Fish biodiversity and assemblages along the altitudinal gradients of tropical mountainous forest streams
1.Jaramillo-Villa, U., Maldonado-Ocampo, J. A. & Escobar, F. Altitudinal variation in fish assemblage diversity in streams of the central Andes of Colombia. J. Fish Biol. 76, 2401–2417 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
2.Mercado-silva, N., Lyons, J., Díaz-Pardo, E., Navarrete, S. & Gutiérrez-Hernández, A. Environmental factors associated with fish assemblage patterns in a high gradient river of the Gulf of Mexico slope. Revista Mexicana de Biodiversidad 83, 117–128 (2012).Article
Google Scholar
3.Cheng, D. et al. Quantifying the distribution and diversity of fish species along elevational gradients in the Weihe River Basin, Northwest China. Sustainability 11, 6177 (2019).Article
Google Scholar
4.Lorion, C. M., Kennedy, B. P. & Braatne, J. H. Altitudinal gradients in stream fish diversity and the prevalence of diadromy in the Sixaola River basin, Costa Rica. Environ. Biol. Fishes 91, 487–499 (2011).Article
Google Scholar
5.Li, J. et al. Spatial and temporal variation of fish assemblages and their associations to habitat variables in a mountain stream of north Tiaoxi River, China. Environ. Biol. Fishes 93, 403–417 (2012).Article
Google Scholar
6.Súarez, Y. R. et al. Patterns of species richness and composition of fish assemblages in streams of the Ivinhema River basin, Upper Paraná River. Acta Limnol. Bras. 23, 177–188 (2011).Article
Google Scholar
7.Vieira, T. B. & Tejerina-Garro, F. L. Relationships between environmental conditions and fish assemblages in tropical Savanna headwater streams. Sci. Rep. 10, 1–12 (2020).Article
CAS
Google Scholar
8.Pokharel, K. K., Basnet, K. B., Majupuria, T. C. & Baniya, C. B. Correlations between fish assemblage structure and environmental variables of the Seti Gandaki River Basin, Nepal. J. Freshw. Ecol. 33, 31–43 (2018).CAS
Article
Google Scholar
9.Carvajal-Quintero, J. D. et al. Variation in freshwater fish assemblages along a regional elevation gradient in the northern Andes, Colombia. Ecol. Evol. 5, 2608–2620 (2015).PubMed
PubMed Central
Article
Google Scholar
10.Li, J. et al. Climate and history explain the species richness peak at mid-elevation for Schizothorax fishes (Cypriniformes: Cyprinidae) distributed in the Tibetan Plateau and its adjacent regions. Glob. Ecol. Biogeogr. 18, 264–272 (2009).Article
Google Scholar
11.Fu, C., Wu, J., Chen, J., Wu, Q. & Lei, G. Freshwater fish biodiversity in the Yangtze River basin of China: Patterns, threats and conservation. Biodivers. Conserv. 12, 1649–1685 (2003).Article
Google Scholar
12.Orrego, R., Adams, S. M., Barra, R., Chiang, G. & Gavilan, J. F. Patterns of fish community composition along a river affected by agricultural and urban disturbance in south-central Chile. Hydrobiologia 620, 35–46 (2009).Article
Google Scholar
13.Nyanti, L. et al. Acidification tolerance of Barbonymus schwanenfeldii (Bleeker, 1854) and Oreochromis niloticus (Linnaeus, 1758)—Implication of fish size. AACL Bioflux 10, 746–753 (2017).
Google Scholar
14.Nyanti, L. et al. Effects of water temperature, dissolved oxygen and total suspended solids on juvenile Barbonymus schwanenfeldii (Bleeker, 1854) and Oreochromis niloticus (Linnaeus, 1758). AACL Bioflux 11, 394–406 (2018).
Google Scholar
15.Ling, T. Y. et al. Assessment of the water and sediment quality of tropical forest streams in upper reaches of the Baleh River, Sarawak, Malaysia, subjected to logging activities. J. Chem. 2016, 1–13 (2016).CAS
Google Scholar
16.Davies, P. & Nelson, M. Relationships between riparian buffer widths and the effects of logging on stream habitat, invertebrate community composition and fish abundance. Mar. Freshw. Res. 45, 1289–1305 (1994).Article
Google Scholar
17.Ikhwanuddin, M., Amal, M., Shohaimi, S., Hasan, H. & Jamil, N. Environmental influences on fish assemblages of the Upper Sungai Pelus, Kuala Kangsar, Perak, Malaysia. Sains Malaysiana 45, 1487–1495 (2016).CAS
Google Scholar
18.Zainuddin, Z., Jamal, P. & Akbar, I. Modeling the effect of dam construction and operation towards downstream water quality of Sg. Tawau and Batang Baleh. World J. Appl. Environ. Chem. 1, 57–66 (2012).
Google Scholar
19.Nyanti, L., Ling, T. & Muan, T. Water quality of Bakun Hydroelectric Dam Reservoir, Sarawak, Malaysia, during the construction of Murum Dam. ESTEEM Acad. J. 11, 81–88 (2015).
Google Scholar
20.Ling, T. Y. et al. Changes in water and sediment quality of a river being impounded and differences among functional zones of the new large tropical hydroelectric reservoir. Pol. J. Environ. Stud. 28, 4271–4285 (2019).CAS
Article
Google Scholar
21.Osman, N. B., Othman, H. T., Karim, R. A. & Mazlan, M. A. F. Biomass in Malaysia: Forestry-based residues. Int. J. Biomass Renew. 3, 7–14 (2014).
Google Scholar
22.Inger, R. F. & Chin, P. K. Freshwater Fish of North Borneo (Natural History Publications, 2002).
Google Scholar
23.Mohsin, A. K. M. & Ambak, M. A. Freshwater fishes of Peninsular Malaysia (Universiti Pertanian Malaysia, 1983).
Google Scholar
24.Kottelat, M. The fishes of the inland waters of Southeast Asia: A catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bull. Zool. 27, 1–663 (2013).
Google Scholar
25.Kottelat, M. Conspectus Cobitidum: An inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei). Raffles Bull. Zool. 26, 1–199 (2012).
Google Scholar
26.Kottelat, M. & Tan, H. H. A synopsis of the genus Lobocheilos in Java, Sumatra and Borneo, with descriptions of six new species (Teleostei: Cyprinidae). Ichthyol. Explor. Freshw. 19, 27–58 (2008).
Google Scholar
27.Froese, R. & Pauly, D. FishBase. World Wide Web electronic publication. https://www.fishbase.se/search.php (2019).28.van der Laan, R., Fricke, R. & Eschmeyer, W. N. Eschmeyer’s Catalog of Fishes: Classification. http://www.calacademy.org/scientists/catalog-of-fishes-classification/ (2020).29.Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (The University of Illinois Press, 1964).MATH
Google Scholar
30.Margalef, R. Perspectives in Ecological Theory (University of Chicago Press, 1968).
Google Scholar
31.Pielou, E. C. Species diversity and pattern diversity in the study of ecological succession. J. Theor. Biol. 10, 370–383 (1966).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
32.Ter Braak, C. J. F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).Article
Google Scholar
33.Ter Braak, C. J. F. & Verdonschot, P. F. M. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57, 255–289 (1995).Article
Google Scholar
34.Ward-Campbell, B. M. S., Beamish, F. W. H. & Kongchaiya, C. Morphological characteristics in relation to diet in five coexisting Thai fish species. J. Fish Biol. 67, 1266–1279 (2005).Article
Google Scholar
35.Beamish, F. W. H., Sa-ardrit, P. & Tongnunui, S. Habitat characteristics of the cyprinidae in small rivers in Central Thailand. Environ. Biol. Fishes 76, 237–253 (2006).Article
Google Scholar
36.Muchlisin, Z. A. & Siti Azizah, M. N. Diversity and distribution of freshwater fishes in Aceh water, northern Sumatra, Indonesia. Int. J. Zool. Res. 5, 62–79 (2009).Article
Google Scholar
37.Rashid, Z. A., Asmuni, M. & Amal, M. N. A. Fish diversity of Tembeling and Pahang rivers, Pahang, Malaysia. Check List 11, 1–6 (2015).Article
Google Scholar
38.Suvarnaraksha, A., Lek, S., Lek-Ang, S. & Jutagate, T. Fish diversity and assemblage patterns along the longitudinal gradient of a tropical river in the Indo-Burma hotspot region (Ping-Wang River Basin, Thailand). Hydrobiologia 694, 153–169 (2012).CAS
Article
Google Scholar
39.Kottelat, M. Conspectus cobitidum: An inventory of the loaches of the world (Teleostei: Cypriniformes: Cobitoidei). Raffles Bull. Zool. 26, 1–199 (2012).
Google Scholar
40.Tan, H. H. The Borneo suckers. Revision of the Torrent Loaches of Borneo (Balitoridae: Gastromyzon, Neogastromyzon) (Natural History Publications, 2006).
Google Scholar
41.Beamish, F. W. H., Sa-Ardrit, P. & Cheevaporn, V. Habitat and abundance of Balitoridae in small rivers of central Thailand. J. Fish Biol. 72, 2467–2484 (2008).Article
Google Scholar
42.Ahmad, A., Nek, S. A. R. T. & Ambak, M. A. Preliminary study on fish diversity of Ulu Tungud, Meliau range, Sandakan, Sabah. J. Sustain. Sci. Manag. 1, 21–26 (2006).
Google Scholar
43.Odum, E. P. & Barret, G. W. Fundamental of Ecology (Cengage Learning, Inc, 2004).
Google Scholar
44.Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).Book
Google Scholar
45.Au, D. W. T. et al. Chronic effects of suspended solids on gill structure, osmoregulation, growth, and triiodothyronine in juvenile green grouper Epinephelus coioides. Mar. Ecol. Prog. Ser. 266, 255–264 (2004).ADS
CAS
Article
Google Scholar
46.Kimbell, H. S. & Morrell, L. J. Turbidity influences individual and group level responses to predation in guppies, Poecilia reticulata. Anim. Behav. 103, 179–185 (2015).Article
Google Scholar
47.Li, W. et al. Effects of turbidity and light intensity on foraging success of juvenile mandarin fish Siniperca chuatsi (Basilewsky). Environ. Biol. Fishes 96, 995–1002 (2013).Article
Google Scholar
48.Kukula, K. & Bylak, A. Synergistic impacts of sediment generation and hydrotechnical structures related to forestry on stream fish communities. Sci. Total Environ. 737, 139751 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
49.Krause, K. P., Wu, C. L., Chu, M. L. & Knouft, J. H. Fish assemblage–environment relationships suggest differential trophic responses to heavy metal contamination. Freshw. Biol. 64, 632–642 (2019).CAS
Article
Google Scholar
50.Askeyev, A. et al. River fish assemblages along an elevation gradient in the eastern extremity of Europe. Environ. Biol. Fishes 100, 585–596 (2017).Article
Google Scholar
51.Zamani Faradonbe, M. & Eagderi, S. Fish assemblages as influenced by environmental factors in Taleghan River (the Caspian Sea basin, Alborz Province, Iran). Caspian J. Environ. Sci. 13, 363–371 (2015).
Google Scholar
52.Bolner, K. C. S., Copatti, C. E., Rosso, F. L., Loro, V. L. & Baldisserotto, B. Water pH and metabolic parameters in silver catfish (Rhamdia quelen). Biochem. Syst. Ecol. 56, 202–208 (2014).CAS
Article
Google Scholar
53.Abbink, W. et al. The effect of temperature and pH on the growth and physiological response of juvenile yellowtail kingfish Seriola lalandi in recirculating aquaculture systems. Aquaculture 330–333, 130–135 (2012).Article
CAS
Google Scholar
54.Paller, V. G. V., Corpuz, M. N. C. & Ocampo, P. P. Diversity and distribution of freshwater fish assemblages in Tayabas River, Quezon (Philippines). Philip. J. Sci. 142, 55–67 (2013).
Google Scholar
55.Jeppesen, R. et al. Effects of hypoxia on fish survival and oyster growth in a highly eutrophic estuary. Estuaries Coasts 41, 89–98 (2018).CAS
Article
Google Scholar
56.Rosso, J. J. & Quirós, R. Patterns in fish species composition and assemblage structure in the upper Salado river lakes, Pampa Plain, Argentina. Neotrop. Ichthyol. 8, 135–144 (2010).Article
Google Scholar
57.Batzer, D. P., Jackson, C. R. & Mosner, M. Influences of riparian logging on plants and invertebrates in small, depressional wetlands of georgia, U.S.A.. Hydrobiologia 441, 123–132 (2000).Article
Google Scholar
58.Cheimonopoulou, M. T., Bobori, D. C., Theocharopoulos, I. & Lazaridou, M. Assessing ecological water quality with macroinvertebrates and fish: A case study from a small mediterranean river. Environ. Manag. 47, 279–290 (2011).ADS
Article
Google Scholar
59.Roberts, T. R. The Freshwater Fishes of Western Borneo (Kalimantan Barat, Indonesia) (California Academy of Science, 1989).
Google Scholar
60.Tan, H. H. & Leh, C. U. M. Three new species of Gastromyzon (Teleostei: Balitoridae) from southern Sarawak. Zootaxa 19, 1–19 (2006).
Google Scholar
61.Tan, H. H. & Martin-Smith, K. M. Two new species of Gastromyzon (Teleostei: Balitoridae) from the Kuamut headwaters, Kinabatangan basin, Sabah, Malaysia. Raffles Bull. Zool. 46, 361–371 (1998).
Google Scholar More