More stories

  • in

    Nonlinear shifts in infectious rust disease due to climate change

    1.Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine Biota. Science 296, 2158–2162 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Gautam, H. R., Bhardwaj, M. L. & Kumar, R. Climate change and its impact on plant diseases. Curr. Sci. 105, 1685–1691 (2013).
    Google Scholar 
    3.Bebber, D. P. & Gurr, S. J. Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet. Biol. 74, 62–64 (2015).PubMed 
    Article 

    Google Scholar 
    4.Lukanda, M. et al. First report of maize chlorotic mottle virus infecting maize in the Democratic Republic of the Congo. Plant Dis. 98, 1448–1448 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Brasier, C. M. in The Elms: Breeding,Conservation, and Disease Management (ed. Dunn, C. P.) 61–72 (Springer US, 2000). https://doi.org/10.1007/978-1-4615-4507-1_4.6.Boyd, I. L., Freer-Smith, P. H., Gilligan, C. A. & Godfray, H. C. J. The consequence of tree pests and diseases for ecosystem services. Science 342, 1235773 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Geometry and evolution of the ecological niche in plant-associated microbes. Nat. Commun. 11, 2955 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Donald, F., Green, S., Searle, K., Cunniffe, N. J. & Purse, B. V. Small scale variability in soil moisture drives infection of vulnerable juniper populations by invasive forest pathogen. Ecol. Manag. 473, 118324 (2020).Article 

    Google Scholar 
    9.Sturrock, R. N. et al. Climate change and forest diseases. Plant Pathol. 60, 133–149 (2011).Article 

    Google Scholar 
    10.Pathak, R., Singh, S. K., Tak, A. & Gehlot, P. Impact of climate change on host, pathogen and plant disease adaptation regime: a review. Biosci. Biotechnol. Res. Asia 15, 529–540 (2018).Article 

    Google Scholar 
    11.Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009).PubMed 
    Article 

    Google Scholar 
    12.Ghelardini, L., Pepori, A. L., Luchi, N., Capretti, P. & Santini, A. Drivers of emerging fungal diseases of forest trees. Ecol. Manag. 381, 235–246 (2016).Article 

    Google Scholar 
    13.Wyka, S. A. et al. Emergence of white pine needle damage in the northeastern United States is associated with changes in pathogen pressure in response to climate change. Glob. Change Biol. 23, 394–405 (2017).ADS 
    Article 

    Google Scholar 
    14.Garrett, K. A. et al. in Climate Change 2nd edn (ed. Letcher, T. M.) 325–338 (Elsevier, 2016). https://doi.org/10.1016/B978-0-444-63524-2.00021-X.15.Bebber, D. P. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53, 335–356 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).ADS 
    Article 

    Google Scholar 
    17.Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2013).PubMed 
    Article 

    Google Scholar 
    19.Huey, R. B. & Berrigan, D. Temperature, demography, and ectotherm fitness. Am. Nat. 158, 204–210 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Integr. Comp. Biol. 19, 357–366 (1979).
    Google Scholar 
    21.Rohr, J. R. et al. Frontiers in climate change—disease research. Trends Ecol. Evol. 26, 270–277 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Peterson, A. T. Shifting suitability for malaria vectors across Africa with warming climates. BMC Infect. Dis. 9, 59 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Garamszegi, L. Z. Climate change increases the risk of malaria in birds. Glob. Change Biol. 17, 1751–1759 (2011).ADS 
    Article 

    Google Scholar 
    24.Cook, B. I., Mankin, J. S. & Anchukaitis, K. J. Climate change and drought: from past to future. Curr. Clim. Change Rep. 4, 164–179 (2018).Article 

    Google Scholar 
    25.Desprez-Loustau, M.-L., Marçais, B., Nageleisen, L.-M., Piou, D. & Vannini, A. Interactive effects of drought and pathogens in forest trees. Ann. Sci. 63, 597–612 (2006).Article 

    Google Scholar 
    26.Brodribb, T. J. & McAdam, S. A. M. Passive origins of stomatal control in vascular plants. Science 331, 582–585 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Jactel, H. et al. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob. Change Biol. 18, 267–276 (2012).ADS 
    Article 

    Google Scholar 
    28.Baptista-Rosas, R. C. et al. Molecular detection of Coccidioides spp. from environmental samples in Baja California: linking Valley Fever to soil and climate conditions. Fungal Ecol. 5, 177–190 (2012).Article 

    Google Scholar 
    29.Cohen, J. M. et al. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecol. Lett. 20, 184–193 (2017).PubMed 
    Article 

    Google Scholar 
    30.Mcelrone, A. J., Reid, C. D., Hoye, K. A., Hart, E. & Jackson, R. B. Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Glob. Change Biol. 11, 1828–1836 (2005).ADS 
    Article 

    Google Scholar 
    31.Berzitis, E. A., Minigan, J. N., Hallett, R. H. & Newman, J. A. Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata). Glob. Change Biol. 20, 2778–2792 (2014).ADS 
    Article 

    Google Scholar 
    32.Bebber, D. P. & Gurr, S. J. Biotic interactions and climate in species distribution modelling. bioRxiv 520320 https://doi.org/10.1101/520320 (2019).33.Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542–544 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Morgan, E. R., Milner-Gulland, E. J., Torgerson, P. R. & Medley, G. F. Ruminating on complexity: macroparasites of wildlife and livestock. Trends Ecol. Evol. 19, 181–188 (2004).PubMed 
    Article 

    Google Scholar 
    35.Paull, S. H., LaFonte, B. E. & Johnson, P. T. J. Temperature-driven shifts in a host-parasite interaction drive nonlinear changes in disease risk. Glob. Change Biol. 18, 3558–3567 (2012).ADS 
    Article 

    Google Scholar 
    36.Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).Article 

    Google Scholar 
    37.Bebber, D. P. Climate change effects on Black Sigatoka disease of banana. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20180269 (2019).Article 

    Google Scholar 
    38.Soberón, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. https://doi.org/10.17161/bi.v2i0.4 (2005).39.Garrett, K. A. et al. Complexity in climate-change impacts: an analytical framework for effects mediated by plant disease. Plant Pathol. 60, 15–30 (2011).Article 

    Google Scholar 
    40.Scherm, H. Climate change: can we predict the impacts on plant pathology and pest management? Can. J. Plant Pathol. 26, 267–273 (2004).Article 

    Google Scholar 
    41.Simler-Williamson, A. B., Rizzo, D. M. & Cobb, R. C. Interacting effects of global change on forest pest and pathogen dynamics. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110218-024934 (2019).42.Campbell, E. M. & Antos, J. A. Distribution and severity of white pine blister rust and mountain pine beetle on whitebark pine in British Columbia. Can. J. Res. 30, 1051–1059 (2000).Article 

    Google Scholar 
    43.Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).Article 

    Google Scholar 
    44.McDonald, G. I., Richardson, B. A., Zambino, P. J., Klopfenstein, N. B. & Kim, M.-S. Pedicularis and Castilleja are natural hosts of Cronartium ribicola in North America: a first report. Pathol. 36, 73–82 (2006).Article 

    Google Scholar 
    45.Geils, B. W., Hummer, K. E. & Hunt, R. S. White pines, Ribes, and blister rust: a review and synthesis. Pathol. 40, 147–185 (2010).Article 

    Google Scholar 
    46.Kinloch, B. B. White pine blister rust in North America: past and prognosis. Phytopathology 93, 1044–1047 (2003).PubMed 
    Article 

    Google Scholar 
    47.Arsdel, E. P. V., Geils, B. W. & Zambino, P. J. Epidemiology for hazard rating of white pine blister rust. In: Guyon JC Comp Proc. 53rd Western International Forest Disease Work Conference 2005 September 26–30 Jackson WY USA (Department of Agriculture, Forest Service, Intermountain Region, Ogden UT, 2006).48.Dudney, J. Characterizing and Managing Drivers of Change in Mediterranean Forest and Grassland Communities (UC Berkeley, 2019).49.Kreyling, J. et al. To replicate, or not to replicate—that is the question: how to tackle nonlinear responses in ecological experiments. Ecol. Lett. 21, 1629–1638 (2018).PubMed 
    Article 

    Google Scholar 
    50.Larson, E. R. & Kipfmueller, K. F. Ecological disaster or the limits of observation? reconciling modern declines with the long-term dynamics of whitebark pine communities. Geogr. Compass 6, 189–214 (2012).Article 

    Google Scholar 
    51.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Kinloch, B. B. et al. Patterns of variation in blister rust resistance in sugar pine (Pinus lambertiana). In: Proc. IUFRO joint conference: Genetics of five-needle pines, rusts of forest trees, and Strobusphere; 2014 June 15–20; Fort Collins, CO. Proc. RMRS-P-76 (eds Schoettle, A. W., Sniezko, R. A. & Kliejunas, J. T.) 124–128 (Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2018).53.King, J. N., David, A., Noshad, D. & Smith, J. A review of genetic approaches to the management of blister rust in white pines. Pathol. 40, 292–313 (2010).Article 

    Google Scholar 
    54.Maloney, P. E. Incidence and distribution of white pine blister rust in the high-elevation forests of California. Forest Pathol. 41, 308–316 (2011).Article 

    Google Scholar 
    55.Dunlap, J. M. Variability in and environmental correlates to white pine blister rust incidence in five California white pine species. Northwest Sci. 86, 248–263 (2012).Article 

    Google Scholar 
    56.Thoma, D. P., Shanahan, E. K. & Irvine, K. M. Climatic correlates of white pine blister rust infection in whitebark pine in the greater yellowstone ecosystem. Forests 10, 666 (2019).Article 

    Google Scholar 
    57.Talley, S. M., Coley, P. D. & Kursar, T. A. The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West. BMC Ecol. 2, 7 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Davis, J. K. et al. Improving the prediction of arbovirus outbreaks: A comparison of climate-driven models for West Nile virus in an endemic region of the United States. Acta Trop. 185, 242–250 (2018).PubMed 
    Article 

    Google Scholar 
    59.Manstretta, V. & Rossi, V. Effects of weather variables on ascospore discharge from Fusarium graminearum Perithecia. PLoS ONE 10, e0138860 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Seager, R. et al. Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 54, 1121–1141 (2015).ADS 
    Article 

    Google Scholar 
    61.Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).ADS 
    Article 

    Google Scholar 
    62.Dudney, J. C. et al. Compounding effects of white pine blister rust, mountain pine beetle, and fire threaten four white pine species. Ecosphere 11, e03263 (2020).Article 

    Google Scholar 
    63.Schwandt, J. W., Lockman, I. B., Kliejunas, J. T. & Muir, J. A. Current health issues and management strategies for white pines in the western United States and Canada. Forest Pathol. 40, 226–250 (2010).Article 

    Google Scholar 
    64.Dudney, J. et al. Overstory removal and biological legacies influence long-term forest management outcomes on introduced species and native shrubs. Forest Ecol. Manag. 491, 119149 (2021).Article 

    Google Scholar 
    65.Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. 113, 11770–11775 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Goodsman, D. W., Lusebrink, I., Landhäusser, S. M., Erbilgin, N. & Lieffers, V. J. Variation in carbon availability, defense chemistry and susceptibility to fungal invasion along the stems of mature trees. N. Phytol. 197, 586–594 (2013).CAS 
    Article 

    Google Scholar 
    67.McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol. 178, 719–739 (2008).Article 

    Google Scholar 
    68.Bockino, N. K. & Tinker, D. B. Interactions of white pine blister rust and mountain pine beetle in whitebark pine ecosystems in the southern Greater Yellowstone Area. Nat. Areas J. 32, 31–40 (2012).Article 

    Google Scholar 
    69.Stephenson, N. L., Das, A. J., Ampersee, N. J., Bulaon, B. M. & Yee, J. L. Which trees die during drought? The key role of insect host-tree selection. J. Ecol. 107, 2383–2401 (2019).70.Griffin, D. & Anchukaitis, K. J. How unusual is the 2012–2014 California drought? Geophys. Res. Lett. 41, 2014GL062433 (2014).Article 

    Google Scholar 
    71.Paz‐Kagan, T. et al. What mediates tree mortality during drought in the southern Sierra Nevada? Ecol. Appl. 27, 2443–2457 (2017).PubMed 
    Article 

    Google Scholar 
    72.Zambino, P. J. Biology and pathology of Ribes and their implications for management of white pine blister rust. Pathol. 40, 264–291 (2010).Article 

    Google Scholar 
    73.Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L. & Trugman, A. T. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).ADS 
    Article 

    Google Scholar 
    74.Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2014).Article 

    Google Scholar 
    75.Deyle, E. R., May, R. M., Munch, S. B. & Sugihara, G. Tracking and forecasting ecosystem interactions in real time. Proc. R. Soc. B: Biol. Sci. 283, 20152258 (2016).Article 

    Google Scholar 
    76.Deyle, E. R., Maher, M. C., Hernandez, R. D., Basu, S. & Sugihara, G. Global environmental drivers of influenza. Proc. Natl Acad. Sci. 113, 13081–13086 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Cohen, J. M., Civitello, D. J., Venesky, M. D., McMahon, T. A. & Rohr, J. R. An interaction between climate change and infectious disease drove widespread amphibian declines. Glob. Change Biol. 25, 927–937 (2019).ADS 
    Article 

    Google Scholar 
    78.Kolb, T. E. et al. Observed and anticipated impacts of drought on forest insects and diseases in the United States. Ecol. Manag. 380, 321–334 (2016).Article 

    Google Scholar 
    79.Kutz, S. J. et al. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Vet. Parasitol. 163, 217–228 (2009).PubMed 
    Article 

    Google Scholar 
    80.Flower, C. E. & Gonzalez-Meler, M. A. Responses of temperate forest productivity to insect and pathogen disturbances. Annu. Rev. Plant Biol. 66, 547–569 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Trant, A., Higgs, E. & Starzomski, B. M. A century of high elevation ecosystem change in the Canadian Rocky Mountains. Sci. Rep. 10, 9698 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Wong, C. M. & Daniels, L. D. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. Glob. Change Biol. 23, 1926–1941 (2017).ADS 
    Article 

    Google Scholar 
    83.Endangered and Threatened Wildlife and Plants; Threatened Species Status for Pinus albicaulis (Whitebark Pine) With Section 4(d) Rule. Federal Register https://www.federalregister.gov/documents/2020/12/02/2020-25331/endangered-and-threatened-wildlife-and-plants-threatened-species-status-for-pinus-albicaulis (2020).84.Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. & Travers, S. E. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44, 489–509 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.PRISM Climate Group. PRISM Climate Group, Oregon State U. http://www.prism.oregonstate.edu/normals/.86.Abatzoglou, J. T. & Brown, T. J. A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol. 32, 772–780 (2012).Article 

    Google Scholar 
    87.Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).Article 

    Google Scholar 
    88.Mitchell, K. E. et al. The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res. Atmospheres https://doi.org/10.1029/2003JD003823@10.1002/(ISSN)2169-8996.GCIP3 (2018).89.Ritchie, J. & Dowlatabadi, H. Why do climate change scenarios return to coal? Energy 140, 1276–1291 (2017).Article 

    Google Scholar 
    90.R Core Team. R: A Language and Environment for Statistical Computing https://www.rproject.org/ (2017).91.Burns, K. S., Schoettle, A. W., Jacobi, W. R. & Mahalovich, M. F. White pine blister rust in the Rocky Mountain Region and options for management. Management. https://www.fs.fed.us/rm/pubs/rmrs_gtr206.pdf (2007).92.Fox, J. et al. car: Companion to applied regression (2019).93.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    94.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer New York, 2009).95.Baker-Austin, C. et al. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Change 3, 73–77 (2013).ADS 
    Article 

    Google Scholar 
    96.Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).ADS 
    Article 

    Google Scholar 
    97.Rohr, J. R., Raffel, T. R., Romansic, J. M., McCallum, H. & Hudson, P. J. Evaluating the links between climate, disease spread, and amphibian declines. Proc. Natl Acad. Sci. 105, 17436–17441 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Wooldridge, J. M. Introductory Econometrics: A Modern Approach. 6th ed. (Cengage learning. Boston, MA, 2015).99.Berge, L. fixest: Fast Fixed-Effects Estimations. https://cran.rproject.org/web/packages/fixest/index.html (2020).100.Harrell, F. E. rms: Regression Modeling Strategies https://CRAN.R-project.org/package=rms (2020).101.Kelly, M., Guo, Q., Liu, D. & Shaari, D. Modeling the risk for a new invasive forest disease in the United States: An evaluation of five environmental niche models. Comput. Environ. Urban Syst. 31, 689–710 (2007).Article 

    Google Scholar 
    102.Meentemeyer, R. K. et al. Epidemiological modeling of invasion in heterogeneous landscapes: spread of sudden oak death in California (1990–2030). Ecosphere 2, 1–24 (2011).Article 

    Google Scholar 
    103.QGIS Development Team. QGIS Geographic Information System. http://qgis.osgeo.org/ (2020).104.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).105.Hülsmann, L., Bugmann, H., Cailleret, M. & Brang, P. How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. Ecol. Appl. 28, 522–540 (2018).PubMed 
    Article 

    Google Scholar 
    106.Cribbs, J., Nesmith, J., van Mantgem, P. & Dudney, J. Using stable isotope analysis and foliar growth measurements to understand physiological responses to drought in whitebark pine. Presented at the Ecological Society of America Symposium (2020).107.Farquhar, G. D. & Richards, R. A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct. Plant Biol. 11, 539–552 (1984).CAS 
    Article 

    Google Scholar 
    108.Dudney, J. et al. Climate change and white pine blister rust. https://doi.org/10.17605/OSF.IO/PC9FM. (2021).109.Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl Acad. Sci. 106, 19644–19650 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Non-lethal effects of entomopathogenic nematode infection

    1.Gaugler, R. Entomopathogenic nematology (2002).2.Gaugler, R. Entomopathogenic Nematodes in Biological Control (CRC Press, 2018).Book 

    Google Scholar 
    3.Grewal, P. S., Ehlers, R.-U. & Shapiro-Ilan, D. I. Nematodes as Biocontrol Agents (CABI, 2005).Book 

    Google Scholar 
    4.Duncan, L. & McCoy, C. Vertical distribution in soil, persistence, and efficacy against citrus root weevil (coleoptera: Curculionidae) of two species of entomogenous nematodes (rhabditida: Steinernematidae; heterorhabditidae). Environ. Entomol. 25, 174–178 (1996).Article 

    Google Scholar 
    5.Duncan, L., McCoy, C. & Terranova, A. Estimating sample size and persistence of entomogenous nematodes in sandy soils and their efficacy against the larvae of Diaprepes abbreviatus in Florida. J. Nematol. 28, 56 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Bullock, R., Pelosi, R. & Killer, E. Management of citrus root weevils (coleoptera: Curculionidae) on florida citrus with soil-applied entomopathogenic nematodes (nematoda: Rhabditida). Florida Entomologist 1–7 (1999).7.Koppenhöfer, A. M. & Fuzy, E. M. Steinernema scarabaei for the control of white grubs. Biol. Control 28, 47–59 (2003).Article 

    Google Scholar 
    8.Grewal, P., Power, K., Grewal, S., Suggars, A. & Haupricht, S. Enhanced consistency in biological control of white grubs (coleoptera: Scarabaeidae) with new strains of entomopathogenic nematodes. Biol. Control 30, 73–82 (2004).Article 

    Google Scholar 
    9.Georgis, R. et al. Successes and failures in the use of parasitic nematodes for pest control. Biol. Control 38, 103–123 (2006).Article 

    Google Scholar 
    10.Labaude, S. & Griffin, C. T. Transmission success of entomopathogenic nematodes used in pest control. Insects 9, 72 (2018).Article 

    Google Scholar 
    11.Li, X.-Y., Cowles, R., Cowles, E., Gaugler, R. & Cox-Foster, D. Relationship between the successful infection by entomopathogenic nematodes and the host immune response. Int. J. Parasitol. 37, 365–374 (2007).CAS 
    Article 

    Google Scholar 
    12.Castillo, J. C., Reynolds, S. E. & Eleftherianos, I. Insect immune responses to nematode parasites. Trends Parasitol. 27, 537–547 (2011).CAS 
    Article 

    Google Scholar 
    13.Ribeiro, C. et al. Insect immunity-effects of factors produced by a nematobacterial complex on immunocompetent cells. J. Insect Physiol. 45, 677–685 (1999).CAS 
    Article 

    Google Scholar 
    14.Garriga, A., Mastore, M., Morton, A., Garcia del Pino, F. & Brivio, M. F. Immune response of drosophila suzukii larvae to infection with the nematobacterial complex steinernema carpocapsae-xenorhabdus nematophila. Insects 11, 210 (2020).Article 

    Google Scholar 
    15.Ebrahimi, L., Niknam, G., Dunphy, G. & Toorchi, M. Side effects of immune response of colorado potato beetle, leptinotarsa decemlineata against the entomopathogenic nematode, steinernema carpocapsae infection. Invertebr. Surviv. J. 11, 132–142 (2014).
    Google Scholar 
    16.Ebrahimi, L., Niknam, G. & Lewis, E. Lethal and sublethal effects of iranian isolates of steinernema feltiae and heterorhabditis bacteriophora on the colorado potato beetle, leptinotarsa decemlineata. Biocontrol 56, 781–788 (2011).Article 

    Google Scholar 
    17.Chen, S., Li, J., Han, X. & Moens, M. Effect of temperature on the pathogenicity of entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) to delia radicum. Biocontrol 48, 713–724 (2003).Article 

    Google Scholar 
    18.Mastore, M., Quadroni, S., Toscano, A., Mottadelli, N. & Brivio, M. F. Susceptibility to entomopathogens and modulation of basal immunity in two insect models at different temperatures. J. Therm. Biol 79, 15–23 (2019).CAS 
    Article 

    Google Scholar 
    19.Wojda, I. Temperature stress and insect immunity. J. Therm. Biol 68, 96–103 (2017).CAS 
    Article 

    Google Scholar 
    20.Lee, J. H., Dillman, A. R. & Hallem, E. A. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes. BMC Biol. 14, 1–17 (2016).Article 

    Google Scholar 
    21.Girling, R., Ennis, D., Dillon, A. & Griffin, C. The lethal and sub-lethal consequences of entomopathogenic nematode infestation and exposure for adult pine weevils, Hylobius abietis (coleoptera: Curculionidae). J. Invertebr. Pathol. 104, 195–202 (2010).CAS 
    Article 

    Google Scholar 
    22.Mastore, M., Arizza, V., Manachini, B. & Brivio, M. F. Modulation of immune responses of Rhynchophorus ferrugineus (insecta: Coleoptera) induced by the entomopathogenic nematode Steinernema carpocapsae (nematoda: Rhabditida). Insect Sci. 22, 748–760 (2015).CAS 
    Article 

    Google Scholar 
    23.Willett, D. S., Filgueiras, C. C., Nyrop, J. P. & Nault, B. A. Attract and kill: spinosad containing spheres to control onion maggot (Delia antiqua). Pest Manag. Sci. 76, 2720–2725 (2020).CAS 
    Article 

    Google Scholar 
    24.Willett, D. S., Filgueiras, C. C., Nyrop, J. P. & Nault, B. A. Field monitoring of onion maggot (Delia antiqua) fly through improved trapping. J. Appl. Entomol. 144, 382–387 (2020).Article 

    Google Scholar 
    25.Kaya, H. K. & Stock, S. P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology, 281–324 (Elsevier, 1997).26.White, G. et al. A method for obtaining infective nematode larvae from cultures. Science (Washington) 66, 302–303 (1927).ADS 
    CAS 
    Article 

    Google Scholar 
    27.R Core Team. R: A. Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, Austria, 2021).28.Wickham, H. et al. Welcome to the tidyverse. J. Open Sour. Softw. 4, 1686 (2019). https://doi.org/10.21105/joss.01686ADS 
    Article 

    Google Scholar 
    29.Fox, J. & Weisberg, S. An R Companion to Applied Regression third. (Sage, 2019).
    Google Scholar 
    30.Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means (2021). R package version 1.5.5-1.31.Franceschi, C. et al. Genes involved in immune response/inflammation, igf1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: The lesson of centenarians. Mech. Ageing Dev. 126, 351–361 (2005).CAS 
    Article 

    Google Scholar 
    32.Kumar, S. et al. Lifespan extension in C. elegans caused by bacterial colonization of the intestine and subsequent activation of an innate immune response. Dev. Cell 49, 100–117 (2019).CAS 
    Article 

    Google Scholar 
    33.Bruno, P. et al. Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm. Sci. Rep. 10, 1–12 (2020).Article 

    Google Scholar 
    34.Stock, S. P., Campos-Herrera, R., El-Borai, F. & Duncan, L. Steinernema khuongi n. sp. (panagrolaimomorpha, steinernematidae), a new entomopathogenic nematode species from Florida, USA. J. Helminthol. 93, 226–241 (2019).CAS 
    Article 

    Google Scholar 
    35.Nagelkerke, N. J. et al. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).MathSciNet 
    Article 

    Google Scholar  More

  • in

    Occurrence of Mycoplasma spp. in wild birds: phylogenetic analysis and potential factors affecting distribution

    1.Luttrell, M. P. & Fischer, J. R. Mycoplasmosis. In Infectious Diseases of Wild Birds (eds Thomas, N. J. et al.) 317–331 (Blackwell Publishing Ltd, 2007).Chapter 

    Google Scholar 
    2.Luttrell, M. P., Kleven, S. H. & Mahnke, G. M. Mycoplasma synoviae in a released pen-raised wild turkey. Avian Dis. 36, 169–171 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Forrester, C. A. et al. Mycoplasma gallisepticum in pheasants and the efficacy of tylvalosin to treat the disease. Avian Pathol. 40, 581–587 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Welchman, D. D. E. B., Bradbury, J. M., Cavanagh, D. & Aebischer, N. J. Infectious agents associated with respiratory disease in pheasants. Vet. Rec. 150, 658–664 (2002).Article 

    Google Scholar 
    5.de Welchman, D. B. et al. Demonstration of Ornithobacterium rhinotracheale in pheasants (Phasianus colchicus) with pneumonia and airsacculitis. Avian Pathol. 42, 171–178 (2013).Article 

    Google Scholar 
    6.Cookson, K. C. & Shivaprasad, H. L. Mycoplasma gallisepticum infection in chukar partridges, pheasants, and peafowl. Avian Dis. 38, 914–921 (2016).Article 

    Google Scholar 
    7.Bencina, D., Mrzel, O., Rois Zorman, O., Bidovec, A. & Dovc, A. Characterisation of Mycoplasma gallisepticum strains involved in respiratory disease in pheasants and peafowl. Vet. Rec. 152, 230–234 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Bradbury, J. M., Yavari, C. A. & Dare, C. M. Mycoplasmas and respiratory disease in pheasants and partridges. Avian Pathol. 30, 391–396 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Bradbury, J. M., Yavari, C. A. & Dare, C. M. Detection of Mycoplasma synoviae in clinically normal pheasants. Vet. Rec. 148, 72–74 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Wrobel, E. R., Wilcoxen, T. E., Nuzzo, J. T. & Seitz, J. Seroprevalence of avian pox and Mycoplasma gallisepticum in raptors in central Illinois. J. Raptor Res. 50, 289–294 (2016).Article 

    Google Scholar 
    11.Sawicka, A., Durkalec, M., Tomczyk, G. & Kursa, O. Occurrence of Mycoplasma gallisepticum in wild birds: A systematic review and meta-analysis. PLoS ONE 15, e0231545 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Hartup, B. K., Kollias, G. V. & Ley, D. H. Mycoplasmal conjunctivitis in songbirds from New York. J. Wildl. Dis. 36, 257–264 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Ley, D. H., Berkhoff, J. E. & Mclaren, J. M. Mycoplasma gallisepticum isolated from house finches (Carpodacus mexicanus) with conjunctivitis. Avian Dis. 40, 480–483 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Fischer, J. R., Stallknecht, D. E., Luttrell, M. P., Dhondt, A. A. & Converse, K. A. Mycoplasmal conjunctivitis in wild songbirds: The spread of a new contagious disease in a mobile host population. Emerg. Infect. Dis. 3, 69–72 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Farmer, K. L., Hill, G. E. & Roberts, S. R. Susceptibility of wild songbirds to the house finch strain of Mycoplasma gallisepticum. J. Wildl. Dis. 41, 317–325 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Dhondt, A. A., Dhondt, K. V., Hochachka, W. M. & Schat, K. A. Can American goldfinches function as reservoirs for Mycoplasma gallisepticum? J. Wildl. Dis. 49, 49–54 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Fry, M. A. Effects of Mycoplasma gallisepticum on experimentally infected Eastern bluebirds (Sialia sialis). Honors Theses 1116 (2019). https://egrove.olemiss.edu/hon_thesis/1116. (Accessed 10 November 2020).18.Balenger, S. L. Costs associated with Mycoplasma gallisepticum infection of Eastern bluebirds (Sialia sialis). Integr. Comp. Biol. 59, e1–e260 (2019).Article 

    Google Scholar 
    19.Forsyth, M. H. et al. Mycoplasma sturni sp. nov., from the conjunctiva of a European starling (Sturnus vulgaris). Int. J. Syst. Bacteriol. 46, 716–719 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Ley, D. H., Geary, S. J., Edward Berkhoff, J., McLaren, J. M. & Levisohn, S. Mycoplasma sturni from blue jays and northern mockingbirds with conjunctivitis in Florida. J. Wildl. Dis. 34, 403–406 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Ley, D. H., Anderson, N., Dhondt, K. V. & Dhondt, A. A. Mycoplasma sturni from a California house finch with conjunctivitis did not cause disease in experimentally infected house finches. J. Wildl. Dis. 46, 994–999 (2010).PubMed 
    Article 

    Google Scholar 
    22.Ley, D. H., Moresco, A. & Frasca, S. Conjunctivitis, rhinitis, and sinusitis in cliff swallows (Petrochelidon pyrrhonota) found in association with Mycoplasma sturni infection and cryptosporidiosis. Avian Pathol. 41, 395–401 (2012).PubMed 
    Article 

    Google Scholar 
    23.Wellehan, J. F. X. et al. Mycoplasmosis in captive crows and robins from Minnesota. J. Wildl. Dis. 37, 547–555 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Poveda, J. B., Giebel, J., Flossdorf, J., Meier, J. & Kirchhoff, H. Mycoplasma buteonis sp. nov., Mycoplasma falconis sp. nov., and Mycoplasma gypis sp. nov., three species from birds of prey. Int. J. Syst. Bacteriol. 44, 94–98 (1994).Article 

    Google Scholar 
    25.Ruder, M. G., Feldman, S. H., Wünschmann, A. & Mcruer, L. Association of Mycoplasma corogypsi and polyarthritis in a black vulture (Coragyps atratus) in Virginia. J. Wildl. Dis. 45, 808–816 (2009).PubMed 
    Article 

    Google Scholar 
    26.Van Wettere, A. J., Ley, D. H., Scott, D. E., Buckanoff, H. D. & Degernes, L. A. Mycoplasma corogypsi associated polyarthritis and tenosynovitis in black vultures (Coragyps atratus). Vet. Pathol. 50, 291–298 (2013).PubMed 
    Article 

    Google Scholar 
    27.Erdélyi, K., Tenk, M. & Dán, Á. Mycoplasmosis associated perosis type skeletal deformity in a saker falcon nestling in Hungary. J. Wildl. Dis. 35, 586–590 (1999).PubMed 
    Article 

    Google Scholar 
    28.Fischer, L. et al. Description, occurrence and significance of Mycoplasma seminis sp. nov. isolated from semen of a gyrfalcon (Falco rusticolus). Vet. Microbiol. 247, 108789 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Ziegler, L. et al. Mycoplasma hafezii sp. nov., isolated from the trachea of a peregrine falcon (Falco peregrinus). Int. J. Syst. Evol. Microbiol. 69, 773–777 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Lecis, R. et al. Identification and characterization of novel Mycoplasma spp. belonging to the hominis group from griffon vultures. Res. Vet. Sci. 89, 58–64 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Lierz, M., Hagen, N., Hernadez-Divers, S. J. & Hafez, H. M. Occurrence of mycoplasmas in freeranging birds of prey in Germany. J. Wildl. Dis. 44, 845–850 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Volokhov, D. V. et al. Mycoplasma anserisalpingitidis sp. nov., isolated from European domestic geese (Anser anser domesticus) with reproductive pathology. Int. J. Syst. Evol. Microbiol. 70, 2369–2381 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Dobos-Kovács, M., Varga, Z., Czifra, G. & Stipkovits, L. Salpingitis in geese associated with Mycoplasma sp. strain 1220. Avian Pathol. 38, 239–243 (2009).PubMed 
    Article 

    Google Scholar 
    34.Gyuranecz, M. et al. Isolation of Mycoplasma anserisalpingitidis from swan goose (Anser cygnoides) in China. BMC Vet. Res. 16, 1–7 (2020).Article 
    CAS 

    Google Scholar 
    35.Kovács, Á. B. et al. The core genome multi-locus sequence typing of Mycoplasma anserisalpingitidis. BMC Genomics 21, 403 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Carnaccini, S. et al. A novel Mycoplasma sp. associated with phallus disease in goose breeders: Pathological and bacteriological findings. Avian Dis. 60, 437–443 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Landman, W. J. M. Is Mycoplasma synoviae outrunning Mycoplasma gallisepticum? A viewpoint from the Netherlands. Avian Pathol. 43, 2–8 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Kursa, O., Tomczyk, G. & Sawicka, A. Prevalence and phylogenetic analysis of Mycoplasma synoviae strains isolated from Polish chicken layer flocks. J. Vet. Res. 63, 41–49 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Catania, S. et al. Two strains of Mycoplasma synoviae from chicken flocks on the same layer farm differ in their ability to produce eggshell apex abnormality. Vet. Microbiol. 193, 60–66 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Kang, M. S., Gazdzinski, P. & Kleven, S. H. Virulence of recent isolates of Mycoplasma synoviae in turkeys. Avian Dis. 46, 102–110 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Lin, M. Y. & Kleven, S. H. Pathogenicity of two strains of Mycoplasma gallisepticum in turkeys. Avian Dis. 26, 360–364 (1982).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kleven, S. H. Mycoplasmas in the etiology of multifactorial respiratory disease. Poult. Sci. 77, 1146–1149 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Stallknecht, D. E., Johnson, D. C., Emory, W. H. & Kleven, S. H. Wildlife surveillance during a Mycoplasma gallisepticum epornitic in domestic turkeys. Avian Dis. 26, 883–890 (1982).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Gharaibeh, S. & Hailat, A. Mycoplasma gallisepticum experimental infection and tissue distribution in chickens, sparrows and pigeons. Avian Pathol. 40, 349–354 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Benčina, D., Dorrer, D. & Tadina, T. Mycoplasma species isolated from six avian species. Avian Pathol. 16, 653–664 (1987).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Tsai, H. J. & Lee, C. Y. Serological survey of racing pigeons for selected pathogens in Taiwan. Acta Vet. Hung. 54, 179–189 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Michiels, T. et al. Prevalence of Mycoplasma gallisepticum and Mycoplasma synoviae in commercial poultry, racing pigeons and wild birds in Belgium. Avian Pathol. 45, 244–252 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.May, M., Balish, M. & Blanchard, A. The Order Mycoplasmatales. In The Prokaryotes (eds Rosenberg, E. et al.) 515–550 (Springer, 2004).
    Google Scholar 
    49.Lierz, M., Obon, E., Schink, B., Carbonell, F. & Hafez, H. M. The role of Mycoplasmas in a conservation project of the lesser kestrel (Falco naumanni). Avian Dis. 52, 641–645 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Bolske, G. & Morner, T. Isolation of a Mycoplasma sp. from three buzzards (Buteo spp.). Avian Dis. 26, 406–411 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Kempf, I., Chastel, C., Ferris, S., Gesbert, F. & Blanchard, A. Isolation and characterisation of a mycoplasma from a kittiwake (Rissa tridactyla). Vet. Rec. https://doi.org/10.1136/vr.146.6.168 (2000).Article 
    PubMed 

    Google Scholar 
    52.Cockerham, S. et al. Microbial ecology of the western gull (Larus occidentalis). Microb. Ecol. 78, 665–676 (2019).PubMed 
    Article 

    Google Scholar 
    53.Liao, F. et al. Characteristics of microbial communities and intestinal pathogenic bacteria for migrated Larus ridibundus in southwest China. Microbiology https://doi.org/10.1002/mbo3.693 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Shimizu, T., Ern, H. & Nagatomo, H. Isolation and characterization of Mycoplasma columbinum and Mycoplasma columborale, two new species from pigeons. Int. J. Syst. Bacteriol. 28, 538–546 (1978).Article 

    Google Scholar 
    55.Nagatomo, H., Kato, H., Shimizu, T. & Katayama, B. Isolation of mycoplasmas from fantail pigeons. J. Vet. Med. Sci. 59, 461–462 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Sawicka, A., Tomczyk, G., Kursa, O. & Stenzel, T. Occurrence and relevance of Mycoplasma spp. in racing and ornamental pigeons in Poland. Avian Dis. 63, 468 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Möller Palau-Ribes, F. et al. Description and prevalence of Mycoplasma ciconiae sp. nov. isolated from white stork nestlings (Ciconia ciconia). Int. J. Syst. Evol. Microbiol. 66, 3477–3484 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    58.Goldberg, D. R. et al. The occurrence of mycoplasmas in selected wild North American waterfowl. J. Wildl. Dis. 31, 364–371 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Bradbury, J. M. et al. Isolation of mycoplasma cloacale from a number of different avian hosts in great Britain and France. Avian Pathol. 16, 183–186 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Poveda, J. B. et al. An epizootiological study of avian mycoplasmas in Southern Spain. Avian Pathol. 19, 627–633 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Brown, D. R., Whitcomb, R. F. & Bradbury, J. M. Revised minimal standards for description of new species of the class Mollicutes (division Tenericutes). Int. J. Syst. Evol. Microbiol. 57, 2703–2719 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Volokhov, D. V., Simonyan, V., Davidson, M. K. & Chizhikov, V. E. RNA polymerase beta subunit (rpoB) gene and the 16S–23S rRNA intergenic transcribed spacer region (ITS) as complementary molecular markers in addition to the 16S rRNA gene for phylogenetic analysis and identification of the species of the family Mycoplasmataceae. Mol. Phylogenet. Evol. 62, 515–528 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Hartup, B. K. & Kollias, G. V. Field investigation of Mycoplasma gallisepticum infections in house finch (Carpodacus mexicanus) eggs and nestlings. Avian Dis. 43, 572 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Paessler, M. et al. Disseminated Mycoplasma orale infection in a patient with common variable immunodeficiency syndrome. Diagn. Microbiol. Infect. Dis. 44, 201–204 (2002).PubMed 
    Article 

    Google Scholar 
    65.Nikfarjam, L. & Farzaneh, P. Prevention and detection of Mycoplasma contamination in cell culture. Cell J. 13, 203–212 (2012).PubMed 

    Google Scholar 
    66.Trinh, P., Zaneveld, J. R., Safranek, S. & Rabinowitz, P. M. One health relationships between human, animal, and environmental microbiomes: A mini-review. Front. Public Health 6, 1–9 (2018).Article 

    Google Scholar 
    67.Baron, S. A., Diene, S. M. & Rolain, J. Human microbiomes and antibiotic resistance. Hum. Microbiome J. 10, 43–52 (2018).Article 

    Google Scholar 
    68.Diaz-torres, M. L. et al. Determining the antibiotic resistance potential of the indigenous oral microbiota of humans using a metagenomic approach. FEMS Microbiol. Lett. 258, 257–262 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Sommer, M. O. A., Dantas, G. & Church, G. M. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325, 1128–1131 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Atterby, C. et al. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in Southcentral Alaska is associated with urban environments. Infect. Ecol. Epidemiol. 6, 32334 (2016).PubMed 

    Google Scholar 
    71.Allen, H. K., Donato, J., Wang, H. H. & Cloud-hansen, K. A. Call of the wild: Antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251–259 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Wang, J. et al. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool. Res. 38, 55–80 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Brittingham, M. C., Temple, S. A. & Duncan, R. M. A survey of the prevalence of selected bacteria in wild birds. J. Wildl. Dis. 24, 299–307 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Škaraban, J., Matjašič, T., Janžekovič, F., Wilharm, G. & Trček, J. Cultivable bacterial microbiota from choanae of free-living birds captured in Slovenia. Folia Biol. Geol. 58, 105 (2017).Article 

    Google Scholar 
    75.Stenkat, J., Krautwald-Junghanns, E., Schmitz Ornes, A., Eilers, A. & Schmidt, V. Aerobic cloacal and pharyngeal bacterial flora in six species of free-living birds. J. Appl. Microbiol. https://doi.org/10.1111/jam.12636 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Ferguson-Noel, N., Armour, N. K., Noormohammadi, A. H., El-Gazzar, M. & Bradbury, J. M. Mycoplasmosis. In Diseases of Poultry (ed. Swayne, D. E.) (Wiley, 2020).
    Google Scholar 
    77.Ely, C. R. et al. Circumpolar variation in morphological characteristics of greater white-fronted geese Anser albifrons. Bird Study 52, 104–119 (2005).Article 

    Google Scholar 
    78.Deng, X. et al. Spring migration duration exceeds that of autumn migration in far east asian greater white-fronted geese (Anser albifrons). Avian Res. 10, 1–11 (2019).Article 

    Google Scholar 
    79.Kölzsch, A. et al. Towards a new understanding of migration timing : slower spring than autumn migration in geese refl ects different decision rules for stopover use and departure. Oikos https://doi.org/10.1111/oik.03121 (2016).Article 

    Google Scholar 
    80.Gonzalez, L. M. Origin and formation of the Spanish imperial eagle (Aquila adalberti). J. Ornithol. 149, 151–159 (2008).Article 

    Google Scholar 
    81.Shamoun-Baranes, J. et al. The effect of wind, season and latitude on the migration speed of white storks Ciconia ciconia, along the eastern migration route. J. Avian Biol. 34, 97–104 (2003).Article 

    Google Scholar 
    82.Birds of the World. Cornell Laboratory of Ornithology (2020). https://birdsoftheworld.org/bow/home. (Accessed 17 August 2020).83.Lierz, M. et al. Prevalence of mycoplasmas in eggs from birds of prey using culture and a genus-specific mycoplasma polymerase chain reaction. Avian Pathol. 36, 145–150 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Raviv, Z. & Kleven, S. H. The development of diagnostic real-time Taqman PCRs for the four pathogenic avian mycoplasmas. Avian Dis. 53, 103–107 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Mangiafico, S. rcompanion: Functions to support extension education program evaluation. R package version 2.3.26. (2020).87.Wickham, H., Romain, F., Lionel, H. & Müller, K. dplyr: A grammar of data manipulation. R package version 0.8.1. (2019).88.Wickham, H. ggplot2 Vol. 35 (Springer, 2016).MATH 
    Book 

    Google Scholar 
    89.R Core Team. R: A Language and Environment for Statistical Computing. Version 4.0.4. (Foundation for Statistical Computing, 2021). https://www.r-project.org/. (Accessed 20 October 2020).90.Fair, J. M. et al. (eds) Guidelines to the Use of Wild Birds in Research 3rd edn. (The Ornithological Council, 2010).
    Google Scholar  More

  • in

    Conservation needs to break free from global priority mapping

    1.Evans, M. Environ. Conserv. https://doi.org/10.1017/S0376892921000114 (2021).2.Brooks, T. M. et al. Science 313, 58–61 (2006).CAS 
    Article 

    Google Scholar 
    3.Margules, C. R. & Pressey, R. L. Nature 405, 243–253 (2000).CAS 
    Article 

    Google Scholar 
    4.Myers, N. Bioscience 53, 916–917 (2003).Article 

    Google Scholar 
    5.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Nature 403, 853–858 (2000).CAS 
    Article 

    Google Scholar 
    6.Hulme, M. Glob. Environ. Change 20, 558–564 (2010).Article 

    Google Scholar 
    7.Kullberg, P. & Moilanen, A. Nat. Conserv. 12, 3–10 (2014).Article 

    Google Scholar 
    8.McIntosh, E. J., Pressey, R. L., Lloyd, S., Smith, R. J. & Grenyer, R. Annu. Rev. Environ. Resour. 42, 677–697 (2017).Article 

    Google Scholar 
    9.Turnhout, E., Dewulf, A. & Hulme, M. Curr. Opin. Environ. Sustain. 18, 65–72 (2016).Article 

    Google Scholar 
    10.Evans, M. C., Davila, F., Toomey, A. & Wyborn, C. Nat. Ecol. Evol. 1, 1588 (2017).Article 

    Google Scholar 
    11.Halpern, B. S., Regan, H. M., Possingham, H. P. & McCarthy, M. A. Ecol. Lett. 9, 2–11 (2006).Article 

    Google Scholar 
    12.Mokany, K. et al. Proc. Natl Acad. Sci. USA 117, 9906–9911 (2020).CAS 
    Article 

    Google Scholar 
    13.Moffette, F., Alix-Garcia, J., Shea, K. & Pickens, A. H. Nat. Clim. Change 11, 172–178 (2021).Article 

    Google Scholar 
    14.zu Ermgassen, E. K. H. J. et al. Environ. Res. Lett. 15, 035003 (2020).Article 

    Google Scholar 
    15.Schmidt-Traub, G. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01533-w (2021).16.Obermeister, N. Sustain. Sci. 14, 843–856 (2019).Article 

    Google Scholar 
    17.Sinclair, S. P. et al. Conserv. Lett. 11, e12459 (2018).Article 

    Google Scholar 
    18.Mammides, C. et al. Biol. Conserv. 198, 78–83 (2016).Article 

    Google Scholar 
    19.Turnhout, E. & Boonman-Berson, S. Ecol. Soc. 16, 35 (2011).Article 

    Google Scholar 
    20.Malavasi, M. Biol. Conserv. 252, 108843 (2020).Article 

    Google Scholar 
    21.Lahsen, M. & Turnhout, E. Environ. Res. Lett. 16, 025008 (2021).Article 

    Google Scholar 
    22.Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Nat. Ecol. Evol. 2, 759–762 (2018).Article 

    Google Scholar 
    23.Popkin, G. Science https://doi.org/gpzx (24 October 2019).24.Tengö, M. et al. Curr. Opin. Environ. Sustain. 26–27, 17–25 (2017).Article 

    Google Scholar 
    25.Temper, L., del Bene, D. & Martinez-Alier, J. J. Political Ecol. 22, 255–278 (2015).
    Google Scholar  More

  • in

    The Chinese pond mussel Sinanodonta woodiana demographically outperforms European native mussels

    This study contributes to the understanding of the population dynamics of S. woodiana and its native counterparts during the early stages of invasion. It documents a self-sustaining population of S. woodiana in an area with cold and long winters and extends the known limits of its thermal tolerance. Comparison of demographic profiles shows a more favourable population structure in S. woodiana than in the native mussels, indicating possible future dominance shifts. This study also shows that S. woodiana is a habitat generalist concerning bottom sediments, and points to intentional introductions of adult individuals as an important and underappreciated route of dispersal of this invasive species.Thermal tolerance of S. woodiana
    The introduction of Sinanodonta woodiana in 2000 resulted in a long-term establishment of its reproducing population, as evidenced by a high proportion of females carrying glochidia (17 out of 21 in 2018) and the presence of juveniles (the smallest individual of 33 mm shell-length was collected in 2019). While the populations of native mussels might have been augmented with glochidia attached to the stocking fishes, this was less likely in S. woodiana. The species was not recorded in the vicinity before13, and given the distance of over 500 km over which the founding individuals were transported, their local availability was unlikely. In any case, as the stocking fishes originated only from local sources, which did not include heated-water hatcheries, any S. woodiana glochidia would have also been from locally-adapted populations.Winters in the study area are relatively cold and long. In 2000–2019, the mean temperature of the coldest month was − 3.7 °C, and the lowest mean monthly temperature was − 10.8 °C. The absolute minimum temperature was − 31.1 °C. Ice formed each year, on average for 73 days, with a maximum of 104 days. As far as we know, these are the most extreme climatic conditions in which an established population of this species was documented to date. Sinanodonta woodiana has been reported from Sweden, but no reproduction was observed there30. The populations in the Yenisei and Ob River basins inhabit heated water effluents9,31. The other population in northern Poland in a thermally-unpolluted water body is in a milder climate24. Thus, our study extends the known limits of cold tolerance of S. woodiana, indicating a shift in its realized niche32 or an ongoing in situ adaptation11.Furthermore, with the ongoing climate change, the abiotic conditions in the invaded range of S. woodiana increasingly match its physiological optimum33. In our study area during the time since mussel introduction, the mean annual temperature increased by 0.8 °C, the number of days with ice formation decreased by 21, and the number of days with temperatures over 15 °C (coinciding with the production of ripe glochidia by S. woodiana15) increased by nine. Sinanodonta woodiana survives at water temperatures up to 38 °C34 and has a higher tolerance to thermal stress than the native mussels21. In heated water bodies it reproduces throughout the year18 and occupies habitats with higher temperature ranges than the native unionids14, indicating that climate warming will increase its competitive advantage. Additionally, high mobility of S. woodiana and its tendency to burrow deeply into the sediments may help it better survive during drought episodes.As shown in our study, in suboptimal thermal conditions, S. woodiana can persist at low abundances for decades. Outbreaks of such sleeper populations (sensu35) are likely to be triggered by changes in the environment, e.g., rising temperatures.Population structure of S. woodiana in relation to native unionidsOver four study years, the relative frequency of S. woodiana increased from 2 to 9%. A comparison of shell-length distributions, approximating population age-structure, shows that smaller-sized mussels contributed a higher proportion of individuals in S. woodiana than in the native mussels in all study years, and this difference was increasing over time. This increase over time was possibly related to the removal of S. woodiana individuals, as hand-sampling tends to be biased towards larger individuals. On the other hand, the high mobility of this species and its striking burrowing behaviour, which lowers its detectability, might have counterbalanced this effect, as illustrated by the largest S. woodiana individual, with a shell length of 22.5 cm, found in the last study year. Nevertheless, it is possible that without the removal of individuals, the size structure would also shift towards larger sizes in S. woodiana, and its relative abundance at the study sites would increase even faster. Interestingly, a higher contribution of smaller-sized individuals in S. woodiana than in the native mussels was also observed in24, where no mussels were removed before the study. Thus, in both these studies, S. woodiana not only established viable populations but also showed higher potential for population growth than the native mussels. This is not surprising given that S. woodiana grows faster, matures earlier and produces more glochidia per female than the native unionids17,18,19,36. At increasing relative frequencies, its direct effects on the native unionids: competition for food, bottom space and host fish, filtering out sperm and larvae, and transmission of diseases6 will play an increasing role, and a dominance shift can be expected. This, in turn, is expected to affect ecosystem functioning, including changes in water transparency and nutrient availability25,37, benthic habitat modification38,39, and reduction in the condition of fish40. Additionally, S. woodiana invasion threatens the endangered European bitterling Rhodeus amarus16, and its massive die-offs negatively impact water quality and reverberate to terrestrial ecosystems41,42.The increasing prevalence of S. woodiana in invaded areas17,23,43,44 supports its predicted ability to effectively compete with native mussels. Our present study shows that demographic profiles of co-occurring mussel populations can indicate future dominance shifts already at initial invasion stages. However, as in many alien species45,46, the time-lag between the establishment of S. woodiana and the expression of its impacts can last decades, explaining why, despite its striking body-size (“a football-sized invasive mussel”47), the threats from its invasion are largely underestimated.Tolerance of S. woodiana for bottom sediment typeDespite a large number of studies documenting the spread of S. woodiana (for a recent summary, see, e.g.,11,48), not much is known on its preferences concerning bottom sediments. Sinanodonta woodiana is mainly reported from ponds and reservoirs, which suggests its preference for muddy sediments. However, its presence in these habitats is related to its mode of dispersal rather than habitat preferences. Basing on a study in a heated lakes system with various habitats, Kraszewski and Zdanowski14 suggested a preference of S. woodiana for sandy bottom substrates. The patchy distribution of sandy and muddy bottom substrates allowed us to test this hypothesis in the present study.According to expectations, based on the known preferences of the native species49, A. cygnea occurred predominantly at sites with a muddy bottom, U. pictorum at sites with a sandy bottom, and A. anatina occurred at similar densities on both bottom types. Contrary to expectations, however, S. woodiana did not show a preference for either bottom type. Although its overall density was higher at sites with a sandy than a muddy bottom, this difference was not significant. Sinanodonta woodiana can utilize a broad range of host-fish species15,16,17 and survive in a broad range of water-body types13. Our study indicates that it is also a habitat generalist concerning bottom sediments and adds to the suit of the known tolerances of this species.Intentional human-mediated dispersalThe global spread of S. woodiana is primarily due to the trade in freshwater fish7,9. Our study points to intentional introductions for water filtration as an additional route of dispersal of this species. Large individual sizes and arguably beautiful colouration of S. woodiana add to its perceived attractiveness, and some people are willing to undertake considerable efforts to obtain individuals of this species. Occasional long-distance translocations can cause the bridgehead effect46,50, in which the establishment of populations in new locations facilitates the further dispersal of the species and leads to a self-accelerating invasion process. The way humans interact with invasive species is one of the main determinants of their spread and establishment51,52. Our local interviews indicate that individuals from the study pond have already been transferred to nearby water bodies, and their filtering ability is highly appreciated. The propensity of people to acquire and translocate Sinanodonta mussels has been noted before13,17,24,53,54,55 and is probably more important than previously appreciated.Management implicationsEradication of established invasive bivalve populations is extremely difficult6. An apparently successful attempt to eradicate S. woodiana from invaded fish ponds involved lowering the water level and poisoning the fish and mussels10,47, but usually such measures cannot be applied. An alternative is the removal of individuals by hand harvesting. To be effective, however, it should cover the whole surface of the invaded water body and be repeated regularly. A related, commonly used practice in field research on invasive species is to remove the collected individuals from the study area. Our study shows that at least in S. woodiana, this is not likely to have any practical effect. We took out all individuals collected during four annual surveys from collection sites covering approximately 8% of the surface area of the pond. The relative frequency of S. woodiana increased while its densities and shell-length distributions remained unchanged. This was not unexpected, given a small proportion of the population sampled, combined with the high reproduction rates and mobility of this species. As sampling rarely includes more than 10% of the studied populations, alternatively to removing individuals from a study area, long-term studies involving marking and releasing them back might be considered. Knowledge of the biology of S. woodiana in the wild (e.g., growth rates, longevity, behavioural responses) is scarce, limiting our ability to manage and reduce its further spread.The priority, however, is to prevent introductions of S. woodiana to non-invaded water bodies. Fish trade remains its dominant dispersal route, so effective biosecurity measures are necessary. Well-coordinated monitoring programmes are needed for evidence-based management decisions56. Public participation is key to successful management of invasive species. Publicly accessible educational programmes explaining the problems of invasive species and increasing the appreciation of the native ones are required, especially when the invasive species elicit favourable reactions from people51, as is the case with S. woodiana.Sinanodonta woodiana does not yet have the status of a recognized pest. For example, it is not included in the list of invasive alien species of European Union concern57 and there are no regulations concerning this species in most countries. Our study documents the potential of S. woodiana to demographically outcompete native unionids. Combined with its recognized impacts and rates of spread, it highlights the need to urgently call the attention of policymakers and the public to the threats posed by S. woodiana to the integrity of freshwater ecosystems. More

  • in

    Cochlear shape distinguishes southern African early hominin taxa with unique auditory ecologies

    1.Spoor, F., Wood, B. A. & Zonneveld, F. Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion. Nature 369, 645–648 (1994).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Braga, J. et al. Disproportionate cochlear length in genus Homo shows a high phylogenetic signal during apes’ hearing evolution. PLoS ONE 10, e0127780 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Urciuoli, A. et al. The evolution of the vestibular apparatus in apes and humans. Elife 9, e51261 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Ward, D. L. et al. Early life malnutrition and fluctuating asymmetry in the rat bony labyrinth. Anat. Rec. https://doi.org/10.1002/ar.24601 (2021).Article 

    Google Scholar 
    5.Gunz, P., Ramsier, M., Kuhrig, M., Hublin, J.-J. & Spoor, F. The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J. Anat. 220, 529–543 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Grohé, C., Tseng, Z. J., Lebrun, R., Boistel, R. & Flynn, J. J. Bony labyrinth shape variation in extant Carnivora: A case study of Musteloidea. J. Anat. 228, 366–383 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Mennecart, B. et al. Bony labyrinth morphology clarifies the origin and evolution of deer. Sci. Rep. 7, 13176 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Vater, M. & Kössl, M. Comparative aspects of cochlear functional organization in mammals. Hear. Res. 273, 89–99 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Manoussaki, D. et al. The influence of cochlear shape on low-frequency hearing. Proc. Natl. Acad. Sci. U.S.A. 105, 6162–6166 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Wannaprasert, T. & Jeffery, N. Variations of mammalian cochlear shape in relation to hearing frequency and skull size. Trop. Nat. Hist. 15, 41–54 (2015).
    Google Scholar 
    11.Beaudet, A. The inner ear of the Paranthropus specimen DNH 22 from Drimolen, South Africa. Am. J. Phys. Anthropol. 170, 439–446 (2019).PubMed 
    Article 

    Google Scholar 
    12.Kendall, D. G. Shape manifolds, procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    13.Srivastava, A. & Klassen, E. Functional and Shape Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    14.Braga, J. et al. Efficacy of diffeomorphic surface matching and 3D geometric morphometrics for taxonomic discrimination of Early Pleistocene hominin mandibular molars. J. Hum. Evol. 130, 21–35 (2019).PubMed 
    Article 

    Google Scholar 
    15.Braga, J. et al. Cochlear shape reveals that the human organ of hearing is sex-typed from birth. Sci. Rep. 9, 10889 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Srivastava, A., Klassen, E., Joshi, S. H. & Jermyn, I. H. Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1415–1428 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Grine, F. E. The alpha taxonomy of Australopithecus africanus. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 73–104 (Springer, 2013).Chapter 

    Google Scholar 
    18.Grine, F. E., Delanty, M. M. & Wood, B. A. Variation in mandibular postcanine dental morphology and hominin species representation in Member 4, Sterkfontein, South Africa. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 125–146 (Springer, 2013).Chapter 

    Google Scholar 
    19.Clarke, R. J. Australopithecus from Sterkfontein caves, South Africa. In The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 105–123 (Springer, 2013).Chapter 

    Google Scholar 
    20.Wood, B. A. & Boyle, E. K. Hominin taxic diversity: Fact or fantasy?. Yearb. Phys. Anthropol. 159, S37–S78 (2016).Article 

    Google Scholar 
    21.Martin, J. M. et al. Drimolen cranium DNH 155 documents microevolution in an early hominin species. Nat. Ecol. Evol. 5, 38–45 (2020).PubMed 
    Article 

    Google Scholar 
    22.Rak, Y., Kimbel, W. H., Moggi-Cecchi, J., Lockwood, C. A. & Menter, C. The DNH 7 skull of Australopithecus robustus from Drimolen (Main Quarry). South Africa. J. Hum. Evol. 151, 102913 (2021).PubMed 

    Google Scholar 
    23.Moggi-Cecchi, J., Tobias, P. V. & Beynon, A. D. The mixed dentition and associated skull fragments of a juvenile fossil hominid from Sterkfontein South Africa. Am. J. Phys. Anthropol. 106, 425–465 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Curnoe, D. & Tobias, P. V. Description, new reconstruction, comparative anatomy, and classification of the Sterkfontein Stw 53 cranium, with discussions about the taxonomy of other southern African early Homo remains. J. Hum. Evol. 50, 36–77 (2006).PubMed 
    Article 

    Google Scholar 
    25.Clarke, R. J. Latest information on Sterkfontein’s Australopithecus skeleton and a new look at Australopithecus. S. Afr. J. Sci. 104, 443–449 (2008).ADS 
    Article 

    Google Scholar 
    26.Braga, J. et al. A new partial temporal bone of a juvenile hominin from the site of Kromdraai B (South Africa). J. Hum. Evol. 65, 447–456 (2013).PubMed 
    Article 

    Google Scholar 
    27.Lande, R. Natural selection and random genetic drift in phenotypic evolution. Evol. 30, 314–334 (1976).Article 

    Google Scholar 
    28.Bookstein, F. & Mitteroecker, P. Comparing covariance matrices by relative eigenanalysis, with applications to organismal biology. Evol. Biol. 41, 336–350 (2014).Article 

    Google Scholar 
    29.Le Maitre, A. & Mitteroecker, P. Multivariate comparison of variance in R. Methods Ecol. Evol. 10, 1380–1392 (2019).Article 

    Google Scholar 
    30.Beaulieu, J. M., Jhwueng, D. C., Boettiger, C. & O’Meara, B. C. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evol. 66, 2369–2383 (2012).Article 

    Google Scholar 
    31.Quam, R. et al. Early hominin auditory ossicles from South Africa. Proc. Natl. Acad. Sci. U.S.A. 110, 8847–8851 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Mongle, C. S., Strait, D. S. & Grine, F. E. Expanded character sampling underscores phylogenetic stability of Ardipithecus ramidus as a basal hominin. J. Hum. Evol. 131, 28–39 (2020).Article 

    Google Scholar 
    33.Sponheimer, M. & Lee-Thorp, J. A. Biogeochemical evidence for the environments of early Homo in South Africa. In The First Humans: Origin and Early Evolution of the Genus Homo (eds Grine, F. E. et al.) 185–194 (Springer, 2009).Chapter 

    Google Scholar 
    34.Ni, G., Elliott, S. J., Ayat, M. & Teal, P. D. Modelling cochlear mechanics. Biomed. Res. Int. 2, 150637 (2014).
    Google Scholar 
    35.Cai, H., Manoussaki, D. & Chadwick, R. Effects of coiling on the micromechanics of the mammalian cochlea. J. R. Soc. Interface 2, 341–348 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Tang, Z. et al. Research on the characteristics of dynamic behavior of basilar membrane in spiral cochlea. J. Vibroengineering 19, 3809–3821 (2017).Article 

    Google Scholar 
    37.Osmanski, M. S., Song, X., Guo, Y. & Wang, X. Frequency discrimination in the common marmoset (Callithrix jacchus). Hear. Res. 341, 1–8 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Quam, R. M. et al. Early hominin auditory capacities. Sci. Adv. 1, e1500355 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Kojima, S. Comparison of auditory functions in the chimpanzee and human. Folia Primatol. 55, 62–72 (1990).CAS 
    Article 

    Google Scholar 
    40.Machens, C. K. et al. Single auditory neurons rapidly discriminate conspecific communication signals. Nat. Neurosci. 6, 341–342 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Zoloth, S. R. et al. Species-specific perceptual processing of vocal sounds by monkeys. Science 204, 870–873 (1979).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proc. R. Soc. Lond. B. 205, 581–598 (1979).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Broom, R. The Pleistocene anthropoid apes of South Africa. Nature 142, 377–379 (1938).ADS 
    Article 

    Google Scholar 
    44.Coqueugniot, H. et al. Early brain growth in Homo erectus and implications for cognitive ability. Nature 431, 299–302 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Carayon, D., Vaysse, F., Tramini, P., Dumoncel, J. & Esclassan, R. The age-related maturational pattern of the human subarcuate fossa. C. R. Palevol. 14, 139–145 (2015).Article 

    Google Scholar 
    46.Clarke, R.J. The cranium of the Swartkrans hominid SK 847 and its relevance to human origins. Ph.D. Thesis (University of the Witwatersrand,1977).47.Spoor, F. The comparative morphology and phylogeny of the human bony labyrinth. Ph.D. Thesis. (Utrecht University, 1993).48.Boyer, D. M. et al. Algorithms to automatically quantify the geometric similarity of anatomical surface. Proc. Natl. Acad. Sci. U.S.A. 108, 18221–18226 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Durrleman, S., Pennec, X., Trouvé, A., Ayache, N. & Braga, J. Comparison of the endocranial ontogenies between chimpanzees and bonobos via temporal regression and spatiotemporal registration. J. Hum. Evol. 62, 74–88 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Kim, K., Kim, P. T., Koo, J. & Pierrynowski, M. R. Frenet-Serret and the estimation of curvature and torsion. IEEE J. Select. Top. Sig. Process. 7, 646–654 (2013).ADS 
    Article 

    Google Scholar 
    51.Pietsch, M. et al. Spiral form of the human cochlea results from spatial constraints. Sci. Rep. 7, 7500 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Huang, W., Absil, P.-A., Gallivan, K. & Hand, P. ROPTLIB: an object-oriented C++ library for optimization on Riemannian manifolds (2016). https://www.math.fsu.edu/~whuang2/Indices/index_ROPTLIB.html53.Dryden, I.L. & Mardia, K.V. Statistical Shape analysis, with Applications in R. Second Edition (John Wiley and Sons, 2016). R package version 1.2.6. https://cran.r-project.org/web/packages/shapes/index.html54.Kuhn, M. & Vaughan, D. Package ‘yardstick’. Tidy Characterizations of Model Performance. R package version 0.0.7. https://CRAN.R-project.org/package=yardstick (2020).55.Rosenberg, A. & Hirschberg, J. V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure. Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 410–420 (2007).56.Nowosad, J. & Stepinski., T.F. ,. Spatial association between regionalizations using the information-theoretical V-measure. Int. J. Geogr. Inf. Sci. 32, 1–16 (2018).Article 

    Google Scholar 
    57.Schlager, S. & Morpho, R. Shape analysis in R. In Statistical Shape and Deformation Analysis (eds Zheng, G. et al.) 217–256 (Academic Press, 2017).Chapter 

    Google Scholar 
    58.Adams, D., Collyer, M., Kaliontzopoulou, A. & Baken, E. Geomorph: Software for geometric morphometric analyses. R package version 3.3.2. https://cran.r-project.org/package=geomorph (2021).59.Cardini, A., O’Higgins, P. & Rohlf, F. J. Seeing distinct groups where there are none: Spurious patterns from between group PCA. Evol. Biol. 46, 303–316 (2019).Article 

    Google Scholar 
    60.Holsinger, K. E. & Weir, B. S. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 10, 639–650 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Fischer, A., Pollack, J., Thalmann, O., Nickel, B. & Pääbo, S. Demographic history and genetic differentiation in apes. Curr. Biol. 16, 1133–1138 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Fischer, A. et al. Bonobos fall within the genomic variation of chimpanzees. PLoS ONE 6, e21605 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Dos Reis, M. et al. Using phylogenomic data to explore the effects of relaxed clocks and calibration strategies on divergence time estimation: primates as a test case. Syst. Biol. 67, 594–615 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Rieux, A. & Balloux, F. Inferences from tip-calibrated phylogenies: A review and a practical guide. Mol. Ecol. 25, 1911–1924 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Near-daily reconstruction of tropical intertidal limpet life-history using secondary-ion mass spectrometry

    Ecology of Yellowfoot limpetIn the Tropical Pacific, sympatric limpets (Cellana melanostoma, Cellana exarata, Cellana sandwicensis, Cellana talcosa) inhabit the Hawaiian rocky intertidal ecosystem, where they graze on crustose coralline algae (CCA) and epibenthic microorganisms. Distribution ranges from the splash zone (upper-intertidal) to subtidal zone, and across the entire Hawaiian Archipelago26. They are dispersed across the majority of seamounts, atolls, and islands, however, not all species are present in every rocky intertidal locality, which reflects species-specific micro-habitat preferences.The reproduction cycles for each species appears to vary in time and space, and on-going long-term monitoring efforts are in progress to define this critical life-history trait. Previous studies on the yellowfoot limpet C. sandwicensis, reveal that reproduction is highly synchronized from December to March27,29. Gametogenesis also occurs from June to August, however, the level synchronicity and intensity of this second spawn period are inconsistent.These limpets are gonochoristic and considered to be sequential hermaphrodites44. The sex ratio is near 1:1(M:F) during spawning season, however, we have directly observed populations to maintain disproportionate sex ratios.Development of this broad-cast spawning limpet has been described from egg to post-larvae, where settlement occurs in less than 4 days post-fertilization29. This short larval duration ensures recruitment to the same localized intertidal environment, and reduces likelihood of hybridization between sympatric species with similar life-histories26.For wild limpets, growth rates shift through ontogeny—average monthly growth decreasing from 4–5 mm shell length (SL) as juveniles to 2–3 mm SL as adults27. Limpets also exhibit seasonal growth patterns—influenced by temperature and feeding28,37. Currently, growth rates of large individuals ( >50 mm SL) and species longevity are absent in the literature.Regional climate and coastal oceanographyKa’alawai is located on the south-facing shoreline of Oahu Island, Hawai’i (21°15’20.7“N 157°47’30.8“W). This area, defined as a rocky intertidal zone, is primarily comprised of basalt outcrops, boulders and benches, and supports a diverse community of epibenthic flora and fauna. The area is relatively easy to access by foot, and has been continuously exposed to various anthropogenic factors, which includes development, urban run-off, and subsistence fishing.The microclimate of the region is characterized by mild, wet winters (January to March) and dry, hot summers (July to September). The mean daily atmospheric temperature range and mean daily sea-surface temperature range are 18.44–31.38 °C and 22.67–30.18 °C, respectively. The annual precipitation is low relative to windward sides of the island, with maximum rainfall of 6.35 cm (data sources: US climate station USC00519397: Waikiki 717.2; PacIOOS Nearshore Sensor 04 (NS04): Waikiki Aquarium). Although freshwater input from precipitation along this coastline is considered to be marginal, the mixing of submarine groundwater discharge generates a unique geochemical profile for surface seawater at Ka’alawai. In particular, the mean surface salinity for this study site has been reported to be 25.4 ‰, which reflects this highly localized land-sea interaction45.The coastal oceanography of this region is predominantly influenced by wave, wind, and tidal forces. The south-shore region experiences a mixed tidal cycle—having both diurnal and semi-diurnal sinusoidal constituents per lunar day—with a tidal range of 58 cm and 91 cm during neap tide and spring tide, respectively; The trade winds from north-easterly direction (between 22.5°–67.5°) account for ~63% of the year with mean annual intensity around 5 m/s;46 and South swells with wave amplitudes of ~3 m are generated by storms in the Tasmanian Sea during Northern Hemisphere Summer47,48.Modern and historical specimensOn June 28th of 2018, live Yellowfoot limpet (Cellana sandwicensis) specimens CW1 and CW2 were collected from the rocky intertidal zone at Ka’alawai, Oahu, Hawai’i (Fig. 7). The animals were immediately sacrificed/dissected using scalpel blade, and measured for shell dimensions using a caliper. Limpets were weighed to determine gonadosomatic index, and gonads were preserved for histological examination. Shells were rinsed in an ultrasonic bath and air-dried.Fig. 7: Study site map.Hawaiian limpet specimens (Cellana sandwicensis) were collected along the rocky intertidal shoreline of Ka’alawai (Oahu, Hawaii). Instrumental sea-surface temperatures were measured in-situ by PacIOOS Nearshore Sensor 04 (NS04) at the Waikiki Aquarium.Full size imageA historical specimen BPBM (identification number 250851-200492) was loaned from the Bernice Pauahi Bishop Museum Malacology Department Collection. This specimen’s geographical and ecological origin is unknown, but was identified as C. sandwicensis by its characteristic shell morphology49. This specimen was selected for its large size to estimate life-expectancy of this limpet species, as well as to evaluate this method for paleoclimatology studies.Permission was not required to obtain specimens used in this study, and limpets were collected at a size exceeds the legal minimum shell length of 31.8 mm (Hawaii State Law is enforced by Department of Land and Natural Resources). Ethical approval was not required to conduct analysis.Characterization of shell microstructureShell microstructure was identified before isotopic analysis could be attempted. Each shell was cross-sectioned from anterior to posterior direction using a low speed saw (Isomet 1000, Buehler) equipped with a 0.5 mm diamond coated blade. Parallel cuts were made at the apex or maximal growth-axis to obtain two replicate 1.3 mm thick-sections per specimen. The first replicate thick-sections, prepared for micro-sampling, were further cut into More

  • in

    Tree diversity and soil chemical properties drive the linkages between soil microbial community and ecosystem functioning

    1.Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–73. https://doi.org/10.1038/nature04514.CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Stocker TF, et al. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA; 2013.3.Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304:1623–7. https://doi.org/10.1126/science.1097396.CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Trumbore SE. Potential responses of soil organic carbon to global environmental change. Proc Natl Acad Sci USA. 1997;94:8284–91. https://doi.org/10.1073/pnas.94.16.8284.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Schlesinger WH, Andrews JA. Soil respiration and the global carbon cycle. Biogeochemistry. 2000;48:7–20. https://doi.org/10.1023/A:1006247623877.CAS 
    Article 

    Google Scholar 
    6.Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol. 2010;8:779–90. https://doi.org/10.1038/nrmicro2439.CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541 https://doi.org/10.1038/ncomms10541.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Liu Y-R, Delgado-Baquerizo M, Wang JT, Hu HW, Yang Z, He JZ. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol Biochem. 2018;118:35–41. https://doi.org/10.1016/j.soilbio.2017.12.003.9.McGuire KL, Treseder KK. Microbial communities and their relevance for ecosystem models: Decomposition as a case study. Soil Biol Biochem. 2010;42:529–35. https://doi.org/10.1016/j.soilbio.2009.11.016.10.Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW. et al. Winter forest soil respiration controlled by climate and microbial community composition. Nature. 2006;439:711–4. https://doi.org/10.1038/nature04555.CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nature Clim Change. 2013;3:909–12. https://doi.org/10.1038/nclimate1951.12.Delgado‐Baquerizo M, Maestre FT, Reich PB, Trivedi P, Osanai Y, Liu YR, et al. Carbon content and climate variability drive global soil bacterial diversity patterns. Ecol Monogr. 2016;86:373–90.Article 

    Google Scholar 
    13.Maaroufi NI, Long JR de. Global change impacts on forest soils: linkage between soil biota and carbon-nitrogen-phosphorus stoichiometry. Front For Glob Change. 2020;3. https://doi.org/10.3389/ffgc.2020.00016.14.Gottschall F, Davids S, Newiger-Dous TE, Auge H, Cesarz S, Eisenhauer N. Tree species identity determines wood decomposition via microclimatic effects. Ecol Evol. 2019;9:12113–27. https://doi.org/10.1002/ece3.5665.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Durán J, Delgado-Baquerizo M. Vegetation structure determines the spatial variability of soil biodiversity across biomes. Sci Rep. 2020;10:21500. https://doi.org/10.1038/s41598-020-78483-z.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Beugnon R, et al. Abiotic and biotic drivers of scale-dependent tree trait effects on soil microbial biomass and soil carbon concentration (in press).17.Pei Z, Eichenberg D, Bruelheide H, Kröber W, Kühn P, Li Y, et al. Soil and tree species traits both shape soil microbial communities during early growth of Chinese subtropical forests. Soil Biol Biochem. 2016;96:180–90. https://doi.org/10.1016/j.soilbio.2016.02.004.18.Xu S, Eisenhauer N, Ferlian O, Zhang J, Zhou G, Lu X. et al. Species richness promotes ecosystem carbon storage: evidence from biodiversity-ecosystem functioning experiments. Proc Biol Sci. 2020;287:20202063. https://doi.org/10.1098/rspb.2020.2063.CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun. 2015;6:6707. https://doi.org/10.1038/ncomms7707.CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA. et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56. https://doi.org/10.1038/nature10386.CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci Rep. 2017;7:44641. https://doi.org/10.1038/srep44641.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Huang Y, Ma Y, Zhao K, Niklaus PA, Schmid B, He JS. Positive effects of tree species diversity on litterfall quantity and quality along a secondary successional chronosequence in a subtropical forest. J Plant Ecol. 2017;10:28–35. https://doi.org/10.1093/jpe/rtw115.Article 

    Google Scholar 
    23.Fornara DA, Tilman D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J Ecol. 2008;96:314–22. https://doi.org/10.1111/j.1365-2745.2007.01345.x.CAS 
    Article 

    Google Scholar 
    24.Chen C, Chen HYH, Chen X, Huang Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat Commun. 2019;10:1332. https://doi.org/10.1038/s41467-019-09258-y.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Thoms C, Gattinger A, Jacob M, Thomas FM, Gleixner G. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biol Biochem. 2010;42:1558–65. https://doi.org/10.1016/j.soilbio.2010.05.030.CAS 
    Article 

    Google Scholar 
    26.Rousk J, Brookes PC, Bååth E. Investigating the mechanisms for the opposing pH relationships of fungal and bacterial growth in soil. Soil Biol Biochem. 2010;42:926–34. https://doi.org/10.1016/j.soilbio.2010.02.009.27.Miltner A, Bombach P, Schmidt-Brücken B, Kästner M. SOM genesis: microbial biomass as a significant source. Biogeochemistry. 2012;111:41–55. https://doi.org/10.1007/s10533-011-9658-z.CAS 
    Article 

    Google Scholar 
    28.Delgado-Baquerizo M, Reich PB, Khachane AN, Campbell CD, Thomas N, Freitag TE. et al. It is elemental: soil nutrient stoichiometry drives bacterial diversity. Environ Microbiol. 2017;19:1176–88. https://doi.org/10.1111/1462-2920.13642.CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Fanin N, Barantal S, Fromin N, Schimann H, Schevin P, Hättenschwiler S. Distinct microbial limitations in litter and underlying soil revealed by carbon and nutrient fertilization in a tropical rainforest. PLoS ONE. 2012;7:e49990. https://doi.org/10.1371/journal.pone.0049990.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7. https://doi.org/10.1126/science.aaf4507.CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Cao J, Jia X, Pang S, Hu Y, Li Y, Wang Q. Functional structure, taxonomic composition and the dominant assembly processes of soil prokaryotic community along an altitudinal gradient. Appl Soil Ecol. 2020;155:103647. https://doi.org/10.1016/j.apsoil.2020.103647.Article 

    Google Scholar 
    32.Bao Y, Guo Z, Chen R, Wu M, Li Z, Lin X. et al. Functional community composition has less environmental variability than taxonomic composition in straw-degrading bacteria. Biol Fertil Soils. 2020;56:869–74. https://doi.org/10.1007/s00374-020-01455-y.CAS 
    Article 

    Google Scholar 
    33.Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 2018;12:2470–8. https://doi.org/10.1038/s41396-018-0158-1.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Kuang J, Huang L, He Z, Chen L, Hua Z, Jia P. et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 2016;10:1527–39. https://doi.org/10.1038/ismej.2015.201.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Jurburg SD, Salles JF. Functional Redundancy and Ecosystem Function—The Soil Microbiota as a Case Study. In: Lo Y-H, Blanco JA, Roy S, editors. Biodiversity in Ecosystems—Linking Structure and Function. Rijeka, Croatia, InTech; 2015.36.Chen Q-L, Ding J, Li CY, Yan ZZ, He JZ, Hu HW. Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Sci Total Environ. 2020;734:139479. https://doi.org/10.1016/j.scitotenv.2020.139479.CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, Jeffries TC. et al. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. ISME J. 2016;10:2593–604. https://doi.org/10.1038/ismej.2016.65.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Hale L, Feng W, Yin H, Guo X, Zhou X, Bracho R. et al. Tundra microbial community taxa and traits predict decomposition parameters of stable, old soil organic carbon. ISME J. 2019;13:2901–15. https://doi.org/10.1038/s41396-019-0485-x.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Chen J, Sinsabaugh RL. Linking microbial functional gene abundance and soil extracellular enzyme activity: Implications for soil carbon dynamics. Glob Change Biol. 2021;27:1322–5. https://doi.org/10.1111/gcb.15506.Article 

    Google Scholar 
    40.Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology. Nat Geosci. 2010;3:336–40. https://doi.org/10.1038/ngeo846.41.Eisenhauer N, Bessler H, Engels C, Gleixner G, Habekost M, Milcu A. et al. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology. 2010;91:485–96. https://doi.org/10.1890/08-2338.1.CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Bonner MT, Shoo LP, Brackin R, Schmidt S. Relationship between microbial composition and substrate use efficiency in a tropical soil. Geoderma. 2018;315:96–103. https://doi.org/10.1016/j.geoderma.2017.11.026.CAS 
    Article 

    Google Scholar 
    43.Bárány A, Szili-Kovács T, Krett G, Füzy A, Márialigeti K, Borsodi AK. Metabolic activity and genetic diversity of microbial communities inhabiting the rhizosphere of halophyton plants. Acta Microbiol Immunol Hung. 2014;61:347–61. https://doi.org/10.1556/AMicr.61.2014.3.8.CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Chodak M, Klimek B, Niklińska M. Composition and activity of soil microbial communities in different types of temperate forests. Biol Fertil Soils. 2016;52:1093–104. https://doi.org/10.1007/s00374-016-1144-2.CAS 
    Article 

    Google Scholar 
    45.Lagomarsino A, Knapp BA, Moscatelli MC, De Angelis P, Grego S, Insam H. Structural and functional diversity of soil microbes is affected by elevated [CO2] and N addition in a poplar plantation. J Soils Sediments. 2007;7:399–405. https://doi.org/10.1065/jss2007.04.223.46.Crowther TW, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365. https://doi.org/10.1126/science.aav0550.47.Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB. et al. Understanding how microbiomes influence the systems they inhabit. Nat Microbiol. 2018;3:977–82. https://doi.org/10.1038/s41564-018-0201-z.CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Malik AA, Martiny J, Brodie EL, Martiny AC, Treseder KK, Allison SD. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:1–9. https://doi.org/10.1038/s41396-019-0510-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Sainte-Marie J, Barrandon M, Saint-André L, Gelhaye E, Martin F, Derrien D. C-STABILITY an innovative modeling framework to leverage the continuous representation of organic matter. Nat Commun. 2021;12:810. https://doi.org/10.1038/s41467-021-21079-6.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F. et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical C hina. Methods Ecol Evol. 2014;5:74–89. https://doi.org/10.1111/2041-210X.12126.Article 

    Google Scholar 
    51.Yu G, Chen Z, Piao S, Peng C, Ciais P, Wang Q. et al. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc Natl Acad Sci USA. 2014;111:4910–5. https://doi.org/10.1073/pnas.1317065111.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Bradstreet RB. Determination of Nitro Nitrogen by Kjeldahl Method. Anal Chem. 1954;26:235–6.CAS 
    Article 

    Google Scholar 
    53.Frostegård Å, Tunlid A, Bååth E. Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Methods. 1991;14:151–63. https://doi.org/10.1016/0167-7012(91)90018-L.54.Ruess L, Chamberlain PM. The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol Biochem. 2010;42:1898–910. https://doi.org/10.1016/j.soilbio.2010.07.020.55.Scheu S. Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces. Soil Biol Biochem. 1992;24:1113–8. https://doi.org/10.1016/0038-0717(92)90061-2.Article 

    Google Scholar 
    56.Schöps R, Goldmann K, Herz K, Lentendu G, Schöning I, Bruelheide H. et al. Land-use intensity rather than plant functional identity shapes bacterial and fungal rhizosphere communities. Front Microbiol. 2018;9:2711. https://doi.org/10.3389/fmicb.2018.02711.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Nawaz A, et al. DNA- and RNA- Derived Fungal Communities in Subsurface Aquifers Only Partly Overlap but React Similarly to Environmental Factors. Microorganisms. 2019;7. https://doi.org/10.3390/microorganisms7090341.58.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. https://doi.org/10.1038/s41587-019-0209-9.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 2011;17:10. https://doi.org/10.14806/ej.17.1.200.60.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. https://doi.org/10.1371/journal.pone.0061217.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Lahti L, Shetty S, Blake T, Salojarvi J. Microbiome R package. Tools Microbiome Anal R. 2017;1:504.63.Liang Y, Liu X, Singletary MA, Wang K, Mattes TE. Relationships between the Abundance and Expression of Functional Genes from Vinyl Chloride (VC)-Degrading Bacteria and Geochemical Parameters at VC-Contaminated Sites. Environ Sci Technol. 2017;51:12164–74. https://doi.org/10.1021/acs.est.7b03521.CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Zheng B, Zhu Y, Sardans J, Peñuelas J, Su J. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci China Life Sci. 2018;61:1451–62. https://doi.org/10.1007/s11427-018-9364-7.CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol. 2003;69:3593–9. https://doi.org/10.1128/aem.69.6.3593-3599.2003.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Rosseel Y. Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA). J Stat Softw. 2012;48:1–36.Article 

    Google Scholar 
    67.Paterson E, Osler G, Dawson LA, Gebbing T, Sim A, Ord B. Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: Independent of the presence of roots and mycorrhizal fungi. Soil Biol Biochem. 2008;40:1103–13. https://doi.org/10.1016/j.soilbio.2007.12.003.68.Kramer S, Dibbern D, Moll J, Huenninghaus M, Koller R, Krueger D. et al. Resource Partitioning between Bacteria, Fungi, and Protists in the Detritusphere of an Agricultural Soil. Front Microbiol. 2016;7:1524. https://doi.org/10.3389/fmicb.2016.01524.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Berg B. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecol Manag. 2000;133:13–22. https://doi.org/10.1016/S0378-1127(99)00294-7.Article 

    Google Scholar 
    70.Moretto AS, Distel RA, Didoné NG. Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Appl Soil Ecol. 2001;18:31–7. https://doi.org/10.1016/S0929-1393(01)00151-2.Article 

    Google Scholar 
    71.Kyker-Snowman E, Wieder WR, Frey SD, Grandy AS. Stoichiometrically coupled carbon and nitrogen cycling in the MIcrobial-MIneral Carbon Stabilization model version 1.0 (MIMICS-CN v1.0). Geosci Model Dev. 2020;13:4413–34. https://doi.org/10.5194/gmd-13-4413-2020.CAS 
    Article 

    Google Scholar 
    72.Buckeridge KM, Mason KE, McNamara NP, Ostle N, Puissant J, Goodall T. et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun Earth Environ. 2020;1:36. https://doi.org/10.1038/s43247-020-00031-4.Article 

    Google Scholar 
    73.Cesarz S, Craven D, Auge H, Bruelheide H, Castagneyrol B, Hector A, et al.. Biotic and abiotic drivers of soil microbial functions across tree diversity experiments. bioRXiv 2020. https://doi.org/10.1101/2020.01.30.927277.74.Tedersoo L, Bahram M, Cajthaml T, Põlme S, Hiiesalu I, Anslan S. et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J. 2016;10:346–62. https://doi.org/10.1038/ismej.2015.116.CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Huang Y, Chen Y, Castro-Izaguirre N, Baruffol M, Brezzi M, Lang A. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science. 2018;362:80–3. https://doi.org/10.1126/science.aat6405.CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Chapman SK, Newman GS, Hart SC, Schweitzer JA, Koch GW. Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition. PLoS ONE. 2013;8:e62671. https://doi.org/10.1371/journal.pone.0062671.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Eisenhauer N, Dobies T, Cesarz S, Hobbie SE, Meyer RJ, Worm K. et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc Natl Acad Sci USA. 2013;110:6889–94. https://doi.org/10.1073/pnas.1217382110.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Brandt BW, Kelpin FDL, van Leeuwen IMM, Kooijman SALM. Modelling microbial adaptation to changing availability of substrates. Water Res. 2004;38:1003–13. https://doi.org/10.1016/j.watres.2003.09.037.CAS 
    Article 
    PubMed 

    Google Scholar 
    79.Hooper DU, BIGNELL DE, BROWN VK, BRUSSARD L, MARK DANGERFIELD J, WALL DH, et al. Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems: Patterns, Mechanisms, and Feedbacks. BioScience. 2000;50:1049.Article 

    Google Scholar 
    80.Domke GM, Oswalt SN, Walters BF, Morin RS. Tree planting has the potential to increase carbon sequestration capacity of forests in the United States. Proc Natl Acad Sci USA. 2020;117:24649–51. https://doi.org/10.1073/pnas.2010840117.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Tong X, Brandt M, Yue Y, Ciais P, Rudbeck Jepsen M, Penuelas J. et al. Forest management in southern China generates short term extensive carbon sequestration. Nat Commun. 2020;11:129. https://doi.org/10.1038/s41467-019-13798-8.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Veldkamp E, Schmidt M, Powers JS, Corre MD. Deforestation and reforestation impacts on soils in the tropics. Nat Rev Earth Environ. 2020;1:590–605. https://doi.org/10.1038/s43017-020-0091-5.Article 

    Google Scholar 
    83.Lewis SL, Wheeler CE, Mitchard ETA, Koch A. Restoring natural forests is the best way to remove atmospheric carbon. Nature. 2019;568:25–8. https://doi.org/10.1038/d41586-019-01026-8.CAS 
    Article 
    PubMed 

    Google Scholar  More