More stories

  • in

    Genetic diversity of virus auxiliary metabolism genes associated with phosphorus metabolism in Napahai plateau wetland

    Screening for viral AMGsViral protein annotation using VIBRANT and DRAM-v software combined with manual proofreading identified the viral AMGs in Napahai plateau wetland, including the viral AMGs phoH, phoU and pstS, which were associated with phosphorus metabolism.Phylogenetic analysis of AMGs associated with phosphorus metabolism in Napahai plateau wetlandThere were 24 amino acid sequences of phoH gene in Napahai plateau wetland (Fig. 1A). They were divided into 5 clusters, the largest of which had 10 sequences, while the smallest cluster had only 1 sequence. The remaining 3 clusters contained 6, 5 and 2 sequences, respectively. The phoH gene was genetically diverse in Napahai plateau wetland, which might be related to the different host origins. A total of 74 sequences of phoU gene could be found in seven clusters (Fig. 1B), with the largest cluster containing 27 sequences and the smallest cluster having two sequences. Similar to phoH, phoU was also genetically diverse, but richer than that of phoH. There were 71 pstS sequences forming 9 clusters, with the largest cluster of 23 sequences and the smallest cluster only 1 sequence (Fig. 1C). It could be seen that the genetic diversity of pstS was better than that of phoH and phoU, which might be related to the unique geographical location. Napahai plateau wetland is located in the Three Parallel Rivers of Yunnan protected areas, which forms a complex landscape, and then controls the evolution and characteristics of organisms, thus showing abundant biodiversity. Li et al. obtained 58 phoH gene sequences from Northeastern wetland sediments of China, which were 22%–99% consistent at the amino acid level, and found that the phoH gene could regulate phosphate uptake and metabolism under the low phosphate or phosphate limitation conditions16. However, the exact function remained unclear. The phoH gene clustered into five clusters in Napahai plateau wetland, indicating high genetic diversity. Additionally, water and soil samples were collected from eight separate sampling sites, and there were differences between samples environments, which might also have an impact on the genetic diversity of the three genes.Figure 1Phylogenetic analysis of phosphorus metabolism AMGs in Napahai plateau wetland, different colors represent different branches. (A) Phylogenetic analysis of phoH genes. (B) Phylogenetic analysis of phoU genes. (C) Phylogenetic analysis of pstS genes.Full size imagePhylogenetic analysis and PCoA analysis of AMGs associated with phosphorus metabolism from different habitats and host originsIn order to understand the genetic diversity of viral AMGs (phoH, phoU, pstS) associated with phosphorus metabolism in Napahai plateau wetland, a phylogenetic tree of phosphorus metabolism AMGs from different habitats was constructed, and PCoA analysis was performed (Fig. 2). The results showed that most sequences of phoH, phoU and pstS genes in Napahai plateau wetland clustered individually, especially phoU and pstS genes, and only a few sequences were closely related to those of other habitats. In Fig. 2A, 14 sequences clustered individually and were relatively far from sequences of other habitats, whereas 7 sequences were close to those from freshwater lakes, and other 3 sequences were close to those from rice fields, oceans and other wetlands, respectively. Therefore, the genetic diversity of phoH in Napahai plateau wetland was independent of the habitat. Moreover, some of the phoH sequences were clustered with those of other habitats and distributed in the fourth quadrants (Fig. 2D). From Fig. 2B, apart from 3 sequences which clustered with those from the marine habitats and freshwater lakes, the rest were clustered separately. Whereas in Fig. 2E, apart from only a few sequences, most sequences of phoU were far away from those of different habitats, which was consistent with Fig. 2B. Thus, the genetic diversity of phoU gene in Napahai wetland was also independent of habitat, where the separately clustered sequences may be unique. From Fig. 2C, we can seen that apart from 8 sequences which more closely related to those from the freshwater lake, ocean, rice field, and other wetlands, all the rest were individually clustered. The result was consistent with that of Fig. 2F. Therefore, the genetic diversity of the pstS gene was also habitat-independent.Figure 2Phylogenetic analysis and PCoA of phosphorus metabolism AMGs in different habitats, different colors represent different habitats. (A) Phylogenetic analysis of phoH genes in different habitats. (B) Phylogenetic analysis of phoU genes in different habitats. (C) Phylogenetic analysis of pstS genes in different habitats. (D) PCoA analysis of phoH genes in different habitats. (E) PCoA analysis of phoU genes in different habitats. (F) PCoA analysis of pstS genes in different habitats.Full size imageTo study whether the genetic diversity was related to host origins, three AMGs associated with phosphorus metabolism were selected for phylogenetic and PCoA analyses with AMGs sequences from different host origins (Fig. 3). It showed that some sequences of all three genes were similar to those from different host origins, while the remaining were separately clustered. In Fig. 3A, apart from 14 sequences which clustered with those from fungi, bacteria, non-culturable phages, phages and viruses, all the rest were clustered separately. Whereas, most sequences were clustered with those from different host origins together, and only six sequences were far from other sequences of different host origins based on PCoA analysis (Fig. 3D). Only three sequences were clustered with those of archaea and uncultured archaea, and the rest were clustered together to form independent clusters (Fig. 3B). A small amount of sequences were gathered with bacteria, uncultured bacteria, archaea and uncultured archaea, and the rest were clustered individually (Fig. 3E). As can be seen in Fig. 3C, six sequences were clustered with those of archaea, fungi, bacteria, while the rest were clustered separately. Some sequences were gathered with bacteria, uncultured bacteria, archaea and uncultured archaea, and others were clustered separately (Fig. 3F). PCoA analysis was largely consistent with phylogenetic analysis. So the genetic diversity of phoH, phoU and pstS genes in Napahai plateau wetland was independent of the host origins.Figure 3Phylogenetic analysis and PCoA of phosphorus metabolism AMGs from different host origins, different colors represent different host origins. (A) Phylogenetic analysis of phoH gene from different host origins. (B) Phylogenetic analysis of phoU gene from different host origins. (C) Phylogenetic analysis of pstS gene from different host origins. (D) PCoA analysis of phoH genes from different host origins. (E) PCoA analysis of phoU genes from different host origins. (F) PCoA analysis of pstS genes from different host origins.Full size imageOverall, the genetic diversity of phoH, phoU and pstS genes associated with phosphorus metabolism in Napahai plateau wetland was independent of both the habitats and host origins based on phylogenetic and PCoA analyses. It suggested that three genes showed relatively rich genetic diversity and were not genetically limited by differences in habitats or host origins. Han et al. showed that phoH sequences were widely distributed in soil, freshwater, and seawater environments in different locations around the world, indicating the genetic diversity independent of the environment17, which corroborated the conclusions in our study. Phylogenetic analysis of the 58 viral phoH gene sequences in Northeastern wetland of China revealed that some sequences were clustered with bacterial sequences and others clustered with phages sequences16. In Napahai plateau wetland, some phoH gene sequences were clustered with fungal, bacterial, phage, uncultured phage, and viruses. Hence, the genetic diversity of phoH gene was independent of the host origins in either Northeastern wetland or Napahai plateau wetland. Compared with Northeastern wetland, the phoH genes in Napahai plateau wetland showed more abundant genetic diversity, which may be related to geographical location and climate. Additionally, compared with sequences from different habitats and host sources, partial sequences from Napahai plateau wetland were clustered individually, thus they were unique, which might be related to the unique geography. Napahai plateau wetland is located in the Three Parallel Rivers with low latitude and high altitude, and shows specific characteristics which not found in other habitats, and then the species very different, thus providing the possibility for the emergence of unique genetic sequences. Of course, it would require further verification by subsequent study.As far as the current studies are concerned, most reports on phosphorus AMGs focused on the function. Wang et al. mentioned that the phoH gene regulated phosphate uptake or metabolism under the low phosphorus or phosphate limitation conditions18. Kelly et al. isolated several phages from oligotrophic water bodies with low phosphorus condition, found that they contained the phosphate binding transporter gene pstS by sequencing, which enhanced the host cell with increasing the infection cycle of phages by increasing phosphate utilization19. Gardner et al. studied the PhoR-PhoB two-component regulatory system in E. coli, which regulated the expression of relevant genes according to environmental phosphate concentration and enabled cells to adapt the phosphate starvation20. The phoU existed in many bacteria and was identified as an auxiliary protein of the phosphate-specific transporter system, regulating phosphate metabolism in the host cell acting as phosphate regulators21. Few studies had been conducted on its genetic diversity, therefore, the information on the genetic diversity was relatively scarce.α diversity analysis of phosphorus metabolism AMGs in different habitats and different host originsChao, Shannon and Simpson diversity indices are common mathematical measure of species alpha diversity in the community. Chao focuses on species richness. Shannon index and Simpson index measure species richness and evenness. Simpson reinforces evenness and Shannon reinforces richness22.Sequences from different habitats, such as Napahai plateau wetland, Pacific Ocean, Lake Baikal, Northeast rice fields, glaciers, and wetlands, were selected for α-diversity analysis (Fig. 4). The genetic diversity indices, such as Chao, Shannon and Simpson, calculated based on the OUT dataset, were used to characterize the alpha diversity. Among them, larger Chao values, smaller Simpson values or larger Shannon values indicate higher genetic diversity. Only at the level of Chao values (Fig. 4A,D,G) and Shannon values (Fig. 4B,E,H), the values of phoH, phoU, and pstS in Napahai plateau wetland were greater than those from other habitats, indicating better heritable, which might be related to the unique geographical location and abundant water resources. The geographical location made it unique and less influenced by external factors, and abundant water resources created a rich biodiversity, thus providing a good genetic environment. From the Simpson values (Fig. 4C,F,I), the values of phoU and pstS genes were smaller than those of other habitats, indicating better inherited. For the phoH gene, the Simpson value was closer in magnitude and lower than those in Antarctic Lake and wetlands, indicating better heritable.Figure 4Plots of genetic diversity indices analysis of phosphorus metabolism AMGs in different habitats, different colors represent different genetic diversity indices. (A, D, G) Represent respectively the Chao values of phoH, phoU, and pstS genes in different habitats. (B, E, H) Represent respectively the Shannon values of phoH, phoU, and pstS genes in different habitats. (C, F, I) Represent respectively the Simpson values of phoH, phoU, and pstS genes in different habitats.Full size imageThree AMGs associated with phosphorus metabolism in Napahai plateau wetland were selected for α-diversity analysis with AMGs sequences from different host origins (Fig. 5). In Fig. 5A, the Chao values of phoH gene from bacteria, phages, uncultured phages and uncultured viruses in Napahai plateau wetland were smaller than those of bacteria, phages, uncultured phages and uncultured viruses, indicating the poor genetic diversity. In addition, compared to the genetic diversity of sequences from other host sources, the genetic diversity of phoH gene from bacteria in Napahai plateau wetland was better. As can be seen in Fig. 5D, G, the Chao values of phoU and pstS genes from bacteria in Napahai plateau wetland were greater than those of other host origins, indicating better genetic diversity, while the Chao values of pstS genes from archaea in Napahai plateau wetland were smaller than those of other host origins, indicating poor genetic diversity.Figure 5Plots of genetic diversity indices analysis of phosphorus metabolism AMGs from different host origins, different colors represent different genetic diversity indices. (A, D, G) Represent respectively the Chao values of phoH, phoU, and pstS genes from different host origins. (B, E, H) Represent respectively the Shannon values of phoH, phoU, and pstS genes from different host origins. (C, F, I) Represent respectively the Simpson values of phoH, phoU, and pstS genes from different host origins.Full size imageThe Shannon value of phoH gene from bacteria in Napahai plateau wetland was smaller than that of bacteria and uncultured viruses, indicating poor diversity, but larger than other host sources, indicating better genetic diversity (Fig. 5B). The Shannon values of phoH gene from phages and uncultured phages in Napahai plateau wetland were lower than those of other host origins, indicating poor diversity. The Shannon value of phoH genes from uncultured viruses in Napahai plateau wetland was 0, probably due to sample size too small to calculate the Shannon value. In Fig. 5E, H, the Chao values of phoU and pstS genes from bacteria in Napahai plateaus wetland were greater than those from other host sources, indicating better diversity, while the Shannon value of pstS gene from archaea in the Napahai plateau wetland was 0, probably small sample size.The Simpson values of phoH genes from phage, uncultured phage and uncultured virus in Napahai plateau wetland were smaller than those of other host origins (except uncultured virus), indicating better diversity. The smaller Simpson values of phoH genes related to fungi, phages, uncultured phages, and viruses indicated better diversity, while the larger Simpson values compared to bacteria, phages, and uncultured viruses indicated poor diversity (Fig. 5C). As can be seen in Figs. 5F,I, the Simpson values of phoU genes from bacteria and pstS genes from bacteria and archaea in Napahai plateau wetland were smaller than those of other host origins, indicating better genetic diversity.Currently, most studies on phosphorus AMGs employed phylogenetic analysis16,23. In contrast, relatively few AMGs associated with phosphorus had been reported based on α-diversity analysis, so it was difficult to obtain specific values of α-diversity indices in other studies.Biogeochemical cycling of AMGs associated with phosphorus metabolism in Napahai plateau wetlandViruses are the gene carriers in susceptible hosts, and AMGs introduced by viruses into new hosts can enhance viral replication and/or influence key microbial metabolic pathways of the biogeochemical cycles24. It is well known that phosphorus is an essential nutrient and plays essential roles in cells25. Phosphorus deficiency leads to restricted cell division, down-regulation of photosynthesis, reduced protein and nitrogen content and chlorophyll synthesis26. To study the effect of AMGs associated with phosphorus metabolism, a phosphorus metabolic pathway containing phoH, phoU and pstS genes was constructed based on metagenomic data (Fig. 6). When phosphorus deficiency occurs in the host, it leads to the expression of phoH, phoU and pstS genes. phoH is a phosphate starvation inducible gene, while pstS acts as a phosphate transport gene and phoU belongs to a phosphate regulatory gene that produces dissolved inorganic phosphorus (DIPs), which then undergoes a series of reactions to produce ATP. The generated ATP becomes PolyP under the action of ppK which encoding polyphosphate kinase, or is used in Calvin cycle to provide energy for Ru5P to produce RuBP, or is used for DNA biosynthesis to provide energy. PolyP is regenerate into DIP with ppX which encoding exopolyphosphatase, and also involves in the biosynthesis process of DNA as Pi to provide phosphate for the nucleic acids synthesis. Thus, phosphorus metabolism of AMGs invoved plays a significant role in the life process of the virus and host. In addition, phoE and ugpQ genes also are identified in Napahai plateau wetland, but their roles in the phosphorus cycling are currently unknown and need further study.Figure 6Biogeochemical cycling of AMGs associated with phosphorus metabolism in Napahai plateau wetland. Red line indicates the process of phosphorus metabolism.Full size imageBased on the phylogenetic and PCoA analyses, we found that the phoH, phoU, and pstS genes all showed unique sequences, which might be drive the microorganisms to produce the phosphorus metabolic pathway in Napahai plateau wetland. Of course, in order to prove this pathway, further validation might be done by metabolomics or metabolic flow method. Furthermore, the phosphorus metabolic pathway was poorly reported, so we could not compare with the phosphorus pathway from other environment to find commonalities and differences. More

  • in

    Investigation into the communication between unheated and heat-stressed Caenorhabditis elegans via volatile stress signals

    Witzany, G. Biocommunication of Animals (Springer, 2014).Book 

    Google Scholar 
    Mothersill, C., Smith, R. W., Agnihotri, N. & Seymour, C. B. Characterization of a radiation-induced stress response communicated in vivo between zebrafish. Environ. Sci. Technol. 41, 3382–3387 (2007).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Matveev, V. An investigation of allelopathic effects of Daphnia. Freshw Biol. 29, 99–105 (1993).Article 

    Google Scholar 
    Surinov, B. P., Isaeva, V. G. & Dukhova, N. N. Post radiation immunosuppressive and attractive volatile secretions: The “bystander effect” or allelopathy in groups of animals. Dokl. Biol. Sci. 400, 28–30 (2005).Article 

    Google Scholar 
    Mothersill, C. et al. Communication of radiation-induced stress or bystander signals between fish in vivo. Environ. Sci. Technol. 40, 6859–6864 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Choi, V. W., Cheng, S. H. & Yu, K. N. Radioadaptive response induced by alpha-particle-induced stress communicated in vivo between zebrafish embryos. Environ. Sci. Technol. 44, 8829–8834 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Peng, Y. et al. Cysteine protease cathepsin B mediates radiation-induced bystander effects. Nature 547, 458–462 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    White, J. G., Southgate, E., Thomson, J. N. & Brenner, S. The Structure of the Nervous System of the Nematode Caenorhabditis elegans (Cambridge University Press, 1986).
    Google Scholar 
    Riddle, D. L., Blumenthal, T., Meyer, B. J. & Priess, J. R. C. Elegans (Spring Harbor Laboratory Press, 1997).
    Google Scholar 
    Bargmann, C. I. & Mori, I. Chemotaxis and thermotaxis. In C. elegans II (eds Riddle, D. L. et al.) (Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 1997).
    Google Scholar 
    Leung, M. C. K. et al. Caenorhabditis elegans: An emerging model in biomedical and environmental toxicology. Toxicol. Sci. 106, 5–28 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, C. et al. The olfactory signal transduction for attractive odorants in Caenorhabditis elegans. Biotechnol. Adv. 32, 290–295 (2014).Article 
    PubMed 

    Google Scholar 
    Starich, T. A. et al. Mutations affecting the chemosensory neurons of Caenorhabditis elegans. Genetics 139, 171–188 (1995).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mori, I. & Ohshima, Y. Molecular neurogenetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. BioEssays 19, 1055–1064 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Simon, J. M. & Sternberg, P. W. Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 99, 1598–1603 (2002).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    White, J. Q. et al. The sensory circuitry for sexual attraction in C. elegans males. Curr. Biol. 17, 1847–1857 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chasnov, J. R., So, W. K., Chan, C. M. & Chow, K. L. The species, sex, and stage specificity of a Caenorhabditis sex pheromone. Proc. Natl. Acad. Sci. USA 104, 6730–6735 (2007).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Srinivasan, J. et al. A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 454, 1115–1118 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pungaliya, C. et al. A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 106, 7708–7713 (2009).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Srinivasan, J. et al. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS. Biol. 10, e1001237 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leighton, D. H., Choe, A., Wu, S. Y. & Sternberg, P. W. Communication between oocytes and somatic cells regulates volatile pheromone production in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 111, 17905–17910 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Macosko, E. Z. et al. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171–1175 (2009).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    von Reuss, S. H. et al. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J. Am. Chem. Soc. 134, 1817–1824 (2012).Article 

    Google Scholar 
    Peckol, E. L., Troemel, E. R. & Bargmann, C. I. Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 98, 11032–11038 (2001).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yamada, K. et al. Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans. Science 329, 1647–1650 (2010).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ludewig, A. H. et al. Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1. Proc. Natl. Acad. Sci. USA 110, 5522–5527 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Artyukhin, A. B. et al. Succinylated octopamine ascarosides and a new pathway of biogenic amine metabolism in Caenorhabditis elegans. J. Biol. Chem. 288, 18778–18783 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bargmann, C. I., Hartwieg, E. & Horvitz, H. R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515–527 (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Troemel, E. R., Kimmel, B. E. & Bargmann, C. I. Reprogramming chemotaxis responses: Sensory neurons define olfactory preferences in C. elegans. Cell 91, 161–169 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wes, P. D. & Bargmann, C. I. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 410, 698–701 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tang, H. Q. et al. Enhancement of DNA damage repair potential in germ cells of Caenorhabditis elegans by a volatile signal from their irradiated partners. DNA Repair 86, 102755 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Byerly, L., Scherer, S. & Russell, R. L. The life cycle of the nematode Caenorhabditis elegans: ii. A simplified method for mutant characterization. Dev. Biol. 51, 34–48 (1976).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grewal, P. S. & Wright, D. J. Migration of Caenorhabditis elegans (Nematoda: Rhabditidae) larvae towards bacteria and the nature of the bacterial stimulus. Fundam. Appl. Nematol. 15, 159–166 (1992).
    Google Scholar 
    Ludewig, A. H. & Schroeder, F. C. Ascaroside signaling in C. elegans. WormBook 18, 1–22 (2013).Article 

    Google Scholar 
    Hubbard, E. J. & Greenstein, D. Introduction to the germ line. WormBook 1, 1–4 (2005).
    Google Scholar 
    Metzstein, M. M., Stanfield, G. M. & Horvitz, H. R. Genetics of programmed cell death in C. elegans: Past, present and future. Trends. Genet. 14, 410–416 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gumienny, T. L., Lambie, E., Hartwieg, E., Horvitz, H. R. & Hengartner, M. O. Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development 126, 1011–1022 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Takanami, T., Mori, A., Takahashi, H. & Higashitani, A. Hyper-resistance of meiotic cells to radiation due to a strong expression of a single recA-like gene in Caenorhabditis elegans. Nucleic. Acids. Res. 28, 4232–4236 (2000).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Neil, N., Rose, A., DNA repair (January 13, 2006), WormBook, ed. The C. elegans Research Community, WormBook, https://doi.org/10.1895/wormbook.1.54.1, http://www.wormbook.org.Craig, A. L., Moser, S. C., Bailly, A. P. & Gartner, A. Methods for studying the DNA damage response in the Caenorhabdatis elegans germ line. Methods Cell Biol. 107, 321–352 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Joo, H. J., Park, S., Kim, K. Y., Kim, M. Y. & Paik, Y. K. HSF-1 is involved in regulation of ascaroside pheromone biosynthesis by heat stress in Caenorhabditis elegans. Biochem. J. 473, 789–796 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Prahlad, V., Cornelius, T. & Morimoto, R. I. Regulation of the cellular heat shock response in Caenorhabditis elegans by thermosensory neurons. Science 9, 811–814 (2008).Article 
    ADS 

    Google Scholar 
    Vakkayil, K. L. & Hoppe, T. Temperature-dependent regulation of proteostasis and longevity. Front. Aging 3, 853588 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pagliuso, D. C., Bodas, D. M. & Pasquinelli, A. E. Recovery from heat shock requires the microRNA pathway in Caenorhabditis elegans. PLoS Genet. 17(8), e1009734 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh, V. & Aballay, A. Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity. Proc. Natl. Acad. Sci. USA 103(35), 13092–13097 (2006).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kurop, M. K., Huyen, C. M., Kelly, J. H. & Blagg, B. S. J. The heat shock response and small molecule regulators. Eur. J. Med. Chem. 226, 113846 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Howard, A. C., Rollins, J., Snow, S., Castor, S. & Rogers, A. N. Reducing translation through eIF4G/IFG-1 improves survival under ER stress that depends on heat shock factor HSF-1 in Caenorhabditis elegans. Aging Cell 15(6), 1027–1038 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jo, H., Shim, J., Lee, J. H., Lee, J. & Kim, J. B. IRE-1 and HSP-4 contribute to energy homeostasis via fasting-induced lipases in C. elegans. Cell Metab. 9(5), 440–448 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Al-Amin, M., Kawasaki, I., Gong, J. & Shim, Y. H. Caffeine induces the stress response and up-regulates heat shock proteins in Caenorhabditis elegans. Mol. Cells. 39(2), 163–168 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dues, D. J. et al. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways. Aging (Albany NY). 8(4), 777–795 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prahlad, V. & Morimoto, R. I. Integrating the stress response: Lessons for neurodegenerative diseases from C. elegans. Trends. Cell. Biol. 19, 52–61 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Younis, A. E. et al. Stage-specific excretory-secretory small heat shock proteins from the parasitic nematode Strongyloides ratti–putative links to host’s intestinal mucosal defense system. FEBS. J. 278, 3319–3336 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Komarova, E. Y. et al. Downstream caspases are novel targets for the antiapoptotic activity of the molecular chaperone hsp70. Cell Stress Chaper. 9, 265–275 (2004).Article 
    CAS 

    Google Scholar 
    Edkins, A. L., Price, J. T., Pockley, A. G. & Blatch, G. L. Heat shock proteins as modulators and therapeutic targets of chronic disease: An integrated perspective. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 19, 1738 (2018).
    Google Scholar 
    Sancar, A., Lindsey-Boltz, L. A., Unsal-Kaccmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pierotti, M. A. & Dragani, T. A. Genetics and cancer. Curr. Opin. Oncol. 4, 127–133 (1992).Article 
    CAS 
    PubMed 

    Google Scholar 
    Roemer, K. Mutant p53: Gain-of-function oncoproteins and wild-type p53 inactivators. Biol. Chem. 380, 879–887 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gartner, A., Milstein, S., Ahmed, S., Hodgkin, J. & Hengartner, M. O. A conserved checkpoint pathway mediates DNA damage-induced apoptosis and cell cycle arrest in C. elegans. Mol. Cell 5, 435–443 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lettre, G. & Hengartner, M. O. Developmental apoptosis in C. elegans: A complex CEDnario. Nat. Rev. Mol. Cell Biol. 7, 97–108 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Conradt, B. & Xue, D. Programmed Cell Death 1–13 (WormBook, 2005).
    Google Scholar 
    Bartek, J. & Lukas, J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421–429 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sharpless, N. E. & DePinho, R. A. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev. 9, 22–30 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kaletta, T. & Hengartner, M. O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5, 387–399 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes

    Extraction of total active proteomes from sediment samplesWe sampled 14 sediments along the coastlines of the Irish Sea, the Mediterranean Sea, and the Red Sea (from 16°N to 53°N), applying uniform sampling and storage procedures. Location details and sediment temperature fluctuations are summarized in Supplementary Table S1. We collected sediments (5 Kg) in triplicate and extracted the total proteins using a well-established microbial detachment procedure67, with some modifications. We mixed 100 g of sediment with 300 ml of sterilized saline solution (5 mM sodium pyrophosphate and 35 g L−1 of NaCl) containing 150 mg L−1 of Tween 80 (from Merck Life Science S.L.U., Madrid, Spain) in an ice water bath. After re-suspension, samples were kept in a water bath ultra-sonicator (Bandelin SONOREX, Berlin, Germany) on ice and sonicated (60 W output) for 120 min. We repeated this procedure twice, with an ice water bath incubation of 60 min between each cycle. We then centrifuged the samples at 500 g for 15 min at 4 °C to remove the sediments in a centrifuge 5810 R (Eppendorf AG, Hamburg, Germany). Supernatants were carefully transferred to a new tube, minimizing disruption of the sediments, and the resulting supernatants were centrifuged at 13,000 g for 15 min at 4 °C to produce microbial cell pellets. We used the resulting cell mix to extract the total protein by mixing the cells with 1.2 ml BugBuster® Protein Extraction Reagent (Novagen, Darmstadt, Germany) for 30 min with shaking (250 rpm). Subsequently, samples were disrupted by sonication using a pin Sonicator® 3000 (Misonix, New Highway Farmingdale, NY, USA) for a total time of 2 min (10 watts) on ice (4 cycles × 0.5 min with 1 min ice-cooling between each cycle). Extracts were centrifuged for 10 min at 12,000 g at 4 °C to separate cellular debris and intact cells. Supernatants were carefully aspirated (to avoid disturbing the pellet), transferred to new tubes, and stored at –80 °C until use. The protein solution was filtered at 15 °C for 7 h using Vivaspin filters (Sartorius, Goettingen, Germany) with a molecular weight (MW) cut-off of 3,000 Da to concentrate the proteins up to a final concentration of 10 mg ml−1, according to the Bradford Protein Assay (Bio-Rad Laboratories, S.A., Madrid, Spain)68. The average total amount of proteins extracted per each 100 g of sediment was 612 µg (interquartile range, 31 µg, see details in Supplementary Fig. S2). In all cases, extensive dialysis of protein solutions against 40 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer was performed using a Pur-A-LyzerTM Maxi 1200 dialysis kit (Merck Life Science S.L.U., Madrid, Spain)69, and active proteins stored at a concentration of 10 mg ml−1at –86 °C until use. As reported previously70, 2DE was performed using GE Healthcare reagents and equipment, 11 cm IPG strips in the pH range of 3–10 and molecular weight ranging from 10 to 250 kDa (Precision Plus Protein Dual Color Standards #1610374, Bio-Rad Laboratories, S.A., Madrid, Spain). The 2-DE was performed using a validated pooling strategy71, in which proteins extracted from three independent biological replicates (i.e., sediments) were mixed in equal amounts and a total of 150 µg of protein were further loaded per gel. Staining was performed with SYPRO Ruby Protein Gel Stain (Invitrogen, Waltham, MA, USA). The two-dimensional SDS-PAGE (12% acrylamide) gels of extracted proteins are reported in Supplementary Fig. S2 (original gels in Source Data). The same protocol was applied to extract and analyse by SDS-PAGE the total active proteins extracted from sediment samples with different temperature variability levels (HTV, ITV, and LTV) collected in the Red Sea (Supplementary Table S4). The total amount of protein extracted per each 100 g of sediment is given in Supplementary Table S8. Coomassie-stained one-dimension SDS-PAGE (1-DE) gels of extracted proteins are shown in Supplementary Fig. S9 (original gel in Source Data).Source, expression and purification of esterases and EXDOs from a wide geographical rangeWe recovered 83 enzymes (78 esterases and 5 EXDO) from microbial communities inhabiting marine sediments across ten distinct locations from the latitudinal transect described above: Ancona harbour (Anc), Priolo Gargallo (Pri), Gulf of Genoa, Messina harbour (Mes), Milazo harbour (Mil), Mar Chica lagoon (MCh), Bizerte lagoon (Biz), El-Max site (ElMax), Gulf of Aqaba (Aq), and Menai Strait (MS); further details are provided in Supplementary Data S3. Sources of the enzymes were the corresponding shotgun metagenomes (see Supplementary Table S3) and the metagenome clone libraries generated from the extracted DNA71. The sediment sample from the Gulf of Genoa was not used for activity tests and metaproteome analysis because no raw sample material was available; however, because of the possibility to access its shotgun metagenome (see Supplementary Table S3) and a metagenome clone library72, we used the sample for screening esterases to incorporate an additional latitude in our transect. In the case of Menai Strait (Irish Sea), five additional esterases were retrieved from a metagenome obtained from enriched cultures prepared with samples collected on 22nd June 2019 from Menai Strait (School of Ocean Sciences, Bangor University, St. George’s Pier, Menai Bridge, N53°13′31.3″; W4°09′33.3”). The water temperature was 14 °C and the salinity was 32 p.s.u. Two enrichment cultures were set up at 20 °C: (i) SW: seawater enrichment with 0.1% lignin; the enrichment was set up using 50 ml of the sample as inoculum with the addition of 0.1% lignin (Sigma-Aldrich, Gillingham, United Kingdom) (w/v); (ii) AW: algal surface wash-off in seawater, enriched with 0.1% lignin; the enrichment was set up using 50 ml of surface wash-off after mixing of ca. 10 g of Fucus (brown algae) in the seawater and removal of plant tissue, 0.1% lignin (w/v) was added. After 92 days of incubation, 5 ml of each enrichment cultures were transferred into the new flask containing 45 ml autoclaved and filtered seawater with 0.1% lignin. This procedure was repeated on days 185 and 260, and the incubation was stopped on day 365. The DNA was extracted using 12 months using MetaGnome extraction kit (EpiCentre, Biotechnologies, Madison, WI, USA), sequenced on Illumina MiSeq™ platform (Illumina Inc., San Diego, CA, USA) using paired-end 250 bp reads at the Centre for Environmental Biotechnology (Bangor, UK), and sequencing reads were processed and analysed as described previously73.The screening, cloning and activity of a subset of 35 identified esterases have been reported previously72. The remaining 48 enzymes are reported for the first time in this study and were identified using naive and in silico metagenomic approaches, as detailed below. The environmental site from which each enzyme originated and the method employed for its identification are detailed in Supplementary Data S3. For naive screens addressing the recovery of new sequences encoding esterases and EXDO, the large-insert pCCFOS1 fosmid libraries made using the corresponding DNA samples, the CopyControl Fosmid Library Kit (Epicentre Biotechnologies, Madison, WI, USA) and the Escherichia coli EPI300-T1R strain were used. The nucleic acid extraction, construction and the functional screens of such libraries have been previously described72. In brief, fosmid clones were plated onto large (22.5 × 22.5 cm) Petri plates with Luria Bertani (LB) agar containing chloramphenicol (12.5 µg ml−1) and induction solution (Epicentre Biotechnologies; WI, USA), at a quantity recommended by the supplier to induce a high fosmid copy number. Clones were scored by the ability to hydrolyze α-naphthyl acetate and tributyrin (for esterase activity), and catechol (for EXDO activity)72,74. Positive clones presumed to contain esterases and EXDOs were selected, and their DNA inserts were sequenced using a MiSeq Sequencing System (Illumina, San Diego, USA) with a 2 × 150-bp sequencing v2 kit at Lifesequencing S.L. (Valencia, Spain). After sequencing, the reads were quality-filtered and assembled to generate nonredundant meta-sequences, and genes were predicted and annotated via BLASTP and the PSI-BLAST tool72. For in silico screens, addressing the recovery of new sequences encoding esterases, the predicted protein-coding genes, obtained after the sequencing of DNA material from resident microbial communities in each of the samples, were used. The meta-sequences are available from the National Center for Biotechnology Information (NCBI) nonredundant public database (accession numbers reported in Supplementary Data S3). Protein-coding genes identified from the DNA inserts of positive clones (naive screen) or from the meta-sequences were screened for enzymes of interest using the Blastp algorithm via the DIAMOND v2.0.9 program with default parameters (percentage of identity ≥60%; alignment length ≥70; e-value ≤1e−5)29, against the Lipase Engineering sequence databases (to screen for esterases) and AromaDeg database (for EXDO)74. Since the collection of sediments across locations experiencing different MATs was limited by our sampling capacity, to expand our range of exploration at a global scale and to validate our dataset, we added our single enzyme analysis to the seawater metagenomes retrieved from the Tara Ocean Expedition database (accession number in Supplementary Data S4). Due to the volume of sequences generated, this database provides access to a large number of enzymes, including those studied here through homology search. Esterases were selected as target sequences, and the following pipeline was used. First, we selected a sequence encoding an esterase reported as one of the most substrate-ambiguous esterases out of 145 tested (EH1, Protein Data Bank acc. nr. 5JD4) and well-distributed in the marine environment72. Second, we performed a homology search of this sequence against the Tara Ocean metagenome21 to retrieve similar sequences, using the Blastp algorithm via the DIAMOND v2.0.9 program30 (e-value 98% using SDS-PAGE analysis in a Mini PROTEAN electrophoresis system (Bio-Rad Laboratories, S.A., Madrid, Spain). Purified protein was stored at –86 °C until use at a concentration of 10 mg ml−1 in 40 mM HEPES buffer (pH 7.0). A total of approximately 5–40 mg of total purified recombinant protein was obtained from 1 L of culture. Supplementary Fig. S1 illustrates a schematic representation of the pipeline implemented in this work to investigate enzyme activities in a large set of marine samples, starting from samples collected (sediments) and available metagenomes.Enzyme activity assessmentsAll substrates used for activity tests were of the highest purity and, if not indicated otherwise, were obtained from Merck Life Science S.L.U. (Madrid, Spain): 4-nitrophenyl-propionate (ref. MFCD00024664), 4-nitrophenyl phosphate (ref. 487663), 4-nitrophenyl β-D-galactose (ref. N1252), bis(p-nitrophenyl) phosphate (ref. 123943), benzaldehyde (ref. B1334), 2-(4-nitrophenyl)ethan-1-amine (ref. 184802-5G), pyridoxal phosphate (ref. P9255), acetophenone (ref. A10701), NADPH (ref. N5130) and catechol (ref. PHL82372). We directly tested total protein extracts for esterase, phosphatase, beta-galactosidase, and nuclease activity using 4-nitrophenyl-propionate, 4-nitrophenyl phosphate, 4-nitrophenyl β-D-galactose, and bis(p-nitrophenyl) phosphate, respectively, by following the production of 4-nitrophenol at 348 nm (extinction coefficient [ε], 4147 M−1 cm−1), as previously described69. For determination: [total protein]: 5 μg ml−1; [substrate]: 0.8 mM; reaction volume: 200 μl; T: 4–85 °C; and pH: 8.0 (50 mM Tris-HCl buffer). The hydrolysis of 4-nitrophenyl-propionate was used to determine, under these standard conditions, the effects of temperature on the purified esterase. Transaminase activity was determined using benzaldehyde as amine acceptor, 2-(4-nitrophenyl)ethan-1-amine as amine donor, and pyridoxal phosphate as a cofactor, by following the production of a colour amine at 600 nm (extinction coefficient, 537 M−1 cm−1), as previously described75. For determination, [total protein]: 5 μg ml−1; [substrates]: 25 mM; [pyridoxal phosphate]: 1 mM; reaction volume: 200 μL; T: 4-85 °C; and pH: 8.0 (50 mM Tris-HCl buffer). Aldo-keto reductase activity was determined using acetophenone as a substrate and NADPH as a cofactor, by following the consumption of NADPH at 340 nm (extinction coefficient, 6220 M−1 cm−1), as described76. For determination, [total protein]: 5 μg ml−1; [substrate]: 1 mM; [cofactor]: 1 mM; reaction volume: 200 μL; T: 4–85 °C; and pH: 8.0 (50 mM Tris-HCl buffer). We determined EXDO activity using catechol as substrate, by following the increase of absorbance at 375 nm of the ring fission products (extinction coefficient, 36000 M−1 cm−1), as previously described74. For determination, [protein]: 5 μg ml−1; [catechol]: 0.5 mM; reaction volume: 200 μL; T: 4–85 °C; and pH: 8.0 (50 mM Tris-HCl buffer). The hydrolysis of catechol was used to determine, under these standard conditions, the effects of temperature on the purified EXDOs. All measurements were performed in 96-well plates (ref. 655801, Greiner Bio-One GmbH, Kremsmünster, Austria), in biological triplicates over 180 min in a Synergy HT Multi-Mode Microplate Reader (Biotek Instruments, Winooski, VT, USA) in continuous mode (measurements every 30 s) and determining the absorbance per minute from the slopes generated and applying the formula (1). All values were corrected for nonenzymatic transformation.$${Rate}left(frac{mu {mol}}{{{min }}{mg},{protein}}right)= frac{frac{triangle {{{{{rm{Abs}}}}}}}{{{min }}}}{{{{{{rm{varepsilon }}}}}},{{{{{rm{M}}}}}}-1{{{{{rm{cm}}}}}}-1}*frac{1}{0.4,{cm}}*frac{{10}^{6},mu M}{1{{{{{rm{M}}}}}}}\ *0.0002,L*frac{1}{{mg},{protein}}$$
    (1)
    Shotgun proteomicsProteomics was performed by using total active proteins (extracted as above), which were then subjected to protein precipitation, protein digestion and Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometric (LC-ESI-MS/MS) analysis, as previously described77. High-quality reference metagenomes corresponding to each sample (BioProject number in Supplementary Table S3) were used for protein calling, with a threshold of only one identified peptide per protein identification because False Discovery Rates (FDR) controlled experiments counter-intuitively suffer from the two-peptide rule. The confidence interval for protein identification was set to ≥95% (p  50 °C for which the second phase transition was chosen to focus on the decomposition of the core. It is important to note that applying CNA to MD simulations at room temperature may lead to an evening out of Tp values for esterases that transition around this temperature, i.e., systems with a Tp at or below room temperature might all be influenced similarly by loosening their bonding network. By contrast, systems with a transition temperature at or above room temperature would still be discriminated against. The data generated in this study for analyzing Tp values have been deposited at researchdata.hhu.de under accession code DOI: 10.25838/d5p-42101 [https://doi.org/10.25838/d5p-42].Relationship of temperature-induced changes in enzymeRelationship between MAT and enzyme response to temperature (i.e., Topt, Td and Tp) were evaluated by performing linear regression in R. In the case of enzymes retrieved from the Tara ocean dataset we calculated first the break point (flexus) using the package segmented in R102 and then we computed separately the linear model describing the two linear regressions before and after the breakpoint. To evaluate the possible relation between enzyme thermal response and other environmental parameters, salinity and pH data were retrieved from Bio-ORACLE52 using GPS coordinates of each location.Environmental characterization and sediment collection from different temperature variability levels in the Red SeaWe recorded the temperatures of surface sediments from March 2015 to September 2016 along the coast of the Red Sea using HOBO data loggers (Onset, USA) in nine stations located at 3, 25, and 50 m depth. Details on the location, depth and temperature fluctuations of the studied sediments are reported in Supplementary Table S4 and Source Data. We first assess the differences in the homogeneity of the temperature variance in the three types of sediments to evaluate the magnitude of thermal variation and then we test the difference among their MATs using a non-parametric ANOVA (Dunnett’s multiple comparisons tests). We identified three different levels of temperature variability (Fig. 3a–c; Supplementary Table S5): high, intermediate, and low thermal variability (HTV, ITV, and LTV, respectively), where sediments experienced temperature variations of 12.8 °C, 8.8 °C, and 6.7 °C, respectively. From each station, we sampled 200 g of surface sediment (0–5 cm depth) in triplicate in August and December 2015 with a Van der Venn grab (1 dm3) equipped with a MicroCat 250 Seabird CTD (Conductivity, Temperature, Depth), which was assembled on board the research vessel R/V Explorer (KAUST). During sampling, we measured the temperature of the sediments and the water layer covering the sediments using a digital thermometer and the CTD, respectively. We conducted all sampling in compliance with the guidelines specified by KAUST and Saudi Arabian authorities.Sediment processing for analysis of bacterial communitiesFrom each sample (in triplicate), we immediately removed subsamples of sediment (n = 54, ~10 g) and stored them at –20 °C for molecular analysis. Separately, sediment 25 ± 1 g was transferred to 50 ml tubes and added 30 ml of filtered (0.2 µm) water from the Red Sea. The tubes were shaken at 500 rpm for one hour and then centrifuged them at 300 g for 15 min to detach the microbial cells in the sediments without affecting their vitality103,104. The supernatant containing the extracted cells was collected in sterile tubes and was immediately used to measure microbial growth rates.Evaluation of bacterial growth in sediments at different temperaturesWe evaluated the microbial growth rate of the heterotrophic community extracted from the sediments under HTV, ITV, and LTV at 10 °C, 20 °C, 30 °C, 40 °C and 50 °C, using Marine Broth as the cultivation medium (Zobell Marine Broth 2216) supplemented with 0.1 g/L cycloheximide; a rich-medium was selected to avoid the nutrient limitation effect that can affect bacterial physiology63,105. We inoculated 96-well plates with 200 µl of cultivation medium and 25 µl of the cell suspension extracted from the sediments. We inoculated the three biological replicates from each station and each level of temperature variability in eight wells, giving a total of 72 wells for each plate, with 24 wells used as a negative control inoculated with water. We assembled a total of three plates for each incubation temperature from August and December. Plates were spectrophotometrically measured at 3 h intervals using an optical density of 600 nm (Spectramax® M5) for 72 h. Wells with optical density 90%) for further analysis (Supplementary Tables S9 and S10). We calculated the compositional similarity matrix (Bray-Curtis of the log-transformed OTU table) with Primer 6109. Using the same software, canonical analysis of principal coordinates (CAP)110 was used to compare the temperature variability samples (temperature variability levels: HTV, ITV, and LTV; season levels: August and December) based on the compositional similarity matrix. We applied permutational multivariate analyses of variance to the matrix (PERMANOVA; main and multiple comparison tests). We tested the occurrence of thermal-decay patterns in sediments with different temperature variability levels using linear regression (Prism 9.2 software, La Jolla California USA, www.graphpad.com) between the bacterial community similarities (Bray-Curtis) and the temperature differences among sediments (∆T°C) at the time of sampling. We calculated alphadiversity indices (richness and evenness) using the paleontological statistics (PAST) software, and their correlation with temperature was modelled using linear regression in Prism 9.2. Spearman correlation among temperature and relative abundance of OTUs within each sediment sample was evaluated; OTUs were classified based on their positive (enriched) and negative (depleted) correlation with sediment temperature.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Two wild carnivores selectively forage for prey but not amino acids

    Raubenheimer, D., Simpson, S. J. & Mayntz, D. Nutrition, ecology and nutritional ecology: Toward an integrated framework. Funct. Ecol. 23, 4–16 (2009).Article 

    Google Scholar 
    Behmer, S. T. & Joern, A. Coexisting generalist herbivores occupy unique nutritional feeding niches. Proc. Natl. Acad. Sci. U. S. A. 105, 1977–1982. https://doi.org/10.1073/pnas.0711870105 (2008).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lihoreau, M. et al. Nutritional ecology beyond the individual: A conceptual framework for integrating nutrition and social interactions. Ecol. Lett. 18, 273–286 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raubenheimer, D., Simpson, S. J. & Tait, A. H. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 367, 1628–1646. https://doi.org/10.1098/rstb.2012.0007 (2012).Article 
    CAS 

    Google Scholar 
    von Liebig, J. Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. (Vieweg, 1841).Simpson, C., Simpson, S. & Abisgold, J. In Symposium Biologica Hungarica. 39–46.Boersma, M. & Elser, J. Too much of a good thing: On stoichiometrically balanced diets and maximal growth. Ecology 87, 1325–1330 (2006).Article 
    PubMed 

    Google Scholar 
    Simpson, S. J. & Raubenheimer, D. A multi-level analysis of feeding behaviour: The geometry of nutritional decisions. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 342, 381–402. https://doi.org/10.1098/rstb.1993.0166 (1993).Article 
    ADS 

    Google Scholar 
    Zanotto, F. P., Raubenheimer, D. & Simpson, S. J. Haemolymph amino acid and sugar levels in locust fed nutritionally unbalanced diets. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 166, 223–229 (1996).Article 
    CAS 

    Google Scholar 
    Kohl, K. D., Coogan, S. C. & Raubenheimer, D. Do wild carnivores forage for prey or for nutrients? Evidence for nutrient-specific foraging in vertebrate predators. BioEssays 37, 701–709. https://doi.org/10.1002/bies.201400171 (2015).Article 
    PubMed 

    Google Scholar 
    Remonti, L., Balestrieri, A., Raubenheimer, D. & Saino, N. Functional implications of omnivory for dietary nutrient balance. Oikos 125, 1233–1240 (2016).Article 
    CAS 

    Google Scholar 
    McIntyre, P. B. & Flecker, A. S. In Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques. American Fisheries Society, Symposium. 539–558 (Citeseer).DeGabriel, J. L. et al. Translating nutritional ecology from the laboratory to the field: Milestones in linking plant chemistry to population regulation in mammalian browsers. Oikos 123, 298–308 (2014).Article 

    Google Scholar 
    Nielsen, S. E., Larsen, T. A., Stenhouse, G. B. & Coogan, S. C. P. Complementary food resources of carnivory and frugivory affect local abundance of an omnivorous carnivore. Oikos 126, 369–380. https://doi.org/10.1111/oik.03144 (2017).Article 
    CAS 

    Google Scholar 
    Mayntz, D., Raubenheimer, D., Salomon, M., Toft, S. & Simpson, S. J. Nutrient-specific foraging in invertebrate predators. Science 307, 111–113 (2005).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Anderson, T. R., Boersma, M. & Raubenheimer, D. Stoichiometry: Linking elements to biochemicals. Ecology 85, 1193–1202 (2004).Article 

    Google Scholar 
    McManamay, R. A., Webster, J. R., Valett, H. M. & Dolloff, C. A. Does diet influence consumer nutrient cycling? Macroinvertebrate and fish excretion in streams. J. N. Am. Benthol. Soc. 30, 84–102. https://doi.org/10.1899/09-152.1 (2011).Article 

    Google Scholar 
    Vivas, M., Sánchez-Vázquez, F., García García, B. & Madrid, J. Macronutrient self-selection in European sea bass in response to dietary protein or fat restriction. Aquac. Res. 34, 271–280 (2003).Article 

    Google Scholar 
    Rubio, V., Navarro, D. B., Madrid, J. & Sánchez-Vázquez, F. Macronutrient self-selection in Solea senegalensis fed macronutrient diets and challenged with dietary protein dilutions. Aquaculture 291, 95–100 (2009).Article 
    CAS 

    Google Scholar 
    Mayntz, D. et al. Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison. Anim. Behav. 77, 349–355 (2009).Article 

    Google Scholar 
    Al Shareefi, E. & Cotter, S. C. The nutritional ecology of maturation in a carnivorous insect. Behav. Ecol. 30, 256–266 (2019).Article 

    Google Scholar 
    Jensen, K. et al. Nutrient-specific compensatory feeding in a mammalian carnivore, the mink, Neovison vison. Br. J. Nutr. 112, 1226–1233. https://doi.org/10.1017/S0007114514001664 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hayward, M., Jędrzejewski, W. & Jedrzejewska, B. Prey preferences of the tiger Panthera tigris. J. Zool. 286, 221–231 (2012).Article 

    Google Scholar 
    Whitney, T. D., Sitvarin, M. I., Roualdes, E. A., Bonner, S. J. & Harwood, J. D. Selectivity underlies the dissociation between seasonal prey availability and prey consumption in a generalist predator. Mol. Ecol. 27, 1739–1748 (2018).Article 
    PubMed 

    Google Scholar 
    Potter, T. I., Stannard, H. J., Greenville, A. C. & Dickman, C. R. Understanding selective predation: Are energy and nutrients important?. PLoS One 13, e0201300 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Machovsky-Capuska, G. E. et al. Sex-specific macronutrient foraging strategies in a highly successful marine predator: The Australasian gannet. Mar. Biol. 163, 75 (2016).Article 

    Google Scholar 
    Remonti, L., Balestrieri, A. & Prigioni, C. Percentage of protein, lipids, and carbohydrates in the diet of badger (Meles meles) populations across Europe. Ecol. Res. 26, 487–495 (2011).Article 
    CAS 

    Google Scholar 
    Wilder, S. M. et al. Three-dimensional diet regulation and the consequences of choice for weight and activity level of a marsupial carnivore. J. Mammal. 97, 1645–1651 (2016).Article 

    Google Scholar 
    Yu, D.-H. et al. Effect of partial replacement of fish meal with soybean meal and feeding frequency on growth, feed utilization and body composition of juvenile Chinese sucker, Myxocyprinus asiaticus (Bleeker). Aquac. Res. 44, 388–394. https://doi.org/10.1111/j.1365-2109.2011.03043.x (2013).Article 
    CAS 

    Google Scholar 
    Kaushik, S. J. & Seiliez, I. Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquac. Res. 41, 322–332. https://doi.org/10.1111/j.1365-2109.2009.02174.x (2010).Article 
    CAS 

    Google Scholar 
    Gaye-Siessegger, J., McCullagh, J. S. & Focken, U. The effect of dietary amino acid abundance and isotopic composition on the growth rate, metabolism and tissue delta13C of rainbow trout. Br. J. Nutr. 105, 1764–1771. https://doi.org/10.1017/S0007114510005696 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    McCullagh, J., Gaye-Siessegger, J. & Focken, U. Determination of underivatized amino acid delta(13)C by liquid chromatography/isotope ratio mass spectrometry for nutritional studies: The effect of dietary non-essential amino acid profile on the isotopic signature of individual amino acids in fish. Rapid Commun. Mass Spectrom. RCM 22, 1817–1822. https://doi.org/10.1002/rcm.3554 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gao, K. et al. Dietary L-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids 42, 2207–2214 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wu, G. et al. Amino acid nutrition in animals: Protein synthesis and beyond. Annu. Rev. Anim. Biosci. 2, 387–417. https://doi.org/10.1146/annurev-animal-022513-114113 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dwyer, G. K., Stoffels, R. J., Silvester, E. & Rees, G. N. Prey amino acid composition affects rates of protein synthesis and N wastage of a freshwater carnivore. Mar. Freshw. Res. 71, 229–237. https://doi.org/10.1071/MF18410 (2020).Article 
    CAS 

    Google Scholar 
    Kremen, N. et al. Body composition and amino acid concentrations of select birds and mammals consumed by cats in northern and central California. J. Anim. Sci. 91, 1270–1276 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Goodman-Lowe, G., Carpenter, J., Atkinson, S. & Ako, H. Nutrient, fatty acid, amino acid and mineral analysis of natural prey of the Hawaiian monk seal, Monachus schauinslandi. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 123, 137–146 (1999).Article 
    CAS 

    Google Scholar 
    Dwyer, G. K., Stoffels, R. J., Rees, G. N., Shackleton, M. & Silvester, E. A predicted change in the amino acid landscapes available to freshwater carnivores. Freshw. Sci. 37, 000–000 (2018).Article 

    Google Scholar 
    Kolmakova, A. A. et al. Amino acid composition of epilithic biofilm and benthic animals in a large Siberian river. Freshw. Biol. 58, 2180–2195. https://doi.org/10.1111/fwb.12200 (2013).Article 
    CAS 

    Google Scholar 
    Thera, J. C., Kidd, K. A. & Bertolo, R. F. Amino acids in freshwater food webs: Assessing their variability among taxa, trophic levels, and systems. Freshw. Biol. 65, 1101–1113 (2020).Article 
    CAS 

    Google Scholar 
    Fargallo, J. A., Navarro-López, J., Palma-Granados, P. & Nieto, R. M. Foraging strategy of a carnivorous-insectivorous raptor species based on prey size, capturability and nutritional components. Sci. Rep. 10, 1–12 (2020).Article 

    Google Scholar 
    Shakya, M., Silvester, E., Holland, A. & Rees, G. Taxonomic, seasonal and spatial variation in the amino acid profile of freshwater macroinvertebrates. Aquat. Sci. 83, 1–15 (2021).Article 

    Google Scholar 
    Martinez, J. B., Chatzifotis, S., Divanach, P. & Takeuchi, T. Effect of dietary taurine supplementation on growth performance and feed selection of sea bass Dicentrarchus labrax fry fed with demand-feeders. Fish. Sci. 70, 74–79 (2004).Article 

    Google Scholar 
    Yamamoto, T. et al. Self-selection and feed consumption of diets with a complete amino acid composition and a composition deficient in either methionine or lysine by rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac. Res. 32, 83–91 (2001).Article 
    CAS 

    Google Scholar 
    Dabrowski, K., Arslan, M., Terjesen, B. F. & Zhang, Y. The effect of dietary indispensable amino acid imbalances on feed intake: Is there a sensing of deficiency and neural signaling present in fish?. Aquaculture 268, 136–142. https://doi.org/10.1016/j.aquaculture.2007.04.065 (2007).Article 
    CAS 

    Google Scholar 
    Caprio, J. Olfaction and taste in the channel catfish: An electrophysiological study of the responses to amino acids and derivatives. J. Comp. Physiol. 123, 357–371 (1978).Article 

    Google Scholar 
    Hazlett, B. A. Crayfish feeding responses to zebra mussels depend on microorganisms and learning. J. Chem. Ecol. 20, 2623–2630. https://doi.org/10.1007/bf02036196 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gietzen, D. W. & Aja, S. M. The brain’s response to an essential amino acid-deficient diet and the circuitous route to a better meal. Mol. Neurobiol. 46, 332–348. https://doi.org/10.1007/s12035-012-8283-8 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rees, G. N., Shackleton, M. E., Watson, G. O., Dwyer, G. K. & Stoffels, R. J. Metabarcoding demonstrates dietary niche partitioning in two coexisting blackfish species. Mar. Freshw. Res. 71, 512–517 (2020).Article 
    CAS 

    Google Scholar 
    Antoine, F., Wei, C., Littell, R. & Marshall, M. HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. J. Agric. Food Chem. 47, 5100–5107 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Anderson, M. J. & Santana-Garcon, J. Measures of precision for dissimilarity-based multivariate analysis of ecological communities. Ecol. Lett. 18, 66–73 (2015).Article 
    PubMed 

    Google Scholar 
    Fountoulakis, M. & Lahm, H.-W. Hydrolysis and amino acid composition analysis of proteins. J. Chromatogr. A 826, 109–134 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    McArdle, B. H. When are rare species not there?. Oikos 57, 276–277 (1990).Article 

    Google Scholar 
    Machovsky-Capuska, G. E., Coogan, S. C., Simpson, S. J. & Raubenheimer, D. Motive for killing: What drives prey choice in wild predators?. Ethology 122, 703–711 (2016).Article 

    Google Scholar 
    Tait, A. H., Raubenheimer, D., Stockin, K. A., Merriman, M. & Machovsky-Capuska, G. E. Nutritional geometry and macronutrient variation in the diets of gannets: The challenges in marine field studies. Mar. Biol. 161, 2791–2801 (2014).Article 
    CAS 

    Google Scholar 
    Bosch, G., Hagen-Plantinga, E. A. & Hendriks, W. H. Dietary nutrient profiles of wild wolves: Insights for optimal dog nutrition?. Br. J. Nutr. 113, S40–S54 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Machovsky-Capuska, G. E., Senior, A. M., Simpson, S. J. & Raubenheimer, D. The multidimensional nutritional niche. Trends Ecol. Evol. 31, 355–365 (2016).Article 
    PubMed 

    Google Scholar 
    Jensen, K. et al. Optimal foraging for specific nutrients in predatory beetles. Proc. R. Soc. B 279, 2212–2218. https://doi.org/10.1098/rspb.2011.2410 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Machovsky-Capuska, G. E. & Raubenheimer, D. The nutritional ecology of marine apex predators. Ann. Rev. Mar. Sci. 12, 361–387 (2020).Article 
    PubMed 

    Google Scholar 
    Schindler, D. E. & Eby, L. A. Stoichiometry of fishes and their prey: Implications for nutrient recycling. Ecology 78, 1816–1831 (1997).Article 

    Google Scholar 
    Morosinotto, C., Villers, A., Varjonen, R. & Korpimäki, E. Food supplementation and predation risk in harsh climate: Interactive effects on abundance and body condition of tit species. Oikos 126, 863–873. https://doi.org/10.1111/oik.03476 (2017).Article 

    Google Scholar 
    Österblom, H., Olsson, O., Blenckner, T. & Furness, R. W. Junk-food in marine ecosystems. Oikos 117, 967–977 (2008).Article 

    Google Scholar 
    Dwyer, G. K., Stoffels, R. J. & Pridmore, P. A. Morphology, metabolism and behaviour: responses of three fishes with different lifestyles to acute hypoxia. Freshw. Biol. 59, 819–831. https://doi.org/10.1111/fwb.12306 (2014).Article 
    CAS 

    Google Scholar 
    Hubel, T. Y. et al. Energy cost and return for hunting in African wild dogs and cheetahs. Nat. Commun. 7, 11034 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ip, Y. K., Lim, C. K., Lee, S. L., Wong, W. P. & Chew, S. F. Postprandial increases in nitrogenous excretion and urea synthesis in the giant mudskipper Periophthalmodon schlosseri. J. Exp. Biol. 207, 3015–3023 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wilkie, M. P. Mechanisms of ammonia excretion across fish gills. Comp. Biochem. Physiol. A Physiol. 118, 39–50 (1997).Article 

    Google Scholar 
    Yamamoto, T. et al. Self-selection of diets with different amino acid profiles by rainbow trout (Oncorhynchus mykiss). Aquaculture 187, 375–386 (2000).Article 
    CAS 

    Google Scholar 
    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. J. P. B. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 8, e1000412 (2010).
    Google Scholar  More

  • in

    The unequal burden of human-wildlife conflict

    Andrade, G. S. & Rhodes, J. R. Protected areas and local communities: an inevitable partnership toward successful conservation strategies? Ecol. Soc. 17, 14–23 (2012).Article 

    Google Scholar 
    UNHCR. United Nations High Commissioner for Refugees. The Sustainable Development Goals and Addressing Statelessness (2017). https://www.refworld.org/docid/58b6e3364.html [accessed 16 April 2021]Ngorima, A., Brown, A., Masunungure, C. & Biggs, D. Local community benefits from elephants: Can willingness to support anti-poaching efforts be strengthened? Conserv. Sci. Pract. 2, e303 (2020).
    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).O’Bryan, C. J. et al. The contribution of predators and scavengers to human well-being. Nat. Ecol. Evol. 2, 229–236 (2018).Article 
    PubMed 

    Google Scholar 
    Levi, T. et al. Community ecology and conservation of bear-salmon ecosystems. Front. Ecol. Evol. 8, 433 (2020).Article 

    Google Scholar 
    Raynor, J. L., Grainger, C. A. & Parker, D. P. Wolves make roadways safer, generating large economic returns to predator conservation. Proc. Natl Acad. Sci. U.S.A. 118, e2023251118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tortato, F. R., Izzo, T. J., Hoogesteijn, R. & Peres, C. A. The numbers of the beast: Valuation of jaguar (Panthera onca) tourism and cattle depredation in the Brazilian Pantanal. Glob. Ecol. Conserv. 11, 106–114 (2017).Article 

    Google Scholar 
    Jacobsen, K. S. et al. What is a lion worth to local people—quantifying of the costs of living alongside a top predator. Ecol. Econ. 198, 107431 (2022).Article 

    Google Scholar 
    Thirgood, S., Woodroffe, R. & Rabinowitz, A. The impact of human-wildlife conflict on human lives and livelihoods. Conserv. Biol. Ser. 9, 13 (2005).
    Google Scholar 
    Mackenzie, C. A. & Ahabyona, P. Elephants in the garden: financial and social costs of crop raiding. Ecol. Econ. 75, 72–82 (2012).Article 

    Google Scholar 
    Anaya, F. C. & Espírito-Santo, M. M. Protected areas and territorial exclusion of traditional communities. Ecol. Soc. 23 (2018).Nsukwini, S. & Bob, U. Protected areas, community costs and benefits: a comparative study of selected conservation case studies from northern KwaZulu-Natal, South Africa. GeoJ. Tour. Geosites 27, 1377–1391 (2019).Article 

    Google Scholar 
    Heydinger, J. M., Packer, C. & Tsaneb, J. Desert-adapted lions on communal land: surveying the costs incurred by, and perspectives of, communal-area livestock owners in northwest Namibia. Biol. Conserv. 236, 496–504 (2019).Article 

    Google Scholar 
    Dickman, A. J., Macdonald, E. A. & Macdonald, D. W. A review of financial instruments to pay for predator conservation and encourage human–carnivore coexistence. Proc. Natl Acad. Sci. U.S.A. 108, 13937–13944 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, S. W. & Macdonald, D. W. Livestock predation by carnivores in Jigme Singye Wangchuck National Park, Bhutan. Biol. Conserv. 129, 558–565 (2006).Article 

    Google Scholar 
    Holmern, T., Nyahongo, J. & Røskaft, E. Livestock loss caused by predators outside the Serengeti National Park, Tanzania. Biol. Conserv. 135, 518–526 (2007).Article 

    Google Scholar 
    Thornton, P. K. et al. Locating poor livestock keepers at the global level for research and development targeting. Land Use Policy 20, 311–322 (2003).Article 

    Google Scholar 
    McDermott, J. J., Staal, S. J., Freeman, H. A., Herrero, M. & Van de Steeg, J. A. Sustaining intensification of smallholder livestock systems in the tropics. Livest. Sci. 130, 95–109 (2010).Article 

    Google Scholar 
    Dyson-Hudson, N. & Dyson-Hudson, R. The structure of East African herds and the future of East African herders. Dev. Change 13, 213–238 (1982).Article 

    Google Scholar 
    Herrero, M. et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Change 6, 452–461 (2016).Article 

    Google Scholar 
    Kgathi, D. L., Ngwenya, B. N. & Wilk, J. Shocks and rural livelihoods in the Okavango Delta, Botswana. Dev. South. Afr. 24, 289–308 (2007).Article 

    Google Scholar 
    Letta, M., Montalbano, P. & Tol, R. S. Temperature shocks, short-term growth and poverty thresholds: evidence from rural Tanzania. World Dev. 112, 13–32 (2018).Article 

    Google Scholar 
    Cottrell, R. S. et al. Food production shocks across land and sea. Nat. Sustain. 2, 130–137 (2019).Article 

    Google Scholar 
    Li, J. et al. Role of Tibetan Buddhist monasteries in snow leopard conservation. Conserv. Biol. 28, 87–94 (2014).Article 
    PubMed 

    Google Scholar 
    Bhatia, S., Redpath, S. M., Suryawanshi, K. & Mishra, C. The relationship between religion and attitudes toward large carnivores in northern India? Hum. Dimens. Wildl. 22, 30–42 (2017).Article 

    Google Scholar 
    Gebresenbet, F., Baraki, B., Yirga, G., Sillero-Zubiri, C. & Bauer, H. A culture of tolerance: coexisting with large carnivores in the Kafa Highlands, Ethiopia. Oryx 52, 751–760 (2018).Article 

    Google Scholar 
    Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2, e197 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hazzah, L., Mulder, M. B. & Frank, L. Lions and warriors: social factors underlying declining African lion populations and the effect of incentive-based management in Kenya. Biol. Conserv. 142, 2428–2437 (2009).Article 

    Google Scholar 
    Plaza, P. I., Martínez-López, E. & Lambertucci, S. A. The perfect threat: pesticides and vultures. Sci. Total Environ. 687, 1207–1218 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mateo-Tomás, P. & López-Bao, J. V. Poisoning poached megafauna can boost trade in African vultures. Biol. Conserv. 241, 108389 (2020).Article 

    Google Scholar 
    Tumenta, P. N. et al. Threat of rapid extermination of the lion (Panthera leo leo) in Waza National Park, Northern Cameroon. Afr. J. Ecol. 48, 888–894 (2010).Article 

    Google Scholar 
    Braczkowski, A. et al. Detecting early warnings of pressure on an African lion (Panthera leo) population in the Queen Elizabeth Conservation Area, Uganda. Ecol. Solut. Evid. 1, e12015 (2020b).Article 

    Google Scholar 
    Ickes, K. Hyper-abundance of Native Wild Pigs (Sus scrofa) in a Lowland Dipterocarp Rain Forest of Peninsular Malaysia 1. Biotropica 33, 682–690 (2001).Article 

    Google Scholar 
    Ripple, W. J. et al. Widespread mesopredator effects after wolf extirpation. Biol. Conserv. 160, 70–79 (2013).Article 

    Google Scholar 
    Ripple, W. J. & Beschta, R. L. Linking a cougar decline, trophic cascade, and catastrophic regime shift in Zion National Park. Biol. Conserv. 133, 397–408 (2006).Article 

    Google Scholar 
    Ripple, W. J. & Beschta, R. L. Trophic cascades involving cougar, mule deer, and black oaks in Yosemite National Park. Biol. Conserv. 141, 1249–1256 (2008).Article 

    Google Scholar 
    Gilbert, S. L. et al. Socioeconomic benefits of large carnivore recolonization through reduced wildlife-vehicle collisions. Conserv. Lett. 10, 431–439 (2017).Article 

    Google Scholar 
    ILRI. Rangelands Atlas. (ILRI, IUCN, FAO, WWF, UNEP and ILC, 2021). Nairobi Kenya: ILRI.Williams, D. R. et al. Proactive conservation to prevent habitat losses to agricultural expansion. Nat. Sustain. 4, 314–322 (2021).Article 

    Google Scholar 
    McManus, J. S. et al. Dead or alive? Comparing costs and benefits of lethal and non-lethal human-wildlife conflict mitigation on livestock farms. Oryx 49, 687–695 (2015).Article 

    Google Scholar 
    Broekhuis, F. et al. Identification of human-carnivore conflict hotspots to prioritize mitigation efforts. Ecol. Evol. 7, 10630–10639 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lozano, J. et al. Human-carnivore relations: a systematic review. Biol. Conserv. 237, 480–492 (2019).Article 

    Google Scholar 
    Khorozyan, I. & Waltert, M. A global view on evidence-based effectiveness of interventions used to protect livestock from wild cats. Conserv. Sci. Pract. 3, e317 (2021).
    Google Scholar 
    Di Minin, E., Slotow, R., Fink, C., Bauer, H. & Packer, C. A pan-African spatial assessment of human conflicts with lions and elephants. Nat. Commun. 12, 1–10 (2021).Article 

    Google Scholar 
    Lybbert, T. J. et al. Stochastic wealth dynamics and risk management among a poor population. Econ. J. 114, 750–777 (2004).Article 

    Google Scholar 
    Otte, M. J. & Chilonda, P. Cattle and Small Ruminant Production Systems in Sub-Saharan. Africa – Systematic Rev. (FAO, Rome, Italy, 2002).
    Google Scholar 
    Maystadt, J. F. & Ecker, O. Extreme weather and civil war: Does drought fuel conflict in Somalia through livestock price shocks? Am. J. Agric. Econ. 96, 1157–1182 (2014).Article 

    Google Scholar 
    Galvin, K. A. Transitions: pastoralists living with change. Annu. Rev. Anthropol. 38, 185–198 (2009).Article 

    Google Scholar 
    Stavi, I. et al. Food security among dryland pastoralists and agropastoralists: The climate, land-use change, and population dynamics nexus. Anthropocene Rev. (2021). 20530196211007512.Ogra, M. V. Human–wildlife conflict and gender in protected area borderlands: a case study of costs, perceptions, and vulnerabilities from Uttarakhand (Uttaranchal), India. Geoforum 39, 1408–1422 (2008).Article 

    Google Scholar 
    Botreau, H., & Cohen, M. J. Gender Inequalities and Food Insecurity: Ten Years After The Food Price Crisis, Why Are Women Farmers Still Food-Insecure? Oxfam:Oxford, UK (2019).Salerno, J. et al. Wildlife impacts and changing climate pose compounding threats to human food security. Curr. Biol. 31, 5077–5085 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Prado, E. L. & Dewey, K. G. Nutrition and brain development in early life. Nutr. Rev. 72, 267–284 (2014).Article 
    PubMed 

    Google Scholar 
    Madhusudan, M. D. The global village: linkages between international coffee markets and grazing by livestock in a south Indian wildlife reserve. Conserv. Biol. 19, 411–420 (2005).Article 

    Google Scholar 
    Margulies, J. D. & Karanth, K. K. The production of human-wildlife conflict: A political animal geography of encounter. Geoforum 95, 153–164 (2018).Article 

    Google Scholar 
    Simoons, F. J., Simoons, F. I. & Lodrick, D. O. Background to understanding the cattle situation of India: The sacred cow concept in Hindu religion and folk culture. Zeitschrift Für Ethnologie 106, 121–137 (1981).Good, C., Burnham, D. & Macdonald, D. W. A cultural conscience for conservation. Animals 7, 52 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Courchamp, F. et al. The paradoxical extinction of the most charismatic animals. PLoS Biol. 16, e2003997 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bond, J. & Mkutu, K. Exploring the hidden costs of human–wildlife conflict in northern Kenya. Afr. Stud. Rev. 61, 33–54 (2018).Article 

    Google Scholar 
    Di Minin, E., Leader-Williams, N. & Bradshaw, C. J. Banning trophy hunting will exacerbate biodiversity loss. Trends Ecol. Evol. 31, 99–102 (2016).Article 
    PubMed 

    Google Scholar 
    Dickman, A. et al. Trophy hunting bans imperil biodiversity. Science 365, 874–874 (2019).Article 
    PubMed 

    Google Scholar 
    Bruskotter, J. T., Vucetich, J. A., Gilbert, S. L., Carter, N. H. & George, K. A. Tragic trade‐offs accompany carnivore coexistence in the modern world. Conserv. Lett. 15, e412841 (2022).Dempsey, J. et al. Biodiversity targets will not be met without debt and tax justice. Nat. Ecol. Evol. 6, 237–239 (2022).Hallegatte, S. & Rozenberg, J. Climate change through a poverty lens. Nat. Clim. Change 7, 250–256 (2017).Article 

    Google Scholar 
    Islam, S. N., and Winkel, J. Climate change and social inequality. DESA Working Paper No. 152. New York, NY: United Nations Department of Economic & Social Affairs (2017).Platteau, J. P. Monitoring elite capture in community-driven development. Dev. Change 35, 223–246 (2004).Article 

    Google Scholar 
    Karanth, K. K. & DeFries, R. Nature-based tourism in Indian protected areas: new challenges for park management. Conserv. Lett. 4, 137–149 (2011).Article 

    Google Scholar 
    Ament, J. M., Collen, B., Carbone, C., Mace, G. M. & Freeman, R. Compatibility between agendas for improving human development and wildlife conservation outside protected areas: insights from 20 years of data. People Nat. 1, 305–316 (2019).Article 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. U.S.A. 116, 23209–23215 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, eaav3006 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lichtenfeld, L. L., Trout, C. & Kisimir, E. L. Evidence-based conservation: predator-proof bomas protect livestock and lions. Biodivers. Conserv. 24, 483–491 (2015).Article 

    Google Scholar 
    Persson, J., Rauset, G. R. & Chapron, G. Paying for an endangered predator leads to population recovery. Conserv. Lett. 8, 345–350 (2015).Article 

    Google Scholar 
    Barichievy, C. et al. A demographic model to support an impact financing mechanism for black rhino metapopulations. Biol. Conserv. 257, 109073 (2021).Article 

    Google Scholar 
    Maingi, S. W. Safari tourism and its role in sustainable poverty eradication in East Africa: the case of Kenya. Worldwide Hosp. Tour. Themes 13, 81–94 (2021).Homewood, K. M., Trench, P. C. & Brockington, D. Pastoralist livelihoods and wildlife revenues in East Africa: a case for coexistence? Pastoralism: Res. Pol. Pract. 2, 1–23 (2012).Article 

    Google Scholar 
    Thornton, P., Nelson, G., Mayberry, D. & Herrero, M. Impacts of heat stress on global cattle production during the 21st century: a modelling study. Lancet Planet. Health 6, e192–e201 (2022).Article 
    PubMed 

    Google Scholar 
    Lessmann, C. & Seidel, A. Regional inequality, convergence, and its determinants–a view from outer space. Eur. Econ. Rev. 92, 110–132 (2017).Article 

    Google Scholar 
    Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).Article 
    PubMed 

    Google Scholar 
    Miller, J. R. Mapping attack hotspots to mitigate human–carnivore conflict: approaches and applications of spatial predation risk modeling. Biodivers. Conserv. 24, 2887–2911 (2015).Article 

    Google Scholar 
    Gastineau, A., Robert, A., Sarrazin, F., Mihoub, J. B. & Quenette, P. Y. Spatiotemporal depredation hotspots of brown bears, Ursus arctos, on livestock in the Pyrenees, France. Biol. Conserv. 238, 108210 (2019).Article 

    Google Scholar 
    Kruuk, H. Surplus killing by carnivores. J. Zool. 166, 233–244 (1972).Article 

    Google Scholar 
    Khorozyan, I. et al. Effects of shepherds and dogs on livestock depredation by leopards (Panthera pardus) in north-eastern Iran. PeerJ 5, e3049 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lucherini, M., Guerisoli, M. D. L. M. & Luengos Vidal, E. M. Surplus killing by pumas Puma concolor: rumours and facts. Mammal. Rev. 48, 277–283 (2018).Article 

    Google Scholar 
    Ocaido, M., Muwazi, R. T. & Opuda-Asibo, J. Financial analysis of livestock production systems around Lake Mburo National Park, in South Western Uganda. Livest. Res. Rural Dev. 21, 70 (2009).
    Google Scholar 
    Dyson-Hudson, R. & Dyson-Hudson, N. Nomadic pastoralism. Annu. Rev. Anthropol. 9, 15–61 (1980).Barber, J. P. The Karamoja District of Uganda: a pastoral people under colonial rule. J. Afr. Hist. 3, 111–124 (1962).Article 

    Google Scholar 
    Oberg, K. Analysis of the Bahima marriage ceremony. Africa 19, 107–120 (1949).Article 

    Google Scholar 
    Purseglove, J. W. Banyankole Agriculture. East Afr. Agric. J. 5, 198–207 (1939).
    Google Scholar 
    Canonici, N. N. Food in Zulu folktales. South. Afr. J. Folk. Stud. 2, 24–36 (1991).
    Google Scholar 
    United Nations. World Population Prospects 2022: Summary of Results. UN DESA/POP/2022/TR/NO. 3 (2022).Tomas, W. M. et al. Sustainability agenda for the Pantanal Wetland: perspectives on a collaborative interface for science, policy, and decision-making. Trop. Conserv. Sci. 12, 1940082919872634 (2019).Article 

    Google Scholar 
    Vale, P. et al. Mapping the cattle industry in Brazil’s most dynamic cattle-ranching state: Slaughterhouses in Mato Grosso, 1967-2016. PLOS One 14, e0215286 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Leeuw, P. N., Bekure, S., & Grandin, B. E. Aspects of livestock productivity in Maasai group ranches in Kenya. ILCA Bull. (1984).Barua, M., Bhagwat, S. A. & Jadhav, S. The hidden dimensions of human–wildlife conflict: health impacts, opportunity and transaction costs. Biol. Conserv. 157, 309–316 (2013).Article 

    Google Scholar 
    Choudhury, A. Human–elephant conflicts in Northeast India. Hum. Dimens. Wildl. 9, 261–270 (2004).Article 

    Google Scholar 
    Sherman, P. B., & Dixon, J. A. Economics of protected areas: a new look at benefits and costs. Earthscan Publications Limited (1990).Braczkowski, A. et al. Evidence for increasing human‐wildlife conflict despite a financial compensation scheme on the edge of a Ugandan National Park. Conserv. Sci. Pract. 2, e309 (2020c).
    Google Scholar 
    Gulati, S., Karanth, K., Nguyet Anh Le, N. & Noack, F. Human casualties are the dominant cost of human–wildlife conflict in India. Proc. Natl Acad. Sci. 118, e1921338118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. Trans. R. Soc. 366, 2633–2641 (2011).Article 

    Google Scholar 
    Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strassburg, B. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    O’Bryan, C. J. et al. The importance of indigenous peoples’ lands for the conservation of terrestrial mammals. Conserv. Biol. 35, 1002–1008 (2021).Article 
    PubMed 

    Google Scholar 
    Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol. Lett. 9, 1136–1145 (2006).Article 
    PubMed 

    Google Scholar 
    Henderson, J. V., Storeygard, A. & Weil, D. N. Measuring economic growth from outer space. Am. Econ. Rev. 102, 994–1028 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ebener, S., Murray, C., Tandon, A. & Elvidge, C. C. From wealth to health: modelling the distribution of income per capita at the sub-national level using night-time light imagery. Int. J. Health Geographics 4, 5 (2005).Article 

    Google Scholar 
    Chen, X. & Nordhaus, W. D. Using luminosity data as a proxy for economic statistics. Proc. Natl Acad. Sci. 108, 8589–8594 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jean, N. et al. Combining satellite imagery and machine learning to predict poverty. Science 353, 790–794 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    FAO Meat live weight, cattle database. License: CC BY-NC-SA 3.0 IGO. http://www.fao.org/faostat/en/#search/cattle (2021). Accessed 24 April 2021.Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 1–11 (2018).Article 

    Google Scholar 
    United Nations University & World Health Organization. Human Energy Requirements: Report of a Joint FAO/WHO/UNU Expert Consultation: Rome, 17–24 October 2001 (Vol. 1) Food & Agriculture Org (2004). More

  • in

    Big dino, little dino: how T. rex’s relatives changed their size

    Theropod dinosaurs such as Tarbosaurus bataar grew large or small in a range of ways.Credit: Marco Ansaloni/SPL

    A sweeping analysis of shin bones has given researchers a glimpse into how some dinosaurs evolved into mega-beasts such as Tyrannosaurus, and others into smaller, bird-like creatures. The work, published this week in Science1, reveals that dinosaurs used more than one evolutionary trick to become larger — or smaller — over time.Prevailing wisdom held that large-bodied animals are bigger than their smaller-bodied relatives because they grow faster during their most rapid period of growth. That trend holds true for modern animals including birds and mammals — elephants and ostriches grow faster than chihuahuas and sparrows, for example.It’s not the case for all animals. Crocodiles and alligators, for instance, become large because they grow for a long time. But palaeontologists had assumed that for theropod dinosaurs — a group that includes the iconic T. rex and which spawned modern birds — large species got big through rapid growth spurts. “It’s kind of become the established idea in dinosaurs,” says palaeontologist Michael D’Emic at Adelphi University in Garden City, New York.But that’s not what D’Emic found when he sawed into the bones of Majungasaurus, a 7-metre-long T. rex relative that lived 66 million years ago on what is now Madagascar. The speed of growth in dinosaurs is recorded in rings laid down each year in their bones. Instead of seeing wide rings corresponding to a rapid adolescent growth spurt, D’Emic found lots of narrow growth rings, suggesting that Majungasaurus had become large over a prolonged period.“I was very surprised,” he says. The next dinosaur he examined, a similar-sized beast called Ceratasaurus, was the opposite — a big dinosaur that grew fast during its growth spurt, says D’Emic.Bone growth ringsOver a decade, D’Emic and his colleagues amassed bone growth-ring measurements from 42 theropod species to see which strategies led to large and small bodies. They found that 31% of theropod species were larger than their ancestors because of faster growth and 28% because of prolonged growth. Meanwhile, 21% became smaller than their ancestors by shortening their growth spurts, and 19% by slowing growth.The study covered theropod species that lived between 230 million years ago and the end of the Cretaceous period 66 million years ago, when a mass-extinction event wiped out the non-avian dinosaurs. It’s “a huge evolutionary timescale”, to include in an analysis, says Vera Weisbecker, an evolutionary biologist at Flinders University in Adelaide, Australia. “That is really impressive,” she says. “It’s just fascinating that there are so many developmental ways to become big or small.”Palaeontologist Kevin Padian at the University of California, Berkeley, says the analysis is the kind of work that needs to be done, animal group by animal group, to understand how body size evolves.Drivers of changeBut Meike Köhler, an evolutionary palaeobiologist at the Catalan Institution for Research and Advanced Studies in Barcelona, Spain, says the findings are not surprising because previous work has shown a range of growth strategies across animal species. Köhler would like to see an analysis that considers what ecological circumstances influenced how animals changed in size over time.Weisbecker says that the growth strategy used might be related to evolutionary pressures. “If you looked at all the ones with explosive early growth, you might be able to test if they happen to be the ones that are more likely to be predated on, for example,” she says.For each species, the growth strategy that led to its individual body size probably related to its unique environment, says Padian. “It’s not a one-size-fits-all, which is a good thing for us to learn,” he says. “We might have thought that, but they’ve documented it.”D’Emic says he and his team are conducting similar analyses on other groups, including mammals — a group that contains many more species to sample — to see whether the diversity is found in other branches of the evolutionary tree. More

  • in

    Seasonal activities of the phyllosphere microbiome of perennial crops

    Robertson, G. P. et al. Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes. Sci. (80-.) 356, 1–9 (2017).Article 

    Google Scholar 
    Ma, L. et al. The impact of stand age and fertilization on the soil microbiome of Miscanthus × giganteus. Phytobiomes J. 5, 51–59 (2021).Article 

    Google Scholar 
    Hestrin, R., Lee, M. R., Whitaker, B. K. & Pett-Ridge, J. The switchgrass microbiome: a review of structure, function, and taxonomic distribution. Phytobiomes J. 5, 14–28 (2021).Article 

    Google Scholar 
    Heaton, E. A., Dohleman, F. G. & Long, S. P. Meeting US biofuel goals with less land: The potential of Miscanthus. Glob. Chang. Biol. 14, 2000–2014 (2008).Article 
    ADS 

    Google Scholar 
    Langholtz, M., Stokes, B. & Eaton, L. 2016 billion-ton report: Advancing domestic resources for a thriving bioeconomy (Executive Summary). Ind. Biotechnol. 12, 282–289 (2016).Article 

    Google Scholar 
    Roley, S. S. et al. Associative nitrogen fixation (ANF) across a nitrogen input gradient. PLoS One 13, 1–19 (2018).Article 

    Google Scholar 
    Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).Article 
    PubMed 

    Google Scholar 
    Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, 1–14 (2017).Article 

    Google Scholar 
    Wang, N. R. & Haney, C. H. Harnessing the genetic potential of the plant microbiome. Biochem. (Lond.) 42, 20–25 (2020).Article 
    CAS 

    Google Scholar 
    Haskett, T. L., Tkacz, A. & Poole, P. S. Engineering rhizobacteria for sustainable agriculture. ISME J. 15, 949–964 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hacquard, S. et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17, 603–616 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gopal, M. & Gupta, A. Microbiome selection could spur next-generation plant breeding strategies. Front. Microbiol. 7, 1971 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hardoim, P. R. et al. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrews, J. H. & Harris, R. F. The ecology and biogeography of microorganisms on plant surfaces. Annu. Rev. Phytopathol. 38, 145–180 (2000).Article 
    PubMed 

    Google Scholar 
    Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Müller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The Plant Microbiota: Systems-Level Insights and Perspectives. Annu. Rev. Genet. 50, 120215–034952 (2016).Article 

    Google Scholar 
    Kuzyakov, Y. & Razavi, B. S. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biol. Biochem. 135, 343–360 (2019).Article 
    CAS 

    Google Scholar 
    Bell, T. H. et al. Manipulating wild and tamed phytobiomes: Challenges and opportunities. Phytobiomes J. 3, 3–21 (2019).Article 

    Google Scholar 
    Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Koskella, B. The phyllosphere. Curr. Biol. 30, R1143–R1146 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lindow, S. E. & Brandl, M. T. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69, 1875–1883 (2003).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bringel, F. & Couée, I. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front. Microbiol. 6, 486 (2015).Dorokhov, Y. L., Sheshukova, E. V. & Komarova, T. V. Methanol in plant life. Front. Plant Sci. 871, 1–6 (2018).
    Google Scholar 
    Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peñuelas, J. & Terradas, J. The foliar microbiome. Trends Plant Sci. 19, 278–280 (2014).Article 
    PubMed 

    Google Scholar 
    Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl Acad. Sci. USA. 112, E911–E920 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl Acad. Sci. 115, E4284–E4293 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shade, A. & Stopnisek, N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr. Opin. Microbiol. 49, 50–58 (2019).Article 
    PubMed 

    Google Scholar 
    Stopnisek, N. & Shade, A. Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype. ISME J. 15, 2708–2722 (2021).Grady, K. L., Sorensen, J. W., Stopnisek, N., Guittar, J. & Shade, A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat. Commun. 10, 4135 (2019).Singer, E., Bonnette, J., Kenaley, S. C., Woyke, T. & Juenger, T. E. Plant compartment and genetic variation drive microbiome composition in switchgrass roots. Environ. Microbiol. Rep. 11, 185–195 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bahulikar, R. A., Torres-Jerez, I., Worley, E., Craven, K. & Udvardi, M. K. Diversity of nitrogen-fixing bacteria associated with switchgrass in the native tallgrass prairie of Northern Oklahoma. Appl. Environ. Microbiol. 80, 5636–5643 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roley, S. S., Xue, C., Hamilton, S. K., Tiedje, J. M. & Robertson, G. P. Isotopic evidence for episodic nitrogen fixation in switchgrass (Panicum virgatum L.). Soil Biol. Biochem. 129, 90–98 (2019).Article 
    CAS 

    Google Scholar 
    Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yoon, S. H., Ha, S. M., Lim, J., Kwon, S. & Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van. Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 110, 1281–1286 (2017).Article 
    CAS 

    Google Scholar 
    Julsing, M. K., Rijpkema, M., Woerdenbag, H. J., Quax, W. J. & Kayser, O. Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis. Appl. Microbiol. Biotechnol. 75, 1377–1384 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laskowska, E. & Kuczyńska-Wiśnik, D. New insight into the mechanisms protecting bacteria during desiccation. Curr. Genet. 66, 313–318 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zou, H. et al. The metabolism and biotechnological application of betaine in microorganism. Appl. Microbiol. Biotechnol. 100, 3865–3876 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rastogi, G., Coaker, G. L. & Leveau, J. H. J. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol. Lett. 348, 1–10 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Urrejola, C. et al. Genomic features for desiccation tolerance and sugar biosynthesis in the extremophile gloeocapsopsis sp. UTEX B3054. Front. Microbiol. 10, 1–11 (2019).Article 

    Google Scholar 
    Lacerda-Júnior, G. V. et al. Land use and seasonal effects on the soil microbiome of a Brazilian dry forest. Front. Microbiol. 10, 1–14 (2019).Article 

    Google Scholar 
    Dai, J. et al. Unraveling adaptation of Pontibacter korlensis to radiation and infertility in desert through complete genome and comparative transcriptomic analysis. Sci. Rep. 5, 1–9 (2015).Article 

    Google Scholar 
    Harty, C. E. et al. Ethanol stimulates trehalose production through a SpoT-DksA-AlgU-dependent pathway in Pseudomonas aeruginosa. J. Bacteriol. 201, 1–21 (2019).Kimmerer, T. W. & MacDonald, R. C. Acetaldehyde and ethanol biosynthesis in leaves of plants. Plant Physiol. 84, 1204–1209 (1987).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferner, E., Rennenberg, H. & Kreuzwieser, J. Effect of flooding on C metabolism of flood-tolerant (Quercus robur) and non-tolerant (Fagus sylvatica) tree species. Tree Physiol. 32, 135–145 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kimmerer, T. W. & Kozlowski, T. T. Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiol. 69, 840–847 (1982).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Y. et al. Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters. Biotechnol. Biofuels 8, 1–18 (2015).Article 

    Google Scholar 
    Wingler, A. et al. Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol. 158, 1241–1251 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gottschlich, L., Geiser, P., Bortfeld-Miller, M., Field, C. M. & Vorholt, J. A. Complex general stress response regulation in Sphingomonas melonis Fr1 revealed by transcriptional analyses. Sci. Rep. 9, 1–13 (2019).Article 
    CAS 

    Google Scholar 
    Chen, C., Li, S., McKeever, D. R. & Beattie, G. A. The widespread plant-colonizing bacterial species Pseudomonas syringae detects and exploits an extracellular pool of choline in hosts. Plant J. 75, 891–902 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valenzuela-Soto, E. M. & Figueroa-Soto, C. G. Biosynthesis and degradation of glycine betaine and its potential to control plant growth and development. in Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants (eds. Anwar Hossain, M., Kumar, V., Burritt, D. J., Fujita, M. & Makela, P. S. A.) 241–256 (Springer, 2019). https://doi.org/10.1007/978-3-030-27423-8_5.Kerchev, P., De Smet, B., Waszczak, C., Messens, J. & Van Breusegem, F. Redox strategies for crop improvement. Antioxid. Redox Signal 23, 1186–1205 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Considine, M. J. & Foyer, C. H. Redox regulation of plant development. Antioxid. Redox Signal. 21, 1305–1326 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spaepen, S., Vanderleyden, J. & Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425–448 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd-Allah, E. F. & Hashem, A. Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Front. Microbiol. 8, 1–14 (2017).Article 

    Google Scholar 
    Lajoie, G., Maglione, R. & Kembel, S. W. Adaptive matching between phyllosphere bacteria and their tree hosts in a neotropical forest. Microbiome 8, 1–10 (2020).Article 

    Google Scholar 
    McGenity, T. J., Crombie, A. T. & Murrell, J. C. Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth. ISME J. 12, 931–941 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharkey, T. D., Wiberley, A. E. & Donohue, A. R. Isoprene emission from plants: Why and how. Ann. Bot. 101, 5–18 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zuo, Z. et al. Isoprene acts as a signaling molecule in gene networks important for stress responses and plant growth. Plant Physiol. 180, 124–152 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharkey, T. D. & Yeh, S. Isoprene emission from plants. Plant Mol. Biol. 52, 407–436 (2001).CAS 

    Google Scholar 
    Sharkey, T. D., Loreto, F. & Delwiche, C. High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves. Plant, Cell Environ. 14, 333–338 (1991).Article 
    CAS 

    Google Scholar 
    Eller, A. S. D. et al. Volatile organic compound emissions from switchgrass cultivars used as biofuel crops. Atmos. Environ. 45, 3333–3337 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Morrison, E. C., Drewer, J. & Heal, M. R. A comparison of isoprene and monoterpene emission rates from the perennial bioenergy crops short-rotation coppice willow and Miscanthus and the annual arable crops wheat and oilseed rape. GCB Bioenergy 8, 211–225 (2016).Article 
    CAS 

    Google Scholar 
    Sivy, T. L., Shirk, M. C. & Fall, R. Isoprene synthase activity parallels fluctuations of isoprene release during growth of Bacillus subtilis. Biochem. Biophys. Res. Commun. 294, 71–75 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Crombie, A. T. et al. Poplar phyllosphere harbors disparate isoprene-degrading bacteria. Proc. Natl Acad. Sci. USA. 115, 13081–13086 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    El Khawand, M. et al. Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene-degrading soil community using DNA-stable isotope probing. Environ. Microbiol. 18, 2743–2753 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nowicka, B. & Kruk, J. Occurrence, biosynthesis and function of isoprenoid quinones. Biochim. Biophys. Acta – Bioenerg. 1797, 1587–1605 (2010).Article 
    CAS 

    Google Scholar 
    Kałużna, M. et al. Pseudomonas cerasi sp. nov. (non Griffin, 1911) isolated from diseased tissue of cherry. Syst. Appl. Microbiol. 39, 370–377 (2016).Article 
    PubMed 

    Google Scholar 
    El-Tarabily, K. A., Nassar, A. H., Hardy, G. E. S. J. & Sivasithamparam, K. Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J. Appl. Microbiol 106, 13–26 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Javed, Z., Tripathi, G. D., Mishra, M. & Dashora, K. Actinomycetes – the microbial machinery for the organic-cycling, plant growth, and sustainable soil health. Biocatal. Agric. Biotechnol. 31, 101893 (2021).Article 
    CAS 

    Google Scholar 
    Anwar, S., Ali, B. & Sajid, I. Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Front. Microbiol. 7, 1–11 (2016).Article 

    Google Scholar 
    Bao, L. et al. Microbial community overlap between the phyllosphere and rhizosphere of three plants from Yongxing Island, South China Sea. Microbiologyopen 9, 1–18 (2020).Article 

    Google Scholar 
    Remus-Emsermann, M. N. P. & Schlechter, R. O. Phyllosphere microbiology: at the interface between microbial individuals and the plant host. N. Phytol. 218, 1327–1333 (2018).Article 

    Google Scholar 
    Beilsmith, K. et al. Genome-wide association studies on the phyllosphere microbiome: embracing complexity in host–microbe interactions. Plant J. 97, 164–181 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Levy, A., Conway, J. M., Dangl, J. L. & Woyke, T. Elucidating bacterial gene functions in the plant microbiome. Cell Host Microbe 24, 475–485 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Choi, H. et al. Identification of viruses and viroids infecting tomato and pepper plants in vietnam by metatranscriptomics. Int. J. Mol. Sci. 21, 1–16 (2020).Article 
    ADS 

    Google Scholar 
    Marzano, S. Y. L. & Domier, L. L. Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phytobiomes. Virus Res 213, 332–342 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chao S, et al. Metatranscriptomic sequencing suggests the presence of novel RNA viruses in rice rransmitted by brown planthopper. Viruses. 13, 2464 (2021).Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl Acad. Sci. 106, 16428–16433 (2009).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suzuki, Y., Makino, A. & Mae, T. An efficient method for extraction of RNA from rice leaves at different ages using benzyl chloride. J. Exp. Bot. 52, 1575–1579 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. 108, 4516–4522 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Druzhinina, I. S. et al. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet. 14, e1007322 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haridas, S. et al. 101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens. Stud. Mycol. 96, 141–153 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gostinčar, C. et al. Genome sequencing of four Aureobasidium pullulans varieties: Biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15, 549 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gill, U. S. et al. Draft genome sequence resource of switchgrass rust pathogen, puccinia novopanici isolate ard-01. Phytopathology 109, 1513–1515 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bowsher, A. W., Benucci, G. M. N., Bonito, G. & Shade, A. Seasonal dynamics of core fungi in the switchgrass phyllosphere, and co-occurrence with leaf bacteria. Phytobiomes J. 5, 60–68 (2021).Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019, 1–13 (2019).
    Google Scholar 
    Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc. Natl Acad. Sci. USA. 110, 11463–11468 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for’omics data. PeerJ. 2015, 1–29 (2015).
    Google Scholar 
    Lee, M. D. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Blin, K. et al. AntiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020).Article 
    PubMed 

    Google Scholar 
    Zimmermann, J., Kaleta, C. & Waschina, S. Gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Genome Biol. 22, 1–35 (2021).Article 

    Google Scholar 
    Tseng, T. T., Tyler, B. M. & Setubal, J. C. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 9, 1–9 (2009).Article 

    Google Scholar 
    Lucke, M., Correa, M. G. & Levy, A. The role of secretion systems, effectors, and secondary metabolites of beneficial rhizobia in interactions with plants and microbes. Front. Plant Sci. 11, 589416 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palmer, J. L., Hilton, S., Picot, E., Bending, G. D. & Schäfer, H. Tree phyllospheres are a habitat for diverse populations of CO-oxidizing bacteria. Environ. Microbiol. 23, 6309–6327 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat. Microbiol. 6, 246–256 (2021).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Brown bear skin-borne secretions display evidence of individuality and age-sex variation

    Zala, S. M., Potts, W. K. & Penn, D. J. Scent-marking displays provide honest signals of health and infection. Behav. Ecol. 15, 338–344 (2004).Article 

    Google Scholar 
    Allen, M. L., Wallace, C. F. & Wilmers, C. C. Patterns in bobcat (Lynx rufus) scent marking and communication behaviors. J. Ethol. 33, 9–14 (2014).Article 

    Google Scholar 
    White, A. M., Swaisgood, R. R. & Zhang, H. The highs and lows of chemical communication in giant pandas (Ailuropoda melanoleuca): Effect of scent deposition height on signal discrimination. Behav. Ecol. Sociobiol. 51, 519–529 (2002).Article 

    Google Scholar 
    Scordato, E. S., Dubay, G. & Drea, C. M. Chemical composition of scent marks in the ringtailed lemur (Lemur catta): Glandular differences, seasonal variation, and individual signatures. Chem. Senses 32, 493–504 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maynard Smith, J. & Harper, D. Animal Signals (Oxford University Press, 2003).
    Google Scholar 
    Stockley, P., Bottell, L. & Hurst, J. L. Wake up and smell the conflict: Odour signals in female competition. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20130082 https://doi.org/10.1098/rstb.2013.0082 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petrulis, A. Chemosignals, hormones and mammalian reproduction. Horm. Behav. 63, 723–741 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coombes, H. A., Stockley, P. & Hurst, J. L. Female chemical signalling underlying reproduction in mammals. J. Chem. Ecol. 44, 851–873 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harmsen, B. J., Foster, R. J., Gutierrez, S. M., Marin, S. Y. & Patrick, C. Scrape-marking behavior of jaguars (Panthera onca) and pumas (Puma concolor). J. Mammal. 91, 1225–1234 (2010).Article 

    Google Scholar 
    Lamb, C. T. et al. Density-dependent signaling: An alternative hypothesis on the function of chemical signaling in a non-territorial solitary carnivore. PLoS ONE 12, e0184176 https://doi.org/10.1371/journal.pone.0184176 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woodmansee, K. B., Zabel, C. J., Glickman, S. E., Frank, L. G. & Keppel, G. Scent marking (pasting) in a colony of immature spotted hyenas (Crocuta crocuta): A developmental study. J. Comp. Psychol. 105, 10–14 (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rasmussen, L. E. L., Riddle, H. S. & Krishnamurthy, V. Mellifluous matures to malodorous in musth. Nature 415, 975–976 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Surov, A. V. & Maltsev, A. N. Analysis of chemical communication in mammals: Zoological and ecological aspects. Biol. Bull. 43, 1175–1183 (2016).Article 

    Google Scholar 
    Hurst, J. L. Female recognition and assessment of males through scent. Behav. Brain Res. 200, 295–303 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mills, M. G. L. & Gorman, M. L. The scent-marking behaviour of the spotted hyaena Crocuta crocuta in the southern Kalahari. J. Zool. 212, 483–497 (1987).Article 

    Google Scholar 
    Gassett, J. W. et al. Volatile compounds from interdigital gland of male white-tailed deer (Odocoileus virginianus). J. Chem. Ecol. 22, 1689–1696 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stoeckelhuber, M., Sliwa, A. & Welsch, U. Histo-physiology of the scent-marking glands of the penile pad, anal Pouch, and the forefoot in the aardwolf (Proteles cristatus). Anat. Rec. 259, 312–326 (2000).Article 
    CAS 

    Google Scholar 
    Begg, C. M., Begg, K. S., Du Toit, J. T. & Mills, M. G. L. Scent-marking behaviour of the honey badger, Mellivora capensis (Mustelidae), in the southern Kalahari. Anim. Behav. 66, 917–929 (2003).Article 

    Google Scholar 
    Yasui, T., Tsukise, A. & Meyer, W. Histochemical analysis of glycoconjugates in the eccrine glands of the raccoon digital pads. Eur. J. Histochem. 48, 393–402 (2004).CAS 
    PubMed 

    Google Scholar 
    Johnston, R. E. Scent marking by male golden hamsters (Mesocricetus aurutus) I. Effects of odors and social encounters. Z. Tierpsychol. 37, 75–98 (1975).Article 
    CAS 
    PubMed 

    Google Scholar 
    Caspers, B., Wibbelt, G. & Voigt, C. C. Histological examinations of facial glands in Saccopteryx bilineata (Chiroptera, Emballonuridae), and their potential use in territorial marking. Zoomorphology 128, 37–43 (2008).Article 

    Google Scholar 
    Lawson, R. E., Putnam, R. J. & Fielding, A. H. Individual signatures in scent gland secretions of Eurasian deer. J. Zool. 251, 399–410 (2000).Article 

    Google Scholar 
    Smith, T. E., Tomlinson, A. J., Mlotkiewicz, J. A. & Abbott, D. H. Female marmoset monkeys (Callithrix jacchus) can be identified from the chemical composition of their scent marks. Chem. Senses 26, 449–458 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    del Barco-Trillo, J., LaVenture, A. B. & Johnston, R. E. Male hamsters discriminate estrous state from vaginal secretions and individuals from flank marks. Behav. Process. 82, 18–24 (2009).Article 

    Google Scholar 
    Sun, L. & Müller-Schwarze, D. Anal gland secretion codes for family membership in the beaver. Behav. Ecol. Sociobiol. 44, 199–208 (1998).Article 

    Google Scholar 
    Zhang, J. X. et al. Possible coding for recognition of sexes, individuals and species in anal gland volatiles of Mustela eversmanni and M. sibirica. Chem. Senses 28, 381–388 (2003).Article 
    PubMed 

    Google Scholar 
    Kean, E. F., Müller, C. T. & Chadwick, E. A. Otter scent signals age, sex, and reproductive status. Chem. Senses 36, 555–564 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rosell, F. et al. Brown bears possess anal sacs and secretions may code for sex. J. Zool. 283, 143–152 (2011).Article 

    Google Scholar 
    Buesching, C. D., Waterhouse, J. S. & Macdonald, D. W. Gas-chromatographic analyses of the subcaudal gland secretion of the European badger (Meles meles) part I: Chemical differences related to individual parameters. J. Chem. Ecol. 28, 41–56 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yuan, H. et al. Anogenital gland secretions code for sex and age in the giant panda, Ailuropoda melanoleuca. Can. J. Zool. 82, 1596–1604 (2004).Article 

    Google Scholar 
    Kent, L. & Tang-Martínez, Z. Evidence of individual odors and individual discrimination in the raccoon, Procyon lotor. J. Mammal. 95, 1254–1262 (2014).Article 

    Google Scholar 
    Woodley, S. K. & Baum, M. J. Differential activation of glomeruli in the ferret’s main olfactory bulb by anal scent gland odours from males and females: An early step in mate identification. Eur. J. Neurosci. 20, 1025–1032 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allen, M. L. et al. The role of scent marking in mate selection by female pumas (Puma concolor). PLoS ONE 10, e0139087 https://doi.org/10.1371/journal.pone.0139087 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Latour, P. Interactions between free-ranging, adult male polar bears (Ursus maritimus Phipps): A case of adult social play. Can. J. Zool. 59, 1775–1783 (1981).Article 

    Google Scholar 
    Nie, Y., Swaisgood, R. R., Zhang, Z., Liu, X. & Wei, F. Reproductive competition and fecal testosterone in wild male giant pandas (Ailuropoda melanoleuca). Behav. Ecol. Sociobiol. 66, 721–730 (2012).Article 

    Google Scholar 
    Clapham, M. & Kitchin, J. Social play in wild brown bears of varying age-sex class. Acta Ethol. 19, 181–188 (2016).Article 

    Google Scholar 
    Stonorov, D. & Stokes, A. W. Social behavior of the Alaska brown bear. Int. Conf. Bear Res. Manag. 2, 232–242 (1972).
    Google Scholar 
    Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. A hypothetico-deductive approach to assessing the social function of chemical signalling in a non-territorial solitary carnivore. PLoS ONE 7, e35404 https://doi.org/10.1371/journal.pone.0035404 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. The function of strategic tree selectivity in the chemical signalling of brown bears. Anim. Behav. 85, 1351–1357 (2013).Article 

    Google Scholar 
    Owen, M. A. et al. An experimental investigation of chemical communication in the polar bear. J. Zool. 295, 36–43 (2015).Article 

    Google Scholar 
    Sergiel, A. et al. Histological, chemical and behavioural evidence of pedal communication in brown bears. Sci. Rep. 7, 1052 https://doi.org/10.1038/s41598-017-01136-1 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tomiyasu, J. et al. Morphological and histological features of the vomeronasal organ in the brown bear. J. Anat. 231, 749–757 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tomiyasu, J. et al. Testicular regulation of seasonal change in apocrine glands in the back skin of the brown bear (Ursus arctos). J. Vet. Med. Sci. 80, 1034–1040 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tomiyasu, J. et al. Testosterone-related and seasonal changes in sebaceous glands in the back skin of adult male brown bears (Ursus arctos). Can. J. Zool. 96, 205–211 (2018).Article 
    CAS 

    Google Scholar 
    Burst, T. L. & Pelton, M. R. Black bear mark trees in the Smoky mountains. Int. Conf. Bear Res. Manag. 5, 45–53 (1983).
    Google Scholar 
    Mattson, D. J. & Greene, G. I. Tree rubbing by Yellowstone grizzly bears Ursus arctos. Wildl. Biol. 1, 1–9 (2003).
    Google Scholar 
    Nie, Y. et al. Giant panda scent-marking strategies in the wild: Role of season, sex and marking surface. Anim. Behav. 84, 39–44 (2012).Article 

    Google Scholar 
    Revilla, E. et al. Brown bear communication hubs: Patterns and correlates of tree rubbing and pedal marking at a long-term marking site. PeerJ 9, 10447 https://doi.org/10.7717/peerj.10447 (2021).Article 

    Google Scholar 
    Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. Scent-marking investment and motor patterns are affected by the age and sex of wild brown bears. Anim. Behav. 94, 107–116 (2014).Article 

    Google Scholar 
    Taylor, A. P., Gunther, M. S. & Allen, M. L. Black bear marking behaviour at rub trees during the breeding season in northern California. Behaviour 152, 1097–1111 (2015).Article 

    Google Scholar 
    Filipczyková, E., Heitkönig, I., Castellanos, A., Hantson, W. & Steyaert, S. Marking behavior of Andean bears in an Ecuadorian cloud forest: A pilot study. Ursus 27, 122–128 (2017).Article 

    Google Scholar 
    Stringham, S. F. Aggressive body language of bears and wildlife viewing: A response to Geist (2011). Hum.-Wildl. Interact. 5, 4 (2011).
    Google Scholar 
    Swaisgood, R. R., Lindburg, D. G. & Zhang, H. Discrimination of oestrous status in giant pandas (Ailuropoda melanoleuca) via chemical cues in urine. J. Zool. 257, 381–386 (2002).Article 

    Google Scholar 
    Wilson, A. E. et al. Behavioral, semiochemical and androgen responses by male giant pandas to the olfactory sexual receptivity cues of females. Theriogenology 114, 330–337 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sillero-Zubiri, C. & Macdonald, D. W. Scent-marking and territorial behaviour of Ethiopian wolves Canis simensis. J. Zool. 245, 351–361 (1998).Article 

    Google Scholar 
    Stępniak, K. M., Niedźwiecka, N., Szewczyk, M. & Mysłajek, R. W. Scent marking in wolves Canis lupus inhabiting managed lowland forests in Poland. Mammal Res. 65, 629–638 (2020).Article 

    Google Scholar 
    Liu, D. et al. Do anogenital gland secretions of giant panda code for their sexual ability? Chin. Sci. Bull. 51, 1986–1995 (2006).Article 
    CAS 

    Google Scholar 
    Tattoni, C., Bragalanti, N., Groff, C. & Rovero, F. Patterns in the use of rub trees by the Eurasian brown bear. Hystrix 26, 118 (2015).
    Google Scholar 
    Zhang, J. X. et al. Potential chemosignals in the anogenital gland secretion of giant pandas, Ailuropoda melanoleuca, associated with sex and individual identity. J. Chem. Ecol. 34, 398–407 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Swaisgood, R. R., Lindburg, D. G., Zhou, X. & Owen, M. A. The effects of sex, reproductive condition and context on discrimination of conspecific odours by giant pandas. Anim. Behav. 60, 227–237 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Swaisgood, R., Lindburg, D. & Zhou, X. Giant pandas discriminate individual differences in conspecific scent. Anim. Behav. 57, 1045–1053 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, D. et al. Do urinary chemosignals code for sex, age, and season in the giant panda, Ailuropoda melanoleuca? in Chemical Signals in Vertebrates. Vol. 12. 207–222 (eds. East, M. L. & Dehnhard, M.). https://doi.org/10.1007/978-1-4614-5927-9_16 (Springer, 2013).Hagey, L. & MacDonald, E. Chemical cues identify gender and individuality in giant pandas (Ailuropoda melanoleuca). J. Chem. Ecol. 29, 1479–1488 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wilson, A. E., Sparks, D. L., Knott, K. K., Willard, S. & Brown, A. Implementing solid phase microextraction (SPME) as a tool to detect volatile compounds produced by giant pandas in the environment. PLoS ONE 13, e0208618 https://doi.org/10.1371/journal.pone.0208618 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, A. E. et al. Field air analysis of volatile compounds from free-ranging giant pandas. Ursus 29, 75–81 (2019).Article 

    Google Scholar 
    Crupi, A. P., Waite, J. N., Flynn, R. W. & Beier, L. Brown bear population estimation in Yakutat, Southeast Alaska. Alaska Department of Fish and Game https://doi.org/10.13140/RG.2.2.35947.54568 (2017).Article 

    Google Scholar 
    Sikes, R. S., Gannon, W. L. & The Animal Care and Use Committee of the American Society of Mammalogists. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).Matson, G. et al. A Laboratory Manual for Cementum Age Determination of Alaska Brown Bear First Premolar Teeth. Alaska Department of Fish and Game, Division of Wildlife Conservation https://www.adfg.alaska.gov/index.cfm?adfg=librarypublications.wildlifepublicationsdetails&pubidentifier=3374 (1993).Seryodkin, I. V. Marking activity of the Kamchatka brown bear (Ursus arctos piscator). Achiev. Life Sci. 8, 153–161 (2014).
    Google Scholar 
    Peralbo-Molina, A., Calderón-Santiago, M., Jurado-Gámez, B., Luque De Castro, M. D. & Priego-Capote, F. Exhaled breath condensate to discriminate individuals with different smoking habits by GC-TOF/MS. Sci. Rep. 7, 1421 https://doi.org/10.1038/s41598-017-01564-z (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, D. et al. Male panda (Ailuropoda melanoleuca) urine contains kinship information. Chin. Sci. Bull. 53, 2793–2800 (2008).CAS 

    Google Scholar 
    Kean, E. F., Chadwick, E. A. & Müller, C. T. Scent signals individual identity and country of origin in otters. Mamm. Biol. Z. Säugetierkd. 80, 99–105 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).Harris, R. L., Holland, B. R., Cameron, E. Z., Davies, N. W. & Nicol, S. C. Chemical signals in the echidna: Differences between seasons, sexes, individuals and gland types. J. Zool. 293, 171–180 (2014).Article 

    Google Scholar 
    Vaglio, S. et al. Sternal gland scent-marking signals sex, age, rank, and group identity in captive mandrills. Chem. Senses 41, 177–186 (2016).PubMed 

    Google Scholar 
    Knott, K. K. et al. Blood-based biomarkers of selenium and thyroid status indicate possible adverse biological effects of mercury and polychlorinated biphenyls in Southern Beaufort Sea polar bears. Environ. Res. 111, 1124–1136 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, A. E. et al. Development and validation of protein biomarkers of health in grizzly bears. Conserv. Physiol. 8, coaa056 https://doi.org/10.1093/conphys/coaa056 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. Vegan: community ecology package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan (2020).Williams, C. L., Ybarra, A. R., Meredith, A. N., Durrant, B. S. & Tubbs, C. W. Gut microbiota and phytoestrogen-associated infertility in Southern White Rhinoceros. MBio 10, e00311-19 https://doi.org/10.1128/mBio.00311-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dill-McFarland, K. A., Breaker, J. D. & Suen, G. Microbial succession in the gastrointestinal tract of dairy cows from 2 weeks to first lactation. Sci. Rep. 7, 40864 https://doi.org/10.1038/srep40864 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, C. L. et al. Dietary changes during weaning shape the gut microbiota of red pandas (Ailurus fulgens). Conserv. Physiol. 6, cox075 https://doi.org/10.1093/conphys/cox075 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolar, K. STAT: interactive document for working with basic statistical analysis. R package version 0.1.0. https://CRAN.R-project.org/package=STAT (2019).Gese, E. & Ruff, R. Scent-marking by coyotes, Canis latrans: The influence of social and ecological factors. Anim. Behav. 54, 1155–1166 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Thompson, C. L. et al. What smells? Developing in-field methods to characterize the chemical composition of wild mammalian scent cues. Ecol. Evol. 10, 4691–4701 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Charpentier, M. J. E., Barthes, N., Proffit, M., Bessière, J.-M. & Grison, C. Critical thinking in the chemical ecology of mammalian communication: Roadmap for future studies. Funct. Ecol. 26, 769–774 (2012).Article 

    Google Scholar 
    Martín, J., Carranza, J., López, P., Alarcos, S. & Pérez-González, J. A new sexual signal in rutting male red deer: Age related chemical scent constituents in the belly black spot. Mamm. Biol. 79, 362–368 (2014).Article 

    Google Scholar 
    Carranza, J. et al. The dark ventral patch: A bimodal flexible trait related to male competition in red deer. PLoS ONE 15, 0241374 https://doi.org/10.1371/journal.pone.0241374 (2020).Article 
    CAS 

    Google Scholar 
    Kean, E. F., Bruford, M. W., Russo, I. R. M., Müller, C. T. & Chadwick, E. A. Odour dialects among wild mammals. Sci. Rep. 7, 13593 https://doi.org/10.1038/s41598-017-12706-8 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marneweck, C., Jürgens, A. & Shrader, A. M. The role of middens in white rhino olfactory communication. Anim. Behav. 140, 7–18 (2018).Article 

    Google Scholar 
    Linklater, W. L., Mayer, K. & Swaisgood, R. R. Chemical signals of age, sex and identity in black rhinoceros. Anim. Behav. 85, 671–677 (2013).Article 

    Google Scholar 
    White, A. M., Swaisgood, R. R. & Zhang, H. Chemical communication in the giant panda (Ailuropoda melanoleuca): The role of age in the signaller and assessor. J. Zool. 259, 171–178 (2003).Article 

    Google Scholar 
    Steiger, S., Schmitt, T. & Schaefer, H. M. The origin and dynamic evolution of chemical information transfer. Proc. R. Soc. B Biol. Sci. 278, 970–979 https://doi.org/10.1098/rspb.2010.2285 (2011).Article 

    Google Scholar 
    Williams, C. L. et al. Wildlife-microbiome interactions and disease: Exploring opportunities for disease mitigation across ecological scales. Drug Discov. Today Dis. Models 28, 105–115 (2018).Article 

    Google Scholar 
    Chiang, Y. R., Wei, S. T. S., Wang, P. H., Wu, P. H. & Yu, C. P. Microbial degradation of steroid sex hormones: Implications for environmental and ecological studies. Microb. Biotechnol. 13, 926–949 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Williams, C. L., Garcia-Reyero, N., Martyniuk, C. J., Tubbs, C. W. & Bisesi, J. H. Regulation of endocrine systems by the microbiome: Perspectives from comparative animal models. Gen. Comp. Endocrinol. 292, 113437 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Theis, K. R., Venkataraman, A., Wagner, A. P., Holekamp, K. E. & Schmidt, T. M. Age-related variation in the scent pouch bacterial communities of striped hyenas (Hyaena hyaena). Chem. Signals Vertebr. 13, 87–103 (2016).Article 

    Google Scholar 
    Steyaert, S. M. J. G., Endrestøl, A., Hackländer, K., Swenson, J. E. & Zedrosser, A. The mating system of the brown bear Ursus arctos. Mammal Rev. 42, 12–34 (2012).Article 

    Google Scholar 
    Bellemain, E. et al. The dilemma of female mate selection in the brown bear, a species with sexually selected infanticide. Proc. R. Soc. B Biol. Sci. 273, 283–291 https://doi.org/10.1098/rspb.2005.3331 (2006).Article 

    Google Scholar 
    Zedrosser, A., Bellemain, E., Taberlet, P. & Swenson, J. E. Genetic estimates of annual reproductive success in male brown bears: The effects of body size, age, internal relatedness and population density. J. Anim. Ecol. 76, 368–375 (2007).Article 
    PubMed 

    Google Scholar 
    Schwartz, C. C. et al. Reproductive maturation and senescence in the female brown bear. Ursus 14, 109–119 (2003).
    Google Scholar 
    Schulte, B. A., Freeman, E. W., Goodwin, T. E., Hollister-Smith, J. & Rasmussen, L. E. L. Honest signalling through chemicals by elephants with applications for care and conservation. Appl. Anim. Behav. Sci. 102, 344–363 (2007).Article 

    Google Scholar 
    Støen, O.-G., Bellemain, E., Sæbø, S. & Swenson, J. E. Kin-related spatial structure in brown bears Ursus arctos. Behav. Ecol. Sociobiol. 59, 191–197 (2005).Article 

    Google Scholar 
    Egbert, A. L. & Stokes, A. W. The social behaviour of brown bears on an Alaskan salmon stream. Int. Conf. Bear Res. Manag. 3, 41–56 (1976).
    Google Scholar 
    Craighead, J. J., Sumner, J. S. & Mitchell, J. A. The Grizzly Bears of Yellowstone: Their Ecology in the Yellowstone Ecosystem, 1959–1992 (Island Press, 1995).
    Google Scholar 
    Burgener, N., Dehnhard, M., Hofer, H. & East, M. L. Does anal gland scent signal identity in the spotted hyaena? Anim.
    Behav. 77, 707–715 (2009).Article 

    Google Scholar 
    Noonan, M. J. et al. Knowing me, knowing you: Anal gland secretion of European badgers (Meles meles) codes for individuality, sex and social group membership. J. Chem. Ecol. 45, 823–837 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sun, L. & Müller-Schwarze, D. Sibling recognition in the beaver: A field test for phenotype matching. Anim. Behav. 54, 493–502 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Thom, M. D. & Hurst, J. L. Individual recognition by scent. Ann. Zool. Fenn. 41, 765–787 (2004).
    Google Scholar 
    Roberts, S. A. et al. Individual odour signatures that mice learn are shaped by involatile major urinary proteins (MUPs). BMC Biol. 16, 1–19 https://doi.org/10.1186/s12915-018-0512-9 (2018).Article 
    CAS 

    Google Scholar 
    Henkel, S. & Setchell, J. M. Group and kin recognition via olfactory cues in chimpanzees (Pan troglodytes). Proc. R. Soc. B Biol. Sci. 285, 20181527 https://doi.org/10.1098/rspb.2018.1527 (2018).Article 

    Google Scholar 
    Vogt, K., Boos, S., Breitenmoser, U. & Kölliker, M. Chemical composition of Eurasian lynx urine conveys information on reproductive state, individual identity, and urine age. Chemoecology 26, 205–217 (2016).Article 
    CAS 

    Google Scholar 
    Wyatt, T. D. Pheromones and signature mixtures: Defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 196, 685–700 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnston, R. E. Chemical communication in rodents: From pheromones to individual recognition. J. Mammal. 84, 1141–1162 (2003).Article 

    Google Scholar 
    Dehnhard, M. Mammal semiochemicals: Understanding pheromones and signature mixtures for better zoo-animal husbandry and conservation. Int. Zoo Yearb. 45, 55–79 (2011).Article 

    Google Scholar 
    Brennan, P. A. & Kendrick, K. M. Mammalian social odours: Attraction and individual recognition. Philos. Trans. R. Soc. B Biol. Sci. 361, 2061–2078 https://doi.org/10.1098/rstb.2006.1931 (2006).Article 
    CAS 

    Google Scholar 
    Bellemain, E., Swenson, J. E. & Taberlet, P. Mating strategies in relation to sexually selected infanticide in a non-social carnivore: The brown bear. Ethology 112, 238–246 (2006).Article 

    Google Scholar 
    Rogers, L. L. Effects of food supply and kinship on social behavior, movements, and population growth of black bears in northeastern Minnesota. Wildl. Monogr. 97, 72 (1987).
    Google Scholar 
    Noyce, K. V. & Garshelis, D. L. Follow the leader: Social cues help guide landscape-level movements of American black bears (Ursus americanus). Can. J. Zool. 92, 1005–1017 (2014).Article 

    Google Scholar 
    Hansen, J. E., Hertel, A. G., Frank, S. C., Kindberg, J. & Zedrosser, A. Social environment shapes female settlement decisions in a solitary carnivore. Behav. Ecol. 33, 137–146 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Morehouse, A. T., Loosen, A. E., Graves, T. A. & Boyce, M. S. The smell of success: Reproductive success related to rub behavior in brown bears. PLoS ONE 16, 247964 https://doi.org/10.1371/journal.pone.0247964 (2021).Article 
    CAS 

    Google Scholar 
    Tschanz, B., Meyer-Holzapfel, M. & Bachmann, S. Das informationssystem bei Braunbären. Z. Tierpsychol. 27, 47–72 (1970).Article 

    Google Scholar 
    Tattoni, C., Bragalanti, N., Ciolli, M., Groff, C. & Rovero, F. Behavior of the European brown bear at rub trees. Ursus 32e9, 1–11https://doi.org/10.2192/URSUS-D-20-00022.3 (2021).Article 

    Google Scholar 
    Alberts, A. C. Constraints on the design of chemical communication systems in terrestrial vertebrates. Am. Nat. 139, S62–S89 (1992).Article 

    Google Scholar  More