More stories

  • in

    Fish biodiversity and assemblages along the altitudinal gradients of tropical mountainous forest streams

    1.Jaramillo-Villa, U., Maldonado-Ocampo, J. A. & Escobar, F. Altitudinal variation in fish assemblage diversity in streams of the central Andes of Colombia. J. Fish Biol. 76, 2401–2417 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Mercado-silva, N., Lyons, J., Díaz-Pardo, E., Navarrete, S. & Gutiérrez-Hernández, A. Environmental factors associated with fish assemblage patterns in a high gradient river of the Gulf of Mexico slope. Revista Mexicana de Biodiversidad 83, 117–128 (2012).Article 

    Google Scholar 
    3.Cheng, D. et al. Quantifying the distribution and diversity of fish species along elevational gradients in the Weihe River Basin, Northwest China. Sustainability 11, 6177 (2019).Article 

    Google Scholar 
    4.Lorion, C. M., Kennedy, B. P. & Braatne, J. H. Altitudinal gradients in stream fish diversity and the prevalence of diadromy in the Sixaola River basin, Costa Rica. Environ. Biol. Fishes 91, 487–499 (2011).Article 

    Google Scholar 
    5.Li, J. et al. Spatial and temporal variation of fish assemblages and their associations to habitat variables in a mountain stream of north Tiaoxi River, China. Environ. Biol. Fishes 93, 403–417 (2012).Article 

    Google Scholar 
    6.Súarez, Y. R. et al. Patterns of species richness and composition of fish assemblages in streams of the Ivinhema River basin, Upper Paraná River. Acta Limnol. Bras. 23, 177–188 (2011).Article 

    Google Scholar 
    7.Vieira, T. B. & Tejerina-Garro, F. L. Relationships between environmental conditions and fish assemblages in tropical Savanna headwater streams. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    8.Pokharel, K. K., Basnet, K. B., Majupuria, T. C. & Baniya, C. B. Correlations between fish assemblage structure and environmental variables of the Seti Gandaki River Basin, Nepal. J. Freshw. Ecol. 33, 31–43 (2018).CAS 
    Article 

    Google Scholar 
    9.Carvajal-Quintero, J. D. et al. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecol. Evol. 5, 2608–2620 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Li, J. et al. Climate and history explain the species richness peak at mid-elevation for Schizothorax fishes (Cypriniformes: Cyprinidae) distributed in the Tibetan Plateau and its adjacent regions. Glob. Ecol. Biogeogr. 18, 264–272 (2009).Article 

    Google Scholar 
    11.Fu, C., Wu, J., Chen, J., Wu, Q. & Lei, G. Freshwater fish biodiversity in the Yangtze River basin of China: Patterns, threats and conservation. Biodivers. Conserv. 12, 1649–1685 (2003).Article 

    Google Scholar 
    12.Orrego, R., Adams, S. M., Barra, R., Chiang, G. & Gavilan, J. F. Patterns of fish community composition along a river affected by agricultural and urban disturbance in south-central Chile. Hydrobiologia 620, 35–46 (2009).Article 

    Google Scholar 
    13.Nyanti, L. et al. Acidification tolerance of Barbonymus schwanenfeldii (Bleeker, 1854) and Oreochromis niloticus (Linnaeus, 1758)—Implication of fish size. AACL Bioflux 10, 746–753 (2017).
    Google Scholar 
    14.Nyanti, L. et al. Effects of water temperature, dissolved oxygen and total suspended solids on juvenile Barbonymus schwanenfeldii (Bleeker, 1854) and Oreochromis niloticus (Linnaeus, 1758). AACL Bioflux 11, 394–406 (2018).
    Google Scholar 
    15.Ling, T. Y. et al. Assessment of the water and sediment quality of tropical forest streams in upper reaches of the Baleh River, Sarawak, Malaysia, subjected to logging activities. J. Chem. 2016, 1–13 (2016).CAS 

    Google Scholar 
    16.Davies, P. & Nelson, M. Relationships between riparian buffer widths and the effects of logging on stream habitat, invertebrate community composition and fish abundance. Mar. Freshw. Res. 45, 1289–1305 (1994).Article 

    Google Scholar 
    17.Ikhwanuddin, M., Amal, M., Shohaimi, S., Hasan, H. & Jamil, N. Environmental influences on fish assemblages of the Upper Sungai Pelus, Kuala Kangsar, Perak, Malaysia. Sains Malaysiana 45, 1487–1495 (2016).CAS 

    Google Scholar 
    18.Zainuddin, Z., Jamal, P. & Akbar, I. Modeling the effect of dam construction and operation towards downstream water quality of Sg. Tawau and Batang Baleh. World J. Appl. Environ. Chem. 1, 57–66 (2012).
    Google Scholar 
    19.Nyanti, L., Ling, T. & Muan, T. Water quality of Bakun Hydroelectric Dam Reservoir, Sarawak, Malaysia, during the construction of Murum Dam. ESTEEM Acad. J. 11, 81–88 (2015).
    Google Scholar 
    20.Ling, T. Y. et al. Changes in water and sediment quality of a river being impounded and differences among functional zones of the new large tropical hydroelectric reservoir. Pol. J. Environ. Stud. 28, 4271–4285 (2019).CAS 
    Article 

    Google Scholar 
    21.Osman, N. B., Othman, H. T., Karim, R. A. & Mazlan, M. A. F. Biomass in Malaysia: Forestry-based residues. Int. J. Biomass Renew. 3, 7–14 (2014).
    Google Scholar 
    22.Inger, R. F. & Chin, P. K. Freshwater Fish of North Borneo (Natural History Publications, 2002).
    Google Scholar 
    23.Mohsin, A. K. M. & Ambak, M. A. Freshwater fishes of Peninsular Malaysia (Universiti Pertanian Malaysia, 1983).
    Google Scholar 
    24.Kottelat, M. The fishes of the inland waters of Southeast Asia: A catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bull. Zool. 27, 1–663 (2013).
    Google Scholar 
    25.Kottelat, M. Conspectus Cobitidum: An inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei). Raffles Bull. Zool. 26, 1–199 (2012).
    Google Scholar 
    26.Kottelat, M. & Tan, H. H. A synopsis of the genus Lobocheilos in Java, Sumatra and Borneo, with descriptions of six new species (Teleostei: Cyprinidae). Ichthyol. Explor. Freshw. 19, 27–58 (2008).
    Google Scholar 
    27.Froese, R. & Pauly, D. FishBase. World Wide Web electronic publication. https://www.fishbase.se/search.php (2019).28.van der Laan, R., Fricke, R. & Eschmeyer, W. N. Eschmeyer’s Catalog of Fishes: Classification. http://www.calacademy.org/scientists/catalog-of-fishes-classification/ (2020).29.Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (The University of Illinois Press, 1964).MATH 

    Google Scholar 
    30.Margalef, R. Perspectives in Ecological Theory (University of Chicago Press, 1968).
    Google Scholar 
    31.Pielou, E. C. Species diversity and pattern diversity in the study of ecological succession. J. Theor. Biol. 10, 370–383 (1966).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Ter Braak, C. J. F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).Article 

    Google Scholar 
    33.Ter Braak, C. J. F. & Verdonschot, P. F. M. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57, 255–289 (1995).Article 

    Google Scholar 
    34.Ward-Campbell, B. M. S., Beamish, F. W. H. & Kongchaiya, C. Morphological characteristics in relation to diet in five coexisting Thai fish species. J. Fish Biol. 67, 1266–1279 (2005).Article 

    Google Scholar 
    35.Beamish, F. W. H., Sa-ardrit, P. & Tongnunui, S. Habitat characteristics of the cyprinidae in small rivers in Central Thailand. Environ. Biol. Fishes 76, 237–253 (2006).Article 

    Google Scholar 
    36.Muchlisin, Z. A. & Siti Azizah, M. N. Diversity and distribution of freshwater fishes in Aceh water, northern Sumatra, Indonesia. Int. J. Zool. Res. 5, 62–79 (2009).Article 

    Google Scholar 
    37.Rashid, Z. A., Asmuni, M. & Amal, M. N. A. Fish diversity of Tembeling and Pahang rivers, Pahang, Malaysia. Check List 11, 1–6 (2015).Article 

    Google Scholar 
    38.Suvarnaraksha, A., Lek, S., Lek-Ang, S. & Jutagate, T. Fish diversity and assemblage patterns along the longitudinal gradient of a tropical river in the Indo-Burma hotspot region (Ping-Wang River Basin, Thailand). Hydrobiologia 694, 153–169 (2012).CAS 
    Article 

    Google Scholar 
    39.Kottelat, M. Conspectus cobitidum: An inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei). Raffles Bull. Zool. 26, 1–199 (2012).
    Google Scholar 
    40.Tan, H. H. The Borneo suckers. Revision of the Torrent Loaches of Borneo (Balitoridae: Gastromyzon, Neogastromyzon) (Natural History Publications, 2006).
    Google Scholar 
    41.Beamish, F. W. H., Sa-Ardrit, P. & Cheevaporn, V. Habitat and abundance of Balitoridae in small rivers of central Thailand. J. Fish Biol. 72, 2467–2484 (2008).Article 

    Google Scholar 
    42.Ahmad, A., Nek, S. A. R. T. & Ambak, M. A. Preliminary study on fish diversity of Ulu Tungud, Meliau range, Sandakan, Sabah. J. Sustain. Sci. Manag. 1, 21–26 (2006).
    Google Scholar 
    43.Odum, E. P. & Barret, G. W. Fundamental of Ecology (Cengage Learning, Inc, 2004).
    Google Scholar 
    44.Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).Book 

    Google Scholar 
    45.Au, D. W. T. et al. Chronic effects of suspended solids on gill structure, osmoregulation, growth, and triiodothyronine in juvenile green grouper Epinephelus coioides. Mar. Ecol. Prog. Ser. 266, 255–264 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Kimbell, H. S. & Morrell, L. J. Turbidity influences individual and group level responses to predation in guppies, Poecilia reticulata. Anim. Behav. 103, 179–185 (2015).Article 

    Google Scholar 
    47.Li, W. et al. Effects of turbidity and light intensity on foraging success of juvenile mandarin fish Siniperca chuatsi (Basilewsky). Environ. Biol. Fishes 96, 995–1002 (2013).Article 

    Google Scholar 
    48.Kukula, K. & Bylak, A. Synergistic impacts of sediment generation and hydrotechnical structures related to forestry on stream fish communities. Sci. Total Environ. 737, 139751 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Krause, K. P., Wu, C. L., Chu, M. L. & Knouft, J. H. Fish assemblage–environment relationships suggest differential trophic responses to heavy metal contamination. Freshw. Biol. 64, 632–642 (2019).CAS 
    Article 

    Google Scholar 
    50.Askeyev, A. et al. River fish assemblages along an elevation gradient in the eastern extremity of Europe. Environ. Biol. Fishes 100, 585–596 (2017).Article 

    Google Scholar 
    51.Zamani Faradonbe, M. & Eagderi, S. Fish assemblages as influenced by environmental factors in Taleghan River (the Caspian Sea basin, Alborz Province, Iran). Caspian J. Environ. Sci. 13, 363–371 (2015).
    Google Scholar 
    52.Bolner, K. C. S., Copatti, C. E., Rosso, F. L., Loro, V. L. & Baldisserotto, B. Water pH and metabolic parameters in silver catfish (Rhamdia quelen). Biochem. Syst. Ecol. 56, 202–208 (2014).CAS 
    Article 

    Google Scholar 
    53.Abbink, W. et al. The effect of temperature and pH on the growth and physiological response of juvenile yellowtail kingfish Seriola lalandi in recirculating aquaculture systems. Aquaculture 330–333, 130–135 (2012).Article 
    CAS 

    Google Scholar 
    54.Paller, V. G. V., Corpuz, M. N. C. & Ocampo, P. P. Diversity and distribution of freshwater fish assemblages in Tayabas River, Quezon (Philippines). Philip. J. Sci. 142, 55–67 (2013).
    Google Scholar 
    55.Jeppesen, R. et al. Effects of hypoxia on fish survival and oyster growth in a highly eutrophic estuary. Estuaries Coasts 41, 89–98 (2018).CAS 
    Article 

    Google Scholar 
    56.Rosso, J. J. & Quirós, R. Patterns in fish species composition and assemblage structure in the upper Salado river lakes, Pampa Plain, Argentina. Neotrop. Ichthyol. 8, 135–144 (2010).Article 

    Google Scholar 
    57.Batzer, D. P., Jackson, C. R. & Mosner, M. Influences of riparian logging on plants and invertebrates in small, depressional wetlands of georgia, U.S.A.. Hydrobiologia 441, 123–132 (2000).Article 

    Google Scholar 
    58.Cheimonopoulou, M. T., Bobori, D. C., Theocharopoulos, I. & Lazaridou, M. Assessing ecological water quality with macroinvertebrates and fish: A case study from a small mediterranean river. Environ. Manag. 47, 279–290 (2011).ADS 
    Article 

    Google Scholar 
    59.Roberts, T. R. The Freshwater Fishes of Western Borneo (Kalimantan Barat, Indonesia) (California Academy of Science, 1989).
    Google Scholar 
    60.Tan, H. H. & Leh, C. U. M. Three new species of Gastromyzon (Teleostei: Balitoridae) from southern Sarawak. Zootaxa 19, 1–19 (2006).
    Google Scholar 
    61.Tan, H. H. & Martin-Smith, K. M. Two new species of Gastromyzon (Teleostei: Balitoridae) from the Kuamut headwaters, Kinabatangan basin, Sabah, Malaysia. Raffles Bull. Zool. 46, 361–371 (1998).
    Google Scholar  More

  • in

    Identities, concentrations, and sources of pesticide exposure in pollen collected by managed bees during blueberry pollination

    Active ingredients detected in bee collected pollenAll 188 pollen samples had at least 12 active ingredients detected in each sample, with a maximum of 31 AIs and an average of 22.0 ± 0.3 per sample. Over both years, 80 of the 259 screened pesticide active ingredients were detected in the pollen. These included 28 fungicides, 26 insecticides, 21 herbicides, two miticides, and one rodenticide. We also detected one synthetic antioxidant and one pesticide synergist (Table S1). We detected approximately twice as many AIs in pollen collected by honey bees (68 AIs) in 2019 than in pollen collected by bumble bees (32). All AIs detected in pollen from bumble bees were also collected by honey bees in either 2018 or 2019. Honey bee collected pollen also had significantly more AIs on average detected at each site (35.0 ± 0.9 S.E. AIs per site) compared to bumble bees (18.6 ± 0.6) in 2019 (R2m = 0.73; X2 = 68.2, df = 1, p  More

  • in

    Short-term cell death in tissues of Pulsatilla vernalis seeds from natural and ex situ conserved populations

    1.Zielińska, K. M., Kiedrzynski, M., Grzyl, A. & Rewicz, A. Forest roadsides harbour less competitive habitats for a relict mountain plant (Pulsatilla vernalis) in lowlands. Sci. Rep. https://doi.org/10.1038/srep31913 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Zielińska, K. M., Kiedrzynski, M., Grzyl, A. & Tomczyk, P. P. Anthropogenic sites maintain the last individuals during the rapid decline of the lowland refugium of the alpine-arctic plant Pulsatilla vernalis (L.) Mill. Pak. J. Bot. 50, 211–215 (2018).3.Grzyl, A. & Ronikier, M. Pulsatilla vernalis (Ranunculaceae) in the Polish lowlands: Current population resources of a declining species. Pol. Bot. J. 56, 185–194 (2011).
    Google Scholar 
    4.Åström, S. & Stridh, B. The present status of Pulsatilla vernalis in Sweden. Sven. Bot. Tidskr. 97, 117–126 (2003).
    Google Scholar 
    5.Chappuis, E. Pulsatilla vernalis. The IUCN Red List of Threatened Species 2014: e.T55730086A55730098. (2014). https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T55730086A55730098.en. Downloaded on 02 December 2020 >.6.Ronikier, M. et al. Phylogeography of Pulsatilla vernalis (L.) Mill. (Ranunculaceae): Chloroplast DNA reveals two evolutionary lineages across central Europe and Scandinavia. J. Biogeogr. 35, 1650–1664. https://doi.org/10.1111/j.1365-2699.2008.01907.x (2008).7.Kiedrzyński, M., Zielińska, K. M., Kiedrzyńska, E. & Rewicz, A. Refugial debate: On small sites according to their function and capacity. Evol. Ecol. 31, 815–827. https://doi.org/10.1007/s10682-017-9913-4 (2017).Article 

    Google Scholar 
    8.Betz, C., Scheuerer, M. & Reisch, C. Population reinforcement—A glimmer of hope for the conservation of the highly endangered Spring Pasque flower (Pulsatilla vernalis). Biol. Conserv. 168, 161–167. https://doi.org/10.1016/j.biocon.2013.10.004 (2013).Article 

    Google Scholar 
    9.Nawrocka-Grześkowiak, U. & Frydel, K. Spring pasque-flower (Pulsatilla vernalis (L.) Miller) localities in the Kaliska Forest District. Zarządzanie Ochroną Przyrody w Lasach 6, 77–84 (2012).10.Gutterman, Y. In Seeds: The Ecology of Regeneration in Plant Communities (ed M. Fenner) 59–84 (CAB International, 2000).11.Luzuriaga, A. L., Escudero, A. & Perez-Garcia, F. Environmental maternal effects on seed morphology and germination in Sinapis arvensis (Cruciferae). Weed Res. 46, 163–174. https://doi.org/10.1111/j.1365-3180.2006.00496.x (2006).Article 

    Google Scholar 
    12.Rao, N. K., Dulloo, M. E. & Engels, J. M. M. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genet. Resour. Crop Evol. 64, 1061–1074. https://doi.org/10.1007/s10722-016-0425-9 (2017).CAS 
    Article 

    Google Scholar 
    13.Doniak, M., Barciszewska, M. Z., Kaźmierczak, J. & Kaźmierczak, A. The crucial elements of the ‘last step’ of programmed cell death induced by kinetin in root cortex of V. faba ssp. minor seedlings. Plant Cell Rep. 33, 2063–2076. https://doi.org/10.1007/s00299-014-1681-9 (2014).14.Doniak, M., Byczkowska, A. & Kaźmierczak, A. Kinetin-induced programmed death of cortex cells is mediated by ethylene and calcium ions in roots of Vicia faba ssp minor. Plant Growth Regul. 78, 335–343. https://doi.org/10.1007/s10725-015-0096-0 (2016).CAS 
    Article 

    Google Scholar 
    15.Doniak, M., Kaźmierczak, A., Byczkowska, A. & Glińska, S. Reactive oxygen species and sugars may be the messengers in kinetin-induced death of field bean root cortex cells. Biol. Plant. 61, 178–186. https://doi.org/10.1007/s10535-016-0654-y (2017).CAS 
    Article 

    Google Scholar 
    16.Tudela-Isanta, M. et al. Habitat-related seed germination traits in alpine habitats. Ecol. Evol. 8, 150–161. https://doi.org/10.1002/ece3.3539 (2018).Article 
    PubMed 

    Google Scholar 
    17.Baskin, J. M. & Baskin, C. C. A classification system for seed dormancy. Seed Sci. Res. 14, 1–16. https://doi.org/10.1079/ssr2003150 (2004).ADS 
    Article 

    Google Scholar 
    18.Finch-Savage, W. E. & Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 171, 501–523. https://doi.org/10.1111/j.1469-8137.2006.01787.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Latrasse, D., Benhamed, M., Bergounioux, C., Raynaud, C. & Delarue, M. Plant programmed cell death from a chromatin point of view. J. Exp. Bot. 20, 5887–5900 (2016).Article 

    Google Scholar 
    20.Baskin, J. M., Baskin, C. C. & Li, X. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol. 15, 139–152. https://doi.org/10.1046/j.1442-1984.2000.00034.x (2000).Article 

    Google Scholar 
    21.Grzyl, A. Biology and Ecology of Isolated Populations of Pulsatilla vernalis (L.) Mill. on the Eastern Limits of its RANGE in Poland. (PhD thesis. University of Lodz, Department of Geobotany and Plant Ecology, 2012).22.Grzyl, A., Kiedrzynski, M., Zielinska, K. M. & Rewicz, A. The relationship between climatic conditions and generative reproduction of a lowland population of Pulsatilla vernalis: The last breath of a relict plant or a fluctuating cycle of regeneration?. Plant Ecol. 215, 457–466. https://doi.org/10.1007/s11258-014-0316-0 (2014).Article 

    Google Scholar 
    23.Oostermeijer, J. G. B., Vaneijck, M. W. & Dennijs, J. C. M. Offspring fitness in relation to population size and genetic variation in the rare perennial plant species Gentiana pneumonanthe (Gentianaceae). Oecologia 97, 289–296. https://doi.org/10.1007/bf00317317 (1994).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Ouborg, N. J. & Vantreuren, R. Variation in fitness-related characters among small and large populations of Salvia pratensis. J. Ecol. 83, 369–380. https://doi.org/10.2307/2261591 (1995).Article 

    Google Scholar 
    25.Fischer, M. & Matthies, D. RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). Am. J. Bot. 85, 811–819. https://doi.org/10.2307/2446416 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics. (Cambridge University Press, 2002).27.Hensen, I., Oberprieler, C. & Wesche, K. Genetic structure, population size, and seed production of Pulsatilla vulgaris Mill. (Ranunculaceae) in Central Germany. Flora 200, 3–14. https://doi.org/10.1016/j.flora.2004.05.001 (2005).28.Jakobsson, A. & Eriksson, O. A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 88, 494–502. https://doi.org/10.1034/j.1600-0706.2000.880304.x (2000).Article 

    Google Scholar 
    29.Melser, C. & Klinkhamer, P. G. L. Selective seed abortion increases offspring survival in Cynoglossum officinale (Boraginaceae). Am. J. Bot. 88, 1033–1040. https://doi.org/10.2307/2657085 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Meyer, K. M., Soldaat, L. L., Auge, H. & Thulke, H. H. Adaptive and selective seed abortion reveals complex conditional decision making in plants. Am. Nat. 183, 376–383. https://doi.org/10.1086/675063 (2014).Article 
    PubMed 

    Google Scholar 
    31.Bochenková, M., Hejcman, M. & Karlík, P. Effect of plant community on recruitment of Pulsatilla pratensis in dry grassland. Sci. Agric. Bohem. 2012, 127–133. https://doi.org/10.7160/sab.2012.430402 (2012).Article 

    Google Scholar 
    32.Ghazoul, J. & Satake, A. Nonviable seed set enhances plant fitness: The sacrificial sibling hypothesis. Ecology 90, 369–377. https://doi.org/10.1890/07-1436.1 (2009).Article 
    PubMed 

    Google Scholar 
    33.Laitinen, P. The Effects of Forest Fires on the Persistence of Pulsatilla vernalis (L.) Mill. edn, (Ms. thesis, University of Jyväskylä, Faculty of Mathematics and Science, Department of Biological and Environmental Science, 2008) [in Finnish with an English abstract].34.Skalická, R., Karlík, P., Hejcman, M. & Bochenková, M. In 17th Symposium of the European Grassland Federation. 388–390.35.Arathi, H. S., Ganeshaiah, K. N., Shaanker, R. U. & Hedge, S. G. Seed abortion in Pongamia pinnata (Fabaceae). Am. J. Bot. 86, 659–662. https://doi.org/10.2307/2656574 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Brookes, R. H., Jesson, L. K. & Burd, M. A test of simultaneous resource and pollen limitation in Stylidium armeria. New Phytol. 179, 557–565. https://doi.org/10.1111/j.1469-8137.2008.02453.x (2008).Article 
    PubMed 

    Google Scholar 
    37.Yang, C. F., Sun, S. G. & Guo, Y. H. Resource limitation and pollen source (self and outcross) affecting seed production in two louseworts, Pedicularis siphonantha and P. longiflora (Orobanchaceae). Bot. J. Linn. Soc. 147, 83–89. https://doi.org/10.1111/j.1095-8339.2005.00363.x (2005).38.Cendán, C., Sampedro, L. & Zas, R. The maternal environment determines the timing of germination in Pinus pinaster. Environ. Exp. Bot. 94, 66–72. https://doi.org/10.1016/j.envexpbot.2011.11.022 (2013).Article 

    Google Scholar 
    39.Li, R. et al. Effects of cultivar and maternal environment on seed quality in Vicia sativa. Front. Plant Sci. 8. https://doi.org/10.3389/fpls.2017.01411 (2017).40.Valencia-Diaz, S. & Montaña, C. Temporal variability in the maternal environment and its effect on seed size and seed quality in Flourensia cernua DC. (Asteraceae). J. Arid Environ. 63, 686–695. https://doi.org/10.1016/j.jaridenv.2005.03.024 (2005).41.Chinnusamy, V., Gong, Z. Z. & Zhu, J. K. Abscisic acid-mediated epigenetic processes in plant development and stress responses. J. Integr. Plant Biol. 50, 1187–1195. https://doi.org/10.1111/j.1744-7909.2008.00727.x (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Butuzova, O. G. Peculiarities of seed formation in Pulsatilla vulgaris and Helleborus niger (Ranunculaceae) with embryo postdevelopment. Botanicheskii Zhurnal (St. Petersburg) 103, 313—330 (2018) [in Russian].43.Duncan, C., Schultz, N., Lewandrowski, W., Good, M. K. & Cook, S. Lower dormancy with rapid germination is an important strategy for seeds in an arid zone with unpredictable rainfall. PLoS ONE 14. https://doi.org/10.1371/journal.pone.0218421 (2019).44.Gremer, J. R., Kimball, S. & Venable, D. L. Within and among year germination in Sonoran Desert winter annuals: bet hedging and predictive germination in a variable environment. Ecol. Lett. 19, 1209–1218. https://doi.org/10.1111/ele.12655 (2016).Article 
    PubMed 

    Google Scholar 
    45.Venable, D. L. Bet hedging in a guild of desert annuals. Ecology 88, 1086–1090. https://doi.org/10.1890/06-1495 (2007).Article 
    PubMed 

    Google Scholar 
    46.Evans, M. E. K. & Dennehy, J. J. Germ banking: Bet-hedging and variable release from egg and seed dormancy. Q. R. Biol. 80, 431–451. https://doi.org/10.1086/498282 (2005).Article 

    Google Scholar 
    47.Goldberg, R. B., de Paiva, G. & Yadegari, R. Plant embryogenesis – zygote to seed. Science 266, 605–614. https://doi.org/10.1126/science.266.5185.605 (1994).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Lester, R. N. & Kang, J. H. Embryo and endosperm function and failure in Solanum species and hybrids. Ann. Bot. 82, 445–453. https://doi.org/10.1006/anbo.1998.0695 (1998).Article 

    Google Scholar 
    49.Lopes, M. A. & Larkins, B. A. Endosperm origin, development, and function. Plant Cell 5, 1383–1399. https://doi.org/10.1105/tpc.5.10.1383 (1993).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Yan, D. W., Duermeyer, L., Leoveanu, C. & Nambara, E. The functions of the endosperm during seed germination. Plant Cell Physiol. 55, 1521–1533. https://doi.org/10.1093/pcp/pcu089 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Willis, C. G. et al. The evolution of seed dormancy: Environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol. 203, 300–309. https://doi.org/10.1111/nph.12782 (2014).Article 
    PubMed 

    Google Scholar 
    52.Poisot, T., Bever, J. D., Nemri, A., Thrall, P. H. & Hochberg, M. E. A conceptual framework for the evolution of ecological specialisation. Ecol. Lett. 14, 841–851. https://doi.org/10.1111/j.1461-0248.2011.01645.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Pfeifer, E., Holderegger, R., Matthies, D. & Rutishauser, R. Investigation on the population biology of a flagship species of dry meadows: Pulsatilla vulgaris Mill. in north-eastern Switzerland. Bot. Helvet. 112, 153–171 (2002).54.Gargiulo, R. et al. Conservation of the threatened species, Pulsatilla vulgaris Mill. (Pasqueflower), is aided by reproductive system and polyploidy. J. Hered. 110, 618–628. https://doi.org/10.1093/jhered/esz035 (2019).55.Seglias, A. E., Williams, E., Bilge, A. & Kramer, A. T. Phylogeny and source climate impact seed dormancy and germination of restoration-relevant forb species. PLoS ONE 13. https://doi.org/10.1371/journal.pone.0191931 (2018).56.Byczkowska, A., Kunikowska, A. & Kaźmierczak, A. Determination of ACC-induced cell-programmed death in roots of Vicia faba ssp. minor seedlings by acridine orange and ethidium bromide staining. Protoplasma 250, 121–128. https://doi.org/10.1007/s00709-012-0383-9 (2013).57.Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20. https://doi.org/10.18637/jss.v022.i04 (2007).58.Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra (2020).59.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 

    Google Scholar 
    60.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan (2019).61.Fox, F. & Weisberg, S. An {R} Companion to Applied Regression, Third Edition. (Sage, 2019). https://socialsciences.mcmaster.ca/jfox/Books/Companion/. More

  • in

    Resource–diversity relationships in bacterial communities reflect the network structure of microbial metabolism

    1.Hubbell, S. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).2.Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).Article 

    Google Scholar 
    4.Koskella, B., Hall, L. J. & Metcalf, C. J. E. The microbiome beyond the horizon of ecological and evolutionary theory. Nat. Ecol. Evol. 1, 1606–1615 (2017).PubMed 
    Article 

    Google Scholar 
    5.Flemming, H. C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Salazar, G. & Sunagawa, S. Marine microbial diversity. Curr. Biol. 27, R489–R494 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).CAS 
    Article 

    Google Scholar 
    9.Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Gude, S. et al. Bacterial coexistence driven by motility and spatial competition. Nature 578, 588–592 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Kommineni, S. et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526, 719–722 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).PubMed 
    Article 

    Google Scholar 
    17.Hoek, T. A. et al. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol. 14, e1002540 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Tilman, D. Resource Competition and Community Structure Vol. 17 (Princeton Univ. Press, 1982).20.Gause, G. F. The Struggle for Existence (Hafner Press, 1934).21.MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Levin, S. A. Community equilibria and stability, and an extension of the competitive exclusion principle. Am. Nat. 104, 413–423 (1970).Article 

    Google Scholar 
    23.Estrela, S. et al. Metabolic rules of microbial community assembly. Preprint at bioRxiv https://doi.org/10.1101/2020.03.09.984278 (2020).24.Enke, T. N. et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr. Biol. 29, 1528–1535 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Fu, H., Uchimiya, M., Gore, J. & Moran, M. A. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc. Natl Acad. Sci. USA 117, 3656–3662 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic interactions and the drivers of microbial community assembly. Curr. Biol. 30, R1176–R1188 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Enke, T. N. et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr. Biol. 29, 1528–1535.e6 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    29.Naylor, D. et al. Deconstructing the soil microbiome into reduced-complexity functional modules. mBio 11, e01349-20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.MacArthur, R. H. Geographical Ecology. Patterns in the Distribution of Species (Harper & Row, 1972) .31.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Wang, T., Goyal, A., Dubinkina, V. & Maslov, S. Evidence for a multi-level trophic organization of the human gut microbiome. PLoS Comput. Biol. 15, e1007524 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Goyal, A. & Maslov, S. Diversity, stability, and reproducibility in stochastically assembled microbial ecosystems. Phys. Rev. Lett. 120, 158102 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Marsland, R. et al. Available energy fluxes drive a transition in the diversity, stability, and functional structure of microbial communities. PLoS Comput. Biol. 15, e1006793 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Levine, J. M. & HilleRisLambers, J. The importance of niches for the maintenance of species diversity. Nature 461, 254–257 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Tromas, N. et al. Niche separation increases with genetic distance among bloom-forming Cyanobacteria. Front. Microbiol. 9, 438 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Sriswasdi, S., Yang, C. C. & Iwasaki, W. Generalist species drive microbial dispersion and evolution. Nat. Commun. 8, 1162 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Logares, R. et al. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 7, 937–948 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Monard, C., Gantner, S., Bertilsson, S., Hallin, S. & Stenlid, J. Habitat generalists and specialists in microbial communities across a terrestrial-freshwater gradient. Sci. Rep. 6, 37719 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Székely, A. J. & Langenheder, S. The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol. Ecol. 87, 102–112 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    42.Pandit, S. N., Kolasa, J. & Cottenie, K. Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework. Ecology 90, 2253–2262 (2009).PubMed 
    Article 

    Google Scholar 
    43.Muscarella, M. E., Boot, C. M., Broeckling, C. D. & Lennon, J. T. Resource heterogeneity structures aquatic bacterial communities. ISME J. 13, 2183–2195 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Roller, B. R. K., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Goldfarb, K. C. et al. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Front. Microbiol. 2, 94 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66, 1328–1333 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Rojo, F. Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol. Rev. 34, 658–684 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Mills, C. G., Allen, R. J. & Blythe, R. A. Resource spectrum engineering by specialist species can shift the specialist-generalist balance. Theor. Ecol. 13, 149–163 (2020).Article 

    Google Scholar 
    49.Bajic, D. & Sanchez, A. The ecology and evolution of microbial metabolic strategies. Curr. Opin. Biotechnol. 62, 123–128 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Basan, M. et al. A universal trade-off between growth and lag in fluctuating environments. Nature 584, 470–474 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Paczia, N. et al. Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. Microb. Cell Fact. 11, 122 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Pinu, F. R. et al. Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test. Metabolomics 14, 43 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    53.Douglas, A. E. The microbial exometabolome: ecological resource and architect of microbial communities. Phil. Trans. R. Soc. B 375, 20190250 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl Acad. Sci. USA 112, 6449–6454 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Diener, C., Gibbons, S. M. & Resendis-Antonio, O. MICOM: metagenome-scale modeling to infer metabolic interactions in the gut microbiota. mSystems 5, e00606-19 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Garza, D. R., van Verk, M. C., Huynen, M. A. & Dutilh, B. E. Towards predicting the environmental metabolome from metagenomics with a mechanistic model. Nat. Microbiol. 3, 456–460 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Pacheco, A. R., Osborne, M. L. & Segrè, D. Non-additive microbial community responses to environmental complexity. Nat Commun. 12, 2365 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Wang, X., Xia, K., Yang, X. & Tang, C. Growth strategy of microbes on mixed carbon sources. Nat. Commun. 10, 1279 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Louca, S. et al. High taxonomic variability despite stable functional structure across microbial communities. Nat. Ecol. Evol. 1, 0015 (2017).Article 

    Google Scholar 
    61.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research 5, 1492 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    Article 

    Google Scholar 
    64.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).66.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    68.Chao, A., Chiu, C. H. & Jost, L. Phylogenetic diversity measures based on Hill numbers. Phil. Trans. R. Soc. B 365, 3599–3609 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Underwood, A. J. Experiments in Ecology (Cambridge Univ. Press, 1996); https://doi.org/10.1017/cbo978051180640770.Saeedghalati, M. et al. Quantitative comparison of abundance structures of generalized communities: from B-cell receptor repertoires to microbiomes. PLoS Comput. Biol. 13, e1005362 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Goldford, J. E., Hartman, H., Smith, T. F. & Segrè, D. Remnants of an ancient metabolism without phosphate. Cell 168, 1126–1134.e9 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Raymond, J. & Segrè, D. The effect of oxygen on biochemical networks and the evolution of complex life. Science 311, 1764–1767 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Handorf, T., Ebenhoh, O. E. & Heinrich, R. Expanding metabolic networks: scopes of compounds, robustness, and evolution. J. Mol. Evol. 61, 498–512 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Ebenhoh, O., Handorf, T. & Heinrich, R. Structural analysis of expanding metabolic networks. Genome Inform. 15, 35–45 (2004).PubMed 

    Google Scholar 
    75.Orth, J. D., Thiele, I. & Palsson, B. O. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Johnson, M. et al. NCBI BLAST: a better web interface. Nucleic Acids Res. 36, 5–9 (2008).Article 
    CAS 

    Google Scholar 
    77.Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Stoddard, S. F., Smith, B. J., Hein, R., Roller, B. R. K. & Schmidt, T. M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43, D593–D598 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Douglas, G. M. et al. PICRUSt2: an improved and extensible approach for metagenome inference. Preprint at bioRxiv https://doi.org/10.1101/672295 (2019).80.Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016).81.Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2nd edn. (Springer Series in Statistics, Springer, 2009).82.Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2, 56–67 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    An example of DNA methylation as a means to quantify stress in wildlife using killer whales

    1.Schipper, J. et al. The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science 322, 225–230 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Cushman, S. A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 128, 231–240 (2006).Article 

    Google Scholar 
    3.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, 6471 (2019).Article 
    CAS 

    Google Scholar 
    4.Geary, W. L., Nimmo, D. G., Doherty, T. S., Ritchie, E. G. & Tulloch, A. I. T. Threat webs: Reframing the co-occurrence and interactions of threats to biodiversity. J. Appl. Ecol. 56, 1992–1997 (2019).
    Google Scholar 
    5.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Di Prisco, G. et al. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and Health. Proc. Natl. Acad. Sci. USA. 113, 3203–3208 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Grant, E. H. C. et al. Identifying management-relevant research priorities for responding to disease-associated amphibian declines. Glob. Ecol. Conserv. 16, 00441 (2018).
    Google Scholar 
    9.Schindler, D. W. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Can. J. Fish. Aquat. Sci. 58, 18–29 (2001).Article 

    Google Scholar 
    10.Cumulative Effects in Wildlife Management: Impact Mitigation. https://doi.org/10.1017/CBO9781107415324.004 (CRC Press, 2011). 11.Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).
    Google Scholar 
    12.Rolland, R. M., Hunt, K. E., Kraus, S. D. & Wasser, S. K. Assessing reproductive status of right whales (Eubalaena glacialis) using fecal hormone metabolites. Gen. Comp. Endocrinol. 142, 308–317 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    14.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed 
    Article 

    Google Scholar 
    15.Beal, A., Rodriguez-Casariego, J., Rivera-Casas, C., Suarez-Ulloa, V. & Eirin-Lopez, J. M. Environmental epigenomics and its applications in marine organisms. in Population Genomics: Marine Organisms (eds. Oleksiak, M. F. & Rajora, O. P.) 325–359. https://doi.org/10.1007/13836_2018_28 (Springer, 2018). 16.Eirin-Lopez, J. M. & Putnam, H. M. Marine environmental epigenetics. Ann. Rev. Mar. Sci. 11, 335–368 (2019).PubMed 
    Article 

    Google Scholar 
    17.Laird, P. W. The power and the promise of DNA methylation markers. Nat. Rev. Cancer 3, 253–266 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Bird, A. P. CpG-rich islands and the function of DNA methylation. Nature 321, 209–213 (1986).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Matosin, N., Cruceanu, C. & Binder, E. B. Preclinical and clinical evidence of DNA methylation changes in response to trauma and chronic stress. Chronic Stress 1, 247054701771076 (2017).Article 

    Google Scholar 
    21.Radtke, K. M. et al. Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Transl. Psychiatry 1, e21–e26 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Mueller, B. R. & Bale, T. L. Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci. 28, 9055–9065 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Elliott, E., Ezra-Nevo, G., Regev, L., Neufeld-Cohen, A. & Chen, A. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat. Neurosci. 13, 1351–1353 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Boersma, G. J. et al. Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics 9, 437–447 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Turecki, G. & Meaney, M. J. Effects of the social environment and stress on glucocorticoid receptor gene methylation: A systematic review. Biol. Psychiatry 79, 87–96 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Sterrenburg, L. et al. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat. PLoS ONE 6, 1–14 (2011).Article 
    CAS 

    Google Scholar 
    27.Reeder, D. A. M. & Kramer, K. M. Stress in free-ranging mammals: Integrating physiology, ecology, and natural history. J. Mammal. 86, 225–235 (2005).Article 

    Google Scholar 
    28.Jeanneteau, F. D. et al. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc. Natl. Acad. Sci. USA. 109, 1305–1310 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Smith, S. M. & Vale, W. W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 8, 383–395 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Turner, J. D. & Muller, C. P. Structure of the glucocorticoid receptor (NR3C1) gene 5′ untranslated region: Identification, and tissue distribution of multiple new human exon 1. J. Mol. Endocrinol. 35, 283–292 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Bakusic, J., Schaufeli, W., Claes, S. & Godderis, L. Stress, burnout and depression: A systematic review on DNA methylation mechanisms. J. Psychosom. Res. 92, 34–44 (2017).PubMed 
    Article 

    Google Scholar 
    32.Center for Whale Research. Population. https://www.whaleresearch.com. Accessed 11 Jan 2021 (2020).33.Fisheries and Oceans Canada. Recovery Strategy for the Northern and Southern Resident Killer Whales (Orcinus orca) in Canada [Proposed]. Species at Risk Act Recovery Strategy Series, Fisheries & Oceans Canada, Ottawa, x + 84 pp.(2018).34.DFO. Population Status Update for the Northern Resident Killer Whale (Orcinus orca) in 2018. DFO Can. Sci. Advis. Sec. Sci. Resp. 2019/025. (2019).35.Bigg, M. A., Olesiuk, P. F., Ellis, G. M., Ford, J. K. B. & Balcomb, K. C. Social organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Reports Int. Whal. Comm. 12, 383–405 (1990).
    Google Scholar 
    36.Ford, J. K. B. & Ellis, G. M. Selective foraging by fish-eating killer whales Orcinus orca in British Columbia. Mar. Ecol. Prog. Ser. 316, 185–199 (2006).ADS 
    Article 

    Google Scholar 
    37.Chen, I.-H. et al. Selection of reference genes for RT-qPCR studies in blood of beluga whales (Delphinapterus leucas). PeerJ 4, e1810 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Hoelzel, A. R., Dahlheim, M. E. & Stern, S. J. Low genetic variation among killer whales (Orcinus orca) in the eastern north Pacific and genetic differentiation between foraging specialists. J. Hered. 89, 121–128 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Yao, M., Stenzel-Poore, M. & Denver, R. J. Structural and functional conservation of vertebrate corticotropin- releasing factor genes: Evidence for a critical role for a conserved cyclic AMP response element. Endocrinology 148, 2518–2531 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Aguiniga, L. M., Yang, W., Yaggie, R. E., Schaeffer, A. J. & Klumpp, D. J. Acyloxyacyl hydrolase modulates depressive-like behaviors through aryl hydrocarbon receptor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 317, R289–R300 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Hankinson, O. The aryl hydrocarbon receptor complex. Annu. Rev. Pharmacol. Toxicol. 35, 307–340 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Lundin, J. I. et al. Pre-oil spill baseline profiling for contaminants in Southern Resident killer whale fecal samples indicates possible exposure to vessel exhaust. Mar. Pollut. Bull. 136, 448–453 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.MacDonald, L. H. Evaluating and managing cumulative effects: Process and constraints. Environ. Manag. 26, 299–315 (2000).CAS 
    Article 

    Google Scholar 
    45.National Academies of Sciences Engineering and Medicine. Approaches to Understanding the Cumulative Effects of Stressors on Marine Mammals. https://doi.org/10.17226/23479 (National Academies Press, 2017). 46.Barrett-Lennard, L. G., Smith, T. G. & Ellis, G. M. A cetacean biopsy system using lightweight pneumatic darts, and its effect on the behavior of killer whales. Mar. Mammal Sci. 12, 14–27 (1996).Article 

    Google Scholar 
    47.Sambrook, J., Fritsch, E. F. & Maniatis, H. Molecular Cloning: A Laboratory Manual (Cold Springs Harbor Laboratory Press, 1989).
    Google Scholar 
    48.Illumina. 16S Metagenomic Sequencing Library Preparation. Illumina.com 1–28 (2013).49.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.j 17, 10–12 (2011).Article 

    Google Scholar 
    50.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Diversity of MHC IIB genes and parasitism in hybrids of evolutionarily divergent cyprinoid species indicate heterosis advantage

    1.Arnold, M. L. Natural Hybridization and Evolution (Oxford University Press, 1997).
    Google Scholar 
    2.Stelkens, R. & Seehausen, O. Genetic distance between species predicts novel trait expression in their hybrids. Evolution 63, 884–897 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Grant, P. R. & Grant, B. R. Hybridization of bird species. Science 256, 193–197 (1992).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Saino, N. & Villa, S. Pair composition and reproductive success across a hybrid zone of carrion crows and hooded crows. Auk 109, 543–555 (1992).
    Google Scholar 
    5.Good, T. P., Ellis, J. C., Annett, C. A. & Pierotti, R. Bounded hybrid superiority in an avian hybrid zone: effects of mate, diet, and habitat choice. Evolution 54, 1774–1783 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Bartley, D. M., Rana, K. & Immink, A. J. The use of inter-specific hybrids in aquaculture and fisheries. Rev. Fish Biol. Fisher. 10, 325–337 (2001).Article 

    Google Scholar 
    7.Rosenfield, J. A., Nolasco, S., Lindauer, S., Sandoval, C. & Kodric-Brown, A. The role of hybrid vigor in the replacement of Pecos pupfish by its hybrids with sheepshead minnow. Conserv. Biol. 18, 1589–1598 (2004).Article 

    Google Scholar 
    8.Sun, Y. et al. Comparative transcriptomic study of muscle provides new insights into the growth superiority of a novel grouper hybrid. PLoS ONE 11, e0168802 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Scribner, K. T., Page, K. S. & Bartron, M. L. Hybridization in freshwater fishes: A review of case studies and cytonuclear methods of biological inference. Rev. Fish Biol. Fisher. 10, 293–323 (2001).Article 

    Google Scholar 
    10.Ottová, E. et al. Evolution and trans-species polymorphism of MHC class IIB genes in cyprinid fish. Fish Shellfish Immun. 18, 199–222 (2005).Article 
    CAS 

    Google Scholar 
    11.Šimková, A. et al. Does invasive Chondrostoma nasus shift the parasite community structure of endemic Parachondrostoma toxostoma in sympatric zones?. Parasite. Vector. 5, 200 (2012).Article 

    Google Scholar 
    12.Klein, J. & OhUigin, C. MHC polymorphism and parasites. Philos. Trans. R. Soc. Lond. B Biol. Sci. 346, 351–358 (1994).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Klein, J., Klein, D., Figueroa, F., OhUigin, C. & Sato, A. Major histocompatibility complex genes in the study of fish phylogeny. In Molecular Systematic of Fishes (eds Kocher, T. D. & Stepien, C. A.) 271–283 (Academic Press, 1997).Chapter 

    Google Scholar 
    14.Hughes, A. L. & Nei, M. Nucleotide substitution at major histocompatibility complex class II loci: Evidence for overdominant selection. Proc. Nat. Acad. Sci. USA 56, 958–962 (1989).ADS 
    Article 

    Google Scholar 
    15.Klein, J. & OhUigin, C. Composite origin of major histocompatibility complex genes. Curr. Opin. Genet. Dev. 3, 923–930 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Hughes, A. L. & Nei, M. Models of host-parasite interactions and MHC polymorphism. Genetics 132, 863–864 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Klein, J. Of HLA, tryps, and selection? An essay on coevolution of MHC and parasites. Hum. Immunol. 30, 247–258 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Hughes, A. L., Hughes, M. K., Howell, C. Y. & Nei, M. Natural selection at the class II major histocompatibility complex loci of mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 346, 359–367 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Hedrick, P. W. Pathogen resistence and genetic variation at MHC loci. Evolution 56, 1902–1908 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Nowak, M. A., Tarczy-Hornoch, K. & Austyn, J. M. The optimal number of major histocompatibility complex molecules in an individual. Proc. Nat. Acad. Sci. U.S.A. 89, 10896–10899 (1992).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Wegner, K. M., Reusch, T. B. H. & Kalbe, M. Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J. Evol. Biol. 16, 224–232 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Eizaguirre, C., Lenz, T. L., Traulsen, A. & Milinski, M. Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes. Ecol. Lett. 12, 5–12 (2009).PubMed 
    Article 

    Google Scholar 
    23.Nadachowska-Brzyska, K., Zielinski, P., Radwan, J. & Babiks, W. Interspecific hybridization increases MHC class II diversity in two sister species of newts. Mol. Ecol. 21, 887–906 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Wegner, K. M. & Eizaguirre, C. New(t)s and views from hybridizing MHC genes: Introgression rather than trans-species polymorphism may shape allelic repertoires. Mol. Ecol. 21, 779–781 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Dudek, K., Gaczorek, T. S., Zielinski, P. & Babik, W. Massive introgression of major histocompatibility complex (MHC) genes in newt hybrid zones. Mol. Ecol. 28, 4798–4810 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Šimková, A., Civáňová, K., Gettová, L. & Gilles, A. Genomic porosity between invasive Chondrostoma nasus and endangered endemic Parachondrostoma toxostoma (Cyprinidae): The evolution of MHC IIB genes. PLoS ONE 8, e65883 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Zhang, S., Wang, Z. & Wang, H. Maternal immunity in fish. Dev. Comp. Immunol. 39, 72–78 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    28.Šimková, A., Vojtek, L., Halačka, K., Hyršl, P. & Vetešník, L. The effect of hybridization on fish physiology, immunity and blood biochemistry: A case study in hybridizing Cyprinus carpio and Carassius gibelio (Cyprinidae). Aquaculture 435, 381–389 (2015).Article 
    CAS 

    Google Scholar 
    29.Cowx, I. G. The biology of bream, Abramis brama (L), and its natural hybrid with roach, Rutilus rutilus (L), in the River Exe. J. Fish Biol. 22, 631–646 (1983).Article 

    Google Scholar 
    30.Economidis, P. S. & Wheeler, A. Hybrids of Abramis brama with Scardinius erythrophthalmus and Rutilus rutilus from Lake Volvi, Macedonia, Greece. J. Fish Biol. 35, 295–299 (1989).Article 

    Google Scholar 
    31.Toscano, B. J. et al. An ecomorphological framework for the coexistence of two cyprinid fish and their hybrids in a novel environment. Biol. J. Linn. Soc. 99, 768–783 (2010).Article 

    Google Scholar 
    32.Hayden, B. et al. Hybridisation between two cyprinid fishes in a novel habitat: Genetics, morphology and life-history traits. BMC Evol. Biol. 10, 169 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Kuparinen, A., Vinni, M., Teacher, A. G. F., Kähkönen, K. & Merilä, J. Mechanism of hybridization between bream Abramis brama and roach Rutilus rutilus in their native range. J. Fish Biol. 84, 237–242 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Konopinski, M. K. & Amirowicz, A. Genetic composition of a population of natural common bream Abramis brama x roach Rutilus rutilus hybrids and their morphological characteristics in comparison with parent species. J. Fish Biol. 92, 365–385 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Krasnovyd, V., Vetešník, L., Gettová, L., Civáňová, K. & Šimková, A. Patterns of parasite distribution in the hybrids of non-congeneric cyprinid fish species: Is asymmetry in parasite infection the result of limited coadaptation?. Int. J. Parasitol. 47, 471–483 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Hayden, B. et al. Trophic dynamics within a hybrid zone—interactions between an abundant cyprinid hybrid and sympatric parental species. Freshwater Biol. 56, 1723–1735 (2011).Article 

    Google Scholar 
    37.Nzau Matondo, B. et al. Hybridization success of three common European cyprinid species, Rutilus rutilus, Blicca bjoerkna and Abramis brama and larval resistance to stress tests. Fish. Sci. 73, 1137–1146 (2007).Article 
    CAS 

    Google Scholar 
    38.Hayden, B., McLoone, P., Coyne, J. & Caffrey, J. M. Extensive hybridization between roach, Rutilus rutilus L., and common bream, Abramis brama L. Irish lakes and rivers. Biol. Environ. 114B, 35–39 (2014).
    Google Scholar 
    39.Eizaguirre, C. et al. Parasite diversity, patterns of MHC II variation and olfactory based mate choice in diverging threespined stickleback ecotypes. Evol. Ecol. 25, 605–622 (2011).Article 

    Google Scholar 
    40.Hubbs, C. L. Hybridization between fish species in nature. Syst. Zool. 4, 1–20 (1955).Article 

    Google Scholar 
    41.Rauch, G., Kalbe, M. & Reusch, T. B. H. Relative importance of MHC and genetic background for parasite load in a field experiment. Evol. Ecol. Res. 8, 373–386 (2006).
    Google Scholar 
    42.Eizaguirre, C., Lenz, T. L., Kalbe, M. & Milinski, M. Divergent selection on locally adapted major histocompatibility complex immune genes experimentally proven in the field. Ecol. Lett. 15, 723–731 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Šimková, A., Dávidová, M., Papoušek, I. & Vetešník, L. Does interspecies hybridization affect the host specificity of parasites in cyprinid fish?. Parasite. Vector. 6, 95 (2013).Article 

    Google Scholar 
    44.Seifertová, M., Jarkovský, J. & Šimková, A. Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)?. Parasitol. Res. 115, 1401–1415 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Nzau Matondo, B., Ovidio, M., Philippart, J. C. & Poncin, P. Reproductive behaviour and sexual production in the first-generation hybrids of roach Rutilus rutilus L. × common bream Abramis brama L. J. Appl. Ichthyol. 27, 859–867 (2011).Article 

    Google Scholar 
    46.Graser, R., OhUigin, C., Vincek, V., Meyer, A. & Klein, J. Trans-species polymorphism of class II Mhc loci in danio fishes. Immunogenetics 44, 36–48 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Figueroa, F. et al. MHC class IIB gene evolution in East African cichlid fishes. Immunogenetics 51, 556–575 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Migalska, M., Sebastian, A. & Radwan, J. Major histocompatibility complex class I diversity limits the repertoire of T cell
    receptors.Proc. Natl. Acad. Sci. USA 116, 5021–5026 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Šimková, A., Košař, M., Vetešník, L. & Vyskočilová, M. MHC genes and parasitism in Carassius gibelio, a diploid-triploid fish species with dual reproduction strategies. BMC Evol. Biol. 13, 122 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Borghans, J. A. M., Beltman, J. B. & De Boer, J. B. MHC polymorphism under host-pathogen coevolution. Immunogenetics 55, 732–739 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Ejsmond, M. J. & Radwan, J. Red queen processes drive positive selection on major histocompatibility complex (MHC) genes. PLoS Comput. Biol. 11, e1004627 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Phillips, K. P. et al. Immunogenetic novelty confers a selective advantage in host-pathogen coevolution. Proc. Natl. Acad. Sci. USA 115, 1552–1557 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Gaigher, A., Burri, R., San-Jose, L. M., Roulin, A. & Fumagalli, L. Lack of statistical power as a major limitation in understanding MHC-mediated immunocompetence in wild vertebrate populations. Mol. Ecol. 28, 5115–5132 (2019).PubMed 
    Article 

    Google Scholar 
    54.Šimková, A., Ottová, E. & Morand, S. MHC variability, life-traits and parasite diversity of European cyprinid fish. Evol. Ecol. 20, 465–477 (2006).Article 

    Google Scholar 
    55.Clarke, B. & Kirby, D. R. S. Maintenance of histocompatibility polymorphisms. Nature 211, 999–1000 (1966).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Meglécz, E. et al. SESAME (SEquence Sorter & AMplicon Explorer): Genotyping based on high throughput multiplex amplicon sequencing. Bioinformatics 27, 277–278 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    57.Zagalska-Neubauer, M. et al. 454 sequencing reveals extreme complexity of the class II major histocompatibility complex in the collared flycatcher. BMC Evol. Biol. 10, 395 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Van Erp, S. H. M., Egberts, E. & Stet, R. J. M. Characterization of class II A and B genes in a gynogenetic carp clone. Immunogenetics 44, 192–202 (1996).PubMed 
    Article 

    Google Scholar 
    59.Šimková, A. Major histocompatibility complex genes and parasites in cyprinid fish. Vie Milieu 67, 139–148 (2017).
    Google Scholar 
    60.Klein, J. et al. Nomenclature for the major histocompatibility complexes of different species: A proposal. Immunogenetics 31, 217–219 (1990).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Dixon, B., Nagelkerke, L. A. J., Sibbing, F. A., Egberts, E. & Stet, R. J. M. Evolution of MHC class II beta chain-encoding genes in the Lake Tana barbel species flock (Barbus intermedius complex). Immunogenetics 44, 419–431 (1996).CAS 
    PubMed 

    Google Scholar 
    62.Rakus, K. L. et al. Major histocompatibility (MH) class IIB gene polymorphism influences disease resistance of common carp (Cyprinus carpio L). Aquaculture 288, 44–50 (2009).CAS 
    Article 

    Google Scholar 
    63.Seifertová, M. & Šimková, A. Structure, diversity and evolutionary patterns of expressed MHC class IIB genes in chub (Squalius cephalus), a cyprinid fish species from Europe. Immunogenetics 63, 167–181 (2011).PubMed 
    Article 

    Google Scholar 
    64.Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Darriba, D., Taboala, G. L., Doallo, R. & Posada, D. J. ModelTest2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Yang, Z. H. PAML4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Doledec, S. & Chessel, D. Co-inertia analysis—an alternative method for studying species environment relationships. Freshwater Biol. 31, 277–294 (1994).Article 

    Google Scholar 
    68.Dray, S., Chessel, D. & Thioulouse, J. Co-inertia analysis and the linking of ecological data tables. Ecology 84, 3078–3089 (2003).Article 

    Google Scholar 
    69.Deter, J. et al. Association between the DQA MHC class II gene and puumala virus infection in Myodes glareolus, the bank vole. Infect. Genet. Evol. 8, 450–458 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Evans, M. L. & Neff, B. D. Major histocompatibility complex heterozygote advantage and widespread bacterial infections in populations of Chinook salmon (Oncorhynchus tshawytscha). Mol. Ecol. 18, 4716–4729 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Zuur, A. et al. Mixed Effects Models and Extensions in Ecology With R (Springer, 2009).MATH 
    Book 

    Google Scholar 
    72.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    73.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/(2018).74.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    75.Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.15.1. http://CRAN.R-project.org/package=MuMIn (2018).76.Thioulouse, J. & Dray, S. Interactive multivariate data analysis in R with the ade4 and ade4tkgui packages. J. Stat. Softw. 22, 1–14 (2007).Article 

    Google Scholar  More

  • in

    Field measurements of a massive Porites coral at Goolboodi (Orpheus Island), Great Barrier Reef

    The location, diameter, height and circumference of the coral were measured (Table 1, Fig. 2). The Porites was brown to cream in colour and hemispherical in shape (Fig. 2). It was identified as either Porites lutea (Hump or Pore coral) or P. lobata (Lobe coral)14.The primary habitat on the Porites was live coral (70%), followed by sponge, live coral rock and a small amount of macroalgae (Table 2). No recently dead coral, coral rubble or sand was recorded (Table 2). We observed competition between the Porites and other species of coral and invertebrate including encrusting sponge, plating and branching Acropora spp., Montipora, Chlorodesmis, soft coral and zoanthids (Table 2, Figs. 3, 4).Table 2 Reef Health Impact Survey (RHIS) of habitat and species categories on Porites sp.Full size tableFigure 3Detail of the sub-habitats and competitive interactions Porites sp. and boring sponge Cliona viridis (left) and live coral Porites sp. and Montipora sp. (right) along interspecific contact zones.Full size imageFigure 4Detail of Reef Health Impact Survey (RHIS) of Porites.Full size imageThe boring sponge, Cliona viridis, is abundant on the Great Barrier Reef15. It is a common bioeroding species advancing laterally at around 1 cm and to a depth of 1.2 cm per annum15. Abundance of Cliona viridis is often correlated to substrate availability and water energy with the greatest abundance often on the windward side of bommies15. This correlates to our observations as the large proportion of the substrate estimated to cover the bommie (15%) was on the windward side. The sponge’s advances will likely continue to compromise the colony size and health.We recorded marine debris at the base of the Porites. The debris was 2–3 m of rope that appeared to have been wrapped around the base of an adjacent coral. Adjacent to the bommie were three concrete blocks.How big is the Porites coral at Goolboodi compared to other big corals in the GBR, and the world? Potts et al.6 reported a very large, rounded Porites colony, 6.9 m in diameter which is 3.1 m smaller than this study. Lough et al.16 reported coral cores from colonies between 1.6–8.0 m in height with the largest corals of 6.0 m at Havannah, North Molle and Masthead Islands, 7.5 m at Abraham Reef and 8.0 m at Sanctuary Reef. Recognising the limitations of published data, the Porites coral at Goolboodi is the largest diameter coral that has been measured, and the 6th tallest in the GBR. It is unknown if the other corals are still alive or dead.Other comparatively large massive Porites have previously been located throughout the Pacific. These have included multiple bommies measuring more than 10 m4 and one exceptionally large colony observed measuring 17 m × 12 m in American Samoa17. Additionally, large Porites sp. bommies have been observed at Green Island, 30 km east of Taiwan18 as well as an 11 m diameter Porites australiensis at Sesoko Island, Okinawa, Japan19.How old is this massive Porites? In discussions with the Australian Institute of Marine Science (AIMS), there is a robust, linear relationship ( > 80% variance explained) between Porites average linear extension rate and average annual sea surface temperature (SST)20,21 that provides an estimate of colony age from its height. Using average annual SST at 18.5S, 146.5E of 26.12C (from HadiSST data set), the estimated linear extension rate is determined by (2.97 × 26.12) − 65.46 = 1.21 cm/year. Given the colony height of 5.1–5.3 m, this gives an estimated age of 421–438 years. This is well before European exploration and settlement of Australia. AIMS has investigated over 328 colonies of massive Porites corals from 69 reefs along the GBR and has aged them as being from 10–436 years21. AIMS has not investigated this coral (pers. comm Neal Cantin). Based on limitations of published data, the Porites coral at Goolboodi is one of the oldest corals on the GBR.Why is the Porites partially dead on top and living on the side? The proportion of live coral tissue on a colony reflects the cumulative, integrated effect of both beneficial and adverse environmental factors. Substantial portions of coral tissue can die from exposure to sun at low tides or warm water without lethal consequences to the colony as a whole10. Partial mortality of large bommies provides available real estate for opportunistic, fast growing sessile organisms. In this instance, multiple species of tabulate and branching Acropora sp., encrusting Montipora sp. and encrusting sponges are among the benthic organisms to have colonised 30% of the coral bommies’ surface area. Intraspecific competition is also evident from the skeletal barriers created along contact zones22 (Fig. 3). There was no observation of disease or coral bleaching.The Porites is located in a relatively remote, rarely visited and highly protected Marine National Park (green) zone. Its location had not been previously reported and there is no existing database for significant corals in Australia or globally. Cataloguing the location of massive and long-lived corals can have multiple benefits. Scientific benefits include geochemical and isotopic analyses in coral skeletal cores which can help understand century-scale changes in oceanographic events and can be used to verify climate models. Social and economic benefits can include diving tourism, citizen science23 culture and stewardship. Perhaps the Significant Trees Register, which was designed by the National Trust24 to protect and celebrate Australia’s heritage could be considered as a model. There are risks of cataloguing the location of massive corals. It could be damaged by direct and indirect human uses including anchoring, research and pollution.Indigenous languages are an integral part of Indigenous culture, spirituality, and connection to country. We consulted Manbarra Traditional Owners about protocol and an appropriate cultural name for the Porites and they considered: Big (Muga), Home (Wanga), Coral reef (Muugar), Coral (Dhambi), Old (Anki, Gurgu), Old man (Gulula) and Old person (Gurgurbu)25. The recommendation by Manbarra Traditional Owners is that the Porites is named as Muga dhambi (Big coral). The feedback from the process of consultation was very positive with acknowledgement of the respect that the scientists have demonstrated to acknowledge Traditional Owners in this way.The large Porites coral at Goolboodi (Orpheus) Island is unusually rare and resilient. It has survived coral bleaching, invasive species, cyclones, severely low tides and human activities for almost 500 years. In an attempt to contextualise the resilience of these individual Porites we have reviewed major historic disturbances such as coral bleaching which has occurred since at least 1575 and potentially 99 bleaching events in the GBR over the past 400 plus years26. Other indicators such as high-density ‘stress bands’ were recorded from 1877 and are significantly more frequent in the late twentieth and early twenty-first centuries in accordance with rising temperatures from anthropogenic global warming27. In addition there have been an average of 1–2 tropical cyclones per decade (40–80 in total) that have potentially impacted the coral adjacent to Goolboodi Island28,29; 46 tropical cyclones impacted the area between Ingham and Townsville from 1858 to 200830. The cumulative impact of almost 100 bleaching events and up to 80 major cyclones over a period of four centuries, plus declining nearshore water quality contextualise the high resilience of this Porites coral. Looking to the future there is real concern for corals in the GBR due to many impacts including climate change, declining water quality, overfishing and coastal development31,32. This field note provides important geospatial, environmental, and cultural information of a rare coral that can be monitored, appreciated, potentially restored and hopefully inspire future generations to care more for our reefs and culture. More