea L. cv “Leccino”. Trees Struct. Funct. 31, 1859–1874 (2017).Article 

    Google Scholar 
    19.Alves, C. A. et al. Gaseous and speciated particulate emissions from the open burning of wastes from tree pruning. Atmos. Res. 226, 110–121 (2019).CAS 
    Article 

    Google Scholar 
    20.Repullo, M. A., Carbonell, R., Hidalgo, J., Rodríguez-Lizana, A. & Ordóñez, R. Using olive pruning residues to cover soil and improve fertility. Soil Tillage Res. 124, 36–46 (2012).Article 

    Google Scholar 
    21.Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (2018).22.Nardino, M. et al. Annual and monthly carbon balance in an intensively managed Mediterranean olive orchard. Photosynthetica 51, 63–74 (2013).CAS 
    Article 

    Google Scholar 
    23.Romero-García, J. M. et al. Biorefinery based on olive biomass. State of the art and future trends. Bioresour. Technol. 159, 421–432 (2014).Article 

    Google Scholar 
    24.Werther, J., Saenger, M., Hartge, E. U., Ogada, T. & Siagi, Z. Combustion of agricultural residues. Prog. Energy Combust. Sci. 26, 1–27 (2000).CAS 
    Article 

    Google Scholar 
    25.Lehtikangas, P. Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenerg. 20, 351–360 (2001).Article 

    Google Scholar 
    26.Motisi, A. et al. Le cultivar di Olivo (Olea europaea L.) siciliane della collezione costituita dal dipartimento di colture arboree di Palermo presso l’azienda ‘Campo Carboj’ dell’Ente di Sviluppo Agricolo della regione Siciliana. Italus Hortus 13, 137–144 (2006).
    Google Scholar 
    27.Caruso, T. & D’Anna, F. Catalogo accessioni di Olivo Pesco Fragolina di bosco. Fondo Europeo agricolo per lo sviluppo rurale: l’Europa investe nelle zone rurali. (Tipografia Paruzzo Caltanissetta, 2015).
    Google Scholar 
    28.Caruso, T., Cartabellotta, D. & Antonio, M. Cultivar Di Olivo Siciliane. Identificazione, Validazione, Caratterizzazione morfologica e Molecolare e Qualità Degli Oli. Contiene manuale per la caratterizzazione primaria di cultivar di olivo siciliane. Palermo, Italy (2007).29.UNI EN ISO 14775 Solid Biofuels – Determination Of Ash Content. 14775 Solid Biofuels – Determination Of Ash Content (2010).30.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.R-project.org/ (2020).31.Sirna, A. LCA methodology in two self-consumption wood energy chains. PhD thesis, University of Tuscia, Italy (2012).32.Requejo, A., Feria, M. J., Vargas, F. & Rodríguez, A. Total use of olive tree prunings by means of hydrothermal and combustion processes. BioResources 7, 118–134 (2012).CAS 

    Google Scholar 
    33.Cuevas, M. et al. Drying kinetics and effective water diffusivities in olive stone and olive-tree pruning. Renew. Energy 132, 911–920 (2019).Article 

    Google Scholar 
    34.Garcia-Maraver, A., Rodriguez, M. L., Serrano-Bernardo, F., Diaz, L. F. & Zamorano, M. Factors affecting the quality of pellets made from residual biomass of olive trees. Fuel Process. Technol. 129, 1–7 (2015).CAS 
    Article 

    Google Scholar 
    35.Lama-Muñoz, A. et al. Characterization of the lignocellulosic and sugars composition of different olive leaves cultivars. Food Chem. 329, 127153 (2020).Article 

    Google Scholar 
    36.Garcia-Maraver, A., Salvachúa, D., Martínez, M. J., Diaz, L. F. & Zamorano, M. Analysis of the relation between the cellulose, hemicellulose and lignin content and the thermal behavior of residual biomass from olive trees. Waste Manag. 33, 2245–2249 (2013).CAS 
    Article 

    Google Scholar 
    37.Telmo, C. & Lousada, J. The explained variation by lignin and extractive contents on higher heating value of wood. Biomass Bioenerg. 35, 1663–1667 (2011).CAS 
    Article 

    Google Scholar 
    38.Demirbaş, A. Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77, 1117–1120 (1998).Article 

    Google Scholar 
    39.Demirbaş, A. Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels. Energy Explor. Exploit. 20, 105–111 (2002).Article 

    Google Scholar 
    40.García-Maraver, A., Terron, L. C., Ramos-Ridao, A. & Zamorano, M. Effects of mineral contamination on the ash content of olive tree residual biomass. Biosyst. Eng. 118, 167–173 (2014).Article 

    Google Scholar 
    41.Velázquez-Martí, B., Fernández-González, E., López-Cortés, I. & Salazar-Hernández, D. M. Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass Bioenerg. 35, 3453–3464 (2011).Article 

    Google Scholar 
    42.Spinelli, R. & Picchi, G. Industrial harvesting of olive tree pruning residue for energy biomass. Bioresour. Technol. 101, 730–735 (2010).CAS 
    Article 

    Google Scholar 
    43.García Martín, J. F. et al. Energetic valorisation of olive biomass: Olive-tree pruning, olive stones and pomaces. Processes 8, 511 (2020).Article 

    Google Scholar 
    44.Regione Sicilia, Dipartimento dell’Energia. Rapporto Energia 2015 Monitoraggio sull’energia in Sicilia. 1–168. At http://www.catastoenergetico.regione.sicilia.it/D/NEWS/Rapporto%20Energia%202015.pdf (2015). More

  • in

    Areas of global importance for conserving terrestrial biodiversity, carbon and water

    1.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    3.Butchart, S. H. M., Miloslavich, P., Reyers, B. & Subramanian, S. M. in IPBES Global Assessment on Biodiversity and Ecosystem Services (eds Berkes, F. & Brooks, T.) Ch. 3 (IPBES, 2019).4.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.First Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3 (CBD, 2021); https://www.cbd.int/meetings/WG2020-036.Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Visconti, P. et al. Protected area targets post-2020. Science 364, eaav6886 (2019).Article 
    CAS 

    Google Scholar 
    9.Soto-Navarro, C. et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philos. Trans. R. Soc. B 375, 20190128 (2020).CAS 
    Article 

    Google Scholar 
    10.Greve, M., Reyers, B., Mette Lykke, A. & Svenning, J.-C. Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility. Nat. Commun. 4, 2975 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Pouzols, F. M. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).Article 
    CAS 

    Google Scholar 
    14.Allan, J. R. et al. Conservation attention necessary across at least 44% of Earth’s terrestrial area to safeguard biodiversity. Preprint at bioRxiv https://doi.org/10.1101/839977 (2019).15.Fastre, S., Mogg, C., Jung, M. & Visconti, P. Targeted expansion of protected areas to maximise the persistence of terrestrial mammals. Preprint at bioRxiv https://doi.org/10.1101/608992 (2019).16.Rinnan, D. S. & Jetz, W. Terrestrial conservation opportunities and inequities revealed by global multi-scale prioritization. Preprint at bioRxiv https://doi.org/10.1101/2020.02.05.936047 (2020).17.Hannah, L. et al. 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography 43, 943–953 (2020).Article 

    Google Scholar 
    18.Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.McInnes, L. et al. Do global diversity patterns of vertebrates reflect those of monocots? PLoS ONE 8, e56979 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Daru, B. H. et al. Spatial overlaps between the global protected areas network and terrestrial hotspots of evolutionary diversity. Glob. Ecol. Biogeogr. 28, 757–766 (2019).Article 

    Google Scholar 
    22.Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Locke, H. et al. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl Sci. Rev. 6, 1080–1082 (2019).Article 

    Google Scholar 
    25.Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (W. W. Norton, 2016).26.Laffoley, D. et al. An introduction to ‘other effective area-based conservation measures’ under Aichi Target 11 of the Convention on Biological Diversity: origin, interpretation and emerging ocean issues. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 130–137 (2017).Article 

    Google Scholar 
    27.IUCN Red List Categories and Criteria Version 3.1 (IUCN, 2012).28.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Venter, O. et al. Harnessing carbon payments to protect biodiversity. Science 326, 1368–1368 (2009).CAS 
    Article 

    Google Scholar 
    30.Strassburg, B. B. N. et al. Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv. Lett. 3, 98–105 (2010).Article 

    Google Scholar 
    31.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Woodley, S. et al. A review of evidence for area-based conservation targets for the post-2020 global biodiversity framework. Parks 25, 31–46 (2019).Article 

    Google Scholar 
    33.Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Rapacciuolo, G. et al. Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nat. Ecol. Evol. 3, 53–61 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Chauvenet, A. L. M., Kuempel, C. D., McGowan, J., Beger, M. & Possingham, H. P. Methods for calculating Protection Equality for conservation planning. PLoS ONE 12, e0171591 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Cameron, E. K. et al. Global gaps in soil biodiversity data. Nat. Ecol. Evol. 2, 1042–1043 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    43.World Checklist of Vascular Plants (WCVP, 2020); http://wcvp.science.kew.org/44.The IUCN Red List of Threatened Species Version 2019.2 (IUCN, 2019); www.iucnredlist.org45.Bird Species Distribution Maps of the World Version 2019.1 (BirdLife International, 2019); http://datazone.birdlife.org/species/requestdis46.Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Enquist, B., Condit, R., Peet, R., Schildhauer, M. & Thiers, B. Cyberinfrastructure for an integrated botanical informationnetwork to investigate the ecological impacts of global climate change on plant biodiversity. Preprint at PeerJ https://doi.org/10.7287/peerj.preprints.2615 (2016).48.Maitner, B. S. et al. The BIEN R package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).Article 

    Google Scholar 
    49.Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).Article 

    Google Scholar 
    50.Forest Inventory and Analysis National Program (US Forest Service, 2013); www.fia.fs.fed.us/51.Peet, R., Lee, M., Jennings, M. & Faber-Langendoen, D. VegBank—a permanent, open-access archive for vegetation-plot data. Biodivers. Ecol. 4, 233–241 (2012).Article 

    Google Scholar 
    52.Boyle, B. & Enquist, B. SALVIAS—the SALVIAS vegetation inventory database. Biodivers. Ecol. https://doi.org/10.7809/b-e.00086 (2012).53.Wiser, S., Bellingham, P. & Burrows, L. Managing biodiversity information: development of New Zealand’s National Vegetation Survey databank. N. Z. J. Ecol. 25, 1–17 (2001).
    Google Scholar 
    54.DeWalt, S. J., Bourdy, G., ChÁvez de Michel, L. R. & Quenevo, C. Ethnobotany of the Tacana: quantitative inventories of two permanent plots of northwestern Bolivia. Econ. Bot. 53, 237–260 (1999).Article 

    Google Scholar 
    55.Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys 74, 1–18 (2001).
    Google Scholar 
    56.Fegraus, E. Tropical ecology assessment and monitoring network (TEAM Network). Biodivers. Ecol. 4, 287–287 (2012).Article 

    Google Scholar 
    57.Oliveira-Filho, A. T. in Fitossociologia no Brasil—Métodos e Estudos de Caso Vol. 2 (eds. Eisenlohr, P. V. et al.) Ch. 19 (Editora UFV, 2015).58.Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).Article 

    Google Scholar 
    59.Rondinini, C., Stuart, S. & Boitani, L. Habitat suitability models and the shortfall in conservation planning for African vertebrates. Conserv. Biol. 19, 1488–1497 (2005).Article 

    Google Scholar 
    60.Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Habitats Classification Scheme Version 3.1 (IUCN, 2012).63.Lesiv, M. et al. Global planted trees extent 2015. Zenodo https://doi.org/10.5281/zenodo.3931930 (2020).64.Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 

    Google Scholar 
    65.Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions (International Working Group on Taxonomic Databases for Plant Sciences, 2001).67.Santoro, M. GlobBiomass—Global Datasets of Forest Biomass (PANGAEA, 2018); https://doi.org/10.1594/PANGAEA.89471168.Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the year 2017, v1. (Centre for Environmental Data Analysis, 2019); https://doi.org/10.5285/bedc59f37c9545c981a839eb552e408469.Buchhorn, M. et al. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 12, 1044 (2020).Article 

    Google Scholar 
    70.Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).Article 

    Google Scholar 
    71.Xia, J. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 6, 1783–1802 (2014).Article 

    Google Scholar 
    72.Spawn, S. A., Lark, T., & Gibbs, H. New Global Biomass Map for the Year 2010 (American Geophysical Union, 2017).73.Schepaschenko, D. et al. Improved estimates of biomass expansion factors for Russian forests. Forests 9, 312 (2018).Article 

    Google Scholar 
    74.Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 5 (IPCC, 2006).75.Hengl, T. & Wheeler, I. Soil organic carbon stock in kg/m2 for 5 standard depth intervals (0–10, 10–30, 30–60, 60–100 and 100–200 cm) at 250 m resolution. Zenodo https://doi.org/10.5281/ZENODO.2536040 (2018).76.Hengl, T. & Nauman, T. Predicted USDA soil orders at 250 m (probabilities) (version v0.1). Zenodo https://doi.org/10.5281/zenodo.2658183 (2019).77.Mulligan, M. WaterWorld: a self-parameterising, physically based model for application in data-poor but problem-rich environments globally. Hydrol. Res. 44, 748–769 (2013).Article 

    Google Scholar 
    78.Mulligan, M. in The Impacts of Climate Change on Water Resources in Agriculture (eds Zolin, A. C. & Rodrigues, R. A. R.) 184–204 (CRC, 2014).79.van Soesbergen, A. & Mulligan, M. Potential outcomes of multi-variable climate change on water resources in the Santa Basin, Peru. Int. J. Water Res. Dev. 34, 150–165 (2018).Article 

    Google Scholar 
    80.Van Soesbergen, A. & Mulligan, M. Uncertainty in data for hydrological ecosystem services modelling: potential implications for estimating services and beneficiaries for the CAZ Madagascar. Ecosyst. Serv. 33, 175–186 (2018).Article 

    Google Scholar 
    81.Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Kukkala, A. S. & Moilanen, A. Core concepts of spatial prioritisation in systematic conservation planning. Biol. Rev. 88, 443–464 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Adams, V. M., Pressey, R. L. & Naidoo, R. Opportunity costs: who really pays for conservation? Biol. Conserv. 143, 439–448 (2010).Article 

    Google Scholar 
    84.Armsworth, P. R. Inclusion of costs in conservation planning depends on limited datasets and hopeful assumptions. Ann. N. Y. Acad. Sci. 1322, 61–76 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Eklund, J., Arponen, A., Visconti, P. & Cabeza, M. Governance factors in the identification of global conservation priorities for mammals. Philos. Trans. R. Soc. B 366, 2661–2669 (2011).Article 

    Google Scholar 
    86.McCreless, E., Visconti, P., Carwardine, J., Wilcox, C. & Smith, R. J. Cheap and nasty? The potential perils of using management costs to identify global conservation priorities. PLoS ONE 8, e80893 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    87.Carwardine, J. et al. Cost-effective priorities for global mammal conservation. Proc. Natl Acad. Sci. USA 105, 11446–11450 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Arponen, A., Heikkinen, R., Thomas, C. D. & Moilanen, A. The value of biodiversity in reserve selection: representation, species weighting, and benefit functions. Conserv. Biol. 19, 2009–2014 (2005).Article 

    Google Scholar 
    90.Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Model. 328, 14–22 (2016).Article 

    Google Scholar 
    91.Hanson, J. O., Schuster, R., Strimas-Mackey, M. & Bennett, J. R. Optimality in prioritizing conservation projects. Methods Ecol. Evol. 10, 1655–1663 (2019).Article 

    Google Scholar 
    92.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).93.Hanson, J. O. et al. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0.3. (2020); https://CRAN.R-project.org/package=prioritizr94.Gurobi Optimizer Reference Manual (Gurobi Optimization, 2019). More