Species diversity and food web structure jointly shape natural biological control in agricultural landscapes
1.van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).PubMed
PubMed Central
Google Scholar
2.Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
3.Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).PubMed
Article
PubMed Central
Google Scholar
4.Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
5.Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article
Google Scholar
6.IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (IPBES secretariat, Bonn, Germany, 2019).7.Smith, H. F. & Sullivan, C. A. Ecosystem services within agricultural landscapes—farmers’ perceptions. Ecol. Econ. 98, 72–80 (2014).Article
Google Scholar
8.Barnes, A. D. et al. Biodiversity enhances the multitrophic control of arthropod herbivory. Sci. Adv. 6, eabb6603 (2020).PubMed
PubMed Central
Article
Google Scholar
9.Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).PubMed
PubMed Central
Article
Google Scholar
10.Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).CAS
Article
Google Scholar
11.Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).PubMed
Article
CAS
PubMed Central
Google Scholar
12.Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621–645 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
13.Frishkoff, L. O. et al. Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345, 1343–1346 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
14.Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
15.Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 115, E7863–E7870 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
16.Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).PubMed
PubMed Central
Article
Google Scholar
17.Redlich, S., Martin, E. A. & Steffan-Dewenter, I. Landscape-level crop diversity benefits biological pest control. J. Appl. Ecol. 55, 2419–2428 (2018).Article
Google Scholar
18.Muneret, L. et al. Evidence that organic farming promotes pest control. Nat. Sustain. 1, 361–368 (2018).Article
Google Scholar
19.Roubos, C. R., Rodriguez-Saona, C. & Isaacs, R. Mitigating the effects of insecticides on arthropod biological control at field and landscape scales. Biol. Control 75, 28–38 (2014).CAS
Article
Google Scholar
20.Roschewitz, I., Hucker, M., Tscharntke, T. & Thies, C. The influence of landscape context and farming practices on parasitism of cereal aphids. Agric. Ecosyst. Environ. 108, 218–227 (2005).Article
Google Scholar
21.Frago, E., Pujadevillar, J., Guara, M. & Selfa, J. Hyperparasitism and seasonal patterns of parasitism as potential causes of low top-down control in Euproctis chrysorrhoea L. (Lymantriidae). Biol. Control 60, 123–131 (2012).Article
Google Scholar
22.Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J. & Jaffee, B. A. Intraguild predation among biological-control agents: theory and evidence. Biol. Control 5, 303–335 (1995).Article
Google Scholar
23.Brobyn, P. J., Clark, S. J. & Wilding, N. The effect of fungus infection of Metopolophium dirhodum [Hom.: Aphididae] on the oviposition behaviour of the aphid parasitoid Aphidius rhopalosiphi [Hym.: Aphidiidae]. Entomophaga 33, 333–338 (1988).Article
Google Scholar
24.Tscharntke, T. et al. Conservation biological control and enemy diversity on a landscape scale. Biol. Control 43, 294–309 (2007).Article
Google Scholar
25.Rand, T. A., van Veen, F. J. F. & Tscharntke, T. Landscape complexity differentially benefits generalized fourth, over specialized third, trophic level natural enemies. Ecography 35, 97–104 (2012).Article
Google Scholar
26.Zhao, Z. H., Hui, C., He, D. H. & Li, B. L. Effects of agricultural intensification on ability of natural enemies to control aphids. Sci. Rep. 5, 8024 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
27.Vollhardt, I. M. G., Tscharntke, T., Wäckers, F. L., Bianchi, F. J. J. A. & Thies, C. Diversity of cereal aphid parasitoids in simple and complex landscapes. Agric. Ecosyst. Environ. 126, 289–292 (2008).Article
Google Scholar
28.Tomanović, Z. et al. Regional tritrophic relationship patterns of five aphid parasitoid species (Hymenoptera: Braconidae: Aphidiinae) in agroecosystem-dominated landscapes of southeastern Europe. J. Econ. Entomol. 102, 836–854 (2009).PubMed
Article
PubMed Central
Google Scholar
29.Kaartinen, R. & Roslin, T. Shrinking by numbers: landscape context affects the species composition but not the quantitative structure of local food webs. J. Anim. Ecol. 80, 622–631 (2011).PubMed
Article
PubMed Central
Google Scholar
30.Wang, S. & Brose, U. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecol. Lett. 21, 9–20 (2018).PubMed
Article
PubMed Central
Google Scholar
31.Garzke, J., Connor, S. J., Sommer, U. & O’Connor, M. I. Trophic interactions modify the temperature dependence of community biomass and ecosystem function. PLoS Biol. 17, e2006806 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
32.Pocock, M. J. O. et al. The visualisation of ecological networks, and their use as a tool for engagement, advocacy and management. Adv. Ecol. Res. 54, 41–85 (2016).Article
Google Scholar
33.Bersier, L.-F., Banašek-Richter, C. & Cattin, M.-F. Quantitative descriptors of food-web matrices. Ecology 83, 2394–2407 (2002).Article
Google Scholar
34.Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279 (2010).Article
Google Scholar
35.Gilbert, A. J. Connectance indicates the robustness of food webs when subjected to species loss. Ecol. Indic. 9, 72–80 (2009).Article
Google Scholar
36.Williams, R. J. & Martinez, N. D. Simple rules yield complex food webs. Nature 404, 180–183 (2000).CAS
PubMed
Article
Google Scholar
37.Galiana, N., Hawkins, B. A. & Montoya, J. M. The geographical variation of network structure is scale dependent: understanding the biotic specialization of host–parasitoid networks. Ecography 42, 1175–1187 (2019).PubMed
PubMed Central
Article
Google Scholar
38.Banašek-Richter, C., Cattin, M.-F. & Bersier, L.-F. Sampling effects and the robustness of quantitative and qualitative food-web descriptors. J. Theor. Biol. 226, 23–32 (2004).PubMed
Article
Google Scholar
39.Varennes, Y. D., Boyer, S. & Wratten, S. D. Un-nesting DNA Russian dolls—the potential for constructing food webs using residual DNA in empty aphid mummies. Mol. Ecol. 23, 3925–3933 (2014).CAS
PubMed
Article
Google Scholar
40.Zhu, Y. L. et al. A molecular detection approach for a cotton aphid-parasitoid complex in northern China. Sci. Rep. 9, 15836 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
41.Staniczenko, P. P. A. et al. Predicting the effect of habitat modification on networks of interacting species. Nat. Commun. 8, 792 (2018).Article
CAS
Google Scholar
42.Thies, C. & Tscharntke, T. In Biocontrol-Based Integrated Management of Oilseed Rape Pests (ed. Williams, I.H.). (Springer Netherlands, 2010).43.Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445, 202–205 (2007).CAS
Article
Google Scholar
44.Grass, I., Jauker, B., Steffandewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nat. Ecol. Evol. 2, 1408–1417 (2018).PubMed
Article
PubMed Central
Google Scholar
45.Gagic, V. et al. Food web structure and biocontrol in a four-trophic level system across a landscape complexity gradient. Proc. Roy. Soc. B. 278, 2946–2953 (2011).Article
Google Scholar
46.Lundgren, J. G. & Fausti, S. W. Trading biodiversity for pest problems. Sci. Adv. 1, e1500558 (2015).PubMed
PubMed Central
Article
Google Scholar
47.Zhou, K. et al. Effects of land use and insecticides on natural enemies of aphids in cotton: first evidence from smallholder agriculture in the North China Plain. Agric. Ecosyst. Environ. 183, 176–184 (2014).Article
Google Scholar
48.Zhang, Z. Q. The natural enemies of Aphis gossypii Glover (Hom., Aphididae) in China. J. Appl. Entomol. 114, 251–262 (2009).Article
Google Scholar
49.Gagic, V. et al. Agricultural intensification and cereal aphid–parasitoid–hyperparasitoid food webs: network complexity, temporal variability and parasitism rates. Oecologia 170, 1099–1109 (2012).PubMed
PubMed Central
Article
Google Scholar
50.Vollhardt, I. M. G. et al. Influence of plant fertilisation on cereal aphid-primary parasitoid-secondary parasitoid networks in simple and complex landscapes. Agric. Ecosyst. Environ. 281, 47–55 (2019).CAS
Article
Google Scholar
51.Sullivan, D. J. & Völkl, W. Hyperparasitism: multitrophic ecology and behavior. Annu. Rev. Entomol. 44, 291–315 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
52.Dainese, M., Montecchiari, S., Sitzia, T., Sigura, M. & Marini, L. High cover of hedgerows in the landscape supports multiple ecosystem services in Mediterranean cereal fields. J. Appl. Ecol. 54, 380–388 (2016).Article
Google Scholar
53.Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175–201 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
54.Thies, C., Roschewitz, I. & Tscharntke, T. The landscape context of cereal aphid-parasitoid interactions. Proc. Roy. Soc. B. 272, 203–210 (2005).Article
Google Scholar
55.Plećaš, M. et al. Landscape composition and configuration influence cereal aphid–parasitoid–hyperparasitoid interactions and biological control differentially across years. Agric. Ecosyst. Environ. 183, 1–10 (2014).Article
Google Scholar
56.Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
57.Lichtenberg, E. M. et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Change Biol. 23, 4946–4957 (2017).Article
Google Scholar
58.Osorio, S., Arnan, X., Bassols, E., Vicens, N. & Bosch, J. Local and landscape effects in a host-parasitoid interaction network along a forest-cropland gradient. Ecol. Appl. 25, 1869–1879 (2015).PubMed
Article
PubMed Central
Google Scholar
59.Dunne, J., Williams, R. & Martinez, N. Network topology and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).Article
Google Scholar
60.Montoya, J. M., Rodríguez, M. A. & Hawkins, B. A. Food web complexity and higher-level ecosystem services. Ecol. Lett. 6, 587–593 (2003).Article
Google Scholar
61.Hawkins, B. A. Parasitoid-host food webs and donor control. Oikos 65, 159–162 (1992).Article
Google Scholar
62.Yeakel, J. D. et al. Diverse interactions and ecosystem engineering can stabilize community assembly. Nat. Commun. 11, 3307 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
63.Poisot, T., Mouquet, N. & Gravel, D. Trophic complementarity drives the biodiversity-ecosystem functioning relationship in food webs. Ecol. Lett. 16, 853–861 (2013).PubMed
Article
PubMed Central
Google Scholar
64.White, L., O’Connor, N. E., Yang, Q., Emmerson, M. C. & Donohue, I. Individual species provide multifaceted contributions to the stability of ecosystems. Nat. Ecol. Evol. 4, 1594–1601 (2020).PubMed
Article
PubMed Central
Google Scholar
65.Ho, H.-C., Tylianakis, J. M. & Pawar, S. Behaviour moderates the impacts of food-web structure on species coexistence. Ecol. Lett. 24, 298–309 (2021).PubMed
Article
PubMed Central
Google Scholar
66.Holland, J. M. et al. Agri-environment scheme enhancing ecosystem services: A demonstration of improved biological control in cereal crops. Agric. Ecosyst. Environ. 155, 147–152 (2012).Article
Google Scholar
67.Batary, P., Dicks, L., Kleijn, D. & Sutherland, W. The role of agri-environment schemes in conservation and environmental management: European Agri-Environment Schemes. Conserv. Biol. 29, 1006–1016 (2015).PubMed
PubMed Central
Article
Google Scholar
68.McGarigal, K., Cushman, S., Maile, N. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html (2012).69.Liu, B. et al. Secondary crops and non-crop habitats within landscapes enhance the abundance and diversity of generalist predators. Agric. Ecosyst. Environ. 258, 30–39 (2018).Article
Google Scholar
70.Lu, Y. H., Qi, F. J. & Zhang, Y. J. Integrated Management of Diseases and Insect Pests in Cotton (Golden Shield Press, Beijing 2010).71.Shannon, C. E., Weaver, W., Blahut, R. E. & Hajek, B. The Mathematical Theory of Communications (University of Illinois Press, Urbana, 1949).72.Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS
Article
Google Scholar
73.R Development Core Team. R: A language and environment for statistical computing, Version 4.0.2. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (2020).74.Dormann, C. F., Fründ, J. & Gruber, B. Package ‘bipartite’: Visualising bipartite networks and calculating some (ecological) indices. (2019).75.Huang, H. Y., Zhou, L., Chen, J. & Wei, T. Y. ggcor: Extended tools for correlation analysis and visualization. R package version 0.9.7. (2020).76.Oksanen, J. et al. vegan: community ecology package. R. package version 2, 5–6 (2020).
Google Scholar
77.Kassambara, A. & Fabian, M. factoextra: Extract and Visualize the Results of Multivariate Data analyses. R package version 1.0.7. (2020).78.Akaike, H. An information criterion (AIC). Math. Sci. 14, 5–9 (1976).
Google Scholar
79.Burnham, K. P. & Anderson, D. R. Multimodel inference understanding AIC and BIC in model selection. Sociol. Method. Res. 33, 261–304 (2004).Article
Google Scholar
80.Cardinale, B. J. et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443, 989–992 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
81.Fox, J. & Weisberg, S. An R Companion to Applied Regression, Third Edition. (Thousand Oaks CA: Sage., 2011).82.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article
Google Scholar
83.Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.43.17. (2020).84.Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).PubMed
Article
PubMed Central
Google Scholar
85.Tylianakis, J. M. & Binzer, A. Effects of global environmental changes on parasitoid–host food webs and biological control. Biol. Control 75, 77–86 (2014).Article
Google Scholar
86.Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article
Google Scholar
87.Shipley, B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology 94, 560–564 (2013).PubMed
Article
PubMed Central
Google Scholar
88.Yang, F. et al. The data for “Species diversity and food web structure jointly shape natural biological control in agricultural landscapes”. Dryad, Dataset https://doi.org/10.5061/dryad.pc866t1kz (2021).Article
Google Scholar More