More stories

  • in

    Handmade solar dryer: an environmentally and economically viable alternative for small and medium producers

    1.FAO—Food and Agriculture Organization of the United Nations. World Crops Production. http://www.wptc.to/releases-wptc.php (2016).2.WPTC—World Processing Tomato Council. World production estimate. http://www.wptc.to/releases-wptc.php. (2016).3.Silva, Y. P. A. et al. Characterization of tomato processing by-product for use as a potential functional food ingredient: Nutritional composition, antioxidant activity and bioactive compounds. Int. J. Food Sci. Nutr. 70, 150–160 (2019).Article 

    Google Scholar 
    4.Pereira, M. A. B. et al. Postharvest conservation of structural long shelf life tomato fruits and with the mutant rin produced, in edaphoclimatic conditions of the southern state of Tocantins. Ciênc. Agrotec. 39, 225–231 (2015).Article 

    Google Scholar 
    5.Brummell, D. A. & Harpster, M. H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. PCW. 47, 311–340 (2001).CAS 

    Google Scholar 
    6.Meli, V. S. et al. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. Proc. Natl. Acad. Sci. USA 107, 2413–2418 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Samimi-Akhijahani, H. & Arabhosseini, A. Accelerating drying process of tomato slices in a PV-assisted solar dryer using a sun tracking system. Renew. Energy 123, 428–438 (2018).Article 

    Google Scholar 
    8.Tripathy, P. P. Investigação da secagem solar da batata: efeito da geometria da amostra na cinética de secagem e na mitigação das emissões de CO2. J. Ciênc. e Tecnol. Alim. 52, 1383–1393 (2015).CAS 

    Google Scholar 
    9.Badaoui, O., Hanini, S., Djebli, A., Haddad, B. & Benhamou, A. Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models. Renew. Energy 133, 144–155 (2019).Article 

    Google Scholar 
    10.Mohsen, H. A., El-Rahmam, A. A. & Hassan, H. E. Drying of tomato fruits using solar energy. Int. J. Agric. Eng. 21, 204–215 (2019).
    Google Scholar 
    11.César, L. V. E., Lilia, C. M. A., Octavio, G. V., Isaac, P. F. & Rogelio, B. O. Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renew. Energy 147, 845–855 (2020).Article 

    Google Scholar 
    12.Kingsly, A. R. P., Singh, R., Goyal, R. K. & Singh, D. B. Thin-layer drying behavior of organically produced tomato. Am. J. Food Tech. 2, 71–78 (2007).Article 

    Google Scholar 
    13.Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959).CAS 
    Article 

    Google Scholar 
    14.Silva, F. A. S. A. & Azevedo, C. A. V. Versão do programa computacional Assistat para o sistema operacional Windows. Rev. Bras. Prod. Agroindustriais 4, 71–78 (2002).Article 

    Google Scholar 
    15.Klunklin, W. & Savage, G. Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions. Foods 6, e56 (2017).Article 

    Google Scholar 
    16.Azeez, L., Adebisi, S. A., Oyedeji, A. O., Adetoro, R. O. & Tijani, K. O. Bioactive compounds’ contents, drying kinetics and mathematical modelling of tomato slices influenced by drying temperatures and time. J. Saudi Soc. 10, 120–126 (2019).
    Google Scholar 
    17.Correia, A. F., Loro, K. A. C., Zanatta, S., Spoto, M. H. F. & Vieira, T. M. F. S. Effect of temperature, time, and material thickness on the dehydration process of tomato. Int. J. Food Sci. 1, e970724 (2015).
    Google Scholar 
    18.Eswara, A. R. & Ramakrishnarao, M. Solar energy in food processing—A critical appraisal. J. Food Sci. Technol. 50, 209–227 (2013).CAS 
    Article 

    Google Scholar 
    19.Castillo, C. P., Silva, F. B. & Lavalle, C. An assessment of the regional potential for solar power generation in EU-28. Energy Policy 88, 86–99 (2016).Article 

    Google Scholar 
    20.Tampakis, G., Tsantopoulos, G. & Arabatzis, I. R. Citizens’ views on various forms of energy and their contribution to the environment. Renew. Sust. Energ. Rev. 20, 473–482 (2013).Article 

    Google Scholar 
    21.Tsantopoulos, G. & Arabatzis, T. G. Stilianos Public attitudes towards photovoltaic developments: Case study from Greece. Energy Policy 71, 94–106 (2014).Article 

    Google Scholar 
    22.Tiwari, R. B. Application of osmo-air dehydration for processing of tropical frepical fruits in rural areas. Indian Food Ind. 24, 62–69 (2005).
    Google Scholar 
    23.Goula, A. M. & Adamopoulos, K. G. Retention of ascorbic acid during drying of tomato halves and tomato pulp. Drying Technol. 24, 57–64 (2006).CAS 
    Article 

    Google Scholar 
    24.McAlpine, R. D., Cocivera, M. & Chen, H. Photooxidation and reduction of ascorbic acid atudied by E.S.R. Can. J. Chem. 51, 1682–1686 (1973).CAS 
    Article 

    Google Scholar 
    25.Santos, P. H. S. & Silva, M. A. Retention of vitamin C in drying processes of fruits and vegetables—A review. Drying Technol. 26, 1421–1437 (2008).CAS 
    Article 

    Google Scholar 
    26.Santos-Sánchez, N. F., Valadez-Blanco, R., Gómez-Gómez, M. S., Pérez-Herrera, A. & Salas-Coronado, R. Effect of rotating tray drying on antioxidant components, color and rehydration ratio of tomato saladette slices. LWT Food Sci. Technol. 46, 298–304 (2012).Article 

    Google Scholar 
    27.Yadav, A. K. & Singh, S. V. Y. Osmotic dehydration of fruits and vegetables: A review. J. Food Sci. Technol. 51, 1654–1673 (2014).Article 

    Google Scholar 
    28.Gunhan, T., Demir, V., Hancioglu, E. & Hepbasli, A. Mathematical modeling of drying of bay leaves. Energy Convers. Manag. 46, 1667–1679 (2005).Article 

    Google Scholar 
    29.Sacilik, K. & Unal, G. Dehydration characteristics of kastomonu garlic slices. Biosyst. Eng. 92, 207–215 (2005).Article 

    Google Scholar 
    30.Instituto Adolfo Lutz. Métodos Físico-Químicos Para Análise de Alimentos 1020 (Instituto Adolfo Lutz, 2008).
    Google Scholar  More

  • in

    African tropical montane forests store more carbon than was thought

    NEWS AND VIEWS
    25 August 2021

    African tropical montane forests store more carbon than was thought

    The inaccessibility of African montane forests has hindered efforts to quantify the carbon stored by these ecosystems. A remarkable survey fills this knowledge gap, and highlights the need to preserve such forests.

    Nicolas Barbier

    0

    Nicolas Barbier

    Nicolas Barbier is at AMAP, Université de Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier 34980, France.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    In a paper in Nature, Cuni-Sanchez et al.1 report the assembly of a large database of tree inventories for 226 mature montane-forest plots in 12 African countries. The authors analyse the data to determine the amount of aboveground biomass and carbon stored in these highly diverse and threatened ecosystems. Their results suggest that African montane forests store more carbon than was previously thought, and the findings should help to guide efforts to conserve these ecosystems.Cuni-Sanchez and colleagues measured trunk diameters and heights of the trees in plots, and identified the botanical species to deduce wood density — an approach that constitutes the gold standard for estimating the biomass, and thus the amount of carbon, contained per unit of forest area. This method involves the use of general statistical equations for describing tree form, called allometric models, and considers only the aboveground parts of trees. It therefore disregards several other pools of carbon, notably in the roots and soil. The overall approach might seem crude, but recognizing and measuring the many hundreds of tree species found on steep, cloud-shrouded slopes (Fig. 1), let alone the underground carbon, without visiting the sites, will long remain difficult, even with the best drones and satellite systems.

    Figure 1 | Montane forest in Boginda, Ethiopia. Cuni-Sanchez et al.1 use data from a survey of montane tropical forests in Africa to quantify the amount of carbon stored above ground in these ecosystems.Credit: Bruno D’Amicis/Nature Picture Library

    Anyone who has conducted field inventories in tropical mountains knows that measuring and identifying 72,336 trees, often just a few steps away from the void, is an amazing feat. For comparison, a previously reported study2 based its estimates of the carbon stored in montane African forests on as few as seven plots. The study also brings together contributions from numerous researchers and institutions, including many in Africa, to greatly increase the size of the data set, which is also a remarkable achievement. Even so, the total area of forest studied is less than 150 hectares, whereas African montane forest covers about 100,000 times that area, inevitably raising questions about how representative the inventory is.Statisticians might raise their eyebrows at the sampling design. As is usually the case in meta-analyses, the data set was neither homogeneous (for example, there is a roughly tenfold variation in the plot sizes), nor were the sites selected at random. However, the authors did their best to rule out possible biases induced by sampling artefacts.
    Read the paper: High aboveground carbon stock of African tropical montane forests
    Cuni-Sanchez et al. chose not to discuss one tricky aspect of surveys of this sort (extensively discussed elsewhere2): how should the land area of a steep slope be measured? The authors followed standard practice, which is to measure the extent of forest plots and of land-cover types in reference to horizontal, planimetric areas (that is, the areas that would be represented on a 2D map, as if seen from the air). This tends to overestimate aboveground carbon because the sloped surface area is greater than that of the planimetric area — which means that the tree density of the planimetric area is higher than it is on the slope. By contrast, the use of planimetric areas underestimates total montane-forest area (by about 40%; see ref. 2). These two biases should roughly cancel each other out when estimating carbon stocks, or changes to stocks, for a region or country. But care should be taken not to combine data acquired using planimetric and non-planimetric areas in future meta-analyses, because the resulting estimates could end up well off the mark.One might expect that trees in mature African montane forests would be, on average, shorter — and therefore store less carbon — than their lowland counterparts, because of their lower environmental temperatures and shallow soils, frequent landslides and strong winds. However, this is not what Cuni-Sanchez et al. report. Instead, they find that average aboveground carbon stocks are not significantly different from those of mature lowland forests. This contrasts with the situation in the neotropics and southeast Asia, where montane forests store, on average, less carbon than do lowland forests.However, the new results fit with the 2016 discovery that the tallest African trees (81.5 metres) grow on Mount Kilimanjaro3, the highest mountain in Africa. African forests, in general, tend to contain fewer but larger-statured tree stands than does, for example, Amazonia4. The current study confirms that this peculiarity applies even at high altitudes.The authors investigate several possible drivers for the variations in biomass observed at different sites in their study, including topography, climate, landslide hazard, and even the presence of elephants or certain conifers (Podocarpaceae), but were unable to identify any clear pattern. Many environmental, historical and biological effects probably interact, with each of these effects varying greatly in ways that are poorly captured by available data sets. These effects must therefore be disentangled before a predictive model of African montane carbon distribution can be developed.
    Tropical carbon sinks are saturating at different times on different continents
    Nevertheless, Cuni-Sanchez and colleagues’ study underlines a crucial message: African montane forests are immensely valuable, and not only because they host the source of the River Nile, mountain gorillas and ecosystems such as mysterious lichen-covered forests. They also store vast amounts of carbon, and thereby have a key role in tackling climate change. Of course, this immense intrinsic value does not preclude intense human exploitation of these ecosystems, which can lead to rapid degradation and deforestation. For instance, on the basis of satellite monitoring, Cuni-Sanchez and colleagues report that Mozambique lost nearly one-third of its montane forests between 2000 and 2018.There is, however, the faint hope that putting a financial value on carbon, and the establishment of economic incentives to avoid deforestation in tropical countries, might help to check the flood of damage5. The aim is to reward African countries — for which montane forest sometimes constitutes the last remaining forests — for their conservation endeavours, and for renouncing efforts to access the timber and ore in these ecosystems, even when such resources are otherwise desperately lacking. By gathering the best-available data to provide precise, country-level estimates of average aboveground carbon content in African montane forests, Cuni-Sanchez and colleagues’ study will add weight to such efforts — not least because the new estimates are, on average, two-thirds higher than the values reported by the Intergovernmental Panel on Climate Change6.The next step should be to extend measurements in these forests, particularly by continuing to support national forest-inventory efforts. These inventories target all vegetation types, rather than just the most intact forests, and all carbon pools, using standardized protocols and systematic sampling methods. Remote sensors, both in the sky and in space, should also be used to fully map the detailed spatial variation of forest diversity, structure and dynamics. But there is no excuse for delaying policymaking — we already know enough to justify immediate decisive action to preserve yet another of Earth’s threatened treasures.

    Nature 596, 488-490 (2021)
    doi: https://doi.org/10.1038/d41586-021-02266-3

    References1.Cuni-Sanchez, A. et al. Nature 596, 536–542 (2021).Article 

    Google Scholar 
    2.Spracklen, D. V. & Righelato, R. Biogeosciences 11, 2741–2754 (2014).Article 

    Google Scholar 
    3.Hemp, A. et al. Biodivers. Conserv. 26, 103–113 (2017).Article 

    Google Scholar 
    4.Lewis, S. L. et al. Phil. Trans. R. Soc. B 368, 20120295 (2013).PubMed 
    Article 

    Google Scholar 
    5.Venter, O. et al. Science 326, 1368 (2009).PubMed 
    Article 

    Google Scholar 
    6.Domke, G. et al. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Calvo Buendia, E. et al.) Ch. 4, 4.48 (IPCC, 2019).
    Google Scholar 
    Download references

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Read the paper: High aboveground carbon stock of African tropical montane forests

    Southeast Amazonia is no longer a carbon sink

    Tropical carbon sinks are saturating at different times on different continents

    See all News & Views

    Subjects

    Biogeochemistry

    Environmental sciences

    Ecology

    Latest on:

    Biogeochemistry

    High aboveground carbon stock of African tropical montane forests
    Article 25 AUG 21

    The Montreal Protocol protects the terrestrial carbon sink
    Article 18 AUG 21

    Amazonia as a carbon source linked to deforestation and climate change
    Article 14 JUL 21

    Environmental sciences

    Brazilian road proposal threatens famed biodiversity hotspot
    News 17 AUG 21

    ‘Polluter pays’ policy could speed up emission reductions and removal of atmospheric CO2
    News & Views 16 AUG 21

    The world’s species are playing musical chairs: how will it end?
    News Feature 04 AUG 21

    Ecology

    Can artificially altered clouds save the Great Barrier Reef?
    News Feature 25 AUG 21

    Great Barrier Reef: accept ‘in danger’ status, there’s more to gain than lose
    World View 18 AUG 21

    Brazilian road proposal threatens famed biodiversity hotspot
    News 17 AUG 21

    Jobs

    Postdoctoral Research Scientist

    CRUK Beatson Institute for Cancer Research
    Glasgow, United Kingdom

    Bioinformatics Software Engineer

    CRUK Beatson Institute for Cancer Research
    Glasgow, United Kingdom

    Computational Biologist

    CRUK Beatson Institute for Cancer Research
    Glasgow, United Kingdom

    Research Fellow – Berbeco Lab

    Dana-Farber Cancer Institute (DFCI)
    Boston, MA, United States

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Can artificially altered clouds save the Great Barrier Reef?

    Download PDF

    In place of its normal load of cars and vans, the repurposed ferry boat sported a mobile science laboratory and a large fan on its deck as it left Townsville, Australia, in March. Researchers dropped anchor in a coral lagoon some 100 kilometres offshore and then fired up the cone-shaped turbine, which blew a mist of seawater off the back of the boat. What happened next came as a welcome surprise: after briefly drifting along the ocean surface, the plume ascended into the sky.Looking a bit like a jet engine, this mist machine is at the centre of an experiment that, if successful, could help to determine the future of the Great Barrier Reef. Three-hundred and twenty nozzles spewed a cloud of nano-sized droplets engineered to brighten clouds and block sunlight — providing a bit of cooling shade for the coral colonies below. Scientists used sensors aboard the ferry, drones and a second boat to monitor the plume as it migrated skyward.The experiment wasn’t big enough to significantly alter the clouds. But preliminary results from the field tests — which were shared exclusively with Nature — suggest that the technology might perform even better than computer models suggested it would, says Daniel Harrison, an oceanographer and engineer at Southern Cross University in Coffs Harbour, Australia, who is heading up the research. “We are now very confident that we can get the particles up into the clouds,” Harrison says. “But we still need to figure out how the clouds will respond.”Harrison’s project is the world’s first field trial of marine cloud brightening, one of several controversial geoengineering technologies that scientists have studied in the laboratory for decades. The research has been driven by fear that humans might one day be forced to deliberately manipulate the Earth’s climate and weather systems to blunt the most severe impacts of global warming.For many Australians, that day arrived in 2017, when a marine heat wave spurred massive coral bleaching and death across much of the 2,300-kilometre Great Barrier Reef. That crisis hit just a year after another bleaching event along the reef, which supports more than 600 species of coral and an estimated 64,000 jobs in industries such as tourism and fishing. Research suggests that the reef lost more than half of its coral between 1995 and 2017, as a result of warming waters, tropical storms and predatory starfish (A. Dietzel et al. Proc. R. Soc. B. 287, 20201432; 2020).
    These corals could survive climate change — and help save the world’s reefs
    The project has raised concerns among some scientists abroad, in part because the Australian group has published little about its work. Environmentalists outside Australia objected to the project last year after news of the first trial broke, and there could be similar criticism when details of the 2021 trial emerge.Harrison stresses that the cloud-brightening project is about local adaptation to climate change, not global geoengineering, because its application would be limited in both space and time. It’s also just one part of a larger Aus$300 million (US$220 million) Reef Restoration and Adaptation Program (RRAP) launched last year by Australia to investigate and develop techniques and technologies to save the country’s reefs. Many of the proposals, from cloud brightening to breeding heat-tolerant corals, would represent unprecedented human interventions in the natural reef system.Ecological modelling suggests that a large-scale intervention involving multiple strategies — including a fleet of mist machines — could prolong the life of the reef while governments work to eliminate greenhouse-gas emissions. The goal now is to work out what’s achievable in the real world, says Cedric Robillot, executive director of the RRAP.“You need to consider every angle, from the fundamental science to the very pointy end of engineering, if you want to succeed,” Robillot says. “It’s not enough to just prove you could do it. You need to explain how you would do it.”Into the cloudsHarrison conducted his first field test in March 2020: a three-day proof-of-concept expedition on a small car ferry with four scientists, one representative from a local Indigenous group, and two shipping containers for equipment and sleeping quarters. The team had a minimal Aus$400,000 budget and limited scientific instrumentation to monitor the mist, but it was enough to document that the plume flowing out of their mist machine rode a draught of warm air high into the sky.It was the first time they had witnessed this phenomenon. Their models had suggested that evaporation of the brine droplets would cool the plume, which would then float across the surface of the ocean, only slowly mixing upwards into the low-lying marine clouds. The models also indicated a risk that the tiny droplets might merge and drop out of the air. Instead, brine droplets floated along the surface of the ocean for half a kilometre without coalescing, gradually losing water and weight to evaporation along the way. And then they shot upwards.

    A marine heat wave in 2017 caused coral bleaching along much of Australia’s Great Barrier Reef.Credit: Juergen Freund/Nature Picture Library

    “We didn’t expect that at all,” Harrison says, “but it turned out we were doing this experiment in the middle of a rising air mass.”The scientists feared it was a fluke. Although years of research and development have gone into the nozzles, initially led by a separate American team, this was the first time anybody had ever deployed them in the field with fresh seawater. The team also didn’t know what to expect from clouds and aerosols in that region, because research on the reef has focused almost exclusively on what happens below the water, not the conditions above.For Harrison, the 2020 experiment was more than enough to justify moving forward with another, larger trial in March 2021. But it did raise eyebrows among some scientists and observers abroad, where geoengineering research has met strong opposition and struggled to attract funding.
    IPCC climate report: Earth is warmer than it’s been in 125,000 years
    Most of the concern has centred on a form of solar geoengineering that involves injecting reflective material into the stratosphere to block sunlight at a global scale. But cloud brightening has also been studied as a potential global intervention, and it has attracted criticism from some environmental groups who argue that it carries inevitable ecological risks and detracts from efforts to limit greenhouse gases.Some scientists, as well as environmental advocates who follow geoengineering research, told Nature that they were surprised to see the experiment move forward without more scrutiny — or without published research to justify such an investment.Critics also worry that Australia is setting the wrong kind of precedent by rebranding a solar-geoengineering experiment that could have regional impacts as a local adaptation project. “One could say that there should have been some level of consultation with the outside world,” says Janos Pasztor, who heads the Carnegie Climate Governance Initiative, an advocacy group in New York City that has been pushing for a global debate over geoengineering governance in the United Nations.Harrison says scientists in the programme have consulted with regulatory authorities, as well as with the general public and Indigenous groups that have historic claims on the reef. He also readily acknowledges trying to avoid getting embroiled in a debate about solar geoengineering, arguing that the project would be more akin to cloud-seeding operations that are designed to promote rain and that are not considered to be geoengineering. One of the next modelling efforts, however, will be to explore any potential regional and global implications, he says.

    A plume of seawater droplets rises up into the sky during a field trial in March 2021.Credit: Brendan Kelaher/SCU

    Others question the Australian government’s motivations in funding such work. Under the conservative prime minister Scott Morrison, the government has yet to strengthen its climate pledge under the 2015 Paris agreement, as many nations have done in the past year. Morrison has personally ruled out committing to net-zero emissions. Pushing for a technological fix to global warming without moving to aggressively curb greenhouse gases is “sheer lunacy”, says Peter Frumhoff, chief climate scientist for the Union of Concerned Scientists, an advocacy group in Cambridge, Massachusetts.Some researchers, however, are pleased to see marine cloud brightening move from theory to the field, including US scientists working on a similar project that has been struggling to get into the field for nearly a decade. “This is an early example of how climate disruption can drive interest in these things,” says Sarah Doherty, an atmospheric physicist who manages the Marine Cloud Brightening Project at the University of Washington in Seattle. Members of the team provided the initial nozzle design and have been tracking the Australian group’s progress.Coral crisisThe first time that scientists observed a major bleaching event along the Great Barrier Reef was in 1998, and the second event followed four years later. In both cases, corals expelled the algae that live within them and that provide colour and energy through photosynthesis. Most of the corals eventually recovered. But in 2016 and 2017, many corals bleached and then died across two-thirds of the reef.
    First sun-dimming experiment will test a way to cool Earth
    “It was absolutely horrifying,” says David Wachenfeld, chief scientist at the Great Barrier Reef Marine Park Authority, which manages the reef. The clear message from those events was that the traditional approach to managing corals and coral reefs would not be enough, he adds. “Our hand was forced.”In 2018, the Australian government allocated Aus$6 million to a consortium of universities and government research institutes for a feasibility study focused on potentially radical strategies that could be applied across the reef. Researchers reviewed some 160 ideas, including putting live corals on ice for long-term preservation and synthetically engineeering new varieties that can tolerate the warmer waters. Many approaches proved too costly and energy intensive, but 43 interventions were singled out for further study. Marine cloud brightening drew support in part because it theoretically provides direct relief precisely when and where corals need it most.Much of the emphasis of the programme is on helping corals to adapt and repopulate the reef, including efforts to improve coral aquaculture operations so that they can produce millions of corals per year rather than thousands. For Madeleine van Oppen, a coral geneticist at the Australian Institute of Marine Science near Townsville, the RRAP programme helps to integrate her team’s work on assisting coral evolution to make them more heat tolerant.Thanks to the RRAP, she says, data from those projects are now being fed directly into models that enable researchers to assess the potential benefits — as well as the risks — of releasing new strains of coral and microalga into the wild. The programme is also raising ecological questions, such as whether the introduction of new coral species can propagate disease, or whether a new variety of more heat-tolerant corals might displace corals struggling to survive.

    Researchers are testing specialized nozzles that create jets of seawater mist.Credit: Alejandro Tagliafico/SCU

    “It sort of speeds up the whole path from research to implementation in the field,” says van Oppen.In the long run, the models indicate that without interventions, the extent of coral on the reef could shrink by well over 60% by 2070 compared with 2020 levels (S. A. Condie et al. R. Soc. Open Sci. 8, 201296; 2021). But simulations suggest that Australia could cut those losses in half with a three-pronged approach focused on propagating heat-tolerant corals, controlling outbreaks of the predatory crown-of-thorns starfish and brightening clouds to take the edge off of heat waves. Crucially, the latest modelling also suggests that without the cooling provided by Harrison’s cloud brightening project, the other interventions might not amount to much.Testing the windWhen Harrison’s group returned to the field this year, they had more-powerful drones as well as other aerosol sensors on a second boat. As in the previous year’s experiment, each time they created a plume, it rose into the sky after the droplets lost around 90% of their water to evaporation. The likely explanation, Harrison says, is that the reef is creating its own weather as warm water along the shallow corals heats the air above.Many more droplets are making it into the clouds than the scientists had initially calculated, but Harrison says their mist machine might need to be scaled up by a factor of 10 — from 320 to around 3,000 nozzles — to produce enough particles to brighten nearby clouds by around 30%. His team’s modelling suggests that this could in turn reduce the incoming solar radiation on the reef locally by around 6.5%. Even then, the operation would require 800–1,000 stations to cover the length of the Great Barrier Reef.
    Fevers are plaguing the oceans — and climate change is making them worse
    But it’s unclear whether that spray of salty droplets will have the desired effect, says Lynn Russell, an atmospheric chemist at the Scripps Institution of Oceanography in La Jolla, California, who has studied cloud brightening. Russell has not seen the latest — and as-yet unpublished — results, but questions whether there are enough of the low layered clouds considered suitable for cloud brightening.Harrison acknowledges such concerns and says that his team sees more of these clouds on the southern part of the reef. His team’s modelling suggests the technology will also work on the clouds that are common across the rest of the reef in summer. Even then, he says, it remains unclear how much coverage a full-scale cloud-brightening operation could provide across the entirety of the reef. More measurements, and detailed modelling, are needed to provide answers.For now, Harrison has secured funding for another two years, and he needs to demonstrate progress. The RRAP is testing all 43 approaches and will redistribute resources to projects that show potential, Robillot says. But he stresses that no amount of science and engineering will preserve the reef in its current form. “Even if we do all of this, the system that you’ll end up with is not going to be the Great Barrier Reef that we know today,” Robillot says. “You might, however, retain a very functional ecosystem.”That’s enough to keep Harrison going, and his team is already preparing for a trip into the field in 2022. The scientists plan to run the mist machine at higher pressure, which should produce a sixfold increase in the number of particles, and they will use new instrumentation to determine how particles alter clouds. They are also investigating an entirely different nozzle technology that could reduce the number of nozzles needed by a factor of 1,000.Harrison is more confident today than he was even a year ago that cloud brightening might work over the reef, but he is also realistic about the future if governments fail to limit carbon emissions. “There are only so many clouds available, and there is only so much you can brighten them,” he says. “Eventually, climate change just overwhelms things.”

    Nature 596, 476-478 (2021)
    doi: https://doi.org/10.1038/d41586-021-02290-3

    Related Articles

    First sun-dimming experiment will test a way to cool Earth

    Fevers are plaguing the oceans — and climate change is making them worse

    These corals could survive climate change — and help save the world’s reefs

    IPCC climate report: Earth is warmer than it’s been in 125,000 years

    Subjects

    Ocean sciences

    Conservation biology

    Climate change

    Climate sciences

    Latest on:

    Ocean sciences

    Possible poriferan body fossils in early Neoproterozoic microbial reefs
    Article 28 JUL 21

    Cruise ships could sail now-icy Arctic seas by century’s end
    Research Highlight 09 JUL 21

    Shark mortality cannot be assessed by fishery overlap alone
    Matters Arising 07 JUL 21

    Climate change

    Control methane to slow global warming — fast
    Editorial 25 AUG 21

    Five principles for climate-resilient cities
    Correspondence 24 AUG 21

    Great Barrier Reef: accept ‘in danger’ status, there’s more to gain than lose
    World View 18 AUG 21

    Jobs

    Postdoctoral Research Scientist

    CRUK Beatson Institute for Cancer Research
    Glasgow, United Kingdom

    Bioinformatics Software Engineer

    CRUK Beatson Institute for Cancer Research
    Glasgow, United Kingdom

    Computational Biologist

    CRUK Beatson Institute for Cancer Research
    Glasgow, United Kingdom

    Research Fellow – Berbeco Lab

    Dana-Farber Cancer Institute (DFCI)
    Boston, MA, United States

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages

    1.Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA. 2013;110:9824–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Goldin S, Hulata Y, Baran N, Lindell D. Quantification of T4-like and T7-like cyanophages using the polony method show they are significant members of the virioplankton in the North Pacific Subtropical Gyre. Front Microbiol. 2020;11:1210.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Waterbury JB, Valois FW. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl Environ Microbiol. 1993;59:3393–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Marston MF, Sallee JL. Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode Island’s coastal waters. Appl Environ Microbiol. 2003;69:4639–47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Clokie MRJ, Mann NH. Marine cyanophages and light. Environ Microbiol. 2006;8:2074–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D. Genomic island variability facilitates Prochlorococcus -virus coexistence. Nature. 2011;474:604–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Marston MF, Pierciey FJ, Shepard A, Gearin G, Qi J, Yandava C, et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA. 2012;109:4544–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Fuhrman JA. Marine virueses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.9.Suttle CA. Marine viruses – major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Suttle CA, Chan AM. Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-infectivity and growth characteristics. Mar Ecol Prog Ser. 1993;92:99–109.Article 

    Google Scholar 
    12.Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature. 2003;424:1047–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: Signature features and ecological interpretations. PLoS Biol. 2005;3:0790–806.CAS 
    Article 

    Google Scholar 
    14.Pope WH, Weigele PR, Chang J, Pedulla ML, Ford ME, Houtz JM, et al. Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: a “horned” bacteriophage of marine Synechococcus. J Mol Biol. 2007;368:966–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Weigele PR, Pope WH, Pedulla ML, Houtz JM, Smith AL, Conway JF, et al. Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ Microbiol. 2007;9:1675–95.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Labrie SJ, Frois-Moniz K, Osburne MS, Kelly L, Roggensack SE, Sullivan MB, et al. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol. 2013;15:1356–76.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol. 2012;14:540–58.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Ghai R, Martin-Cuadrado AB, Molto AG, Heredia IG, Cabrera R, Martin J, et al. Metagenome of the Mediterranean deep chlorophyll maximum studied by direct and fosmid library 454 pyrosequencing. ISME J. 2010;4:1154–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Ma Y, Allen LZ, Palenik B. Diversity and genome dynamics of marine cyanophages using metagenomic analyses. Environ Microbiol Rep. 2014;6:583–94.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Sabehi G, Shaulov L, Silver DH, Yanai I, Harel A, Lindell D. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. Proc Natl Acad Sci USA. 2012;109:2037–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Huang S, Zhang S, Jiao N, Chen F. Comparative genomic and phylogenomic analyses reveal a conserved core genome shared by estuarine and oceanic cyanopodoviruses. PLoS One. 2015;10:1–17.
    Google Scholar 
    23.Ignacio-espinoza JC, Sullivan MB. Phylogenomics of T4 cyanophages: lateral gene transfer in the ‘core’ and origins of host genes. Environ Microbiol. 2012;14:2113–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Crummett LT, Puxty RJ, Weihe C, Marston MF, Martiny JBHH. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology. 2016;499:219–29.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Millard AD, Zwirglmaier K, Downey MJ, Mann NH, Scanlan DJ. Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of Synechococcus host genes localized to a hyperplastic region: Implications for mechanisms of cyanophage evolution. Environ Microbiol. 2009;11:2370–87.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Mann NH, Cook A, Millard A, Bailey S, Clokie M. Bacterial photosynthesis genes in a virus. Nature 2003;424:741–741.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA. 2004;101:11013–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Viruses inhibit CO2 fixation in the most abundant phototrophs on Earth. Curr Biol. 2016;26:1585–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Kelly L, Ding H, Huang KH, Osburne MS, Chisholm SW. Genetic diversity in cultured and wild marine cyanomyoviruses reveals phosphorus stress as a strong selective agent. ISME J. 2013;7:1827–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Yin Y, Fischer D. Identification and investigation of ORFans in the viral world. BMC Genomics. 2008;9:24.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Clokie MR, Millard AD, Mann NH. T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology. Virol J. 2010;7:291.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Rihtman B, Bowman‐Grahl S, Millard A, Corrigan RM, Clokie MRJ, Scanlan DJ. Cyanophage MazG is a pyrophosphohydrolase but unable to hydrolyse magic spot nucleotides. Environ Microbiol Rep. 2019;11:448–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Dammeyer T, Bagby SC, Sullivan MB, Chisholm SW, Frankenberg-Dinkel N. Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteria. Curr Biol. 2008;18:442–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Roitman S, Hornung E, Flores-Uribe J, Sharon I, Feussner I, Béjà O. Cyanophage-encoded lipid desaturases: Oceanic distribution, diversity and function. ISME J. 2018;12:343–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci USA. 2011;108:E757–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Puxty RJ, Perez-Sepulveda B, Rihtman B, Evans DJ, Millard AD, Scanlan DJ. Spontaneous deletion of an “ORFanage” region facilitates host adaptation in a “photosynthetic” cyanophage. PLoS One. 2015;10:e0132642.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Ranade K, Poteete AR. Superinfection exclusion (sieB) genes of bacteriophages P22 and λ. J Bacteriol. 1993;175:4712–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Fogg PCM, Allison HE, Saunders JR, McCarthy AJ. Bacteriophage Lambda: a paradigm revisited. J Virol. 2010;84:6876–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.van Houte S, Buckling A, Westra ER. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol Mol Biol Rev. 2016;80:745–63.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Tuttle MJ, Buchan A. Lysogeny in the oceans: lessons from cultivated model systems and a reanalysis of its prevalence. Environ Microbiol. 2020;22:4919–33.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobian-Guëmes AG, et al. Lytic to temperate switching of viral communities. Nature. 2016;531:466–70.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Touchon M, Bernheim A, Rocha EPC. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 2016;10:2744–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. Elife. 2015;4:e08490.PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    45.Luo E, Eppley JM, Romano AE, Mende DR, DeLong EF. Double-stranded DNA. virioplankton dynamics and reproductive strategies in the oligotrophic open ocean water column. ISME J. 2020;14:1304–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Touchon M, Moura de Sousa JA, Rocha EP. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr Opin Microbiol. 2017;38:66–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, Delong EF, et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science. 2006;311:1768–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT. Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res. 2006;16:1099–108.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T, et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature. 2007;449:83–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Raytcheva DA, Haase-Pettingell C, Piret JM, King JA. Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J Virol. 2011;85:2406–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Flores-Uribe J, Philosof A, Sharon I, Fridman S, Larom S, Béjà O. A novel uncultured marine cyanophage lineage with lysogenic potential linked to a putative marine Synechococcus ‘relic’ prophage. Environ Microbiol Rep. 2019;11:598–604.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Malmstrom RR, Rodrigue S, Huang KH, Kelly L, Kern SE, Thompson A, et al. Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis. ISME J. 2013;7:184–98.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kiro R, Shitrit D, Qimron U. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA Biol. 2014;11:42–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Sarkis GJ, Jacobs WR, Hatfull GF. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol. 1995;15:1055–67.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Tanji Y, Furukawa C, Na SH, Hijikata T, Miyanaga K, Unno H. Escherichia coli detection by GFP-labeled lysozyme-inactivated T4 bacteriophage. J Biotechnol. 2004;114:11–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Brahamsha B. A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus. Appl Environ Microbiol. 1996;62:1747–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Mahichi F, Synnott AJ, Yamamichi K, Osada T, Tanji Y. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol Lett. 2009;295:211–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Le S, He X, Tan Y, Huang G, Zhang L, Lux R, et al. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS One. 2013;8:e68562.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Murphy KC. Phage recombinases and their applications. Adv Virus Res. 2012;83:367–414.60.Bujarski JJ. Recombination of viruses. In: Encyclopedia of Virology. Elsevier; 1999. p. 1446–53.61.Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK. Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev. 2016;80:523–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Qimron U, Marintcheva B, Tabor S, Richardson CC. Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. Proc Natl Acad Sci USA. 2006;103:19039–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Selick HE, Kreuzer KN, Alberts BM. The bacteriophage T4 insertion/substitution vector system. A method for introducing site-specific mutations into the virus chromosome. J Biol Chem. 1988;263:11336–47.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Martel B, Moineau S. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res. 2014;42:9504–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Dale JW, Greenaway PJ. Identification of recombinant phages by plaque hybridization. In: Walker JM, editor. Nucleic Acids. Totowa, NJ: Humana Press; 1984. p. 285–8.Chapter 

    Google Scholar 
    66.Dekel-Bird NP, Avrani S, Sabehi G, Pekarsky I, Marston MF, Kirzner S, et al. Diversity and evolutionary relationships of T7-like podoviruses infecting marine cyanobacteria. Environ Microbiol. 2013;15:1476–91.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Doron S, Fedida A, Hernndez-Prieto MA, Sabehi G, Karunker I, Stazic D, et al. Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME J. 2016;10:1437–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Krupovic M, Forterre P. Single-stranded DNA viruses employ a variety of mechanisms for integration into host genomes. Ann NY Acad Sci. 2015;1341:41–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Morris RM, Cain KR, Hvorecny KL, Kollman JM. Lysogenic host–virus interactions in SAR11 marine bacteria. Nat Microbiol. 2020;5:1011–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Martínez-García E, Jatsenko T, Kivisaar M, de Lorenzo V. Freeing Pseudomonas putida KT2440 of its proviral load strengthens endurance to environmental stresses. Environ Microbiol. 2015;17:76–90.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    71.Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 2021;15:41–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S. Switches in bacteriophage lambda development. Annu Rev Genet. 2005;39:409–29.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Ray U, Sakalka A. Lysogenization of Escherichia coli by bacteriophage Lambda: complementary activity of the host’s DNA polymerase I and ligase and bacteriophage replication proteins Q and P. J Virol. 1976;18:511–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Greengrass E. Resistance of marine Synechococcus to podovirus infection: genetic basis and phenotypic characterization. M.Sc. thesis. Technion – Israel Inst Technol. 2013.75.Fedida A, Lindell D. Two Synechococcus genes, two different effects on cyanophage infection. Viruses. 2017;9:136.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Shao Q, Trinh JT, McIntosh CS, Christenson B, Balázsi G, Zeng L. Lysis-lysogeny coexistence: prophage integration during lytic development. Microbiol Open. 2017;6:e00395.Article 
    CAS 

    Google Scholar 
    77.Chen F, Lu J. Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages. Appl Environ Microbiol. 2002;68:2589–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Brum JR, Hurwitz BL, Schofield O, Ducklow HW, Sullivan MB. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 2016;10:437–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Pratama AA, van Elsas JD. The ‘neglected’ soil virome—potential role and impact. Trends Microbiol. 2018;26:649–62.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Srinivasiah S, Bhavsar J, Thapar K, Liles M, Schoenfeld T, Wommack KE. Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol. 2008;159:349–57.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, et al. Abundant SAR11 viruses in the ocean. Nature. 2013;494:357–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Zhao Y, Qin F, Zhang R, Giovannoni SJ, Zhang Z, Sun J, et al. Pelagiphages in the Podoviridae family integrate into host genomes. Environ Microbiol. 2018;21:1989–2001.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    83.Kashtan N, Roggensack SE, Berta-Thompson JW, Grinberg M, Stepanauskas R, Chisholm SW. Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus. ISME J. 2017;11:1997–2011.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Berube PM, Biller SJ, Hackl T, Hogle SL, Satinsky BM, Becker JW, et al. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci Data. 2018;5:1–11.Article 
    CAS 

    Google Scholar 
    85.Wyman M, Gregory RPF, Carr NG. Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2. Science. 1985;230:818–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Lindell D, Padan E, Post AF. Regulation of ntcA expression and nitrite uptake in the marine Synechococcus sp. strain WH 7803. J Bacteriol. 1998;180:1878–86.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, et al. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods. 2007;5:353–62.CAS 
    Article 

    Google Scholar 
    88.Lindell D. The genus Prochlorococcus, phylum cyanobacteria. In: The Prokaryotes: Other Major Lineages of Bacteria and The Archaea. Springer-Verlag Berlin Heidelberg; 2014. p. 829–45.89.Morris JJ, Kirkegaard R, Szul MJ, Johnson ZI, Zinser ER. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by “helper” heterotrophic bacteria. Appl Environ Microbiol. 2008;74:4530–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Wolk CP, Fan Q, Zhou R, Huang G, Lechno-Yossef S, Kuritz T, et al. Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120. Arch Microbiol. 2007;188:551–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Bryksin A, Matsumura I. Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques. 2010;48:463–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Nat Biotechnol. 1983;1:784–91.CAS 
    Article 

    Google Scholar 
    93.Henn MR, Sullivan MB, Stange-Thomann N, Osburne MS, Berlin AM, Kelly L, et al. Analysis of high-throughput sequencing and annotation strategies for phage genomes. PLoS One. 2010;5:e9083.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    94.Zinser ER, Coe A, Johnson ZI, Martiny AC, Fuller NJ, Scanlan DJ, et al. Prochlorococcus ecotype abundances in the North Atlantic Ocean as revealed by an improved quantitative PCR method. Appl Environ Microbiol. 2006;72:723–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature. 2005;438:86–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Mitra RD, Church GM. In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res. 1999;27:e34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Schwartz DA, Lindell D. Genetic hurdles limit the arms race between Prochlorococcus and the T7-like podoviruses infecting them. ISME J. 2017;11:1836–51.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Bull JJ, Badgett MR, Wichman HA, Huelsenbeck JP, Hillis DM, Gulati A, et al. Exceptional convergent evolution in a virus. Genetics. 1997;147:1497–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Quinlan AR. BEDTools: the Swiss-army Tool for genome feature analysis. Curr Protoc Bioinform. 2014;47:1–34. 11.12.Article 

    Google Scholar 
    100.Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, Hackl T, et al. Marine microbial metagenomes sampled across space and time. Sci Data. 2018;5:180176.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Haro-Moreno JM, López-Pérez M, de la Torre JR, Picazo A, Camacho A, Rodriguez-Valera F. Fine metagenomic profile of the Mediterranean stratified and mixed water columns revealed by assembly and recruitment. Microbiome. 2018;6:128.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Philosof A, Yutin N, Flores-Uribe J, Sharon I, Koonin EV, Béjà O. Novel abundant oceanic viruses of uncultured marine group II Euryarchaeota. Curr Biol. 2017;27:1362–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Wilson ST, Aylward FO, Ribalet F, Barone B, Casey JR, Connell PE, et al. Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera. Nat Microbiol. 2017;2:17118.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    105.Bushnell B. BBMap: a fast, accurate, splice-aware aligner. 2014;URL: https://www.osti.gov/servlets/purl/1241166.106.Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013;1303:3997.
    Google Scholar 
    107.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Wolves, dogs and humans in regular contact can mutually impact each other’s skin microbiota

    Humans have the least and pet dogs have the most diverse skin microbiotaOut of all four groups, species richness and diversity were lowest in human skin microbiota, whereas the pet dog group had the highest species richness and diversity. All four groups differed significantly to each other (Kruskal–Wallis; Chao1, chi-squared = 20.828, df = 3, p  More

  • in

    Nonlinear shifts in infectious rust disease due to climate change

    1.Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine Biota. Science 296, 2158–2162 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Gautam, H. R., Bhardwaj, M. L. & Kumar, R. Climate change and its impact on plant diseases. Curr. Sci. 105, 1685–1691 (2013).
    Google Scholar 
    3.Bebber, D. P. & Gurr, S. J. Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet. Biol. 74, 62–64 (2015).PubMed 
    Article 

    Google Scholar 
    4.Lukanda, M. et al. First report of maize chlorotic mottle virus infecting maize in the Democratic Republic of the Congo. Plant Dis. 98, 1448–1448 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Brasier, C. M. in The Elms: Breeding,Conservation, and Disease Management (ed. Dunn, C. P.) 61–72 (Springer US, 2000). https://doi.org/10.1007/978-1-4615-4507-1_4.6.Boyd, I. L., Freer-Smith, P. H., Gilligan, C. A. & Godfray, H. C. J. The consequence of tree pests and diseases for ecosystem services. Science 342, 1235773 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Geometry and evolution of the ecological niche in plant-associated microbes. Nat. Commun. 11, 2955 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Donald, F., Green, S., Searle, K., Cunniffe, N. J. & Purse, B. V. Small scale variability in soil moisture drives infection of vulnerable juniper populations by invasive forest pathogen. Ecol. Manag. 473, 118324 (2020).Article 

    Google Scholar 
    9.Sturrock, R. N. et al. Climate change and forest diseases. Plant Pathol. 60, 133–149 (2011).Article 

    Google Scholar 
    10.Pathak, R., Singh, S. K., Tak, A. & Gehlot, P. Impact of climate change on host, pathogen and plant disease adaptation regime: a review. Biosci. Biotechnol. Res. Asia 15, 529–540 (2018).Article 

    Google Scholar 
    11.Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009).PubMed 
    Article 

    Google Scholar 
    12.Ghelardini, L., Pepori, A. L., Luchi, N., Capretti, P. & Santini, A. Drivers of emerging fungal diseases of forest trees. Ecol. Manag. 381, 235–246 (2016).Article 

    Google Scholar 
    13.Wyka, S. A. et al. Emergence of white pine needle damage in the northeastern United States is associated with changes in pathogen pressure in response to climate change. Glob. Change Biol. 23, 394–405 (2017).ADS 
    Article 

    Google Scholar 
    14.Garrett, K. A. et al. in Climate Change 2nd edn (ed. Letcher, T. M.) 325–338 (Elsevier, 2016). https://doi.org/10.1016/B978-0-444-63524-2.00021-X.15.Bebber, D. P. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53, 335–356 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).ADS 
    Article 

    Google Scholar 
    17.Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2013).PubMed 
    Article 

    Google Scholar 
    19.Huey, R. B. & Berrigan, D. Temperature, demography, and ectotherm fitness. Am. Nat. 158, 204–210 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Integr. Comp. Biol. 19, 357–366 (1979).
    Google Scholar 
    21.Rohr, J. R. et al. Frontiers in climate change—disease research. Trends Ecol. Evol. 26, 270–277 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Peterson, A. T. Shifting suitability for malaria vectors across Africa with warming climates. BMC Infect. Dis. 9, 59 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Garamszegi, L. Z. Climate change increases the risk of malaria in birds. Glob. Change Biol. 17, 1751–1759 (2011).ADS 
    Article 

    Google Scholar 
    24.Cook, B. I., Mankin, J. S. & Anchukaitis, K. J. Climate change and drought: from past to future. Curr. Clim. Change Rep. 4, 164–179 (2018).Article 

    Google Scholar 
    25.Desprez-Loustau, M.-L., Marçais, B., Nageleisen, L.-M., Piou, D. & Vannini, A. Interactive effects of drought and pathogens in forest trees. Ann. Sci. 63, 597–612 (2006).Article 

    Google Scholar 
    26.Brodribb, T. J. & McAdam, S. A. M. Passive origins of stomatal control in vascular plants. Science 331, 582–585 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Jactel, H. et al. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob. Change Biol. 18, 267–276 (2012).ADS 
    Article 

    Google Scholar 
    28.Baptista-Rosas, R. C. et al. Molecular detection of Coccidioides spp. from environmental samples in Baja California: linking Valley Fever to soil and climate conditions. Fungal Ecol. 5, 177–190 (2012).Article 

    Google Scholar 
    29.Cohen, J. M. et al. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecol. Lett. 20, 184–193 (2017).PubMed 
    Article 

    Google Scholar 
    30.Mcelrone, A. J., Reid, C. D., Hoye, K. A., Hart, E. & Jackson, R. B. Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Glob. Change Biol. 11, 1828–1836 (2005).ADS 
    Article 

    Google Scholar 
    31.Berzitis, E. A., Minigan, J. N., Hallett, R. H. & Newman, J. A. Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata). Glob. Change Biol. 20, 2778–2792 (2014).ADS 
    Article 

    Google Scholar 
    32.Bebber, D. P. & Gurr, S. J. Biotic interactions and climate in species distribution modelling. bioRxiv 520320 https://doi.org/10.1101/520320 (2019).33.Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542–544 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Morgan, E. R., Milner-Gulland, E. J., Torgerson, P. R. & Medley, G. F. Ruminating on complexity: macroparasites of wildlife and livestock. Trends Ecol. Evol. 19, 181–188 (2004).PubMed 
    Article 

    Google Scholar 
    35.Paull, S. H., LaFonte, B. E. & Johnson, P. T. J. Temperature-driven shifts in a host-parasite interaction drive nonlinear changes in disease risk. Glob. Change Biol. 18, 3558–3567 (2012).ADS 
    Article 

    Google Scholar 
    36.Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).Article 

    Google Scholar 
    37.Bebber, D. P. Climate change effects on Black Sigatoka disease of banana. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20180269 (2019).Article 

    Google Scholar 
    38.Soberón, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. https://doi.org/10.17161/bi.v2i0.4 (2005).39.Garrett, K. A. et al. Complexity in climate-change impacts: an analytical framework for effects mediated by plant disease. Plant Pathol. 60, 15–30 (2011).Article 

    Google Scholar 
    40.Scherm, H. Climate change: can we predict the impacts on plant pathology and pest management? Can. J. Plant Pathol. 26, 267–273 (2004).Article 

    Google Scholar 
    41.Simler-Williamson, A. B., Rizzo, D. M. & Cobb, R. C. Interacting effects of global change on forest pest and pathogen dynamics. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110218-024934 (2019).42.Campbell, E. M. & Antos, J. A. Distribution and severity of white pine blister rust and mountain pine beetle on whitebark pine in British Columbia. Can. J. Res. 30, 1051–1059 (2000).Article 

    Google Scholar 
    43.Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).Article 

    Google Scholar 
    44.McDonald, G. I., Richardson, B. A., Zambino, P. J., Klopfenstein, N. B. & Kim, M.-S. Pedicularis and Castilleja are natural hosts of Cronartium ribicola in North America: a first report. Pathol. 36, 73–82 (2006).Article 

    Google Scholar 
    45.Geils, B. W., Hummer, K. E. & Hunt, R. S. White pines, Ribes, and blister rust: a review and synthesis. Pathol. 40, 147–185 (2010).Article 

    Google Scholar 
    46.Kinloch, B. B. White pine blister rust in North America: past and prognosis. Phytopathology 93, 1044–1047 (2003).PubMed 
    Article 

    Google Scholar 
    47.Arsdel, E. P. V., Geils, B. W. & Zambino, P. J. Epidemiology for hazard rating of white pine blister rust. In: Guyon JC Comp Proc. 53rd Western International Forest Disease Work Conference 2005 September 26–30 Jackson WY USA (Department of Agriculture, Forest Service, Intermountain Region, Ogden UT, 2006).48.Dudney, J. Characterizing and Managing Drivers of Change in Mediterranean Forest and Grassland Communities (UC Berkeley, 2019).49.Kreyling, J. et al. To replicate, or not to replicate—that is the question: how to tackle nonlinear responses in ecological experiments. Ecol. Lett. 21, 1629–1638 (2018).PubMed 
    Article 

    Google Scholar 
    50.Larson, E. R. & Kipfmueller, K. F. Ecological disaster or the limits of observation? reconciling modern declines with the long-term dynamics of whitebark pine communities. Geogr. Compass 6, 189–214 (2012).Article 

    Google Scholar 
    51.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Kinloch, B. B. et al. Patterns of variation in blister rust resistance in sugar pine (Pinus lambertiana). In: Proc. IUFRO joint conference: Genetics of five-needle pines, rusts of forest trees, and Strobusphere; 2014 June 15–20; Fort Collins, CO. Proc. RMRS-P-76 (eds Schoettle, A. W., Sniezko, R. A. & Kliejunas, J. T.) 124–128 (Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2018).53.King, J. N., David, A., Noshad, D. & Smith, J. A review of genetic approaches to the management of blister rust in white pines. Pathol. 40, 292–313 (2010).Article 

    Google Scholar 
    54.Maloney, P. E. Incidence and distribution of white pine blister rust in the high-elevation forests of California. Forest Pathol. 41, 308–316 (2011).Article 

    Google Scholar 
    55.Dunlap, J. M. Variability in and environmental correlates to white pine blister rust incidence in five California white pine species. Northwest Sci. 86, 248–263 (2012).Article 

    Google Scholar 
    56.Thoma, D. P., Shanahan, E. K. & Irvine, K. M. Climatic correlates of white pine blister rust infection in whitebark pine in the greater yellowstone ecosystem. Forests 10, 666 (2019).Article 

    Google Scholar 
    57.Talley, S. M., Coley, P. D. & Kursar, T. A. The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West. BMC Ecol. 2, 7 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Davis, J. K. et al. Improving the prediction of arbovirus outbreaks: A comparison of climate-driven models for West Nile virus in an endemic region of the United States. Acta Trop. 185, 242–250 (2018).PubMed 
    Article 

    Google Scholar 
    59.Manstretta, V. & Rossi, V. Effects of weather variables on ascospore discharge from Fusarium graminearum Perithecia. PLoS ONE 10, e0138860 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Seager, R. et al. Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 54, 1121–1141 (2015).ADS 
    Article 

    Google Scholar 
    61.Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).ADS 
    Article 

    Google Scholar 
    62.Dudney, J. C. et al. Compounding effects of white pine blister rust, mountain pine beetle, and fire threaten four white pine species. Ecosphere 11, e03263 (2020).Article 

    Google Scholar 
    63.Schwandt, J. W., Lockman, I. B., Kliejunas, J. T. & Muir, J. A. Current health issues and management strategies for white pines in the western United States and Canada. Forest Pathol. 40, 226–250 (2010).Article 

    Google Scholar 
    64.Dudney, J. et al. Overstory removal and biological legacies influence long-term forest management outcomes on introduced species and native shrubs. Forest Ecol. Manag. 491, 119149 (2021).Article 

    Google Scholar 
    65.Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. 113, 11770–11775 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Goodsman, D. W., Lusebrink, I., Landhäusser, S. M., Erbilgin, N. & Lieffers, V. J. Variation in carbon availability, defense chemistry and susceptibility to fungal invasion along the stems of mature trees. N. Phytol. 197, 586–594 (2013).CAS 
    Article 

    Google Scholar 
    67.McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol. 178, 719–739 (2008).Article 

    Google Scholar 
    68.Bockino, N. K. & Tinker, D. B. Interactions of white pine blister rust and mountain pine beetle in whitebark pine ecosystems in the southern Greater Yellowstone Area. Nat. Areas J. 32, 31–40 (2012).Article 

    Google Scholar 
    69.Stephenson, N. L., Das, A. J., Ampersee, N. J., Bulaon, B. M. & Yee, J. L. Which trees die during drought? The key role of insect host-tree selection. J. Ecol. 107, 2383–2401 (2019).70.Griffin, D. & Anchukaitis, K. J. How unusual is the 2012–2014 California drought? Geophys. Res. Lett. 41, 2014GL062433 (2014).Article 

    Google Scholar 
    71.Paz‐Kagan, T. et al. What mediates tree mortality during drought in the southern Sierra Nevada? Ecol. Appl. 27, 2443–2457 (2017).PubMed 
    Article 

    Google Scholar 
    72.Zambino, P. J. Biology and pathology of Ribes and their implications for management of white pine blister rust. Pathol. 40, 264–291 (2010).Article 

    Google Scholar 
    73.Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L. & Trugman, A. T. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).ADS 
    Article 

    Google Scholar 
    74.Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2014).Article 

    Google Scholar 
    75.Deyle, E. R., May, R. M., Munch, S. B. & Sugihara, G. Tracking and forecasting ecosystem interactions in real time. Proc. R. Soc. B: Biol. Sci. 283, 20152258 (2016).Article 

    Google Scholar 
    76.Deyle, E. R., Maher, M. C., Hernandez, R. D., Basu, S. & Sugihara, G. Global environmental drivers of influenza. Proc. Natl Acad. Sci. 113, 13081–13086 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Cohen, J. M., Civitello, D. J., Venesky, M. D., McMahon, T. A. & Rohr, J. R. An interaction between climate change and infectious disease drove widespread amphibian declines. Glob. Change Biol. 25, 927–937 (2019).ADS 
    Article 

    Google Scholar 
    78.Kolb, T. E. et al. Observed and anticipated impacts of drought on forest insects and diseases in the United States. Ecol. Manag. 380, 321–334 (2016).Article 

    Google Scholar 
    79.Kutz, S. J. et al. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Vet. Parasitol. 163, 217–228 (2009).PubMed 
    Article 

    Google Scholar 
    80.Flower, C. E. & Gonzalez-Meler, M. A. Responses of temperate forest productivity to insect and pathogen disturbances. Annu. Rev. Plant Biol. 66, 547–569 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Trant, A., Higgs, E. & Starzomski, B. M. A century of high elevation ecosystem change in the Canadian Rocky Mountains. Sci. Rep. 10, 9698 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Wong, C. M. & Daniels, L. D. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. Glob. Change Biol. 23, 1926–1941 (2017).ADS 
    Article 

    Google Scholar 
    83.Endangered and Threatened Wildlife and Plants; Threatened Species Status for Pinus albicaulis (Whitebark Pine) With Section 4(d) Rule. Federal Register https://www.federalregister.gov/documents/2020/12/02/2020-25331/endangered-and-threatened-wildlife-and-plants-threatened-species-status-for-pinus-albicaulis (2020).84.Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. & Travers, S. E. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44, 489–509 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.PRISM Climate Group. PRISM Climate Group, Oregon State U. http://www.prism.oregonstate.edu/normals/.86.Abatzoglou, J. T. & Brown, T. J. A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol. 32, 772–780 (2012).Article 

    Google Scholar 
    87.Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).Article 

    Google Scholar 
    88.Mitchell, K. E. et al. The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res. Atmospheres https://doi.org/10.1029/2003JD003823@10.1002/(ISSN)2169-8996.GCIP3 (2018).89.Ritchie, J. & Dowlatabadi, H. Why do climate change scenarios return to coal? Energy 140, 1276–1291 (2017).Article 

    Google Scholar 
    90.R Core Team. R: A Language and Environment for Statistical Computing https://www.rproject.org/ (2017).91.Burns, K. S., Schoettle, A. W., Jacobi, W. R. & Mahalovich, M. F. White pine blister rust in the Rocky Mountain Region and options for management. Management. https://www.fs.fed.us/rm/pubs/rmrs_gtr206.pdf (2007).92.Fox, J. et al. car: Companion to applied regression (2019).93.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    94.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer New York, 2009).95.Baker-Austin, C. et al. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Change 3, 73–77 (2013).ADS 
    Article 

    Google Scholar 
    96.Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).ADS 
    Article 

    Google Scholar 
    97.Rohr, J. R., Raffel, T. R., Romansic, J. M., McCallum, H. & Hudson, P. J. Evaluating the links between climate, disease spread, and amphibian declines. Proc. Natl Acad. Sci. 105, 17436–17441 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Wooldridge, J. M. Introductory Econometrics: A Modern Approach. 6th ed. (Cengage learning. Boston, MA, 2015).99.Berge, L. fixest: Fast Fixed-Effects Estimations. https://cran.rproject.org/web/packages/fixest/index.html (2020).100.Harrell, F. E. rms: Regression Modeling Strategies https://CRAN.R-project.org/package=rms (2020).101.Kelly, M., Guo, Q., Liu, D. & Shaari, D. Modeling the risk for a new invasive forest disease in the United States: An evaluation of five environmental niche models. Comput. Environ. Urban Syst. 31, 689–710 (2007).Article 

    Google Scholar 
    102.Meentemeyer, R. K. et al. Epidemiological modeling of invasion in heterogeneous landscapes: spread of sudden oak death in California (1990–2030). Ecosphere 2, 1–24 (2011).Article 

    Google Scholar 
    103.QGIS Development Team. QGIS Geographic Information System. http://qgis.osgeo.org/ (2020).104.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).105.Hülsmann, L., Bugmann, H., Cailleret, M. & Brang, P. How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. Ecol. Appl. 28, 522–540 (2018).PubMed 
    Article 

    Google Scholar 
    106.Cribbs, J., Nesmith, J., van Mantgem, P. & Dudney, J. Using stable isotope analysis and foliar growth measurements to understand physiological responses to drought in whitebark pine. Presented at the Ecological Society of America Symposium (2020).107.Farquhar, G. D. & Richards, R. A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct. Plant Biol. 11, 539–552 (1984).CAS 
    Article 

    Google Scholar 
    108.Dudney, J. et al. Climate change and white pine blister rust. https://doi.org/10.17605/OSF.IO/PC9FM. (2021).109.Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl Acad. Sci. 106, 19644–19650 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Non-lethal effects of entomopathogenic nematode infection

    1.Gaugler, R. Entomopathogenic nematology (2002).2.Gaugler, R. Entomopathogenic Nematodes in Biological Control (CRC Press, 2018).Book 

    Google Scholar 
    3.Grewal, P. S., Ehlers, R.-U. & Shapiro-Ilan, D. I. Nematodes as Biocontrol Agents (CABI, 2005).Book 

    Google Scholar 
    4.Duncan, L. & McCoy, C. Vertical distribution in soil, persistence, and efficacy against citrus root weevil (coleoptera: Curculionidae) of two species of entomogenous nematodes (rhabditida: Steinernematidae; heterorhabditidae). Environ. Entomol. 25, 174–178 (1996).Article 

    Google Scholar 
    5.Duncan, L., McCoy, C. & Terranova, A. Estimating sample size and persistence of entomogenous nematodes in sandy soils and their efficacy against the larvae of Diaprepes abbreviatus in Florida. J. Nematol. 28, 56 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Bullock, R., Pelosi, R. & Killer, E. Management of citrus root weevils (coleoptera: Curculionidae) on florida citrus with soil-applied entomopathogenic nematodes (nematoda: Rhabditida). Florida Entomologist 1–7 (1999).7.Koppenhöfer, A. M. & Fuzy, E. M. Steinernema scarabaei for the control of white grubs. Biol. Control 28, 47–59 (2003).Article 

    Google Scholar 
    8.Grewal, P., Power, K., Grewal, S., Suggars, A. & Haupricht, S. Enhanced consistency in biological control of white grubs (coleoptera: Scarabaeidae) with new strains of entomopathogenic nematodes. Biol. Control 30, 73–82 (2004).Article 

    Google Scholar 
    9.Georgis, R. et al. Successes and failures in the use of parasitic nematodes for pest control. Biol. Control 38, 103–123 (2006).Article 

    Google Scholar 
    10.Labaude, S. & Griffin, C. T. Transmission success of entomopathogenic nematodes used in pest control. Insects 9, 72 (2018).Article 

    Google Scholar 
    11.Li, X.-Y., Cowles, R., Cowles, E., Gaugler, R. & Cox-Foster, D. Relationship between the successful infection by entomopathogenic nematodes and the host immune response. Int. J. Parasitol. 37, 365–374 (2007).CAS 
    Article 

    Google Scholar 
    12.Castillo, J. C., Reynolds, S. E. & Eleftherianos, I. Insect immune responses to nematode parasites. Trends Parasitol. 27, 537–547 (2011).CAS 
    Article 

    Google Scholar 
    13.Ribeiro, C. et al. Insect immunity-effects of factors produced by a nematobacterial complex on immunocompetent cells. J. Insect Physiol. 45, 677–685 (1999).CAS 
    Article 

    Google Scholar 
    14.Garriga, A., Mastore, M., Morton, A., Garcia del Pino, F. & Brivio, M. F. Immune response of drosophila suzukii larvae to infection with the nematobacterial complex steinernema carpocapsae-xenorhabdus nematophila. Insects 11, 210 (2020).Article 

    Google Scholar 
    15.Ebrahimi, L., Niknam, G., Dunphy, G. & Toorchi, M. Side effects of immune response of colorado potato beetle, leptinotarsa decemlineata against the entomopathogenic nematode, steinernema carpocapsae infection. Invertebr. Surviv. J. 11, 132–142 (2014).
    Google Scholar 
    16.Ebrahimi, L., Niknam, G. & Lewis, E. Lethal and sublethal effects of iranian isolates of steinernema feltiae and heterorhabditis bacteriophora on the colorado potato beetle, leptinotarsa decemlineata. Biocontrol 56, 781–788 (2011).Article 

    Google Scholar 
    17.Chen, S., Li, J., Han, X. & Moens, M. Effect of temperature on the pathogenicity of entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) to delia radicum. Biocontrol 48, 713–724 (2003).Article 

    Google Scholar 
    18.Mastore, M., Quadroni, S., Toscano, A., Mottadelli, N. & Brivio, M. F. Susceptibility to entomopathogens and modulation of basal immunity in two insect models at different temperatures. J. Therm. Biol 79, 15–23 (2019).CAS 
    Article 

    Google Scholar 
    19.Wojda, I. Temperature stress and insect immunity. J. Therm. Biol 68, 96–103 (2017).CAS 
    Article 

    Google Scholar 
    20.Lee, J. H., Dillman, A. R. & Hallem, E. A. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes. BMC Biol. 14, 1–17 (2016).Article 

    Google Scholar 
    21.Girling, R., Ennis, D., Dillon, A. & Griffin, C. The lethal and sub-lethal consequences of entomopathogenic nematode infestation and exposure for adult pine weevils, Hylobius abietis (coleoptera: Curculionidae). J. Invertebr. Pathol. 104, 195–202 (2010).CAS 
    Article 

    Google Scholar 
    22.Mastore, M., Arizza, V., Manachini, B. & Brivio, M. F. Modulation of immune responses of Rhynchophorus ferrugineus (insecta: Coleoptera) induced by the entomopathogenic nematode Steinernema carpocapsae (nematoda: Rhabditida). Insect Sci. 22, 748–760 (2015).CAS 
    Article 

    Google Scholar 
    23.Willett, D. S., Filgueiras, C. C., Nyrop, J. P. & Nault, B. A. Attract and kill: spinosad containing spheres to control onion maggot (Delia antiqua). Pest Manag. Sci. 76, 2720–2725 (2020).CAS 
    Article 

    Google Scholar 
    24.Willett, D. S., Filgueiras, C. C., Nyrop, J. P. & Nault, B. A. Field monitoring of onion maggot (Delia antiqua) fly through improved trapping. J. Appl. Entomol. 144, 382–387 (2020).Article 

    Google Scholar 
    25.Kaya, H. K. & Stock, S. P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology, 281–324 (Elsevier, 1997).26.White, G. et al. A method for obtaining infective nematode larvae from cultures. Science (Washington) 66, 302–303 (1927).ADS 
    CAS 
    Article 

    Google Scholar 
    27.R Core Team. R: A. Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, Austria, 2021).28.Wickham, H. et al. Welcome to the tidyverse. J. Open Sour. Softw. 4, 1686 (2019). https://doi.org/10.21105/joss.01686ADS 
    Article 

    Google Scholar 
    29.Fox, J. & Weisberg, S. An R Companion to Applied Regression third. (Sage, 2019).
    Google Scholar 
    30.Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means (2021). R package version 1.5.5-1.31.Franceschi, C. et al. Genes involved in immune response/inflammation, igf1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: The lesson of centenarians. Mech. Ageing Dev. 126, 351–361 (2005).CAS 
    Article 

    Google Scholar 
    32.Kumar, S. et al. Lifespan extension in C. elegans caused by bacterial colonization of the intestine and subsequent activation of an innate immune response. Dev. Cell 49, 100–117 (2019).CAS 
    Article 

    Google Scholar 
    33.Bruno, P. et al. Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm. Sci. Rep. 10, 1–12 (2020).Article 

    Google Scholar 
    34.Stock, S. P., Campos-Herrera, R., El-Borai, F. & Duncan, L. Steinernema khuongi n. sp. (panagrolaimomorpha, steinernematidae), a new entomopathogenic nematode species from Florida, USA. J. Helminthol. 93, 226–241 (2019).CAS 
    Article 

    Google Scholar 
    35.Nagelkerke, N. J. et al. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).MathSciNet 
    Article 

    Google Scholar  More

  • in

    Nano/microparticles in conjunction with microalgae extract as novel insecticides against Mealworm beetles, Tenebrio molitor

    1.Köhler, H. R. & Triebskorn, R. Wildlife ecotoxicology of pesticides: can we track effects to the population level and beyond?. Science 341(6147), 759–765 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    2.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418(6898), 671–677 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Khan, M. N., Mobin, M., Abbas, Z. K., AlMutairi, K. A. & Siddiqui, Z. H. Role of nanomaterials in plants under challenging environments. Plant Physiol. Biochem. 110, 194–209 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Monica, R. C. & Cremonini, R. Nanoparticles and higher plants. Caryologia 62(2), 161–165 (2009).Article 

    Google Scholar 
    5.Zheng, L., Hong, F., Lu, S. & Liu, C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 104(1), 83–91 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Lin, D. & Xing, B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150(2), 243–250 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Kah, M. Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation?. Front. Chem. 3, 64 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Sirelkhatim, A. et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro letters 7(3), 219–242 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Selvarajan, V., Obuobi, S. & Ee, P. L. R. Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 8, 602 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Lykov, A. et al. Silica Nanoparticles as a Basis for Efficacy of Antimicrobial Drugs. Nanostruct. Antimicrob. Therapy 1, 551–575 (2017).Article 

    Google Scholar 
    11.Kim, J. S. et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3(1), 95–101 (2007).CAS 
    Article 

    Google Scholar 
    12.Sharma, A., Patni, B., Shankhdhar, D. & Shankhdhar, S. C. Zinc–an indispensable micronutrient. Physiol. Mol. Biol. Plants 19(1), 11–20 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Kawachi, M. et al. A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc. Plant Cell Physiol. 50(6), 1156–1170 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Yan, A. & Chen, Z. Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. Int. J. Mol. Sci. 20(5), 1003 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    15.Vigneron, A., Jehan, C., Rigaud, T. & Moret, Y. Immune defenses of a beneficial pest: the mealworm beetle Tenebrio molitor. Front. Physiol. 10, 138 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Renukadevi, K. P., Saravana, P. S. & Angayarkanni, J. Antimicrobial and antioxidant activity of Chlamydomonas reinhardtii sp. Int. J. Pharm. Sci. Res. 2(6), 1467 (2011).
    Google Scholar 
    17.Jayshree, A., Jayashree, S. & Thangaraju, N. Chlorella vulgaris and Chlamydomonas reinhardtii: effective antioxidant, antibacterial and anticancer mediators. Indian J. Pharm. Sci. 78(5), 575–581 (2016).CAS 
    Article 

    Google Scholar 
    18.Kamble, P., Cheriyamundath, S., Lopus, M. & Sirisha, V. L. Chemical characteristics, antioxidant and anticancer potential of sulfated polysaccharides from Chlamydomonas reinhardtii. J. Appl. Phycol. 30(3), 1641–1653 (2018).CAS 
    Article 

    Google Scholar 
    19.Vishwakarma, J., Parmar, V. & Vavilala, S. L. Nitrate stress-induced bioactive sulfated polysaccharides from Chlamydomonas reinhardtii. Biomed. Res. J. 6(1), 7 (2019).
    Google Scholar 
    20.Burghardt, M., Schreiber, L. & Riederer, M. Enhancement of the diffusion of active ingredients in barley leaf cuticular wax by monodisperse alcohol ethoxylates. J. Agric. Food Chem. 46(4), 1593–1602 (1998).CAS 
    Article 

    Google Scholar 
    21.Henderson, C. F. & Tilton, E. W. Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 48(2), 157–161 (1955).CAS 
    Article 

    Google Scholar 
    22.Debnath, N. et al. Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J. Pest Sci. 84(1), 99–105 (2011).Article 

    Google Scholar 
    23.Aktar, M. W., Sengupta, D. & Chowdhury, A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2(1), 1 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Majumder, D. D. et al. Current status and future trends of nanoscale technology and its impact on modern computing, biology, medicine and agricultural biotechnology. In 2007 International Conference on Computing: Theory and Applications (ICCTA’07), 563–573 (2007).25.Rahman, A. et al. Surface functionalized amorphous nanosilica and microsilica with nanopores as promising tools in biomedicine. Naturwissenschaften 96(1), 31–38 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Pérez-de-Luque, A. & Rubiales, D. Nanotechnology for parasitic plant control. Pest Manag. Sci.: Formerly Pesticide Sci. 65(5), 540–545 (2009).Article 
    CAS 

    Google Scholar 
    27.Chakravarthy, A. K. et al. Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Current Biotica 6(3), 271–281 (2012).
    Google Scholar 
    28.Benelli, G. Mode of action of nanoparticles against insects. Environ. Sci. Pollut. Res. 25(13), 12329–12341 (2018).CAS 
    Article 

    Google Scholar 
    29.Karthiga, P., Rajeshkumar, S. & Annadurai, G. Mechanism of larvicidal activity of antimicrobial silver nanoparticles synthesized using Garcinia mangostana bark extract. J. Cluster Sci. 29(6), 1233–1241 (2018).CAS 
    Article 

    Google Scholar 
    30.Rouhani, M., Samih, M. A. & Kalantari, S. Insecticide effect of silver and zinc nanoparticles against Aphis nerii Boyer De Fonscolombe (Hemiptera: Aphididae). Chil. J. Agric. Res. 72(4), 590 (2012).Article 

    Google Scholar 
    31.Rouhani, M., Samih, M. A. & Kalantari, S. Insecticidal effect of silica and silver nanoparticles on the cowpea seed beetle, Callosobruchus maculatus F(Col: Bruchidae). J. Entomol. Res. 4(4), 297–305 (2013).
    Google Scholar 
    32.Sabbour, M. M. Entomotoxicity assay of two nanoparticle materials 1-(Al2O3 and TiO2) against Sitophilus oryzae under laboratory and store conditions in Egypt. J. Novel Appl. Sci. 1(4), 103–108 (2012).
    Google Scholar 
    33.Stadler, T., Buteler, M. & Weaver, D. K. Novel use of nanostructured alumina as an insecticide. Pest Manag. Sci.: Formerly Pesticide Sci. 66(6), 577–579 (2010).CAS 
    Article 

    Google Scholar 
    34.Xu, R. ISO International standards for particle sizing. China Particuol. 2(4), 164–167 (2004).CAS 
    Article 

    Google Scholar 
    35.Lee, Y. S., Kang, M. H., Cho, S. Y. & Jeong, C. S. Effects of constituents of Amomum xanthioides on gastritis in rats and on growth of gastric cancer cells. Arch. Pharmacal Res. 30(4), 436–443 (2007).CAS 
    Article 

    Google Scholar 
    36.Hussein, H. A. et al. Phytochemical screening, metabolite profiling and enhanced antimicrobial activities of microalgal crude extracts in co-application with silver nanoparticle. Bioresour. Bioprocess. 7(1), 1–17 (2020).MathSciNet 
    Article 

    Google Scholar 
    37.Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A. & Danquah, M. K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9(1), 1050–1074 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Servin, A. et al. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J. Nanopart. Res. 17(2), 1–21 (2015).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    39.Barik, T. K., Kamaraju, R. & Gowswami, A. Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol. Res. 111(3), 1075–1083 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Gao, Y. et al. Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery. Chem. Eng. J. 383, 1269 (2020).
    Google Scholar 
    41.Debnath, N., Das, S., Patra, P., Mitra, S. & Goswami, A. Toxicological evaluation of entomotoxic silica nanoparticle. Toxicol. Environ. Chem. 94(5), 944–951 (2012).CAS 
    Article 

    Google Scholar 
    42.Debnath, N., Mitra, S., Das, S. & Goswami, A. Synthesis of surface functionalized silica nanoparticles and their use as entomotoxic nanocides. Powder Technol. 221, 252–256 (2012).CAS 
    Article 

    Google Scholar 
    43.Chang, J. S., Chang, K. L. B., Hwang, D. F. & Kong, Z. L. In vitro cytotoxicitiy of silica nanoparticles at high concentrations strongly depends on the metabolic activity type of the cell line. Environ. Sci. Technol. 41(6), 2064–2068 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Gogos, A., Knauer, K. & Bucheli, T. D. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J. Agric. Food Chem. 60(39), 9781–9792 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Mondal, K. K. & Mani, C. Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv punicae, the incitant of pomegranate bacterial blight. Ann. Microbiol. 62(2), 889–893 (2012).CAS 
    Article 

    Google Scholar 
    46.Norman, D. J. & Chen, J. Effect of foliar application of titanium dioxide on bacterial blight of geranium and Xanthomonas leaf spot of poinsettia. HortScience 46(3), 426–428 (2011).CAS 
    Article 

    Google Scholar 
    47.Salem, H. F., Kam, E. & Sharaf, M. A. Formulation and evaluation of silver nanoparticles as antibacterial and antifungal agents with a minimal cytotoxic effect. Int. J. Drug Deliv. 3(2), 293 (2011).CAS 

    Google Scholar 
    48.Lamsa, K. et al. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1), 26–32 (2011).Article 
    CAS 

    Google Scholar 
    49.Schofield, R. M. S. Metals in cuticular structures. Scorp. Biol. Res. 1, 234–256 (2001).
    Google Scholar 
    50.Oonincx, D. G. A. B. & Van der Poel, A. F. B. Effects of diet on the chemical composition of migratory locusts (Locusta migratoria). Zoo Biol. 30(1), 9–16 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Van Broekhoven, S., Oonincx, D. G., Van Huis, A. & Van Loon, J. J. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 73, 1–10 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    52.Locke, M. & Nichol, H. Iron economy in insects: transport, metabolism, and storage. Annu. Rev. Entomol. 37(1), 195–215 (1992).CAS 
    Article 

    Google Scholar 
    53.Jones, M. W., de Jonge, M. D., James, S. A. & Burke, R. Elemental mapping of the entire intact Drosophila gastrointestinal tract. J. Biol. Inorg. Chem. 20(6), 979–987 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Mir, A. H., Qamar, A., Qadir, I., Naqvi, A. H. & Begum, R. Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their effects on immuno-competent cells. Sci. Rep. 10(1), 1–14 (2020).Article 
    CAS 

    Google Scholar 
    55.Zhang, X. F., Shen, W. & Gurunathan, S. Silver nanoparticle-mediated cellular responses in various cell lines: an in vitro model. Int. J. Mol. Sci. 17(10), 1603 (2016).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Liau, S. Y., Read, D. C., Pugh, W. J., Furr, J. R. & Russell, A. D. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Lett. Appl. Microbiol. 25(4), 279–283 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Matsumura, Y., Yoshikata, K., Kunisaki, S. I. & Tsuchido, T. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69(7), 4278–4281 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Gupta, A., Maynes, M. & Silver, S. Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl. Environ. Microbiol. 64(12), 5042–5045 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Lee, J. H. et al. Biopersistence of silver nanoparticles in tissues from Sprague-Dawley rats. Part. Fibre Toxicol. 10(1), 1–14 (2013).Article 
    CAS 

    Google Scholar 
    60.Vinluan, R. D. III. & Zheng, J. Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine 10(17), 2781–2794 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Armstrong, N., Ramamoorthy, M., Lyon, D., Jones, K. & Duttaroy, A. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS ONE 8(1), 53186 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    62.Chun, J. P., Choi, J. S. & Ahn, Y. J. Utilization of fruit bags coated with nano-silver for controlling black stain on fruit skin of ‘niitaka’pear (Pyrus pyrifolia). Hortic. Environ. Biotechnol. 51(4), 245–248 (2010).
    Google Scholar 
    63.Jo, Y. K., Kim, B. H. & Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 93(10), 1037–1043 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More