More stories

  • in

    Migrations of cancer cells through the lens of phylogenetic biogeography

    Conceptualization of organismal to tumor biogeography through clone phylogeniesWe first map organismal biogeographic concepts and models to the process of migration and colonization of cancer cells during metastasis. Tumors are populations consisting of a diversity of cancer cells with different genetic profiles that may represent different lineages in the clone phylogeny. We use the example in Fig. 1, which contains a phylogeny of 17 clones found in one primary tumor (P) and four metastases (M1–M4). Events occurring along a branch in a phylogeny are anagenetic events, which include diversification, extinction, and expansion12,14. In organismal evolutionary biology, anagenetic events are not directly observed except through the fossil record. However, one can map the collection of genetic variants that likely arose on individual lineage in a phylogeny. In many cancers, sequencing of temporally sampled biopsies’ can directly reveal anagenetic events similar to the sequencing of ancient DNA in paleogenomics.The other types of evolutionary events in the phylogeny are cladogenetic, including genetic divergences and dispersals (Fig. 1). Genetic differences observed among species and populations are the key to detect cladogenetic events reconstructed in molecular phylogenies of living descendants. In cancer, temporal sampling of biopsies can reveal cladogenetic events that produced extinct descendants.In biogeography, genetic divergence results in the diversification of lineages within an area. Sometimes, the term duplication is used, but we avoid its further use because of the confusion it may cause in evolutionary genomics. Divergence events are also observed in a clone phylogeny, particularly when clone lineages diverge from each other within a tumor or across tumors. The exact opposite of genetic diversification can also be observed when lineages partially or fully disappear from the phylogeny. Extinction can occur due to random chance, selection, or environmental pressures. Even though extinction is rarely discussed in tumor clone phylogenetics, it happens frequently.Phylogenies also reveal movements of lineages between locations (geographic areas or body parts) when the locations of individual cells, species, or populations are known5,6,7,8,9,15. When lineages accumulate genetic differences along a branch in the phylogeny, and the evolved lineages migrate to a new area, we observe an expansion event. Expansions differ from dispersals in such that the growth of a population occurs in the same place. This movement of cells of a clone from one location to another, where they would potentially form a metastasis, results in the dispersal of  these cells of that clone to additional areas, which is modeled by a dispersal rate (d) in organismal biogeography. When a clone genetically diverges following its migration, then a distant dispersal event is said to have occurred. Similarly, when a clone diverges from the rest of the clones within a tumor and disperses to another tumor, we have observed an expansion event. Thus, clone phylogenies can give insights into the origin and trajectory of cancer cells between tumors.When a clone is no longer present at a location, it is extinct at that location. Extinctions are modeled by an extinction rate (e) in biogeographic models. As a result of extinction, the range of descendent clones on a phylogeny can be smaller than the ancestors. Biogeography models also have a parameter (J) to consider founder events that establish new populations from a few individuals. In phylogenies, founder events can be detected if only one or a few cells are found to have moved from one location to another to start diversifying in a new area. Both distant dispersal and founder events may result in forming a new colony of cells, i.e., a new metastasis in the case of cancer cell migrations. The primary distinction between dispersal and founder events is the relative number of migrating cells. Founder events are due to one or a few cells, whereas dispersal events involve a larger number of migrating cells. Founder events are expected to be more common in tumor evolution because metastases are thought to be formed by the spread of only one or a few cancer cells. These biogeographic events have been mathematically modeled and implemented in various approaches to infer species migration events12, which are directly applicable in the inference of cancer cell migrations between tumors.Model fitsWe began by analyzing the statistical fits of six biogeographic models (Table 1) to 80 computer-simulated tumor evolutionary datasets. Simulations enable us to assess the performance of computational approaches and reveal potential caveats associated with their use because the ground truth is known. These datasets were simulated using four main clone migration schemes defined by the different number of migrating clones (1–3), the small and large number of tumor areas (5–7 tumors, m5 datasets; 8–11 tumors, m8 datasets), and the different types of source areas of migration (primary or metastasis). The following seeding scenarios reflect this complexity of the clone migration schemes: monoclonal single-source seeding (mS), polyclonal single-source seeding (pS), polyclonal multisource seeding (pM), and polyclonal reseeding (pR) (see “Methods” section).Table 1 Phylogenetic and biogeographic events considered in seven biogeographic models used for analysis.Full size tableWe considered biogeographic models that weigh genetic divergence, dispersal/expansion, and extinction events differently (Table 1). We also explored the provision of including founder events in our models on the accuracy of detecting clone migrations. The parameterization of the aforementioned events results in models with two free parameters, i.e., dispersal rate (d) and extinction rate (e), and models with three free parameters by adding the founder-event speciation (J); see “Methods” section for more details.Overall, we tested six biogeographic models for their fit to the tumor data, three models with two free parameters and three others with three free parameters. BAYAREALIKE, DEC, and DIVALIKE models have two parameters each. They are nested within their respective models that add the founder effect, resulting in a model with three free parameters (hereinafter +J models). We used the BioGeoBEARS software for all model fit analyses. In data analysis, we first inferred phylogeny of cancer cell populations (clone phylogeny) using an existing method16, followed by the use of BioGeoBEARS to infer the clone migration history in which the clone phylogeny is used along with the location of tumor sites in which each clone is observed (Fig. 2). BioGeoBEARS estimates the probabilities of annotating internal nodes with tumor locations. These annotations are then used to derive cancer cell migration paths when two adjacent nodes are annotated with different tumor locations. In these analyses, we assumed the correct clone phylogeny because our focus was not assessing the impact of errors in a phylogeny on the accuracy of clone migration inferences. We also compared the accuracy of migration histories reconstructed using biogeographic models in BioGeoBEARS with those obtained from the approaches that do not model biogeographic processes (BBM9, MACHINA5, and PathFinder7).Figure 2Data analysis pipeline using BioGeoBEARS in R14 to infer clonal migration histories.Full size imageWe first conducted Likelihood Ratio Tests (LRTs) to examine the improvement offered by considering founder events in modeling tumor migrations. In this case, the fit of the BAYAREALIKE, DEC, and DIVALIKE models was compared to their +J counterparts, respectively. The null hypothesis was rejected for more than 50% of the datasets (BAYAREALIKE: 71.25%, DEC: 60%, and DIVALIKE: 53.75%; P  More

  • in

    T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer

    The Fur-regulated T6SS1 plays an important role in iron acquisition in C. necator
    To explore the function of T6SS1 (Reut_A1713 to Reut_A1733) in C. necator (Fig. S1A), we analyzed the T6SS1 promoter and identified a Fur binding site (AGAAATA) upstream of gene reut_A1733. This Fur binding site was highly similar to the Fur-box reported in E. coli [38], with a probability score of 2.25 (out of a maximum score = 2.45) (Fig. S1B), which was calculated by applying the position weight matrix to a sequence [39]. Incubation of the T6SS1 promoter probe with purified Fur protein led to decreased mobility of the probe in the electrophoretic mobility shift assay, suggesting a direct interaction between Fur and the T6SS1 promoter (Fig. 1A). To further determine the function of Fur on the expression of T6SS1, a single-copy PT6SS1::lacZ fusion reporter was introduced into the chromosomes of C. necator wild-type (WT), Δfur deletion mutant, and the Δfur(fur) complementary strain. Compared to WT, the PT6SS1::lacZ promoter activity was significantly increased in the Δfur mutant (about 2.2-fold), and this increase could be restored by introducing the complementary plasmid pBBR1MCS-5-fur (Fig. 1B). Similar results were obtained by analyzing the expression of T6SS1 core component genes (hcp1, clpV1, vgrG1, and tssM1) with qRT-PCR (Fig. S1C). These results demonstrate that the expression of T6SS1 in C. necator is directly repressed by Fur, the master regulator of genes involved in iron homeostasis in many prokaryotes [40, 41].Fig. 1: Regulation of T6SS1 expression by Fur.A The interactions between His6-Fur and the T6SS1 promoter examined by EMSA. Increasing amounts of Fur (0, 0.03, 0.06, 0.13, 0.25, and 1.0 μM) and 10 nM DNA fragments were used in the assay. A 500 bp unrelated DNA fragment (Control A) and 1 µM BSA (Control B) were included in the assay as negative controls. B Fur represses the expression of T6SS1. β-galactosidase activities of T6SS1 promoter from chromosomal lacZ fusions in relevant C. necator strains were measured. C Iron uptake requires T6SS1. Stationary-phase C. necator strains were washed twice with M9 medium. Iron associated with indicated bacterial cells were measured with ICP-MS. The vector corresponds to the plasmid pBBR1MCS-5 (B) and pBBR1MCS-2 (C), respectively. Data are represented as mean values ± SD of three biological replicates, each with three technical replicates. **p  More

  • in

    Publisher Correction: Principles, drivers and opportunities of a circular bioeconomy

    AffiliationsAnimal Production Systems group, Wageningen University & Research, Wageningen, The NetherlandsAbigail Muscat, Evelien M. de Olde, Raimon Ripoll-Bosch & Imke J. M. de BoerFarming Systems Ecology group, Wageningen University & Research, Wageningen, The NetherlandsHannah H. E. Van ZantenPublic Administration and Policy group, Wageningen University & Research, Wageningen, The NetherlandsTamara A. P. Metze & Catrien J. A. M. TermeerPlant Production Systems group, Wageningen University & Research, Wageningen, The NetherlandsMartin K. van IttersumAuthorsAbigail MuscatEvelien M. de OldeRaimon Ripoll-BoschHannah H. E. Van ZantenTamara A. P. MetzeCatrien J. A. M. TermeerMartin K. van IttersumImke J. M. de BoerCorresponding authorCorrespondence to
    Imke J. M. de Boer. More

  • in

    Climatic windows for human migration out of Africa in the past 300,000 years

    Late Quaternary climate reconstructionsPrecipitationOur reconstructions of Late Quaternary precipitation are based on outputs from a statistical emulator of the HadCM3 general circulation model62. The emulator was developed using 72 3.75° × 2.5° resolution snapshot climate simulations of HadCM3, covering the last 120k years and in 2k year time steps from 120k to 22k years ago and 1k-year time steps from 21k years ago to the present, where each time slice represents climatic conditions averaged across a 30-year post-spin-up period28,63. The emulator is based on grid-cell-specific linear regressions between the local time series of HadCM3 climate data and four time-dependent forcings, given by the mean global atmospheric CO2 concentration and three orbital parameters: eccentricity, obliquity, and precession. The values of these four predictors are known well beyond the last 120k years; thus, applying them to the calibrated grid-cell-specific linear regressions allows for the statistical extrapolation of global climate up to 800k years into the past62. The emulated climate data have been shown to correspond closely to the original HadCM3 simulations for the last 120k years, and to match long-term empirical climate reconstructions well62.Here, we used precipitation data from the emulator, denoted ({bar{{{{bf{P}}}}}}_{{{{{rm{HadCM3}}}}}_{{{{rm{em}}}}}}(t)), of the last 300k years at 1k-year time steps, (tin {{{{bf{T}}}}}_{300k}). The data were spatially downscaled from their native 3.75° × 2.5° grid resolution, and subsequently bias-corrected, in two steps, similar to the approach described in ref. 64, whose description we follow here. Both steps use variations of the delta method65, under which a high-resolution, bias-corrected reconstruction of precipitation at sometime t is obtained by applying the difference between lower-resolution present-day simulated and high-resolution present-day observed climate—the correction term—to the simulated climate at time t. The delta method has been used to downscale and bias-correct palaeoclimate simulations before (e.g. for the WorldClim database66), and, despite its conceptual simplicity, has been shown to outperform alternative methods commonly used for downscaling and bias-correction67.A key limitation of the delta method is that it assumes the present-day correction term to be representative of past correction terms. This assumption is substantially relaxed in the dynamic delta method used in the first step of our approach to downscale ({bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}(t)) to a ~1° resolution. This method involves the use of a set of high-resolution climate simulations that were run for a smaller but climatically diverse subset of T300k. Simulations at this resolution are computationally very expensive, and therefore running substantially larger sets of simulations is not feasible; however, these selected data can be very effectively used to generate a suitable time-dependent correction term for each (tin {{{{bf{T}}}}}_{300k}). In this way, we can increase the resolution of the original climate simulations by a factor of ∼9, while simultaneously allowing for the temporal variability of the correction term. In the following, we describe the approach in detail.We used high-resolution precipitation simulations from the HadAM3H model63, generated for the last 21,000 years in 9 snapshots (2k year time intervals from 12k to 6k years ago, and 3k year time intervals otherwise) at a 1.25° × .83° grid resolution, denoted ({bar{{{{bf{P}}}}}}_{{{{rm{HadAM}}}}3{{{rm{H}}}}}(t)), where (tin {{{{bf{T}}}}}_{21k},)represents the nine time slices for which simulations are available. These data were used to downscale ({bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}(t)) to a 1.25° × 0.83° resolution by means of the multiplicative dynamic delta method, yielding$${bar{{{{bf{P}}}}}}_{ sim 1^circ }(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}^{ boxplus }(t)cdot frac{{bar{{{{bf{P}}}}}}_{{{{rm{HadAM}}}}3{{{rm{H}}}}}(hat{t})}{{bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}^{ boxplus }(hat{t})}.$$
    (1)
    The ⊞-notation indicates that the coarser-resolution data were interpolated to the grid of the higher-resolution data, for which we used an Akima cubic Hermite interpolant68, which, unlike the bilinear interpolation, is continuously differentiable but, unlike the bicubic interpolation, avoids overshoots. The time (hat{t}in {{{{bf{T}}}}}_{21k}) is chosen as the time at which climate was, in a sense specified below, close to that at time (tin {{{{bf{T}}}}}_{300k}). In contrast to the classical delta method (for which (hat{t}=0) for all (t)), this approach does not assume that the resolution correction term, ((frac{{bar{{{{bf{P}}}}}}_{{{{rm{HadAM}}}}3{{{rm{H}}}}}(hat{t})}{{bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}^{ boxplus }(hat{t})})), is constant over time. Instead, the finescale heterogeneities that are applied to the coarser-resolution ({bar{{{{bf{P}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}(t)) are chosen from the wide range of patterns simulated for the last 21k years. The strength of the approach lies in the fact that the last 21k years account for a substantial portion of the glacial-interglacial range of climatic conditions present during the whole Late Quaternary. Following ref. 64, we used global CO2, a key indicator of the global climatic state, as the metric according to which (hat{t}) is chosen; i.e. among the times for which HadAM3H simulations are available, (hat{t}) is the time at which global CO2 was closest to the respective value at the time of interest, t.In the second step of our approach, we used the classical multiplicative delta method to bias-correct and further downscale ({{{{bf{P}}}}}_{ sim 1^circ }(t)) to a hexagonal grid69 with an internode spacing of ~55 km (~0.5°),$${bar{{{{bf{P}}}}}}_{ sim 0.5^circ }(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{P}}}}}}_{ sim 1^circ }^{ boxplus }(t)cdot frac{{bar{{{{bf{P}}}}}}_{{{{rm{obs}}}}}(0)}{{bar{{{{bf{P}}}}}}_{ sim 1^circ }^{ boxplus }(0)},$$
    (2)
    where ({{{{bf{P}}}}}_{{{{rm{obs}}}}}(0)) denotes present-era (1960–1990) observed precipitation70.We reconstructed land configurations for the last 300k years using present-day elevation71 and a time series of Red Sea sea level72. For locations that are currently below sea level, the delta method does not work. For these locations, precipitation was extrapolated using a inverse distance weighting approach. With the exception of a brief window from 124–126k years ago, sea level in the past was lower than it is today; thus, present-day coastal patterns are spatially extended as coastlines move, but not removed. For all (tin {{{{bf{T}}}}}_{300k}), maps of annual precipitation ({bar{{{{bf{P}}}}}}_{ sim 0.5^circ }(t)) with the appropriate land configuration are available as Supplementary Movie 1.Based on these data representing 30-year climatological normals at 1k-year time steps between 300k years ago and the present, we generated, for each millennium, 100 maps representing 10-year average climatologies as follows. We used 3.75° × 2.5° climate simulations from the HadCM3B-M2.1 model, providing a 1000-years-long annual time series of annual precipitation for each millennium between 21k years ago and the present73. Millennia were simulated in parallel; thus, the 1000-years-long time series representing each millennium is in itself continuous, but the beginnings and ends of the time series of successive millennia generally do not coincide. For (tin {{{{bf{T}}}}}_{21k}), we denote the available 1000 successive maps of annual precipitation by ({{{{bf{P}}}}}_{{{{rm{HM}}}}}^{(1)}(t),ldots ,{{{{bf{P}}}}}_{{{{rm{HM}}}}}^{(1000)}(t)). We used these data to compute the relative deviation of the climatic average of each decade within a given millennium, and the climatic average of the 30-year period containing the specific decade as$${{{{boldsymbol{epsilon }}}}}_{HM}^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}frac{{sum }_{i=1+(d-1)cdot 10}^{dcdot 10}{{{{bf{P}}}}}_{{{{rm{HM}}}}}^{(i)}(t)}{{sum }_{n=1+(d-2)cdot 10}^{(d+1)cdot 10}{{{{bf{P}}}}}_{{{{rm{HM}}}}}^{(n)}(t)},d=1,ldots ,100$$
    (3)
    Finally, we applied these ratios of 10-year to 30-year climatic averages to the previously derived 1k-year time step climatologies to obtain, for each (tin ,{{{{bf{T}}}}}_{300k}), 100 sets of 10-year average annual precipitation,$${{{{bf{P}}}}}_{ sim 0.5^circ }^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{P}}}}}}_{ sim 0.5^circ }(t)cdot {{{{boldsymbol{epsilon }}}}}_{HM}^{(d), boxplus }(hat{t}),,d=1,ldots ,100$$
    (4)
    where, analogous to our approach in Eq. (1),(, boxplus ) denotes the interpolation to the ~55 km hexagonal grid, and where (hat{t}) is chosen as the time at which global CO2 was closest to the respective value at time t.AridityThe Köppen aridity index used here is defined as the ratio of annual precipitation (in mm) to the sum of mean annual temperature (in °C) and a constant of 33 °C (cf. Eq. (8)). This measure of aridity was found to be the most reliable one of a set of alternative indices in palaeoclimate contexts30.Decadal-scale mean annual temperature data between 300k years ago and the present were created using analogous methods to those previously applied to reconstruct precipitation. 3.75° × 2.5° resolution emulator-derived simulations of mean annual temperature of the past 300k years at 1k time steps62, denoted ({bar{{{{bf{T}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}(t)), were first downscaled by means of the additive dynamic delta method, using 1.25° × 0.83° HadAM3H simulations of mean annual temperature of the past 21k years, denoted ({bar{{{{bf{T}}}}}}_{{{{rm{HadAM}}}}3{{{rm{H}}}}}(t)), yielding, analogous to Eq. (1),$${bar{{{{bf{T}}}}}}_{ sim 1^circ }(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{T}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}^{ boxplus }(t)+left({bar{{{{bf{T}}}}}}_{{{{rm{HadAM}}}}3{{{rm{H}}}}}(hat{t})-{bar{{{{bf{T}}}}}}_{{{{rm{HadCM}}}}{3}_{{{{rm{em}}}}}}^{ boxplus }(hat{t})right).$$
    (5)
    Analogous to Eq. (2), Next, present-day observed mean annual temperature, ({bar{{{{bf{T}}}}}}_{{{{rm{obs}}}}}(0)), was used to further downscale and bias-correct the data by means of the additive delta method to obtain$${bar{{{{bf{T}}}}}}_{ sim 0.5^circ }(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{T}}}}}}_{ sim 1^circ }^{ boxplus }(t)+left({bar{{{{bf{T}}}}}}_{{{{rm{obs}}}}}(0)-{bar{{{{bf{T}}}}}}_{ sim 1^circ }^{ boxplus }(hat{t})right).$$
    (6)
    For all (tin {{{{bf{T}}}}}_{300k}), maps of mean annual temperature ({bar{{{{bf{T}}}}}}_{ sim 0.5^circ }(t)) with the appropriate land configuration are available as Supplementary Movie 1.Finally, we incorporated HadCM3B-M2 simulations of mean annual temperature of the past 21k years, ({{{{bf{T}}}}}_{{{{rm{HM}}}}}^{(1)}(t),ldots ,{{{{bf{T}}}}}_{{{{rm{HM}}}}}^{(1000)}(t)) for (tin {{{{bf{T}}}}}_{21k}), to obtain 10-year average mean annual temperature,$$begin{array}{c}{{{{bf{T}}}}}_{ sim 0.5^circ }^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}{bar{{{{bf{T}}}}}}_{ sim 0.5^circ }(t)+{left(mathop{sum }limits_{i=1+(d-1)cdot 10}^{dcdot 10}{bar{{{{bf{T}}}}}}_{{{{rm{HM}}}}}^{(i)}(t)-mathop{sum }limits_{n=1+(d-2)cdot 10}^{(d+1)cdot 10}{bar{{{{bf{T}}}}}}_{{{{rm{HM}}}}}^{(n)}(t)right)}^{ boxplus },\ d=1,ldots ,100end{array}$$
    (7)
    Based on these data, the Köppen aridity index at the same spatial and temporal resolution is calculated as$${{{{bf{A}}}}}_{ sim 0.5^circ }^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}frac{{{{{bf{P}}}}}_{ sim 0.5^circ }^{(d)}(t)}{{{{{bf{T}}}}}_{ sim 0.5^circ }^{(d)}(t)+33}.$$
    (8)
    Comparison with empirical proxiesLong-term proxy records
    Long-term proxy records allow us to assess whether simulations capture key qualitative dynamics observed in the empirical data. The lack of direct long-term time series reconstructions of annual precipitation and mean annual temperature makes it necessary to use proxies related to these two climate variables. Proxies providing temporal coverage beyond the last glacial maximum are not only extremely sparse in North Africa and Southwest Asia, but even the few records that exist are affected by environmental factors other than the specific climate variables considered here. For example, reconstructions of past wetness and aridity use proxies that reflect not only rainfall conditions but also the interaction of precipitation with other local and non-local hydro-climatic variables, e.g. river discharge or hydrological catchment across a larger area. Here, we have not attempted to correct for such processes, but assumed that the simulated climate at the site where the empirical record was taken provide a suitable approximation of the potentially broader climatic conditions relevant for the proxy data. Realistic climate simulations would therefore be expected to match major qualitative trends of the empirical records, rather than exhibit a perfect correlation with the data. We compared our precipitation simulations against three long-term humidity-related empirical proxies (Fig. 4a). Proxy 174 provides a time series of Dead Sea lake levels, for which wet and dry periods are associated with high-stand and low-stand conditions, respectively. Proxy 219 from the southern tip of the Arabian Peninsula was obtained from a marine sediment core that allows for reconstructing past changes in aridity over land from the stable hydrogen isotopic composition of leaf waxes (δDwax). Proxy 318 is an XRF-derived humidity index from a core near the Northwest African coast. Temperature simulations were compared against two long-term records of δ18O, which varies over time as a result of temperature fluctuations (in addition to other factors), from the Peqiin and Soreq caves in Northern Israel75 (Fig. 4e). Overall, the simulated data capture key phases observed in the empirical records well for both precipitation (Fig. 4b–d) and temperature proxies (Fig. 4f–h).Fig. 4: Comparison of our data to long-term proxy records.a Geographical locations of empirical proxies on a map of present-day annual precipitation. b–d Comparisons of simulated annual precipitation against the three wetness proxies. e Geographical locations of empirical proxies on a map of present-day mean annual temperature. f, g Comparisons of simulated mean annual temperature against the two δ18O records. Black lines represent the simulated climatological normals at 1k-year intervals (Eqs. (2) and (6)), grey shades represent the 10th and 90th percentile of the decadal simulations (n = 100; Eqs. (4) and (7)).Full size image

    Pollen-based reconstructions
    Pollen records used to empirically reconstruct past climate do not reach as far back in time as the above-described proxy records and are not available at the same temporal resolution; however, in contrast to those proxies, they can be used to quantitatively estimate local annual precipitation and mean annual temperature directly. Here, we used the dataset of pollen-based reconstructions of precipitation and temperature for the mid-Holocene (6k years ago) and the last glacial maximum (21k years ago)76 (Fig. 5a). Our precipitation and temperature data are overall in good agreement with the empirical reconstructions (Fig. 5b–e). During the mid-Holocene, our simulations suggest slightly less precipitation at low levels than most of the empirical records (Fig. 5d), while our data match the empirical reconstruction available from a very arid location during the last glacial maximum very well (Fig. 5e).Fig. 5: Comparison of our data to pollen-based climate reconstructions from the mid-Holocene and the last interglacial period.a Geographical locations and timings of pollen records. b–e Comparisons of our data against empirical reconstructions. Vertical centre measures and error bars represent the empirical reconstructed values and their uncertainties, respectively; horizontal centre measures and error bars represent simulated climatological normals at 1k-year intervals (Eqs. (2) and (6)) and the 10th and 90th percentile of the simulated decadal data (n = 100; Eqs. (4) and (7)), respectively.Full size image

    Interglacial palaeolakes on the Arabian Peninsula
    Finally, we plotted time series of our precipitation simulations in three locations in which palaeolakes have been dated to the last interglacial period, following the approach in ref. 24, in which the authors tested whether their climate simulations predicted higher rainfall during the last interglacial period than at present at palaeolake sites on the Arabian Peninsula. Figure 6 shows the locations of three palaeolakes in the northeast (western Nefud near Taymal; proxy 1), the centre (at Khujaymah; proxy 2), and the southwest (at Saiwan; proxy 3) of the peninsula24 (described in detail in refs. 23,77), and our precipitation data in these locations. In two out of the three locations, our data predict that more rainfall occurred at the estimated timings of the palaeolakes than at any point in time since; in the third location, slightly more rainfall than during the dated time interval is simulated only for a period around 8k years ago.Fig. 6: Comparison of our data against the dates of three palaeolakes on the Arabian peninusla.a Geographical locations of the lakes. b–d Time series of our precipitation data. Black lines represent the simulated climatological normals at 1k-year intervals (Eqs. (2) and (6)), grey shades represent the 10th and 90th percentile of the decadal simulations (n = 100; Eq. (4)). Horizontal error bars represent the estimated dates of the lakes24.Full size image
    Determining the minimum precipitation and aridity tolerance required for out-of-Africa exitsWe denote by ({{{bf{X}}}}={({lambda }_{1},{phi }_{1}),({lambda }_{2},{phi }_{2}),ldots },)the set of longitude and latitude coordinates of the hexagonal grid with an internode spacing of ~55 km (~0.5°)69 that are contained in the longitude window [15°E, 70°E] and the latitude window [5°N, 43°N] (shown in Fig. 3). We denote by ({{{bf{E}}}}) the set of the present-day elevation values of the coordinates in ({{{bf{X}}}}) (in meters)78, i.e. ({{{bf{E}}}}({x}_{i})) is a positive number in a point ({x}_{i}=({lambda }_{i},{phi }_{i})) if ({x}_{i}) is currently above sea level, and negative if ({x}_{i}) is currently below sea level. We denote by (s(t)) the sea level (in meters) at the time (tin {{{{bf{T}}}}}_{300k}) (where ({{{{bf{T}}}}}_{300k}) represents the last 300k years in 1k time steps), for which we used a long-term reconstruction of Red Sea sea level72. In particular, we have (s(0)=0) at present day. For each millennium (tin {{{{bf{T}}}}}_{300k}), we denote by (bar{{{{bf{X}}}}}(t)) the subset of points in (X) that are above sea level:$$bar{{{{bf{X}}}}}(t)mathop{=}limits^{{{{rm{def}}}}}{xin {{{bf{X}}}}:{{{bf{E}}}}(x), > , s(t)}$$
    (9)
    Based on the precipitation map ({{{{bf{P}}}}}_{ sim 0.5^circ }^{(d)}(t)) for a decade (d=1,ldots ,100) in millennium (t) (Eq. (4)), and a given precipitation threshold value (p) (in mm year−1), we denote by ({mathop{{{{bf{X}}}}}limits^{=}}_{p}^{(d)}(t)) the subset of (bar{{{{bf{X}}}}}(t)) that would be suitable grid cells for humans assuming that they cannot survive in areas where precipitation levels are below (p):$${mathop{{{{bf{X}}}}}limits^{=}}_{p}^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}left{xin bar{{{{bf{X}}}}}(t):{{{{bf{P}}}}}_{ sim 0.5^circ }^{(d)}(t)ge pright}$$
    (10)
    We then determined whether there was a connected path in ({mathop{{{{bf{X}}}}}limits^{=}}_{p}^{(d)}(t)) between an initial point, for which we used ({x}_{{{{rm{start}}}}}=(32.6^circ {{{rm{E}}}},10.2^circ {{{rm{N}}}})), and any point in a set of coordinates outside of Africa, defined as ({{{{bf{X}}}}}_{{{{rm{end}}}}}mathop{=}limits^{{{{rm{def}}}}}{(lambda ,phi )in {{{bf{X}}}}:lambda, > , 65^circ {{{rm{E}}}},{{{rm{or}}}},phi , > , 37^circ N}). This was defined to be the case if there was a finite sequence$${x}_{{{{rm{start}}}}}to {x}_{1}to {x}_{2}to ldots to {x}_{n}in {{{{bf{X}}}}}_{{{{rm{end}}}}}$$
    (11)
    of points ({x}_{i}in {mathop{{{{bf{X}}}}}limits^{=}}_{p}^{(d)}(t)) such that the distance between any two successive points ({x}_{i}) and ({x}_{i+1}) was less or equal to the maximum internode spacing of the grid (X). Based on this approach, the critical precipitation threshold below which no connected path exists for the precipitation map ({{{{bf{P}}}}}_{ sim 0.5^circ }^{(d)}(t)) was determined using the following bisection method. Beginning with ({hat{p}}_{0}=1000) mm y−1 and ({check{p}}_{0}=0) mm y−1, for which a connected path between ({x}_{{{{rm{start}}}}}) and ({{{{bf{X}}}}}_{{{{rm{end}}}}}) exists, respectively, for all and for no (t) and (d), the values ({hat{p}}_{k}) and ({check{p}}_{k}) were iteratively defined as$$ , left.begin{array}{c}{check{p}}_{k+1}mathop{=}limits^{{{{rm{def}}}}}frac{{{hat{p}}_{k}+{check{p}}_{k}}}{2}\ {hat{p}}_{k+1}mathop{=}limits^{{{{rm{def}}}}}{hat{p}}_{k}hfillend{array}right},{{{rm{if}}}},{{{rm{a}}}},{{{rm{connected}}}},{{{rm{path}}}},{{{rm{exists}}}},{{{rm{for}}}},p=frac{{{hat{p}}_{k}+{check{p}}_{k}}}{2}\ , left.begin{array}{c}{check{p}}_{k+1}mathop{=}limits^{{{{rm{def}}}}}{check{p}}_{k}hfill\ {hat{p}}_{k+1}mathop{=}limits^{{{{rm{def}}}}}frac{{{hat{p}}_{k}+{check{p}}_{k}}}{2}end{array}right}, {{{rm{else}}}}$$
    (12)
    For all (k), the sought critical precipitation threshold, denoted ({p}_{{{{rm{crit}}}}}^{(d)}(t)), is bounded above by ({hat{p}}_{k}) and bounded below by ({check{p}}_{k}). For (kto infty ), both values converge to ({p}_{{{{rm{crit}}}}}^{(d)}(t)). Here, we defined$${p}_{{{{rm{crit}}}}}^{(d)}(t)mathop{=}limits^{{{{rm{def}}}}}frac{,{hat{p}}_{10}+{check{p}}_{10}}{2},$$
    (13)
    which lies within 1 mm y−1 of the true limit value.To specifically determine the precipitation tolerance required for a northern (Fig. 1a) or southern (Fig. 1b) exit, we rendered the passage of the respective other route impassable by removing appropriate cells from the grid. When investigating the southern route, we additionally assumed that no sea level and precipitation constraints applied within a ~40 km radius around the centre of the Bab al-Mandab strait.For aridity, the procedure is identical, with the exception that ({mathop{{{{bf{X}}}}}limits^{=}}_{p}^{(d)}(t)) is defined based on the relevant aridity map, ({{{{bf{A}}}}}_{ sim 0.5^circ }^{(d)}(t)), and the value 4.0 is used for the initial upper threshold (denoted ({hat{p}}_{0}) above).Width of the Strait of Bab al-MandabSimilar to ref. 52, we reconstructed the minimum distance required to cover on water in order to reach the Arabian peninsula (present-day west coast of Yemen) from Africa (present-day Djibouti and southeast Eritrea). We used a 0.0083° (~1 km at the equator) map of elevation and bathymetry78 and a time series of Red Sea sea level72 to reconstruct very-high-resolution land masks for the last 300k years. For each point in time, we determined the set of connected land masses, and the distances between the closest points of any two land masses. The result can be graph-theoretically represented by a complete graph whose nodes represent connected land masses and whose edge weights correspond to the minimum distances between land masses. The path involving the minimum continuous distance on water was then determined by solving the minmax path problem whose solution is the path between the two nodes representing Africa and the Arabian Peninsula that minimises the maximum weight of any of its edges (Fig. 1b grey shades).Analyses were conducted using Matlab R2019a79.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Genetic engineering of marine cyanophages reveals integration but not lysogeny in T7-like cyanophages

    1.Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA. 2013;110:9824–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Goldin S, Hulata Y, Baran N, Lindell D. Quantification of T4-like and T7-like cyanophages using the polony method show they are significant members of the virioplankton in the North Pacific Subtropical Gyre. Front Microbiol. 2020;11:1210.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Waterbury JB, Valois FW. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl Environ Microbiol. 1993;59:3393–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Marston MF, Sallee JL. Genetic diversity and temporal variation in the cyanophage community infecting marine Synechococcus species in Rhode Island’s coastal waters. Appl Environ Microbiol. 2003;69:4639–47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Clokie MRJ, Mann NH. Marine cyanophages and light. Environ Microbiol. 2006;8:2074–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D. Genomic island variability facilitates Prochlorococcus -virus coexistence. Nature. 2011;474:604–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Marston MF, Pierciey FJ, Shepard A, Gearin G, Qi J, Yandava C, et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA. 2012;109:4544–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Fuhrman JA. Marine virueses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.9.Suttle CA. Marine viruses – major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Suttle CA, Chan AM. Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-infectivity and growth characteristics. Mar Ecol Prog Ser. 1993;92:99–109.Article 

    Google Scholar 
    12.Sullivan MB, Waterbury JB, Chisholm SW. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature. 2003;424:1047–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Sullivan MB, Coleman ML, Weigele P, Rohwer F, Chisholm SW. Three Prochlorococcus cyanophage genomes: Signature features and ecological interpretations. PLoS Biol. 2005;3:0790–806.CAS 
    Article 

    Google Scholar 
    14.Pope WH, Weigele PR, Chang J, Pedulla ML, Ford ME, Houtz JM, et al. Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: a “horned” bacteriophage of marine Synechococcus. J Mol Biol. 2007;368:966–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Weigele PR, Pope WH, Pedulla ML, Houtz JM, Smith AL, Conway JF, et al. Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ Microbiol. 2007;9:1675–95.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Labrie SJ, Frois-Moniz K, Osburne MS, Kelly L, Roggensack SE, Sullivan MB, et al. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol. 2013;15:1356–76.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Huang S, Wang K, Jiao N, Chen F. Genome sequences of siphoviruses infecting marine Synechococcus unveil a diverse cyanophage group and extensive phage-host genetic exchanges. Environ Microbiol. 2012;14:540–58.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, Weigele PR, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Ghai R, Martin-Cuadrado AB, Molto AG, Heredia IG, Cabrera R, Martin J, et al. Metagenome of the Mediterranean deep chlorophyll maximum studied by direct and fosmid library 454 pyrosequencing. ISME J. 2010;4:1154–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Ma Y, Allen LZ, Palenik B. Diversity and genome dynamics of marine cyanophages using metagenomic analyses. Environ Microbiol Rep. 2014;6:583–94.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Sabehi G, Shaulov L, Silver DH, Yanai I, Harel A, Lindell D. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. Proc Natl Acad Sci USA. 2012;109:2037–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Huang S, Zhang S, Jiao N, Chen F. Comparative genomic and phylogenomic analyses reveal a conserved core genome shared by estuarine and oceanic cyanopodoviruses. PLoS One. 2015;10:1–17.
    Google Scholar 
    23.Ignacio-espinoza JC, Sullivan MB. Phylogenomics of T4 cyanophages: lateral gene transfer in the ‘core’ and origins of host genes. Environ Microbiol. 2012;14:2113–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Crummett LT, Puxty RJ, Weihe C, Marston MF, Martiny JBHH. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses. Virology. 2016;499:219–29.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Millard AD, Zwirglmaier K, Downey MJ, Mann NH, Scanlan DJ. Comparative genomics of marine cyanomyoviruses reveals the widespread occurrence of Synechococcus host genes localized to a hyperplastic region: Implications for mechanisms of cyanophage evolution. Environ Microbiol. 2009;11:2370–87.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Mann NH, Cook A, Millard A, Bailey S, Clokie M. Bacterial photosynthesis genes in a virus. Nature 2003;424:741–741.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Lindell D, Sullivan MB, Johnson ZI, Tolonen AC, Rohwer F, Chisholm SW. Transfer of photosynthesis genes to and from Prochlorococcus viruses. Proc Natl Acad Sci USA. 2004;101:11013–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Viruses inhibit CO2 fixation in the most abundant phototrophs on Earth. Curr Biol. 2016;26:1585–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Kelly L, Ding H, Huang KH, Osburne MS, Chisholm SW. Genetic diversity in cultured and wild marine cyanomyoviruses reveals phosphorus stress as a strong selective agent. ISME J. 2013;7:1827–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Yin Y, Fischer D. Identification and investigation of ORFans in the viral world. BMC Genomics. 2008;9:24.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Clokie MR, Millard AD, Mann NH. T4 genes in the marine ecosystem: studies of the T4-like cyanophages and their role in marine ecology. Virol J. 2010;7:291.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Rihtman B, Bowman‐Grahl S, Millard A, Corrigan RM, Clokie MRJ, Scanlan DJ. Cyanophage MazG is a pyrophosphohydrolase but unable to hydrolyse magic spot nucleotides. Environ Microbiol Rep. 2019;11:448–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Dammeyer T, Bagby SC, Sullivan MB, Chisholm SW, Frankenberg-Dinkel N. Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteria. Curr Biol. 2008;18:442–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Roitman S, Hornung E, Flores-Uribe J, Sharon I, Feussner I, Béjà O. Cyanophage-encoded lipid desaturases: Oceanic distribution, diversity and function. ISME J. 2018;12:343–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci USA. 2011;108:E757–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Puxty RJ, Perez-Sepulveda B, Rihtman B, Evans DJ, Millard AD, Scanlan DJ. Spontaneous deletion of an “ORFanage” region facilitates host adaptation in a “photosynthetic” cyanophage. PLoS One. 2015;10:e0132642.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 2017;11:1511–20.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Ranade K, Poteete AR. Superinfection exclusion (sieB) genes of bacteriophages P22 and λ. J Bacteriol. 1993;175:4712–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Fogg PCM, Allison HE, Saunders JR, McCarthy AJ. Bacteriophage Lambda: a paradigm revisited. J Virol. 2010;84:6876–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.van Houte S, Buckling A, Westra ER. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol Mol Biol Rev. 2016;80:745–63.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Tuttle MJ, Buchan A. Lysogeny in the oceans: lessons from cultivated model systems and a reanalysis of its prevalence. Environ Microbiol. 2020;22:4919–33.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Knowles B, Silveira CB, Bailey BA, Barott K, Cantu VA, Cobian-Guëmes AG, et al. Lytic to temperate switching of viral communities. Nature. 2016;531:466–70.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Touchon M, Bernheim A, Rocha EPC. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 2016;10:2744–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Roux S, Hallam SJ, Woyke T, Sullivan MB. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. Elife. 2015;4:e08490.PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    45.Luo E, Eppley JM, Romano AE, Mende DR, DeLong EF. Double-stranded DNA. virioplankton dynamics and reproductive strategies in the oligotrophic open ocean water column. ISME J. 2020;14:1304–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Touchon M, Moura de Sousa JA, Rocha EP. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr Opin Microbiol. 2017;38:66–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, Delong EF, et al. Genomic islands and the ecology and evolution of Prochlorococcus. Science. 2006;311:1768–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Zhaxybayeva O, Gogarten JP, Charlebois RL, Doolittle WF, Papke RT. Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res. 2006;16:1099–108.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T, et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature. 2007;449:83–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Raytcheva DA, Haase-Pettingell C, Piret JM, King JA. Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J Virol. 2011;85:2406–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Flores-Uribe J, Philosof A, Sharon I, Fridman S, Larom S, Béjà O. A novel uncultured marine cyanophage lineage with lysogenic potential linked to a putative marine Synechococcus ‘relic’ prophage. Environ Microbiol Rep. 2019;11:598–604.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Malmstrom RR, Rodrigue S, Huang KH, Kelly L, Kern SE, Thompson A, et al. Ecology of uncultured Prochlorococcus clades revealed through single-cell genomics and biogeographic analysis. ISME J. 2013;7:184–98.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kiro R, Shitrit D, Qimron U. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system. RNA Biol. 2014;11:42–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Sarkis GJ, Jacobs WR, Hatfull GF. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol. 1995;15:1055–67.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Tanji Y, Furukawa C, Na SH, Hijikata T, Miyanaga K, Unno H. Escherichia coli detection by GFP-labeled lysozyme-inactivated T4 bacteriophage. J Biotechnol. 2004;114:11–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Brahamsha B. A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus. Appl Environ Microbiol. 1996;62:1747–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Mahichi F, Synnott AJ, Yamamichi K, Osada T, Tanji Y. Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol Lett. 2009;295:211–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Le S, He X, Tan Y, Huang G, Zhang L, Lux R, et al. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004. PLoS One. 2013;8:e68562.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Murphy KC. Phage recombinases and their applications. Adv Virus Res. 2012;83:367–414.60.Bujarski JJ. Recombination of viruses. In: Encyclopedia of Virology. Elsevier; 1999. p. 1446–53.61.Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK. Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev. 2016;80:523–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Qimron U, Marintcheva B, Tabor S, Richardson CC. Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. Proc Natl Acad Sci USA. 2006;103:19039–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Selick HE, Kreuzer KN, Alberts BM. The bacteriophage T4 insertion/substitution vector system. A method for introducing site-specific mutations into the virus chromosome. J Biol Chem. 1988;263:11336–47.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Martel B, Moineau S. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res. 2014;42:9504–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Dale JW, Greenaway PJ. Identification of recombinant phages by plaque hybridization. In: Walker JM, editor. Nucleic Acids. Totowa, NJ: Humana Press; 1984. p. 285–8.Chapter 

    Google Scholar 
    66.Dekel-Bird NP, Avrani S, Sabehi G, Pekarsky I, Marston MF, Kirzner S, et al. Diversity and evolutionary relationships of T7-like podoviruses infecting marine cyanobacteria. Environ Microbiol. 2013;15:1476–91.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Doron S, Fedida A, Hernndez-Prieto MA, Sabehi G, Karunker I, Stazic D, et al. Transcriptome dynamics of a broad host-range cyanophage and its hosts. ISME J. 2016;10:1437–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Krupovic M, Forterre P. Single-stranded DNA viruses employ a variety of mechanisms for integration into host genomes. Ann NY Acad Sci. 2015;1341:41–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Morris RM, Cain KR, Hvorecny KL, Kollman JM. Lysogenic host–virus interactions in SAR11 marine bacteria. Nat Microbiol. 2020;5:1011–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Martínez-García E, Jatsenko T, Kivisaar M, de Lorenzo V. Freeing Pseudomonas putida KT2440 of its proviral load strengthens endurance to environmental stresses. Environ Microbiol. 2015;17:76–90.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    71.Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 2021;15:41–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S. Switches in bacteriophage lambda development. Annu Rev Genet. 2005;39:409–29.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Ray U, Sakalka A. Lysogenization of Escherichia coli by bacteriophage Lambda: complementary activity of the host’s DNA polymerase I and ligase and bacteriophage replication proteins Q and P. J Virol. 1976;18:511–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Greengrass E. Resistance of marine Synechococcus to podovirus infection: genetic basis and phenotypic characterization. M.Sc. thesis. Technion – Israel Inst Technol. 2013.75.Fedida A, Lindell D. Two Synechococcus genes, two different effects on cyanophage infection. Viruses. 2017;9:136.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Shao Q, Trinh JT, McIntosh CS, Christenson B, Balázsi G, Zeng L. Lysis-lysogeny coexistence: prophage integration during lytic development. Microbiol Open. 2017;6:e00395.Article 
    CAS 

    Google Scholar 
    77.Chen F, Lu J. Genomic sequence and evolution of marine cyanophage P60: a new insight on lytic and lysogenic phages. Appl Environ Microbiol. 2002;68:2589–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Brum JR, Hurwitz BL, Schofield O, Ducklow HW, Sullivan MB. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 2016;10:437–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Pratama AA, van Elsas JD. The ‘neglected’ soil virome—potential role and impact. Trends Microbiol. 2018;26:649–62.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Srinivasiah S, Bhavsar J, Thapar K, Liles M, Schoenfeld T, Wommack KE. Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol. 2008;159:349–57.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Zhao Y, Temperton B, Thrash JC, Schwalbach MS, Vergin KL, Landry ZC, et al. Abundant SAR11 viruses in the ocean. Nature. 2013;494:357–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Zhao Y, Qin F, Zhang R, Giovannoni SJ, Zhang Z, Sun J, et al. Pelagiphages in the Podoviridae family integrate into host genomes. Environ Microbiol. 2018;21:1989–2001.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    83.Kashtan N, Roggensack SE, Berta-Thompson JW, Grinberg M, Stepanauskas R, Chisholm SW. Fundamental differences in diversity and genomic population structure between Atlantic and Pacific Prochlorococcus. ISME J. 2017;11:1997–2011.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Berube PM, Biller SJ, Hackl T, Hogle SL, Satinsky BM, Becker JW, et al. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci Data. 2018;5:1–11.Article 
    CAS 

    Google Scholar 
    85.Wyman M, Gregory RPF, Carr NG. Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2. Science. 1985;230:818–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Lindell D, Padan E, Post AF. Regulation of ntcA expression and nitrite uptake in the marine Synechococcus sp. strain WH 7803. J Bacteriol. 1998;180:1878–86.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, et al. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods. 2007;5:353–62.CAS 
    Article 

    Google Scholar 
    88.Lindell D. The genus Prochlorococcus, phylum cyanobacteria. In: The Prokaryotes: Other Major Lineages of Bacteria and The Archaea. Springer-Verlag Berlin Heidelberg; 2014. p. 829–45.89.Morris JJ, Kirkegaard R, Szul MJ, Johnson ZI, Zinser ER. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by “helper” heterotrophic bacteria. Appl Environ Microbiol. 2008;74:4530–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Wolk CP, Fan Q, Zhou R, Huang G, Lechno-Yossef S, Kuritz T, et al. Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120. Arch Microbiol. 2007;188:551–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Bryksin A, Matsumura I. Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques. 2010;48:463–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria. Nat Biotechnol. 1983;1:784–91.CAS 
    Article 

    Google Scholar 
    93.Henn MR, Sullivan MB, Stange-Thomann N, Osburne MS, Berlin AM, Kelly L, et al. Analysis of high-throughput sequencing and annotation strategies for phage genomes. PLoS One. 2010;5:e9083.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    94.Zinser ER, Coe A, Johnson ZI, Martiny AC, Fuller NJ, Scanlan DJ, et al. Prochlorococcus ecotype abundances in the North Atlantic Ocean as revealed by an improved quantitative PCR method. Appl Environ Microbiol. 2006;72:723–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature. 2005;438:86–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Mitra RD, Church GM. In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res. 1999;27:e34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Schwartz DA, Lindell D. Genetic hurdles limit the arms race between Prochlorococcus and the T7-like podoviruses infecting them. ISME J. 2017;11:1836–51.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Bull JJ, Badgett MR, Wichman HA, Huelsenbeck JP, Hillis DM, Gulati A, et al. Exceptional convergent evolution in a virus. Genetics. 1997;147:1497–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Quinlan AR. BEDTools: the Swiss-army Tool for genome feature analysis. Curr Protoc Bioinform. 2014;47:1–34. 11.12.Article 

    Google Scholar 
    100.Biller SJ, Berube PM, Dooley K, Williams M, Satinsky BM, Hackl T, et al. Marine microbial metagenomes sampled across space and time. Sci Data. 2018;5:180176.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Haro-Moreno JM, López-Pérez M, de la Torre JR, Picazo A, Camacho A, Rodriguez-Valera F. Fine metagenomic profile of the Mediterranean stratified and mixed water columns revealed by assembly and recruitment. Microbiome. 2018;6:128.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Philosof A, Yutin N, Flores-Uribe J, Sharon I, Koonin EV, Béjà O. Novel abundant oceanic viruses of uncultured marine group II Euryarchaeota. Curr Biol. 2017;27:1362–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Wilson ST, Aylward FO, Ribalet F, Barone B, Casey JR, Connell PE, et al. Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera. Nat Microbiol. 2017;2:17118.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    105.Bushnell B. BBMap: a fast, accurate, splice-aware aligner. 2014;URL: https://www.osti.gov/servlets/purl/1241166.106.Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv. 2013;1303:3997.
    Google Scholar 
    107.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Wolves, dogs and humans in regular contact can mutually impact each other’s skin microbiota

    Humans have the least and pet dogs have the most diverse skin microbiotaOut of all four groups, species richness and diversity were lowest in human skin microbiota, whereas the pet dog group had the highest species richness and diversity. All four groups differed significantly to each other (Kruskal–Wallis; Chao1, chi-squared = 20.828, df = 3, p  More

  • in

    Nonlinear shifts in infectious rust disease due to climate change

    1.Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine Biota. Science 296, 2158–2162 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Gautam, H. R., Bhardwaj, M. L. & Kumar, R. Climate change and its impact on plant diseases. Curr. Sci. 105, 1685–1691 (2013).
    Google Scholar 
    3.Bebber, D. P. & Gurr, S. J. Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet. Biol. 74, 62–64 (2015).PubMed 
    Article 

    Google Scholar 
    4.Lukanda, M. et al. First report of maize chlorotic mottle virus infecting maize in the Democratic Republic of the Congo. Plant Dis. 98, 1448–1448 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Brasier, C. M. in The Elms: Breeding,Conservation, and Disease Management (ed. Dunn, C. P.) 61–72 (Springer US, 2000). https://doi.org/10.1007/978-1-4615-4507-1_4.6.Boyd, I. L., Freer-Smith, P. H., Gilligan, C. A. & Godfray, H. C. J. The consequence of tree pests and diseases for ecosystem services. Science 342, 1235773 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Geometry and evolution of the ecological niche in plant-associated microbes. Nat. Commun. 11, 2955 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Donald, F., Green, S., Searle, K., Cunniffe, N. J. & Purse, B. V. Small scale variability in soil moisture drives infection of vulnerable juniper populations by invasive forest pathogen. Ecol. Manag. 473, 118324 (2020).Article 

    Google Scholar 
    9.Sturrock, R. N. et al. Climate change and forest diseases. Plant Pathol. 60, 133–149 (2011).Article 

    Google Scholar 
    10.Pathak, R., Singh, S. K., Tak, A. & Gehlot, P. Impact of climate change on host, pathogen and plant disease adaptation regime: a review. Biosci. Biotechnol. Res. Asia 15, 529–540 (2018).Article 

    Google Scholar 
    11.Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009).PubMed 
    Article 

    Google Scholar 
    12.Ghelardini, L., Pepori, A. L., Luchi, N., Capretti, P. & Santini, A. Drivers of emerging fungal diseases of forest trees. Ecol. Manag. 381, 235–246 (2016).Article 

    Google Scholar 
    13.Wyka, S. A. et al. Emergence of white pine needle damage in the northeastern United States is associated with changes in pathogen pressure in response to climate change. Glob. Change Biol. 23, 394–405 (2017).ADS 
    Article 

    Google Scholar 
    14.Garrett, K. A. et al. in Climate Change 2nd edn (ed. Letcher, T. M.) 325–338 (Elsevier, 2016). https://doi.org/10.1016/B978-0-444-63524-2.00021-X.15.Bebber, D. P. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53, 335–356 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).ADS 
    Article 

    Google Scholar 
    17.Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2013).PubMed 
    Article 

    Google Scholar 
    19.Huey, R. B. & Berrigan, D. Temperature, demography, and ectotherm fitness. Am. Nat. 158, 204–210 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Huey, R. B. & Stevenson, R. D. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. Integr. Comp. Biol. 19, 357–366 (1979).
    Google Scholar 
    21.Rohr, J. R. et al. Frontiers in climate change—disease research. Trends Ecol. Evol. 26, 270–277 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Peterson, A. T. Shifting suitability for malaria vectors across Africa with warming climates. BMC Infect. Dis. 9, 59 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Garamszegi, L. Z. Climate change increases the risk of malaria in birds. Glob. Change Biol. 17, 1751–1759 (2011).ADS 
    Article 

    Google Scholar 
    24.Cook, B. I., Mankin, J. S. & Anchukaitis, K. J. Climate change and drought: from past to future. Curr. Clim. Change Rep. 4, 164–179 (2018).Article 

    Google Scholar 
    25.Desprez-Loustau, M.-L., Marçais, B., Nageleisen, L.-M., Piou, D. & Vannini, A. Interactive effects of drought and pathogens in forest trees. Ann. Sci. 63, 597–612 (2006).Article 

    Google Scholar 
    26.Brodribb, T. J. & McAdam, S. A. M. Passive origins of stomatal control in vascular plants. Science 331, 582–585 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Jactel, H. et al. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob. Change Biol. 18, 267–276 (2012).ADS 
    Article 

    Google Scholar 
    28.Baptista-Rosas, R. C. et al. Molecular detection of Coccidioides spp. from environmental samples in Baja California: linking Valley Fever to soil and climate conditions. Fungal Ecol. 5, 177–190 (2012).Article 

    Google Scholar 
    29.Cohen, J. M. et al. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecol. Lett. 20, 184–193 (2017).PubMed 
    Article 

    Google Scholar 
    30.Mcelrone, A. J., Reid, C. D., Hoye, K. A., Hart, E. & Jackson, R. B. Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Glob. Change Biol. 11, 1828–1836 (2005).ADS 
    Article 

    Google Scholar 
    31.Berzitis, E. A., Minigan, J. N., Hallett, R. H. & Newman, J. A. Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata). Glob. Change Biol. 20, 2778–2792 (2014).ADS 
    Article 

    Google Scholar 
    32.Bebber, D. P. & Gurr, S. J. Biotic interactions and climate in species distribution modelling. bioRxiv 520320 https://doi.org/10.1101/520320 (2019).33.Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542–544 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Morgan, E. R., Milner-Gulland, E. J., Torgerson, P. R. & Medley, G. F. Ruminating on complexity: macroparasites of wildlife and livestock. Trends Ecol. Evol. 19, 181–188 (2004).PubMed 
    Article 

    Google Scholar 
    35.Paull, S. H., LaFonte, B. E. & Johnson, P. T. J. Temperature-driven shifts in a host-parasite interaction drive nonlinear changes in disease risk. Glob. Change Biol. 18, 3558–3567 (2012).ADS 
    Article 

    Google Scholar 
    36.Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).Article 

    Google Scholar 
    37.Bebber, D. P. Climate change effects on Black Sigatoka disease of banana. Philos. Trans. R. Soc. B: Biol. Sci. 374, 20180269 (2019).Article 

    Google Scholar 
    38.Soberón, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. https://doi.org/10.17161/bi.v2i0.4 (2005).39.Garrett, K. A. et al. Complexity in climate-change impacts: an analytical framework for effects mediated by plant disease. Plant Pathol. 60, 15–30 (2011).Article 

    Google Scholar 
    40.Scherm, H. Climate change: can we predict the impacts on plant pathology and pest management? Can. J. Plant Pathol. 26, 267–273 (2004).Article 

    Google Scholar 
    41.Simler-Williamson, A. B., Rizzo, D. M. & Cobb, R. C. Interacting effects of global change on forest pest and pathogen dynamics. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110218-024934 (2019).42.Campbell, E. M. & Antos, J. A. Distribution and severity of white pine blister rust and mountain pine beetle on whitebark pine in British Columbia. Can. J. Res. 30, 1051–1059 (2000).Article 

    Google Scholar 
    43.Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).Article 

    Google Scholar 
    44.McDonald, G. I., Richardson, B. A., Zambino, P. J., Klopfenstein, N. B. & Kim, M.-S. Pedicularis and Castilleja are natural hosts of Cronartium ribicola in North America: a first report. Pathol. 36, 73–82 (2006).Article 

    Google Scholar 
    45.Geils, B. W., Hummer, K. E. & Hunt, R. S. White pines, Ribes, and blister rust: a review and synthesis. Pathol. 40, 147–185 (2010).Article 

    Google Scholar 
    46.Kinloch, B. B. White pine blister rust in North America: past and prognosis. Phytopathology 93, 1044–1047 (2003).PubMed 
    Article 

    Google Scholar 
    47.Arsdel, E. P. V., Geils, B. W. & Zambino, P. J. Epidemiology for hazard rating of white pine blister rust. In: Guyon JC Comp Proc. 53rd Western International Forest Disease Work Conference 2005 September 26–30 Jackson WY USA (Department of Agriculture, Forest Service, Intermountain Region, Ogden UT, 2006).48.Dudney, J. Characterizing and Managing Drivers of Change in Mediterranean Forest and Grassland Communities (UC Berkeley, 2019).49.Kreyling, J. et al. To replicate, or not to replicate—that is the question: how to tackle nonlinear responses in ecological experiments. Ecol. Lett. 21, 1629–1638 (2018).PubMed 
    Article 

    Google Scholar 
    50.Larson, E. R. & Kipfmueller, K. F. Ecological disaster or the limits of observation? reconciling modern declines with the long-term dynamics of whitebark pine communities. Geogr. Compass 6, 189–214 (2012).Article 

    Google Scholar 
    51.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Kinloch, B. B. et al. Patterns of variation in blister rust resistance in sugar pine (Pinus lambertiana). In: Proc. IUFRO joint conference: Genetics of five-needle pines, rusts of forest trees, and Strobusphere; 2014 June 15–20; Fort Collins, CO. Proc. RMRS-P-76 (eds Schoettle, A. W., Sniezko, R. A. & Kliejunas, J. T.) 124–128 (Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2018).53.King, J. N., David, A., Noshad, D. & Smith, J. A review of genetic approaches to the management of blister rust in white pines. Pathol. 40, 292–313 (2010).Article 

    Google Scholar 
    54.Maloney, P. E. Incidence and distribution of white pine blister rust in the high-elevation forests of California. Forest Pathol. 41, 308–316 (2011).Article 

    Google Scholar 
    55.Dunlap, J. M. Variability in and environmental correlates to white pine blister rust incidence in five California white pine species. Northwest Sci. 86, 248–263 (2012).Article 

    Google Scholar 
    56.Thoma, D. P., Shanahan, E. K. & Irvine, K. M. Climatic correlates of white pine blister rust infection in whitebark pine in the greater yellowstone ecosystem. Forests 10, 666 (2019).Article 

    Google Scholar 
    57.Talley, S. M., Coley, P. D. & Kursar, T. A. The effects of weather on fungal abundance and richness among 25 communities in the Intermountain West. BMC Ecol. 2, 7 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Davis, J. K. et al. Improving the prediction of arbovirus outbreaks: A comparison of climate-driven models for West Nile virus in an endemic region of the United States. Acta Trop. 185, 242–250 (2018).PubMed 
    Article 

    Google Scholar 
    59.Manstretta, V. & Rossi, V. Effects of weather variables on ascospore discharge from Fusarium graminearum Perithecia. PLoS ONE 10, e0138860 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Seager, R. et al. Climatology, variability, and trends in the U.S. vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 54, 1121–1141 (2015).ADS 
    Article 

    Google Scholar 
    61.Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).ADS 
    Article 

    Google Scholar 
    62.Dudney, J. C. et al. Compounding effects of white pine blister rust, mountain pine beetle, and fire threaten four white pine species. Ecosphere 11, e03263 (2020).Article 

    Google Scholar 
    63.Schwandt, J. W., Lockman, I. B., Kliejunas, J. T. & Muir, J. A. Current health issues and management strategies for white pines in the western United States and Canada. Forest Pathol. 40, 226–250 (2010).Article 

    Google Scholar 
    64.Dudney, J. et al. Overstory removal and biological legacies influence long-term forest management outcomes on introduced species and native shrubs. Forest Ecol. Manag. 491, 119149 (2021).Article 

    Google Scholar 
    65.Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. 113, 11770–11775 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Goodsman, D. W., Lusebrink, I., Landhäusser, S. M., Erbilgin, N. & Lieffers, V. J. Variation in carbon availability, defense chemistry and susceptibility to fungal invasion along the stems of mature trees. N. Phytol. 197, 586–594 (2013).CAS 
    Article 

    Google Scholar 
    67.McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? N. Phytol. 178, 719–739 (2008).Article 

    Google Scholar 
    68.Bockino, N. K. & Tinker, D. B. Interactions of white pine blister rust and mountain pine beetle in whitebark pine ecosystems in the southern Greater Yellowstone Area. Nat. Areas J. 32, 31–40 (2012).Article 

    Google Scholar 
    69.Stephenson, N. L., Das, A. J., Ampersee, N. J., Bulaon, B. M. & Yee, J. L. Which trees die during drought? The key role of insect host-tree selection. J. Ecol. 107, 2383–2401 (2019).70.Griffin, D. & Anchukaitis, K. J. How unusual is the 2012–2014 California drought? Geophys. Res. Lett. 41, 2014GL062433 (2014).Article 

    Google Scholar 
    71.Paz‐Kagan, T. et al. What mediates tree mortality during drought in the southern Sierra Nevada? Ecol. Appl. 27, 2443–2457 (2017).PubMed 
    Article 

    Google Scholar 
    72.Zambino, P. J. Biology and pathology of Ribes and their implications for management of white pine blister rust. Pathol. 40, 264–291 (2010).Article 

    Google Scholar 
    73.Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L. & Trugman, A. T. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).ADS 
    Article 

    Google Scholar 
    74.Bebber, D. P., Holmes, T. & Gurr, S. J. The global spread of crop pests and pathogens. Glob. Ecol. Biogeogr. 23, 1398–1407 (2014).Article 

    Google Scholar 
    75.Deyle, E. R., May, R. M., Munch, S. B. & Sugihara, G. Tracking and forecasting ecosystem interactions in real time. Proc. R. Soc. B: Biol. Sci. 283, 20152258 (2016).Article 

    Google Scholar 
    76.Deyle, E. R., Maher, M. C., Hernandez, R. D., Basu, S. & Sugihara, G. Global environmental drivers of influenza. Proc. Natl Acad. Sci. 113, 13081–13086 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Cohen, J. M., Civitello, D. J., Venesky, M. D., McMahon, T. A. & Rohr, J. R. An interaction between climate change and infectious disease drove widespread amphibian declines. Glob. Change Biol. 25, 927–937 (2019).ADS 
    Article 

    Google Scholar 
    78.Kolb, T. E. et al. Observed and anticipated impacts of drought on forest insects and diseases in the United States. Ecol. Manag. 380, 321–334 (2016).Article 

    Google Scholar 
    79.Kutz, S. J. et al. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host–parasite interactions. Vet. Parasitol. 163, 217–228 (2009).PubMed 
    Article 

    Google Scholar 
    80.Flower, C. E. & Gonzalez-Meler, M. A. Responses of temperate forest productivity to insect and pathogen disturbances. Annu. Rev. Plant Biol. 66, 547–569 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Trant, A., Higgs, E. & Starzomski, B. M. A century of high elevation ecosystem change in the Canadian Rocky Mountains. Sci. Rep. 10, 9698 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Wong, C. M. & Daniels, L. D. Novel forest decline triggered by multiple interactions among climate, an introduced pathogen and bark beetles. Glob. Change Biol. 23, 1926–1941 (2017).ADS 
    Article 

    Google Scholar 
    83.Endangered and Threatened Wildlife and Plants; Threatened Species Status for Pinus albicaulis (Whitebark Pine) With Section 4(d) Rule. Federal Register https://www.federalregister.gov/documents/2020/12/02/2020-25331/endangered-and-threatened-wildlife-and-plants-threatened-species-status-for-pinus-albicaulis (2020).84.Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. & Travers, S. E. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44, 489–509 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.PRISM Climate Group. PRISM Climate Group, Oregon State U. http://www.prism.oregonstate.edu/normals/.86.Abatzoglou, J. T. & Brown, T. J. A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol. 32, 772–780 (2012).Article 

    Google Scholar 
    87.Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).Article 

    Google Scholar 
    88.Mitchell, K. E. et al. The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res. Atmospheres https://doi.org/10.1029/2003JD003823@10.1002/(ISSN)2169-8996.GCIP3 (2018).89.Ritchie, J. & Dowlatabadi, H. Why do climate change scenarios return to coal? Energy 140, 1276–1291 (2017).Article 

    Google Scholar 
    90.R Core Team. R: A Language and Environment for Statistical Computing https://www.rproject.org/ (2017).91.Burns, K. S., Schoettle, A. W., Jacobi, W. R. & Mahalovich, M. F. White pine blister rust in the Rocky Mountain Region and options for management. Management. https://www.fs.fed.us/rm/pubs/rmrs_gtr206.pdf (2007).92.Fox, J. et al. car: Companion to applied regression (2019).93.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    94.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer New York, 2009).95.Baker-Austin, C. et al. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat. Clim. Change 3, 73–77 (2013).ADS 
    Article 

    Google Scholar 
    96.Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).ADS 
    Article 

    Google Scholar 
    97.Rohr, J. R., Raffel, T. R., Romansic, J. M., McCallum, H. & Hudson, P. J. Evaluating the links between climate, disease spread, and amphibian declines. Proc. Natl Acad. Sci. 105, 17436–17441 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Wooldridge, J. M. Introductory Econometrics: A Modern Approach. 6th ed. (Cengage learning. Boston, MA, 2015).99.Berge, L. fixest: Fast Fixed-Effects Estimations. https://cran.rproject.org/web/packages/fixest/index.html (2020).100.Harrell, F. E. rms: Regression Modeling Strategies https://CRAN.R-project.org/package=rms (2020).101.Kelly, M., Guo, Q., Liu, D. & Shaari, D. Modeling the risk for a new invasive forest disease in the United States: An evaluation of five environmental niche models. Comput. Environ. Urban Syst. 31, 689–710 (2007).Article 

    Google Scholar 
    102.Meentemeyer, R. K. et al. Epidemiological modeling of invasion in heterogeneous landscapes: spread of sudden oak death in California (1990–2030). Ecosphere 2, 1–24 (2011).Article 

    Google Scholar 
    103.QGIS Development Team. QGIS Geographic Information System. http://qgis.osgeo.org/ (2020).104.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).105.Hülsmann, L., Bugmann, H., Cailleret, M. & Brang, P. How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. Ecol. Appl. 28, 522–540 (2018).PubMed 
    Article 

    Google Scholar 
    106.Cribbs, J., Nesmith, J., van Mantgem, P. & Dudney, J. Using stable isotope analysis and foliar growth measurements to understand physiological responses to drought in whitebark pine. Presented at the Ecological Society of America Symposium (2020).107.Farquhar, G. D. & Richards, R. A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct. Plant Biol. 11, 539–552 (1984).CAS 
    Article 

    Google Scholar 
    108.Dudney, J. et al. Climate change and white pine blister rust. https://doi.org/10.17605/OSF.IO/PC9FM. (2021).109.Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl Acad. Sci. 106, 19644–19650 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Non-lethal effects of entomopathogenic nematode infection

    1.Gaugler, R. Entomopathogenic nematology (2002).2.Gaugler, R. Entomopathogenic Nematodes in Biological Control (CRC Press, 2018).Book 

    Google Scholar 
    3.Grewal, P. S., Ehlers, R.-U. & Shapiro-Ilan, D. I. Nematodes as Biocontrol Agents (CABI, 2005).Book 

    Google Scholar 
    4.Duncan, L. & McCoy, C. Vertical distribution in soil, persistence, and efficacy against citrus root weevil (coleoptera: Curculionidae) of two species of entomogenous nematodes (rhabditida: Steinernematidae; heterorhabditidae). Environ. Entomol. 25, 174–178 (1996).Article 

    Google Scholar 
    5.Duncan, L., McCoy, C. & Terranova, A. Estimating sample size and persistence of entomogenous nematodes in sandy soils and their efficacy against the larvae of Diaprepes abbreviatus in Florida. J. Nematol. 28, 56 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Bullock, R., Pelosi, R. & Killer, E. Management of citrus root weevils (coleoptera: Curculionidae) on florida citrus with soil-applied entomopathogenic nematodes (nematoda: Rhabditida). Florida Entomologist 1–7 (1999).7.Koppenhöfer, A. M. & Fuzy, E. M. Steinernema scarabaei for the control of white grubs. Biol. Control 28, 47–59 (2003).Article 

    Google Scholar 
    8.Grewal, P., Power, K., Grewal, S., Suggars, A. & Haupricht, S. Enhanced consistency in biological control of white grubs (coleoptera: Scarabaeidae) with new strains of entomopathogenic nematodes. Biol. Control 30, 73–82 (2004).Article 

    Google Scholar 
    9.Georgis, R. et al. Successes and failures in the use of parasitic nematodes for pest control. Biol. Control 38, 103–123 (2006).Article 

    Google Scholar 
    10.Labaude, S. & Griffin, C. T. Transmission success of entomopathogenic nematodes used in pest control. Insects 9, 72 (2018).Article 

    Google Scholar 
    11.Li, X.-Y., Cowles, R., Cowles, E., Gaugler, R. & Cox-Foster, D. Relationship between the successful infection by entomopathogenic nematodes and the host immune response. Int. J. Parasitol. 37, 365–374 (2007).CAS 
    Article 

    Google Scholar 
    12.Castillo, J. C., Reynolds, S. E. & Eleftherianos, I. Insect immune responses to nematode parasites. Trends Parasitol. 27, 537–547 (2011).CAS 
    Article 

    Google Scholar 
    13.Ribeiro, C. et al. Insect immunity-effects of factors produced by a nematobacterial complex on immunocompetent cells. J. Insect Physiol. 45, 677–685 (1999).CAS 
    Article 

    Google Scholar 
    14.Garriga, A., Mastore, M., Morton, A., Garcia del Pino, F. & Brivio, M. F. Immune response of drosophila suzukii larvae to infection with the nematobacterial complex steinernema carpocapsae-xenorhabdus nematophila. Insects 11, 210 (2020).Article 

    Google Scholar 
    15.Ebrahimi, L., Niknam, G., Dunphy, G. & Toorchi, M. Side effects of immune response of colorado potato beetle, leptinotarsa decemlineata against the entomopathogenic nematode, steinernema carpocapsae infection. Invertebr. Surviv. J. 11, 132–142 (2014).
    Google Scholar 
    16.Ebrahimi, L., Niknam, G. & Lewis, E. Lethal and sublethal effects of iranian isolates of steinernema feltiae and heterorhabditis bacteriophora on the colorado potato beetle, leptinotarsa decemlineata. Biocontrol 56, 781–788 (2011).Article 

    Google Scholar 
    17.Chen, S., Li, J., Han, X. & Moens, M. Effect of temperature on the pathogenicity of entomopathogenic nematodes (Steinernema and Heterorhabditis spp.) to delia radicum. Biocontrol 48, 713–724 (2003).Article 

    Google Scholar 
    18.Mastore, M., Quadroni, S., Toscano, A., Mottadelli, N. & Brivio, M. F. Susceptibility to entomopathogens and modulation of basal immunity in two insect models at different temperatures. J. Therm. Biol 79, 15–23 (2019).CAS 
    Article 

    Google Scholar 
    19.Wojda, I. Temperature stress and insect immunity. J. Therm. Biol 68, 96–103 (2017).CAS 
    Article 

    Google Scholar 
    20.Lee, J. H., Dillman, A. R. & Hallem, E. A. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes. BMC Biol. 14, 1–17 (2016).Article 

    Google Scholar 
    21.Girling, R., Ennis, D., Dillon, A. & Griffin, C. The lethal and sub-lethal consequences of entomopathogenic nematode infestation and exposure for adult pine weevils, Hylobius abietis (coleoptera: Curculionidae). J. Invertebr. Pathol. 104, 195–202 (2010).CAS 
    Article 

    Google Scholar 
    22.Mastore, M., Arizza, V., Manachini, B. & Brivio, M. F. Modulation of immune responses of Rhynchophorus ferrugineus (insecta: Coleoptera) induced by the entomopathogenic nematode Steinernema carpocapsae (nematoda: Rhabditida). Insect Sci. 22, 748–760 (2015).CAS 
    Article 

    Google Scholar 
    23.Willett, D. S., Filgueiras, C. C., Nyrop, J. P. & Nault, B. A. Attract and kill: spinosad containing spheres to control onion maggot (Delia antiqua). Pest Manag. Sci. 76, 2720–2725 (2020).CAS 
    Article 

    Google Scholar 
    24.Willett, D. S., Filgueiras, C. C., Nyrop, J. P. & Nault, B. A. Field monitoring of onion maggot (Delia antiqua) fly through improved trapping. J. Appl. Entomol. 144, 382–387 (2020).Article 

    Google Scholar 
    25.Kaya, H. K. & Stock, S. P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology, 281–324 (Elsevier, 1997).26.White, G. et al. A method for obtaining infective nematode larvae from cultures. Science (Washington) 66, 302–303 (1927).ADS 
    CAS 
    Article 

    Google Scholar 
    27.R Core Team. R: A. Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, Austria, 2021).28.Wickham, H. et al. Welcome to the tidyverse. J. Open Sour. Softw. 4, 1686 (2019). https://doi.org/10.21105/joss.01686ADS 
    Article 

    Google Scholar 
    29.Fox, J. & Weisberg, S. An R Companion to Applied Regression third. (Sage, 2019).
    Google Scholar 
    30.Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means (2021). R package version 1.5.5-1.31.Franceschi, C. et al. Genes involved in immune response/inflammation, igf1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: The lesson of centenarians. Mech. Ageing Dev. 126, 351–361 (2005).CAS 
    Article 

    Google Scholar 
    32.Kumar, S. et al. Lifespan extension in C. elegans caused by bacterial colonization of the intestine and subsequent activation of an innate immune response. Dev. Cell 49, 100–117 (2019).CAS 
    Article 

    Google Scholar 
    33.Bruno, P. et al. Entomopathogenic nematodes from Mexico that can overcome the resistance mechanisms of the western corn rootworm. Sci. Rep. 10, 1–12 (2020).Article 

    Google Scholar 
    34.Stock, S. P., Campos-Herrera, R., El-Borai, F. & Duncan, L. Steinernema khuongi n. sp. (panagrolaimomorpha, steinernematidae), a new entomopathogenic nematode species from Florida, USA. J. Helminthol. 93, 226–241 (2019).CAS 
    Article 

    Google Scholar 
    35.Nagelkerke, N. J. et al. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).MathSciNet 
    Article 

    Google Scholar  More