More stories

  • in

    Quantifying the impact of the Grain-for-Green Program on ecosystem service scarcity value in Qinghai, China

    Fan, M. & Yu, X. Impacts of the grain for green program on the spatial pattern of land uses and ecosystem services in mountainous settlements in southwest china. Glob. Ecol. Conserv. 21, 806. https://doi.org/10.1016/j.gecco.2019.e00806 (2020).Article 

    Google Scholar 
    Huang, L., Shao, Q. & Liu, J. The spatial and temporal patterns of carbon sequestration by forestation in Jiangxi Province. Acta Ecol. Sin. 35, 2105–2118 (2015).
    Google Scholar 
    Wang, B., Gao, P., Niu, X. & Sun, J. Policy-driven china’s grain to green program: Implications for ecosystem services. Ecosyst. Serv. 27, 38–47. https://doi.org/10.1016/j.gecco.2019.e00806 (2017).Article 

    Google Scholar 
    Deng, L., Zhou-ping, S. & Li, R. Effects of the grain-for-green program on soil erosion in China. Int. J. Sediment Res. 27, 120–127. https://doi.org/10.1016/s1001-6279(12)60021-3 (2012).Article 

    Google Scholar 
    Cragun, D. et al. Qualitative comparative analysis: A hybrid method for identifying factors associated with program effectiveness. J. Mix. Methods Res. 10, 251–272. https://doi.org/10.1177/1558689815572023 (2016).Article 
    PubMed 

    Google Scholar 
    Biancardo, S. A. et al. An innovative framework for integrating cost-benefit analysis (cba) within building information modeling (bim). Socio-Econ. Plan. Sci. 85, 1014795. https://doi.org/10.1016/j.seps.2022.101495 (2022).Article 

    Google Scholar 
    Miller, C. J., Smith, S. N. & Pugatch, M. Experimental and quasi-experimental designs in implementation research. Psychiatry Res. 283, 112452. https://doi.org/10.1016/j.psychres.2019.06.027 (2020).Article 
    PubMed 

    Google Scholar 
    Park, S.-G. et al. Characteristics of the flow field inside and around a square fish cage considering the circular swimming pattern of a farmed fish school: Laboratory experiments and field observations. Ocean. Eng. 261, 112097. https://doi.org/10.1016/j.oceaneng.2022.112097 (2022).Article 

    Google Scholar 
    Zhou, F. & Wang, X. The carbon emissions trading scheme and green technology innovation in china: A new structural economics perspective. Econ. Anal. Policy 74, 365–381. https://doi.org/10.1016/j.eap.2022.03.007 (2022).Article 

    Google Scholar 
    Gharehgozli, O. An empirical comparison between a regression framework and the synthetic control method. Q. Rev. Econ. Financ. 81, 70–81. https://doi.org/10.1016/j.qref.2021.05.002 (2021).Article 

    Google Scholar 
    Salman, M., Long, X., Wang, G. & Zha, D. Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design. Energy Policy 168, 113128. https://doi.org/10.1016/j.enpol.2022.113128 (2022).Article 

    Google Scholar 
    Stanford, B., Zavaleta, E. & Millard-Ball, A. Where and why does restoration happen? Ecological and sociopolitical influences on stream restoration in coastal california. Biol. Conserv. 221, 219–227. https://doi.org/10.1016/j.biocon.2018.03.016 (2018).Article 

    Google Scholar 
    Milchakova, L., Bondareva, N. A. & Alexandrov, V. Core areas in the structure of the regional ecological framework of Sevastopol City. South Russia-Ecol. Dev. 17, 102–114. https://doi.org/10.18470/1992-1098-2022-2-102-114 (2022).Article 

    Google Scholar 
    Miller, R., Nielsen, E. & Huang, C.-H. Ecosystem service valuation through wildfire risk mitigation: Design, governance, and outcomes of the flagstaff watershed protection project (fwpp). Forests 8, 142. https://doi.org/10.3390/f8050142 (2017).Article 

    Google Scholar 
    Zhao, H. E. A. Spatiotemporal patterns of vegetation conversion under the grain for green program in southwest China. Conserv. Sci. Pract. 4, e604. https://doi.org/10.1111/csp2.604 (2022).Article 
    MathSciNet 

    Google Scholar 
    Guo, B., Xie, T. & Subrahmanyam, M. The impact of china’s grain for green program on rural economy and precipitation: A case study of Yan river basin in the loess plateau. Sustainability 11, 5336. https://doi.org/10.3390/su11195336 (2019).Article 

    Google Scholar 
    Zuo, Y., Cheng, J. & Fu, M. Analysis of land use change and the role of policy dimensions in ecologically complex areas: A case study in Chongqing. Land 11, 627. https://doi.org/10.3390/land11050627 (2022).Article 

    Google Scholar 
    Delang, C. O. The effects of china’s grain for green program on migration and remittance. Econ. Agrar. Recursos. Nat. 18, 117–132. https://doi.org/10.2004/ag.econ.281239 (2019).Article 

    Google Scholar 
    Treacy, P. E. A. Impacts of china’s grain for green program on migration and household income. Environ. Manage. 62, 489–499. https://doi.org/10.1007/s00267-018-1047-0 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Han, R., Guo, L., Xu, N. & Wang, D. The effect of the grain for green program on ecosystem health in the upper reaches of the Yangtze river basin: A case study of eastern Sichuan, China. Int. J. Environ. Res. Public Heal. 16, 2112. https://doi.org/10.3390/ijerph16122112 (2019).Article 

    Google Scholar 
    Zhang, X., Liu, K., Li, X., Wang, S. & Wang, J. Vulnerability assessment and its driving forces in terms of ndvi and gpp over the loess plateau, China. Phys. Chem. Earth Parts A/B/C 125, 103106. https://doi.org/10.1016/j.pce.2022.103106 (2022).Article 

    Google Scholar 
    Liu, L., Yan, J. & Li, S. Spatial-temporal characteristics of vegetation restoration in Qinghai Province from 2000 to 2009. Bull. Soil Water Conserv. 34, 263–267 (2014).ADS 
    CAS 

    Google Scholar 
    Shao, E. A. Q. Target-based assessment on effects of first-stage ecological conservation and restoration project in three-river source region, china and policy recommendations. Bull. Chin. Acad. Sci. (Chin. Vers.) 32, 35–44 (2017).
    Google Scholar 
    Guo, E. A. J. The dynamic evolution of the ecological footprint and ecological capacity of Qinghai Province. Sustainability 12, 3065. https://doi.org/10.3390/su12073065 (2020).Article 

    Google Scholar 
    Jiang, W., Yihe, L., Yuanxin, L. & Wenwen, G. Ecosystem service value of the Qinghai-Tibet plateau significantly increased during 25 years. Ecosyst. Serv. 44, 101146. https://doi.org/10.1016/j.ecoser.2020.101146 (2020).Article 

    Google Scholar 
    Xie, S. W. W. Research on the coupling coordination between economic development and ecological environment—a case study of ecological civilization construction of Qinghai Province. Plateau Sci. Res. 4, 36–45 (2020).
    Google Scholar 
    Jielan, L., Xingpeng, C., Yu, W. & Zilong, Z. Research on the sustainable development in Qinghai province based on systemdynamics. Resour. Sci. 31, 1624–1631 (2009).
    Google Scholar 
    Tabutin, E. T. D. The relationships between population growth and environment: From doctrinal to empirical. Revuet.-monde 33, 273–294 (1992).Article 
    CAS 

    Google Scholar 
    Fu, E. A. G. Impact of the grain for green program on forest cover in China. J. Environ. Econ. Policy 8, 231–249. https://doi.org/10.1080/21606544.2018.1552626 (2019).Article 

    Google Scholar 
    Jia, E. A. X. The tradeoff and synergy between ecosystem services in the grain-for-green areas in northern Shaanxi, China. Ecol. Indic. 43, 103–113. https://doi.org/10.1016/j.ecolind.2014.02.028 (2014).Article 

    Google Scholar 
    Deng, L., Guo-bin, L. & Zhou-ping, S. Land-use conversion and changing soil carbon stocks in China’s ‘grain-for-green’program: A synthesis. Glob. Chang. Biol. 20, 3544–3556. https://doi.org/10.1111/gcb.12508 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Deng, E. A. L. Past and future carbon sequestration benefits of China’s grain for green program. Glob. Environ. Chang. 47, 13–20. https://doi.org/10.1016/j.gloenvcha.2017.09.006 (2017).Article 

    Google Scholar 
    Cao, E. A. S. Payoff of the grain for green policy. J. Appl. Ecol. 57, 1180–1188. https://doi.org/10.1111/1365-2664.13608 (2020).Article 

    Google Scholar 
    Guo, H., Li, B., Hou, Y., Lu, S. & Nan, B. Rural households’ willingness to participate in the grain for green program again: A case study of Zhungeer, China. For. Policy Econ. 44, 42–49. https://doi.org/10.1016/j.forpol.2014.05.002 (2014).Article 

    Google Scholar 
    Li, E. A. Y. Coupling between the grain for green program and a household level-based agricultural eco-economic system in Ansai, Shaanxi Province of China. J. Arid Land 12, 199–214. https://doi.org/10.1007/s40333-020-0060-3 (2020).Article 

    Google Scholar 
    Li, Y., Feng, Y., Guo, X. & Peng, F. Changes in coastal city ecosystem service values based on land use—a case study of Yingkou, China. Land Use Policy 65, 287–293. https://doi.org/10.1016/j.landusepol.2017.04.021 (2017).Article 

    Google Scholar 
    Peng, E. A. J. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total. Environ. 607, 706–714. https://doi.org/10.1016/j.scitotenv.2017.06.218 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Costanza, E. A. R. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260. https://doi.org/10.1038/387253a0 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Wu, X., Wang, S., Fu, B., Liu, Y. & Zhu, Y. Land use optimization based on ecosystem service assessment: A case study in the yanhe watershed. Land Use Policy 72, 303–312. https://doi.org/10.1016/j.landusepol.2018.01.003 (2018).Article 

    Google Scholar 
    Zhou, E. A. Y. Land use-driven changes in ecosystem service values and simulation of future scenarios: A case study of the Qinghai–Tibet plateau. Sustainability 13, 4079. https://doi.org/10.3390/su13074079 (2021).Article 

    Google Scholar 
    Han, W. S. X. Z. Responses of ecosystem service to land use change in Qinghai province. Energies 9, 303. https://doi.org/10.1016/j.landusepol.2018.01.003 (2016).Article 

    Google Scholar 
    Shooshtari, S. J., Shayesteh, K., Gholamalifard, M., Azari, M. & López-Moreno, J. I. Land cover change modelling in hyrcanian forests, northern Iran: A landscape pattern and transformation analysis perspective. Cuader. De Investig. Geogr. 44, 743–761. https://doi.org/10.18172/cig.3279 (2018).Article 

    Google Scholar 
    Boerema, A., Rebelo, A. J., Bodi, M. B., Esler, K. J. & Meire, P. Are ecosystem services adequately quantified?. J. Appl. Ecol. 54, 358–370. https://doi.org/10.1111/1365-2664.12696 (2017).Article 

    Google Scholar 
    Costanza, E. A. R. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).Article 

    Google Scholar 
    Newton, E. A. A. Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J. For. Nat. Conserv. 44, 50–65. https://doi.org/10.1016/j.jnc.2018.02.009 (2018).Article 

    Google Scholar 
    Wang, L.-J., Ma, S., Zhao, Y.-G. & Zhang, J.-C. Ecological restoration projects did not increase the value of all ecosystem services in northeast china. For. Ecol. Manag. 495, 119340. https://doi.org/10.1016/j.foreco.2021.119340 (2021).Article 

    Google Scholar 
    Sun, X. & Li, F. Spatiotemporal assessment and trade-offs of multiple ecosystem services based on land use changes in zengcheng, china. Sci. Total Env. 609, 1569–1581. https://doi.org/10.1016/j.scitotenv.2017.07.221 (2017).Article 
    CAS 

    Google Scholar 
    Aulia, A., Sandhu, H. & Millington, A. Quantifying the economic value of ecosystem services in oil palm dominated landscapes in Riau Province in Sumatra, Indonesia. Land 9, 194. https://doi.org/10.3390/land9060194 (2020).Article 

    Google Scholar 
    Peng, E. A. J. Simulating the impact of grain-for-green programme on ecosystem services trade-offs in northwestern Yunnan, China. Ecosyst. Serv. 39, 100998 (2019).Article 

    Google Scholar 
    Shi, Y., Shi, D., Zhou, L. & Fang, R. Identification of ecosystem services supply and demand areas and simulation of ecosystem service flows in Shanghai. Ecol. Indic. 115, 106418. https://doi.org/10.1016/j.ecolind.2020.106418 (2020).Article 
    CAS 

    Google Scholar 
    Zoderer, B. M., Tasser, E., Carver, S. & Tappeiner, U. Stakeholder perspectives on ecosystem service supply and ecosystem service demand bundles. Ecosyst. Serv. 37, 100938. https://doi.org/10.1016/j.ecoser.2019.100938 (2019).Article 

    Google Scholar 
    Bryan, B. A., Ye, Y., Zhang, J. & Connor, J. D. Land-use change impacts on ecosystem services value: Incorporating the scarcity effects of supply and demand dynamics. Ecosyst. services 32, 144–157. https://doi.org/10.1016/j.ecoser.2018.07.002 (2018).Article 

    Google Scholar 
    Xiaojuan, Q. & Yufen, T. Coordinative development between population, economy, resources and environment in north-west area of china. China Popul. Resour. Environ. 18, P110-114 (2008).
    Google Scholar 
    Haiyang, Z., Zhang, Z. & Zhang, P. Rs-and gis-based evaluation and dynamic monitoring of land desertification in Qinghai Province. Arid Zone Res. 24, 153–158 (2007).
    Google Scholar 
    Kang, B. et al. Research on grassland ecosystem service value in china under climate change based on meta-analysis: A case study of Qinghai Province. Int. J. Clim. Chang. Strateg. Manag. https://doi.org/10.1108/ijccsm-06-2020-0073 (2020).Article 

    Google Scholar 
    Wang, X. & Zang, Y. Carbon footprint of the agricultural sector in Qinghai Province, China. Appl. Sci. 9, 2047. https://doi.org/10.3390/app9102047 (2019).Article 
    CAS 

    Google Scholar 
    Wei, E. A. W. The dynamic analysis and comparison of emergy ecological footprint for the qinghai–tibet plateau: A case study of Qinghai Province and Tibet. Sustainability 11, 5587. https://doi.org/10.3390/su11205587 (2019).Article 

    Google Scholar 
    Chen, E. A. W. An emergy accounting based regional sustainability evaluation: A case of Qinghai in China. Ecol. Indic. 88, 152–160. https://doi.org/10.1016/j.ecolind.2017.12.069 (2018).Article 

    Google Scholar 
    National Bureau of Statistics of China. Chinese Statistical Yearbook 2021 (China Statistics Press, 2021).
    Google Scholar 
    Statistics Bureau of Qinghai Province. Qinghai Statistical Yearbook 2021 (China Statistics Press, 2021).
    Google Scholar 
    Zhang, J. & Ren, Z. Spatiotemporal pattern and terrain gradient effect of land use change in Qinling-Bashan mountains. Trans. Chin. Soc. Agric. Eng. 32, 250–257 (2016).
    Google Scholar 
    Liao, K. The discussion and prospect for geo-informatic Tupu. Geo-inf. Sci. 1, 14–20 (2002).ADS 

    Google Scholar 
    Lu, X., Shi, Y., Chen, C. & Yu, M. Monitoring cropland transition and its impact on ecosystem services value in developed regions of china: A case study of Jiangsu Province. Land Use Policy 69, 25–40. https://doi.org/10.1016/j.landusepol.2017.08.035 (2017).Article 

    Google Scholar 
    Lyu, X., Shi, Y. Y., Huang, X. J., Sun, X. F. & Miao, Z. W. Geo-spectrum characteristics of land use change in Jiangsu Province, China. The J. Appl. Ecol. 27, 1077–1084. https://doi.org/10.13287/j.1001-9332.201604.006 (2016).Article 

    Google Scholar 
    Dong, S., Zhao, Y. & Li, X. Spatiotemporal patterns of land use change in plateau region based on the terrain gradient—a case study in Panxian county, Guizhou Province. Res. Soil Water Conserv. 24, 213–222 (2017).
    Google Scholar 
    Oneill, R. V., Riitters, K. H., Wickham, J. D. & Jones, K. B. Landscape pattern metrics and regional assessment. Ecosyst. Health 5, 225–233. https://doi.org/10.1046/j.1526-0992.1999.09942.x (1999).Article 

    Google Scholar 
    Xie, G. D., Zhang, C. X., Zhang, L. M., Chen, W. H. & Li, S. M Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 30, 1243 (2015).
    Google Scholar 
    Wang, Y., Erfu, D., Le, Y. & Liang, M. Land use/land cover change and the effects on ecosystem services in the Hengduan mountain region, China. Ecosyst. Serv. 34, 55–67. https://doi.org/10.1016/j.ecoser.2018.09.008 (2018).Article 

    Google Scholar 
    Li, R., Shi, Y., Feng, C.-C. & Guo, L. The spatial relationship between ecosystem service scarcity value and urbanization from the perspective of heterogeneity in typical arid and semiarid regions of china. Ecol. Indic. 132, 108299 (2021).Article 

    Google Scholar 
    Shi, Y., Feng, C.-C., Yu, Q. & Guo, L. Integrating supply and demand factors for estimating ecosystem services scarcity value and its response to urbanization in typical mountainous and hilly regions of south china. Sci. Total. Environ. 796, 149032 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Liu, C. F., Li, J. Z., Li, X. M., He, X. Y. & Chen, W. Selection of landscape metrics for urban forest based on simulated landscapes. J. Appl. Ecol. 20, 1125–1131 (2009).
    Google Scholar 
    Zhao, L., Fan, X., Lin, H. & Hong, T. W Hong Impact of expressways on land use changes, landscape patterns, and ecosystem services value in Nanping city, China. Pol. J. Environ. Stud. 30, 2935–2946. https://doi.org/10.15244/pjoes/128584 (2021).Article 

    Google Scholar 
    Xu, W., Dong, X. & Zhang, Z. Spatiotemporal scale effect of vegetation landscape pattern in Saihanba area. J. North-East For. Univ. 49, 106 (2021).
    Google Scholar 
    Schmidt, K., Sachse, R. & Walz, A. Current role of social benefits in ecosystem service assessments. Landsc. Urban Plan. 149, 49–64. https://doi.org/10.1016/j.landurbplan.2016.01.005 (2016).Article 

    Google Scholar 
    Akber, M., Khan, M., Islam-M, R., Munsur, R. & Mohammad, A. Impact of land use change on ecosystem services of southwest coastal bangladesh. J. land Use Science 13, 238–250. https://doi.org/10.1080/1747423x.2018.1529832 (2018).Article 

    Google Scholar 
    Wang, E. A. & Xiaobin, C. Linking land use change, ecosystem services and human well-being: A case study of the manas river basin of Xinjiang, China. Ecosyst. Serv. 27, 113–123. https://doi.org/10.1016/j.ecoser.2017.08.013 (2017).Article 

    Google Scholar 
    Ouyang, L. T., Xiao, W. & Yongh, L. X. Spatial interaction between urbanization and ecosystem services in chinese urban agglomerations. Land Use Policy 109, 105587. https://doi.org/10.1016/j.landusepol.2021.105587 (2021).Article 

    Google Scholar 
    Chen, G., Chi, J. & Li, W. X. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total. Environ. 669, 459–470. https://doi.org/10.1016/j.scitotenv.2019.03.139 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Singh, E. A. D. Distinct influences of land cover and land management on seasonal climate. J. Geophys. Res. Atmos. 123, 12017. https://doi.org/10.1029/2018JD028874 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Diffenbaugh, N. S. Influence of modern land cover on the climate of the united states. Clim. Dyn. 33, 945–958. https://doi.org/10.1007/s00382-009-0566-z (2009).Article 

    Google Scholar  More

  • in

    Water column dynamics control nitrite-dependent anaerobic methane oxidation by Candidatus “Methylomirabilis” in stratified lake basins

    Hydrochemistry and methane oxidation ratesThe water column of the deep North Basin is considered meromictic (i.e., permanently stratified). At the time of sampling for methane oxidation rate measurements in November 2016, the redox transition zone extended from 79 to 105 m depth; as defined here, with an upper boundary set at O2  More

  • in

    Impacts of water hardness and road deicing salt on zooplankton survival and reproduction

    Herbert, E. R. et al. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere. https://doi.org/10.1890/es14-00534.1 (2015).Article 

    Google Scholar 
    Kelly, V. R. et al. Long-term sodium chloride retention in a rural watershed: Legacy effects of road salt on streamater concentration. Environ. Sci. Tech. 42, 410–415. https://doi.org/10.1021/es071391l (2008).Article 
    CAS 

    Google Scholar 
    Tiwari, A. & Rachlin, J. W. A review of road salt ecological impacts. Northeast. Nat. 25, 123–142. https://doi.org/10.1656/045.025.0110 (2018).Article 

    Google Scholar 
    Hintz, W. D. & Relyea, R. A. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshwater Biol. 64, 1081–1097. https://doi.org/10.1111/fwb.13286 (2019).Article 

    Google Scholar 
    Dugan, H. A. et al. Salting our freshwater lakes. Proc. Natl. Acad. of Sci. U.S.A 114, 4453–4458. https://doi.org/10.1073/pnas.1620211114 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Kaushal, S. S. et al. Increased salinization of fresh water in the northeastern United States. Proc. Natl. Acad. of Sci. U.S.A. 102, 13517–13520. https://doi.org/10.1073/pnas.0506414102 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Kaushal, S. S. et al. Freshwater salinization syndrome: from emerging global problem to managing risks. Biogeochemistry 154, 255–292. https://doi.org/10.1007/s10533-021-00784-w (2021).Article 

    Google Scholar 
    Kaushal, S. S. et al. Freshwater salinization syndrome on a continental scale. Proc. Natl. Acad. of Sci. U.S.A. 115, E574–E583. https://doi.org/10.1073/pnas.1711234115 (2018).Article 
    CAS 

    Google Scholar 
    Hintz, W. D., Fay, L. & Relyea, R. A. Road salts, human safety, and the rising salinity of our fresh waters. Front. Ecol. Environ. 9, 22–30. https://doi.org/10.1002/fee.2433 (2022).Article 

    Google Scholar 
    Petranka, J. W. & Doyle, E. J. Effects of road salts on the composition of seasonal pond communities: Can the use of road salts enhance mosquito recruitment?. Aquat. Ecol. 44, 155–166. https://doi.org/10.1007/s10452-009-9286-z (2010).Article 
    CAS 

    Google Scholar 
    Petranka, J. W. & Francis, R. A. Effects of road salts on seasonal wetlands: Poor prey performance may compromise growth of predatory salamanders. Wetlands 33, 707–715. https://doi.org/10.1007/s13157-013-0428-7 (2013).Article 

    Google Scholar 
    Searle, C. L., Shaw, C. L., Hunsberger, K. K., Prado, M. & Duffy, M. A. Salinization decreases population densities of the freshwater crustacean Daphnia dentifera. Hydrobiologia 770, 165–172. https://doi.org/10.1007/s10750-015-2579-4 (2016).Article 
    CAS 

    Google Scholar 
    Hebert, M. P. et al. Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments. Limnol. Oceanogr. Let. https://doi.org/10.1002/lol2.10239 (2022).Article 

    Google Scholar 
    Collins, S. J. & Russell, R. W. Toxicity of road salt to nova scotia amphibians. Environ. Pollut. 157, 320–324. https://doi.org/10.1016/j.envpol.2008.06.032 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Milotic, D., Milotic, M. & Koprivnikar, J. Effects of road salt on larval amphibian susceptibility to parasitism through behavior and immunocompetence. Aquat. Toxicol. 189, 42–49. https://doi.org/10.1016/j.aquatox.2017.05.015 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sanzo, D. & Hecnar, S. J. Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environ. Pollut. 140, 247–256. https://doi.org/10.1016/j.envpol.2005.07.013 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Arnott, S. E. et al. Road salt impacts freshwater zooplankton at concentrations below current water quality guidelines. Envir. Sci. Tech. 54, 9398–9407. https://doi.org/10.1021/acs.est.0c02396 (2020).Article 
    CAS 

    Google Scholar 
    Elphick, J. R. F., Bergh, K. D. & Bailey, H. C. Chronic toxicity of chloride to freshwater species effects of hardness and implications for water quality guidelines. Environ. Toxicol. Chem. 30, 239–246. https://doi.org/10.1002/etc.365 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mount, D. R. et al. The acute toxicity of major ion salts to Ceriodaphnia dubia: I. Influence of background water chemistry. Environ. Toxicol. Chem. 35, 3039–3057. https://doi.org/10.1002/etc.3487 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soucek, D. J. Comparison of hardness- and chloride-regulated acute effects of sodium sulfate on two freshwater crustaceans. Environ. Toxicol. Chem. 26, 773–779. https://doi.org/10.1897/06-229r.1 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bhateria, R. & Jain, D. Water quality assessment of lake water: A review. Sustain. Wat. Res. Manag. 2, 161–173. https://doi.org/10.1007/s40899-015-0014-7 (2016).Article 

    Google Scholar 
    USGS. Hardness of Water. https://www.usgs.gov/special-topics/water-science-school/science/hardness-water#overview, Accessed: 1 August 2022 (2018).Brown, A. H. & Yan, N. D. Food quantity affects the sensitivity of Daphnia to Road Salt. Environ. Sci. Tech. 49, 4673–4680. https://doi.org/10.1021/es5061534 (2015).Article 
    CAS 

    Google Scholar 
    Smith, D. W. & Cooper, S. D. Competition among cladocera. Ecology 63, 1004–1015. https://doi.org/10.2307/1937240 (1982).Article 

    Google Scholar 
    Soucek, D. J. et al. Influence of water hardness and sulfate on the acute toxicity of chloride to sensitive freshwater invertebrates. Environ. Toxicol. Chem. 30, 930–938. https://doi.org/10.1002/etc.454 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gust, K. A. et al. Daphnia magna’s sense of competition: Intra-specific interactions (ISI) alter life history strategies and increase metals toxicity. Ecotoxicology 25, 1126–1135. https://doi.org/10.1007/s10646-016-1667-1 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, X. & Steiner, C. F. Ecotoxicology of salinity tolerance in Daphnia pulex: Interactive effects of clonal variation, salinity stress and predation. J. Plankton Res. 39, 687–697. https://doi.org/10.1093/plankt/fbx027 (2017).Article 
    CAS 

    Google Scholar 
    Evans, M. & Frick, C. The effects of road salts on aquatic ecosystems. Report No. 02-308, (Environment Canada – Water Science and Technology Directorate, 2001).USEPA. (U.S. Environmental Protection Agency, 1988).Schuler, M. S. et al. Regulations are needed to protect freshwater ecosystems from salinization. Phil. Trans. R. Soc. B. https://doi.org/10.1098/rstb.2018.0019 (2019).Article 

    Google Scholar 
    Canadian Council of Ministers for the Environment. Candadian water Quality Guidelines for the Protection of Aquatic Life: Chloride. (Environment Canada, Gatineau, Canada, 2011).Valleau, R. E., Paterson, A. M. & Smol, J. P. Effects of road-salt application on Cladocera assemblages in shallow precambrian shield lakes in south-central Ontario, Canada. Freshwat. Sci. 39, 824–836. https://doi.org/10.1086/711666 (2020).Article 

    Google Scholar 
    Hintz, W. D. et al. Current water quality guidelines across North America and Europe do not protect lakes from salinization. Proc. Natl. Acad. of Sci. U.S.A. https://doi.org/10.1073/pnas.2115033119 (2022).Article 

    Google Scholar 
    Valleau, R. E., Celis-Salgado, M. P., Arnott, S. E., Paterson, A. M. & Smol, J. P. Assessing the effect of salinization (NaCl) on the survival and reproduction of two ubiquitous cladocera species (Bosmina longirostris and Chydorus brevilabris). Wat. Air Soil Pollut. 233, 135. https://doi.org/10.1007/s11270-021-05482-9 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Celis-Salgado, M. P., Cairns, A., Kim, N. & Yan, N. D. The FLAMES medium: A new, soft-water culture and bioassay medium for Cladocera. SIL Proc. 1922–2010(30), 265–271. https://doi.org/10.1080/03680770.2008.11902123 (2008).Article 

    Google Scholar 
    USEPA. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th ed. Office of Water Washington, DC (2002).Hintz, W. D. et al. Concurrent improvement and deterioration of epilimnetic water quality in an oligotrophic lake over 37 years. Limnol. Oceanogr. 65, 927–938. https://doi.org/10.1002/lno.11359 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Winner, R. W. Interactive effects of water hardness and humic acid on the chronic toxicity of cadmium to Daphnia pulex. Aquat. Toxicol. 8, 281–293. https://doi.org/10.1016/0166-445X(86)90080-9 (1986).Article 
    CAS 

    Google Scholar 
    Kaushal, S. S. et al. Novel “chemical cocktails” in inland waters are a consequence of the freshwater salinization syndrome. Phil. Trans. R. Soc. B. https://doi.org/10.1098/rstb.2018.0017 (2019).Article 

    Google Scholar 
    Kaushal, S. S. et al. Making “chemical cocktails”: Evolution of urban geochemical processes across the periodic table of elements. Appl. Geochem. https://doi.org/10.1016/j.apgeochem.2020.104632 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cremona, F. et al. How warming and other stressors affect zooplankton abundance, biomass and community composition in shallow eutrophic lakes. Clim. Change 159, 565–580. https://doi.org/10.1007/s10584-020-02698-2 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Lind, L. et al. Salty fertile lakes: How salinization and eutrophication alter the structure of freshwater communities. Ecosphere. https://doi.org/10.1002/ecs2.2383 (2018).Article 

    Google Scholar 
    Stoler, A. B. et al. Effects of a common insecticide on wetland communities with varying quality of leaf litter inputs. Environ. Pollut. 226, 452–462. https://doi.org/10.1016/j.envpol.2017.04.019 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Riessen, H. P. & Sprules, W. G. Demographic costs of antipredator defenses in Daphnia pulex. Ecology 71, 1536–1546. https://doi.org/10.2307/1938290 (1990).Article 

    Google Scholar  More

  • in

    Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam.

    Bibi, S. et al. Exogenous Ca/Mg quotient reduces the inhibitory effects of PEG induced osmotic stress on Avena sativa L. Braz. J. Biol. 84, 264642 (2022).Article 

    Google Scholar 
    Yasmeen, S. et al. Melatonin as a foliar application and adaptation in lentil (Lens culinaris Medik.) crops under drought stress. Sustainability 14, 16345 (2022).Article 
    CAS 

    Google Scholar 
    Ali, S. et al. The effects of osmosis and thermo-priming on salinity stress tolerance in Vigna radiata L. Sustain. 14, 12924 (2022).Article 
    CAS 

    Google Scholar 
    Umar, U. D. et al. Micronutrients foliar and drench application mitigate mango sudden decline disorder and impact fruit yield. Agronomy 12, 2449 (2022).Article 
    CAS 

    Google Scholar 
    Raymond, M. J. & Smirnoff, N. Proline metabolism and transport in maize seedlings at low water potential. Ann. Bot. 89, 813–823 (2002).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Afridi, M. S. et al. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. Front. Plant Sci. 13, 1–22 (2022).Article 

    Google Scholar 
    Salam, A. et al. Nano-priming against abiotic stress: A way forward towards sustainable agriculture. Sustainability 14, 14880 (2022).Article 
    CAS 

    Google Scholar 
    Yuan, F., Guo, J., Shabala, S. & Wang, B. Reproductive physiology of halophytes: Current standing. Front. Plant Sci. 9, 1954 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flowers, T. J. & Colmer, T. D. Plant salt tolerance: Adaptations in halophytes. Ann. Bot. 115, 327–331 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roy, S. & Chakraborty, U. Cross-generic studies with rice indicate that ion homeostasis and antioxidant defense is associated with superior salinity tolerance in Cynodon dactylon (L.) Pers. Indian J. Plant Physiol. 20, 14–22 (2015).Article 

    Google Scholar 
    Ali, B. et al. Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression. Front. Plant Sci. 13, 921668 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ali, B. et al. Role of endophytic bacteria in salinity stress amelioration by physiological and molecular mechanisms of defense: A comprehensive review. S. Afr. J. Bot. 151, 33–46 (2022).Article 
    CAS 

    Google Scholar 
    Ali, B. et al. Bacillus mycoides PM35 reinforces photosynthetic efficiency, antioxidant defense, expression of stress-responsive genes, and ameliorates the effects of salinity stress in maize. Life 12, 219 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ali, B. et al. PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants 11, 345 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yildiz, M. & Terzi, H. Small heat shock protein responses in leaf tissues of wheat cultivars with different heat susceptibility. Biologia (Bratisl). 63, 521–525 (2008).Article 
    CAS 

    Google Scholar 
    Shao, T., Zhang, L., Shimojo, M. & Masuda, Y. Fermentation quality of Italian ryegrass (Lolium multiflorum Lam.) silages treated with encapsulated-glucose, glucose, sorbic acid and pre-fermented juices. Asian Australas. J. Anim. Sci. 20, 1699–1704 (2007).Article 
    CAS 

    Google Scholar 
    Ashraf, M. & Harris, P. J. C. Photosynthesis under stressful environments: An overview. Photosynthetica 51, 163–190 (2013).Article 
    CAS 

    Google Scholar 
    Ma, J. et al. Short-term responses of Spinach (Spinacia oleracea L.) to the individual and combinatorial effects of Nitrogen, Phosphorus and Potassium and silicon in the soil contaminated by boron. Front. Plant Sci. 13, 983156 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ma, J. et al. Impact of foliar application of syringic acid on tomato (Solanum lycopersicum L.) under heavy metal stress-insights into nutrient uptake, redox homeostasis, oxidative stress, and antioxidant defense. Front. Plant Sci. 13, 950120 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ma, J. et al. Individual and combinatorial effects of SNP and NaHS on morpho-physio-biochemical attributes and phytoextraction of chromium through Cr-stressed spinach (Spinacia oleracea L.). Front. Plant Sci. 13, 973740 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A. & Harmon, J. Soil salinity: A threat to global food security. Agron. J. 108, 2189–2200 (2016).Article 
    CAS 

    Google Scholar 
    Apel, K. & Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signaling transduction. Annu. Rev. Plant Biol. 55, 373 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Triantaphylides, C. et al. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 148, 960–968 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amna et al. Bio-fabricated silver nanoparticles: A sustainable approach for augmentation of plant growth and pathogen control. In Sustainable Agriculture Reviews, Vol. 53 345–371 (Springer, 2021).Faryal, S. et al. Thiourea-capped nanoapatites amplify osmotic stress tolerance in Zea mays L. by conserving photosynthetic pigments, Osmolytes Biosynthesis and Antioxidant Biosystems. Molecules 27, 5744 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tuteja, N. Abscisic acid and abiotic stress signaling. Plant Signal. Behav. 2, 135–138 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saleem, K. et al. Chrysotile-asbestos-induced damage in Panicum virgatum and Phleum pretense species and its alleviation by organic-soil amendment. Sustainability 14, 10824 (2022).Article 

    Google Scholar 
    Wahab, A. et al. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants 11, 1620 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCord, J. M. The evolution of free radicals and oxidative stress. Am. J. Med. 108, 652–659 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Farooq, T. H. et al. Morpho-physiological growth performance and phytoremediation capabilities of selected xerophyte grass species towards Cr and Pb stress. Front. Plant Sci. 13, 997120 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dola, D. B. et al. Nano-iron oxide accelerates growth, yield, and quality of Glycine max seed in water deficits. Front. Plant Sci. 13, 992535 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jaleel, C. A., Gopi, R., Alagu Lakshmanan, G. M. & Panneerselvam, R. Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don. Plant Sci. 171, 271–276 (2006).Article 
    CAS 

    Google Scholar 
    Zainab, N. et al. Pgpr-mediated plant growth attributes and metal extraction ability of sesbania sesban l. In industrially contaminated soils. Agronomy 11, 11 (2021).Article 

    Google Scholar 
    Nawaz, H. et al. Comparative effectiveness of EDTA and citric acid assisted phytoremediation of Ni contaminated soil by using canola (Brassica napus). Braz. J. Biol. 82, 261785 (2022).Article 

    Google Scholar 
    Hasanuzzaman, M. et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9, 681 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dixon, D. P., Cummins, I., Cole, D. J. & Edwards, R. Glutathione-mediated detoxification systems in plants. Curr. Opin. Plant Biol. 1, 258–266 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kangasjärvi, S. et al. Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochem. J. 412, 275–285 (2008).Article 
    PubMed 

    Google Scholar 
    Cai, Y., Luo, Q., Sun, M. & Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74, 2157–2184 (2004).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gengmao, Z., Quanmei, S., Yu, H., Shihui, L. & Changhai, W. The physiological and biochemical responses of a medicinal plant (Salvia miltiorrhiza L.) to stress caused by various concentrations of NaCl. PLoS ONE 9, e89624 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schroeter, H. et al. MAPK signaling in neurodegeneration: Influences of flavonoids and of nitric oxide. Neurobiol. Aging 23, 861–880 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Horemans, N., Foyer, C. H. & Asard, H. Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci. 5, 263–267 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Miller, N. J., Diplock, A. T. & Rice-Evans, C. A. Evaluation of the total antioxidant activity as a marker of the deterioration of apple juice on storage. J. Agric. Food Chem. 43, 1794–1801 (1995).Article 
    CAS 

    Google Scholar 
    Elkhlifi, Z. et al. Potential role of biochar on capturing soil nutrients, carbon sequestration and managing environmental challenges: A review. Sustainability 15, 2527. https://doi.org/10.3390/su15032527 (2023).Article 

    Google Scholar 
    Mahmood, K. T., Mugal, T. & Haq, I. U. Moringa oleifera: A natural gift-a review. J. Pharm. Sci. Res. 2, 775 (2010).
    Google Scholar 
    Anwar, F., Hussein, A. I., Ashraf, M., Jamail, A. & Iqbal, S. Effect of salinity on yield and quality of Moringa oleifera seed oil. Grasas y Aceites 57, 394–401 (2006).Article 
    CAS 

    Google Scholar 
    Barrs, H. D. & Weatherley, P. E. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15, 413–428 (1962).Article 

    Google Scholar 
    Kirk, J. T. O. & Allen, R. L. Dependence of chloroplast pigment synthesis on protein synthesis: Effect of actidione. Biochem. Biophys. Res. Commun. 21, 523–530 (1965).Article 
    CAS 
    PubMed 

    Google Scholar 
    Callister, A. N., Arndt, S. K. & Adams, M. A. Comparison of four methods for measuring osmotic potential of tree leaves. Physiol. Plant. 127, 383–392 (2006).Article 
    CAS 

    Google Scholar 
    Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).Article 
    CAS 

    Google Scholar 
    Yemm, E. W. & Willis, A. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57, 508 (1954).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Velikova, V., Yordanov, I. & Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 151, 59–66 (2000).Article 
    CAS 

    Google Scholar 
    Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198 (1968).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dionisio-Sese, M. L. & Tobita, S. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135, 1–9 (1998).Article 
    CAS 

    Google Scholar 
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fridovich, I. Superoxide dismutases. Annu. Rev. Biochem. 44, 147–159 (1975).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aebi, H. Catalase in vitro. In Methods in enzymology 105, 121–126 (Elsevier, 1984).Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific. Anal. Antioxid. Enzym. Act. lipid peroxidation proline content Agropyron desertorum under drought Stress (1981).Polle, A., Otter, T. & Seifert, F. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol. 106, 53–60 (1994).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guri, A. Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone. Can. J. Plant Sci. 63, 733–737 (1983).Article 
    CAS 

    Google Scholar 
    Brand-Williams, W., Cuvelier, M.-E. & Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28, 25–30 (1995).Article 
    CAS 

    Google Scholar 
    Re, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Benzie, I. F. F. & Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 239, 70–76 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Prieto, P., Pineda, M. & Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 269, 337–341 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Singleton, V. L. & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965).CAS 

    Google Scholar 
    Chang, C.-C., Yang, M.-H., Wen, H.-M. & Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. food drug Anal. 10, 3 (2002).
    Google Scholar 
    Saeed, S. et al. Validating the impact of water potential and temperature on seed germination of wheat (Triticum aestivum L.) via hydrothermal time model. Life 12, 983 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fatima, N. et al. Germination, growth and ions uptake of moringa (Moringa oleifera L.) grown under saline condition. J. Plant Nutr. 41, 1555–1565 (2018).Article 
    CAS 

    Google Scholar 
    Bashir, S. et al. Structural and functional stability of photosystem-II in Moringa oleifera under salt stress. Aust. J. Crop Sci. 15, 676–682 (2021).Article 
    CAS 

    Google Scholar 
    Farooq, F. et al. Impact of varying levels of soil salinity on emergence, growth and biochemical attributes of four Moringa oleifera landraces. PLoS ONE 17, e0263978 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bekka, S., Tayeb-Hammani, K., Boucekkine, I., Aissiou, M.Y.E.-A. & Djazouli, Z. E. Adaptation strategies of Moringa oleifera under drought and salinity stresses. Ukr. J. Ecol. 12, 8–16 (2022).
    Google Scholar 
    Uematsu, K., Suzuki, N., Iwamae, T., Inui, M. & Yukawa, H. Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J. Exp. Bot. 63, 3001–3009 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Khan, M. A. An ecological overview of halophytes from Pakistan. In Cash Crop Halophytes: Recent Studies. Tasks for Vegetation Science Vol. 38 (eds Lieth, H., Mochtchenko, M.) 167–187 (Springer, Dordrecht, 2003). https://doi.org/10.1007/978-94-017-0211-9_20.Chapter 

    Google Scholar 
    Chapin, F. S., Bloom, A. J., Field, C. B. & Waring, R. H. Plant responses to multiple environmental factors. Bioscience 37, 49–57 (1987).Article 

    Google Scholar 
    Ma, T. et al. Shoot and root biomass allocation of sunflower varying with soil salinity and nitrogen applications. Agron. J. 109, 2545–2555 (2017).Article 
    CAS 

    Google Scholar 
    Moud, A. & Maghsoudi, K. Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars. World J. Agric. 4, 351–358 (2008).
    Google Scholar 
    Meloni, D. A., Oliva, M. A., Ruiz, H. A. & Martinez, C. A. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J. Plant Nutr. 24, 599–612 (2001).Article 
    CAS 

    Google Scholar 
    Geissler, N., Hussin, S. & Koyro, H. W. Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environ. Exp. Bot. 65, 220–231 (2009).Article 
    CAS 

    Google Scholar 
    Sun, Y. L. et al. The increase in unsaturation of fatty acids of phosphatidylglycerol in thylakoid membrane enhanced salt tolerance in tomato. Photosynthetica 48, 400–408 (2010).Article 
    CAS 

    Google Scholar 
    Takamiya, K. I., Tsuchiya, T. & Ohta, H. Degradation pathway(s) of chlorophyll: What has gene cloning revealed? Trends Plant Sci. 5, 426–431 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Adnan, M. Y. et al. Desmostachya bipinnata manages photosynthesis and oxidative stress at moderate salinity. Flora Morphol. Distrib. Funct. Ecol. Plants 225, 1–9 (2016).Article 

    Google Scholar 
    Pinheiro, H. A. et al. Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L) seedlings subjected to salt stress conditions. Ind. Crops Prod. 27, 385–392 (2008).Article 
    CAS 

    Google Scholar 
    Zhou, Y. et al. Production of betacyanins in transgenic Nicotiana tabacum increases tolerance to salinity. Front. Plant Sci. 12, 653147 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ribeiro, V. P. et al. Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Braz. J. Microbiol. 49, 40–46 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elhag, A. Z. & Abdalla, M. H. Investigation of sodium chloride tolerance of moringa (Moringa Oleifera Lam.) Transplants. Univers. J. Agric. Res. 2, 45–49 (2014).Article 

    Google Scholar 
    Nouman, W. et al. Drought affects size, nutritional quality, antioxidant activities and phenolic acids pattern of Moringa oleifera Lam. J. Appl. Bot. Food Qual. 91, 79–87 (2018).CAS 

    Google Scholar 
    Carballo-Méndez, F. D. J. et al. Silicon improves seedling production of Moringa oleifera Lam. Under saline stress. Pak. J. Bot. 54, 751–757 (2022).Article 

    Google Scholar 
    Gorai, M., Ennajeh, M., Khemira, H. & Neffati, M. Influence of NaCl-salinity on growth, photosynthesis, water relations and solute accumulation in Phragmites australis. Acta Physiol. Plant. 33, 963–971 (2011).Article 
    CAS 

    Google Scholar 
    Pagter, M., Bragato, C., Malagoli, M. & Brix, H. Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquat. Bot. 90, 43–51 (2009).Article 

    Google Scholar 
    Abideen, Z. et al. Antioxidant activity and polyphenolic content of phragmites karka under saline conditions. Pakistan J. Bot. 47, 813–818 (2015).CAS 

    Google Scholar 
    Teakle, N. L. et al. Differential tolerance to combined salinity and O2 deficiency in the halophytic grasses Puccinellia ciliata and Thinopyrum ponticum: The importance of K+ retention in roots. Environ. Exp. Bot. 87, 69–78 (2013).Article 
    CAS 

    Google Scholar 
    Panuccio, M. R., Jacobsen, S. E., Akhtar, S. S. & Muscolo, A. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 6, plu047. https://doi.org/10.1093/aobpla/plu047 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wege, S., Gilliham, M. & Henderson, S. W. Chloride: Not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient. J. Exp. Bot. 68, 3057–3069 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aziz, I., Gulzar, S., Noor, M. & Khan, M. A. Seasonal variation in water relations of Halopyrum mucronatum (L.) Stapf. growing near Sandspit, Karachi. Pak. J. Bot. 37, 141–148 (2005).
    Google Scholar 
    Teixeira Lins, C. M. et al. Pressure–volume (P–V) curves in Atriplex nummularia Lindl. for evaluation of osmotic adjustment and water status under saline conditions. Plant Physiol. Biochem. 124, 155–159 (2018).Article 
    PubMed 

    Google Scholar 
    Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J. & Zhu, J. K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45, 523–539 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shoukat, E., Aziz, I., Ahmed, M. Z., Abideen, Z. & Khan, M. A. Growth patterns of Phragmites karka under saline conditions depend on the bulk elastic modulus. Crop Pasture Sci. 69, 535–545 (2018).Article 
    CAS 

    Google Scholar 
    Rozema, J. & Schat, H. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ. Exp. Bot. 92, 83–95 (2013).Article 
    CAS 

    Google Scholar 
    Hameed, A. & Khan, M. A. Halophytes: Biology and economic potentials. Karachi Univ. J. Sci. 39, 40–44 (2011).
    Google Scholar 
    Katschnig, D., Broekman, R. & Rozema, J. Salt tolerance in the halophyte Salicornia dolichostachya Moss: Growth, morphology and physiology. Environ. Exp. Bot. 92, 32–42 (2013).Article 
    CAS 

    Google Scholar 
    Salehi, M., Majnun Hoseini, N., Naghdi Badi, H. & Mazaheri, D. Biochemical and growth responses of Moringa peregrina (Forssk.) fiori to different sources and levels of salinity. J. Med. Plants 11, 54–61 (2012).CAS 

    Google Scholar 
    Soliman, A. S., El-Feky, S. A. & Darwish, E. Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J. Hortic. For. 7, 36–47 (2015).Article 
    CAS 

    Google Scholar 
    Azeem, M. et al. Salicylic acid seed priming modulates some biochemical parametrs to improve germination and seedling growth of salt stressed wheat (Triticum aestivum L.). Pakistan J. Bot. 51, 385–391 (2019).MathSciNet 
    CAS 

    Google Scholar 
    Sultana, R. et al. Coumarin-Mediated growth regulations, antioxidant enzyme activities, and photosynthetic efficiency of sorghum bicolor under saline conditions. Front. Plant Sci. 13, 799404 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coêlho, M. R. V. et al. Salt tolerance of Calotropis procera begins with immediate regulation of aquaporin activity in the root system. Physiol. Mol. Biol. Plants 27, 457–468 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouassaba, K. & Chougui, S. Effet Du Stress Salin Sur Le Comportement Biochimique Et Anatomique Chez Deux Variétés De Piment (Capsicum Annuum L.) À Mila /Algérie. Eur. Sci. J. ESJ 14, 159 (2018).
    Google Scholar 
    El Moukhtari, A., Cabassa-Hourton, C., Farissi, M. & Savouré, A. How does proline treatment promote salt stress tolerance during crop plant development? Front. Plant Sci. 11, 1127 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Afridi, M. S. et al. Plant microbiome engineering: Hopes or hypes. Biology 11, 1782. https://doi.org/10.3390/biology11121782 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sami, F., Yusuf, M., Faizan, M., Faraz, A. & Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 109, 54–61 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Saleem, A. et al. Iron sulfate (FeSO4) improved physiological attributes and antioxidant capacity by reducing oxidative stress of Oryza sativa L. cultivars in alkaline soil. Sustainability 14, 16845. https://doi.org/10.3390/su142416845 (2022).Article 
    CAS 

    Google Scholar 
    Mehmood, S. et al. Bacillus sp. PM31 harboring various plant growth-promoting activities regulates Fusarium dry rot and wilt tolerance in potato. Arch. Agron. Soil Sci. https://doi.org/10.1080/03650340.2021.1971654 (2021).Article 

    Google Scholar 
    Benzarti, M., Rejeb, K. B., Debez, A., Messedi, D. & Abdelly, C. Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity. Acta Physiol. Plant. 34, 1679–1688 (2012).Article 
    CAS 

    Google Scholar 
    Duarte, B., Santos, D., Marques, J. C. & Caçador, I. Ecophysiological adaptations of two halophytes to salt stress: Photosynthesis, PS II photochemistry and anti-oxidant feedback—implications for resilience in climate change. Plant Physiol. Biochem. 67, 178–188 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Foyer, C. H. & Noctor, G. Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications. Antioxid. Redox Signal. 11, 861–905 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Abogadallah, G. M. Insights into the significance of antioxidative defense under salt stress. Plant Signal. Behav. 5, 369–374 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Subudhi, P. K. & Baisakh, N. Spartina alterniflora Loisel., a halophyte grass model to dissect salt stress tolerance. In Vitro Cell. Dev. Biol. Plant 47, 441–457 (2011).Article 
    CAS 

    Google Scholar 
    De Abreu, I. N. & Mazzafera, P. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol. Biochem. 43, 241–248 (2005).Article 

    Google Scholar 
    Askarzadeh, A. & Rezazadeh, A. Parameter identification for solar cell models using harmony search-based algorithms. Sol. Energy 86, 3241–3249 (2012).Article 
    ADS 

    Google Scholar 
    Parida, A. K. & Jha, B. Salt tolerance mechanisms in mangroves: A review. Trees Struct. Funct. 24, 199–217 (2010).Article 

    Google Scholar 
    Niknam, V. & Ebrahimzadeh, H. Phenolics content in Astragalus species. Pak. J. Bot. 34, 283–289 (2002).
    Google Scholar 
    Agati, G., Matteini, P., Goti, A. & Tattini, M. Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol. 174, 77–89 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rai, S. N. & Proctor, J. Ecological studies on four rainforests in Karnataka, India: II. Litterfall. J. Ecol. 74, 439–454 (1986).Article 

    Google Scholar 
    Thakur, A. et al. Nutritional evaluation, phytochemical makeup, and antibacterial and antioxidant properties of wild plants utilized as food by the Gaddis, a tribe in the Western Himalayas. Front. Agron. 4, 1010309. https://doi.org/10.3389/fagro.2022.1010309 (2022).Article 

    Google Scholar 
    Boumenjel, A., Pantera, A., Papadopoulos, A. & Ammari, Y. Tolerance and adaptation mechanisms developed by Moringa oleifera (L.) seeds under oxidative stress induced by salt stress during in vitro germination. Glob. Nest J. 23, 1–10 (2021).
    Google Scholar 
    Wong, S. P., Leong, L. P. & William Koh, J. H. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 99, 775–783 (2006).Article 
    CAS 

    Google Scholar 
    Djeridane, A. et al. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 97, 654–660 (2006).Article 
    CAS 

    Google Scholar 
    Meireles, D., Gomes, J., Lopes, L., Hinzmann, M. & Machado, J. A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: Integrative approach on conventional and traditional Asian medicine. Adv. Tradit. Med. 20, 495–515 (2020).Article 

    Google Scholar 
    Ichoku, C. et al. A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys. Res. Lett. 29, 1616 (2002).Article 

    Google Scholar 
    Shahidi, F. & Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—a review. J. Funct. Foods 18, 820–897 (2015).Article 
    CAS 

    Google Scholar 
    Qasim, M. et al. Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. S. Afr. J. Bot. 110, 240–250 (2017).Article 
    CAS 

    Google Scholar 
    Benabderrahim, M. A., Yahia, Y., Bettaieb, I., Elfalleh, W. & Nagaz, K. Antioxidant activity and phenolic profile of a collection of medicinal plants from Tunisian arid and Saharan regions. Ind. Crops Prod. 138, 111427 (2019).Article 
    CAS 

    Google Scholar 
    Singh, B. N. et al. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem. Toxicol. 47, 1109–1116 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jaiswal, D. et al. Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pac. J. Trop. Med. 6, 426–432 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sreelatha, S., Jeyachitra, A. & Padma, P. R. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem. Toxicol. 49, 1270–1275 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sreelatha, S. & Padma, P. R. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum. Nutr. 64, 303–311 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rani, N. Z. A., Husain, K. & Kumolosasi, E. Moringa genus: A review of phytochemistry and pharmacology. Front. Pharmacol. 9, 108 (2018).Article 

    Google Scholar  More

  • in

    Necrophagy by insects in Oculudentavis and other lizard body fossils preserved in Cretaceous amber

    Sawyer, S. J. & Bloch, C. P. Effects of carrion decomposition on litter arthropod assemblages. Ecol. Entomol. 45, 1499–1503. https://doi.org/10.1111/een.12910 (2020).Article 

    Google Scholar 
    Galante, E. & Marcos-Garcia, M. A. Decomposer insects. In Encyclopedia of Entomology (ed. Capinera, J. L.) 1158–1168 (Kluwer Academic Publisher, 2008).
    Google Scholar 
    Byrd, J. H. & Castner, J. L. Insects of forensic importance. In Forensic Entomology: The Utility of Arthropods in Legal Investigations (ed. Byrd, J. H.) 39–126 (CRC Press, 2009).Chapter 

    Google Scholar 
    Cruzado-Caballero, P. et al. Bioerosion and palaeoecological association of osteophagous insects in the Maastrichtian dinosaur Arenysaurus ardevoli. Lethaia 54, 957–968 (2021).
    Google Scholar 
    Paes Neto, V. D. et al. Oldest evidence of osteophagic behavior by insects from the Triassic of Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 453, 30–41 (2016).Article 

    Google Scholar 
    Grimaldi, D. A. Amber: Window to the Past (AMNH, 1996).
    Google Scholar 
    Holden, A. R., Harris, J. M. & Timm, R. M. Paleoecological and taphonomic implications of insect-damaged Pleistocene vertebrate remains from Rancho La Brea, Southern California. PLoS ONE 8(7), e67119. https://doi.org/10.1371/journal.pone.0067119 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zherikhin, V. V. Chapter 3.2. Ecological history of the terrestrial insects. In History of Insects (eds Rasnitsyn, A. P. & Quicke, D. L. J.) 331–388 (Kluwer Academic Publisher, 2002).
    Google Scholar 
    Boucot, A. J. Evolutionary Paleobiology of Behavior and Coevolution (Elsevier, 1990).
    Google Scholar 
    Boucot, A. J. & Poinar, G. O. Jr. Fossil Behavior Compendium (CRC Press, 2010).Book 

    Google Scholar 
    Martı́nez-Delclòs, X., Briggs, D. E. & Peñalver, E. Taphonomy of insects in carbonates and amber. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203(1–2), 19–64 (2004).Article 

    Google Scholar 
    Solórzano Kraemer, M. M. et al. Arthropods in modern resins reveal if amber accurately recorded forest arthropod communities. Proc. Natl. Acad. Sci. USA 115(26), 6739–6744. https://doi.org/10.1073/pnas.1802138115 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Álvarez-Parra, S., Delclòs, X., Solórzano-Kraemer, M. M., Alcalá, L. & Peñalver, E. Cretaceous amniote integuments recorded through a taphonomic process unique to resins. Sci. Rep. 10(1), 19840. https://doi.org/10.1038/s41598-020-76830-8 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jordan, F. Keystone species and food webs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1524), 1733–1741 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baranov, V. et al. Synchrotron-radiation computed tomography uncovers ecosystem functions of fly larvae in an Eocene forest. Palaeontol. Electron. 24(1), a07. https://doi.org/10.26879/1129 (2021).Article 

    Google Scholar 
    Cornaby, B. W. Carrion reduction by animals in contrasting tropical habitats. Biotropica 6(1), 51–63 (1974).Article 

    Google Scholar 
    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171(4), 761–772 (2013).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kneidel, K. A. Influence of carcass taxon and size on species composition of carrion-breeding Diptera. Am. Midl. Nat. 111(1), 57–63 (1984).Article 

    Google Scholar 
    Lewis, A. The ecology of carrion decomposition: Necrophagous invertebrate assembly and microbial community metabolic activity during decomposition of Sus scrofa carcasses in a temperate mid-west forest (Master Thesis, University of Dayton, 2011).Vasconcelos, S. D. & Araujo, M. Necrophagous species of Diptera and Coleoptera in northeastern Brazil: State of the art and challenges for the Forensic Entomologist. Rev. Bras. Entomol. 56(1), 7–14 (2012).Article 

    Google Scholar 
    Vasconcelos, S. D., Cruz, T. M., Salgado, R. L. & Thyssen, P. J. Dipterans associated with a decomposing animal carcass in a rainforest fragment in Brazil: Notes on the early arrival and colonization by necrophagous species. J. Insect Sci. 13(145), 1–11. https://doi.org/10.1673/031.013.14501 (2013).Article 

    Google Scholar 
    Solórzano Kraemer, M. M., Kraemer, A. S., Stebner, F., Bickel, D. J. & Rust, J. Entrapment bias of arthropods in Miocene amber revealed by trapping experiments in a tropical forest in Chiapas, Mexico. PLoS ONE 10(3), e0118820. https://doi.org/10.1371/journal.pone.0118820 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Solórzano Kraemer, M. M. & Brown, B. V. Dohrniphora (Diptera: Phoridae) from the Miocene Mexican and Dominican ambers with a paleobiological reconstruction. Insect Syst. Evol. 49(3), 299–327 (2018).Article 

    Google Scholar 
    Perrichot, V. & Girard, V. A unique piece of amber and the complexity of ancient forest ecosystems. Palaios 24(3), 137–139 (2009).Article 
    ADS 

    Google Scholar 
    Wichard, W. Taphozönosen im Baltischen Bernstein. Denisia 26, 257–266 (2009).
    Google Scholar 
    Penney, D. & Langan, A. M. Comparing amber fossil assemblages across the Cenozoic. Biol. Lett. 2(2), 266–270 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koteja, J. Report of the IInd Paleoentomological Meeting, Cracow, March 21–22, 1986 (in Polish). Incl.-Wrostek 4, 1–6 (1986).
    Google Scholar 
    Koteja, J. Stellate hairs—Index fossils of ambers. Incl.-Wrostek 5, 4–8 (1986).
    Google Scholar 
    Koteja, J. Syninclusions. Incl.-Wrostek 22, 10–12 (1996).
    Google Scholar 
    Lozano, R. P. et al. Phloem sap in Cretaceous ambers as abundant double emulsions preserving organic and inorganic residues. Sci. Rep. 10, 9751. https://doi.org/10.1038/s41598-020-66631-4 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heinrichs, J. et al. Lejeuneaceae (Marchantiophyta) from a species-rich taphocoenosis in Miocene Mexican amber, with a review of liverworts fossilised in amber. Rev. Palaeobot. Palynol. 221, 59–70 (2015).Article 

    Google Scholar 
    Peñalver, E. et al. Ticks parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nat. Commun. 8(1), 1924. https://doi.org/10.1038/s41467-017-01550-z (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-García, A., Peñalver, E., Delclòs, X. & Engel, M. S. Mating and aggregative behaviors among basal hexapods in the Early Cretaceous. PLoS ONE 13(2), e0191669. https://doi.org/10.1371/journal.pone.0191669 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grimaldi, D. A., Peñalver, E., Barrón, E., Herhold, H. W. & Engel, M. S. Direct evidence for eudicot pollen-feeding in a Cretaceous stinging wasp (Angiospermae; Hymenoptera, Aculeata) preserved in Burmese amber. Commun. Biol. 2(1), 408. https://doi.org/10.1038/s42003-019-0652-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-de la Fuente, R., Engel, M. S., Azar, D. & Peñalver, E. The hatching mechanism of 130-million-year-old insects: An association of neonates, egg shells and egg bursters in Lebanese amber. Palaeontology 62(4), 547–559 (2019).Article 

    Google Scholar 
    Robin, N., D’haese, C. & Barden, P. Fossil amber reveals springtails’ longstanding dispersal by social insects. BMC Evol. Biol. 19(1), 213. https://doi.org/10.1186/s12862-019-1529-6 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coty, D. et al. The first ant-termite syninclusion in amber with CT-Scan analysis of taphonomy. PLoS ONE 9(8), e104410. https://doi.org/10.1371/journal.pone.0104410 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peñalver, E. & Grimaldi, D. Assemblages of mammalian hair and blood-feeding midges (Insecta: Diptera: Psychodidae: Phlebotominae) in Miocene amber. Trans. R. Soc. Edinb. Earth Sci. 96, 177–195 (2006).Article 

    Google Scholar 
    Bolet, A. et al. Unusual morphology in the mid-Cretaceous lizard Oculudentavis. Curr. Biol. 31, 3303–3314. https://doi.org/10.1016/j.cub.2021.05.040 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kundrata, R., Packova, G., Prosvirov, A. S. & Hoffmannova, J. The fossil record of elateridae (Coleoptera: Elateroidea): Described species. Curr. Probl. Future Prospects Insects 12(4), 286. https://doi.org/10.3390/insects12040286 (2021).Article 

    Google Scholar 
    Wagner, P., Stanley, E. L., Daza, J. D. & Bauer, A. M. A new agamid lizard in mid-Cretaceous amber from northern Myanmar. Cretac. Res. 124, 104813. https://doi.org/10.1016/j.cretres.2021.104813 (2021).Article 

    Google Scholar 
    Barthel, H. J., Fougerouse, D., Geisler, T. & Rust, J. Fluoridation of a lizard bone embedded in Dominican amber suggests open-system behavior. PLoS ONE 15(2), e0228843 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arillo, A. Paleoethology: fossilized behaviours in amber. Geol. Acta 5(2), 159–166 (2007).
    Google Scholar 
    Xing, L. et al. A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage. Gondwana Res. 49, 264–277 (2017).Article 
    ADS 

    Google Scholar 
    Daza, J. D., Stanley, E. L., Wagner, P., Bauer, A. M. & Grimaldi, D. A. Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards. Sci. Adv. 2(3), e1501080. https://doi.org/10.1126/sciadv.1501080 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, M. & Xing, L. A brief review of lizard inclusions in amber. Biol. Syst. 1(01), 39–53 (2020).CAS 

    Google Scholar 
    Perrichot, V. Early Cretaceous amber from south-western France: insight into the Mesozoic litter fauna. Geol. Acta 2(1), 9–22 (2004).
    Google Scholar 
    De Baets, K., Huntley, J. W., Klompmaker, A. A., Schiffbauer, J. D. & Muscente, A. D. The fossil record of parasitism: its extent and taphonomic constraints. In The Evolution and Fossil Record of Parasitism (eds De Baets, K. & Huntley, J. W.) 1–50 (Springer, 2021).
    Google Scholar 
    Martín-Perea, D. M. et al. Recurring taphonomic processes in the carnivoran-dominated Late Miocene assemblages of Batallones-3, Madrid Basin. Spain. Lethaia 54, 871–890 (2021).
    Google Scholar 
    Delventhal, R. et al. The taste response to ammonia in Drosophila. Sci. Rep. 7(1), 43754. https://doi.org/10.1038/srep43754 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCoy, V. E., Soriano, C. & Gabbott, S. E. A review of preservational variation of fossil inclusions in amber of different chemical groups. Earth Environ. Sci. Trans. R. Soc. Edinb. 107(2–3), 203–211 (2016).
    Google Scholar 
    McCoy, V. E. et al. Unlocking preservation bias in the amber insect fossil record through experimental decay. PLoS ONE 13(4), e0195482. https://doi.org/10.1371/journal.pone.0195482 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weihrauch, D., Donini, A. & O’Donnell, M. J. Ammonia transport by terrestrial and aquatic insects. J. Insect Physiol. 58(4), 473–487 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Clements, T., Colleary, C., De Baets, K. & Vinther, J. Buoyancy mechanisms limit preservation of coleoid cephalopod soft tissues in Mesozoic Lagerstätten. Palaeontology 60(1), 1–14 (2017).Article 

    Google Scholar 
    Grimaldi, D. & Engel, M. S. Evolution of the Insects (University Press, 2005).
    Google Scholar 
    Boehme, P., Amendt, J., Disney, R. H. L. & Zehner, R. Molecular identification of carrion-breeding scuttle flies (Diptera: Phoridae) using COI barcodes. Int. J. Legal Med. 124(6), 577–581 (2010).Article 
    PubMed 

    Google Scholar 
    Disney, R. H. L. Scuttle Flies—The Phoridae (Chapman & Hall, 1994).Book 

    Google Scholar 
    Hong, Y. C. Eocene Fossil Diptera Insecta in Amber of Fushun Coalfield (Geological Publishing House, 1981).
    Google Scholar 
    Brues, C. T. Fossil Phoridae in Baltic amber. Bull. Mus. Comp. Zool 85, 413–436 (1939).
    Google Scholar 
    Brown, B. V. Re-evaluation of the fossil Phoridae. J. Nat. Hist. 33, 1561–1573 (1999).Article 

    Google Scholar 
    Tomberlin, J. K., Benbow, M. E., Tarone, A. M. & Mohr, R. M. Basic research in evolution and ecology enhances forensics. Trends Ecol. Evol. 26(2), 53–55 (2011).Article 
    PubMed 

    Google Scholar 
    Downes, J. A. & Smith, S. M. New or little known feeding habits in Empididae (Diptera). Can. Entomol. 101(4), 404–408 (1969).Article 

    Google Scholar 
    Daugeron, C. Evolution of feeding and mating behaviors in the Empidoidea (Diptera: Eremoneura). In The Origin of Biodiversity in INSECTS: TEsts of Evolutionary Scenarios (ed. Grandcolas, P.) 163–182 (Mémoires du Muséum National d’Histoire Naturelle, Zoologie, 1997).
    Google Scholar 
    Sherratt, E. et al. Amber fossils demonstrate deep-time stability of Caribbean lizard communities. Proc. Natl. Acad. Sci. USA 112(32), 9961–9966 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Queiroz, K., Chu, L. R. & Losos, J. B. A second Anolis lizard in Dominican amber and the systematics and ecological morphology of Dominican amber anoles. Am. Mus. Novit. 3249, 1–23 (1998).
    Google Scholar 
    Castañeda, M. D. R., Sherratt, E. & Losos, J. The Mexican amber anole, Anolis electrum, within a phylogenetic context: Implications for the origins of Caribbean anoles. Zool. J. Linn. Soc. 172(1), 133–144 (2014).Article 

    Google Scholar 
    Sun, Q., Haynes, K. F. & Zhou, X. Managing the risks and rewards of death in eusocial insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373(1754), 20170258 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    López-Riquelme, G. O. & Fanjul-Moles, M. L. The funeral ways of social insects. Social strategies for corpse disposal. Trends Entomol. 9, 71–129 (2013).
    Google Scholar 
    Barden, P. & Grimaldi, D. A. Adaptive radiation in socially advanced stem-group ants from the Cretaceous. Curr. Biol. 26(4), 515–521 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schultheiss, P. et al. The abundance, biomass, and distribution of ants on Earth. Proc. Natl. Acad. Sci. USA 119(40), e2201550119 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Grimaldi, D. A., Engel, M. S. & Nascimbene, P. C. Fossiliferous Cretaceous amber from Myanmar (Burma): Its rediscovery, biotic diversity, and paleontological significance. Am. Mus. Novit. 2002(3361), 1–71 (2002).Article 

    Google Scholar 
    Barden, P. & Grimaldi, D. A diverse ant fauna from the mid-Cretaceous of Myanmar (Hymenoptera: Formicidae). PLoS ONE 9(4), e93627. https://doi.org/10.1371/journal.pone.0093627 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, G. et al. Age constraint on Burmese amber based on U-Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).Article 

    Google Scholar 
    Xing, L. & Qiu, L. Zircon UPb age constraints on the mid-Cretaceous Hkamti amber biota in northern Myanmar. Palaeogeogr. Palaeoclimatol. Palaeoecol. 558, 109960 (2020).Article 

    Google Scholar 
    Musa, M., Kaye, T. G., Bieri, W. & Peretti, A. Burmese amber compared using micro-attenuated total reflection infrared spectroscopy and ultraviolet imaging. Appl. Spectrosc. 75(7), 839–845. https://doi.org/10.1177/0003702820986880 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Peretti, A. & Bieri, W. PMF collection data depository of analysis by FTIR, PL, CT-and UV imaging of amber containing holotype Yaksha perettii and Oculudentavis naga and comparative amber samples, and associated invertebrate inclusions. J. Appl. Ethic. Min. Nat. Resour. Paleontol. 2, 1–37 (2021).
    Google Scholar 
    Peretti, A. An alternative perspective for acquisitions of amber from Myanmar including recommendations of the United Nations Human Rights Council. J. Int. Humanit. Action 6(1), 1–6 (2021).Article 

    Google Scholar  More

  • in

    Ultra-small bacteria and archaea exhibit genetic flexibility towards groundwater oxygen content, and adaptations for attached or planktonic lifestyles

    Ultra-small prokaryotes were prevalent across diverse aquifer lithologies and anoxic to oxic groundwatersWe used 16S rRNA gene amplicons to assess microbial community composition in 81 groundwater samples. Samples were collected from 59 wells over 10 aquifers in four geographic regions, separated by over a thousand kilometers, and encompassed wide-ranging aquifer chemistries and lithologies (Fig. 1a), comprising primarily shallow sandy-gravel aquifers, but also sand/silt, gravel/peat, volcanic (basalt, ignimbrite) and shell-bed aquifers (Table S1). A large portion of microbial community diversity comprised ultra-small groups of prokaryotes (Fig. 1b). Out of 52,553 OTUs, 21.8% (or 18.4% of 46,713 ASVs) were assigned to seven ultra-small microbial phyla (when considering CPR as the single Patescibacteria phylum). These comprised the bacterial phyla Patescibacteria and Dependentiae, and archaeal DPANN radiation. Altiarchaeota was included in DPANN as previously suggested [63, 64], although its taxonomic placement is uncertain due to genomic under-sampling [65, 66].Fig. 1: Distribution and abundance of ultra-small prokaryotes across groundwater sites.a Distribution of groundwater samples along DOC (0–26 g/m3), DO (0.37–7.5 g/m3) and nitrate-N (0.45–12.6 g/m3) concentrations scaled between 0 and 100. b Top plot: Richness of ultra-small prokaryote variants (rarefied ASVs) at each site. Middle plot: Proportion of ultra-small prokaryotes compared with the total microbial communities (black bars = OTUs, grey crosses = ASVs). Samples are ordered from least to most abundant. Lower plot: Phylum-level breakdown of amplicon based-relative abundance of Patescibacteria, Dependentiae and DPANN archaea (bottom). Symbol bars indicate aquifer lithology (top symbol bar), and oxygen content (lower symbol bar) with dark to light blue shading representing anoxic, suboxic, dysoxic to oxic groundwater. c Class-level rank abundance curve showing the average relative abundance of each genome across sites. The center line of each boxplot represents the median; the top and bottom lines are the first and third quartiles, respectively; and the whiskers show 1.5 times the interquartile range.Full size imageUltra-small prokaryotes were detected in all samples, regardless of lithology, chemistry or geography. They have also been reported from several aquifers and lithologies in the USA (sandy gravel, agriculturally-impacted river sediment, mixed marine sedimentary/metasedimentary rocks, plutonic rock, and sandstone [10, 18, 19, 22], and from a carbonate rock aquifer system in Germany [67, 68]. Collectively these findings demonstrate that ultra-small microorganisms are geographically widespread across diverse aquifer lithologies. Moreover, while ultra-small microorganisms have mostly been detected in anoxic environments [69,70,71,72] or cultivated under anoxic conditions [15, 25], we found representatives in all oxic groundwaters ( >3 mg/L DO) [73] (54/81 samples, Table S1). A few members of DPANN and Patescibacteria lineages have previously been detected in oxic environments [28, 67, 68, 74, 75], suggesting a degree of oxygen tolerance (genetic evidence presented below) or that these organisms are concentrated in anoxic niches within the aquifer substrate.The relative abundance of ultra-small microorganisms was highly variable across the studied aquifers, ranging from 0.04% to 22% of all bacterial and archaeal 16S rRNA gene sequences (7.2% average ±5.5% standard deviation; Fig. 1b). Samples with low relative abundances of ultra-small microorganisms (lower than the average) had overall lower alpha diversity (Shannon diversity indices and OTU or ASV richness) and were mostly from volcanic aquifer sites (Fig. 1b; Table S2). At the phylum level, Patescibacteria and Nanoarchaeota tended to dominate groundwater ultra-small communities (Fig. 1b). However, we found that ultra-small species level diversity overall was considerable with up to 1429 unique OTUs in a single groundwater sample (or up to 653 variants via the more conservative ASV method) (Table S2). Rarefaction curves show most variant diversity was captured across all samples, with curve slopes equaling zero (or approaching zero post rarefaction) (Fig. S1; Table S2). Finally, our results confirm the site specificity of ultra-small prokaryotes [10], with only 16 OTUs common across ≥50% of all 81 groundwater samples, or five ASVs across ≥20% of samples (three Parcubacteria, a Ca. Uhrbacteria, and a Woesearchaeales) (Table S2).High shared phylogenetic and genomic similarity to ultra-small prokaryotes from groundwaters elsewhereTo further assess the phylogeny and assess the genomic attributes and metabolic capacities of groundwater microbial communities, we reconstructed MAGs from 16 groundwater samples (eight wells over four sites and two aquifers). The dataset comprised 7,695 MAGs, including 539 unique MAGs ( >50% complete, 90% complete) (Table S3; Fig. S2). Based on phylogenetic analysis using GTDB [7, 76], MAGs represent 51 phyla, including five ultra-small microbial phyla (Table S3; Fig. S3). The ultra-small MAGs were found at all four sites and accounted for >1/3 of all unique MAGs (216 MAGs 50–100% complete, with 76 MAGs >90% complete). MAGs included 171 assigned to Patescibacteria, six to Dependentiae, and 39 to DPANN archaea (28 Nanoarchaeota, 10 Micrarchaeota, and one Altiarchaeota; Fig. 2a, b). The high representation of ultra-small prokaryotes in the MAG dataset further highlights the prevalence, diversity and abundance of these organisms in groundwater. Consistent with previous studies [6, 9, 77], genomes of ultra-small prokaryotes were small (1 ± 0.4 Mbp on average) with a tendency towards low GC contents (Figs. 3a, S2), and possessed limited metabolic capacities, which significantly differ between ultra-small bacterial and archaeal domains (results in Supplementary Materials; Figs. 3b, S2, S4).Fig. 2: Diversity of groundwater ultra-small microbial communities.Maximum likelihood phylogenetic trees of 177 unique ultra-small bacterial MAGs (a) and 39 unique ultra-small archaeal MAGs (b) recovered in this study. Outer rings indicate the site characteristics where MAGs were enriched. Enrichment factors were calculated as (average relative abundance in oxic and planktonic ultra-small microbial communities, respectively)/(average relative abundance in anoxic-to-dysoxic or sediment-enriched microbial communities, respectively). Trees are based on either 120 concatenated bacterial marker genes or 122 concatenated archaeal marker genes from GTDB-Tk, and were rooted to other groundwater bacterial and archaeal MAGs, respectively (Table S3). Scale bars indicate the number of substitutions per site. Branch background shading denotes Patescibacteria classes (clockwise): Gracilibacteria, Saccharimonadia, UBA1384, Dojkabacteria, Microgenomatia, Doudnabacteria, ABY1, Paceibacteria_A and Paceibacteria. c Proportion of ultra-small microbial OTUs (top) and MAGs (bottom) enriched in low and high oxygen groundwater, and in planktonic and sediment-enriched samples (Table S1). Enrichment factors were calculated as described above.Full size imageFig. 3: Estimated genome size, metabolic content and novelty of groundwater ultra-small prokaryotes.a Estimated genome size of groundwater MAGs calculated as (bin size – (bin size * contamination)) / (completeness), as described by Castelle et al. [9]. Genomes of ultra-small prokaryotes are colored by phylum-level. Other microbial genomes are shown in grey. b Principal Component Analysis (PCA) based on the composition of COG metabolic categories in recovered ultra-small MAGs. c (Right) Range of all pairwise AAI values (grey) and maximum AAI values (blue) between ultra-small prokaryote MAGs recovered in this study and GTDB representative genomes for a given phylum. Red dashed lines represent the AAI range defining the same family of organisms (45–65%) [74]. The number of genomes included in this analysis is indicated for each phylum in brackets. (Left) Proportion of ultra-small prokaryotic MAGs reconstructed in this study classified at each taxonomic level using GTDB-Tk.Full size imageCompared to reference genomes (GTDB species representatives), all recovered ultra-small MAGs are predicted to be novel species [78], and almost half were novel groundwater genera (Fig. 3c, results in Supplementary Materials). Most shared the highest affinity matches with other ultra-small genomes derived from aquifers elsewhere (e.g., in the USA), indicating niche adaptation within these lineages (although ultra-small MAGs from these groundwater ecosystems are over-represented in the GTDB database). Niche-specific phylogenetic conservation among geographically distant microorganisms in groundwater has likewise been reported among geographically distant anammox bacteria in groundwater [30].Ultra-small microbial communities were structured by geography, lithology, and dissolved oxygen concentrationsWhile ultra-small prokaryotes were ubiquitous in groundwater, and overall highly similar to those found in groundwater at different global locations, community compositions varied across sites. To investigate environmental factors (Table S1) influencing ultra-small community composition, we performed distance-based redundancy analysis (Fig. 4a). DO, pH, nitrate-N, sulfate, and DOC were significantly associated with differences in the distribution of 16S rRNA gene amplicon sequences annotated as Patescibacteria, Dependentiae and DPANN (permutation test, p  More

  • in

    Continuous advance in the onset of vegetation green-up in the Northern Hemisphere, during hiatuses in spring warming

    Peñuelas, J., Rutishauser, T. & Filella, I. Phenology feedbacks on climate change. Science 324, 887 (2009).Article 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).Article 

    Google Scholar 
    Shen, M. et al. Plant phenology changes and drivers on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 3, 633–651 (2022).Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612 (2020).Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).Article 

    Google Scholar 
    Park, H., Jeong, S.-J., Ho, C.-H., Park, C.-E. & Kim, J. Slowdown of spring green-up advancements in boreal forests. Remote Sens. Environ. 217, 191–202 (2018).Article 

    Google Scholar 
    IPCC. Summary for Policymakers (Cambridge Univ. Press, 2013).Fyfe, J. C. et al. Making sense of the early-2000s warming slowdown. Nat. Clim. Change 6, 224–228 (2016).Article 

    Google Scholar 
    Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 

    Google Scholar 
    Ye, W., van Dijk, A. I. J. M., Huete, A. & Yebra, M. Global trends in vegetation seasonality in the GIMMS NDVI3g and their robustness. Int. J. Appl. Earth Obs. Geoinf. 94, 102238 (2021).
    Google Scholar 
    Zhang, J. et al. Comparison of land surface phenology in the Northern Hemisphere based on AVHRR GIMMS3g and MODIS datasets. ISPRS J. Photogramm. Remote Sens. 169, 1–16 (2020).Article 

    Google Scholar 
    Wang, X. et al. No consistent evidence for advancing or delaying trends in spring phenology on the Tibetan Plateau. J. Geophys. Res. Biogeosci. 122, 3288–3305 (2017).Article 

    Google Scholar 
    Shen, M. et al. Greater temperature sensitivity of vegetation greenup onset date in areas with weaker temperature seasonality across the Northern Hemisphere. Agric. For. Meteorol. 313, 108759 (2022).Article 

    Google Scholar 
    Zhang, C., Li, S., Luo, F. & Huang, Z. The global warming hiatus has faded away: an analysis of 2014–2016 global surface air temperatures. Int. J. Climatol. 39, 4853–4868 (2019).Article 

    Google Scholar 
    Gonsamo, A., Chen, J. M. & D’Odorico, P. Deriving land surface phenology indicators from CO2 eddy covariance measurements. Ecol. Indic. 29, 203–207 (2013).Article 

    Google Scholar 
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).Article 

    Google Scholar 
    Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Glob. Change Biol. 17, 2385–2399 (2011).Article 

    Google Scholar 
    Wang, S. et al. Temporal trends and spatial variability of vegetation phenology over the northern hemisphere during 1982–2012. PLoS ONE 11, e0157134 (2016).Article 

    Google Scholar 
    Chen, L. et al. Spring phenology at different altitudes is becoming more uniform under global warming in Europe. Glob. Change Biol. 24, 3969–3975 (2018).Article 

    Google Scholar 
    Ren, S., Yi, S. Peichl, M. & Wang, X. Diverse responses of vegetation phenology to climate change in different grasslands in inner Mongolia during 2000–2016. Remote Sens. 10, 17 (2017).Vitasse, Y., Signarbieux, C. & Fu, Y. H. Global warming leads to more uniform spring phenology across elevations. Proc. Natl Acad. Sci. USA 115, 1004–1008 (2018).Article 

    Google Scholar 
    Zhu, Z. et al. The accelerating land carbon sink of the 2000s may not be driven predominantly by the warming Hiatus. Geophys. Res. Lett. 45, 1402–1409 (2018).Article 

    Google Scholar 
    Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change 7, 148–152 (2017).Article 

    Google Scholar 
    Zhou, X. et al. Legacy effect of spring phenology on vegetation growth in temperate China. Agric. For. Meteorol. 281, 107845 (2020).Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018). More

  • in

    Understanding microbial activity with isotope labelling of DNA

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More