Areas of global importance for conserving terrestrial biodiversity, carbon and water
1.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).PubMed
Article
CAS
PubMed Central
Google Scholar
2.Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).PubMed
PubMed Central
Google Scholar
3.Butchart, S. H. M., Miloslavich, P., Reyers, B. & Subramanian, S. M. in IPBES Global Assessment on Biodiversity and Ecosystem Services (eds Berkes, F. & Brooks, T.) Ch. 3 (IPBES, 2019).4.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
5.First Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3 (CBD, 2021); https://www.cbd.int/meetings/WG2020-036.Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
7.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
8.Visconti, P. et al. Protected area targets post-2020. Science 364, eaav6886 (2019).Article
CAS
Google Scholar
9.Soto-Navarro, C. et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Philos. Trans. R. Soc. B 375, 20190128 (2020).CAS
Article
Google Scholar
10.Greve, M., Reyers, B., Mette Lykke, A. & Svenning, J.-C. Spatial optimization of carbon-stocking projects across Africa integrating stocking potential with co-benefits and feasibility. Nat. Commun. 4, 2975 (2013).PubMed
Article
CAS
PubMed Central
Google Scholar
11.Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
12.Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
13.Pouzols, F. M. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).Article
CAS
Google Scholar
14.Allan, J. R. et al. Conservation attention necessary across at least 44% of Earth’s terrestrial area to safeguard biodiversity. Preprint at bioRxiv https://doi.org/10.1101/839977 (2019).15.Fastre, S., Mogg, C., Jung, M. & Visconti, P. Targeted expansion of protected areas to maximise the persistence of terrestrial mammals. Preprint at bioRxiv https://doi.org/10.1101/608992 (2019).16.Rinnan, D. S. & Jetz, W. Terrestrial conservation opportunities and inequities revealed by global multi-scale prioritization. Preprint at bioRxiv https://doi.org/10.1101/2020.02.05.936047 (2020).17.Hannah, L. et al. 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography 43, 943–953 (2020).Article
Google Scholar
18.Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
19.McInnes, L. et al. Do global diversity patterns of vertebrates reflect those of monocots? PLoS ONE 8, e56979 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
20.Pollock, L. J., Thuiller, W. & Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 546, 141–144 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
21.Daru, B. H. et al. Spatial overlaps between the global protected areas network and terrestrial hotspots of evolutionary diversity. Glob. Ecol. Biogeogr. 28, 757–766 (2019).Article
Google Scholar
22.Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
23.Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
24.Locke, H. et al. Three global conditions for biodiversity conservation and sustainable use: an implementation framework. Natl Sci. Rev. 6, 1080–1082 (2019).Article
Google Scholar
25.Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (W. W. Norton, 2016).26.Laffoley, D. et al. An introduction to ‘other effective area-based conservation measures’ under Aichi Target 11 of the Convention on Biological Diversity: origin, interpretation and emerging ocean issues. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 130–137 (2017).Article
Google Scholar
27.IUCN Red List Categories and Criteria Version 3.1 (IUCN, 2012).28.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
29.Venter, O. et al. Harnessing carbon payments to protect biodiversity. Science 326, 1368–1368 (2009).CAS
Article
Google Scholar
30.Strassburg, B. B. N. et al. Global congruence of carbon storage and biodiversity in terrestrial ecosystems. Conserv. Lett. 3, 98–105 (2010).Article
Google Scholar
31.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).PubMed
PubMed Central
Article
Google Scholar
32.Woodley, S. et al. A review of evidence for area-based conservation targets for the post-2020 global biodiversity framework. Parks 25, 31–46 (2019).Article
Google Scholar
33.Enquist, B. J. et al. The commonness of rarity: global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019).PubMed
PubMed Central
Article
Google Scholar
34.Rapacciuolo, G. et al. Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nat. Ecol. Evol. 3, 53–61 (2019).PubMed
Article
PubMed Central
Google Scholar
35.Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
36.Chauvenet, A. L. M., Kuempel, C. D., McGowan, J., Beger, M. & Possingham, H. P. Methods for calculating Protection Equality for conservation planning. PLoS ONE 12, e0171591 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
37.Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).CAS
PubMed
Article
Google Scholar
38.Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
39.Cameron, E. K. et al. Global gaps in soil biodiversity data. Nat. Ecol. Evol. 2, 1042–1043 (2018).PubMed
PubMed Central
Article
Google Scholar
40.Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).PubMed
Article
PubMed Central
Google Scholar
41.Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed
PubMed Central
Article
Google Scholar
42.Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).PubMed
Article
CAS
PubMed Central
Google Scholar
43.World Checklist of Vascular Plants (WCVP, 2020); http://wcvp.science.kew.org/44.The IUCN Red List of Threatened Species Version 2019.2 (IUCN, 2019); www.iucnredlist.org45.Bird Species Distribution Maps of the World Version 2019.1 (BirdLife International, 2019); http://datazone.birdlife.org/species/requestdis46.Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).PubMed
Article
PubMed Central
Google Scholar
47.Enquist, B., Condit, R., Peet, R., Schildhauer, M. & Thiers, B. Cyberinfrastructure for an integrated botanical informationnetwork to investigate the ecological impacts of global climate change on plant biodiversity. Preprint at PeerJ https://doi.org/10.7287/peerj.preprints.2615 (2016).48.Maitner, B. S. et al. The BIEN R package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).Article
Google Scholar
49.Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).Article
Google Scholar
50.Forest Inventory and Analysis National Program (US Forest Service, 2013); www.fia.fs.fed.us/51.Peet, R., Lee, M., Jennings, M. & Faber-Langendoen, D. VegBank—a permanent, open-access archive for vegetation-plot data. Biodivers. Ecol. 4, 233–241 (2012).Article
Google Scholar
52.Boyle, B. & Enquist, B. SALVIAS—the SALVIAS vegetation inventory database. Biodivers. Ecol. https://doi.org/10.7809/b-e.00086 (2012).53.Wiser, S., Bellingham, P. & Burrows, L. Managing biodiversity information: development of New Zealand’s National Vegetation Survey databank. N. Z. J. Ecol. 25, 1–17 (2001).
Google Scholar
54.DeWalt, S. J., Bourdy, G., ChÁvez de Michel, L. R. & Quenevo, C. Ethnobotany of the Tacana: quantitative inventories of two permanent plots of northwestern Bolivia. Econ. Bot. 53, 237–260 (1999).Article
Google Scholar
55.Dauby, G. et al. RAINBIO: a mega-database of tropical African vascular plants distributions. PhytoKeys 74, 1–18 (2001).
Google Scholar
56.Fegraus, E. Tropical ecology assessment and monitoring network (TEAM Network). Biodivers. Ecol. 4, 287–287 (2012).Article
Google Scholar
57.Oliveira-Filho, A. T. in Fitossociologia no Brasil—Métodos e Estudos de Caso Vol. 2 (eds. Eisenlohr, P. V. et al.) Ch. 19 (Editora UFV, 2015).58.Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).Article
Google Scholar
59.Rondinini, C., Stuart, S. & Boitani, L. Habitat suitability models and the shortfall in conservation planning for African vertebrates. Conserv. Biol. 19, 1488–1497 (2005).Article
Google Scholar
60.Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).PubMed
Article
PubMed Central
Google Scholar
61.Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).PubMed
PubMed Central
Article
Google Scholar
62.Habitats Classification Scheme Version 3.1 (IUCN, 2012).63.Lesiv, M. et al. Global planted trees extent 2015. Zenodo https://doi.org/10.5281/zenodo.3931930 (2020).64.Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article
Google Scholar
65.Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).PubMed
Article
PubMed Central
Google Scholar
66.Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions (International Working Group on Taxonomic Databases for Plant Sciences, 2001).67.Santoro, M. GlobBiomass—Global Datasets of Forest Biomass (PANGAEA, 2018); https://doi.org/10.1594/PANGAEA.89471168.Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the year 2017, v1. (Centre for Environmental Data Analysis, 2019); https://doi.org/10.5285/bedc59f37c9545c981a839eb552e408469.Buchhorn, M. et al. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 12, 1044 (2020).Article
Google Scholar
70.Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).Article
Google Scholar
71.Xia, J. et al. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sens. 6, 1783–1802 (2014).Article
Google Scholar
72.Spawn, S. A., Lark, T., & Gibbs, H. New Global Biomass Map for the Year 2010 (American Geophysical Union, 2017).73.Schepaschenko, D. et al. Improved estimates of biomass expansion factors for Russian forests. Forests 9, 312 (2018).Article
Google Scholar
74.Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 5 (IPCC, 2006).75.Hengl, T. & Wheeler, I. Soil organic carbon stock in kg/m2 for 5 standard depth intervals (0–10, 10–30, 30–60, 60–100 and 100–200 cm) at 250 m resolution. Zenodo https://doi.org/10.5281/ZENODO.2536040 (2018).76.Hengl, T. & Nauman, T. Predicted USDA soil orders at 250 m (probabilities) (version v0.1). Zenodo https://doi.org/10.5281/zenodo.2658183 (2019).77.Mulligan, M. WaterWorld: a self-parameterising, physically based model for application in data-poor but problem-rich environments globally. Hydrol. Res. 44, 748–769 (2013).Article
Google Scholar
78.Mulligan, M. in The Impacts of Climate Change on Water Resources in Agriculture (eds Zolin, A. C. & Rodrigues, R. A. R.) 184–204 (CRC, 2014).79.van Soesbergen, A. & Mulligan, M. Potential outcomes of multi-variable climate change on water resources in the Santa Basin, Peru. Int. J. Water Res. Dev. 34, 150–165 (2018).Article
Google Scholar
80.Van Soesbergen, A. & Mulligan, M. Uncertainty in data for hydrological ecosystem services modelling: potential implications for estimating services and beneficiaries for the CAZ Madagascar. Ecosyst. Serv. 33, 175–186 (2018).Article
Google Scholar
81.Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).PubMed
PubMed Central
Article
Google Scholar
82.Kukkala, A. S. & Moilanen, A. Core concepts of spatial prioritisation in systematic conservation planning. Biol. Rev. 88, 443–464 (2013).PubMed
Article
PubMed Central
Google Scholar
83.Adams, V. M., Pressey, R. L. & Naidoo, R. Opportunity costs: who really pays for conservation? Biol. Conserv. 143, 439–448 (2010).Article
Google Scholar
84.Armsworth, P. R. Inclusion of costs in conservation planning depends on limited datasets and hopeful assumptions. Ann. N. Y. Acad. Sci. 1322, 61–76 (2014).PubMed
Article
PubMed Central
Google Scholar
85.Eklund, J., Arponen, A., Visconti, P. & Cabeza, M. Governance factors in the identification of global conservation priorities for mammals. Philos. Trans. R. Soc. B 366, 2661–2669 (2011).Article
Google Scholar
86.McCreless, E., Visconti, P., Carwardine, J., Wilcox, C. & Smith, R. J. Cheap and nasty? The potential perils of using management costs to identify global conservation priorities. PLoS ONE 8, e80893 (2013).PubMed
PubMed Central
Article
CAS
Google Scholar
87.Carwardine, J. et al. Cost-effective priorities for global mammal conservation. Proc. Natl Acad. Sci. USA 105, 11446–11450 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
88.Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
89.Arponen, A., Heikkinen, R., Thomas, C. D. & Moilanen, A. The value of biodiversity in reserve selection: representation, species weighting, and benefit functions. Conserv. Biol. 19, 2009–2014 (2005).Article
Google Scholar
90.Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Model. 328, 14–22 (2016).Article
Google Scholar
91.Hanson, J. O., Schuster, R., Strimas-Mackey, M. & Bennett, J. R. Optimality in prioritizing conservation projects. Methods Ecol. Evol. 10, 1655–1663 (2019).Article
Google Scholar
92.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).93.Hanson, J. O. et al. prioritizr: Systematic Conservation Prioritization in R. R package version 5.0.3. (2020); https://CRAN.R-project.org/package=prioritizr94.Gurobi Optimizer Reference Manual (Gurobi Optimization, 2019). More