More stories

  • in

    Fish biodiversity and assemblages along the altitudinal gradients of tropical mountainous forest streams

    1.Jaramillo-Villa, U., Maldonado-Ocampo, J. A. & Escobar, F. Altitudinal variation in fish assemblage diversity in streams of the central Andes of Colombia. J. Fish Biol. 76, 2401–2417 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Mercado-silva, N., Lyons, J., Díaz-Pardo, E., Navarrete, S. & Gutiérrez-Hernández, A. Environmental factors associated with fish assemblage patterns in a high gradient river of the Gulf of Mexico slope. Revista Mexicana de Biodiversidad 83, 117–128 (2012).Article 

    Google Scholar 
    3.Cheng, D. et al. Quantifying the distribution and diversity of fish species along elevational gradients in the Weihe River Basin, Northwest China. Sustainability 11, 6177 (2019).Article 

    Google Scholar 
    4.Lorion, C. M., Kennedy, B. P. & Braatne, J. H. Altitudinal gradients in stream fish diversity and the prevalence of diadromy in the Sixaola River basin, Costa Rica. Environ. Biol. Fishes 91, 487–499 (2011).Article 

    Google Scholar 
    5.Li, J. et al. Spatial and temporal variation of fish assemblages and their associations to habitat variables in a mountain stream of north Tiaoxi River, China. Environ. Biol. Fishes 93, 403–417 (2012).Article 

    Google Scholar 
    6.Súarez, Y. R. et al. Patterns of species richness and composition of fish assemblages in streams of the Ivinhema River basin, Upper Paraná River. Acta Limnol. Bras. 23, 177–188 (2011).Article 

    Google Scholar 
    7.Vieira, T. B. & Tejerina-Garro, F. L. Relationships between environmental conditions and fish assemblages in tropical Savanna headwater streams. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    8.Pokharel, K. K., Basnet, K. B., Majupuria, T. C. & Baniya, C. B. Correlations between fish assemblage structure and environmental variables of the Seti Gandaki River Basin, Nepal. J. Freshw. Ecol. 33, 31–43 (2018).CAS 
    Article 

    Google Scholar 
    9.Carvajal-Quintero, J. D. et al. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecol. Evol. 5, 2608–2620 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Li, J. et al. Climate and history explain the species richness peak at mid-elevation for Schizothorax fishes (Cypriniformes: Cyprinidae) distributed in the Tibetan Plateau and its adjacent regions. Glob. Ecol. Biogeogr. 18, 264–272 (2009).Article 

    Google Scholar 
    11.Fu, C., Wu, J., Chen, J., Wu, Q. & Lei, G. Freshwater fish biodiversity in the Yangtze River basin of China: Patterns, threats and conservation. Biodivers. Conserv. 12, 1649–1685 (2003).Article 

    Google Scholar 
    12.Orrego, R., Adams, S. M., Barra, R., Chiang, G. & Gavilan, J. F. Patterns of fish community composition along a river affected by agricultural and urban disturbance in south-central Chile. Hydrobiologia 620, 35–46 (2009).Article 

    Google Scholar 
    13.Nyanti, L. et al. Acidification tolerance of Barbonymus schwanenfeldii (Bleeker, 1854) and Oreochromis niloticus (Linnaeus, 1758)—Implication of fish size. AACL Bioflux 10, 746–753 (2017).
    Google Scholar 
    14.Nyanti, L. et al. Effects of water temperature, dissolved oxygen and total suspended solids on juvenile Barbonymus schwanenfeldii (Bleeker, 1854) and Oreochromis niloticus (Linnaeus, 1758). AACL Bioflux 11, 394–406 (2018).
    Google Scholar 
    15.Ling, T. Y. et al. Assessment of the water and sediment quality of tropical forest streams in upper reaches of the Baleh River, Sarawak, Malaysia, subjected to logging activities. J. Chem. 2016, 1–13 (2016).CAS 

    Google Scholar 
    16.Davies, P. & Nelson, M. Relationships between riparian buffer widths and the effects of logging on stream habitat, invertebrate community composition and fish abundance. Mar. Freshw. Res. 45, 1289–1305 (1994).Article 

    Google Scholar 
    17.Ikhwanuddin, M., Amal, M., Shohaimi, S., Hasan, H. & Jamil, N. Environmental influences on fish assemblages of the Upper Sungai Pelus, Kuala Kangsar, Perak, Malaysia. Sains Malaysiana 45, 1487–1495 (2016).CAS 

    Google Scholar 
    18.Zainuddin, Z., Jamal, P. & Akbar, I. Modeling the effect of dam construction and operation towards downstream water quality of Sg. Tawau and Batang Baleh. World J. Appl. Environ. Chem. 1, 57–66 (2012).
    Google Scholar 
    19.Nyanti, L., Ling, T. & Muan, T. Water quality of Bakun Hydroelectric Dam Reservoir, Sarawak, Malaysia, during the construction of Murum Dam. ESTEEM Acad. J. 11, 81–88 (2015).
    Google Scholar 
    20.Ling, T. Y. et al. Changes in water and sediment quality of a river being impounded and differences among functional zones of the new large tropical hydroelectric reservoir. Pol. J. Environ. Stud. 28, 4271–4285 (2019).CAS 
    Article 

    Google Scholar 
    21.Osman, N. B., Othman, H. T., Karim, R. A. & Mazlan, M. A. F. Biomass in Malaysia: Forestry-based residues. Int. J. Biomass Renew. 3, 7–14 (2014).
    Google Scholar 
    22.Inger, R. F. & Chin, P. K. Freshwater Fish of North Borneo (Natural History Publications, 2002).
    Google Scholar 
    23.Mohsin, A. K. M. & Ambak, M. A. Freshwater fishes of Peninsular Malaysia (Universiti Pertanian Malaysia, 1983).
    Google Scholar 
    24.Kottelat, M. The fishes of the inland waters of Southeast Asia: A catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bull. Zool. 27, 1–663 (2013).
    Google Scholar 
    25.Kottelat, M. Conspectus Cobitidum: An inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei). Raffles Bull. Zool. 26, 1–199 (2012).
    Google Scholar 
    26.Kottelat, M. & Tan, H. H. A synopsis of the genus Lobocheilos in Java, Sumatra and Borneo, with descriptions of six new species (Teleostei: Cyprinidae). Ichthyol. Explor. Freshw. 19, 27–58 (2008).
    Google Scholar 
    27.Froese, R. & Pauly, D. FishBase. World Wide Web electronic publication. https://www.fishbase.se/search.php (2019).28.van der Laan, R., Fricke, R. & Eschmeyer, W. N. Eschmeyer’s Catalog of Fishes: Classification. http://www.calacademy.org/scientists/catalog-of-fishes-classification/ (2020).29.Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (The University of Illinois Press, 1964).MATH 

    Google Scholar 
    30.Margalef, R. Perspectives in Ecological Theory (University of Chicago Press, 1968).
    Google Scholar 
    31.Pielou, E. C. Species diversity and pattern diversity in the study of ecological succession. J. Theor. Biol. 10, 370–383 (1966).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Ter Braak, C. J. F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).Article 

    Google Scholar 
    33.Ter Braak, C. J. F. & Verdonschot, P. F. M. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57, 255–289 (1995).Article 

    Google Scholar 
    34.Ward-Campbell, B. M. S., Beamish, F. W. H. & Kongchaiya, C. Morphological characteristics in relation to diet in five coexisting Thai fish species. J. Fish Biol. 67, 1266–1279 (2005).Article 

    Google Scholar 
    35.Beamish, F. W. H., Sa-ardrit, P. & Tongnunui, S. Habitat characteristics of the cyprinidae in small rivers in Central Thailand. Environ. Biol. Fishes 76, 237–253 (2006).Article 

    Google Scholar 
    36.Muchlisin, Z. A. & Siti Azizah, M. N. Diversity and distribution of freshwater fishes in Aceh water, northern Sumatra, Indonesia. Int. J. Zool. Res. 5, 62–79 (2009).Article 

    Google Scholar 
    37.Rashid, Z. A., Asmuni, M. & Amal, M. N. A. Fish diversity of Tembeling and Pahang rivers, Pahang, Malaysia. Check List 11, 1–6 (2015).Article 

    Google Scholar 
    38.Suvarnaraksha, A., Lek, S., Lek-Ang, S. & Jutagate, T. Fish diversity and assemblage patterns along the longitudinal gradient of a tropical river in the Indo-Burma hotspot region (Ping-Wang River Basin, Thailand). Hydrobiologia 694, 153–169 (2012).CAS 
    Article 

    Google Scholar 
    39.Kottelat, M. Conspectus cobitidum: An inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei). Raffles Bull. Zool. 26, 1–199 (2012).
    Google Scholar 
    40.Tan, H. H. The Borneo suckers. Revision of the Torrent Loaches of Borneo (Balitoridae: Gastromyzon, Neogastromyzon) (Natural History Publications, 2006).
    Google Scholar 
    41.Beamish, F. W. H., Sa-Ardrit, P. & Cheevaporn, V. Habitat and abundance of Balitoridae in small rivers of central Thailand. J. Fish Biol. 72, 2467–2484 (2008).Article 

    Google Scholar 
    42.Ahmad, A., Nek, S. A. R. T. & Ambak, M. A. Preliminary study on fish diversity of Ulu Tungud, Meliau range, Sandakan, Sabah. J. Sustain. Sci. Manag. 1, 21–26 (2006).
    Google Scholar 
    43.Odum, E. P. & Barret, G. W. Fundamental of Ecology (Cengage Learning, Inc, 2004).
    Google Scholar 
    44.Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).Book 

    Google Scholar 
    45.Au, D. W. T. et al. Chronic effects of suspended solids on gill structure, osmoregulation, growth, and triiodothyronine in juvenile green grouper Epinephelus coioides. Mar. Ecol. Prog. Ser. 266, 255–264 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Kimbell, H. S. & Morrell, L. J. Turbidity influences individual and group level responses to predation in guppies, Poecilia reticulata. Anim. Behav. 103, 179–185 (2015).Article 

    Google Scholar 
    47.Li, W. et al. Effects of turbidity and light intensity on foraging success of juvenile mandarin fish Siniperca chuatsi (Basilewsky). Environ. Biol. Fishes 96, 995–1002 (2013).Article 

    Google Scholar 
    48.Kukula, K. & Bylak, A. Synergistic impacts of sediment generation and hydrotechnical structures related to forestry on stream fish communities. Sci. Total Environ. 737, 139751 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Krause, K. P., Wu, C. L., Chu, M. L. & Knouft, J. H. Fish assemblage–environment relationships suggest differential trophic responses to heavy metal contamination. Freshw. Biol. 64, 632–642 (2019).CAS 
    Article 

    Google Scholar 
    50.Askeyev, A. et al. River fish assemblages along an elevation gradient in the eastern extremity of Europe. Environ. Biol. Fishes 100, 585–596 (2017).Article 

    Google Scholar 
    51.Zamani Faradonbe, M. & Eagderi, S. Fish assemblages as influenced by environmental factors in Taleghan River (the Caspian Sea basin, Alborz Province, Iran). Caspian J. Environ. Sci. 13, 363–371 (2015).
    Google Scholar 
    52.Bolner, K. C. S., Copatti, C. E., Rosso, F. L., Loro, V. L. & Baldisserotto, B. Water pH and metabolic parameters in silver catfish (Rhamdia quelen). Biochem. Syst. Ecol. 56, 202–208 (2014).CAS 
    Article 

    Google Scholar 
    53.Abbink, W. et al. The effect of temperature and pH on the growth and physiological response of juvenile yellowtail kingfish Seriola lalandi in recirculating aquaculture systems. Aquaculture 330–333, 130–135 (2012).Article 
    CAS 

    Google Scholar 
    54.Paller, V. G. V., Corpuz, M. N. C. & Ocampo, P. P. Diversity and distribution of freshwater fish assemblages in Tayabas River, Quezon (Philippines). Philip. J. Sci. 142, 55–67 (2013).
    Google Scholar 
    55.Jeppesen, R. et al. Effects of hypoxia on fish survival and oyster growth in a highly eutrophic estuary. Estuaries Coasts 41, 89–98 (2018).CAS 
    Article 

    Google Scholar 
    56.Rosso, J. J. & Quirós, R. Patterns in fish species composition and assemblage structure in the upper Salado river lakes, Pampa Plain, Argentina. Neotrop. Ichthyol. 8, 135–144 (2010).Article 

    Google Scholar 
    57.Batzer, D. P., Jackson, C. R. & Mosner, M. Influences of riparian logging on plants and invertebrates in small, depressional wetlands of georgia, U.S.A.. Hydrobiologia 441, 123–132 (2000).Article 

    Google Scholar 
    58.Cheimonopoulou, M. T., Bobori, D. C., Theocharopoulos, I. & Lazaridou, M. Assessing ecological water quality with macroinvertebrates and fish: A case study from a small mediterranean river. Environ. Manag. 47, 279–290 (2011).ADS 
    Article 

    Google Scholar 
    59.Roberts, T. R. The Freshwater Fishes of Western Borneo (Kalimantan Barat, Indonesia) (California Academy of Science, 1989).
    Google Scholar 
    60.Tan, H. H. & Leh, C. U. M. Three new species of Gastromyzon (Teleostei: Balitoridae) from southern Sarawak. Zootaxa 19, 1–19 (2006).
    Google Scholar 
    61.Tan, H. H. & Martin-Smith, K. M. Two new species of Gastromyzon (Teleostei: Balitoridae) from the Kuamut headwaters, Kinabatangan basin, Sabah, Malaysia. Raffles Bull. Zool. 46, 361–371 (1998).
    Google Scholar  More

  • in

    Environmental stress leads to genome streamlining in a widely distributed species of soil bacteria

    A. Strain sampling and isolationBradyrhizobium is a commonly occurring genus in soil [21]. Closely related Bradyrhizobium diazoefficiens (previously Bradyrhizobium japonicum) strains were isolated from soil, as previously described [20, 22]. In brief, Bradyrhizobium isolates that formed symbiotic associations with a foundational legume species in the censused region, Acacia acuminata, were isolated from soil sampled along a large region spanning ~300,000 km2 in South West Australia, a globally significant biodiversity hotspot [23]. In total 60 soil samples were collected from twenty sites (3 soil samples per site; Supplementary Fig. S1) and 380 isolates were sequenced (19 isolates per site, 5 or 6 isolates per soil sample, each isolate re-plated from a single colony at least 2 times). Host A. acuminata legume plants were inoculated with field soil in controlled chamber conditions and isolates were cultured on Mannitol Yeast agar plates from root nodules (see [20, 22] for details). A total of 374 strains were included in this study after removing 5 contaminated samples and one sample that was a different Bradyrhizobium species; non- Bradyrhizobium diazoefficiens sample removal was determined from 16S rRNA sequences extracted from draft genome assemblies (Method C) using RNAmmer [24].B. Environmental variation among sampled sitesIn this study, I focus on environmental factors (temperature, rainfall, soil pH and salinity) previously identified to impact either rhizobia growth performance, functional fitness or persistence in soil [25,26,27,28] and where a directionality of rhizobial stress response could be attributed with respect to environmental variation present in the sampled region (i.e. stress occurs at high temperatures, low rainfall, high acidity and high salinity). Each environmental factor was standardised to a mean of 0 and a standard deviation of 1, and pH and rainfall scales were reversed to standardise stress responses directions so that low stress is at low values and high stress is at high values for all factors (Supplementary Fig. S2). Additionally, salinity was transformed using a log transformation (log(x + 0.01) to account for some zeroes) prior to standardisation.C. Isolate sequencing and pangenome annotationIllumina short reads (150 bp paired-end) were obtained and draft genome assemblies were generated using Unicycler from a previous study [29]. Resulting assemblies were of good assembly quality (99.2% of all strains had >95.0% genome completeness score according to BUSCO [30]; Table S1; assembled using reads that contained nominal 0.016 ± 0.00524% non-prokaryotic DNA content across all 374 isolates, according to Kraken classification [31]). Protein coding regions (CDS regions) were identified using Prokka [32] and assembled into a draft pangenome using ROARY [33], which produced a matrix of counts of orthologous gene clusters (i.e. here cluster refers to a set of protein-coding sequences containing all orthologous variants from all the different strains, grouped together and designated as a single putative gene). Gene clusters that occurred in 99% of strains were designated as ‘core genes’ and used to calculate the ‘efficiency of selection’ [34, 35] (measured as dN/dS, Method G.2) and population divergence measured as Fixation Index ‘Fst’, Method H) across each environmental stress factor. The identified gene clusters were then annotated using eggNOG-mapper V2 [36] and the strain by gene cluster matrix was reaggregated using the Seed ortholog ID returned by eggNOG-mapper as the protein identity. Out of the total 2,744,533 CDS regions identified in the full sample of 374 strains, eggNOG-mapper was able to assign 2,612,345 of them to 91,230 unique Seed orthologs. These 91,230 protein coding genes constituted the final protein dataset for subsequent analyses.D. Calculation and statistical analysis of gene richness and pangenome diversity along the stress gradientGene richness was calculated as the total number of unique seed orthologues for each strain (i.e. genome). Any singleton genes that occurred in only a single strain, as well as ‘core’ genes that occurred in every strain (for symmetry, and because these are equally uninformative with respect to variation between strains) were removed, leaving 74,089 genes in this analysis. Gene richness (being count data) was modelled on a negative binomial distribution (glmer.nb function) as a function of each of the four environmental stressors as predictors using the lme4 package in R [37], also accounting for hierarchical structure in the data by including site and soil sample as random effects.To rule out potentially spurious effects of assembly quality (i.e. missed gene annotations due to incomplete draft genomes) on key findings, I confirmed no significant association between gene richness and genome completeness (r = 0.042, p = 0.4224, Fig. S3).Finally, pangenome diversity was calculated as the total number of unique genes that occurred in each soil sample (since multiple strains were isolated from a single soil sample). Pangenome diversity was modelled the same as gene richness, except here soil sample was not included as a random effect.E. Calculation of network and duplication traits for each geneI used the seed orthologue identifier from eggNOG-mapper annotations to query matching genes within StringDB ([38]; https://string-db.org/), which collects information on protein-protein interactions. Out of 91,230 query seed orthologues, 73,126 (~80%) returned a match in STRING. For matching seed orthologue hits, a network was created by connecting any proteins that were annotated as having pairwise interactions in the STRING database using the igraph package in R [39]. Two vertex-based network metrics were calculated for each gene: betweenness centrality, which measures a genes tendency to connect other genes in the gene network, and mean cosine similarity, which is a measure of how much a gene’s links to other genes are similar to other genes.Betweenness centrality was calculated using igraph (functional betweenness). For mean cosine similarity, a pairwise cosine similarity was first calculated between all genes. To do this, the igraph network object was converted into a (naturally sparse yet large) adjacency matrix and the cosSparse function in qlcMatrix in R [40] was used to calculate cosine similarity between all pairs of genes. To obtain an overall cosine similarity trait value for each gene, the average pairwise cosine similarity to all other genes in the network was calculated.Finally, gene duplication level was calculated for each gene as one additional measure of ‘redundancy’, by calculating the average number of gene duplicates found within the same strain. Duplicates were identified as CDS regions with the same Seed orthologue ID.F. Gene distribution modelsTo determine how gene traits predict accessory genome distributions patterns along the stress gradients, I first calculated a model-based metric (hereafter and more specifically a standardised coefficient, ‘z-score’) of the relative tendency of each gene to be found in different soil samples across the four stress gradients (heat, salinity, acidity, and aridity). This was achieved by modelling each gene’s presence or absence in a strain as a function of the four stress gradients, with site and soil sample as a random effect, using a binomial model in lme4 (the structure of the model being the same as the gene richness model, only the response is different). To reduce computational overhead, these models were only run for the set of genes that were used in the gene richness analysis (e.g. after removing singletons and core genes), and which had matching network traits calculated (e.g. they occurred in the STRING database; n = 64,867 genes). Distribution models were run in tandem for each gene using the manyany function in the R package mvabund [41]. Standardised coefficients, or z-scores (coefficient/standard error) indicating the change in the probability of occurrence for each gene across each of the stress gradients were extracted. More negative coefficients correspond to genes that are more likely to be absent in high stress (and vice versa for positive coefficients).To determine how network and duplication traits influence the distribution of genes across the stress gradient, I performed a subsequent linear regression model where the gene’s z-scores was the response and gene traits as predictors. The environmental stress type (i.e. acidity, aridity, heat and salinity) was included as a categorical predictor, and the interaction between stress category and gene function traits were used to infer the influence of gene function traits on gene distributions in a given stress type (see Supplementary Methods S1 for z-score transformation).G. Quantifying molecular signals of natural selection on accessory and core genesTo examine molecular signatures of selection in accessory and core genes, I calculated dN/dS for a subsample of the total pool (n=74,089 genes), which estimates the efficiency of selection [34, 35]. Two major questions relevant to dN/dS that are addressed here require a different gene subsampling approach:(1) Do variable environmental stress responses lead to different dN/dS patterns among accessory genes?Here, I subsampled accessory genes (total accessory gene pool across 374 strains, 74,089) to generate and compare dN/dS among 3 categorical groups, each representing a different level of stress response based on their z-scores (accessory genes that either strongly increase, decrease or have no change in occurrence as stress increases; n = 1000 genes/category; see Supplementary Methods S2 for subsample stratification details).For each gene, sequences were aligned using codon-aware alignment tool, MACSE v2 [42]. dN/dS was estimated by codon within each gene using Genomegamap’s Bayesian model-based approach [43], which is a phylogeny-free method optimised for within bacterial species dN/dS calculation (see Supplementary Methods S3 for dN/dS calculation/summarisation; S9 for xml configuration). The proportion of codons with dN/dS that were credibly less than 1 (purifying selection) and those credibly greater than 1 (positive selection) were analysed, with respect to the genes’ occurrence response to stress. Specifically, I modelled the proportion of codons with dN/dS  1 was overall too low to analyse in this way, so the binary outcome (a gene with any codons with dN/dS  > 1 or not) was modelled using a binomial response model with the response categories as predictors (see Supplementary Methods S4 for details of both models).(2) Does dN/dS among microbial populations vary across environmental stress?Here, I compared the average change in dN/dS in core genes present across all environments at the population level (i.e. all isolates from one soil sample), which is used here to measure the change in the efficiency of selection across each stress gradient. Core genes were used since they occur in all soil samples, allowing a consistent set and sample size of genes to be used in the population-level dN/dS calculation. This contrasts with the previous section, which quantifies gene-level dN/dS on extant accessory genes that intrinsically have variable presence or absence across soil samples. For computational feasibility, 500 core genes were subsampled (total core 1015 genes) and, for each gene, individual strain variants were collated into a single fasta file based on soil sample membership, such that dN/dS could be calculated separately for each gene within each soil sample (i.e. 60 soil samples × 500 genes = 30,000 fasta files). Each fasta file was then aligned in MACSE and dN/dS calculated using the same methodology for accessory genes (Supplementary Method S3). This enabled the average dN/dS in a sample to be associated with soil-sample level environmental stress variables. Specifically, I modelled the mean proportion of codons with dN/dS  1 due to overall rarity of positive selection (average proportion of genes where at least 1 codon with dN/dS  > 1 was ~0.006). This low level of positive selection is expected for core genes which tend to be under strong selective constraint.H. Calculation and analysis of Fixation index (Fst) along stress gradientsUsing the core genome alignment (all SNPs among 1015 core genes) generated previously with ROARY, I computed pairwise environmentally-stratified Fst. Each soil sample (n = 60) was first placed into one of 5 bins based on their distances in total environmental stress space (using all four stress gradients), with the overall goal of generating roughly evenly sized bins such that the environmental similarity of stress was greater within bins than between (see Supplementary Methods S6 and Fig. S4 for clustering algorithm details). Next, fasta alignments were converted to binary SNPs using the adegenet package. Pairwise Fst between all strains (originating from a particular soil sample) within a single bin was calculated using StAMPP in R [44]. For each strain pair, the average of the two stress gradient values was assigned.The relationship between pairwise Fst and the average stress value was evaluated using a linear regression model with each of the four stress values as predictors. Since the analysis uses pairwise data (thus violating standard independence assumptions), the significance of the relationship was determined using a permutation test (see Supplementary Methods S7 for details).I. Chromosomal structure analysis of gene loss patternsTo gain insight into structural variation and test for regional hotspots in gene loss along the chromosome, I mapped each gene’s stress response (i.e. probability of loss or gain indicated by each genes z-score) onto a completed Bradyrhizobium genome (strain ‘36_1’ from the same set of 374 strains (Genbank CP067102.1; [45]). Putative CDS positions on the complete genome were determined using Prokka and annotated with SEED orthologue ID’s using eggNOG-mapper. Matching accessory genes derived from the full set of 374 incomplete draft genomes (n = 74,089) were mapped to positions on the complete genome (6274 matches). The magnitude of gene loss or gain (as measured by their standardised z-scores for each environment from the gene distribution models; see Method F) was then modelled across the genome using a one-dimensional spatial smoothing model. This model was implemented in R INLA [46] (www.r-inla.org), and models a response in a one-dimensional space using a Matern covariance-based random effect. The method uses an integrated nested Laplace approximation to a Bayesian posterior distribution, with a cyclical coordinate system to accommodate circular genomes. The model accounts for spatial non-independence among sites and produces a continuous posterior distribution of average z-score predictions along the entire genome, which was then used to visualise potential ‘hotspots’ of gene loss or gain. The modelling procedure was repeated, instead with gene network traits, such that model predictions of similarity and betweenness could be visualised on the reference chromosome. More

  • in

    Correction: Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus

    State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, ChinaZhilin Yuan, Huanshen Wei & Long PengResearch Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, ChinaZhilin Yuan, Xinyu Wang, Huanshen Wei & Long PengFungal Genomics Laboratory (FungiG), College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, ChinaIrina S. Druzhinina & Feng CaiDepartment of Food Science, University of Massachusetts, Amherst, MA, USAJohn G. GibbonsState Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, ChinaZhenhui ZhongDepartment of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USAZhenhui ZhongDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, BelgiumYves Van de PeerVIB Center for Plant Systems Biology, Ghent, BelgiumYves Van de PeerCentre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South AfricaYves Van de PeerAdaptive Symbiotic Technologies, University of Washington, Seattle, WA, USARussell J. RodriguezKey Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, ChinaZhongjian LiuState Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, ChinaQi Wu & Guohui ShiKey Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, ChinaJieyu WangBeijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, ChinaFrancis M. MartinUniversité de Lorraine, INRAE, UMR Interactions Arbres/Micro-Organismes, Centre INRAE Grand Est Nancy, Champenoux, FranceFrancis M. Martin More

  • in

    Exposure to foreign gut microbiota can facilitate rapid dietary shifts

    1.Shiels, A. B. et al. Dietary niche differentiation among three species of invasive rodents (Rattus rattus, R. exulans, Mus musculus). Biol. Invasions 15, 1037–1048 (2013).Article 

    Google Scholar 
    2.Gulka, J. et al. Dietary niche shifts of multiple marine predators under varying prey availability on the northeast Newfoundland coast. Front. Mar. Sci. 4, 324 (2017).Article 

    Google Scholar 
    3.Davey, C. M., Chamberlain, D. E., Newson, S. E., Noble, D. G. & Johnston, A. Rise of the generalists: Evidence for climate driven homogenization in avian communities. Glob. Ecol. Biogeogr. 21, 568–578 (2012).Article 

    Google Scholar 
    4.Wilby, A. & Thomas, M. B. Natural enemy diversity and pest control: Patterns of pest emergence with agricultural intensification. Ecol. Lett. 5, 353–360 (2002).Article 

    Google Scholar 
    5.Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).Article 

    Google Scholar 
    6.Gould, J. Description of new species of finches collected by Darwin in the Galapagos. In Vol. 5, pp. 4–7 (1837).7.Jung, K. & Kalko, E. K. Where forest meets urbanization: Foraging plasticity of aerial insectivorous bats in an anthropogenically altered environment. J. Mammal. 91, 144–153 (2010).Article 

    Google Scholar 
    8.Manenti, R., Denoël, M. & Ficetola, G. F. Foraging plasticity favours adaptation to new habitats in fire salamanders. Anim. Behav. 86, 375–382 (2013).Article 

    Google Scholar 
    9.Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).CAS 
    Article 

    Google Scholar 
    10.Schlomann, B. H. & Parthasarathy, R. Timescales of gut microbiome dynamics. Curr. Opin. Microbiol. 50, 56–63 (2019).Article 

    Google Scholar 
    11.Legal, L., Chappe, B. & Jallon, J. M. Molecular basis of Morinda citrifolia (L.): Toxicity on drosophila. J. Chem. Ecol. 20, 1931–1943 (1994).CAS 
    Article 

    Google Scholar 
    12.R’kha, S., Capy, P. & David, J. R. Host-plant specialization in the Drosophila melanogaster species complex: A physiological, behavioral, and genetical analysis. Proc. Natl. Acad. Sci. 88, 1835–1839 (1991).ADS 
    Article 

    Google Scholar 
    13.Chandler, J. A., Lang, J. M., Bhatnagar, S., Eisen, J. A. & Kopp, A. Bacterial communities of diverse Drosophila species: Ecological context of a host–microbe model system. PLoS Genet. 7, e1002272 (2011).CAS 
    Article 

    Google Scholar 
    14.Storelli, G. et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14, 403–414 (2011).CAS 
    Article 

    Google Scholar 
    15.Ryu, J.-H. et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319, 777–782 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2018).Article 

    Google Scholar 
    17.Ochman, H. et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 8, e1000546 (2010).Article 

    Google Scholar 
    18.Gomez, A. et al. Plasticity in the human gut microbiome defies evolutionary constraints. MSphere 4, e00271-e319 (2019).Article 

    Google Scholar 
    19.Chen, C.-Y., Chen, P.-C., Weng, F.C.-H., Shaw, G.T.-W. & Wang, D. Habitat and indigenous gut microbes contribute to the plasticity of gut microbiome in oriental river prawn during rapid environmental change. PLoS ONE 12, e0181427 (2017).Article 

    Google Scholar 
    20.Vijendravarma, R. K., Narasimha, S. & Kawecki, T. J. Predatory cannibalism in Drosophila melanogaster larvae. Nat. Commun. 4, 1–8 (2013).Article 

    Google Scholar 
    21.Fisher, A. M. et al. Relatedness modulates density-dependent cannibalism rates in Drosophila. In review.22.Amlou, M., Moreteau, B. & David, J. Genetic analysis of Drosophila sechellia specialization: Oviposition behavior toward the major aliphatic acids of its host plant. Behav. Genet. 28, 455–464 (1998).CAS 
    Article 

    Google Scholar 
    23.Early, A. M., Shanmugarajah, N., Buchon, N. & Clark, A. G. Drosophila genotype influences commensal bacterial levels. PLoS ONE 12, e0170332 (2017).Article 

    Google Scholar 
    24.Alcock, J., Maley, C. C. & Aktipis, C. A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36, 940–949 (2014).Article 

    Google Scholar 
    25.Lizé, A. & Lewis, Z. The microbiome and host behaviour. In Microbiomes of Soils, Plants and Animals: An Integrated Approach (Eds. Antwis, R. E. et al.) 98–121 (Cambridge University Press, 2020).26.Wong, A.C.-N. et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr. Biol. 27, 2397–2404 (2017).CAS 
    Article 

    Google Scholar 
    27.Hulme, P. E. Climate change and biological invasions: Evidence, expectations, and response options. Biol. Rev. 92, 1297–1313 (2017).Article 

    Google Scholar 
    28.Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).Article 

    Google Scholar 
    29.Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Bertani, G. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J. Bacteriol. 186, 595–600 (2004).CAS 
    Article 

    Google Scholar 
    31.Atlas, R. M. Handbook of microbiological media (CRC Press, Boca Raton, 2010).Book 

    Google Scholar 
    32.Heys, C. et al. The effect of gut microbiota elimination in Drosophila melanogaster: A how-to guide for host–microbiota studies. Ecol. Evol. 8, 4150–4161 (2018).Article 

    Google Scholar 
    33.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    Article 

    Google Scholar 
    34.Dekker, T., Ibba, I., Siju, K., Stensmyr, M. C. & Hansson, B. S. Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Curr. Biol. 16, 101–109 (2006).CAS 
    Article 

    Google Scholar 
    35.Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manag. 74, 1175–1178 (2010).Article 

    Google Scholar 
    36.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2019).37.Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R Package Version 2, 74 (2007).
    Google Scholar 
    38.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar  More

  • in

    Diversity, prevalence, and expression of cyanase genes (cynS) in planktonic marine microorganisms

    1.Nowakowska M, Sterzel M, Szczubiałka K. Photosensitized oxidation of cyanide in aqueous solutions of photoactive modified hydroxyethylcellulose. J Polym Environ. 2006;14:59–64.CAS 
    Article 

    Google Scholar 
    2.Kamennaya NA, Chernihovsky M, Post AF. The cyanate utilization capacity of marine unicellular Cyanobacteria. Limnol Oceanogr. 2008;53:2485–94.CAS 
    Article 

    Google Scholar 
    3.Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, von Bergen M, et al. Cyanate as an energy source for nitrifiers. Nature. 2015;524:105–8.CAS 
    Article 

    Google Scholar 
    4.Mooshammer M, Wanek W, Jones SH, Richter A, Wagner M. Cyanate–a low abundant but actively cycled nitrogen compound in soil. https://www.biorxiv.org/content/10.1101/2020.07.12.199737v1.full. 2020.5.Linder T. Cyanase-independent utilization of cyanate as a nitrogen source in ascomycete yeasts. World J Micro Biot. 2019;35:1–7.CAS 
    Article 

    Google Scholar 
    6.Widner B, Fuchsman CA, Chang BX, Rocap G, Mulholland MR. Utilization of urea and cyanate in waters overlying and within the eastern tropical north Pacific oxygen deficient zone. FEMS Microbiol Ecol. 2018;94:fiy138.CAS 
    Article 

    Google Scholar 
    7.Widner B, Mulholland MR, Mopper K. Distribution, sources, and sinks of cyanate in the coastal North Atlantic Ocean. Environ Sci Tech Let. 2016;3:297–302.CAS 
    Article 

    Google Scholar 
    8.Widner B, Mulholland MR, Mopper K. Chromatographic determination of nanomolar cyanate concentrations in estuarine and sea waters by precolumn fluorescence derivatization. Anal Chem. 2013;85:6661–6.CAS 
    Article 

    Google Scholar 
    9.Widner B, Mordy CW, Mulholland MR. Cyanate distribution and uptake above and within the Eastern Tropical South Pacific oxygen deficient zone. Limnol Oceanogr. 2018;63:S177–S192.CAS 
    Article 

    Google Scholar 
    10.Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol. 2018;16:263.CAS 
    Article 

    Google Scholar 
    11.Smith SR, Dupont CL, McCarthy JK, Broddrick JT, Oborník M, Horák A, et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat Commun. 2019;10:1–14.Article 

    Google Scholar 
    12.Allen JrCM, Jones ME. Decomposition of carbamylphosphate in aqueous solutions. Biochemistry. 1964;3:1238–47.CAS 
    Article 

    Google Scholar 
    13.Kamenaya NA, Post AF. Characterization of cyanate metabolism in marine Synechococcus and Prochlorococcus spp. Appl Enviro Micro. 2011;77:291–301.Article 

    Google Scholar 
    14.Kamennaya NA, Post AF. Distribution and expression of the cyanate acquisition potential among cyanobacterial populations in oligotrophic marine waters. Limnol Oceanogr. 2013;58:1959–71.CAS 
    Article 

    Google Scholar 
    15.Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, et al. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat Microbiol. 2019;4:234–43.CAS 
    Article 

    Google Scholar 
    16.Pachiadaki MG, Sintes E, Bergauer K, Brown JM, Record NR, Swan BK, et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science. 2017;358:1046–51.CAS 
    Article 

    Google Scholar 
    17.Ganesh S, Bertagnolli AD, Bristow LA, Padilla CC, Blackwood N, Aldunate M, et al. Single cell genomic and transcriptomic evidence for the use of alternative nitrogen substrates by anammox bacteria. ISME J. 2018;12:2706–22.CAS 
    Article 

    Google Scholar 
    18.Johnson WV, Anderson PM. Bicarbonate is a recycling substrate for cyanase. J Biol Chem. 1987;262:9021–5.CAS 
    Article 

    Google Scholar 
    19.Miller AG, Espie GS. Photosynthetic metabolism of cyanate by the cyanobacterium Synechococcus UTEX 625. Arch Microbiol. 1994;162:151–7.CAS 
    Article 

    Google Scholar 
    20.Harano Y, Suzuki I, Maeda S, Kaneko T, Tabata S, Omata T. Identification and nitrogen regulation of the cyanase gene from the cyanobacteria Synechocystis sp. strain PCC 6803 and Synechococcus sp. strain PCC 7942. J Bacteriol. 1997;179:5744.CAS 
    Article 

    Google Scholar 
    21.Sung YC, Anderson PM, Fuchs JA. Characterization of high-level expression and sequencing of the Escherichia coli K-12 cynS gene encoding cyanase. J Bacteriol. 1987;169:5224.CAS 
    Article 

    Google Scholar 
    22.Sáez LP, Cabello P, Ibáñez MI, Luque-Almagro VM, Roldán MD, Moreno-Vivián C. Cyanate assimilation by the alkaliphilic cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344: mutational analysis of the cyn gene cluster. Int J Mol Sci. 2019;20:3008.Article 

    Google Scholar 
    23.Wood AP, Kelly DP, McDonald IR, Jordan SL, Morgan TD, Khan S, et al. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch Microbiol. 1998;169:148–58.CAS 
    Article 

    Google Scholar 
    24.Elleuche S, Pöggeler S. A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora. Fungal Genet Biol. 2008;45:1458–69.CAS 
    Article 

    Google Scholar 
    25.Schlachter CR, Klapper V, Wybouw N, Radford T, Van Leeuwen T, Grbic M, et al. Structural characterization of a eukaryotic cyanase from Tetranychus urticae. J Agr Food Chem. 2017;65:5453–62.CAS 
    Article 

    Google Scholar 
    26.Qian D, Jiang L, Lu L, Wei C, Li Y. Biochemical and structural properties of cyanases from Arabidopsis thaliana and Oryza sativa. PLoS One. 2011;6:e18300.CAS 
    Article 

    Google Scholar 
    27.Zarlenga DS, Mitreva M, Thompson P, Tyagi R, Tuo W, Hoberg EP. A tale of three kingdoms: members of the Phylum Nematoda independently acquired the detoxifying enzyme cyanase through horizontal gene transfer from plants and bacteria. Parasitology. 2019;146:445–52.CAS 
    Article 

    Google Scholar 
    28.Ranjan B, Choi PH, Pillai S, Permaul K, Tong L, Singh S. Crystal structure of a thermophilic fungal cyanase and its implications on the catalytic mechanism for bioremediation. Sci Rep. 2021;11:1–10.Article 

    Google Scholar 
    29.Villar E, Vannier T, Vernette C, Lescot M, Cuenca M, Alexandre A, et al. The Ocean Gene Atlas: exploring the biogeography of plankton genes online. Nucleic Acids Res. 2018;46:W289–W295.CAS 
    Article 

    Google Scholar 
    30.Walsh MA, Otwinowski Z, Perrakis A, Anderson PM, Joachimiak A. Structure of cyanase reveals that a novel dimeric and decameric arrangement of subunits is required for formation of the enzyme active site. Structure. 2000;8:505–14.CAS 
    Article 

    Google Scholar 
    31.Butryn A, Stoehr G, Linke-Winnebeck C, Hopfner KP. Serendipitous crystallization and structure determination of cyanase (CynS) from Serratia proteamaculans. Acta Crystallogr F. 2015;71:471–6.CAS 
    Article 

    Google Scholar 
    32.Pederzoli R, Tarantino D, Gourlay LJ, Chaves-Sanjuan A, Bolognesi M. Detecting the nature and solving the crystal structure of a contaminant protein from an opportunistic pathogen. Acta Crystallogr F. 2020;76:392–7.CAS 
    Article 

    Google Scholar 
    33.Wybouw N, Balabanidou V, Ballhorn DJ, Dermauw W, Grbić M, Vontas J, et al. A horizontally transferred cyanase gene in the spider mite Tetranychus urticae is involved in cyanate metabolism and is differentially expressed upon host plant change. Insect Biochem Molec. 2012;42:881–9.CAS 
    Article 

    Google Scholar 
    34.Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, et al. The genome of the ammonia‐oxidizing candidatus nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.CAS 
    Article 

    Google Scholar 
    35.Palomo A, Pedersen AG, Fowler SJ, Dechesne A, Sicheritz-Pontén T, Smets BF. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISMEJ. 2018;12:1779–93.Article 

    Google Scholar  More

  • in

    Late Pleistocene human paleoecology in the highland savanna ecosystem of mainland Southeast Asia

    1.Roberts, P. & Stewart, B. A. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. Nat. Hum. Behav. 2, 542–550 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Heaney, L. R. A synopsis of climatic and vegetational change in Southeast Asia. Clim. Change 19, 53–61 (1991).ADS 
    Article 

    Google Scholar 
    3.Morley, R. J. Origin and Evolution of Tropical Rain Forests (Wiley, 2000).
    Google Scholar 
    4.Bird, M. I., Taylor, D. & Hunt, C. Palaeoenvironments of insular Southeast Asia during the last Glacial Period: a savanna corridor in Sundaland?. Quat. Sci. Rev. 24, 2228–2242 (2005).ADS 
    Article 

    Google Scholar 
    5.Wurster, C. M., Rifai, H., Zhou, B., Haig, J. & Bird, M. I. Savanna in equatorial Borneo during the late Pleistocene. Sci. Rep. 9, 6392. https://doi.org/10.1038/s41598-019-42670-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Wurster, C. M. & Bird, M. I. Barriers and bridges: early human dispersals in equatorial SE Asia. Geol. Soc. Spec. Publ. 411, 235–250 (2016).ADS 
    Article 

    Google Scholar 
    7.Zaim, Y. Geological evidence for the earliest appearance of hominins in Indonesia. In Out of Africa I: The First Hominin Colonization of Eurasia (eds Fleagle, J. G. et al.) 97–110 (Springer, 2010).Chapter 

    Google Scholar 
    8.Cannon, C. H., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl. Acad. Sci. USA 106, 11188–11193 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Raes, N. et al. Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima. Proc. Natl. Acad. Sci. USA 111, 16790–16795 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Suraprasit, K., Jongautchariyakul, S., Yamee, C., Pothichaiya, C. & Bocherens, H. New fossil and isotope evidence for the Pleistocene zoogeographic transition and hypothesized savanna corridor in peninsular Thailand. Quat. Sci. Rev. 221, 1055861 (2019).Article 

    Google Scholar 
    11.Pookajorn, S. Human activities and environmental changes during the late pleistocene to middle holocene in Southern Thailand and Southeast Asia. In Humans at the End of the Ice Age: The Archaeology of the Pleistocene—Holocene Transition, Interdisciplinary Contributions to Archaeology (eds Straus, L. G. et al.) 201–213 ( Springer, 1996).Chapter 

    Google Scholar 
    12.Schepartz, L. A., Miller-Antonio, S. & Bakken, D. A. Upland resources and the early palaeolithic occupation of Southern China, Vietnam, Laos Thailand and Burma. World Archaeol. 32, 1–13 (2000).Article 

    Google Scholar 
    13.Mudar, K. & Anderson, D. New evidence for Southeast Asian pleistocene foraging economies: faunal remains from the early levels of Lang Rongrien Rockshelter, Krabi, Thailand. Asian Perspect. 46, 298–334 (2007).Article 

    Google Scholar 
    14.Shoocongdej, R. Late Pleistocene activities at the Tham Lod rockshelter in Highland Pang Mapha, Mae Hong Son province, Norhwestern Thailand. In Uncovering Southeast Asia’s Past (eds Bacus, E. et al.) 22–37 (NUS Press, 2006).
    Google Scholar 
    15.Shoocongdej, R. et al. Final report of Highland Archaeology Project in Pang Mapha District, Mae Hong Son Province Phase 2, Vol. 2 (Thailand Research Fund, 2007).16.Demeter, F. et al. Anatomically modern human in Southeast Asia (Laos) by 46 ka. Proc. Natl. Acad. Sci. USA 109, 14375–14380 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17Demeter, F. et al. Early modern humans and morphological variation in Southeast Asia: fossil evidence from Tam Pa Ling. Laos. PLoS ONE 10, e0121193. https://doi.org/10.1371/journal.pone.0121193 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Viet, N. First archaeological evidence of symbolic activities from the Pleistocene of Vietnam. In Emergence and Diversity of Human Behavior Paleolithic Asia (ed. Kaifu, Y.) 133–139 (Texas A&M University Press, 2015).
    Google Scholar 
    19.Higham, C. F. & Thosarat, R. An early hunter-gatherer site at Ban Non Wat, Northeast Thailand. J. Indo. Pacif. Archaeol. 43, 93–96 (2019).Article 

    Google Scholar 
    20.Gorman, C. F. Excavations at Spirit Cave, North Thailand: Some Interim Interpretations. Asian Perspect. 13, 79–107 (1970).
    Google Scholar 
    21.Tayles, N., Halcrow, S. E., Sayavongkhamdy, T. & Souksavatdy, V. A prehistoric flexed human burial from Pha Phen, Middle Mekong Valley, Laos: its context in Southeast Asia. Anthropol. Sci. 123, 1–12 (2015).Article 

    Google Scholar 
    22.Conrad, C., Higham, C., Eda, M. & Marwick, B. Palaeoecology and forager subsistence strategies during the Pleistocene—Holocene transition: A reinvestigation of the zooarchaeological assemblage from Spirit Cave, Mae Hong Son Province, Thailand. Asian Perspect. 5, 2–27 (2016).Article 

    Google Scholar 
    23.Zeitoun, V. D. et al. Discovery of an outstanding Hoabinhian site from the Late Pleistocene at Doi Pha Kan (Lampang province, northern Thailand). Archaeol. Res. Asia 18, 1–16 (2019).Article 

    Google Scholar 
    24.Shoocongdej, R. Forager mobility organization in seasonal tropical environments of western Thailand. World Archaeol. 32, 14–40 (2000).Article 

    Google Scholar 
    25.Forestier, H. et al. The Hoabinhian from Laang Spean Cave in its stratigraphic, chronological, typo-technological and environmental context (Cambodia, Battambang province). J. Archaeol. Sci. Rep. 3, 194–206 (2015).
    Google Scholar 
    26.Chitkament, T., Gaillard, C. & Shoocongdej, R. Tham Lod rockshelter (Pang Mapha district, north-western Thailand): Evolution of the lithic assemblages during the late Pleistocene. Quat. Int. 416, 151–161 (2016).Article 

    Google Scholar 
    27.Marwick, B. The Hoabinhian of Southeast Asia and its relationship to regional Pleistocene lithic technologies. In Lithic Technological Organization and Paleoenvironmental Change Global and Diachronic Perspectives (eds Robinson, E. & Sellet, F.) 63–78 (Springer, 2018).Chapter 

    Google Scholar 
    28.Marwick, B. & Gagan, M. K. Late Pleistocene monsoon variability in northwest Thailand: an oxygen isotope sequence from the bivalve Margaritanopsis laosensis excavated in Mae Hong Son province. Quat. Sci. Rev. 30, 3088–3098 (2011).ADS 
    Article 

    Google Scholar 
    29.Marwick, B. Multiple Optima in Hoabinhian flaked stone artefact palaeoeconomics and palaeoecology at two archaeological sites in Northwest Thailand. J. Anthropol. Archaeol. 32, 553–564 (2013).Article 

    Google Scholar 
    30.Wattanapituksakul, A., Filoux, A., Amphansri, A. & Tumpeesuwan, S. Late Pleistocene Caprinae assemblages of Tham Lod Rockshelter (Mae Hong Son Province, Northwest Thailand). Quat. Int. 493, 212–226 (2018).Article 

    Google Scholar 
    31.Shoocongdej, R. & Wattanapituksakul, A. Faunal assemblages and demography during the Late Pleistocene (MIS 2–1) to Early Holocene in Highland Pang Mapha, Northwest Thailand. Quat. Int. 563, 51–63 (2020).Article 

    Google Scholar 
    32.DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Van Der Merwe, N. J. & Vogel, J. C. 13C Content of human collagen as a measure of prehistoric diet in woodland North America. Nature 276, 815–816 (1978).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Cerling, T. E., Hart, J. A. & Hart, T. B. Stable isotope ecology in the Ituri Forest. Oecologia 138, 5–12 (2004).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Bourgon, N. et al. Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information. Proc. Natl. Acad. Sci. USA 117, 4675–4681 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.van Klinken, G. J. Bone Collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).Article 

    Google Scholar 
    38.Pestle, W. J. & Colvard, M. Bone collagen preservation in the tropics: a case study from ancient Puerto Rico. J. Archaeol. Sci. 39, 2079–2090 (2012).CAS 
    Article 

    Google Scholar 
    39.Ecker, M. et al. Middle Pleistocene ecology and Neanderthal subsistence: Insights from stable isotope analyses in Payre (Ardèche, southeastern France). J. Hum. Evol. 65, 363–373 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40Kohn, M. & Cerling, T. E. Stable isotope compositions of biological apatite. In Phosphates—Geochemical Geobiological and Materials Importance Reviews in Mineralogy and Geochemistry Vol. 48 (eds Kohn, M. et al.) 455–488 (Mineralogical Society of America, 2002).Chapter 

    Google Scholar 
    41.Biasatti, D., Wang, Y., Gao, F., Xu, Y. & Flynn, L. Paleoecologies and paleoclimates of late cenozoic mammals from Southwest China: evidence from stable carbon and oxygen isotopes. J. Asian Earth Sci. 44, 48–61 (2012).ADS 
    Article 

    Google Scholar 
    42.Clementz, M. T., Fox-Dobbs, K., Wheatley, P.-V., Koch, P. L. & Doak, D. F. Revisiting old bones: coupled carbon isotope analysis of bioapatite and collagen as an ecological and palaeoecological tool. Geol. J. 44, 605–620 (2009).CAS 
    Article 

    Google Scholar 
    43.Domingo, M. S., Domingo, L., Badgley, C., Sanisidro, O. & Morales, J. Resource partitioning among top predators in a Miocene food web. Proc. R. Soc. B 280, 20122138. https://doi.org/10.1098/rspb.2012.2138 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Codron, D., Clauss, M., Codron, J. & Tütken, T. Within trophic level shifts in collagen–carbonate stable carbon isotope spacing are propagated by diet and digestive physiology in large mammal herbivores. Ecol. Evol. 8, 3983–3995 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45Tejada-Lara, J. V. et al. Body mass predicts isotope enrichment in herbivorous mammals. Proc. R. Soc. B 285, 20181020. https://doi.org/10.1098/rspb.2018.1020 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Cerling, T. E. et al. Stable isotope-based diet reconstructions of Turkana Basin hominins. Proc. Natl. Acad. Sci. USA 110, 10501–10506 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Ayliffe, L. K. & Chivas, A. R. Oxygen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochim. Cosmochim. Acta 54, 2603–2609 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M. & Ehleringer, J. R. A stable isotope aridity index for terrestrial environments. Proc. Natl. Acad. Sci. USA 103, 11201–11205 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Bocherens, H., Koch, P., Mariotti, A., Geraads, D. & Jaeger, J.-J. Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominoid sites. Palaios 11, 306–308 (1996).ADS 
    Article 

    Google Scholar 
    50.Hambali, K., Ismail, A., Md-Zain, B. M., Amir, A. & Karim, F. A. Diet of long-tailed macaques (Macaca fascicularis) at the entrance of Kuala Selangor Nature Park (anthropogenic habitat): food selection that leads to human-macaque conflict. Acta Biol. Malay. 3, 58–68 (2014).
    Google Scholar 
    51.Nila, S., Suryobroto, B. & Widayati, K. A. Dietary variation of long tailed macaques (Macaca fascicularis) in Telaga Warna, Bogor, West Java. HAYATI J. Biosci. 21, 8–14 (2014).Article 

    Google Scholar 
    52.Lekagul, B. & McNeely, J. A. Mammals of Thailand: Association for the Conservation of Wildlife (Kurusapa Ladproa Press, 1988).
    Google Scholar 
    53.Suraprasit, K., Bocherens, H., Chaimanee, Y., Panha, S. & Jaeger, J.-J. Late Middle Pleistocene ecology and climate in Northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quat. Sci. Rev. 193, 24–42 (2018).ADS 
    Article 

    Google Scholar 
    54Suraprasit, K. et al. Long-term isotope evidence on the diet and habitat breadth of pleistocene to holocene caprines in Thailand: implications for the extirpation and conservation of Himalayan Gorals. Front. Ecol. Evol. 8, 67. https://doi.org/10.3389/fevo.2020.00067 (2020).Article 

    Google Scholar 
    55.Kohn, M. J. Predicting animal δ18O: Accounting for diet and physiological adaptation. Geochim. Cosmochim. Acta 60, 4811–4829 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Kohn, M. J., Schoeninger, M. J. & Valley, J. W. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochim. Cosmochim. Acta 60, 3889–3896 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Dunbar, J. & Wilson, T. Oxygen and hydrogen isotopes in fruits and vegetable juices. Plant Physiol. 72, 725–727 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Yakir, D. Variations in the natural abundances of oxygen-18 and deuterium in plant carbohydrates. Plant Cell Environ. 15, 1005–1020 (1992).CAS 
    Article 

    Google Scholar 
    59.Fricke, H. C. & O’Neil, J. R. Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeogr. Palaeoclimatol. Palaeoecol. 126, 91–99 (1996).Article 

    Google Scholar 
    60.Fricke, H. C., Clyde, W. C. & O’Neil, J. R. Intra-tooth variations in δ18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochem. Cosmochim. Acta 62, 1839–1850 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Balasse, M., Ambrose, S. H., Smith, A. B. & Price, T. D. The seasonal mobility model for prehistoric herders in the south-western Cape of South Africa assessed by isotopic analysis of sheep tooth enamel. J. Archaeol. Sci. 29, 917–932 (2002).Article 

    Google Scholar 
    62Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 2015305. https://doi.org/10.1098/rstb.2015.0305 (2016).CAS 
    Article 

    Google Scholar 
    63.Pushkina, D., Bocherens, H., Chaimanee, Y. & Jaeger, J.-J. Stable carbon isotope reconstructions of diet and paleoenvironment from the late middle Pleistocene Snake Cave in Northeastern Thailand. Naturwissenschaften 97, 299–309 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Louys, J. & Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586, 402–406 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Passey, B. H. et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J. Archaeol. Sci. 32, 1459–1470 (2005).Article 

    Google Scholar 
    66.Dutt, S. et al. Abrupt changes in Indian summer monsoon strength during 33,800 to 5500 years B.P. Geophys. Res. Lett. 42, 5526–5532 (2015).ADS 
    Article 

    Google Scholar 
    67.Ronay, E. R., Breitenbach, S. F. M. & Oster, J. L. Sensitivity of speleothem records in the Indian Summer Monsoon region to dry season infiltration. Sci. Rep. 9, 5091. https://doi.org/10.1038/s41598-019-41630-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68Liu, G. et al. On the glacial-interglacial variability of the Asian monsoon in speleothem δ18O records. Sci. Adv. 6, 8eaay8189. https://doi.org/10.1126/sciadv.aay8189 (2020).CAS 
    Article 

    Google Scholar 
    69.Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. USA 111, 15296–15303 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70Rabett, R. J. Human Adaptation in the Asian Palaeolithic: hominin dispersal and behaviour during the late quaternary (Cambridge University Press, 2012).Book 

    Google Scholar 
    71.Bailey, R. C. et al. Hunting and gathering in tropical rain forest: Is it possible?. Am. Anthropol. 91, 59–82 (1989).Article 

    Google Scholar 
    72.Mercader, J. Forest people: the role of African rainforests in human evolution and dispersal. Evol. Anthropol. 11, 117–124 (2002).Article 

    Google Scholar 
    73.Mercader, J. Under the Canopy: The Archaeology of Tropical Rainforests (Rutgers University Press, 2002).
    Google Scholar 
    74.Mercader, J. Foragers of the Congo: the early settlement of the Ituri forest. In Under the Canopy: The Archeology of Tropical Rain Forests (ed. Mercader, J.) 93–116 (Rutgers University Press, London, 2003).
    Google Scholar 
    75.Perera, N. et al. People of the ancient rainforest: Late Pleistocene foragers at the Batadomba-lena rockshelter, Sri Lanka. J. Hum. Evol. 61, 254–269 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Roberts, P. et al. Direct evidence for human reliance on rainforest resources in late Pleistocene Sri Lanka. Science 347, 1246–1249 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Roberts, P. et al. Fruits of the forest: human stable isotope ecology and rainforest adaptations in Late Pleistocene and Holocene (~36 to 3 ka) Sri Lanka. J. Hum. Evol. 106, 102–118 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78Wedage, O. et al. Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nat. Commun. 10, 739. https://doi.org/10.1038/s41467-019-08623-1 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Ji, X. et al. The oldest Hoabinhian technocomplex in Asia (43.5 ka) at Xiaodong rockshelter, Yunnan Province, southwest China. Quat. Int. 400, 166–174 (2016).Article 

    Google Scholar 
    80.Olsen, J. W. & Ciochon, R. L. A review of evidence for postulated Middle Pleistocene occupations in Viet Nam. J. Hum. Evol. 19, 761–788 (1990).Article 

    Google Scholar 
    81.Rabett, R. et al. The Tràng An Project: Late-to-Post-Pleistocene Settlement of the Lower Song Hong Valley, North Vietnam. J. R. Asiat. Soc. 19, 83–109 (2009).Article 

    Google Scholar 
    82.Rabett, R. et al. Tropical limestone forest resilience and late Pleistocene foraging during MIS-2 in the Tràng An massif, Vietnam. Quat. Int. 448, 62–81 (2017).Article 

    Google Scholar 
    83.Barker, G. et al. The ‘Human Revolution’ in lowland tropical Southeast Asia: the antiquity and behavior of anatomically modern humans at Niah Cave (Sarawak, Borneo). J. Hum. Evol. 52, 243–261 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Piper, P. & Rabett, R. Hunting in a tropical rainforest: evidence from the terminal Pleistocene at Lobang Hangus, Niah Caves, Sarawak. Int. J. Osteoarchaeol. 19, 551–565 (2009).Article 

    Google Scholar 
    85.Hunt, C. O., Gilbertson, D. D. & Rushworth, G. A 50,000-year record of late Pleistocene tropical vegetation and human impact in lowland Borneo. Quat. Sci. Rev. 37, 61–80 (2012).ADS 
    Article 

    Google Scholar 
    86.de Vos, J. The Pongo faunas from Java and Sumatra and their significance for biostratigraphical and paleoecological interpretations. Proc. K. Ned. Akad. Wet. B. 86, 417–425 (1983).
    Google Scholar 
    87.Westaway, K. E. An early modern human presence in Sumatra 73000–63000 years ago. Nature 548, 322–325 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Storm, P. et al. Late Pleistocene Homo Sapiens in a tropical rainforest Fauna in East Java. J. Hum. Evol. 49, 536–545 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Storm, P. & de Vos, J. Rediscovery of the late Pleistocene Punung Hominin Sites and the Discovery of a New Site Gunung Dawung in East Java. Senck. Leth. 86, 271–281 (2006).Article 

    Google Scholar 
    90Roberts, P. et al. Isotopic evidence for initial coastal colonization and subsequent diversification in the human occupation of Wallacea. Nat. Commun. 11, 2068. https://doi.org/10.1038/s41467-020-15969-4 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Pasveer, J. M., Clarke, S. J. & Miller, G. H. Late Pleistocene human occupation of inland rainforest, Bird’s Head, Papua. Archaeol. Oceania 37, 92–95 (2002).Article 

    Google Scholar 
    92.Summerhayes, G. R. et al. Human adaptation and plant use in highland New Guinea 49,000 to 44,000 Years Ago. Science 330, 78–81 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Summerhayes, G. R., Field, J. H., Shaw, B. & Gaffney, D. The archaeology of forest exploitation and change in the tropics during the Pleistocene: the case of Northern Sahul (Pleistocene New Guinea). Quat. Int. 448, 14–30 (2017).Article 

    Google Scholar 
    94.Roberts, P., Gaffney, D., Lee-Thorp, J. A. & Summerhayes, G. R. Persistent tropical foraging in the highlands of terminal Pleistocene/Holocene New Guinea. Nature Ecol. Evol. 1, 1–6 (2017).CAS 
    Article 

    Google Scholar 
    95.Wedage, O. et al. Microliths in the South Asian rainforest ~45–4 ka: New insights from Fa-Hien Lena Cave, Sri Lanka. PLoS ONE https://doi.org/10.1371/journal.pone.0222606 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Bettis, E. A. et al. Way out of Africa: early Pleistocene paleoenvironments inhabited by Homo erectus in Sangiran, Java. J. Hum. Evol. 56, 11–24 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Brumm, A. et al. Age and context of the oldest known hominin fossils from Flores. Nature 534, 249–253 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar  More

  • in

    Effect of salinity on the zinc(II) binding efficiency of siderophore functional groups and implications for salinity tolerance mechanisms in barley

    1.McLean, J. E., Pabst, M. W., Miller, C. D., Dimkpa, C. O. & Anderson, A. J. Effect of complexing ligands on the surface adsorption, internalization, and bioresponse of copper and cadmium in a soil bacterium, Pseudomonas Putida. Chemosphere 91(3), 374–382. https://doi.org/10.1016/j.chemosphere.2012.11.071 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Clemens, S. Metal ligands in micronutrient acquisition and homeostasis. Plant. Cell Environ. 42(10), 2902–2912. https://doi.org/10.1111/pce.13627 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Ma, H. et al. Elucidation of the mechanisms into effects of organic acids on soil fertility, cadmium speciation and ecotoxicity in contaminated soil. Chemosphere 239, 124706. https://doi.org/10.1016/j.chemosphere.2019.124706 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Ahmed, E. & Holmström, S. J. M. Siderophores in environmental research: Roles and applications. Microb. Biotechnol. 7(3), 196–208. https://doi.org/10.1111/1751-7915.12117 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Butler, A. & Theisen, R. M. Iron(III)-siderophore coordination chemistry: Reactivity of marine siderophores. Coord. Chem. Rev. 254(3–4), 288–296. https://doi.org/10.1016/j.ccr.2009.09.010 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27(5), 637. https://doi.org/10.1039/b906679a (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Kirby, M. E., Sonnenberg, J. L., Simperler, A. & Weiss, D. J. Stability series for the complexation of six key siderophore functional groups with uranyl using density functional theory. J. Phys. Chem. A 124(12), 2460–2472. https://doi.org/10.1021/acs.jpca.9b10649 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Harrington, J. et al. Structural dependence of Mn complexation by siderophores: Donor group dependence on complex stability and reactivity. GCA. 88, 106–119 (2012).ADS 
    CAS 

    Google Scholar 
    9.McRose, D. L., Seyedsayamdost, M. R. & Morel, F. M. M. Multiple siderophores: Bug or feature?. JBIC J. Biol. Inorg. Chem. 23(7), 983–993. https://doi.org/10.1007/s00775-018-1617-x (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Johnstone, T. C., Nolan, E. M. Beyond iron: Non-classical biological functions of bacterial siderophores. In Dalton Transactions. Royal Society of Chemistry April 14, 2015, pp 6320–6339. https://doi.org/10.1039/c4dt03559c.11.Northover, G. H. R., Garcia-España, E. & Weiss, D. J. Unravelling the modus operandi of phytosiderophores during zinc uptake in rice: The importance of geochemical gradients and accurate stability constants. J. Exp. Bot. https://doi.org/10.1093/jxb/eraa580 (2020).Article 

    Google Scholar 
    12.Ghavami, N., Alikhani, H. A., Pourbabaee, A. A. & Besharati, H. Study the effects of siderophore-producing bacteria on zinc and phosphorous nutrition of canola and maize plants. Commun. Soil Sci. Plant Anal. 47(12), 1517–1527. https://doi.org/10.1080/00103624.2016.1194991 (2016).CAS 
    Article 

    Google Scholar 
    13.Weiss, D. et al. Isotope fractionation of zinc in the paddy rice soil-water environment and the role of 2’deoxymugineic acid (DMA) as zincophore under Zn limiting conditions. Chem. Geol. 577, 120271. https://doi.org/10.1016/j.chemgeo.2021.120271 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Suzuki, M. et al. Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J. 48(1), 85–97. https://doi.org/10.1111/j.1365-313X.2006.02853.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Zaman, M. , Shahid, S. A., Heng, L., Shahid, S. A., Zaman, M., Heng, L. Soil salinity: Historical perspectives and a world overview of the problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques 43–53 (Springer, 2018). https://doi.org/10.1007/978-3-319-96190-3_2.16.Alfarrah, N. & Walraevens, K. Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions. Water 10(2), 143. https://doi.org/10.3390/w10020143 (2018).CAS 
    Article 

    Google Scholar 
    17.Trenberth, K. Changes in precipitation with climate change. Clim. Res. 47(1), 123–138. https://doi.org/10.3354/cr00953 (2011).Article 

    Google Scholar 
    18.Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7(1), 1–9. https://doi.org/10.1038/s41598-017-17966-y (2017).CAS 
    Article 

    Google Scholar 
    19.Errabii, T., Gandonou, C. H., Essalmani, H., Jamal; Senhaji, N. S. Effects of NaCl and mannitol induced stress on sugarcane (Saccharum Sp.) Callus Cultures. https://doi.org/10.1007/s11738-006-0006-1.20.Saboora, A., Hajihashemi, S. & Khatam, B. NaCl tolerance of wheat genotypes at germination and early seedling growth article in Pakistan. J. Biol. Sci. https://doi.org/10.3923/pjbs.2006.2009.2021 (2006).Article 

    Google Scholar 
    21.Chand, M., Randhawa, N. S. & Bhumbla, D. R. Effectiveness of zinc chelates in zinc nutrition of greenhouse rice crop in a saline-sodic soil. Plant Soil 59(2), 217–225. https://doi.org/10.1007/BF02184195 (1981).CAS 
    Article 

    Google Scholar 
    22.Lores, E. M. & Pennock, J. R. The effect of salinity on binding of Cd, Cr, Cu and Zn to dissolved organic matter. Chemosphere 37(5), 861–874. https://doi.org/10.1016/S0045-6535(98)00090-3 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Cigala, R. M. et al. Zinc(II) complexes with hydroxocarboxylates and mixed metal species with Tin(II) in different salts aqueous solutions at different ionic strengths: Formation, stability, and weak interactions with supporting electrolytes. Monatshefte fur Chemie 146(4), 527–540. https://doi.org/10.1007/s00706-014-1394-3 (2015).CAS 
    Article 

    Google Scholar 
    24.Laird, D. A., Koskinen, I. W. C. Triazine Soil Interactions. In The Triazine Herbicides 275–299 (Elsevier, 2008). https://doi.org/10.1016/B978-044451167-6.50024-6.25.Cigala, R. M. et al. Speciation of Tin(II) in aqueous solution: Thermodynamic and spectroscopic study of simple and mixed hydroxocarboxylate complexes. Monatshefte fur Chemie 144(6), 761–772. https://doi.org/10.1007/s00706-013-0961-3 (2013).CAS 
    Article 

    Google Scholar 
    26.Daniele, P. G., Rigano, C. & Sammartano, S. Ionic strength dependence of formation constants-I protonation constants of organic and inorganic acids. Talanta 30(2), 81–87. https://doi.org/10.1016/0039-9140(83)80023-X (1983).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Bretti, C., Foti, C. & Sammartano, S. A new approach in the use of sit in determining the dependence on ionic strength of activity coefficients. Application to Some Chloride Salts Of Interest In The Speciation Of Natural Fluids. Chem. Speciat. Bioavailab. 16(3), 105–110. https://doi.org/10.3184/095422904782775036 (2004).CAS 
    Article 

    Google Scholar 
    28.Bretti, C., De Stefano, C., Foti, C. & Sammartano, S. Critical evaluation of protonation constants. Literature analysis and experimental potentiometric and calorimetric data for the thermodynamics of phthalate protonation in different ionic media. J. Solution Chem. 35(9), 1227–1244. https://doi.org/10.1007/s10953-006-9057-6 (2006).CAS 
    Article 

    Google Scholar 
    29.Cigala, R. M. et al. Quantitative study on the interaction of Sn2+ and Zn2+ with some phosphate ligands, in aqueous solution at different ionic strengths. J. Mol. Liq. 165, 143–153. https://doi.org/10.1016/j.molliq.2011.11.002 (2012).CAS 
    Article 

    Google Scholar 
    30.Northover, G. H. R., Mao, Y., Hanif M. D., Blasco, S., Vilar, R., Garcia-Espana, E. & Weiss, D. J. The control of pH and ionic strength gradients on the interaction of low-molecular-weight organic acids and siderophores. ChemRxiv. Preprint (2021). https://doi.org/10.26434/chemrxiv.14706036.v1.31.Domenico, P. A., Harris, D. R., Schwartz, F. W., Wiley, J., Chichester, N. Y., Brisbane, W. & Singapore, T. Physical and Chemical Hydrogeology 2nd edn.32.Pankow, J.; Taylor & Francis Group. Aquatic Chemistry Concepts 2nd edn.33.Graziano, G. Role of salts on the strength of pairwise hydrophobic interaction. Chem. Phys. Lett. 483(1–3), 67–71. https://doi.org/10.1016/j.cplett.2009.10.040 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Mancera, R. L. Does salt increase the magnitude of the hydrophobic effect? A computer simulation study. Chem. Phys. Lett. 296(5–6), 459–465. https://doi.org/10.1016/S0009-2614(98)01080-X (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Mancera, R. L. Computer simulation of the effect of salt on the hydrophobic effect. J. Chem. Soc. Faraday Trans. 94(24), 3549–3559. https://doi.org/10.1039/a806899b (1998).CAS 
    Article 

    Google Scholar 
    36.Ghosh, T., Kalra, A. & Garde, S. On the salt-induced stabilization of pair and many-body hydrophobic interactions. J. Phys. Chem. B 109(1), 642–651. https://doi.org/10.1021/jp0475638 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Papaneophytou, C. P., Grigoroudis, A. I., McInnes, C. & Kontopidis, G. Quantification of the effects of ionic strength, viscosity, and hydrophobicity on protein-ligand binding affinity. ACS Med. Chem. Lett. 5(8), 931–936. https://doi.org/10.1021/ml500204e (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Ghafoor, K., AL-Juhaimi, F., Ozcan, M. M. & Jahurul, M. H. A. Some nutritional characteristics and mineral contents in Barley (Hordeum Vulgare L.) seeds cultivated under salt stress. Qual. Assur. Saf. Crop. Foods 7(3), 363–368. https://doi.org/10.3920/QAS2013.0380 (2015).CAS 
    Article 

    Google Scholar 
    39.Akman, Z. Effects of plant growth regulators on nutrient content of young wheat and barley plants under
    saline conditions. J. Anim. Vet. Adv. 8(10), 2018–2021 (2009).CAS 

    Google Scholar 
    40.Yousfi, S., Houmani, H., Zribi, F., Abdelly, C. & Gharsalli, M. Physiological responses of wild and cultivated barley to the interactive effect of salinity and iron deficiency. (2012). https://doi.org/10.5402/2012/121983.41.Alderighi, L. et al. Hyperquad simulation and speciation (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 184(1), 311–318. https://doi.org/10.1016/S0010-8545(98)00260-4 (1999).CAS 
    Article 

    Google Scholar 
    42.Gans, P. & O’Sullivan, B. GLEE: A new computer program for glass electrode calibration. Talanta 51(1), 33–37. https://doi.org/10.1016/s0039-9140(99)00245-3 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Gans, P., Sabatini, A. & Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43(10), 1739–1753. https://doi.org/10.1016/0039-9140(96)01958-3 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Hu, W., Xie, J., Chau, H. W. & Si, B. C. Evaluation of parameter uncertainties in nonlinear regression using Microsoft excel spreadsheet. Environ. Syst. Res. 4(1), 1–12. https://doi.org/10.1186/s40068-015-0031-4 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Harris, W. R., Raymond, K. N. & Weitl, F. L. Ferric ion sequestering agents. 6. The spectrophotometric and potentiometric evaluation of sulfonated tricatecholate ligands. J. Am. Chem. Soc. 103(10), 2667–2675. https://doi.org/10.1021/ja00400a030 (1981).CAS 
    Article 

    Google Scholar 
    46.Bravin, M. N., Tentscher, P., Rose, J. & Hinsinger, P. Rhizosphere PH Gradient Controls Copper Availability in a Strongly Acidic Soil. Environ. Sci. Technol. 43(15), 5686–5691. https://doi.org/10.1021/es900055k (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Gollany, H. T. & Schumacher, T. E. Combined use of colorimetric and microelectrode methods for evaluating rhizosphere PH. Plant Soil 154(2), 151–159. https://doi.org/10.1007/BF00012520 (1993).CAS 
    Article 

    Google Scholar 
    48.Kirk, G. J. D. Root ventilation, rhizosphere modification, and nutrient uptake by rice. In Systems Approaches for Agricultural Development 221–232 (Springer, Netherlands, 1993). https://doi.org/10.1007/978-94-011-2842-1_13.49.Li, J. & Heap, A. D. Spatial interpolation methods applied in the environmental sciences: A review. In Environmental Modelling and Software 173–189 (Elsevier, 2014). https://doi.org/10.1016/j.envsoft.2013.12.008.50.Gergely, A., Kiss, T. & Deák, G. Complexes of 3,4-dihydroxyphenyl derivatives. II. Complex formation processes in the Nickel(II)-L-DOPA and Zinc(II)-L-DOPA systems. Inorganica Chim. Acta 36(1), 113–120. https://doi.org/10.1016/S0020-1693(00)89379-2 (1979).CAS 
    Article 

    Google Scholar 
    51.Griesser, R. & Sigel, H. Ternary complexes in solution. XI. complex formation between the cobalt(h)-, nickel(ii)-, copper(ii)-, and zinc(II)-2,2′-bipyridyl 1:1 complexes and ethylenediamine, glycinate, or pyrocatecholate. Inorg. Chem. 10(10), 2229–2232. https://doi.org/10.1021/ic50104a028 (1971).CAS 
    Article 

    Google Scholar 
    52.Das, A. K. Studies on mixed ligand complexes of cobalt(II), nickel(II), copper(II) and zinc(II) involving 8-hydroxyquinoline-5-sulphonic acid as a primary ligand and substituted catechols as secondary ligands. Transition Met. Chem. 14, 200–209 (1989).CAS 
    Article 

    Google Scholar 
    53.Das, A. K. Astatistical aspects of the stabilities of ternary complexes of cobalt(II), nickel(II), copper(II) and zinc(II) involving amino-polycarboxylic acids and heteroaromatic N-bases as primary ligands and acetohydroxamic acid as a secondary ligand. Transition Met. Chem. 14, 66–68 (1989).CAS 
    Article 

    Google Scholar 
    54.Cannan, R. K. & Kibrick, A. Complex formation between carboxylic acids and divalent metal cations. J. Am. Chem. Soc. 60(10), 2314–2320. https://doi.org/10.1021/ja01277a012 (1938).CAS 
    Article 

    Google Scholar 
    55.Farkas, E., Brown, D. A., Cittaro, R. & Glass, W. K. Metal complexes of glutamic acid-γ-hydroxamic acid (Glu-γ-Ha) (N-hydroxyglutamine) in aqueous solution. J. Chem. Soc. Dalt. Trans. 18, 2803–2807. https://doi.org/10.1039/DT9930002803 (1993).Article 

    Google Scholar 
    56.Farkas, E., Enyedy, É. A. & Csóka, H. Some factors affecting metal ion-monohydroxamate interactions in aqueous solution. J. Inorg. Biochem. 79(1–4), 205–211. https://doi.org/10.1016/S0162-0134(99)00158-0 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Warnke, Z. Investigation on divalent metal complexes with oxyacids in aqueous solutions. 6. Potentiometric investigation on copper(II), zinc(II), and cadmium(II) complexes with glycolic acd. Rocz. Chem. 43, 1939 (1969).CAS 

    Google Scholar 
    58.Lengyel, T. Investigations on ion exchange equilibria with radioactive tracer method. 15. Liquid ion exchange technique for investigating mixed complex species of zinc with glycolic and alpha-hydroxyisobutyric acid. Acta Chim. Acad. Sci. Hung. 60, 373 (1969).CAS 

    Google Scholar 
    59.Athavale, V. T., Prabhu, L. H. & Vartak, D. G. Solution stability constants of some metal complexes of derivatives of catechol. J. Inorg. Nucl. Chem. 28(5), 1237–1249. https://doi.org/10.1016/0022-1902(66)80450-5 (1966).CAS 
    Article 

    Google Scholar 
    60.Portanova, R., Lajunen, L. H. J., Tolazzi, M. & Piispanen, J. Critical evaluation of stability constants for α-hydroxycarboxylic acid complexes with protons and metal ions and the accompanying enthalpy changes: Part II. Aliphatic 2-hydroxycarboxylic acids (IUPAC technical report). Pure Appl. Chem. 75(4), 495–540. https://doi.org/10.1351/pac200375040495 (2003).CAS 
    Article 

    Google Scholar 
    61.Krężel, A. & Maret, W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 611, 3–19. https://doi.org/10.1016/j.abb.2016.04.010 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Al-Sogair, F. M.; Operschall, B. P.; Sigel, A.; Sigel, H.; Schnabl, J.; Sigel, R. K. O. Probing the Metal-Ion-Binding Strength of the Hydroxyl Group. In Chemical Reviews. American Chemical Society August 10, 964–5003 (2011). https://doi.org/10.1021/cr100415s.63.Gries, D., Brunn, S., Crowley, D. E. & Parker, D. R. Phytosiderophore release in relation to micronutrient metal deficiencies in Barley. Plant Soil 172(2), 299–308. https://doi.org/10.1007/BF00011332 (1995).CAS 
    Article 

    Google Scholar 
    64.Welch, R. M. & Shuman, L. Micronutrient nutrition of plants. CRC Crit. Rev. Plant Sci. 14(1), 49–82. https://doi.org/10.1080/07352689509701922 (1995).CAS 
    Article 

    Google Scholar 
    65.Arnold, T. et al. Evidence for the mechanisms of zinc uptake by rice using isotope fractionation. Plant. Cell Environ. 33(3), 370–381. https://doi.org/10.1111/j.1365-3040.2009.02085.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Haas, H. Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat. Prod. Rep. 31(10), 1266–1276. https://doi.org/10.1039/c4np00071d (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430(7003), 1024–1027. https://doi.org/10.1038/nature02744 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Wu, D. et al. Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS ONE 8(1), e55431. https://doi.org/10.1371/journal.pone.0055431 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Widodo, Patterson, J. H.; Newbigin, E. et al.. Metabolic responses to salt stress of Barley (Hordeum Vulgare L.) cultivars, sahara and clipper, which differ in salinity tolerance. J. Exp. Bot. 60(14), 4089–4103 (2009). https://doi.org/10.1093/jxb/erp243CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Yang, C.-W. et al. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of Barley plants. Phytosynthetica 47, 79–86 (2009).CAS 
    Article 

    Google Scholar  More