More stories

  • in

    Universal scaling of robustness of ecosystem services to species loss

    1.Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go?. Ecosyst. Serv. 28, 1–16 (2017).Article 

    Google Scholar 
    2.Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).PubMed 
    Article 

    Google Scholar 
    4.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.De Vos, J. M., Joppa, L. N., Gittleman, J. L., Stephens, P. R. & Pimm, S. L. Estimating the normal background rate of species extinction. Conserv. Biol. 29, 452–462 (2015).PubMed 
    Article 

    Google Scholar 
    6.Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Nic Lughadha, E. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).PubMed 
    Article 

    Google Scholar 
    7.Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    8.Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Isbell, F., Tilman, D., Polasky, S. & Loreau, M. The biodiversity-dependent ecosystem service debt. Ecol. Lett. 18, 119–134 (2015).PubMed 
    Article 

    Google Scholar 
    11.Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    12.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).ADS 
    Article 

    Google Scholar 
    13.Reilly, J. R. et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. R. Soc. B. 287, 20200922 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    15.Kaiser‐Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).PubMed 
    Article 

    Google Scholar 
    16.Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Duncan, C., Thompson, J. R. & Pettorelli, N. The quest for a mechanistic understanding of biodiversity–ecosystem services relationships. Proc. R. Soc. B 282, 20151348 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).PubMed 
    Article 

    Google Scholar 
    19.Dee, L. E. et al. Operationalizing network theory for ecosystem service assessments. Trends Ecol. Evol. 32, 118–130 (2017).PubMed 
    Article 

    Google Scholar 
    20.Mastrángelo, M. E. et al. Key knowledge gaps to achieve global sustainability goals. Nat. Sustain. 2, 1115–1121 (2019).Article 

    Google Scholar 
    21.Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Mace, G. M., Hails, R. S., Cryle, P., Harlow, J. & Clarke, S. J. Towards a risk register for natural capital. J. Appl. Ecol. 52, 641–653 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1072–1085 (2016).Article 

    Google Scholar 
    24.Keyes, A. A., McLaughlin, J. P., Barner, A. K. & Dee, L. E. An ecological network approach to predict ecosystem service vulnerability to species losses. Nat. Commun. 12, 1586 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Pillar, V. D. et al. Functional redundancy and stability in plant communities. J. Veg. Sci. 24, 963–974 (2013).Article 

    Google Scholar 
    27.Feit, B., Blüthgen, N., Traugott, M. & Jonsson, M. Resilience of ecosystem processes: a new approach shows that functional redundancy of biological control services is reduced by landscape simplification. Ecol. Lett. 22, 1568–1577 (2019).PubMed 
    Article 

    Google Scholar 
    28.Salski, A. Ecological applications of fuzzy logic. Pages 3–14 in Ecological Informatics (ed. Recknagel, F.) (Springer, 2003).29.Ehrlich, P. R. & Mooney, H. A. Extinction, substitution, and ecosystem services. Bioscience 33, 248–254 (1983).Article 

    Google Scholar 
    30.Winfree, R. & Kremen, C. Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. R. Soc. B 276, 229–237 (2009).PubMed 
    Article 

    Google Scholar 
    31.Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684 (2007).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. B 269, 1721–1727 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Petchey, O. L., Hector, A. & Gaston, K. J. How do different measures of functional diversity perform? Ecology 85, 847–857 (2004).Article 

    Google Scholar 
    34.Maseyk, F. J. F., Demeter, L., Csergő, A. M. & Buckley, Y. M. Effect of management on natural capital stocks underlying ecosystem service provision: a ‘provider group’ approach. Biodivers. Conserv. 26, 3289–3305 (2017).Article 

    Google Scholar 
    35.Schröter, M. et al. Assumptions in ecosystem service assessments: increasing transparency for conservation. Ambio 50, 289–300 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Dee, L. E. et al. When do ecosystem services depend on rare species? Trends Ecol. Evol. 34, 746–758 (2019).PubMed 
    Article 

    Google Scholar 
    37.Des Roches, S., Pendleton, L. H., Shapiro, B. & Palkovacs, E. P. Conserving intraspecific variation for nature’s contributions to people. Nat. Ecol. Evol. 5, 574–582 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Lafuite, A.-S., de Mazancourt, C. & Loreau, M. Delayed behavioural shifts undermine the sustainability of social–ecological systems. Proc. R. Soc. B 284, 20171192 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    40.Wyborn, C. et al. Imagining transformative biodiversity futures. Nat. Sustain. 3, 670–672 (2020).Article 

    Google Scholar 
    41.Bodin, Ö. et al. Improving network approaches to the study of complex social–ecological interdependencies. Nat. Sustain. 2, 551–559 (2019).Article 

    Google Scholar 
    42.Palumbi, S. R. et al. Managing for ocean biodiversity to sustain marine ecosystem services. Front. Ecol. Environ. 7, 204–211 (2009).Article 

    Google Scholar 
    43.Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).PubMed 
    Article 

    Google Scholar 
    44.White, L., O’Connor, N. E., Yang, Q., Emmerson, M. C. & Donohue, I. Individual species provide multifaceted contributions to the stability of ecosystems. Nat. Ecol. Evol. 4, 1594–1601 (2020).PubMed 
    Article 

    Google Scholar 
    45.Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).PubMed 
    Article 

    Google Scholar 
    46.Moreno-Mateos, D. et al. The long-term restoration of ecosystem complexity. Nat. Ecol. Evol. 4, 676–685 (2020).PubMed 
    Article 

    Google Scholar 
    47.Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271, 2605–2611 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Purvis, A., Agapow, P. M., Gittleman, J. L. & Mace, G. M. Nonrandom extinction and the loss of evolutionary history. Science 288, 328–330 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Gross, K. & Cardinale, B. J. The functional consequences of random vs. ordered species extinctions. Ecol. Lett. 8, 409–418 (2005).Article 

    Google Scholar 
    51.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Ross, S. R. P.-J. et al. Code from: Universal scaling of robustness of ecosystem services to species loss (Version V0.4.2-beta). zenodo https://doi.org/10.5281/zenodo.4749405 (2021). More

  • in

    Extinction of threatened vertebrates will lead to idiosyncratic changes in functional diversity across the world

    Spatial databaseWe collected species occurrences from the most accurate and available source of data for each taxonomic group. For mammals, birds, reptiles and amphibians, we used the IUCN spatial database to assign realm identity for each species15. By doing this, we assigned a realm for 5489 mammal species, 10,787 bird species, 5489 reptile species and 5833 amphibian species. Since IUCN spatial database does not cover all species, we completed our database with two additional sources of species occurrences: (1) the WWF WildFinder species database23, except for mammals where we used the latest version of the species distribution provided by ref. 24. If (1) was not available, we used (2) the global biodiversity information facility (GBIF). Using WWF WildFinder, we assigned a realm for 1634 bird species, 7378 reptile species and 2006 amphibian species. 437 mammal species were assigned using ref. 24. From GBIF, we downloaded all the records belonging to the four classes of animals (Mammals50, Aves51, Reptiles52 and Amphibians53). Before using the spatial data, we cleaned the dataset following a cleaning procedure that was similar to but more conservative than other currently available methods (e.g. CoordinatesCleaner, BDCleaner54). First, records were screened, and only those with (1) coordinates; (2) a taxonomic rank of “species” were kept. From this list, we filtered out the records with clearly false locality coordinates (e.g. latitude equal to longitude, both latitude and longitude equal to 0, and longitude/latitude outside the possible range (i.e. −180; 180 for longitude and −90; 90 for latitude)). Those are the most common errors encountered with GBIF occurrence data55. In addition, we removed the records from living specimens (i.e. from zoos, botanical gardens), conserved specimens (i.e. museums), and unknown sources. We also excluded the species with less than 50 records within each realm as a low number of records can be due to misidentifications, which might have strong effects on our analyses. We finally refined the dataset by overlaying the occurrences within the six biogeographic realms (see below) and dropping the species that fall outside of the polygons. This spatial overlay process was conducted using the ‘sp’ library56 in R. The number of species for which realm was assigned using GBIF was 1 ( More

  • in

    2000 years of agriculture in the Atacama desert lead to changes in the distribution and concentration of iron in maize

    1.Marles, R. Mineral nutrient composition of vegetables, fruits and grains: The context of reports of apparent historical declines. J. Food Compos. Anal. 56, 93–103 (2017).CAS 
    Article 

    Google Scholar 
    2.Davis, D. Declines in iron content of foods. Br. J. Nutr. 109, 2111 (2013).CAS 
    Article 

    Google Scholar 
    3.Davis, D. Commentary on: “Historical variation in the mineral composition of edible horticultural products” (White, P. J and Broadley, M.R (2005) Journal of Horticultural Science & Biotechnology, 80, 660-667). J. Horticult. Sci. Biotechnol. 81(3), 553–554 (2006).Article 

    Google Scholar 
    4.Broadley, M. R., Mead, A. & White, P. J. Replay to Davis (2006) Commentary. J. Horticult. Sci. Technol. 81(3), 554–555 (2006).
    Google Scholar 
    5.Teklic, T., Loncaric, Z., Kovacevic, V. & Singh, B. R. Metallic trace elements in cereal grain—a review: How much metal do we eat?. Food Energy Secur. 2(2), 81–95 (2013).Article 

    Google Scholar 
    6.Ranum, P., Peña-Rosas, J. P. & Garcia-Casal, M. N. Global maize production, utilization and consumption. Ann N Y Acad Sci. 1312, 105–112 (2014).ADS 
    Article 

    Google Scholar 
    7.Vidal Elgueta, A., Hinojosa, L. F., Pérez, M. F., Peralta, G. & Rodríguez, M. U. Genetic and phenotypic diversity in 2000 years old maize (Zea mays L.) samples from the Tarapacá region, Atacama Desert, Chile. PLoS ONE 14(1), e0210369. https://doi.org/10.1371/journal.pone.0210369 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Fan, M. S., Fairweather, S., Polton, P., Dunham, S. & Mcrath, S. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 22, 315–324 (2008).CAS 
    Article 

    Google Scholar 
    9.McGrath, S. The effects of increasing yields on the macro- and microelement concentrations and offtakes in the grain of winter wheat. J. Sci. Food Agric. 36, 1073–1083 (1985).CAS 
    Article 

    Google Scholar 
    10.De Fries, R., Fanzo, J., Remans, R., Palm, C. & Wood, S. Metrics for land-scarce agriculture Nutrient content must be better integrated into planning. Science 349(6245), 238–240 (2015).ADS 
    Article 

    Google Scholar 
    11.Roschzttardtz, H., Conéjéro, G., Curie, C. & Mari, S. Identification of the endotermal vacuole as the iron storage compartment in the arabidopsis embryo. Plant Physiol. 151, 1329–1338 (2009).CAS 
    Article 

    Google Scholar 
    12.Zang, J. et al. Maize YSL2 is required for iron distribution and development in kernels. J. Exp. Bot. 71, 5896–5910 (2020).CAS 
    Article 

    Google Scholar 
    13.Roschzttardtz, H. et al. Plant cell nucleolus as a hot spot for iron. J. Biol. Chem. 286, 27863–27866 (2011).CAS 
    Article 

    Google Scholar 
    14.Ibeas, M., Grant-Grant, S., Navarro, N., Perez, F. & Roschzttardtz, H. Dynamic subcellular localization of iron during embryo development in Brassicaceae seeds. Front. Plant Sci. 8, 2186 (2017).Article 

    Google Scholar 
    15.Santana-Sagredo, F. et al. ‘White gold’ guano fertilizer drove agricultural intensification in the Atacama Desert from AD 1000. Nat. Plants. 7, 152–158 (2021).CAS 
    Article 

    Google Scholar 
    16.García, M. et al. Alimentos, tecnologías vegetales y paleoambiente en las aldeas formativas de la pampa del Tamarugal (ca. 900 a.C.–800 d.C.). Estudios Atacameños. 47, 33–58 (2014).Article 

    Google Scholar 
    17.Santana-Sagredo, F., Uribe, M., Herrera, M. J., Retamal, R. & Flores, S. Brief communication: Dietary practices in ancient populations from northern chile during the transition to agriculture (Tarapaca Region, 1000 BC-AD 900). Am. J. Phys. Anthropol. 158(4), 751–758 (2014).Article 

    Google Scholar 
    18.Santoro, C. M. et al. Continuities and discontinuities in the socio-environmental systems of the Atacama Desert during the last 13,000 years. J. Anthropol. Archaeol. 46, 28–39 (2017).Article 

    Google Scholar 
    19.Roschzttardtz, H., Conejero, G., Curie, C. & Mari, S. Identification of the endodermal vacuole as the iron storage compartment in the arabidopsis embryo. Plant Physiol. 151, 1329–1338 (2009).CAS 
    Article 

    Google Scholar 
    20.Ibeas, M. et al. The diverse iron distribution in Eudicotyledoneae seeds: From Arabidopsis to Quinoa. Front. Plant Sci. 15, 1985 (2019).Article 

    Google Scholar 
    21.Davis, D., Epp, M. & Riordan, H. Changes in USDA food composition data for 43 Garden crops, 1950 to 1990. J. Am. Coll. Nutr. 23(6), 669–682 (2004).CAS 
    Article 

    Google Scholar 
    22.White, P. J. & Broadley, M. R. Historical variation in the mineral composition of edible horticultural products. J. Horticult. Sci. Biotrchnol. 80(6), 660–667 (2005).Article 

    Google Scholar 
    23.Bronk Ramsey, C. Methods for summarizing radiocarbon datasets. Radiocarbon 59(2), 1809–1833 (2017).Article 

    Google Scholar 
    24.Hogg, A. G. et al. SHCal13 southern hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55(4), 1889–1903 (2013).CAS 
    Article 

    Google Scholar 
    25.Gao, F., Robe, K., Bettembourg, M., Navarro, N., Rofidal, V., Santoni, V., Gaymard, F., Vignols, F., Roschzttardtz, H., Izquierdo, E., & Dubos, C. The transcription factor bHLH121 interacts with bHLH105 (ILR3) and its closest homologs to regulate iron homeostasis in arabidopsis. Plant Cell, 32, 508–524 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Causes of admission, length of stay and outcomes for common kestrels in rehabilitation centres in the Czech Republic

    1.McClure, C. J. W. et al. State of the world’s raptors: Distributions, threats, and conservation recommendations. Biol. Conserv. 227, 390–402 (2018).Article 

    Google Scholar 
    2.Bernardino, J. et al. Bird collisions with power lines: State of the art and priority areas for research. Biol. Conserv. 222, 1–13 (2018).Article 

    Google Scholar 
    3.Hager, S. B. Human-related threats to urban raptors. J. Raptor Res. 43, 210–226 (2009).Article 

    Google Scholar 
    4.Molina-López, R. A., Casal, J. & Darwich, L. Causes of morbidity in wild raptor populations admitted at a wildlife rehabilitation centre in Spain from 1995–2007: A long term retrospective study. PLoS ONE 6, e24603. https://doi.org/10.1371/journal.pone.0024603 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Rodríguez, B., Rodríguez, A., Siverio, F. & Siverio, M. Causes of raptor admissions to a wildlife rehabilitation centre in Tenerife (Canary Islands). J. Raptor Res. 44, 30–39 (2010).Article 

    Google Scholar 
    6.Komnenou, A. T., Georgopoulou, I., Savvas, I. & Dessiris, A. (2005) A retrospective study of presentation, treatment, and outcome of fre-ranging raptors in Greece. J. Zoo. Wildl. Med. 36, 222–228 (2005).PubMed 
    Article 

    Google Scholar 
    7.Harris, M. C. § Sleeman, J. M. Morbidity and mortality of Bald Eagles (Haliaeetus leucocephalus) and Peregrine Falcons (Falco peregrinus) admitted to the wildlife center of Virginia, 1993–2003. J.Zoo Wildl. Med. 38, 62–66 (2007).8.IUCN Red List. 2020. Common kestrel [online]. [vid. 31st 11. 2020]. Available from: https://www.iucnredlist.org/species/22696362/935564299.Smallwood, J. A. et al. Why are American kestrel (Falco sparverius) populations declining in North America? Evidence from nest-box programs. J. Raptor Res. 43, 274–282 (2009).Article 

    Google Scholar 
    10.Wendell, M. D., Sleeman, J. M. & Kratz, G. Retrospective study of morbidity and mortality of raptors admitted to Colorado State University Veterinary Teaching Hospital during1995 to 1998. J. Wildl. Dis. 38, 101–106 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Costantini, D., Dell Omo, G., La Fata, I. & Casagrande, S. Reproductive performance of Eurasian Kestrel Falco tinnunculus in an agricultural landscape with a mosaic of land uses. Ibis 156, 768–776 (2014).12.Buck, A., Carrillo-Hidalgo, J., Camarero, P. R. & Mateo, R. Organochlorine pesticides and polychlorinated biphenyls in common kestrel eggs from the Canary Islands: Spatio temporal variations and effects on egg shell and reproduction. Chemosphere 261, 127722; https://doi.org/10.1016/j.chemosphere.2020.127722 (2020).13.Wienburg, C. L. & Shore, R. F. Factors influencing liver PCB concentrations in sparrowhawks (Accipiter nisus), kestrels (Falco tinnunculus) and herons (Ardea cinerea) in Britain. Environ. Pollut. 132, 41–50 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Pain, D. J. & Amiardtriquet, C. Lead poisoning of raptors in France and elsewhere. Ecotoxicol. Environ. Saf. 25, 183–192 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Newton, I., Wyllie, I. & Dale, L. Trends in the numbers and mortality patterns of sparrowhawks (Accipiter nisus) and kestrels (Falco tinnunculus) in Britain, as revealed by carcass analyses. J. Zool. 248, 139–147 (1999).Article 

    Google Scholar 
    16.Burfield, I. J. The conservation status and trends of raptors and owls in Europe. Ambio 37, 401–407 (2008).PubMed 
    Article 

    Google Scholar 
    17.González, L. M. et al. Causes and spatio-temporal variations of non-natural mortality in the vulnerable Spanish imperial eagle Aquila Adalbert during a recovery period. Oryx 41, 495–502 (2007).Article 

    Google Scholar 
    18.Sumasgutner, P., Schulze, C. H., Krenn, H. W. & Gamauf, A. Conservation related conflicts in nest-site selection of the Eurasian kestrel (Falco tinnunculus) and the distribution of its avian prey. Landscape Urban. Plan. 127, 94–103 (2014).Article 

    Google Scholar 
    19.Sumasgutner, P., Adrion, M. & Gamauf, A. Carotenoid coloration and health status of urban Eurasian kestrels (Falco tinnunculus). PLoS ONE 13, e0191956. https://doi.org/10.1371/journal.pone.0191956 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Rejt, L., Rutkowvsi, R. & Gryczynska-Siemiatkowska, A. Genetic variability of urban kestrels in Warsaw – preliminary data. Zool. Pol. 49, 199–209 (2004).
    Google Scholar 
    21.Riddle, G. S.The kestrel in Ayrshire 1970–1978. The Journal of the Scottish Ornithologists´ Club 10, 200–216 (1979).22.Forero, M. G., Tella, J. L., Donázar, J. A. & Hiraldo, F. Canister specific competition and nest site availability explain the decrease of lesser kestrel Falcon populations?. Biol. Conserv. 78, 289–293 (1996).Article 

    Google Scholar 
    23.Medica, D. L., Clauser, R. & Bildstein, K. Prevalence of West Nile Virus antibodies in a breeding population of American kestrels (Falco sparverius) in Pennsylvania. J. Wildl. Dis. 43, 538–541 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Griffith, J. E., Dhand, N. K., Krockenberger, M. B. & Higgins, D. P. A retrospective study of admission trends of koalas to a rehabilitation facility over 30 years. J. Wildl. Dis. 49, 18–28 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Long, R. B., Krumlauff, K. & Young, A. M. Characterizing trends in human-wildlife conflicts in the American Midwest using wildlife rehabilitation records. PLoS ONE 15, e0238805. https://doi.org/10.1371/journal.pone.0238805 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Lukesova, G., Voslarova, E., Vecerek, V. & Vucinic, M. Trends in intake and outcomes for European hedgehog (Erinaceus europaeus) in the Czech rescue centres. PLoS One 16, e0248422; https://doi.org/10.1371/journal.pone.0248422 (2021).27.Crespo Martínez, J., Izquierdo Rosique, A. & Surroca Royo, M. Causes of admission and final dispositions of hedgehogs admitted to three Wildlife Rehabilitation Centres in eastern Spain. Hystrix 25, 107–110 (2014).28.Kelly, A. & Bland, M. Admissions, diagnoses, and outcomes for Eurasian sparrowhawks (Accipiter nisus) brought to a wildlife rehabilitation centre in England. J. Raptor. Res. 40, 231–235 (2006).Article 

    Google Scholar 
    29.Kübler, S., Kupko, S. & Zeller, U. The kestrel (Falco tinnunculus L.) in Berlin: Investigation of breeding biology and feeding ecology. J. Ornithol. 146, 271–278 (2005).Article 

    Google Scholar 
    30.Carrillo, J. & González-Dávila, E. Impact of weather on breeding success of the Eurasian kestrel Falco tinnunculus in a semi-arid island habitat. Ardea 98, 51–58 (2010).Article 

    Google Scholar 
    31.Carrillo, J. & Aparicio, J. M. Nest defense behavior of the Eurasian kestrel (Falco tinnunculus) against human predators. Ethology 107, 865–875 (2001).Article 

    Google Scholar 
    32.Strasser, E. H. & Heath, J. S. Reproductive failure of a human – tolerant species, the American kestrel, is associated with stress and human disturbance. J. Appl. Ecol. 50, 912–919 (2013).Article 

    Google Scholar 
    33.Baudains, T. P. & Lloyd, P. Habituation and habitat changes can moderate the impacts of human disturbance on shorebird breeding performance. Anim. Conserv. 1, 400–407 (2007).Article 

    Google Scholar 
    34.French, S. S., González-Suárez, M., Young, J. K., Durham, S. & Gerber, L. R. Human disturbance influences reproductive success and growth rate in California Sea Lions (Zalophus californianus). PLoS ONE 6, e17686. https://doi.org/10.1371/journal.pone.0017686 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Halfwerk, W., Holleman, L. J. M., Lessells, C., Kate, M. & Slabbekoorn, H. Negative impact of traffic noise on avian reproductive success: Traffic noise and avian reproductive success. J. Appl. Ecol. 48, 210–219 (2011).Article 

    Google Scholar 
    36.Ponce, C., Alonso, J. C., Argandoña, G., García Fernández, A. & Carrasco, M. Carcass removal by scavengers and search accuracy affect bird mortality estimates at power lines: Bias sources affecting power-line bird mortality estimates. Anim. Conserv. 13, 603–612 (2010).Article 

    Google Scholar 
    37.Lasch, U., Zerbe, S. & Lenk, M. Electrocution of raptors at power lines in Central Kazakhstan. Waldokologie Online 9, 95–100 (2010).
    Google Scholar 
    38.Rubolini, D., Bassi, E., Bogliani, G., Galeotti, P. & Garavaglia, R. Eagle Owl Bubo bubo and power line interactions in the Italian Alps. Bird Conserv. Int. 11, 19–324 (2001).Article 

    Google Scholar 
    39.López-López, P., Ferrer, M., Madero, A., Casado, E. & McGrady, M. Solving man-induced large-scale conservation problems: the Spanish Imperial Eagle and power lines. PLoS ONE 6, e17196. https://doi.org/10.1371/journal.pone.0017196 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Bevanger, K. Biological and conservation aspects of bird mortality caused by electricity power lines: A review. Biol. Conserv. 86, 67–76 (1998).Article 

    Google Scholar 
    41.Janss, G. F. E. Avian mortality from power lines: A morphological approach of a species-specific mortality. Biol. Conserv. 95, 353–359 (2000).Article 

    Google Scholar 
    42.Eccleston, D.T. & Harness, R. E. Raptor electrocutions and power line collisions in Birds of Prey (ed. Eccleston, D.T. & Harness, R. E) 273–302 (Sarasola J, Grande J &Negro J, 2018).43.Bevanger, K. (2008) Bird interactions with utility structures: Collision and electrocution, causes and mitigating measures. Ibis 136, 412–425 (2008).Article 

    Google Scholar 
    44.Guil, F. et al. Minimising mortality in endangered raptors due to power lines: The importance of spatial aggregation to optimize the application of mitigation measures. PLoS ONE 6, e28212. https://doi.org/10.1371/journal.pone.0028212 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Sergio, F., Marchesi, L., Pedrini, P., Ferrer, M. & Penteriani, V. Electrocution alters the distribution and density of a top predator, the eagle owl Bubo bubo: Effects of electrocution on eagle owls. J. Appl. Ecol. 41, 836–845 (2004).Article 

    Google Scholar 
    46.Mañosa, S. Strategies to identify dangerous electricity pylons for birds. Biodivers. Conserv. 10, 1997–2012 (2001).Article 

    Google Scholar 
    47.Guyonne, F. E. & Ferrer, M. Mitigation of raptor electrocution on steel power poles. Wildl. Society Bulletin 27, 263–273 (1999).
    Google Scholar 
    48.Zoubi, M. Y. A., Hamidan, N. A., Baker, M. A. A. & Amr, Z. Causes of raptor admissions to rehabilitation in Jordan. J. Raptor Res. 54, 273–278 (2020).Article 

    Google Scholar 
    49.Montesdeoca, N., Calabuig, P., Corbera, J. A., Rocha, J. & Orós, J. Final outcome of raptors admitted to the Tafira Wildlife Rehabilitation Centre, Gran Canaria Island, Spain (2003–2013). Anim. Biodivers. Conserv. 40, 211–220 (2017).Article 

    Google Scholar 
    50.Cooper, J. E. Raptor care and rehabilitation: precedents, progress and potential. J. Raptor Res. 21, 21–26 (1987).
    Google Scholar 
    51.Lam, S. W., Leenen, L. P. H., van Solinge, W. W., Hietbrink, F. & Huisman, A. Evaluation of hematological parameters on admission for the prediction of 7-day in-hospital mortality in a large trauma cohort. Clin. Chem. Lab. Med. 49, 493–499 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Sara, R. & Craig, G. A. A retrospective study of mortality and rehabilitation of raptors in the southern United States. J. Raptor Res. 38, 77–81 (2004).
    Google Scholar 
    53.Goldberg, H. K. Hearing impairment: a family crisis. Soc. Work Health Care 5, 33–40 (1979).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Molina-López, R. A., Mañosa, S., Torres-Riera, A., Pomarol, M. & Darwich, L. Morbidity, outcomes and cost-benefit analysis of wildlife rehabilitation in Catalonia (Spain). PLoS ONE 12, e0181331. https://doi.org/10.1371/journal.pone.0181331 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Molony, S.E., Baker, P. J., Garland, L., Cuthill, I. C. & Harris, S. 2007. Factors that can be used to predict release rates for wildlife casualties. Anim. Welfare 16, 361–367 (2007).56.Kirkwood, J. & Best, R. Treatment and rehabilitation of wildlife casualties: legal and ethical aspects. Practice 20, 214–216 (1998).Article 

    Google Scholar 
    57.Naldo, J. L. & Samour, J. H. Causes of morbidity and mortality in falcons in Saudi Arabia. J. Avian Med. Surg. 18, 229–241 (2004).Article 

    Google Scholar 
    58.Pain, D. J., Mateo, R. § Green, R. E. Effects of lead from ammunition on birds and other wildlife: A review and update. Ambio 48, 935–953 (2019).59.Thompson, L. J., Hoffman, B. & Brown, M. Causes of admissions to a raptor rehabilitation centre in KwaZulu-Natal South Africa. Afr. Zool. 48, 359–366 (2013).Article 

    Google Scholar 
    60.Tintó, A., Real, J. & Mañosa, S. Predicting and correcting electrocution of birds in Mediterranean areas. J. Wildl. Manage. 74, 1852–1862 (2010).Article 

    Google Scholar 
    61.Kemper, M. K., Court, G. S. & Beck, J. A. Estimating raptor electrocution mortality on distribution power lines in Alberta Canada. J. Wildl. Manage. 77, 1342–1352 (2013).Article 

    Google Scholar 
    62.Csermely, D. Duration of the rehabilitation period and familiarity with the prey affect the predatory behavior of captive wild kestrels (Falco tinnunculus). B. Zool. 60, 211–214 (1993).Article 

    Google Scholar 
    63.Fischer, D., Hampel, M. R. & Lierz, M. Monitoring of rehabilitated and evaluated grapevine medium Telemetry as success control. Tierarztl. Prax. K. H. 42, 29–35 (2014).CAS 
    Article 

    Google Scholar 
    64.Republic, C. Act on the protection of animals against cruelty. Collection of Law. 50, 1284–1290 (1992).
    Google Scholar  More

  • in

    Intraspecific variation in metal tolerance modulate competition between two marine diatoms

    1.Blowes SA, Supp SR, Antão LH, Bates A, Bruelheide H, Chase JM, et al. The geography of biodiversity change in marine and terrestrial assemblages. Science. 2019;366:339–45.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Blanck H. A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum Ecol Risk Assess. 2002;8:1003–34.Article 

    Google Scholar 
    3.Tlili A, Berard A, Blanck H, Bouchez A, Cássio F, Eriksson KM, et al. Pollution‐induced community tolerance (PICT): towards an ecologically relevant risk assessment of chemicals in aquatic systems. Freshwat Biol. 2016;61:2141–51.CAS 
    Article 

    Google Scholar 
    4.Duxbury T. Ecological aspects of heavy metal responses in microorganisms. In: Marshall KC, editor. Adv Microb Ecol. New York, USA: Springer; 1985. pp. 185–235.5.Carlson HK, Price MN, Callaghan M, Aaring A, Chakraborty R, Liu H, et al. The selective pressures on the microbial community in a metal-contaminated aquifer. ISME J. 2019;13:937–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, McArthur J. Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environ Sci Technol. 2005;39:3671–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science. 2005;309:1387–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Falkowski PG, Barber RT, Smetacek VV. Biogeochemical Controls and Feedbacks on Ocean Primary Production. Science. 1998;281:200–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Field CB, Michael JB, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Reusch TB, Dierking J, Andersson HC, Bonsdorff E, Carstensen J, Casini M, et al. The Baltic Sea as a time machine for the future coastal ocean. Sci Adv. 2018;4:eaar8195.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Lehtonen KK, Bignert A, Bradshaw C, Broeg K, Schiedek D. Chemical pollution and ecotoxicology. In: Snoeijs-Leijonmalm PSH, Radziejewska T, editors. Biological oceanography of the Baltic Sea. Dordrecht, The Netherlands: Springer Nature; 2017. pp. 547–89.12.Moffett JW, Brand LE, Croot PL, Barbeau KA. Cu speciation and cyanobacterial distribution in harbors subject to anthropogenic Cu inputs. Limnol Oceanogr. 1997;42:789–99.CAS 
    Article 

    Google Scholar 
    13.Echeveste P, Agusti S, Tovar-Sanchez A. Toxic thresholds of cadmium and lead to oceanic phytoplankton: cell size and ocean basin-dependent effects. Environ Toxicol Chem. 2012;31:1887–94.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Tsiola A, Toncelli C, Fodelianakis S, Michoud G, Bucheli TD, Gavriilidou A, et al. Low-dose addition of silver nanoparticles stresses marine plankton communities. Environ Sci Nano. 2018;5:1965–80.CAS 
    Article 

    Google Scholar 
    15.Brand LE, Sunda WG, Guillard RR. Reduction of marine phytoplankton reproduction rates by copper and cadmium. J Exp Mar Biol Ecol. 1986;96:225–50.CAS 
    Article 

    Google Scholar 
    16.Andersson B, Godhe A, Filipsson HL, Rengefors K, Berglund O. Differences in metal tolerance among strains, populations, and species of marine diatoms-importance of exponential growth for quantification. Aquat Toxicol. 2020;226:105551.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Ning W, Nielsen A, Ivarsson LN, Jilbert T, Åkesson C, Slomp C, et al. Anthropogenic and climatic impacts on a coastal environment in the Baltic Sea over the last 1000 years. Anthropocene. 2018;21:66–79.Article 

    Google Scholar 
    18.Novotny A, Zamora-Terol S, Winder M. DNA metabarcoding reveals trophic niche diversity of micro and mesozooplankton species. Proc R Soc B. 2021;288:20210908.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Horvatić J, Peršić V. The effect of Ni 2+, Co 2+, Zn 2+, Cd 2+ and Hg 2+ on the growth rate of marine diatom Phaeodactylum tricornutum Bohlin: microplate growth inhibition test. Bull Environ Contam Toxicol. 2007;79:494–8.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    20.Terseleer N, Bruggeman J, Lancelot C, Gypens N. Trait‐based representation of diatom functional diversity in a plankton functional type model of the eutrophied southern North Sea. Limnol Oceanogr. 2014;59:1958–72.Article 

    Google Scholar 
    21.Litchman E, Klausmeier CA, Schofield OM, Falkowski PG. The role of functional traits and trade‐offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett. 2007;10:1170–81.PubMed 
    Article 

    Google Scholar 
    22.Ehrlich E, Kath NJ, Gaedke U. The shape of a defense-growth trade-off governs seasonal trait dynamics in natural phytoplankton. ISME J. 2020;14:1451–62.23.Lohbeck KT, Riebesell U, Reusch TB. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci. 2012;5:346.CAS 
    Article 

    Google Scholar 
    24.Gross S, Kourtchenko O, Rajala T, Andersson B, Fernandez L, Blomberg A, et al. Optimization of a high‐throughput phenotyping method for chain‐forming phytoplankton species. Limnol Oceanogr Methods. 2017;16:57–67.Article 

    Google Scholar 
    25.Rynearson TA, Armbrust EV. DNA fingerprinting reveals extensive genetic diversity in a field population of the centric diatom Ditylum brightwellii. Limnol Oceanogr. 2000;45:1329–40.Article 

    Google Scholar 
    26.Kremp A, Oja J, LeTortorec AH, Hakanen P, Tahvanainen P, Tuimala J, et al. Diverse seed banks favour adaptation of microalgal populations to future climate conditions. Environ Microbiol. 2016;18:679–91.PubMed 
    Article 

    Google Scholar 
    27.Sjöqvist C, Godhe A, Jonsson PR, Sundqvist L, Kremp A. Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea-Baltic Sea salinity gradient. Mol Ecol. 2015;24:2871–85.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Rengefors K, Logares R, Laybourn‐Parry J, Gast RJ. Evidence of concurrent local adaptation and high phenotypic plasticity in a polar microeukaryote. Environ Microbiol. 2015;17:1510–9.PubMed 
    Article 

    Google Scholar 
    29.Ajani PA, Petrou K, Larsson ME, Nielsen DA, Burke J, Murray SA. Phenotypic trait variability as an indication of adaptive capacity in a cosmopolitan marine diatom. Environ Microbiol. 2020;23:207–23.30.Collins S, Schaum CE. Diverse strategies link growth rate and competitive ability in phytoplankton responses to changes in CO2 levels. bioRxiv. 2019. https://doi.org/10.1101/651471.31.Baert JM, De Laender F, Sabbe K, Janssen CR. Biodiversity increases functional and compositional resistance, but decreases resilience in phytoplankton communities. Ecology. 2016;97:3433–40.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Tatters AO, Roleda MY, Schnetzer A, Fu F, Hurd CL, Boyd PW, et al. Short-and long-term conditioning of a temperate marine diatom community to acidification and warming. Philos Trans R Soc Lond B Biol Sc. 2013;368:20120437.Article 

    Google Scholar 
    33.Collins S. Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc R Soc B. 2011;278:247–55.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Legrand C, Rengefors K, Fistarol GO, Graneli E. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia. 2003;42:406–19.Article 

    Google Scholar 
    35.Powell N, Shilton AN, Pratt S, Chisti Y. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ Sci Technol. 2008;42:5958–62.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.OECD. Test no. 201: alga, growth inhibition test. 2006. https://www.oecd-ilibrary.org/content/publication/9789264069923-en.37.Anderson SI, Rynearson TA. Variability approaching the thermal limits can drive diatom community dynamics. Limnol Oceanogr. 2020;65:1961–73.CAS 
    Article 

    Google Scholar 
    38.Spilling K, Markager S. Ecophysiological growth characteristics and modeling of the onset of the spring bloom in the Baltic Sea. J Mar Syst. 2008;73:323–37.Article 

    Google Scholar 
    39.Behrenfeld MJ. Abandoning Sverdrup’s Critical Depth Hypothesis on phytoplankton blooms. Ecology. 2010;91:977–89.PubMed 
    Article 

    Google Scholar 
    40.Follows MJ, Dutkiewicz S, Grant S, Chisholm SW. Emergent biogeography of microbial communities in a model ocean. Science. 2007;315:1843–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Abner B, Morel F, Moffett J. Trace metal control of phytochelatin production in coastal waters. Limnol Oceanogr. 1997;42:601–8.Article 

    Google Scholar 
    42.Behra R, Genoni GP, Joseph AL. Effect of atrazine on growth, photosynthesis, and between-strain variability in scenedesmus subspicatus (Chlorophyceae). Arch Environ Contamin Toxicol. 1999;37:36–41.CAS 
    Article 

    Google Scholar 
    43.Tiam SK, Lavoie I, Doose C, Hamilton PB, Fortin C. Morphological, physiological and molecular responses of Nitzschia palea under cadmium stress. Ecotoxicology. 2018;27:675–88.44.Härnström K, Ellegaard M, Andersen TJ, Godhe A. Hundred years of genetic structure in a sediment revived diatom population. Proc Natl Acad Sci USA. 2011;108:4252–7.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Guillard RR Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH, editors. Culture of marine invertebrate animals. Boston, MA: Springer; 1975. pp. 29–60.46.Leal PP, Hurd CL, Sander SG, Armstrong E, Roleda MY. Copper ecotoxicology of marine algae: a methodological appraisal. Chem Ecol. 2016;32:786–800.CAS 
    Article 

    Google Scholar 
    47.Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T. Biovolume calculation for pelagic and benthic microalgae. J Phycol. 1999;35:403–24.Article 

    Google Scholar 
    48.Schreiber U. Chlorophyll fluorescence: new instruments for special applications. In: Garab G, editor. Photosynthesis: mechanisms and effects. Springer, Dordrecht: Springer; 1998. pp. 4253–8.49.MacIntyre HL, Cullen JJ. Using cultures to investigate the physiological ecology of microalgae. In Andersen RA, editor. Algal culturing techniques. Burlington, Mass: Elsevier; 2005. p. 287–326.50.Caceres C, Taboada FG, Höfer J, Anadon R. Phytoplankton growth and microzooplankton grazing in the subtropical Northeast Atlantic. Plos ONE. 2013;8:e69159.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018. https://www.R-project.org/.52.Ritz C, Baty F, Streibig JC, Gerhard D. Dose-response analysis using R. PloS ONE. 2015;10:e0146021.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Wickham H. ggplot2. WIREs Comp Stat. 2011;3:180–5.54.Pinheiro J, Bates D, DebRoy S, Sarkar D, The R Core Team. nlme: Linear and Nonlinear Mixed Effects Models [Internet]. 2021. Available from: https://CRAN.R-project.org/package=nlme.55.Wolf KK, Romanelli E, Rost B, John U, Collins S, Weigand H, et al. Company matters: the presence of other genotypes alters traits and intraspecific selection in an Arctic diatom under climate change. Glob Change Biol. 2019;25:2869–84.Article 

    Google Scholar 
    56.Venuleo M, Raven JA, Giordano M. Intraspecific chemical communication in microalgae. N Phytol. 2017;215:516–30.Article 

    Google Scholar 
    57.Esteves-Ferreira AA, Inaba M, Obata T, Fort A, Fleming GT, Araújo WL, et al. A novel mechanism, linked to cell density, largely controls cell division in Synechocystis. Plant Physiol. 2017;174:2166–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Gallo C, d’Ippolito G, Nuzzo G, Sardo A, Fontana A. Autoinhibitory sterol sulfates mediate programmed cell death in a bloom-forming marine diatom. Nat Commun. 2017;8:1–11.CAS 
    Article 

    Google Scholar 
    59.Gresham D, Dunham MJ. The enduring utility of continuous culturing in experimental evolution. Genomics. 2014;104:399–405.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Descamps-Julien B, Gonzalez A. Stable coexistence in a fluctuating environment: an experimental demonstration. Ecology. 2005;86:2815–24.Article 

    Google Scholar 
    61.Wang NX, Huang B, Xu S, Wei ZB, Miao AJ, Ji R, et al. Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii. Aquat Toxicol. 2014;157:167–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Lee J-W, Helmann JD. Functional specialization within the Fur family of metalloregulators. BioMetals. 2007;20:485.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Reusch TB, Boyd PW. Experimental evolution meets marine phytoplankton. Evolution. 2013;67:1849–59.PubMed 
    Article 

    Google Scholar 
    64.Walworth NG, Zakem EJ, Dunne JP, Collins S, Levine NM. Microbial evolutionary strategies in a dynamic ocean. Proc Natl Acad Sci USA. 2020;117:5943–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Schaum C-E, Barton S, Bestion E, Buckling A, Garcia-Carreras B, Lopez P, et al. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nat Ecol Evol. 2017;1:1–7.Article 

    Google Scholar 
    66.Collins S, Rost B, Rynearson TA. Evolutionary potential of marine phytoplankton under ocean acidification. Evol Appl. 2014;7:140–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Rynearson TA, Armbrust EV. Genetic differentiation among populations of the planktonic marine diatom ditylum brightwellii (bacillariophyceae) 1. J Phycol. 2004;40:34–43.Article 

    Google Scholar 
    68.Soldo D, Behra R. Long-term effects of copper on the structure of freshwater periphyton communities and their tolerance to copper, zinc, nickel and silver. Aquat Toxicol. 2000;47:181–9.CAS 
    Article 

    Google Scholar 
    69.Stokes PM. Multiple metal tolerance in copper tolerant green algae. J Plant Nutr. 1981;3:667–78.CAS 
    Article 

    Google Scholar 
    70.Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11:371–84.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Ma J, Zhou B, Chen F, Pan K. How marine diatoms cope with metal challenge: Insights from the morphotype-dependent metal tolerance in Phaeodactylum tricornutum. Ecotoxicol Environ Saf. 2020;208:111715.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    72.Egardt J, Larsen MM, Lassen P, Dahllöf I. Release of PAHs and heavy metals in coastal environments linked to leisure boats. Mar Pollut Bull. 2018;127:664–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Falkowski PG, LaRoche J. Acclimation to spectral irradiance in algae. J Phycol. 1991;27:8–14.Article 

    Google Scholar 
    74.Beardall J, Young E, Roberts S. Approaches for determining phytoplankton nutrient limitation. Aquat Sci. 2001;63:44–69.CAS 
    Article 

    Google Scholar 
    75.Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, et al. Marine phytoplankton temperature versus growth responses from polar to tropical waters–outcome of a scientific community-wide study. PloS ONE. 2013;8:e63091.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Johnson HL, Stauber JL, Adams MS, Jolley DF. Copper and zinc tolerance of two tropical microalgae after copper acclimation. Environ Toxicol. 2007;22:234–44.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Cid A, Herrero C, Torres E, Abalde J. Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters. Aquat Toxicol. 1995;31:165–74.CAS 
    Article 

    Google Scholar 
    78.Masmoudi S, Nguyen-Deroche N, Caruso A, Ayadi H, Morant-Manceau A, Tremblin G, et al. Cadmium, copper, sodium and zinc effects on diatoms: from heaven to hell—a review. Cryptogam Algol. 2013;34:185–225.Article 

    Google Scholar  More

  • in

    Fire-derived phosphorus fertilization of African tropical forests

    Study siteThe study was carried out in post-agriculture forests at different growth stages near the forest reserve of Yoko (N00°17′; E25°18′; mean elevation 435 m a.s.l.), situated between 29 and 39 km south east of Kisangani, in the Democratic Republic of the Congo. We set up 15 (40 × 40 m) plots, set out in triplicate along five successional stages (15 plots): agriculture and 5, 12, 20, 60 years old secondary forest (respectively, 5 yrs, 12 yrs, 20 yrs, 60 yrs). Additionally, soils were also characterized in three agricultural plots (Ag). We interviewed owners, farmers, and local experts to determine the time-since-disturbance of all plots. Tree height measurements were recorded at the plot level for 20% of individuals of each diameter class. The climax vegetation in the region is classified as semi-deciduous tropical. Climate falls within the Af-type following the Köppen-Geiger classification33. Annual rainfall ranges from 1418 to 1915 mm with mean monthly temperatures varying from 23.7 to 26.2 °C. Throughout the year, the region is marked by a long and a short rainy season interrupted by two small dry seasons December–January and June–August. Soils in the region are highly weathered Oxisols, being poor in nutrients, with low pH and dominated by sandy texture.Sampling and sample analysisThroughfall and bulk precipitation was collected weekly using polyethylene (PE) funnels supported by a wooden pole of 1.5 m height to which a PE tube was attached and draining into 5 L PE container. A nylon mesh was placed in the neck of the funnel to avoid contamination by large particles. The container was buried in the soil and covered by leaves to avoid the growth of algae and to keep the samples cool. We installed eight throughfall collectors in each plot as two rows of four collectors, with approximately 8 m distance between all collectors. On every sampling occasion, the water volume in each collector was measured in the field, and recipients, funnels and mesh were replaced, rinsed with distilled water. A volume-weighted composite sample of the devices per plot was made. All samples were stored in a freezer immediately and sent in batch to Belgium for chemical analysis. The volume-weighted composite samples were first filtered using a nylon membrane filter of 0.45 µm before freezing. Total phosphorus was measured by inductively coupled plasma atomic emission spectroscopy (ICP AES, IRIS interpid II XSP, Thermo Scientific, USA). Although we acknowledge the potential for microbial activity in the collectors during a 1-week, dark, in situ storage of the samples, the use of total phosphorus concentration and lack of algal growth allow for complete phosphorus recovery.Following analysis, the samples from the replicate field sites per forest stage were pooled into ‘weekly’ forest-type samples, and these were subsequently analyzed for dissolved black carbon (DBC). In short, the pooled water samples were acidified to pH 2 and analyzed for dissolved organic carbon (DOC) concentration via high-temperature catalytic oxidation on Shimadzu TOC-L total organic carbon analyzer following established methodology34. DOC was isolated from the water samples by solid phase extraction (SPE) following Dittmar et al.35. Briefly, SPE cartridges (Varian Bond Elut PPL, 1 g, 6 mL) were conditioned sequentially with methanol, ultrapure water, and ultrapure water acidified to pH 2 using concentrated HCl, then passed through the SPE cartridges by gravity. SPE cartridges were dried under a stream of high-purity N2 gas. DOC was eluted from the SPE cartridge with methanol (SPE-DOC) and stored at −20 °C until further analysis. DBC was quantified using the benzenepolycarboxylic acid (BPCA) method as detailed in Wagner et al.20. The BPCA approach to quantifying DBC involves chemothermal oxidation of condensed aromatic DOC compounds to benzenehexacarboxylic acid (B6CA) and benzenepentacarboxylic acid (B5CA) products. The B6CA and B5CA oxidation products are robustly measured and derive exclusively from pyrogenic sources36. Condensed aromatic DBC, as measured using the BPCA method, is ubiquitous in aquatic environments globally21,37,38,39. DBC has also been quantified in throughfall and stemflow in longleaf pine forests that undergo regular prescribed burning40. Therefore, we use the BPCA method as a proxy for carbon inputs from biomass burning in the current study. To analyze our samples for BPCAs, aliquots of SPE-DOC (~0.5 mg C equivalents) were combined with concentrated HNO3 in flame-sealed glass ampoules and heated to 160 °C for 6 h. The resultant BPCA-containing residue was dried and re-dissolved in mobile phase for subsequent analysis. Individual BPCAs were separated and quantified using an HPLC system (UltiMate 3000, Thermo Fisher, Germany) (CV  More

  • in

    Spatial distribution of anti-Toxoplasma gondii antibody-positive wild boars in Gifu Prefecture, Japan

    1.Robert-Gangneux, F. & Darde, M. L. Epidemiology of and diagnostic strategies for Toxoplasmosis. Clin. Microbiol. Rev. 25, 264–296 (2012).CAS 
    Article 

    Google Scholar 
    2.VanWormer, E., Fritz, H., Shapiro, K., Mazet, J. A. K. & Conrad, P. A. Molecules to modeling: Toxoplasma gondii oocysts at the human–animal–environment interface. Comp. Immunol. Microbiol. Infect. Dis. 36, 217–231 (2013).Article 

    Google Scholar 
    3.Cook, A. J. C. Sources of toxoplasma infection in pregnant women: European multicentre case-control study Commentary: Congenital toxoplasmosis—further thought for food. BMJ 321, 142–147 (2000).CAS 
    Article 

    Google Scholar 
    4.Spalding, S. M., Amendoeira, M. R. R., Klein, C. H. & Ribeiro, L. C. Serological screening and toxoplasmosis exposure factors among pregnant women in South of Brazil. Rev. Soc. Bras. Med. Trop. 38, 173–177 (2005).Article 

    Google Scholar 
    5.Jones, J. L. et al. Risk factors for Toxoplasma gondii infection in the United States. Clin. Infect. Dis. 49, 878–884 (2009).Article 

    Google Scholar 
    6.Egorov, A. I. et al. Environmental risk factors for Toxoplasma gondii infections and the impact of latent infections on allostatic load in residents of Central North Carolina. BMC Infect. Dis. 18, 421. https://doi.org/10.1186/s12879-018-3343-y (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Shapiro, K. et al. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol. 15, e00049; https://doi.org/10.1016/j.fawpar. (2019).8.Hill, D. et al. Identification of a sporozoite-specific antigen from Toxoplasma gondii. J. Parasitol. 97, 328–337 (2011).CAS 
    Article 

    Google Scholar 
    9.Ballari, S. A. & Barrios-García, M. N. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges: A review of wild boar Sus scrofa diet. Mamm. Rev. 44, 124–134 (2014).Article 

    Google Scholar 
    10.Kodera, Y., Kanzaki, N., Ishikawa, N. & Minagawa, A. Food habits of wild boar (Sus scrofa) inhabiting Iwami District, Shimane Prefecture, western Japan (In Japanese). Mamm. Sci. 53, 279–287 (2013).
    Google Scholar 
    11.Chambers, L. K., Singleton, G. R. & Krebs, C. J. Movements and social organization of wild house mice (Mus domesticus) in the wheatlands of northwestern Victoria, Australia. J. Mammal. 81, 59–69 (2000).12.Oka, T. Home range and mating system of two sympatric field mouse species, Apodemus speciosus and Apodemus argenteus. Ecol. Res. 7, 163–169 (1992).Article 

    Google Scholar 
    13.Yatake, H., Nashimoto, M., Shimano, K., Matuki, R. & Shiraki, S. Present status and subjects of estimation methods of Japanese hare (Lepus brachyurus) density (in Japanese). Mamm. Sci. 42, 23–34 (2002).
    Google Scholar 
    14.Setoguchi, M. Utilization of holes and home ranges in the Japanese long-tailed mice (Apodemus argenteus) (in Japanese). Jap. J. Ecol. 31, 385–394 (1981).
    Google Scholar 
    15.Rostami, A. et al. The global seroprevalence of Toxoplasma gondii among wild boars: A systematic review and meta-analysis. Vet. Parasitol. 244, 12–20 (2017).Article 

    Google Scholar 
    16.Lopez, A. L., Pineda, E., Garakian, A. & Cherry, J. D. Effect of heat inactivation of serum on Bordetella pertussis antibody determination by enzyme-linked immunosorbent assay. Diagn. Microbiol. Infect. Dis. 30, 21–24 (1998).CAS 
    Article 

    Google Scholar 
    17.Taniguchi, Y. et al. A Toxoplasma gondii strain isolated in Okinawa, Japan shows high virulence in Microminipigs. Parasitol. Int. 72, 101935; https://doi.org/10.1016/j.parint.2019.101935 (2019).18.Tadano, R., Nagai, A. & Moribe, J. Local-scale genetic structure in the Japanese wild boar (Sus scrofa leucomystax): insights from autosomal microsatellites. Conserv. Genet. 17, 1125–1135 (2016).Article 

    Google Scholar 
    19.Ikeda, T., Asano, M., Kuninaga, N. & Suzuki, M. Monitoring relative abundance index and age ratios of wild boar (Sus scrofa) in small scale population in Gifu Prefecture, Japan during classical swine fever outbreak. J. Vet. Med. Sci. 82, 861–865 (2020).Article 

    Google Scholar 
    20.Matsuo, K., Uetsu, H., Takashima, Y. & Abe, N. High Occurrence of Sarcocystis infection in sika deer Cervus nippon centralis and Japanese wild boar Sus scrofa leucomystax and molecular characterization of Sarcocystis and Hepatozoon isolates from their muscles (in Japanese). Jpn. J. Zoo. Wildl. Med. 21, 35–40 (2016).Article 

    Google Scholar 
    21.Ogedengbe, M. E. et al. Molecular phylogenetic analyses of tissue coccidia (sarcocystidae; apicomplexa) based on nuclear 18s rDNA and mitochondrial COI sequences confirms the paraphyly of the genus Hammondia. Parasitol. Open 2, e2; https://doi.org/10.1017/pao.2015.7 (2016).22.Moon, M. H. Serological cross-reactivity between Sarcocystis and Toxoplasma in pigs. Kor. J. Parasitol. 25, 188–194 (1987).Article 

    Google Scholar 
    23.Dubey, J. P. et al. All about Toxoplasma gondii infections in pigs: 2009–2020. Vet. Parasitol. 288, 109185 (2020).24.Puchalska, M. et al. Prevalence of Toxoplasma gondii antibodies in wild boar (Sus scrofa) from Strzałowo Forest Division, Warmia and Mazury Region, Poland. Ann. Agric. Environ. Med. 28, 237–242 (2021).25.Dubey, J. P. et al. Genotyping of viable Toxoplasma gondii from the first national survey of feral swine revealed evidence for sylvatic transmission cycle, and presence of highly virulent parasite genotypes. Parasitology 147, 295–302 (2020).CAS 
    Article 

    Google Scholar 
    26.Kia, E. B., Mirhendi, H., Rezaeian, M., Zahabiun, F. & Sharbatkhori, M. First molecular identification of Sarcocystis miescheriana (Protozoa, Apicomplexa) from wild boar (Sus scrofa) in Iran. Exp. Parasitol. 127, 724–726 (2011).CAS 
    Article 

    Google Scholar 
    27.Coelho, C. et al. Unraveling Sarcocystis miescheriana and Sarcocystis suihominis infections in wild boar. Vet. Parasitol. 212, 100–104 (2015).Article 

    Google Scholar 
    28.Gazzonis, A. L. et al. Prevalence and molecular characterization of Sarcocystis miescheriana and Sarcocystis suihominis in wild boars (Sus scrofa) in Italy. Parasitol. Res. 118, 1271–1287 (2019).Article 

    Google Scholar 
    29.Huang, Z. et al. Morphological and molecular characterizations of Sarcocystis miescheriana and Sarcocystis suihominis in domestic pigs (Sus scrofa) in China. Parasitol. Res. 118, 3491–3496 (2019).Article 

    Google Scholar 
    30.Matsuo, K. et al. Seroprevalence of Toxoplasma gondii infection in cattle, horses, pigs and chickens in Japan. Parasitol. Int. 63, 638–639 (2014).Article 

    Google Scholar 
    31.Singer, F., Otto, D., Tipton, A. & Hable, C. Home ranges, movements, and habitat use of European wild boar in Tennessee. J. Wildl. Manag. 45, 343–353 (1981).Article 

    Google Scholar 
    32.Hollings, T., Jones, M., Mooney, N. & McCallum, H. Wildlife disease ecology in changing landscapes: Mesopredator release and toxoplasmosis. Int. J. Parasitol. Parasites Wildl. 2, 110–118 (2013).Article 

    Google Scholar 
    33.Maeda, T., Nakashita, R., Shionosaki, K., Yamada, F. & Watari, Y. Predation on endangered species by human-subsidized domestic cats on Tokunoshima Island. Sci. Rep. 9, 16200. https://doi.org/10.1038/s41598-019-52472-3 (2019).34.QGIS Development Team. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. http://www.qgis.org/en/site/ (2021).35.Verma, S. K., Lindsay, D. S., Grigg, M. E. & Dubey, J. P. Isolation, culture and cryopreservation of Sarcocystis species. Curr. Protoc. Microbiol. https://doi.org/10.1002/cpmc.32 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).37.Robin, X. et al. pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics 12, 77 (2011).Article 

    Google Scholar  More

  • in

    Moisture modulates soil reservoirs of active DNA and RNA viruses

    A diverse and active DNA virosphereWe first leveraged two existing metagenomes that were constructed from the Konza native prairie soil14,15 to screen for viral sequences at the site. Each of the metagenomes was obtained from a composite of all the replicate soils collected at ambient field moisture conditions. One of the metagenomes was de novo assembled from deep sequence data (1.1 Tb)14 and the second was a hybrid assembly of short and long reads (267.0 Gb)16. The combination of the two metagenomes was used to maximize the coverage of viral sequences from the Konza prairie site. To balance between the detection limits of the viral detection tools and the wide range of viral genome size, the viral contigs > 2.5 kb in length were combined with those obtained from screening of the two largest public viral databases (i.e., IMG/VR17 and NCBI Virus16) to further increase the coverage of DNA viral sequences. We acknowledge that the length cutoff of 2.5 kb would preclude detection of some ssDNA viruses with small segmented genome sizes (e.g., Nanoviridae18). As a result, a DNA viral database for the site was curated that included 726,108 de-replicated viral contigs. The DNA viral database then served as a scaffold for mapping of metatranscriptome and metaproteome datasets to determine the activities of soil DNA viruses and their responses to differences in soil moisture. This approach was also recently applied to detect the transcriptional activity of marine prokaryotic and eukaryotic viruses19,20,21,22 and giant viruses in soil5.The metatranscriptome reads from both wet and dry treatments were mapped to a total of 416 unique DNA viral contigs using stringent criteria (% sequence identity > 95% and % sequence coverage > 80%). The 416 DNA viral contigs with an average sequence length of 19 kb were highly diverse and grouped into 139 clusters, with 111 of the clusters being singletons (Supplementary Data 1).We aimed to assign putative host taxa to the viral clusters by combining several approaches: CRISPR spacer matching, and screening for host and viral sequence similarities to respective databases (details in ‘Methods’). As a result, we assigned putative viral host taxa to 160 out of the 416 transcribed DNA viral contigs. Some of these were assigned to more than one host (Supplementary Data 1), resulting in a total of 181 virus–host pairings (Fig. 1a). Of these, 79 host–virus pairs were detected only in the dry soil treatment, 51 were only in the wet soil treatment, and an additional 51 were found in both dry and wet treatments (Fig. 1a). Consistent with previous reports4, the majority of the transcribed DNA viral contigs were annotated as bacteriophage sequences. Different sets of transcribed DNA viral contigs were unique to wet or dry soils and assigned to specific hosts at the phylum level, whereas others were shared (Fig. 1a). However, the dominant soil taxa, i.e., Proteobacteria and Actinobacteria that were previously identified by 16S rRNA gene sequencing in this soil environment, were predicted as hosts under both wet and dry conditions (Supplementary Fig. 1a). Eukaryotic DNA viruses, such as Bracovirus and Ichnovirus belonging to a family of insect viruses within the Polydnaviridae family, were also transcribed in the soils (Fig. 1a and Supplementary Data 1). Most of these insect viruses were only detected in dry soil conditions. These differences in virus–host pairings suggest that some of the respective hosts were impacted differently by the dry and wet incubation conditions.Fig. 1: Transcribed DNA viral communities and their responses to wet and dry soil conditions.a An alluvium plot that illustrates pairings of the transcribed DNA viral contigs to putative host phyla. The transcribed DNA viral community was comprised of viral contigs from the curated DNA viral databases that were mapped by quality-filtered metatranscriptomic reads. The alluvia are colored by host taxa (first x axis of each sub-panel) assigned to respective transcribed DNA viral contigs (second x axis of each sub-panel). b A Venn diagram showing the number of unique transcribed DNA viral contigs detected in both wet and dry soils and ones exclusively detected in one of the soils. c Number of unique DNA viral contigs detected. A t-Test shows significantly more DNA contigs were transcribed in dry soil (p = 0.044). d Number of transcripts that mapped to the DNA viral contigs. For panels (c) and (d), the two independent field sites of Konza Experimental Field Station are indicated as site A (circles) and site C (triangles), with the wet soil in blue and dry soil in red.Full size imageThere were 21 DNA viral contigs that were assigned to hosts across multiple bacterial phyla suggesting the presence of viral generalists1,23 (Supplementary Data 1). We recognize that host assignment based on CRISPR spacer matching, however, is limited to detection of recent or historical virus–host interactions that were captured at the time of sampling24. As bioinformatics assignment of virus–host linkages only suggests possible pairings based on sequence features, there are also chances of introducing false positives. However, we applied the most stringent criteria possible to provide confident host assignments.Increased activity of a subset of DNA viruses in wet soilSoil moisture has a strong influence on the community structures of transcribed DNA viruses. The majority of the transcriptionally active DNA viral contigs were unique to wet or dry conditions, with only 111 viral contigs (~ 26.7%) detected in both wet and dry soils, suggesting that the different soil moisture conditions may shape the activity of the DNA viral community differently (Fig. 1b). Interestingly, although a significantly higher number of transcribed DNA viral contigs were detected in dry soils (Fig. 1b, c), the levels of transcriptional activity were significantly higher (based on the normalized abundance of RNA reads that mapped to the viral contigs) for DNA viruses in wet soils irrespective of sampling site location (Fig. 1d). DNA viral contigs with mapped transcripts could represent either prophages that are passively replicated along with their host genomes, or (lytic) viruses that are actively regulating early/middle/late expression of viral gene clusters25. In soil, a lysogenic lifestyle is considered to be an adaptive strategy for viruses to cope with long periods of low host activity26,27. Therefore, the 1.5-fold increase in the number of transcribed DNA viral contigs representing transcriptionally active DNA viruses, but with lower levels of overall transcription, in dry soil suggests that the increase was due to a higher prevalence of lysogeny in dry conditions. This hypothesis is strengthened by our finding of a 20-fold increase in transcripts for lysogenic markers (i.e., integrase and excisionase) in one of our replicates (A-2) in dry compared to wet conditions (Supplementary Data 2). High number of lysogenic phages were also previously reported in dry Antarctic soils using a cultivation-independent induction assay28. By contrast, under wet soil conditions we found a 2-fold increase in transcription of fewer viral contigs representing a subset of DNA viruses, suggesting that those viruses were more transcriptionally active in response to higher soil moisture. In addition, there was a higher correlation between prokaryotic abundances, as estimated by 16S rRNA gene sequencing, with DNA viral transcript counts in wet soils (R2 = 0.593, Supplementary Fig. 1d) in comparison to dry soils (R2 = 0.069, Supplementary Fig. 1d), supporting this hypothesis.We then identified which soil DNA viruses were most transcriptionally active and how they responded to the differences in soil moisture. As the majority of the transcribed DNA viral contigs (97%) were environmental viruses with unclassified taxonomy assignment, we were not able to calculate the taxonomic abundance of each and instead compared the differential abundances of the transcribed viral contigs. There were four DNA viral contigs with significantly different levels of transcription under wet and dry conditions (VC_1, VC_19, VC_282, VC_412; Fig. 2a). Contigs VC_1 and VC_19 correspond to unclassified viral contigs deposited in IMG/VR (identifiers of ‘REF:2547132004_2547132004’ and ‘3300010038_Ga0126315_10000854’) that were previously detected in metagenomes from the Rifle site29 and from serpentine soil in the UC McLaughlin Reserve30, respectively. Contigs VC_282 and VC_412 were extracted from our Kansas metagenomes. Contigs VC_1 and VC_19 had significantly higher levels of transcriptional activity in wet soils compared to dry soils (p  More