More stories

  • in

    The spatio-temporal distribution of alkaline phosphatase activity and phoD gene abundance and diversity in sediment of Sancha Lake

    Smith, V. H. Eutrophication of freshwater and coastal marine ecosystems: A global problem. Environ. Sc. Pollut. R. Int. 10, 126–139 (2003).Article 
    CAS 

    Google Scholar 
    Jeppesen, E., Sondergaard, M. & Jensen, J. P. Lake responses to reduced nutrient loading an analysis of contemporary long term data from 35 case studies. Freshw. Biol. 50, 1747–1771 (2005).Article 
    CAS 

    Google Scholar 
    Kim, L. H., Choi, E. & Michal, K. S. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere 50, 53–61 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Jiang, X. J., Xiang, C. & Yao, Y. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China. Water Res. 42, 2251–2259 (2008).Article 
    CAS 

    Google Scholar 
    Wang, S. R., Jin, X. C. & Bu, Q. Y. Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloids Surf. A 316, 245–252 (2008).Article 
    CAS 

    Google Scholar 
    Miao, S. Y., De-Laune, R. D. & Jug-Sujinda, A. Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake. Sci. Total Environ. 371, 334–343 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Smits, J. G. C. & Van Beek, J. K. L. ECO: A generic eutrophication model including comprehensive sediment-water interaction. PLoS ONE 8, e68104 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Topcu, A. & Pulatsu, S. Phosphorus fractions and cycling in the sediment of a shallow eutrophic pond. Tarim Bilim. Derg. 20, 63–70 (2014).Article 

    Google Scholar 
    Jeppesen, E., Sondergaard, M. & Jensen, J. P. Lake responses to reduced nutrient loading-an analysis of contemporary long-term data from 35 case studies. Freshw. Biol. 50, 1747–1771 (2005).Article 
    CAS 

    Google Scholar 
    Song, C. L., Cao, X. Y. & Liu, Y. B. Seasonal variations in chlorophyll a concentrations in relation to potentials of sediment phosphate release by different mechanisms in a large chinese shallow eutrophic lake (Lake Taihu). Geomicrobiol. J. 26, 508–515 (2009).Article 
    CAS 

    Google Scholar 
    Pop, O., Martin, U., Abel, C. & Müller, J. P. The twin-arginine signal peptide of PhoD and the TatAd/Cd proteins of Bacillus subtilis form an autonomous tat translocation system. J. Biol. Chem. 277, 3268–3273 (2002).Article 
    CAS 

    Google Scholar 
    Luo, H. W., Zhang, H. M. & Long, R. A. Depth distributions of alkaline phosphatase and phosphonate utilization genes in the North Pacific Subtropical Gyre. Aquat. Microb. Ecol. 62, 61–69 (2011).Article 

    Google Scholar 
    Tan, H. et al. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol. Fertil. Soils 49, 661–672 (2012).Article 

    Google Scholar 
    Wan, W. J. et al. Spatial differences in soil microbial diversity caused by pH-driven organic phosphorus mineralization. Land Degrad. Dev. 32, 766–776 (2021).Article 

    Google Scholar 
    Chen, X. et al. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials. Appl. Soil Ecol. 119, 197–204 (2017).Article 
    ADS 

    Google Scholar 
    Sagnon, A. et al. Amendment with Burkina Faso phosphate rock-enriched composts alters soil chemical properties and microbial structure, and enhances sorghum agronomic performance. Sci. Rep. 12, 13945 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Chhabra, S. et al. Fertilization management affects the alkaline phosphatase bacterial community in barley rhizosphere soil. Biol. Fertil. Soils 49, 31–39 (2012).Article 

    Google Scholar 
    Luo, H. W., Benner, R., Long, R. A. & Hu, J. J. Subcellular localization of marine bacterial alkaline phosphatases. Proc. Natl. Acad. Sci. 106, 212–219 (2009).Article 

    Google Scholar 
    Zhang, T. X. et al. Suspended particles phoD alkaline phosphatase gene diversity in large shallow eutrophic Lake Taihu. Sci. Total Environ. 728, 138615 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, H. et al. Nutrients regeneration pathway, release potential, transformation pattern and algal utilization strategies jointly drove cyanobacterial growth and their succession. J. Environ. Sci. 103, 255–267 (2021).Article 
    CAS 

    Google Scholar 
    Sun, T. T., Huang, T. & Liu, Y. X. Effects of cyanobacterial growth and decline on the phoD-harboring bacterial community structure in sediments of Lake Chaohu. J. Lake Sci. 34, 32 (2022).ADS 

    Google Scholar 
    Li, Y., Ai, M. J., Sun, Y., Zhang, Y. Q. & Zhang, J. Q. Spirosoma lacussanchae sp. nov., a phosphate-solubilizing bacterium isolated from a freshwater reservoir. Int. J. Syst. Evol. Microbiol. 67, 3144–3149 (2017).Article 
    CAS 

    Google Scholar 
    Li, Y., Zhang, J. J., Xu, W. L. & Mou, Z. S. Microbial community structure in the sediments and its relation to environmental factors in eutrophicated Sancha Lake. Int. J. Environ. Res. Public Health 16, 1931–1946 (2019).Article 
    CAS 

    Google Scholar 
    Jia, B. Y., Tang, Y. & Fu, W. L. Relationship among sediment characteristics, eutrophication process and human activities in the Sancha Lake. China Environ. Sci. 33, 1638–1644 (2013).CAS 

    Google Scholar 
    Li, Y., Zhang, J. J., Zhang, J. Q., Xu, W. L. & Mou, Z. S. Characteristics of inorganic phosphate-solubilizing bacteria from the sediments of a Eutrophic Lake. Int. J. Environ. Res. Public Health 16, 2141 (2019).Article 
    CAS 

    Google Scholar 
    Ruban, V., Brigault, S., Demare, D. & Philippe, A. M. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues reservoir, France. J. Environ. Monit. 1, 403–407 (1999).Article 
    CAS 

    Google Scholar 
    Ruban, V., López-Sánchez, J. F. & Pardo, P. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments: A synthesis of recent works. Fresenius J. Anal. Chem. 370, 224–228 (2001).Article 
    CAS 

    Google Scholar 
    Li, Y., Zhang, J. Q., Gong, Z. L., Fu, W. L. & Wu, D. M. Fractions and temporal and spatial distribution of phosphorus in the sediments of Sancha lake. Appl. Ecol. Environ. Res. 17, 11731–11743 (2019).Article 

    Google Scholar 
    Li, Y., Zhang, J. Q., Gong, Z. L., Xu, W. L. & Mou, Z. S. Gcd gene diversity of quinoprotein glucose dehydrogenase in the sediment of Sancha lake and its response to the environment. Int. J. Environ. Res. Public Health 16, 1–10 (2019).Article 

    Google Scholar 
    Luo, G. W. et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biol. Fertil. Soils 53, 375–388 (2017).Article 
    CAS 

    Google Scholar 
    Lagos, L. et al. Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites. Biol. Fertil. Soils 52, 1007–1019 (2016).Article 
    CAS 

    Google Scholar 
    Acuña, J. et al. Bacterial alkaline phosphomono-esterase in the rhizospheres of plants grown in chilean extreme environments. Biol. Fertil. Soils 52, 763–773 (2016).Article 

    Google Scholar 
    Nicholas, A. B. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods. 10, 57–59 (2013).Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).Article 
    CAS 

    Google Scholar 
    Fan, X. F. & Xing, P. The vertical distribution of sediment archaeal community in the (black bloom) disturbing Zhushan Bay of Lake Taihu. Archaea 2016, 201–208 (2016).Article 

    Google Scholar 
    White, J. R., Nagarajan, N. & Pop, M. O. Statistical methods for detecting differentially abundant features in clinical metagenomic samples (differential abundance in clinical metagenomics). PLoS Comput. Biol. 5, 1–11 (2009).Article 

    Google Scholar 
    Hu, H., Chen, X. J., Hou, F. J., Wu, Y. P. & Cheng, Y. X. Bacterial and fungal community structures in loess plateau grasslands with different grazing intensities. Front. Microbiol. 8, 606 (2017).Article 

    Google Scholar 
    Dai, J. Y. et al. Bacterial alkaline phosphatases and affiliated encoding genes in natural waters: A review. J. Lake Sci. 28, 1153–1166 (2016).Article 

    Google Scholar 
    Chróst, R. J. & Overbeck, J. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterio-plankton in lake plusee (North German Eutrophic Lake). Microb. Ecol. 13, 229–248 (1987).Article 

    Google Scholar 
    Margalef, O. et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 7, 1337 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhao, D. D., Luo, J. F., Huang, X. Y. & Lin, W. T. Diversity of bacterial APase phoD gene in the Pearl River water. Acta Sci. Circum. 35, 722–728 (2015).CAS 

    Google Scholar 
    Valdespino-Castillo, P. M. et al. Alkaline phosphatases in microbialites and bacterioplankton from Alchichica soda lake, Mexico. FEMS Microbiol. Ecol. 90, 504–519 (2014).CAS 

    Google Scholar 
    Ni, Z. K., Li, Y. & Wang, S. R. Cognizing and characterizing the organic phosphorus in lake sediments: Advances and challenges. Water Res. 220, 118663 (2022).Article 
    CAS 

    Google Scholar 
    Han, S. S. & Wen, T. M. Phosphorus release and affecting factors in the sediments of eutrophic water. J. Ecol. 23, 98–101 (2004).
    Google Scholar 
    Wang, F. F., Qu, J. H. & Hu, Y. S. Spatio-temporal characteristics and correlation of phosphate, pH and alkaline phosphatase on water-sediment interface of Lake Taihu. Ecol. Environ. Sci. 21, 907–912 (2012).
    Google Scholar 
    Lu, Y. M. et al. Bioavailability of organic phosphorus in Lake Chaohu sediments. J. Environ. Eng. Technol. 10, 197–204 (2020).
    Google Scholar 
    LeBrun, E. S., King, R. S., Back, J. A. & Kang, S. Microbial community structure and function decoupling across a phosphorus gradient in streams. Microb. Ecol. 75, 64–73 (2018).Article 
    CAS 

    Google Scholar 
    Zhang, J. et al. Connecting sources, fractions and algal availability of sediment phosphorus in shallow lakes: An approach to the criteria for sediment phosphorus concentrations. J. Environ. Sci. 25, 798–810 (2023).Article 

    Google Scholar 
    Hu, Y. J. et al. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils. Sci. Total Environ. 628–629, 53–63 (2018).Article 
    ADS 

    Google Scholar  More

  • in

    Public interest in individual study animals can bolster wildlife conservation

    Benson, E. S. Sci. Context 29, 107–128 (2016).Article 
    PubMed 

    Google Scholar 
    Buckmaster, C. A. Lab Anim. 44, 237 (2015).Article 

    Google Scholar 
    Kelly, M. J. et al. J. Zool. 244, 473–488 (1998).Article 

    Google Scholar 
    Spagnuolo, O. S. B., Lemerle, M. A., Holekamp, K. E. & Wiesel, I. Mamm. Biol. https://doi.org/10.1007/s42991-022-00309-4 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    California Department of Fish and Wildlife. Mountain lion P-22 compassionately euthanized following complete health evaluation results. wildlife.ca.gov, https://wildlife.ca.gov/News/mountain-lion-p-22-compassionately-euthanized-following-complete-health-evaluation-results (17 December 2022).Road Ecology Center, UC Davis. California roadkill observation system, https://www.wildlifecrossing.net/california/ (accessed 19 December 2022).Wong-Parodi, G. & Feygina, I. Environ. Commun. 15, 571–593 (2021).Article 

    Google Scholar 
    Carmi, N., Arnon, S. & Orion, N. J. Environ. Educ. 46, 183–201 (2015).Article 

    Google Scholar 
    Manfredo, M. J., Urquiza-Haas, E. G., Don Carlos, A. W., Bruskotter, J. T. & Dietsch, A. M. Biol. Conserv. 241, 108297 (2020).Article 

    Google Scholar 
    Schueler, D. S. & Newberry, M. G. III Appl. Environ. Educ. Commun. 19, 259–273 (2020).Article 

    Google Scholar 
    Jennings, L. Public gets to name Dallas Zoo’s baby giraffe. Dallas Zoo https://zoohoo.dallaszoo.com/2014/11/05/public-gets-to-name-dallas-zoos-baby-giraffe/ (5 November 2014).Verma, A., van der Wal, R. & Fischer, A. Ambio 44(Suppl 4), 648–660 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Macdonald, D. W., Jacobsen, K. S., Burnham, D., Johnson, P. J. & Loveridge, A. J. Animals 6, 26 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, M. D., Shanahan, E. A. & McBeth, M. K. The Science of Stories: Applications of the Narrative Policy Framework in Public Policy Analysis (Palgrave MacMillan, 2014). More

  • in

    Diagnosing destabilization risk in global land carbon sinks

    Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Change 9, 73–79 (2019).Article 
    ADS 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Bastos, A. et al. Contrasting effects of CO2 fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO2 exchange. Atmos. Chem. Phys. 19, 12361–12375 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Peñuelas, J. et al. Assessment of the impacts of climate change on Mediterranean terrestrial ecosystems based on data from field experiments and long-term monitored field gradients in Catalonia. Environ. Exp. Bot. 152, 49–59 (2018).Article 

    Google Scholar 
    Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dakos, V., Nes, E. H. & Scheffer, M. Flickering as an early warning signal. Theor. Ecol. 6, 309–317 (2013).Article 

    Google Scholar 
    Sillmann, J., Daloz, A. S., Schaller, N. & Schwingshackl, C. in Climate Change 3rd edn (ed. Letcher, T. M.) 359–372 (Elsevier, 2021).Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Buermann, W. et al. Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink. Biogeosciences 13, 1597–1607 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).Article 
    ADS 

    Google Scholar 
    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).Article 
    PubMed 

    Google Scholar 
    Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Change 4, 471–476 (2014).Article 
    ADS 

    Google Scholar 
    Fernández-Martínez, M. et al. Spatial variability and controls over biomass stocks, carbon fluxes and resource-use efficiencies in forest ecosystems. Trees Struct. Funct. 28, 597–611 (2014).Article 

    Google Scholar 
    Ciais, P. et al. Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature 568, 221–225 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Mazancourt, C. et al. Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013).Article 
    PubMed 

    Google Scholar 
    Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6, 1032–1036 (2016).Article 
    ADS 

    Google Scholar 
    Fernández‐Martínez, M. et al. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Glob. Change Biol. 26, 7067–7078 (2020).Article 
    ADS 

    Google Scholar 
    Musavi, T. et al. Stand age and species richness dampen interannual variation of ecosystem-level photosynthetic capacity. Nat. Ecol. Evol. 1, 0048 (2017).Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    IPBES: Summary for Policymakers. In The Global Assessment Report on Biodiversity and Ecosystem Services (eds Díaz, S. et al.) 1–56 (IPBES, 2019).Heath, J. P. Quantifying temporal variability in population abundances. Oikos 115, 573–581 (2006).Article 

    Google Scholar 
    Fernández-Martínez, M., Vicca, S., Janssens, I. A., Martín-Vide, J. & Peñuelas, J. The consecutive disparity index, D, as measure of temporal variability in ecological studies. Ecosphere 9, e02527 (2018).Article 

    Google Scholar 
    Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci USA 104, 5925–5930 (2007).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ackerman, D. E., Chen, X. & Millet, D. B. Global nitrogen deposition (2° × 2.5° grid resolution) simulated with GEOS-Chem for 1984–1986, 1994–1996, 2004–2006, and 2014–2016 (University of Minnesota, 2018); https://conservancy.umn.edu/handle/11299/197613.Harris, I., Jones, P. D. D., Osborn, T. J. J. & Lister, D. H. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2013).Article 

    Google Scholar 
    Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wang, K. et al. Causes of slowing-down seasonal CO2 amplitude at Mauna Loa. Glob. Change Biol. 26, 4462–4477 (2020).Article 
    ADS 

    Google Scholar 
    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science 354, aaf8957–aaf8957 (2016).Article 
    PubMed 

    Google Scholar 
    Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).Article 
    PubMed 

    Google Scholar 
    Peguero, G. et al. Fast attrition of springtail communities by experimental drought and richness–decomposition relationships across Europe. Glob. Change Biol. 25, 2727–2738 (2019).Article 
    ADS 

    Google Scholar 
    Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Cardinale, B. J. Biodiversity improves water quality through niche partitioning. Nature 472, 86–91 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Scheffer, M. Critical Transitions in Nature and Society (Princeton University Press, 2009).Ostfeld, R. & Keesing, F. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evol. 15, 232–237 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chevallier, F. et al. CO2 surface fluxes at grid point scale estimated from a global 21 year reanalysis of atmospheric measurements. J. Geophys. Res. 115, D21307 (2010).Article 
    ADS 

    Google Scholar 
    Chevallier, F. et al. Toward robust and consistent regional CO2 flux estimates from in situ and spaceborne measurements of atmospheric CO2. Geophys. Res. Lett. 41, 1065–1070 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Rödenbeck, C., Houweling, S., Gloor, M. & Heimann, M. CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919–1964 (2003).Article 
    ADS 

    Google Scholar 
    Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. How does the terrestrial carbon exchange respond to interannual climatic variations? A quantification based on atmospheric CO2 data. Biogeosciences 15, 2481–2498 (2018).Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).Article 
    ADS 

    Google Scholar 
    Fernández‐Martínez, M. & Peñuelas, J. Measuring temporal patterns in ecology: the case of mast seeding. Ecol. Evol. 11, 2990–2996 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An introduction with R 2nd edn (Chapman and Hall/CRC, 2017).Ohlson, J. A. & Kim, S. Linear Valuation Without OLS: The Theil–Sen Estimation Approach (SSRN, 2015); https://ssrn.com/abstract=2276927.Komsta, L. Package mblm, 0.12.1: Median-based linear models (2013).Keeling, C. D. et al. in A History of Atmospheric CO2 and its effects on Plants, Animals, and Ecosystems (eds Ehleringer, J. R. et al.) 83–113 (Springer Verlag, 2005).Leroux, B. G., Lei, X. & Breslow, N. in Statistical Models in Epidemiology, the Environment and Clinical Trials (eds Halloran, M. & Berry, D.) 179–191 (Springer-Verlag, 2000).Lee, D. CARBayes: an R package for Bayesian spatial modeling with conditional autoregressive priors. J. Stat. Softw. 55, 1–24 (2013).Article 

    Google Scholar 
    Gonzalez, A. et al. Scaling‐up biodiversity–ecosystem functioning research. Ecol. Lett. 15, ele.13456 (2020).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    Rethinking river water temperature in a changing, human-dominated world

    Ouellet, V. et al. Sci. Total Environ. 736, 139679 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sutadian, A. D., Muttil, N., Yilmaz, A. G. & Perera, B. J. C. Environ. Monit. Assess. 188, 58 (2016).Article 
    PubMed 

    Google Scholar 
    Murdoch, P. S., Baron, J. S. & Miller, T. L. J. Am. Water Resour. Assoc. 36, 347–366 (2000).Article 
    CAS 

    Google Scholar 
    Hannah, D. M. & Garner, G. Prog Phys Geogr. 39, 68–92 (2015).Article 

    Google Scholar 
    Abbott, B. W. et al. Nat. Geosci. 12, 533–540 (2019).Article 
    CAS 

    Google Scholar 
    Grill, G. et al. Nature 569, 215–221 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hermanson, L. et al. Bull. Am. Meteorol. Soc. 103, E1117–E1129 (2022).Article 

    Google Scholar 
    Webb, B. W., Hannah, D. M., Moore, R. D., Brown, L. E. & Nobilis, F. Hydrol. Process. 22, 902–918 (2008).Article 

    Google Scholar 
    Hester, E. T. & Doyle, M. W. J. Am. Water Resour. Assoc. 47, 571–587 (2011).Article 

    Google Scholar 
    Schliemann, S. A., Grevstad, N. & Brazeau, R. H. Hydrol. Process 35, e14001 (2021).Article 

    Google Scholar 
    Jackson, F. L., Fryer, R. J., Hannah, D. M., Millar, C. P. & Malcolm, I. A. Sci. Total Environ. 612, 1543–1558 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    O’Sullivan, A. M., Devito, K. J. & Curry, R. A. Catena 177, 70–83 (2019).Article 

    Google Scholar 
    Chang, H. & Psaris, M. Sci. Total Environ. 461, 587–600 (2013).Article 
    PubMed 

    Google Scholar 
    Hester, E. T. & Bauman, K. S. J. Am. Water Resour. Assoc. 49, 328–342 (2013).Article 

    Google Scholar 
    Croghan, D., Van Loon, A. F., Sadler, J. P., Bradley, C. & Hannah, D. M. Hydrol. Process. 33, 144–159 (2018).Article 

    Google Scholar 
    Levia, D. F. et al. Nat. Geosci. 13, 656–658 (2020).Article 
    CAS 

    Google Scholar 
    Nelson, K. C. & Palmer, M. A. J. Am. Water Resour. Assoc 43, 440–452 (2007).Article 

    Google Scholar 
    Heggenes, J. et al. River Res. Appl. 37, 743–765 (2021).Article 

    Google Scholar 
    Menberg, K., Blum, P., Kurylyk, B. L. & Bayer, P. Hydrol. Earth Syst. Sci. 18, 4453–4466 (2014).Article 

    Google Scholar 
    Tissen, C., Benz, S. A., Menberg, K., Bayer, P. & Blum, P. Environ. Res. Lett. 14, 104012 (2019).Article 
    CAS 

    Google Scholar 
    Hannah, D. M. et al. Hydrol. Process. 36, e14525 (2022).Article 

    Google Scholar 
    Carothers, C. et al. Ecol. Soc. https://doi.org/10.5751/ES-11972-260116 (2021).Dugdale, S. J., Hannah, D. M. & Malcolm, I. A. Earth Sci. Rev. 175, 97–113 (2017).Article 

    Google Scholar 
    Wanders, N., van Vliet, M. T. H., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water Resour. Res. 55, 2760–2778 (2019).Article 

    Google Scholar 
    Tavares, M. H. et al. Remote Sens. Environ. 241, 11172 (2020).Article 

    Google Scholar 
    Dugdale, S. J., Klaus, J. & Hannah, D. M. Water Resour. Res. 58, e2021WR031168 (2022).Article 

    Google Scholar 
    Mao, F. et al. Environ. Sci. Technol. 54, 9145–9158 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hannah, D. M. et al. Hydrol. Process. 25, 1191–1200 (2011).Article 

    Google Scholar 
    Do, H. X., Gudmundsson, L., Leonard, M. & Westra, S. Earth Syst. Sci. Data 10, 765–785 (2018).Article 

    Google Scholar  More

  • in

    Ostreopsis Schmidt and Coolia Meunier (Dinophyceae, Gonyaulacales) from Cook Islands and Niue (South Pacific Ocean), including description of Ostreopsis tairoto sp. nov.

    Verma, A. et al. The genetic basis of toxin biosynthesis in dinofagellates. Microorganisms 7, 222 (2019).Article 
    CAS 

    Google Scholar 
    Hallegraeff, G. M. Ocean climate change, phytoplankton community responses, and harmful algal blooms: A formidable predictive challenge1. J. Phycol. 46, 220–235 (2010).Article 
    CAS 

    Google Scholar 
    Hoppenrath, M., Murray, S., Chomérat, N., Horiguchi, T. Marine Benthic Dinoflagellates – Unveiling Their Worldwide Biodiversity (Kleine Senckenberg-reihe 54). E. Schweizerbart’sche Verlagbuchhandlung (2014).Luo, Z. et al. Cryptic diversity within the harmful dinoflagellate Akashiwo sanguinea in coastal Chinese waters is related to differentiated ecological niches. Harmful Algae 66, 88–96 (2017).Article 

    Google Scholar 
    Litaker, R. W. et al. Taxonomy of Gambierdiscus including four new species, Gambierdiscus caribaeus, Gambierdiscus carolinianus, Gambierdiscus carpenteri and Gambierdiscus ruetzleri (Gonyaulacales, Dinophyceae). Phycologia 48, 344–390 (2009).Article 

    Google Scholar 
    Hoppenrath, M. et al. Taxonomy and phylogeny of the benthic Prorocentrum species (Dinophyceae)—A proposal and review. Harmful Algae 27, 1–28 (2013).Article 

    Google Scholar 
    Wells, M. L. et al. Future HAB science: Directions and challenges in a changing climate. Harmful Algae 91, 101632 (2020).Article 

    Google Scholar 
    Rhodes, L. World-wide occurrence of the toxic dinoflagellate genus Ostreopsis Schmidt. Toxicon 57, 400–407 (2011).Article 
    CAS 

    Google Scholar 
    Parsons, M. L. et al. Gambierdiscus and Ostreopsis: Reassessment of the state of knowledge of their taxonomy, geography, ecophysiology, and toxicology. Harmful Algae 14, 107–129 (2012).Article 
    CAS 

    Google Scholar 
    Schmidt, J. Preliminary report of the botanical results of the Danish expedition to Siam (1899–1900). Part IV Peridiniales. Bot. Tidsskr. 24, 212–221 (1901).
    Google Scholar 
    Accoroni, S. et al. Ostreopsis fattorussoi sp. nov. (Dinophyceae), a new benthic toxic Ostreopsis species from the eastern Mediterranean Sea. J. Phycol. 52, 1064–1084 (2016).Article 
    CAS 

    Google Scholar 
    Verma, A., Hoppenrath, M., Dorantes-Aranda, J. J., Harwood, D. T. & Murray, S. A. Molecular and phylogenetic characterization of Ostreopsis (Dinophyceae) and the description of a new species, Ostreopsis rhodesae sp. nov., from a subtropical Australian lagoon. Harmful Algae 60, 116–130 (2016).Article 
    CAS 

    Google Scholar 
    Fukuyo, Y. Taxonomical study on benthic dinoflagellates collected in coral reefs. Nippon Suisan Gakk. 47, 967–978 (1981).Article 

    Google Scholar 
    Faust, M. A. Three new Ostreopsis species (Dinophyceae): O. marinus sp. nov., O. belizeanus sp. nov., and O. caribbeanus sp. nov.. Phycologia 38, 92–99 (1999).Article 

    Google Scholar 
    Faust, M. A. & Morton, S. L. Morphology and ecology of the marine dinoflagellate Ostreopsis labens sp. nov. (Dinophyceae). J. Phycol. 31, 456–463 (1995).Article 

    Google Scholar 
    Chomérat, N., Bilien, G., Couté, A. & Quod, J.-P. Reinvestigation of Ostreopsis mascarenensis Quod (Dinophyceae, Gonyaulacales) from Reunion Island (SW Indian Ocean): Molecular phylogeny and emended description. Phycologia 59, 140–153 (2020).Article 

    Google Scholar 
    Boisnoir, A., Bilien, G., Lemée, R. & Chomérat, N. First insights on the diversity of the genus Ostreopsis (Dinophyceae, Gonyaulacales) in Guadeloupe Island, with emphasis on the phylogenetic position of O. heptagona. Eur. J. Protistol. 83, 125875 (2022).Article 

    Google Scholar 
    Chomérat, N. et al. Ostreopsis lenticularis Y. Fukuyo (Dinophyceae, Gonyaulacales) from French Polynesia (South Pacific Ocean): A revisit of its morphology, molecular phylogeny and toxicity. Harmful Algae 84, 95–111 (2019).Article 

    Google Scholar 
    Nguyen-Ngoc, L. et al. Morphological and genetic analyses of Ostreopsis (Dinophyceae, Gonyaulacales, Ostreopsidaceae) species from Vietnamese waters with a re-description of the type species, O. siamensis 1. J. Phycol. 57, 1059–1083 (2021).Article 

    Google Scholar 
    Faust, M. A. Observation of sand-dwelling toxic dinoflagellates (Dinophyceae) from widely differing sites, including two new species. J. Phycol. 31, 996–1003 (1995).Article 

    Google Scholar 
    David, H., Laza-Martínez, A., Miguel, I. & Orive, E. Broad distribution of Coolia monotis and restricted distribution of Coolia cf. canariensis (Dinophyceae) on the Atlantic coast of the Iberian Peninsula. Phycologia 53, 342–352 (2014).Article 

    Google Scholar 
    Rhodes, L. L. et al. Toxic dinoflagellates (Dinophyceae) from Rarotonga Cook Islands. Toxicon 56, 751–758 (2010).Article 
    CAS 

    Google Scholar 
    Meunier, A. Coolia monotis sp. nov. in Mémoires du Musée Royal d’Histoire Naturelle de Belgique. Microplankton Mer Flamande, Méme partie—Les Péridiniens 8, 68–69 (1919).
    Google Scholar 
    Rhodes, L. et al. Epiphytic dinoflagellates in sub-tropical New Zealand, in particular the genus Coolia Meunier. Harmful Algae 34, 36–41 (2014).Article 

    Google Scholar 
    Rhodes, L., Adamson, J., Suzuki, T., Briggs, L. & Garthwaite, I. Toxic marine epiphytic dinoflagellates, Ostreopsis siamensis and Coolia monotis (Dinophyceae), in New Zealand. N. Z. J. Mar. Freshw. Res. 34, 371–383 (2000).Article 

    Google Scholar 
    Fraga, S., Penna, A., Bianconi, I., Paz, B. & Zapata, M. Coolia canariensis sp. nov. (Dinophyceae), a new nontoxic epiuphytic benthic dinoflagellate from the Canary Islands 1. J. Phycol. 44, 1060–1070 (2008).Article 
    CAS 

    Google Scholar 
    Lindemann, E. Abteilung Peridineae (Dinoflagellate). In Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen, 3–104 (1928).Biecheler, B. Recherches sur les Péridiniens. Bulletin biologique de France et de Belgique Supplement 36, 1–149 (1952).
    Google Scholar 
    Balech, E. Étude des dinoflagellés du sable de Roscoff. Revue Algologique, Nouvelle Serie 2, 29–52 (1956).

    Google Scholar 
    Mohammad-Noor, N. et al. Autecology and phylogeny of Coolia tropicalis and Coolia malayensis (Dinophyceae), with emphasis on taxonomy of C. tropicalis based on light microscopy, scanning electron microscopy and LSU r DNA 1. J. Phycol. 49, 536–545 (2013).Article 

    Google Scholar 
    Leaw, C. P., Lim, P. T., Cheng, K. W., Ng, B. K. & Usup, G. Morphology and molecular characterization of a new species of thecate benthic dinoflagellate, Coolia malayensis sp. nov. (Dinophyceae) 1. J. Phycol. 46, 162–171 (2010).Article 
    CAS 

    Google Scholar 
    Ten-Hage, L., Turquet, J., Quod, J. & Couté, A. Coolia areolata sp. nov. (Dinophyceae), a new sand-dwelling dinoflagellate from the southwestern Indian Ocean. Phycologia 39, 377–383 (2000).Article 

    Google Scholar 
    Karafas, S., York, R. & Tomas, C. Morphological and genetic analysis of the Coolia monotis species complex with the introduction of two new species, Coolia santacroce sp. nov. and Coolia palmyrensis sp. nov. (Dinophyceae). Harmful Algae 46, 18–33 (2015).Article 
    CAS 

    Google Scholar 
    David, H., Laza-Martínez, A., Rodríguez, F., Fraga, S. & Orive, E. Coolia guanchica sp. nov.(Dinophyceae) a new epibenthic dinoflagellate from the Canary Islands (NE Atlantic Ocean). Eur. J. Phycol. 55, 76–88 (2020).Article 
    CAS 

    Google Scholar 
    Sato, S. et al. Phylogeography of Ostreopsis along west Pacific coast, with special reference to a novel clade from Japan. PLoS One 6, e27983 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Penna, A. et al. Characterization of Ostreopsis and Coolia (Dinophyceae) isolates in the western Mediterranean Sea based on morphology, toxicity and internal transcribed spacer 5.8 S rDNA sequences. J. Phycol. 41, 212–225 (2005).Article 
    CAS 

    Google Scholar 
    Tawong, W. et al. Distribution and molecular phylogeny of the dinoflagellate genus Ostreopsis in Thailand. Harmful Algae 37, 160–171 (2014).Article 

    Google Scholar 
    Faimali, M. et al. Toxic effects of harmful benthic dinoflagellate Ostreopsis ovata on invertebrate and vertebrate marine organisms. Mar. Environ. Res. 76, 97–107 (2012).Article 
    CAS 

    Google Scholar 
    Tubaro, A. et al. Case definitions for human poisonings postulated to palytoxins exposure. Toxicon 57, 478–495 (2011).Article 
    CAS 

    Google Scholar 
    Ciminiello, P. et al. Investigation of the toxin profile of Greek mussels Mytilus galloprovincialis by liquid chromatography mass spectrometry. Toxicon 47, 174–181 (2006).Article 
    CAS 

    Google Scholar 
    Giussani, V. et al. Active role of the mucilage in the toxicity mechanism of the harmful benthic dinoflagellate Ostreopsis cf. ovata. Harmful Algae 44, 46–53 (2015).Article 
    CAS 

    Google Scholar 
    Usami, M. et al. Palytoxin analogs from the dinoflagellate Ostreopsis siamensis. J. Am. Chem. Soc. 117, 5389–5390 (1995).Article 
    CAS 

    Google Scholar 
    Ukena, T. et al. Structure elucidation of ostreocin D, a palytoxin analog isolated from the dinoflagellate Ostreopsis siamensis. Biosci. Biotechnol. Biochem. 65, 2585–2588 (2001).Article 
    CAS 

    Google Scholar 
    Amzil, Z. et al. Ovatoxin-a and palytoxin accumulation in seafood in relation to Ostreopsis cf. ovata blooms on the French Mediterranean coast. Mar. Drugs 10, 477–496 (2012).Article 
    CAS 

    Google Scholar 
    Ciminiello, P. et al. Unique toxin profile of a Mediterranean Ostreopsis cf. ovata strain: HR LC-MS n characterization of ovatoxin-f, a new palytoxin congener. Chem. Res. Toxicol. 25, 1243–1252 (2012).Article 
    CAS 

    Google Scholar 
    Laza-Martinez, A., Orive, E. & Miguel, I. Morphological and genetic characterization of benthic dinoflagellates of the genera Coolia, Ostreopsis and Prorocentrum from the south-eastern Bay of Biscay. Eur. J. Phycol. 46, 45–65 (2011).Article 

    Google Scholar 
    Holmes, M. J., Lewis, R. J., Jones, A. & Hoy, A. W. W. Cooliatoxin, the first toxin from Coolia monotis (Dinophyceae). Nat. Toxins 3, 355–362 (1995).Article 
    CAS 

    Google Scholar 
    Rhodes, L. L. & Thomas, A. E. Coolia monotis (Dinophyceae): A toxic epiphytic microalgal species found in New Zealand (Note). N. Z. J. Mar. Freshw. Res. 31, 139–141 (1997).Article 
    CAS 

    Google Scholar 
    Tibiriçá, C. EJd. A. et al. Diversity and toxicity of the genus Coolia Meunier in Brazil, and detection of 44-methyl Gambierone in Coolia tropicalis. Toxins 12, 327 (2020).Article 

    Google Scholar 
    Tillmann, U., Hoppenrath, M. & Gottschling, M. Reliable determination of Prorocentrum micans Ehrenb. (Prorocentrales, Dinophyceae) based on newly collected material from the type locality. Eur. J. Phycol 54, 417–431 (2019).Article 
    CAS 

    Google Scholar 
    Chomérat, N. et al. Taxonomy and toxicity of a bloom-forming Ostreopsis species (Dinophyceae, Gonyaulacales) in Tahiti island (South Pacific Ocean): One step further towards resolving the identity of O. siamensis. Harmful Algae 98, 101888 (2020).Article 

    Google Scholar 
    Rhodes, L. L. et al. The dinoflagellate genera Gambierdiscus and Ostreopsis from subtropical Raoul Island and North Meyer Island, Kermadec Islands. N. Z. J. Mar. Freshw. Res. 51, 490–504 (2017).Article 
    CAS 

    Google Scholar 
    Penna, A. et al. A phylogeographical study of the toxic benthic dinoflagellate genus Ostreopsis Schmidt. J. Biogeogr. 37, 830–841 (2010).Article 

    Google Scholar 
    Zhang, H. et al. Morphology and molecular phylogeny of Ostreopsis cf. ovata and O. lenticularis (Dinophyceae) from Hainan Island South China Sea. Phycol. Res. 66, 3–14 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Carnicer, O., García-Altares, M., Andree, K. B., Diogène, J. & Fernández-Tejedor, M. First evidence of Ostreopsis cf. ovata in the eastern tropical Pacific Ocean Ecuadorian coast. Bot. Mar. 59, 267–274 (2016).
    Google Scholar 
    Nascimento, S. M. et al. Ostreopsis cf. ovata (Dinophyceae) molecular phylogeny, morphology, and detection of ovatoxins in strains and field samples from Brazil. Toxins 12, 70 (2020).Article 
    CAS 

    Google Scholar 
    Caron, D. A. et al. Defining DNA-based operational taxonomic units for microbial-eukaryote ecology. Appl. Environ. Microbiol. 75, 5797–5808 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    McManus, G. B. & Katz, L. A. Molecular and morphological methods for identifying plankton: What makes a successful marriage?. J. Plankton Res. 31, 1119–1129 (2009).Article 
    CAS 

    Google Scholar 
    De Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).Article 

    Google Scholar 
    del Campo, J. et al. Ecological and evolutionary significance of novel protist lineages. Eur. J. Protistol. 55, 4–11 (2016).Article 

    Google Scholar 
    Hallegraeff, G. Harmful algal blooms: A global overview. Man. Harmful Mar. Microalgae 33, 1–22 (2003).
    Google Scholar 
    Penna, A., Casabianca, S., Guerra, A. F., Vernesi, C. & Scardi, M. Analysis of phytoplankton assemblage structure in the Mediterranean Sea based on high-throughput sequencing of partial 18S rRNA sequences. Mar. Genom. 36, 49–55 (2017).Article 

    Google Scholar 
    Zarauz, L. & Irigoien, X. Effects of Lugol’s fixation on the size structure of natural nano–microplankton samples, analyzed by means of an automatic counting method. J. Plankton Res. 30, 1297–1303 (2008).Article 

    Google Scholar 
    De Luca, D., Piredda, R., Sarno, D. & Kooistra, W. H. Resolving cryptic species complexes in marine protists: phylogenetic haplotype networks meet global DNA metabarcoding datasets. ISME J. 15, 1931–1942 (2021).Article 

    Google Scholar 
    Wang, Z. et al. Phytoplankton community and HAB species in the South China Sea detected by morphological and metabarcoding approaches. Harmful Algae 118, 102297 (2022).Article 
    CAS 

    Google Scholar 
    Le Bescot, N. et al. Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding. Environ. Microbiol. 18, 609–626 (2016).Article 

    Google Scholar 
    Hoppenrath, M. Dinoflagellate taxonomy—A review and proposal of a revised classification. Mar. Biodivers. 47, 381–403 (2017).Article 

    Google Scholar 
    Boenigk, J., Ereshefsky, M., Hoef-Emden, K., Mallet, J. & Bass, D. Concepts in protistology: Species definitions and boundaries. Eur. J. Protistol. 48, 96–102 (2012).Article 

    Google Scholar 
    David, H., Laza-Martínez, A., Miguel, I. & Orive, E. Ostreopsis cf. siamensis and Ostreopsis cf. ovata from the Atlantic Iberian Peninsula: Morphological and phylogenetic characterization. Harmful Algae 30, 44–55 (2013).Article 
    CAS 

    Google Scholar 
    Aligizaki, K. & Nikolaidis, G. The presence of the potentially toxic genera Ostreopsis and Coolia (Dinophyceae) in the North Aegean Sea Greece. Harmful Algae 5, 717–730 (2006).Article 

    Google Scholar 
    Selina, M. S. & Orlova, T. Y. First occurrence of the genus Ostreopsis (Dinophyceae) in the Sea of Japan. Bot. Mar. 53, 243–249 (2010).Article 

    Google Scholar 
    Kang, N. S. et al. Morphology and molecular characterization of the epiphytic benthic dinoflagellate Ostreopsis cf. ovata in the temperate waters off Jeju Island Korea. Harmful Algae 27, 98–112 (2013).Article 
    CAS 

    Google Scholar 
    Momigliano, P., Sparrow, L., Blair, D. & Heimann, K. The diversity of Coolia spp. (Dinophyceae Ostreopsidaceae) in the central Great Barrier Reef region. PloS One 8, e79278 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Nguyen, L. N. Morphology and distribution of the three epiphytic dinoflagellate species Coolia monotis, C. tropicalis, and C. canariensis (Ostreopsidaceae, Gonyaulacales, Dinophyceae) from Vietnamese coastal waters. Ocean Sci. 49, 211–221 (2014).Article 

    Google Scholar 
    Verma, A. et al. Functional significance of phylogeographic structure in a toxic benthic marine microbial eukaryote over a latitudinal gradient along the East Australian Current. Ecol. Evol. 10, 6257–6273 (2020).Article 

    Google Scholar 
    Wayne Litaker, R. et al. Recognizing dinoflagellate species using ITS rDNA sequences 1. J. Phycol. 43, 344–355 (2007).Article 

    Google Scholar 
    Kremp, A. et al. Phylogenetic relationships, morphological variation, and toxin patterns in the Alexandrium ostenfeldii (D inophyceae) complex: Implications for species boundaries and identities. J. Phycol. 50, 81–100 (2014).Article 
    CAS 

    Google Scholar 
    Nascimento, S. M., da Silva, R. A., Oliveira, F., Fraga, S. & Salgueiro, F. Morphology and molecular phylogeny of Coolia tropicalis, Coolia malayensis and a new lineage of the Coolia canariensis species complex (Dinophyceae) isolated from Brazil. Eur. J. Phycol. 54, 484–496 (2019).Article 
    CAS 

    Google Scholar 
    Phua, Y. H., Roy, M. C., Lemer, S., Husnik, F. & Wakeman, K. C. Diversity and toxicity of Pacific strains of the benthic dinoflagellate Coolia (Dinophyceae), with a look at the Coolia canariensis species complex. Harmful Algae 109, 102120 (2021).Article 

    Google Scholar 
    Selwood, A. I. et al. A sensitive assay for palytoxins, ovatoxins and ostreocins using LC-MS/MS analysis of cleavage fragments from micro-scale oxidation. Toxicon 60, 810–820 (2012).Article 
    CAS 

    Google Scholar 
    Ciminiello, P. et al. Isolation and structure elucidation of ovatoxin-a, the major toxin produced by Ostreopsis ovata. J. Am. Chem. Soc. 134, 1869–1875 (2012).Article 
    CAS 

    Google Scholar 
    Dell’Aversano, C. et al. Ostreopsis cf. ovata from the Mediterranean area. Variability in toxinprofiles and structural elucidation of unknowns through LC-HRMSn. In Proc. of the 16th International Conference on Harmful Algae, 70–73 (2014).Terajima, T., Uchida, H., Abe, N. & Yasumoto, T. Structure elucidation of ostreocin-A and ostreocin-E1, novel palytoxin analogs produced by the dinoflagellate Ostreopsis siamensis, using LC/Q-TOF MS. Biosci. Biotechnol. Biochem. 83, 381–390 (2019).Article 
    CAS 

    Google Scholar 
    Tartaglione, L. et al. Chemical, molecular, and eco-toxicological investigation of Ostreopsis sp. from Cyprus Island: Structural insights into four new ovatoxins by LC-HRMS/MS. Anal. Bioanal. Chem. 408, 915–932 (2016).Article 
    CAS 

    Google Scholar 
    Murray, J. S. et al. The role of 44-methylgambierone in ciguatera fish poisoning: Acute toxicity, production by marine microalgae and its potential as a biomarker for Gambierdiscus spp. Harmful Algae 97, 101853 (2020).Article 
    CAS 

    Google Scholar 
    Nakajima, I., Oshima, Y. & Yasumoto, T. Toxicity of benthic dinoflagellates found in coral reef. Toxicity of benthic dinoflagellates in Okinawa. Nippon Suisan Gakk. 47, 1029–1033 (1981).Article 

    Google Scholar 
    Boente-Juncal, A. et al. Structure elucidation and biological evaluation of maitotoxin-3, a homologue of gambierone, from Gambierdiscus belizeanus. Toxins 11, 79 (2019).Article 
    CAS 

    Google Scholar 
    Stuart, J. et al. Geographical distribution, molecular and toxin diversity of the dinoflagellate species Gambierdiscus honu in the Pacific region. Harmful Algae 118, 102308 (2022).Article 
    CAS 

    Google Scholar 
    Smith, K. F. et al. A new Gambierdiscus species (Dinophyceae) from Rarotonga, Cook Islands: Gambierdiscus cheloniae sp. nov. Harmful Algae 60, 45–56 (2016).Article 
    CAS 

    Google Scholar 
    Guillard, R. R. L. Culture of Marine Invertebrates Animals 29–60 (Plenum Press, 1975).Book 

    Google Scholar 
    Chomérat, N., iti Gatti, C. M., Nézan, É. & Chinain, M. Studies on the benthic genus Sinophysis (Dinophysales, Dinophyceae) II. S. canaliculata from Rapa Island (French Polynesia). Phycologia 56, 193–203 (2017).Article 

    Google Scholar 
    Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar 
    Verma, A. et al. Molecular phylogeny, morphology and toxigenicity of Ostreopsis cf. siamensis (Dinophyceae) from temperate south-east Australia. Phycol. Res. 64, 146–159 (2016).Article 
    CAS 

    Google Scholar 
    Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).Article 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).Article 
    CAS 

    Google Scholar 
    Posada, D. & Crandall, K. A. MODELTEST: Testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998).Article 
    CAS 

    Google Scholar 
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).Article 
    CAS 

    Google Scholar 
    Murray, J. S. et al. Acute toxicity of gambierone and quantitative analysis of gambierones produced by cohabitating benthic dinoflagellates. Toxins 13, 333 (2021).Article 
    CAS 

    Google Scholar 
    Murray, J. S., Boundy, M. J., Selwood, A. I. & Harwood, D. T. Development of an LC-MS/MS method to simultaneously monitor maitotoxins and selected ciguatoxins in algal cultures and P-CTX-1B in fish. Harmful Algae 80, 80–87 (2018).Article 
    CAS 

    Google Scholar  More

  • in

    Diverse flower-visiting responses among pollinators to multiple weather variables in buckwheat pollination

    Mooney, H. et al. Biodiversity, climate change, and ecosystem services. Curr. Opin. Environ. Sustain. 1, 46–54 (2009).Article 

    Google Scholar 
    Perrings, C., Duraiappah, A., Larigauderie, A. & Mooney, H. The biodiversity and ecosystem services science-policy interface. Science 331, 1139–1140 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 96, 1463–1468 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).Article 

    Google Scholar 
    Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).Article 

    Google Scholar 
    Blüthgen, N. & Klein, A.-M. Functional complementarity and specialisation: The role of biodiversity in plant–pollinator interactions. Basic Appl. Ecol. 12, 282–291 (2011).Article 

    Google Scholar 
    Brittain, C., Kremen, C. & Klein, A. M. Biodiversity buffers pollination from changes in environmental conditions. Glob. Change Biol. 19, 540–547 (2013).Article 
    ADS 

    Google Scholar 
    Rader, R., Reilly, J., Bartomeus, I. & Winfree, R. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Glob. Chang. Biol. 19, 3103–3110 (2013).Article 
    ADS 

    Google Scholar 
    Rogers, S. R., Tarpy, D. R. & Burrack, H. J. Bee species diversity enhances productivity and stability in a perennial crop. PLoS ONE 9, e97307 (2014).Article 
    ADS 

    Google Scholar 
    Kühsel, S. & Blüthgen, N. High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands. Nat. Commun. 6, 1–10 (2015).Article 

    Google Scholar 
    Knop, E. et al. Rush hours in flower visitors over a day-night cycle. Insect Conserv. Divers. 11, 267–275 (2018).Article 

    Google Scholar 
    Goodwin, E. K., Rader, R., Encinas-Viso, F. & Saunders, M. E. Weather conditions affect the visitation frequency, richness and detectability of insect flower visitors in the Australian Alpine zone. Environ. Entomol. 50, 348–358 (2021).Article 

    Google Scholar 
    Feit, B. et al. Landscape complexity promotes resilience of biological pest control to climate change. Proc. Biol. Sci. 288, 20210547 (2021).
    Google Scholar 
    Tomas, F., Martínez-Crego, B., Hernán, G. & Santos, R. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Glob. Chang. Biol. 21, 4021–4030 (2015).Article 
    ADS 

    Google Scholar 
    Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).Article 

    Google Scholar 
    Cariveau, D. P., Williams, N. M., Benjamin, F. E. & Winfree, R. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators. Ecol. Lett. 16, 903–911 (2013).Article 

    Google Scholar 
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608. https://doi.org/10.1126/science.1230200 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).Article 

    Google Scholar 
    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. 113, 146–151 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).Article 

    Google Scholar 
    Smith, M. R., Singh, G. M., Mozaffarian, D. & Myers, S. S. Effects of decreases of animal pollinators on human nutrition and global health: A modelling analysis. Lancet 386, 1964–1972 (2015).Article 

    Google Scholar 
    González-Varo, J. P. et al. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 28, 524–530 (2013).Article 

    Google Scholar 
    Marshall, L. et al. The interplay of climate and land use change affects the distribution of EU bumblebees. Glob. Change Biol. 24, 101–116 (2018).Article 
    ADS 

    Google Scholar 
    Millard, J. et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 1–11 (2021).Article 
    ADS 

    Google Scholar 
    Vasiliev, D. & Greenwood, S. The role of climate change in pollinator decline across the Northern Hemisphere is underestimated. Sci. Total Environ. 775, 145788 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Steffan-Dewenter, I., Münzenberg, U., Bürger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432 (2002).Article 

    Google Scholar 
    Hass, A. L. et al. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2017.2242 (2018).Article 

    Google Scholar 
    Winfree, R. & Kremen, C. Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. R. Soc. B Biol. Sci. 276, 229–237 (2009).Article 

    Google Scholar 
    Jauker, F., Diekoetter, T., Schwarzbach, F. & Wolters, V. Pollinator dispersal in an agricultural matrix: Opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc. Ecol. 24, 547–555 (2009).Article 

    Google Scholar 
    Weiner, C. N., Werner, M., Linsenmair, K. E. & Blüthgen, N. Land-use impacts on plant–pollinator networks: Interaction strength and specialization predict pollinator declines. Ecology 95, 466–474 (2014).Article 

    Google Scholar 
    Chain-Guadarrama, A., Martínez-Salinas, A., Aristizábal, N. & Ricketts, T. H. Ecosystem services by birds and bees to coffee in a changing climate: A review of coffee berry borer control and pollination. Agric. Ecosyst. Environ. 280, 53–67 (2019).Article 

    Google Scholar 
    Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L. & Totland, Ø. How does climate warming affect plant–pollinator interactions?. Ecol. Lett. 12, 184–195 (2009).Article 

    Google Scholar 
    Bartomeus, I. et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2, e328 (2014).Article 

    Google Scholar 
    Albrecht, M., Schmid, B., Hautier, Y. & Müller, C. B. Diverse pollinator communities enhance plant reproductive success. Proc. R. Soc. B Biol. Sci. 279, 4845–4852 (2012).Article 

    Google Scholar 
    Ellis, C. R., Feltham, H., Park, K., Hanley, N. & Goulson, D. Seasonal complementary in pollinators of soft-fruit crops. Basic Appl. Ecol. 19, 45–55 (2017).Article 

    Google Scholar 
    Brittain, C., Williams, N., Kremen, C. & Klein, A.-M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B Biol. Sci. 280, 20122767 (2013).Article 

    Google Scholar 
    Miñarro, M. & Twizell, K. W. Pollination services provided by wild insects to kiwifruit (Actinidia deliciosa). Apidologie 46, 276–285 (2015).Article 

    Google Scholar 
    Senapathi, D., Goddard, M. A., Kunin, W. E. & Baldock, K. C. Landscape impacts on pollinator communities in temperate systems: Evidence and knowledge gaps. Funct. Ecol. 31, 26–37 (2017).Article 

    Google Scholar 
    Papanikolaou, A. D., Kuehn, I., Frenzel, M. & Schweiger, O. Landscape heterogeneity enhances stability of wild bee abundance under highly varying temperature, but not under highly varying precipitation. Landsc. Ecol. 32, 581–593 (2017).Article 

    Google Scholar 
    Papanikolaou, A. D., Kühn, I., Frenzel, M. & Schweiger, O. Semi-natural habitats mitigate the effects of temperature rise on wild bees. J. Appl. Ecol. 54, 527–536 (2017).Article 

    Google Scholar 
    Orford, K. A., Vaughan, I. P. & Memmott, J. The forgotten flies: The importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B Biol. Sci. 282, 20142934 (2015).Article 

    Google Scholar 
    Settele, J., Bishop, J. & Potts, S. G. Climate change impacts on pollination. Nat. Plants 2, 1–3 (2016).Article 

    Google Scholar 
    Taki, H., Okabe, K., Makino, S. I., Yamaura, Y. & Sueyoshi, M. Contribution of small insects to pollination of common buckwheat, a distylous crop. Ann. Appl. Biol. 155, 121–129 (2009).Article 

    Google Scholar 
    Krkošková, B. & Mrazova, Z. Prophylactic components of buckwheat. Food Res. Int. 38, 561–568 (2005).Article 

    Google Scholar 
    Campbell, J. W., Irvin, A., Irvin, H., Stanley-Stahr, C. & Ellis, J. D. Insect visitors to flowering buckwheat, Fagopyrum esculentum (Polygonales: Polygonaceae), in north-central Florida. Fla. Entomol. 99, 264–268 (2016).Article 

    Google Scholar 
    Hadley, N. F. Water Relations of Terrestrial Arthropods (CUP Archive, 1994).
    Google Scholar 
    Sgolastra, F. et al. Temporal activity patterns in a flower visitor community of Dictamnus albus in relation to some biotic and abiotic factors. Bull. Insectol. 69, 291–300 (2016).
    Google Scholar 
    Vicens, N. & Bosch, J. Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ. Entomol. 29, 413–420 (2000).Article 

    Google Scholar 
    Carlucci, M. B., Brancalion, P. H., Rodrigues, R. R., Loyola, R. & Cianciaruso, M. V. Functional traits and ecosystem services in ecological restoration. Restor. Ecol. 28, 1372–1383 (2020).Article 

    Google Scholar 
    Lavorel, S. Plant functional effects on ecosystem services. (2013).Defra. (ed Food and Rural Affairs Department for Environment) (2019).Agency, J. M. Amedas, https://tenki.jp/past/2019/09/amedas/ (2019).Jacquemart, A.-L., Gillet, C. & Cawoy, V. Floral visitors and the importance of honey bee on buckwheat (Fagopyrum esculentum Moench) in central Belgium. J. Hortic. Sci. Biotechnol. 82, 104–108 (2007).Article 

    Google Scholar 
    Taki, H. et al. Effects of landscape metrics on Apis and non-Apis pollinators and seed set in common buckwheat. Basic Appl. Ecol. 11, 594–602 (2010).Article 

    Google Scholar 
    Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).Article 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).MATH 

    Google Scholar 
    Dray S, et al. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-20, https://CRAN.R-project.org/package=adespatial. (2022).Benjamin, F. E., Reilly, J. R. & Winfree, R. Pollinator body size mediates the scale at which land use drives crop pollination services. J. Appl. Ecol. 51, 440–449 (2014).Article 

    Google Scholar 
    Földesi, R. et al. Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agric. For. Entomol. 18, 68–75 (2016).Article 

    Google Scholar 
    Oksanen J, et al. vegan: Community Ecology Package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan. (2022)Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis (Chapman and Hall/CRC, 1995).Book 
    MATH 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing (2019).Sasaki, H. & Wagatsuma, T. Bumblebees (Apidae: Hymenoptera) are the main pollinators of common buckwheat, Fogopyrum esculentum, in Hokkaido, Japan. Appl. Entomol. Zool. 42, 659–661 (2007).Article 

    Google Scholar 
    Nagano, Y., Miyashita, T., Taki, H. & Yokoi, T. Diversity of co-flowering plants at field margins potentially sustains an abundance of insects visiting buckwheat, Fagopyrum esculentum, in an agricultural landscape. Ecol. Res. 36, 882–891 (2021).Article 

    Google Scholar 
    Samra, S., Samocha, Y., Eisikowitch, D. & Vaknin, Y. Can ants equal honeybees as effective pollinators of the energy crop Jatropha curcas L. under Mediterranean conditions?. Gcb Bioenergy 6, 756–767 (2014).Article 

    Google Scholar 
    Sugiura, N., Miyazaki, S. & Nagaishi, S. A supplementary contribution of ants in the pollination of an orchid, Epipactis thunbergii, usually pollinated by hover flies. Plant Syst. Evol. 258, 17–26 (2006).Article 

    Google Scholar 
    Natsume, K., Hayashi, S. & Miyashita, T. Ants are effective pollinators of common buckwheat Fagopyrum esculentum. Agric. For. Entomol. 24, 446–452 (2022).Article 

    Google Scholar 
    Carvalheiro, L. G., Seymour, C. L., Nicolson, S. W. & Veldtman, R. Creating patches of native flowers facilitates crop pollination in large agricultural fields: Mango as a case study. J. Appl. Ecol. 49, 1373–1383 (2012).Article 

    Google Scholar 
    Michiyama, H., Arikuni, M. & Hirano, T. Effect of air temperature on the growth, flowering and ripening in common buckwheat. In The Procceeding of the 8th ISB (2001)Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199-U196. https://doi.org/10.1038/nature10282 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    McCain, C. M. & Colwell, R. K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 14, 1236–1245 (2011).Article 

    Google Scholar 
    Choi, S.-W. Effects of weather factors on the abundance and diversity of moths in a temperate deciduous mixed forest of Korea. Zool. Sci. 25, 53–58 (2008).Article 

    Google Scholar 
    Feldmeier, S. et al. Climate versus weather extremes: Temporal predictor resolution matters for future rather than current regional species distribution models. Divers. Distrib. 24, 1047–1060 (2018).Article 

    Google Scholar  More

  • in

    Pathways of degradation in rangelands in Northern Tanzania show their loss of resistance, but potential for recovery

    Asner, G. P., Elmore, A. J., Olander, L. P., Martin, R. E. & Harris, A. T. Grazing systems, ecosystem responses, and global change. Annu. Rev. Environ. Resour. 29, 261–299 (2004).Article 

    Google Scholar 
    Millenium Ecosystem Assessment Board. Ecosystems and Human Well-Being: Wetlands and Water: Synthesis (Island Press, Washington, DC, 2005).Lind, J., Sabates-Wheeler, R., Caravani, M., Kuol, L. B. D. & Nightingale, D. M. Newly evolving pastoral and post-pastoral rangelands of Eastern Africa. Pastoralism 10, 24 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffman, T. & Vogel, C. Climate change impacts on African rangelands. Rangelands 30, 12–17 (2008).Article 

    Google Scholar 
    Joyce, L. A. et al. Climate change and North American rangelands: Assessment of mitigation and adaptation strategies. Rangeland Ecol. Manage. 66, 512–528 (2013).Article 

    Google Scholar 
    Stringer, L. C., Reed, M. S., Dougill, A. J., Seely, M. K. & Rokitzki, M. Implementing the UNCCD: Participatory challenges. Nat. Resour. Forum 31, 198–211 (2007).Article 

    Google Scholar 
    Vågen, T.-G., Winowiecki, L. A., Tondoh, J. E., Desta, L. T. & Gumbricht, T. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225 (2016).Article 
    ADS 

    Google Scholar 
    Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol. 23, 235–244 (2017).Article 
    ADS 
    PubMed 

    Google Scholar 
    Muñoz, P. et al. Land degradation, poverty and inequality (2019).Bond, W. & Keeley, J. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).Article 
    PubMed 

    Google Scholar 
    Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A. & Bond, W. J. Deciphering the distribution of the savanna biome. New Phytol. 191, 197–209 (2011).Article 
    PubMed 

    Google Scholar 
    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).Article 
    ADS 
    CAS 
    MATH 
    PubMed 

    Google Scholar 
    Fuhlendorf, S. D., Fynn, R. W. S., McGranahan, D. A. & Twidwell, D. Heterogeneity as the basis for rangeland management in Rangeland Systems: Processes, Management and Challenges, Springer Series on Environmental Management (ed. Briske, D. D.), 169–196 (Springer International Publishing, 2017).Liao, C., Agrawal, A., Clark, P. E., Levin, S. A. & Rubenstein, D. I. Landscape sustainability science in the drylands: mobility, rangelands and livelihoods. Landsc. Ecol. 35, 2433–2447 (2020).Article 

    Google Scholar 
    Galvin, K. A. Transitions: pastoralists living with change. Annu. Rev. Anthropol. 38, 185–198 (2009).Article 

    Google Scholar 
    López-i Gelats, F., Fraser, E. D. G., Morton, J. F. & Rivera-Ferre, M. G. What drives the vulnerability of pastoralists to global environmental change? A qualitative meta-analysis. Glob. Environ. Change 39, 258–274 (2016).Obiri, J. F. Invasive plant species and their disaster-effects in dry tropical forests and rangelands of Kenya and Tanzania. Jàmbá: Journal of Disaster Risk Studies 3, 417–428 (2011).Kioko, J., Kiringe, J. W. & Seno, S. O. Impacts of livestock grazing on a savanna grassland in Kenya. J. Arid Land 4, 29–35 (2012).Article 

    Google Scholar 
    Kotiaho, J. S. et al. The IPBES assessment report on land degradation and restoration. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem (2018).Western, D., Mose, V. N., Worden, J. & Maitumo, D. Predicting extreme droughts in savannah Africa: A comparison of proxy and direct measures in detecting biomass fluctuations, trends and their causes. PLoS One 10, e0136516 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dai, A. Drought under global warming: a review. WIREs Climate Change 2, 45–65 (2011).Article 

    Google Scholar 
    Holechek, J. L., Cibils, A. F., Bengaly, K. & Kinyamario, J. I. Human population growth, African pastoralism, and rangelands: A perspective. Rangeland Ecol. Manage. 70, 273–280 (2017).Article 

    Google Scholar 
    Midgley, G. F. & Bond, W. J. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nat. Clim. Chang. 5, 823–829 (2015).Article 
    ADS 

    Google Scholar 
    Hill, M. J. & Guerschman, J. P. The MODIS global vegetation fractional cover product 2001–2018: Characteristics of vegetation fractional cover in grasslands and savanna woodlands. Remote Sensing 12, 406 (2020).Article 
    ADS 

    Google Scholar 
    Lake, P. S. Resistance, resilience and restoration. Ecol. Manage. Restor. 14, 20–24 (2013).Article 

    Google Scholar 
    Hodgson, D., McDonald, J. L. & Hosken, D. J. What do you mean, ‘resilient’?. Trends Ecol. Evol. 30, 503–506 (2015).Article 
    PubMed 

    Google Scholar 
    Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).Article 
    ADS 

    Google Scholar 
    Fedrigo, J. K. et al. Temporary grazing exclusion promotes rapid recovery of species richness and productivity in a long-term overgrazed Campos grassland. Restor. Ecol. 26, 677–685 (2018).Article 

    Google Scholar 
    Ruppert, J. C. et al. Quantifying drylands’ drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime. Glob. Chang. Biol. 21, 1258–1270 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Homewood, K. M. Policy, environment and development in African rangelands. Environ. Sci. Policy 7, 125–143 (2004).Article 

    Google Scholar 
    Caro, T. & Davenport, T. R. B. Wildlife and wildlife management in Tanzania. Conserv. Biol. 30, 716–723 (2016).Article 
    PubMed 

    Google Scholar 
    Bollig, M. & Schulte, A. Environmental change and pastoral perceptions: degradation and indigenous knowledge in two African pastoral communities. Hum. Ecol. 27, 493–514 (1999).Article 

    Google Scholar 
    Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science 363, 1424–1428 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nicholson, S. E. Climate and climatic variability of rainfall over Eastern Africa. Rev. Geophys. 55, 590–635 (2017).Article 
    ADS 

    Google Scholar 
    2012 Population and Housing Census (National Bureau of Statistics, Ministry of Finance, 2013).Kiffner, C., Nagar, S., Kollmar, C. & Kioko, J. Wildlife species richness and densities in wildlife corridors of Northern Tanzania. J. Nat. Conserv. 31, 29–37 (2016).Article 

    Google Scholar 
    Foley, C. A. H. & Faust, L. J. Rapid population growth in an elephant Loxodonta africana population recovering from poaching in Tarangire National Park, Tanzania. Oryx 44, 205–212 (2010).Article 

    Google Scholar 
    Kebacho, L. L. Large-scale circulations associated with recent interannual variability of the short rains over East Africa. Meteorol. Atmos. Phys. 134, 10 (2021).Article 
    ADS 

    Google Scholar 
    Wainwright, C. M., Finney, D. L., Kilavi, M., Black, E. & Marsham, J. H. Extreme rainfall in East Africa, October 2019-January 2020 and context under future climate change. Weather 76, 26–31 (2021).Article 
    ADS 

    Google Scholar 
    Abukari, H. & Mwalyosi, R. B. Comparing pressures on national parks in Ghana and Tanzania: The case of mole and Tarangire National Parks. Global Ecol. Conserv. 15, e00405 (2018).Article 

    Google Scholar 
    Kaswamila, A. An analysis of the contribution of community wildlife management areas on livelihood in Tanzania. Sustain. Natl. Res. Manag. 139–54 (2012).NTRI. Maps | NTRI – Northern Tanzania Rangelands Initiative. https://www.ntri.co.tz/maps/ (2016). Accessed: 2021-3-29.Mworia, J., Kinyamario, J. & John, E. Impact of the invader Ipomoea hildebrandtii on grass biomass, nitrogen mineralisation and determinants of its seedling establishment in Kajiado, Kenya. Afr. J. Range Forage Sci. 25, 11–16 (2008).Article 

    Google Scholar 
    Manyanza, N. M. & Ojija, F. Invasion, impact and control techniques for invasive Ipomoea hildebrandtii on Maasai steppe rangelands. NATO Adv. Sci. Inst. Ser. E Appl. Sci. 17, 12 (2021).Thaiyah, A. G. et al. Acute, sub-chronic and chronic toxicity of Solanum incanum L in sheep in Kenya. Kenya Veterinarian 35, 1–8 (2011).
    Google Scholar 
    Roques, K. G., O’Connor, T. G. & Watkinson, A. R. Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. J. Appl. Ecol. 38, 268–280 (2001).Article 

    Google Scholar 
    Riginos, C. & Herrick, J. E. Monitoring rangeland health: a guide for pastoralists and other land managers in Eastern Africa. Version II (2010).Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).QGIS Development Team. QGIS Geographic Information System. QGIS Association (2022).Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 
    ADS 

    Google Scholar 
    Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set] (NASA EOSDIS Land Processes DAAC, 2015).Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+ Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019).Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC 10 (2015).Funk, C. et al. The climate hazards infrared precipitation with stations–a new environmental record for monitoring extremes. Scientific Data 2, 1–21 (2015).Article 

    Google Scholar 
    Zeileis, A. & Grothendieck, G. zoo: S3 infrastructure for regular and irregular time series. arXiv:math/0505527 (2005).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2016).Scaramuzza, P. & Barsi, J. Landsat 7 scan line corrector-off gap-filled product development in Proceeding of Pecora 16, 23–27 (2005).
    Google Scholar 
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).Article 
    ADS 

    Google Scholar 
    Rikimaru, A., Roy, P. S. & Miyatake, S. Tropical forest cover density mapping. Trop. Ecol. 39–47 (2002).Diek, S., Fornallaz, F., Schaepman, M. E. & De Jong, R. Barest pixel composite for agricultural areas using landsat time series. Remote Sensing 9, 1245 (2017).Article 
    ADS 

    Google Scholar 
    Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. & Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 48, 119–126 (1994).Article 
    ADS 

    Google Scholar 
    Adams, B. et al. Mapping forest composition with Landsat time series: An evaluation of seasonal composites and harmonic regression. Remote Sensing 12, 610 (2020).Article 
    ADS 

    Google Scholar 
    Nwanganga, F. & Chapple, M. Practical machine learning in R (John Wiley and Sons, Indianapolis, 2020).Adam, E., Mutanga, O., Odindi, J. & Abdel-Rahman, E. M. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 35, 3440–3458 (2014).Article 

    Google Scholar 
    Mansour, K., Mutanga, O., Adam, E. & Abdel-Rahman, E. M. Multispectral remote sensing for mapping grassland degradation using the key indicators of grass species and edaphic factors. Geocarto Int. 31, 477–491 (2016).Article 

    Google Scholar 
    Hunter, F. D. L., Mitchard, E. T. A., Tyrrell, P. & Russell, S. Inter-Seasonal time series imagery enhances classification accuracy of grazing resource and land degradation maps in a savanna ecosystem. Remote Sensing 12, 198 (2020).Article 
    ADS 

    Google Scholar 
    Yang, L. et al. Estimating surface downward shortwave radiation over china based on the gradient boosting decision tree method. Remote Sensing 10, 185 (2018).Article 
    ADS 

    Google Scholar 
    Pham, T. D. et al. Estimating mangrove Above-Ground biomass using extreme gradient boosting decision trees algorithm with fused Sentinel-2 and ALOS-2 PALSAR-2 data in Can Gio biosphere reserve, Vietnam. Remote Sensing 12, 777 (2020).Article 
    ADS 

    Google Scholar 
    Adobe Inc. Adobe illustrator.Lenth, R. V. emmeans: Estimated marginal means, aka Least-Squares means. R package version 1.5.4 (2021).Royall, R. M. The effect of sample size on the meaning of significance tests. Am. Stat. 40, 313–315 (1986).MATH 

    Google Scholar 
    Rue, H., Martino, S. & Chopin, N. Approximate bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Series B Stat. Methodol. 71, 319–392 (2009).Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 1–25 (2015).Article 

    Google Scholar 
    Bakka, H. et al. Spatial modelling with R-INLA: A review. arXiv:1802.06350 [stat] (2018).Lobora, A. L. et al. Modelling habitat conversion in Miombo woodlands: Insights from Tanzania. J. Land Use Sci. 1747423X.2017.1331271 (2017).Bright, E. A., Rose, A. N., Urban, M. L. & McKee, J. LandScan 2017 High-Resolution global population data set. Tech. Rep., Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States) (2018).Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci Data 5, 180227 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, Y., Fang, J., Ma, W. & Wang, W. Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophys. Res. Lett. 35 (2008).Guo, Q. et al. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: effects of mean annual precipitation and its seasonal distribution. Glob. Chang. Biol. 18, 3624–3631 (2012).Article 
    ADS 

    Google Scholar 
    Wang, X., Yue, Y. & Faraway, J. J. Bayesian Regression Modeling with INLA (Chapman and Hall/CRC, 2018).Côté, I. M. & Darling, E. S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 8, e1000438 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Loughlin, J. et al. Climate variability and conflict risk in East Africa, 1990–2009. Proc. Natl. Acad. Sci. 109, 18344–18349 (2012).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ongoma, V., Chen, H., Gao, C., Nyongesa, A. M. & Polong, F. Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble. Nat. Hazards 90, 901–920 (2018).Article 

    Google Scholar 
    Homewood, K. & Rodgers, W. A. Pastoralism, conservation and the overgrazing controversy. Conservation in Africa: People, policies and practice 111–128 (1987).Scoones, I. Exploiting heterogeneity: habitat use by cattle in dryland Zimbabwe. J. Arid Environ. 29, 221–237 (1995).Article 
    ADS 

    Google Scholar 
    Goldman, M. J. & Riosmena, F. Adaptive capacity in Tanzanian Maasailand: Changing strategies to cope with drought in fragmented landscapes. Glob. Environ. Change 23, 588–597 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Selemani, I. S. & Others. Communal rangelands management and challenges underpinning pastoral mobility in Tanzania: a review. Livestock Res. Rural Dev. 26, 1–12 (2014).Middleton, N. Rangeland management and climate hazards in drylands: dust storms, desertification and the overgrazing debate. Nat. Hazards 92, 57–70 (2018).Article 

    Google Scholar 
    Sallu, S. M., Twyman, C. & Stringer, L. C. Resilient or vulnerable livelihoods? Assessing livelihood dynamics and trajectories in rural Botswana. Ecology and Society 15 (2010).Oba, G. & Lusigi, W. J. An overview of drought strategies and land use in African pastoral systems (Agricultural Administration Unit, Overseas Development Institute, 1987).Russell, S., Tyrrell, P. & Western, D. Seasonal interactions of pastoralists and wildlife in relation to pasture in an African savanna ecosystem. J. Arid Environ. 154, 70–81 (2018).Article 
    ADS 

    Google Scholar 
    Girvetz, E. et al. Future climate projections in Africa: Where are we headed? In The Climate-Smart Agriculture Papers: Investigating the Business of a Productive, Resilient and Low Emission Future 15–27 (Springer International Publishing, 2019).Lyon, B. & DeWitt, D. G. A recent and abrupt decline in the East African long rains. Geophys. Res. Lett. 39 (2012).Liebmann, B. et al. Climatology and interannual variability of boreal spring wet season precipitation in the Eastern Horn of Africa and implications for its recent decline. J. Clim. 30, 3867–3886 (2017).Article 
    ADS 

    Google Scholar 
    Shongwe, M. E., van Oldenborgh, G. J., van den Hurk, B. & van Aalst, M. Projected changes in mean and extreme precipitation in Africa under global warming. part II: East Africa. J. Clim. 24, 3718–3733 (2011).Dunning, C. M., Black, E. & Allan, R. P. Later wet seasons with more intense rainfall over Africa under future climate change. J. Clim. 31, 9719–9738 (2018).Article 
    ADS 

    Google Scholar 
    Rowell, D. P., Booth, B. B. B., Nicholson, S. E. & Good, P. Reconciling past and future rainfall trends over East Africa. J. Clim. 28, 9768–9788 (2015).Article 
    ADS 

    Google Scholar 
    Vizy, E. K. & Cook, K. H. Mid-Twenty-First-Century changes in extreme events over Northern and Tropical Africa. J. Clim. 25, 5748–5767 (2012).Article 
    ADS 

    Google Scholar 
    Gebremeskel Haile, G. et al. Droughts in East Africa: Causes, impacts and resilience. Earth-Sci. Rev. 193, 146–161 (2019).Kendon, E. J. et al. Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat. Commun. 10, 1794 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finney, D. L. et al. Effects of explicit convection on future projections of mesoscale circulations, rainfall, and rainfall extremes over Eastern Africa. J. Clim. 33, 2701–2718 (2020).Article 
    ADS 

    Google Scholar 
    Prins, H. H. T. & Loth, P. E. Rainfall patterns as background to plant phenology in Northern Tanzania. J. Biogeogr. 15, 451–463 (1988).Article 

    Google Scholar 
    Ngondya, I. B., Treydte, A. C., Ndakidemi, P. A. & Munishi, L. K. Invasive plants: ecological effects, status, management challenges in Tanzania and the way forward. J. Biodivers. Environ. Sci. (JBES) 10, 204–217 (2017).
    Google Scholar 
    Drusch, M. et al. Sentinel-2: ESA’s optical High-Resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2012).Article 
    ADS 

    Google Scholar 
    Rapinel, S. et al. Evaluation of Sentinel-2 time-series for mapping floodplain grassland plant communities. Remote Sens. Environ. 223, 115–129 (2019).Article 
    ADS 

    Google Scholar 
    Li, W. et al. Accelerating savanna degradation threatens the Maasai Mara socio-ecological system. Glob. Environ. Change 60, 102030 (2020).Article 

    Google Scholar 
    Wonkka, C. L., Twidwell, D., Franz, T. E., Taylor, C. A. & Rogers, W. E. Persistence of a severe drought increases desertification but not woody dieback in semiarid savanna. Rangeland Ecol. Manage. 69, 491–498 (2016).Article 

    Google Scholar 
    Vierich, H. I. D. & Stoop, W. A. Changes in West African savanna agriculture in response to growing population and continuing low rainfall. Agric. Ecosyst. Environ. 31, 115–132 (1990).Article 

    Google Scholar 
    Fynn, R. W. S. & O’Connor, T. G. Effect of stocking rate and rainfall on rangeland dynamics and cattle performance in a semi-arid savanna, South Africa. J. Appl. Ecol. 37, 491–507 (2000).Article 

    Google Scholar 
    Wang, S., Chen, W., Xie, S. M., Azzari, G. & Lobell, D. B. Weakly supervised deep learning for segmentation of remote sensing imagery. Remote Sensing 12, 207 (2020).Article 
    ADS 

    Google Scholar 
    Alananga, S., Makupa, E. R., Moyo, K. J., Matotola, U. C. & Mrema, E. F. Land administration practices in Tanzania: A replica of past mistakes. Journal of Property, Planning and Environmental Law (2019).Huggins, C. Village land use planning and commercialization of land in Tanzania. LANDac Research Brief 1 (2016).Stein, H., Maganga, F. P., Odgaard, R., Askew, K. & Cunningham, S. The formal divide: Customary rights and the allocation of credit to agriculture in Tanzania. J. Dev. Stud. 52, 1306–1319 (2016).Article 

    Google Scholar 
    Hall, D. G. M., Reeve, M. J., Thomasson, A. J. & Wright, V. F. Water retention, porosity and density of field soils (No. Tech. Monograph N9, 1977).Moore, D. C. & Singer, M. J. Crust formation effects on soil erosion processes. Soil Sci. Soc. Am. J. 54, 1117–1123 (1990).Article 
    ADS 

    Google Scholar 
    Cotler, H. & Ortega-Larrocea, M. P. Effects of land use on soil erosion in a tropical dry forest ecosystem, Chamela watershed, Mexico. Catena 65, 107–117 (2006).Article 

    Google Scholar 
    Bach, E. M., Baer, S. G., Meyer, C. K. & Six, J. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol. Biochem. 42, 2182–2191 (2010).Article 
    CAS 

    Google Scholar 
    Butz, R. J. Traditional fire management: historical fire regimes and land use change in pastoral East Africa. Int. J. Wildland Fire 18, 442–450 (2009).Article 

    Google Scholar  More

  • in

    Upside down sulphate dynamics in a saline inland lake

    Canfield, D. E.; Kristensen, E.; Thamdrup, B. The Sulfur Cycle. In Advances in Marine Biology; Aquatic Geomicrobiology; Academic Press, 2005; Vol. 48, pp 313–381. https://doi.org/10.1016/S0065-2881(05)48009-8.Jørgensen, B. B., Findlay, A. J. & Pellerin, A. The biogeochemical sulfur cycle of marine sediments. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00849 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thamdrup, B., Fossing, H. & Jørgensen, B. B. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay. Denmark. Geochim. Cosmochim. Acta 58(23), 5115–5129. https://doi.org/10.1016/0016-7037(94)90298-4 (1994).Article 
    ADS 
    CAS 

    Google Scholar 
    Holmer, M. & Storkholm, P. Sulphate reduction and sulphur cycling in lake sediments: A review. Freshw. Biol. 46(4), 431–451. https://doi.org/10.1046/j.1365-2427.2001.00687.x (2001).Article 
    CAS 

    Google Scholar 
    Koschorreck, M. Microbial sulphate reduction at a low PH. FEMS Microbiol. Ecol. 64(3), 329–342. https://doi.org/10.1111/j.1574-6941.2008.00482.x (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kwon, M. J. et al. Impact of organic carbon electron donors on microbial community development under iron- and sulfate-reducing conditions. PLoS ONE 11(1), e0146689. https://doi.org/10.1371/journal.pone.0146689 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fründ, C. & Cohen, Y. Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl. Environ. Microbiol. 58(1), 70–77. https://doi.org/10.1128/aem.58.1.70-77.1992 (1992).
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marschall, C., Frenzel, P. & Cypionka, H. Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch. Microbiol. 159(2), 168–173. https://doi.org/10.1007/BF00250278 (1993).Article 
    CAS 

    Google Scholar 
    Borzenko, S. V., Kolpakova, M. N., Shvartsev, S. L. & Isupov, V. P. Biogeochemical conversion of sulfur species in saline lakes of steppe Altai. J. Oceanol. Limnol. 36(3), 676–686. https://doi.org/10.1007/s00343-018-6293-8 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Häusler, S. et al. Sulfate reduction and sulfide oxidation in extremely steep salinity gradients formed by freshwater springs emerging into the dead sea. FEMS Microbiol Ecol 90(3), 956–969. https://doi.org/10.1111/1574-6941.12449 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Komor, S. C. Bidirectional sulfate diffusion in saline-lake sediments: Evidence from Devils Lake, Northeast North Dakota. Geology 20(4), 319–322. https://doi.org/10.1130/0091-7613(1992)020%3c0319:BSDISL%3e2.3.CO;2 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Valiente, N. et al. Tracing sulfate recycling in the hypersaline Pétrola Lake (SE Spain): A combined isotopic and microbiological approach. Chem. Geol. 473, 74–89. https://doi.org/10.1016/j.chemgeo.2017.10.024 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Moreira, N., Walter, L., Vasconcelos, C., McKenzie, J. & McCall, P. Role of sulfide oxidation in dolomitization: Sediment and pore-water geochemistry of a modern hypersaline lagoon system. Geology 32(8), 701–704. https://doi.org/10.1130/G20353.1 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Jolly, I. D., McEwan, K. L. & Holland, K. L. A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology https://doi.org/10.1002/eco.6 (2008).Article 

    Google Scholar 
    Williams, W. D. Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. Environ. Conserv. 29(2), 154–167. https://doi.org/10.1017/S0376892902000103 (2002).Article 

    Google Scholar 
    CHE. Confederación Hidrográfica del Ebro. https://www.chebro.es/ (Accessed 1 June 2022).Comín, F. A., Rodó, X. & Comín, P. Lake Gallocanta (Aragon, NE Spain), a paradigm of fluctuations at different scales of time. Limnetica 8(1), 79–86 (1992).Article 

    Google Scholar 
    Luna, E.; Latorre, B.; Castañeda, C. Rainfall and the Presence of Water in Gallocanta Lake. http://digital.csic.es/handle/10261/117417. (2014).San Roman Saldaña, J.; García Vera, M. Á.; Blasco Herguedas, Ó.; Coloma López, P. Toma de Datos, Modelación y Gestión Del Agua Subterránea En La Cuenca Endorréica de La Laguna de Gallocanta (España); Alicante, Spain, 2005; pp 551–557.Orellana-Macías, J. M., Merchán, D. & Causapé, J. Evolution and assessment of a nitrate vulnerable zone over 20 years: Gallocanta groundwater body (Spain). Hydrogeol. J. https://doi.org/10.1007/s10040-020-02184-0 (2020).Article 

    Google Scholar 
    Gracia, F. J., Gutierrez, F. & Gutierrez, M. Origin and evolution of the Gallocanta Polije (Iberian range, NE Spain). Z. Geomorph. N. F. 46(2), 245–262 (2002).Article 

    Google Scholar 
    García-Vera, M.A.; San Román Saldaña, J.; Blasco Herguedas, O.; Coloma López, P. Hidrogeología de La Laguna de GalIocanta e Implicaciones Ambientales. In M.A. Casterad and C. Castañeda (Eds.). La Laguna de Gallocanta: Medio Natural, Conservación y Teledetección. Memorias de la Real Sociedad Española de Historia Natural. 2009, 7, 79–104.Comín, F. A., Juli, R., Comín, P. & Plana, F. Hydrogeochemistry of Lake Gallocanta (Aragón, NE Spain). Hydrobiologia 197, 51–66. https://doi.org/10.1007/bf00026938 (1990).Article 

    Google Scholar 
    Mayayo, M. J. et al. Sedimentological evolution of the holocene Gallocanta Lake, NE Spain. Limnol. Spain Tribute Kerry Kelts 14, 359–384 (2003).
    Google Scholar 
    Pérez, A. et al. Sedimentary facies distribution and genesis of a recent carbonate-rich Saline Lake: Gallocanta Lake, Iberian Chain, NE Spain. Sediment. Geol. 148(1–2), 185–202. https://doi.org/10.1016/S0037-0738(01)00217-2 (2002).Article 
    ADS 

    Google Scholar 
    Corzo, A. et al. Carbonate mineralogy along a biogeochemical gradient in recent lacustrine sediments of Gallocanta Lake (Spain). Geomicrobiol. J. 22(6), 283–298. https://doi.org/10.1080/01490450500183654 (2005).Article 
    CAS 

    Google Scholar 
    Castañeda, C., Gracia, F. J., Luna, E. & Rodríguez-Ochoa, R. Edaphic and geomorphic evidences of water level fluctuations in Gallocanta Lake, NE Spain. Geoderma 239–240, 265–279. https://doi.org/10.1016/j.geoderma.2014.11.005 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Luzón, A. et al. Holocene environmental changes in the Gallocanta lacustrine basin, Iberian range, NE Spain. Holocene 17(5), 649–663. https://doi.org/10.1177/0959683607078994 (2007).Article 
    ADS 

    Google Scholar 
    Schütt, B. Reconstruction of holocene paleoenvironments in the endorheic basin of laguna de Gallocanta, Central Spain by investigation of mineralogical and geochemical characters from lacustrine sediments. J. Paleolimnol. 20, 217. https://doi.org/10.1023/A:1007924000636 (1998).Article 
    ADS 

    Google Scholar 
    Castañeda, C., Luna, E. & Rabenhorst, M. Reducing conditions in soil of Gallocanta Lake. Northeast Spain. Eur. J. Soil Sci. 68(2), 249–258. https://doi.org/10.1111/ejss.12407 (2017).Article 
    CAS 

    Google Scholar 
    Castañeda, C., Gracia, F. J., Conesa, J. A. & Latorre, B. Geomorphological control of habitat distribution in an intermittent shallow Saline Lake, Gallocanta Lake. NE Spain. Sci. Total Environ. 726, 138601. https://doi.org/10.1016/j.scitotenv.2020.138601 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Comín, F. A., Rodó, X. & Menéndez, M. Spatial heterogeneity of macrophytes in lake Gallocanta (Aragón, NE Spain). Hydrobiologia 267(1–3), 169–178. https://doi.org/10.1007/BF00018799 (1993).Article 

    Google Scholar 
    Castro, O. D. et al. A Contribution to the characterization of ruppia drepanensis (ruppiaceae), a key species of threatened mediterranean Wetlands. Ann. Mo. Bot. Gard. 106, 1–9. https://doi.org/10.3417/2020520 (2021).Article 

    Google Scholar 
    Alonso López, J. A., Alonso López, J. C., Cantos, F. J. & Bautista, L. M. Spring crane grus grus migration through Gallocanta, Spain. II. Timing and pattern of daily departures. Ardea 78, 379–388 (1990).
    Google Scholar 
    Alonso López, J. C., Alonso López, J. A., Cantos, F. J. & Bautista, L. M. Spring crane grus grus migration through Gallocanta, Spain. I. Daily Variations in Migration Volume. Ardea 78, 365–378 (1990).
    Google Scholar 
    Orellana-Macías, J. M., Bautista, L. M., Merchán, D., Causapé, J. & Alonso, J. C. Shifts in crane migration phenology associated with climate change in southwestern Europe. Avian Conserv. Ecol. 15(1), 1–13. https://doi.org/10.5751/ACE-01565-150116 (2020).Article 

    Google Scholar 
    Luzón, A., Mayayo, M. J. & Pérez, A. Stable isotope characterisation of co-existing carbonates from the holocene Gallocanta Lake (NE Spain): Palaeolimnological implications. Int. J. Earth Sci. 98(5), 1129–1150. https://doi.org/10.1007/s00531-008-0308-1 (2009).Article 
    CAS 

    Google Scholar 
    Accoe, F. et al. Evolution of the Δ13C signature related to total carbon contents and carbon decomposition rate constants in a soil profile under grassland. Rapid Commun. Mass Spectrom. 16(23), 2184–2189. https://doi.org/10.1002/rcm.767 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Menéndez-Serra, M., Triadó-Margarit, X., Castañeda, C., Herrero, J. & Casamayor, E. O. Microbial composition, potential functional roles and genetic novelty in gypsum-rich and hypersaline soils of Monegros and Gallocanta (Spain). Sci. Total Environ. 650(September), 343–353. https://doi.org/10.1016/j.scitotenv.2018.09.050 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kendall, C. & McDonnell, J. J. Isotope Tracers in Catchment Hydrology 1st edn. (Elsevier, 1999).

    Google Scholar 
    Mayer, B., Fritz, P., Prietzel, J. & Krouse, H. R. The use of stable sulfur and oxygen isotope ratios for interpreting the mobility of sulfate in aerobic forest soils. Appl. Geochem. 10(2), 161–173. https://doi.org/10.1016/0883-2927(94)00054-A (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Otero, N., Canals, À. & Soler, A. Using dual-isotope data to trace the origin and processes of dissolved sulphate: A case study in calders stream (Llobregat Basin, Spain). Aquat. Geochem. 13(2), 109–126. https://doi.org/10.1007/s10498-007-9010-3 (2007).Article 
    CAS 

    Google Scholar 
    Canfield, D. E. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim. Cosmochim. Acta 65(7), 1117–1124. https://doi.org/10.1016/S0016-7037(00)00584-6 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Canfield, D. E. Biogeochemistry of sulfur isotopes. Rev. Mineral. Geochem. 43(1), 607–636. https://doi.org/10.2138/gsrmg.43.1.607 (2001).Article 
    CAS 

    Google Scholar 
    Antler, G., Turchyn, A. V., Ono, S., Sivan, O. & Bosak, T. Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction. Geochim. Cosmochim. Acta 203, 364–380. https://doi.org/10.1016/j.gca.2017.01.015 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Kaplan, I. R. & Rittenberg, S. C. Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol. 34(2), 195–212. https://doi.org/10.1099/00221287-34-2-195 (1964).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mangalo, M., Meckenstock, R. U., Stichler, W. & Einsiedl, F. Stable isotope fractionation during bacterial sulfate reduction is controlled by reoxidation of intermediates. Geochim. Cosmochim. Acta 71(17), 4161–4171. https://doi.org/10.1016/j.gca.2007.06.058 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Strebel, O., Böttcher, J. & Fritz, P. Use of isotope fractionation of sulfate-sulfur and sulfate-oxygen to assess bacterial desulfurication in a sandy aquifer. J. Hydrol. 121(1–4), 155–172. https://doi.org/10.1016/0022-1694(90)90230-U (1990).Article 
    ADS 
    CAS 

    Google Scholar 
    Sim, M. S., Bosak, T. & Ono, S. Large sulfur isotope fractionation does not require disproportionation. Science 333(6038), 74–77. https://doi.org/10.1126/science.1205103 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Leavitt, W. D., Halevy, I., Bradley, A. S. & Johnston, D. T. Influence of sulfate reduction rates on the phanerozoic sulfur isotope record. Proc. Natl. Acad. Sci. 110(28), 11244–11249. https://doi.org/10.1073/pnas.1218874110 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Utrilla, R., Pierre, C., Orti, F. & Pueyo, J. J. Oxygen and sulphur isotope compositions as indicators of the origin of mesozoic and cenozoic evaporites from Spain. Chem. Geol. 102(1), 229–244. https://doi.org/10.1016/0009-2541(92)90158-2 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Driessche, A. E. S. V., Canals, A., Ossorio, M., Reyes, R. C. & García-Ruiz, J. M. Unraveling the sulfate sources of (Giant) gypsum crystals using gypsum isotope fractionation factors. J. Geol. https://doi.org/10.1086/684832 (2016).Article 

    Google Scholar 
    Wardlaw, G. D. & Valentine, D. L. Evidence for salt diffusion from sediments contributing to increasing salinity in the Salton sea, California. Hydrobiologia 533(1), 77–85. https://doi.org/10.1007/s10750-004-2395-8 (2005).Article 
    CAS 

    Google Scholar 
    Bak, F. & Pfennig, N. Microbial sulfate reduction in littoral sediment of lake constance. FEMS Microbiol. Lett. 85(1), 31–42. https://doi.org/10.1111/j.1574-6968.1991.tb04695.x (1991).Article 
    CAS 

    Google Scholar 
    Dogramaci, S. S., Herczeg, A. L., Schiff, S. L. & Bone, Y. Controls on Δ34S and Δ18O of dissolved sulfate in aquifers of the murray basin, Australia and their use as indicators of flow processes. Appl. Geochem. 16(4), 475–488. https://doi.org/10.1016/S0883-2927(00)00052-4 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodier. L’analyse de l’eau, eaux naturelles, eaux résiduaires, eau de mer; Dunod, 1976.Romain, T. Tester Les Isotopes Stables de l’azote Des Matières Organiques Fossiles Terrestres Comme Marqueur Paléoclimatique Sur Des Séries Pré-Quaternaires, Université Pierre et Marie Curie – Paris VI, 2015. https://tel.archives-ouvertes.fr/tel-01408071. More