More stories

  • in

    Intermediate ice scour disturbance is key to maintaining a peak in biodiversity within the shallows of the Western Antarctic Peninsula

    1.Dell, J. et al. Interaction diversity maintains resiliency in a frequently disturbed ecosystem. Front. Ecol. Evol. 7, 145 (2019).Article 

    Google Scholar 
    2.White, P. S. & Pickett, S. T. A. In The Ecology of Natural Disturbance and Patch Dynamics (eds S. T. A. Pickett & P. S. White) 3–13 (Academic Press, 1985).3.Newman, E. A. Disturbance ecology in the anthropocene. Front. Ecol. Evolut. https://doi.org/10.3389/fevo.2019.00147 (2019).Article 

    Google Scholar 
    4.Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Yuan, Z., Jiao, F., Li, Y. & Kallenbach, R. L. Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Sci. Rep. 6, 22132 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Hughes, A. R., Byrnes, J. E., Kimbro, D. L. & Stachowicz, J. J. Reciprocal relationships and potential feedbacks between biodiversity and disturbance. Ecol. Lett. 10, 849–864. https://doi.org/10.1111/j.1461-0248.2007.01075.x (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).Article 

    Google Scholar 
    8.Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Fox, J. W. The intermediate disturbance hypothesis should be abandoned. Trends Ecol. Evol. 28, 86–92. https://doi.org/10.1016/j.tree.2012.08.014 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Sheil, D. & Burslem, D. F. Disturbing hypotheses in tropical forests. Trends Ecol. Evol. 18, 18–26 (2003).Article 

    Google Scholar 
    11.Teixidó, N., Garrabou, J., Gutt, J. & Arntz, W. E. Recovery in Antarctic benthos after iceberg disturbance: Trends in benthic composition, abundance and growth forms. Mar. Ecol. Prog. Ser. 278, 1–16. https://doi.org/10.3354/meps278001 (2004).ADS 
    Article 

    Google Scholar 
    12.Teixidó, N., Garrabou, J., Gutt, J. & Arntz, W. Iceberg disturbance and successional spatial patterns: the case of the shelf Antarctic benthic communities. Ecosystems 10, 143–158 (2007).Article 

    Google Scholar 
    13.Johst, K., Gutt, J., Wissel, C. & Grimm, V. Diversity and disturbances in the Antarctic megabenthos: Feasible versus theoretical disturbance ranges. Ecosystems 9, 1145–1155 (2006).Article 

    Google Scholar 
    14.Mackey, R. L. & Currie, D. J. The diversity-disturbance relationship: Is it generally strong and peaked?. Ecology 82, 3479–3492. https://doi.org/10.1890/0012-9658(2001) (2001).Article 

    Google Scholar 
    15.Huston, M. A. Disturbance, productivity, and species diversity: Empiricism vs. logic in ecological theory. Ecology 95, 2382–2396. https://doi.org/10.1890/13-1397.1 (2014).Article 

    Google Scholar 
    16.Smale, D. A., Brown, K. M., Barnes, D. K., Fraser, K. P. & Clarke, A. Ice scour disturbance in Antarctic waters. Science 321, 371. https://doi.org/10.1126/science.1158647 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Griffiths, H. J., Danis, B. & Clarke, A. Quantifying Antarctic marine biodiversity: The SCAR-MarBIN data portal. Deep Sea Res. Part II 58, 18–29. https://doi.org/10.1016/j.dsr2.2010.10.008 (2011).ADS 
    Article 

    Google Scholar 
    18.Grange, L. J. & Smith, C. R. Megafaunal communities in rapidly warming fjords along the West Antarctic Peninsula: Hotspots of abundance and beta diversity. PLoS ONE 8, e77917 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Gutt, J., Griffiths, H. J. & Jones, C. D. Circumpolar overview and spatial heterogeneity of Antarctic macrobenthic communities. Mar. Biodivers. 43, 481–487. https://doi.org/10.1007/s12526-013-0152-9 (2013).Article 

    Google Scholar 
    20.Potthoff, M., Johst, K. & Gutt, J. How to survive as a pioneer species in the Antarctic benthos: Minimum dispersal distance as a function of lifetime and disturbance. Polar Biol. 29, 543–551 (2006).Article 

    Google Scholar 
    21.Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84, 203–244 (2014).Article 

    Google Scholar 
    22.Peck, L. S., Brockington, S., Vanhove, S. & Beghyn, M. Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. Mar. Ecol Progr. Ser. 186, 1–8 (1999).ADS 
    Article 

    Google Scholar 
    23.Lee, H., Vanhove, S., Peck, L. & Vincx, M. Recolonisation of meiofauna after catastrophic iceberg scouring in shallow Antarctic sediments. Polar Biol. 24, 918–925. https://doi.org/10.1007/s003000100300 (2001).Article 

    Google Scholar 
    24.Armstrong, T. World Meteorological Organization. WMO sea-ice nomenclature. Terminology, codes and illustrated glossary. Edition 1970. Geneva, Secretariat of the World Meteorological Organization, 1970. [ix], 147 p. [including 175 photos]+ corrigenda slip. (WMO/OMM/BMO, No. 259, TP. 145.). J. Glaciol. 11, 148–149 (1972).25.Robinson, B. J., Barnes, D. K. & Morley, S. A. Disturbance, dispersal and marine assemblage structure: A case study from the nearshore Southern Ocean. Mar. Environ. Res. 160, 105025 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Gutt, J., Starmans, A. & Dieckmann, G. Impact of iceberg scouring on polar benthic habitats. Mar. Ecol. Prog. Ser. 137, 311–316 (1996).ADS 
    Article 

    Google Scholar 
    27.Barnes, D. K. A. & Conlan, K. E. Disturbance, colonization and development of Antarctic benthic communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 11–38. https://doi.org/10.1098/rstb.2006.1951 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Smale, D. A. Ecological traits of benthic assemblages in shallow Antarctic waters: Does ice scour disturbance select for small, mobile, secondary consumers with high dispersal potential?. Polar Biol. 31, 1225–1231. https://doi.org/10.1007/s00300-008-0461-9 (2008).Article 

    Google Scholar 
    29.Barnes, D. K. A. The influence of ice on polar nearshore benthos. J. Mar. Biol. Assoc. U.K. 79, 401–407 (1999).Article 

    Google Scholar 
    30.Gutt, J. On the direct impact of ice on marine benthic communities, a review. Polar Biol. 24, 553–564 (2001).Article 

    Google Scholar 
    31.Barnes, D. K. A. & Tarling, G. A. Polar oceans in a changing climate. Curr. Biol. 27, R454–R460. https://doi.org/10.1016/j.cub.2017.01.045 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Barnes, D. K. A., Fleming, A., Sands, C. J., Quartino, M. L. & Deregibus, D. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170176. https://doi.org/10.1098/rsta.2017.0176 (2018).ADS 
    Article 

    Google Scholar 
    33.Cook, A. J., Fox, A. J., Vaughan, D. G. & Ferrigno, J. G. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308, 541–544. https://doi.org/10.1126/science.1104235 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Cook, A. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Clarke, A. et al. Climate change and the marine ecosystem of the western Antarctic Peninsula. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 149–166. https://doi.org/10.1098/rstb.2006.1958 (2007).Article 
    PubMed 

    Google Scholar 
    36.Turner, J. & Comiso, J. Solve Antarctica’s sea-ice puzzle. Nat. News 547, 275 (2017).CAS 
    Article 

    Google Scholar 
    37.Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024042 (2005).Article 

    Google Scholar 
    38.Barnes, D. K. A. & Souster, T. Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat. Clim. Chang. 1, 365–368. https://doi.org/10.1038/nclimate1232 (2011).ADS 
    Article 

    Google Scholar 
    39.Parkinson, C. L. Global sea ice coverage from satellite data: Annual cycle and 35-yr trends. J. Clim. 27, 9377–9382. https://doi.org/10.1175/jcli-d-14-00605.1 (2014).ADS 
    Article 

    Google Scholar 
    40.Rogers, A. et al. Antarctic futures: An assessment of climate-driven changes in ecosystem structure, function, and service provisioning in the Southern Ocean. Ann. Rev. Mar. Sci. 12, 87–120 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Morley, S. A. et al. Global drivers on Southern Ocean ecosystems: Changing physical environments and anthropogenic pressures in an Earth system. Front. Mar. Sci. 7, 1097 (2020).Article 

    Google Scholar 
    42.Barnes, D. K. et al. Blue carbon gains from glacial retreat along Antarctic fjords: What should we expect?. Glob. Change Biol. 26, 2750–2755 (2020).ADS 
    Article 

    Google Scholar 
    43.Barnes D. K. A. Blue carbon on polar and subpolar seabeds. In Carbon capture, utilization and sequestration (InTech, 2018). https://doi.org/10.5772/intechopen.78237.44.Bowler, D. et al. The geography of the Anthropocene differs between the land and the sea. bioRxiv https://doi.org/10.1101/432880 (2019).Article 

    Google Scholar 
    45.Arntz, W., Brey, T. & Gallardo, V. Antarctic zoobenthos. Oceanogr. Mar. Biol. 32, 241–304 (1994).
    Google Scholar 
    46.Clarke, A. Marine benthic populations in Antarctica: Patterns and processes. Antarct. Res. Ser. 70, 373–388 (1996).Article 

    Google Scholar 
    47.Fillinger, L., Janussen, D., Lundälv, T. & Richter, C. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Curr. Biol. 23, 1330–1334 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Clarke, A., Meredith, M. P., Wallace, M. I., Brandon, M. A. & Thomas, D. N. Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. Deep Sea Res. Part II 55, 1988–2006. https://doi.org/10.1016/j.dsr2.2008.04.035 (2008).ADS 
    Article 

    Google Scholar 
    49.Barnes, D. K. A. Iceberg killing fields limit huge potential for benthic blue carbon in Antarctic shallows. Glob. Chang. Biol. 23, 2649–2659. https://doi.org/10.1111/gcb.13523 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Pinkerton, M., Bradford-Grieve, J., Bowden, D. & Cummings, V. Benthos: Trophic modelling of the Ross Sea. Support. Docum. CCAMLR Sci. 17, 1–31 (2010).
    Google Scholar 
    51.Pielou, E. Shannon’s formula as a measurement of species diversity: It’s use and disuse. Am. Nat. 100, 463–465 (1966).Article 

    Google Scholar 
    52.Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 1, 42–58 (1943).Article 

    Google Scholar 
    53.Everitt, B. & Skrondal, A. The Cambridge Dictionary of Statistics Vol. 106 (Cambridge University Press, Cambridge, 2002).MATH 

    Google Scholar 
    54.Smale, D. A., Barnes, D. K. A. & Fraser, K. P. P. The influence of ice scour on benthic communities at three contrasting sites at Adelaide Island, Antarctica. Aust. Ecol. 32, 878–888. https://doi.org/10.1111/j.1442-9993.2007.01776.x (2007).Article 

    Google Scholar 
    55.Peck, L. S., Convey, P. & Barnes, D. K. A. Environmental constraints on life histories in Antarctic ecosystems: Tempos, timings and predictability. Biol. Rev. 81, 75–109. https://doi.org/10.1017/s1464793105006871 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Waller, C., Worland, M., Convey, P. & Barnes, D. Ecophysiological strategies of Antarctic intertidal invertebrates faced with freezing stress. Polar Biol. 29, 1077–1083 (2006).Article 

    Google Scholar 
    57.Barnes, D. K. A. Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows. Glob. Chang Biol. 23, 5083–5091. https://doi.org/10.1111/gcb.13772 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Smith, C. R., Mincks, S. & DeMaster, D. J. A synthesis of bentho-pelagic coupling on the Antarctic shelf: Food banks, ecosystem inertia and global climate change. Deep Sea Res. Part II 53, 875–894 (2006).ADS 
    Article 

    Google Scholar 
    59.Jansen, J. et al. Abundance and richness of key Antarctic seafloor fauna correlates with modelled food availability. Nat. Ecol. Evolut. 2, 71–80 (2018).Article 

    Google Scholar 
    60.Henley, S. F. et al. Changing biogeochemistry of the Southern Ocean and its ecosystem implications. Front. Mar. Sci. 7, 581 (2020).Article 

    Google Scholar 
    61.Marshall, G. J. et al. Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys. Res. Lett. 31, 14 (2004).Article 

    Google Scholar 
    62.Ashton, G. V., Morley, S. A., Barnes, D. K., Clark, M. S. & Peck, L. S. Warming by 1 C drives species and assemblage level responses in Antarctica’s marine shallows. Curr. Biol. 27, 2698-2705e2693 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Riesgo, A. et al. Some like it fat: Comparative ultrastructure of the embryo in two demosponges of the genus Mycale (order poecilosclerida) from Antarctica and the Caribbean. PLoS ONE 10, e0118805 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Toszogyova, A. & Storch, D. Global diversity patterns are modulated by temporal fluctuations in primary productivity. Glob. Ecol. Biogeogr. 28, 1827–1838 (2019).Article 

    Google Scholar 
    65.Clark, G. F. et al. Light-driven tipping points in polar ecosystems. Glob. Change Biol. 19, 3749–3761 (2013).ADS 
    Article 

    Google Scholar 
    66.Brockington, S., Clarke, A. & Chapman, A. Seasonality of feeding and nutritional status during the austral winter in the Antarctic sea urchin Sterechinus neumayeri. Mar. Biol. 139, 127–138 (2001).Article 

    Google Scholar 
    67.Fratt, D. B. & Dearborn, J. Feeding biology of the Antarctic brittle star Ophionotus victoriae (Echinodermata: Ophiuroidea). Polar Biol. 3, 127–139 (1984).Article 

    Google Scholar 
    68.Sahade, R., Tatián, M. & Esnal, G. B. Reproductive ecology of the ascidian Cnemidocarpa verrucosa at Potter Cove, South Shetland Islands, Antarctica. Mar. Ecol. Progr. Ser. 272, 131–140 (2004).ADS 
    Article 

    Google Scholar 
    69.Dayton, P. K. et al. Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anoxycalyx joubini. PLoS ONE 8, e56939 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Vacchi, M., Cattaneo-Vietti, R., Chiantore, M. & Dalù, M. Predator-prey relationship between the nototheniid fish Trematomus bernacchii and the Antarctic scallop Adamussium colbecki at Terra Nova Bay (Ross Sea). Antarct. Sci. 12, 64–68 (2000).ADS 
    Article 

    Google Scholar 
    71.Sheil, D. & Burslem, D. F. Defining and defending Connell’s intermediate disturbance hypothesis: a response to Fox. Trends Ecol. Evol. 28, 571–572. https://doi.org/10.1016/j.tree.2013.07.006 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Environmental stress leads to genome streamlining in a widely distributed species of soil bacteria

    A. Strain sampling and isolationBradyrhizobium is a commonly occurring genus in soil [21]. Closely related Bradyrhizobium diazoefficiens (previously Bradyrhizobium japonicum) strains were isolated from soil, as previously described [20, 22]. In brief, Bradyrhizobium isolates that formed symbiotic associations with a foundational legume species in the censused region, Acacia acuminata, were isolated from soil sampled along a large region spanning ~300,000 km2 in South West Australia, a globally significant biodiversity hotspot [23]. In total 60 soil samples were collected from twenty sites (3 soil samples per site; Supplementary Fig. S1) and 380 isolates were sequenced (19 isolates per site, 5 or 6 isolates per soil sample, each isolate re-plated from a single colony at least 2 times). Host A. acuminata legume plants were inoculated with field soil in controlled chamber conditions and isolates were cultured on Mannitol Yeast agar plates from root nodules (see [20, 22] for details). A total of 374 strains were included in this study after removing 5 contaminated samples and one sample that was a different Bradyrhizobium species; non- Bradyrhizobium diazoefficiens sample removal was determined from 16S rRNA sequences extracted from draft genome assemblies (Method C) using RNAmmer [24].B. Environmental variation among sampled sitesIn this study, I focus on environmental factors (temperature, rainfall, soil pH and salinity) previously identified to impact either rhizobia growth performance, functional fitness or persistence in soil [25,26,27,28] and where a directionality of rhizobial stress response could be attributed with respect to environmental variation present in the sampled region (i.e. stress occurs at high temperatures, low rainfall, high acidity and high salinity). Each environmental factor was standardised to a mean of 0 and a standard deviation of 1, and pH and rainfall scales were reversed to standardise stress responses directions so that low stress is at low values and high stress is at high values for all factors (Supplementary Fig. S2). Additionally, salinity was transformed using a log transformation (log(x + 0.01) to account for some zeroes) prior to standardisation.C. Isolate sequencing and pangenome annotationIllumina short reads (150 bp paired-end) were obtained and draft genome assemblies were generated using Unicycler from a previous study [29]. Resulting assemblies were of good assembly quality (99.2% of all strains had >95.0% genome completeness score according to BUSCO [30]; Table S1; assembled using reads that contained nominal 0.016 ± 0.00524% non-prokaryotic DNA content across all 374 isolates, according to Kraken classification [31]). Protein coding regions (CDS regions) were identified using Prokka [32] and assembled into a draft pangenome using ROARY [33], which produced a matrix of counts of orthologous gene clusters (i.e. here cluster refers to a set of protein-coding sequences containing all orthologous variants from all the different strains, grouped together and designated as a single putative gene). Gene clusters that occurred in 99% of strains were designated as ‘core genes’ and used to calculate the ‘efficiency of selection’ [34, 35] (measured as dN/dS, Method G.2) and population divergence measured as Fixation Index ‘Fst’, Method H) across each environmental stress factor. The identified gene clusters were then annotated using eggNOG-mapper V2 [36] and the strain by gene cluster matrix was reaggregated using the Seed ortholog ID returned by eggNOG-mapper as the protein identity. Out of the total 2,744,533 CDS regions identified in the full sample of 374 strains, eggNOG-mapper was able to assign 2,612,345 of them to 91,230 unique Seed orthologs. These 91,230 protein coding genes constituted the final protein dataset for subsequent analyses.D. Calculation and statistical analysis of gene richness and pangenome diversity along the stress gradientGene richness was calculated as the total number of unique seed orthologues for each strain (i.e. genome). Any singleton genes that occurred in only a single strain, as well as ‘core’ genes that occurred in every strain (for symmetry, and because these are equally uninformative with respect to variation between strains) were removed, leaving 74,089 genes in this analysis. Gene richness (being count data) was modelled on a negative binomial distribution (glmer.nb function) as a function of each of the four environmental stressors as predictors using the lme4 package in R [37], also accounting for hierarchical structure in the data by including site and soil sample as random effects.To rule out potentially spurious effects of assembly quality (i.e. missed gene annotations due to incomplete draft genomes) on key findings, I confirmed no significant association between gene richness and genome completeness (r = 0.042, p = 0.4224, Fig. S3).Finally, pangenome diversity was calculated as the total number of unique genes that occurred in each soil sample (since multiple strains were isolated from a single soil sample). Pangenome diversity was modelled the same as gene richness, except here soil sample was not included as a random effect.E. Calculation of network and duplication traits for each geneI used the seed orthologue identifier from eggNOG-mapper annotations to query matching genes within StringDB ([38]; https://string-db.org/), which collects information on protein-protein interactions. Out of 91,230 query seed orthologues, 73,126 (~80%) returned a match in STRING. For matching seed orthologue hits, a network was created by connecting any proteins that were annotated as having pairwise interactions in the STRING database using the igraph package in R [39]. Two vertex-based network metrics were calculated for each gene: betweenness centrality, which measures a genes tendency to connect other genes in the gene network, and mean cosine similarity, which is a measure of how much a gene’s links to other genes are similar to other genes.Betweenness centrality was calculated using igraph (functional betweenness). For mean cosine similarity, a pairwise cosine similarity was first calculated between all genes. To do this, the igraph network object was converted into a (naturally sparse yet large) adjacency matrix and the cosSparse function in qlcMatrix in R [40] was used to calculate cosine similarity between all pairs of genes. To obtain an overall cosine similarity trait value for each gene, the average pairwise cosine similarity to all other genes in the network was calculated.Finally, gene duplication level was calculated for each gene as one additional measure of ‘redundancy’, by calculating the average number of gene duplicates found within the same strain. Duplicates were identified as CDS regions with the same Seed orthologue ID.F. Gene distribution modelsTo determine how gene traits predict accessory genome distributions patterns along the stress gradients, I first calculated a model-based metric (hereafter and more specifically a standardised coefficient, ‘z-score’) of the relative tendency of each gene to be found in different soil samples across the four stress gradients (heat, salinity, acidity, and aridity). This was achieved by modelling each gene’s presence or absence in a strain as a function of the four stress gradients, with site and soil sample as a random effect, using a binomial model in lme4 (the structure of the model being the same as the gene richness model, only the response is different). To reduce computational overhead, these models were only run for the set of genes that were used in the gene richness analysis (e.g. after removing singletons and core genes), and which had matching network traits calculated (e.g. they occurred in the STRING database; n = 64,867 genes). Distribution models were run in tandem for each gene using the manyany function in the R package mvabund [41]. Standardised coefficients, or z-scores (coefficient/standard error) indicating the change in the probability of occurrence for each gene across each of the stress gradients were extracted. More negative coefficients correspond to genes that are more likely to be absent in high stress (and vice versa for positive coefficients).To determine how network and duplication traits influence the distribution of genes across the stress gradient, I performed a subsequent linear regression model where the gene’s z-scores was the response and gene traits as predictors. The environmental stress type (i.e. acidity, aridity, heat and salinity) was included as a categorical predictor, and the interaction between stress category and gene function traits were used to infer the influence of gene function traits on gene distributions in a given stress type (see Supplementary Methods S1 for z-score transformation).G. Quantifying molecular signals of natural selection on accessory and core genesTo examine molecular signatures of selection in accessory and core genes, I calculated dN/dS for a subsample of the total pool (n=74,089 genes), which estimates the efficiency of selection [34, 35]. Two major questions relevant to dN/dS that are addressed here require a different gene subsampling approach:(1) Do variable environmental stress responses lead to different dN/dS patterns among accessory genes?Here, I subsampled accessory genes (total accessory gene pool across 374 strains, 74,089) to generate and compare dN/dS among 3 categorical groups, each representing a different level of stress response based on their z-scores (accessory genes that either strongly increase, decrease or have no change in occurrence as stress increases; n = 1000 genes/category; see Supplementary Methods S2 for subsample stratification details).For each gene, sequences were aligned using codon-aware alignment tool, MACSE v2 [42]. dN/dS was estimated by codon within each gene using Genomegamap’s Bayesian model-based approach [43], which is a phylogeny-free method optimised for within bacterial species dN/dS calculation (see Supplementary Methods S3 for dN/dS calculation/summarisation; S9 for xml configuration). The proportion of codons with dN/dS that were credibly less than 1 (purifying selection) and those credibly greater than 1 (positive selection) were analysed, with respect to the genes’ occurrence response to stress. Specifically, I modelled the proportion of codons with dN/dS  1 was overall too low to analyse in this way, so the binary outcome (a gene with any codons with dN/dS  > 1 or not) was modelled using a binomial response model with the response categories as predictors (see Supplementary Methods S4 for details of both models).(2) Does dN/dS among microbial populations vary across environmental stress?Here, I compared the average change in dN/dS in core genes present across all environments at the population level (i.e. all isolates from one soil sample), which is used here to measure the change in the efficiency of selection across each stress gradient. Core genes were used since they occur in all soil samples, allowing a consistent set and sample size of genes to be used in the population-level dN/dS calculation. This contrasts with the previous section, which quantifies gene-level dN/dS on extant accessory genes that intrinsically have variable presence or absence across soil samples. For computational feasibility, 500 core genes were subsampled (total core 1015 genes) and, for each gene, individual strain variants were collated into a single fasta file based on soil sample membership, such that dN/dS could be calculated separately for each gene within each soil sample (i.e. 60 soil samples × 500 genes = 30,000 fasta files). Each fasta file was then aligned in MACSE and dN/dS calculated using the same methodology for accessory genes (Supplementary Method S3). This enabled the average dN/dS in a sample to be associated with soil-sample level environmental stress variables. Specifically, I modelled the mean proportion of codons with dN/dS  1 due to overall rarity of positive selection (average proportion of genes where at least 1 codon with dN/dS  > 1 was ~0.006). This low level of positive selection is expected for core genes which tend to be under strong selective constraint.H. Calculation and analysis of Fixation index (Fst) along stress gradientsUsing the core genome alignment (all SNPs among 1015 core genes) generated previously with ROARY, I computed pairwise environmentally-stratified Fst. Each soil sample (n = 60) was first placed into one of 5 bins based on their distances in total environmental stress space (using all four stress gradients), with the overall goal of generating roughly evenly sized bins such that the environmental similarity of stress was greater within bins than between (see Supplementary Methods S6 and Fig. S4 for clustering algorithm details). Next, fasta alignments were converted to binary SNPs using the adegenet package. Pairwise Fst between all strains (originating from a particular soil sample) within a single bin was calculated using StAMPP in R [44]. For each strain pair, the average of the two stress gradient values was assigned.The relationship between pairwise Fst and the average stress value was evaluated using a linear regression model with each of the four stress values as predictors. Since the analysis uses pairwise data (thus violating standard independence assumptions), the significance of the relationship was determined using a permutation test (see Supplementary Methods S7 for details).I. Chromosomal structure analysis of gene loss patternsTo gain insight into structural variation and test for regional hotspots in gene loss along the chromosome, I mapped each gene’s stress response (i.e. probability of loss or gain indicated by each genes z-score) onto a completed Bradyrhizobium genome (strain ‘36_1’ from the same set of 374 strains (Genbank CP067102.1; [45]). Putative CDS positions on the complete genome were determined using Prokka and annotated with SEED orthologue ID’s using eggNOG-mapper. Matching accessory genes derived from the full set of 374 incomplete draft genomes (n = 74,089) were mapped to positions on the complete genome (6274 matches). The magnitude of gene loss or gain (as measured by their standardised z-scores for each environment from the gene distribution models; see Method F) was then modelled across the genome using a one-dimensional spatial smoothing model. This model was implemented in R INLA [46] (www.r-inla.org), and models a response in a one-dimensional space using a Matern covariance-based random effect. The method uses an integrated nested Laplace approximation to a Bayesian posterior distribution, with a cyclical coordinate system to accommodate circular genomes. The model accounts for spatial non-independence among sites and produces a continuous posterior distribution of average z-score predictions along the entire genome, which was then used to visualise potential ‘hotspots’ of gene loss or gain. The modelling procedure was repeated, instead with gene network traits, such that model predictions of similarity and betweenness could be visualised on the reference chromosome. More

  • in

    Correction: Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus

    State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, ChinaZhilin Yuan, Huanshen Wei & Long PengResearch Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, ChinaZhilin Yuan, Xinyu Wang, Huanshen Wei & Long PengFungal Genomics Laboratory (FungiG), College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, ChinaIrina S. Druzhinina & Feng CaiDepartment of Food Science, University of Massachusetts, Amherst, MA, USAJohn G. GibbonsState Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, ChinaZhenhui ZhongDepartment of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USAZhenhui ZhongDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, BelgiumYves Van de PeerVIB Center for Plant Systems Biology, Ghent, BelgiumYves Van de PeerCentre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South AfricaYves Van de PeerAdaptive Symbiotic Technologies, University of Washington, Seattle, WA, USARussell J. RodriguezKey Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, ChinaZhongjian LiuState Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, ChinaQi Wu & Guohui ShiKey Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, ChinaJieyu WangBeijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, ChinaFrancis M. MartinUniversité de Lorraine, INRAE, UMR Interactions Arbres/Micro-Organismes, Centre INRAE Grand Est Nancy, Champenoux, FranceFrancis M. Martin More

  • in

    Exposure to foreign gut microbiota can facilitate rapid dietary shifts

    1.Shiels, A. B. et al. Dietary niche differentiation among three species of invasive rodents (Rattus rattus, R. exulans, Mus musculus). Biol. Invasions 15, 1037–1048 (2013).Article 

    Google Scholar 
    2.Gulka, J. et al. Dietary niche shifts of multiple marine predators under varying prey availability on the northeast Newfoundland coast. Front. Mar. Sci. 4, 324 (2017).Article 

    Google Scholar 
    3.Davey, C. M., Chamberlain, D. E., Newson, S. E., Noble, D. G. & Johnston, A. Rise of the generalists: Evidence for climate driven homogenization in avian communities. Glob. Ecol. Biogeogr. 21, 568–578 (2012).Article 

    Google Scholar 
    4.Wilby, A. & Thomas, M. B. Natural enemy diversity and pest control: Patterns of pest emergence with agricultural intensification. Ecol. Lett. 5, 353–360 (2002).Article 

    Google Scholar 
    5.Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).Article 

    Google Scholar 
    6.Gould, J. Description of new species of finches collected by Darwin in the Galapagos. In Vol. 5, pp. 4–7 (1837).7.Jung, K. & Kalko, E. K. Where forest meets urbanization: Foraging plasticity of aerial insectivorous bats in an anthropogenically altered environment. J. Mammal. 91, 144–153 (2010).Article 

    Google Scholar 
    8.Manenti, R., Denoël, M. & Ficetola, G. F. Foraging plasticity favours adaptation to new habitats in fire salamanders. Anim. Behav. 86, 375–382 (2013).Article 

    Google Scholar 
    9.Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).CAS 
    Article 

    Google Scholar 
    10.Schlomann, B. H. & Parthasarathy, R. Timescales of gut microbiome dynamics. Curr. Opin. Microbiol. 50, 56–63 (2019).Article 

    Google Scholar 
    11.Legal, L., Chappe, B. & Jallon, J. M. Molecular basis of Morinda citrifolia (L.): Toxicity on drosophila. J. Chem. Ecol. 20, 1931–1943 (1994).CAS 
    Article 

    Google Scholar 
    12.R’kha, S., Capy, P. & David, J. R. Host-plant specialization in the Drosophila melanogaster species complex: A physiological, behavioral, and genetical analysis. Proc. Natl. Acad. Sci. 88, 1835–1839 (1991).ADS 
    Article 

    Google Scholar 
    13.Chandler, J. A., Lang, J. M., Bhatnagar, S., Eisen, J. A. & Kopp, A. Bacterial communities of diverse Drosophila species: Ecological context of a host–microbe model system. PLoS Genet. 7, e1002272 (2011).CAS 
    Article 

    Google Scholar 
    14.Storelli, G. et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14, 403–414 (2011).CAS 
    Article 

    Google Scholar 
    15.Ryu, J.-H. et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319, 777–782 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2018).Article 

    Google Scholar 
    17.Ochman, H. et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 8, e1000546 (2010).Article 

    Google Scholar 
    18.Gomez, A. et al. Plasticity in the human gut microbiome defies evolutionary constraints. MSphere 4, e00271-e319 (2019).Article 

    Google Scholar 
    19.Chen, C.-Y., Chen, P.-C., Weng, F.C.-H., Shaw, G.T.-W. & Wang, D. Habitat and indigenous gut microbes contribute to the plasticity of gut microbiome in oriental river prawn during rapid environmental change. PLoS ONE 12, e0181427 (2017).Article 

    Google Scholar 
    20.Vijendravarma, R. K., Narasimha, S. & Kawecki, T. J. Predatory cannibalism in Drosophila melanogaster larvae. Nat. Commun. 4, 1–8 (2013).Article 

    Google Scholar 
    21.Fisher, A. M. et al. Relatedness modulates density-dependent cannibalism rates in Drosophila. In review.22.Amlou, M., Moreteau, B. & David, J. Genetic analysis of Drosophila sechellia specialization: Oviposition behavior toward the major aliphatic acids of its host plant. Behav. Genet. 28, 455–464 (1998).CAS 
    Article 

    Google Scholar 
    23.Early, A. M., Shanmugarajah, N., Buchon, N. & Clark, A. G. Drosophila genotype influences commensal bacterial levels. PLoS ONE 12, e0170332 (2017).Article 

    Google Scholar 
    24.Alcock, J., Maley, C. C. & Aktipis, C. A. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36, 940–949 (2014).Article 

    Google Scholar 
    25.Lizé, A. & Lewis, Z. The microbiome and host behaviour. In Microbiomes of Soils, Plants and Animals: An Integrated Approach (Eds. Antwis, R. E. et al.) 98–121 (Cambridge University Press, 2020).26.Wong, A.C.-N. et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr. Biol. 27, 2397–2404 (2017).CAS 
    Article 

    Google Scholar 
    27.Hulme, P. E. Climate change and biological invasions: Evidence, expectations, and response options. Biol. Rev. 92, 1297–1313 (2017).Article 

    Google Scholar 
    28.Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).Article 

    Google Scholar 
    29.Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Bertani, G. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. J. Bacteriol. 186, 595–600 (2004).CAS 
    Article 

    Google Scholar 
    31.Atlas, R. M. Handbook of microbiological media (CRC Press, Boca Raton, 2010).Book 

    Google Scholar 
    32.Heys, C. et al. The effect of gut microbiota elimination in Drosophila melanogaster: A how-to guide for host–microbiota studies. Ecol. Evol. 8, 4150–4161 (2018).Article 

    Google Scholar 
    33.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    Article 

    Google Scholar 
    34.Dekker, T., Ibba, I., Siju, K., Stensmyr, M. C. & Hansson, B. S. Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Curr. Biol. 16, 101–109 (2006).CAS 
    Article 

    Google Scholar 
    35.Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manag. 74, 1175–1178 (2010).Article 

    Google Scholar 
    36.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2019).37.Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 package. R Package Version 2, 74 (2007).
    Google Scholar 
    38.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar  More

  • in

    Diversity, prevalence, and expression of cyanase genes (cynS) in planktonic marine microorganisms

    1.Nowakowska M, Sterzel M, Szczubiałka K. Photosensitized oxidation of cyanide in aqueous solutions of photoactive modified hydroxyethylcellulose. J Polym Environ. 2006;14:59–64.CAS 
    Article 

    Google Scholar 
    2.Kamennaya NA, Chernihovsky M, Post AF. The cyanate utilization capacity of marine unicellular Cyanobacteria. Limnol Oceanogr. 2008;53:2485–94.CAS 
    Article 

    Google Scholar 
    3.Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, von Bergen M, et al. Cyanate as an energy source for nitrifiers. Nature. 2015;524:105–8.CAS 
    Article 

    Google Scholar 
    4.Mooshammer M, Wanek W, Jones SH, Richter A, Wagner M. Cyanate–a low abundant but actively cycled nitrogen compound in soil. https://www.biorxiv.org/content/10.1101/2020.07.12.199737v1.full. 2020.5.Linder T. Cyanase-independent utilization of cyanate as a nitrogen source in ascomycete yeasts. World J Micro Biot. 2019;35:1–7.CAS 
    Article 

    Google Scholar 
    6.Widner B, Fuchsman CA, Chang BX, Rocap G, Mulholland MR. Utilization of urea and cyanate in waters overlying and within the eastern tropical north Pacific oxygen deficient zone. FEMS Microbiol Ecol. 2018;94:fiy138.CAS 
    Article 

    Google Scholar 
    7.Widner B, Mulholland MR, Mopper K. Distribution, sources, and sinks of cyanate in the coastal North Atlantic Ocean. Environ Sci Tech Let. 2016;3:297–302.CAS 
    Article 

    Google Scholar 
    8.Widner B, Mulholland MR, Mopper K. Chromatographic determination of nanomolar cyanate concentrations in estuarine and sea waters by precolumn fluorescence derivatization. Anal Chem. 2013;85:6661–6.CAS 
    Article 

    Google Scholar 
    9.Widner B, Mordy CW, Mulholland MR. Cyanate distribution and uptake above and within the Eastern Tropical South Pacific oxygen deficient zone. Limnol Oceanogr. 2018;63:S177–S192.CAS 
    Article 

    Google Scholar 
    10.Kuypers MMM, Marchant HK, Kartal B. The microbial nitrogen-cycling network. Nat Rev Microbiol. 2018;16:263.CAS 
    Article 

    Google Scholar 
    11.Smith SR, Dupont CL, McCarthy JK, Broddrick JT, Oborník M, Horák A, et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat Commun. 2019;10:1–14.Article 

    Google Scholar 
    12.Allen JrCM, Jones ME. Decomposition of carbamylphosphate in aqueous solutions. Biochemistry. 1964;3:1238–47.CAS 
    Article 

    Google Scholar 
    13.Kamenaya NA, Post AF. Characterization of cyanate metabolism in marine Synechococcus and Prochlorococcus spp. Appl Enviro Micro. 2011;77:291–301.Article 

    Google Scholar 
    14.Kamennaya NA, Post AF. Distribution and expression of the cyanate acquisition potential among cyanobacterial populations in oligotrophic marine waters. Limnol Oceanogr. 2013;58:1959–71.CAS 
    Article 

    Google Scholar 
    15.Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, et al. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat Microbiol. 2019;4:234–43.CAS 
    Article 

    Google Scholar 
    16.Pachiadaki MG, Sintes E, Bergauer K, Brown JM, Record NR, Swan BK, et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science. 2017;358:1046–51.CAS 
    Article 

    Google Scholar 
    17.Ganesh S, Bertagnolli AD, Bristow LA, Padilla CC, Blackwood N, Aldunate M, et al. Single cell genomic and transcriptomic evidence for the use of alternative nitrogen substrates by anammox bacteria. ISME J. 2018;12:2706–22.CAS 
    Article 

    Google Scholar 
    18.Johnson WV, Anderson PM. Bicarbonate is a recycling substrate for cyanase. J Biol Chem. 1987;262:9021–5.CAS 
    Article 

    Google Scholar 
    19.Miller AG, Espie GS. Photosynthetic metabolism of cyanate by the cyanobacterium Synechococcus UTEX 625. Arch Microbiol. 1994;162:151–7.CAS 
    Article 

    Google Scholar 
    20.Harano Y, Suzuki I, Maeda S, Kaneko T, Tabata S, Omata T. Identification and nitrogen regulation of the cyanase gene from the cyanobacteria Synechocystis sp. strain PCC 6803 and Synechococcus sp. strain PCC 7942. J Bacteriol. 1997;179:5744.CAS 
    Article 

    Google Scholar 
    21.Sung YC, Anderson PM, Fuchs JA. Characterization of high-level expression and sequencing of the Escherichia coli K-12 cynS gene encoding cyanase. J Bacteriol. 1987;169:5224.CAS 
    Article 

    Google Scholar 
    22.Sáez LP, Cabello P, Ibáñez MI, Luque-Almagro VM, Roldán MD, Moreno-Vivián C. Cyanate assimilation by the alkaliphilic cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344: mutational analysis of the cyn gene cluster. Int J Mol Sci. 2019;20:3008.Article 

    Google Scholar 
    23.Wood AP, Kelly DP, McDonald IR, Jordan SL, Morgan TD, Khan S, et al. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch Microbiol. 1998;169:148–58.CAS 
    Article 

    Google Scholar 
    24.Elleuche S, Pöggeler S. A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora. Fungal Genet Biol. 2008;45:1458–69.CAS 
    Article 

    Google Scholar 
    25.Schlachter CR, Klapper V, Wybouw N, Radford T, Van Leeuwen T, Grbic M, et al. Structural characterization of a eukaryotic cyanase from Tetranychus urticae. J Agr Food Chem. 2017;65:5453–62.CAS 
    Article 

    Google Scholar 
    26.Qian D, Jiang L, Lu L, Wei C, Li Y. Biochemical and structural properties of cyanases from Arabidopsis thaliana and Oryza sativa. PLoS One. 2011;6:e18300.CAS 
    Article 

    Google Scholar 
    27.Zarlenga DS, Mitreva M, Thompson P, Tyagi R, Tuo W, Hoberg EP. A tale of three kingdoms: members of the Phylum Nematoda independently acquired the detoxifying enzyme cyanase through horizontal gene transfer from plants and bacteria. Parasitology. 2019;146:445–52.CAS 
    Article 

    Google Scholar 
    28.Ranjan B, Choi PH, Pillai S, Permaul K, Tong L, Singh S. Crystal structure of a thermophilic fungal cyanase and its implications on the catalytic mechanism for bioremediation. Sci Rep. 2021;11:1–10.Article 

    Google Scholar 
    29.Villar E, Vannier T, Vernette C, Lescot M, Cuenca M, Alexandre A, et al. The Ocean Gene Atlas: exploring the biogeography of plankton genes online. Nucleic Acids Res. 2018;46:W289–W295.CAS 
    Article 

    Google Scholar 
    30.Walsh MA, Otwinowski Z, Perrakis A, Anderson PM, Joachimiak A. Structure of cyanase reveals that a novel dimeric and decameric arrangement of subunits is required for formation of the enzyme active site. Structure. 2000;8:505–14.CAS 
    Article 

    Google Scholar 
    31.Butryn A, Stoehr G, Linke-Winnebeck C, Hopfner KP. Serendipitous crystallization and structure determination of cyanase (CynS) from Serratia proteamaculans. Acta Crystallogr F. 2015;71:471–6.CAS 
    Article 

    Google Scholar 
    32.Pederzoli R, Tarantino D, Gourlay LJ, Chaves-Sanjuan A, Bolognesi M. Detecting the nature and solving the crystal structure of a contaminant protein from an opportunistic pathogen. Acta Crystallogr F. 2020;76:392–7.CAS 
    Article 

    Google Scholar 
    33.Wybouw N, Balabanidou V, Ballhorn DJ, Dermauw W, Grbić M, Vontas J, et al. A horizontally transferred cyanase gene in the spider mite Tetranychus urticae is involved in cyanate metabolism and is differentially expressed upon host plant change. Insect Biochem Molec. 2012;42:881–9.CAS 
    Article 

    Google Scholar 
    34.Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, et al. The genome of the ammonia‐oxidizing candidatus nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.CAS 
    Article 

    Google Scholar 
    35.Palomo A, Pedersen AG, Fowler SJ, Dechesne A, Sicheritz-Pontén T, Smets BF. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISMEJ. 2018;12:1779–93.Article 

    Google Scholar  More

  • in

    Detecting alternative attractors in ecosystem dynamics

    Detecting alternative attractors in ecosystem dynamicsWe use empirical dynamical modeling, a set of equation-free tools for analyzing non-linear time series (for a review and assumptions see25,26, respectively), to test if the temporal dynamics of alternative dynamical regimes are qualitatively different. Empirical dynamic modeling builds fundamentally on Takens embedding theorem, which shows that attractors of multi-dimensional dynamical systems can be reconstructed using higher order lags of its embedded time series27. However, if a dynamical system has gone through a bifurcation, or switched to an alternative basin of attraction, attractors are qualitative dissimilar in the two regimes. Theoretically, this infers that it should be possible to reconstruct the attractor of one regime using information from the same regime, but not from the other regime. In practice, this implies that if a model (attractor reconstruction) based on one dynamical regime is used to predict the dynamics of variables from the same dynamical regime predictions should be accurate (i.e. low prediction errors), whereas if an attractor reconstruction based on one dynamical regime is used to predict the dynamics of variables of another attractor predictions should be less accurate (i.e. high prediction errors). We make use of this idea by specifically testing if prediction errors of across and within regime predictions are different. As explained below this idea can be used for both univariate and multivariate time series data.Univariate approachUnivariate attractor reconstructions can be found using the simplex algorithm28,29. First, for a given dynamical regime, a time series can be split into a library of vectors, and each vector is described by$${underline{y}}_{A}(t)= < {Y}_{A}(t),{Y}_{A}(t-1),{Y}_{A}(t-2),ldots ,{Y}_{A}(t-(E-1)) > ,$$
    (1)
    where ({Y}_{A}(t)) is an observation of variable Y at time t in dynamical regime A and E is the reconstructed attractors embedding dimension. Using the simplex projection algorithm, a one-step ahead forecast is produced as follows:$${hat{Y}}_{A}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{B}=mathop{sum}limits_{m=1ldots E+1}{w}_{m}{Y}_{B}({t}_{m}+1),$$
    (2)
    where tm is a time index of an observation in dynamical regime B, E is the embedding dimension of regime B, and wm is an exponential weighting described by:$${w}_{m}={u}_{m}/mathop{sum}limits_{n=1,ldots ,E+1}{u}_{n},$$
    (3)
    where n and m belongs to the set of the E+1 nearest neighbors of vector ({underline{y}}_{A}(t)) in the set of vectors ({{underline{y}}_{B}({t}_{m})}), ({u}_{m}=exp {-d[{underline{y}}_{A}(t),{underline{y}}_{B}({t}_{m})]/d[{underline{y}}_{A}(t),{underline{y}}_{B}({t}_{1})]}), and (d[{underline{y}}_{A}(t),{underline{y}}_{B}({t}_{1})],)is the Euclidean distance between the prediction vector ({underline{y}}_{A}(t)) and its nearest neighbor ({underline{y}}_{B}({t}_{1})) in the set ({{underline{y}}_{B}({t}_{m})}).The only parameter that is estimated using the simplex algorithm is the embedding dimension E. This parameter is estimated by optimizing the correlation between observations (({Y}_{A}(t+1))) and predictions (({hat{Y}}_{A}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{A})) using a leave-one-out cross validation approach (See Supplementary Discussion). The embedding dimension E and its corresponding set of E-dimensional vectors (Eq. 1) constitutes the reconstructed attractor, MA, of a given dynamical regime A. This reconstructed attractor (MA) is then used to predict data for both the same dynamical regime (({hat{Y}}_{A}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{A})), and the contrasting dynamical regime ({hat{Y}}_{B}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{A}). Likewise, the reconstructed attractor MB can be used to predict time series dynamics from both dynamical regimes; that is, ({hat{Y}}_{A}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{B}) and ({hat{Y}}_{B}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{B}), respectively.Multivariate approachA multivariate time series describes a number of simultaneously evolving variables. For example, a bivariate time series can be described by variables X and Y. For such time series, Sugihara et al.30 developed an approach for testing if two variables (time series) are dynamically coupled. Their methodology builds on the fact that a reconstructed attractor should map 1:1 to the original attractor on which the reconstruction is based. This infers that two attractor reconstructions (based on two different variables) should also map 1:1 to each other30. Practically, this means that if two variables are dynamically coupled one-time series should be predictable based on an attractor reconstruction of another variable. However, if a dynamical system has gone through a bifurcation, or potentially switched to an alternative basin of attraction, a new set of rules will govern the dynamics of the system. Hence, a new attractor should have emerged. Now, since this new attractor is most likely governed by a new set of rules it should be difficult to predict the dynamics of this new alternative attractor based on information from the former attractor. Thus, if one variable in one dynamical regime is used to predict another variable in another dynamical regime, predictions should be biased. Yet, if one variable from one dynamical regime is used to predict another variable from the same regime predictions should be more accurate.The simplex algorithm can be used to make predictions of a variable Y using a time series of another variable X30. Predictions are produced as follows:$${hat{Y}}_{{{{{{boldsymbol{A}}}}}}}(t)|{{{{{{boldsymbol{M}}}}}}}_{B}=mathop{sum}limits_{m=1ldots E+1}{w}_{m}{Y}_{B}({t}_{m}),$$
    (4)
    where tm is the time series index of a vector of variable X of dynamical regime B, wm is an exponential weighting based on variable X:$${w}_{m}={u}_{m}/mathop{sum}limits_{n=1,ldots ,E+1}{u}_{n},$$
    (5)
    where n and m belongs to the set of the E+1 nearest neighbors of ({underline{x}}_{A}(t)) in ({{underline{x}}_{B}({t}_{m})}), ({u}_{m}=exp {-d[{underline{x}}_{A}(t),{underline{x}}_{B}({t}_{m})]/d[{underline{x}}_{A}(t),{underline{x}}_{B}({t}_{1})]}), and (d[{underline{x}}_{A}(t),{underline{x}}_{B}({t}_{1})],)is the Euclidean distance between the prediction vector(,{underline{x}}_{A}(t)) and its nearest neighbor ({underline{x}}_{B}({t}_{1})) in dynamical regime (B).The reconstructed attractors, MA and MB, for each variable and regime are found using the univariate simplex algorithm described above28,29,30. Similar to the univariate case, the reconstructed attractor (MA) is used to predict data from the same dynamical regime (({hat{Y}}_{{{{{{boldsymbol{A}}}}}}}(t)|{{{{{{boldsymbol{M}}}}}}}_{A})), and to predict time series of a contrasting dynamical regime (({hat{Y}}_{{{{{{boldsymbol{A}}}}}}}(t)|{{{{{{boldsymbol{M}}}}}}}_{B})). Yet, it is important to stress that MA here reflects an attractor reconstruction based on a variable that is not being predicted (that is, variable X is used to predict variable Y). This prediction approach thus infers that predictions are made on data that was not used to fit the model (X predicts Y and vice versa). Thus, neither across nor within regime predictions are made on data used to fit a model.Test statisticWe used mean absolute prediction errors to test for difference between across and within regime predictions. Alternative metrics, such as mean sum of square errors, can also be used. However, since our approach gives skewed prediction errors we used mean absolute prediction errors to reduce the impact of extreme values. Further, since the absolute prediction errors are non-normally distributed we used a permutation test. The null hypothesis that is tested reads:$$H0:{{{{{rm{MAP{E}}}}}}}_{A} < {{{{{rm{MAP{E}}}}}}}_{w},$$ (6) where MAPEA is the mean absolute prediction error for across regime predictions (that is, ({{{{{rm{MAP{E}}}}}}}_{A}=frac{1}{n}mathop{sum}limits_{t=1:n}{{{{{rm{abs}}}}}}({hat{Y}}_{{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{A}}}}}}}}(t)|{{{{{{boldsymbol{M}}}}}}}_{B}-{Y}_{{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{A}}}}}}}}(t))), and ({{{{{rm{MAP{E}}}}}}}_{w}) is the mean absolute prediction error for within regime predictions (that is, ({{{{{rm{MAP{E}}}}}}}_{w}=frac{1}{n}mathop{sum}limits_{t=1:n}{{{{{rm{abs}}}}}}({hat{Y}}_{{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{A}}}}}}}}(t)|{{{{{{boldsymbol{M}}}}}}}_{A}-{Y}_{{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{A}}}}}}}}(t))). A test is consider significant if observed difference in across and within regime mean prediction errors is larger than the 95th percentile of 1000 permuted data sets.Food-chain modelWe used a food-chain model parameterized as in McCann and Yodzis31 to simulate food-chain dynamics:$$frac{{{{{{rm{d}}}}}}R}{{{{{{rm{d}}}}}}t}=Rleft(1-frac{R}{K}right)-frac{{x}_{c}{y}_{c}CR}{R+{R}_{0}}$$ (7) $$frac{{{{{{rm{d}}}}}}C}{{{{{{rm{d}}}}}}t}={x}_{c}Cleft(-1+frac{{y}_{C}R}{R+{R}_{0}}right)-frac{{x}_{P}{y}_{P}PC}{C+{C}_{0}}$$$$,frac{{{{{{rm{d}}}}}}P}{{{{{{rm{d}}}}}}t}={x}_{P}Pleft(-1+frac{{y}_{P}C}{C+{C}_{0}}right),$$where R is the resource density, C consumer density, and P predator density. All parameters, except half-saturation constants R0 (here set to 0.16129) and C0 (here set to 0.5), and resource carrying capacity K, are derived from bioenergetics and body size allometry30 (xc = 0.4, yc = 2.009, yp = 2.876, R0, r = 1, xp = 0.08).This model can display a rich set of dynamics depending on parameter values31. Here we alter resource carrying capacity K in order to simulate the dynamics (using the deSolve package32 in R) of qualitatively different attractors (See Supplementary Fig. 1; K = 0.78, equilibrium; K = 0.85; two-point limit cycle; K = 0.92, four-point limit cycle; K = 0.997, chaotic dynamics). Every fifth time step of the simulated dynamics, corresponding to a sampling frequency of ≈10 samples per cycle for the 2-point limit cycle, was sampled. Observation noise was thereafter added to the deterministic dynamics produced by the model:$${N}_{l}(t)={N}_{l}^{prime}(t)+rho * e(t);e(t) sim N(0,{sigma }_{N^{prime_{l}}}),$$ (8) where (N_{l}^{prime}(t)) is the abundance of species l (P, C or R) simulated by the food-chain model at time point t, (rho) is the level of observation noise and ({sigma }_{N_{l}^{prime}}) is the standard deviation of the deterministic dynamics of species l produced by the food chain model.In order to investigate how time series length and observation noise affects the probability of detecting alternative attractors we derived probability landscapes. These were derived by testing the null-hypothesis (H0:(|{hat{{{{{{boldsymbol{Y}}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{i}}}}}}}-{{{{{{boldsymbol{Y}}}}}}}_{{{{{{boldsymbol{i}}}}}}}| > |{hat{{{{{{boldsymbol{Y}}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{j}}}}}}}-{{{{{{boldsymbol{Y}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|); See Test statistic above) across 100 replicates for each combination of time series length and level of observation noise, (rho). Time-series length was varied from 10 to 100 in steps of 10, and observation noise, (rho), was varied from 0.01 to 0.3 in steps of 0.01, in total yielding 300 combinations of observation noise and time series length, for each combination of dynamical regimes i and j. Predator dynamics was used to predict consumer and resource dynamics using the multivariate approach described above (results for the cases where consumer or resource dynamics are used to predict the other species´ dynamics are presented in Supplementary Figs. 2, 3). All time series were standardized ((mu =0;sd=1)) prior testing for dynamical difference.Experimental data setThe experimental data set was given by Fussman et al.7. This data set contains 14 time series of a predator Brachionus calyciflorus and its prey Chlorella vulgaris derived from chemostat experiments. Time series for different dilution rates were produced by keeping the dilution rate fixed in different chemostats (Supplementary Figs. 3–11). Brachionus calyciflorus and Chlorella vulgaris time series were used to predict Chlorella vulgaris and Brachionus calyciflorus time series, respectively, using the multivariate approach described above. We tested for qualitative difference in the temporal dynamics across all time series, which were standardized ((mu =0;sd=1)) prior testing.Alternative stable state modelWe used a stochastic version of a well-known alternative stable state model4,33 to produce alternative stochastic dynamical regimes. The model is described by:$${{{{{rm{d}}}}}}x=left(xleft(1-frac{x}{{{{{{rm{K}}}}}}}right)+frac{c{x}^{2}}{1-{x}^{2}}right){{{{{rm{d}}}}}}t+sigma {{{{{rm{d}}}}}}w,$$
    (9)
    where K is the carrying capacity (here set to 11), c is a harvest rate, and σ (here set to 0.01) is the magnitude of noise which is described by a Wiener process (dw).The model was simulated for fixed harvest rates (c) assuming that the system state resides in either of its two basins of attraction. The initial value for the simulation was set to the equilibrium of the noise-free model skeleton for fixed harvest rates c, and σ is set low in order to avoid stochastic flips, so-called flickering, between alternative basins of attraction. Dynamics was integrated (Δt = 0.01) using the matlab-package SDE-Tools34.In order to investigate how time-series length and harvest rate, c, affects the probability of detecting alternative attractors in stochastic regimes we derived probability landscapes.These were derived by testing the null-hypothesis H0:(|{hat{{{{{{boldsymbol{Y}}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{i}}}}}}}-{{{{{{boldsymbol{Y}}}}}}}_{{{{{{boldsymbol{i}}}}}}}| > |{hat{{{{{{boldsymbol{Y}}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{j}}}}}}}-{{{{{{boldsymbol{Y}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|) (permutation test p = 0.05) across 100 simulated data sets for each combination of time series length and harvest rate, c. Time-series length was varied between 50 and 150 in steps of 10, and c was varied between 1.83 and 2.73 in steps of 0.05, in total yielding 209 combinations of time series length and harvest rate. Each time series was standardized ((mu =0;sd=1)) prior testing for difference in temporal dynamics of contrasting regimes.Natural time-series dataIn a previous study on early warning signals of impending regime shifts, Gsell et al.18 used breakpoint analysis to identify two potential alternative dynamical regimes. We here test if these two-time series segments constitute alternative dynamical attractors. Prior analysis, we imputed a few missing observations (n = 24) using a kalman smoother35. The two time series segments, i.e. pre- and post-breakpoint time series, were standardized ((mu =0;sd=1)) prior testing for dynamical difference.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Male sperm storage impairs sperm quality in the zebrafish

    1.Ward, P. I. Intraspecific variation in sperm size characters. Heredity 80, 655–659 (1998).Article 

    Google Scholar 
    2.Schulte-Hostedde, A. I. & Montgomerie, R. Intraspecific variation in ejaculate traits of the northern watersnake (Nerodia sipedon). J. Zool. 270, 147–152. https://doi.org/10.1111/j.1469-7998.2006.00101.x (2006).Article 

    Google Scholar 
    3.Morrow, E. H. & Gage, A. R. Consistent signicant variation between individual males in spermatozoal morphometry. J. Zool. 254, 147–153 (2001).Article 

    Google Scholar 
    4.Locatello, L., Pilastro, A., Deana, R., Zarpellon, A. & Rasotto, M. B. Variation pattern of sperm quality traits in two gobies with alternative mating tactics. Funct. Ecol. 21, 975–981 (2007).Article 

    Google Scholar 
    5.Iglesias-Carrasco, M., Harrison, L., Jennions, M. D. & Head, M. L. Combined effects of rearing and testing temperatures on sperm traits. J. Evol. Biol. 33, 1715–1724. https://doi.org/10.1111/jeb.13710 (2020).Article 
    PubMed 

    Google Scholar 
    6.Evans, J. P. & Magurran, A. E. Geographic variation in sperm production by Trinidadian guppies. Proc. R. Soc. B-Biol. Sci. 266, 2083–2087 (1999).Article 

    Google Scholar 
    7.Morrow, E. H., Leijon, A. & Meerupati, A. Hemiclonal analysis reveals significant genetic, environmental and genotype x environment effects on sperm size in Drosophila melanogaster. J. Evol. Biol. 21, 1692–1702. https://doi.org/10.1111/j.1420-9101.2008.01585.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Firman, R. C., Klemme, I. & Simmons, L. W. Strategic adjustments in sperm production within and between two island populations of house mice. Evolution 67, 3061–3070. https://doi.org/10.5061/dryad.87pk2 (2013).Article 
    PubMed 

    Google Scholar 
    9.Taborsky, M. Sperm competition in fish: ‘bourgeois’ males and parasitic spawning. Trends Ecol. Evol. 13, 222–227 (1998).CAS 
    Article 

    Google Scholar 
    10.Kustra, M. C. & Alonzo, S. H. Sperm and alternative reproductive tactics: a review of existing theory and empirical data. Philos. Trans. R. Soc. B-Biol. Sci. 375, 20200075. https://doi.org/10.1098/rstb.2020.0075 (2020).Article 

    Google Scholar 
    11.Marshall, D. J. Environmentally induced (co)variance in sperm and offspring phenotypes as a source of epigenetic effects. J. Exp. Biol. 218, 107–113. https://doi.org/10.1242/jeb.106427 (2015).Article 
    PubMed 

    Google Scholar 
    12.Vega-Trejo, R. et al. The effects of male age, sperm age and mating history on ejaculate senescence. Funct. Ecol. 33, 1267–1279. https://doi.org/10.1111/1365-2435.13305 (2019).Article 

    Google Scholar 
    13.Macartney, E. L., Crean, A. J., Nakagawa, S. & Bonduriansky, R. Effects of nutrient limitation on sperm and seminal fluid: a systematic review and meta-analysis. Biol. Rev. Camb. Philos. Soc. 94, 1722–1739. https://doi.org/10.1111/brv.12524 (2019).Article 
    PubMed 

    Google Scholar 
    14.Johnson, S. L. et al. Evidence that fertility trades off with early offspring fitness as males age. Proc. R. Soc. B-Biol. Sci. https://doi.org/10.1098/rspb.2017.2174 (2018).Article 

    Google Scholar 
    15.Gasparini, C., Marino, I. A. M., Boschetto, C. & Pilastro, A. Effect of male age on sperm traits and sperm competition success in the guppy (Poecilia reticulata). J. Evol. Biol. 23, 124–135 (2010).CAS 
    Article 

    Google Scholar 
    16.Velando, A., Noguera, J. C., Drummond, H. & Torres, R. Senescent males carry premutagenic lesions in sperm. J. Evol. Biol. 24, 693–697 (2011).CAS 
    Article 

    Google Scholar 
    17.Pilastro, A., Scaggiante, M. & Rasotto, M. B. Individual adjustment of sperm expenditure accords with sperm competition theory. Proc. Natl. Acad. Sci. U.S.A. 99, 9913–9915 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Nicholls, E. H., Burke, T. & Birkhead, T. R. Ejaculate allocation by male sand martins, Riparia riparia. Proc. R. Soc. B-Biol. Sci. 268, 1265–1270. https://doi.org/10.1098/rspb.2001.1615 (2001).CAS 
    Article 

    Google Scholar 
    19.Oppliger, A., Hosken, D. J. & Ribi, G. Snail sperm production characteristics vary with sperm competition risk. Proc. R. Soc. B-Biol. Sci. 265, 1527–1534 (1998).Article 

    Google Scholar 
    20.Crean, A. J. & Marshall, D. J. Gamete plasticity in a broadcast spawning marine invertebrate. Proc. Natl. Acad. Sci. U.S.A. 105, 13508–13513 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Fisher, H. S., Hook, K. A., Weber, W. D. & Hoekstra, H. E. Sibling rivalry: males with more brothers develop larger testes. Ecol. Evol. 8, 8197–8203. https://doi.org/10.1002/ece3.4337 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Ramm, S. A. & Stockley, P. Adaptive plasticity of mammalian sperm production in response to social experience. Proc. R. Soc. B-Biol. Sci. 276, 745–751 (2009).Article 

    Google Scholar 
    23.Pizzari, T., Cornwallis, C. K. & Froman, D. P. Social competitiveness associated with rapid fluctuations in sperm quality in male fowl. Proc. R. Soc. B-Biol. Sci. 274, 853–860. https://doi.org/10.1098/rspb.2006.0080 (2007).Article 

    Google Scholar 
    24.Silva, W. et al. The effects of male social environment on sperm phenotype and genome integrity. J. Evol. Biol. 32, 535–544. https://doi.org/10.1111/jeb.13435 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Firman, R. C., Garcia-Gonzalez, F., Simmons, L. W. & Andre, G. I. A competitive environment influences sperm production, but not testes tissue composition, in house mice. J. Evol. Biol. 31, 1647–1654. https://doi.org/10.1111/jeb.13360 (2018).Article 
    PubMed 

    Google Scholar 
    26.Bozynski, C. C. & Liley, N. R. The effect of female presence on spermiation, and of male sexual activity on “ready” sperm in the male guppy. Anim. Behav. 65, 53–58. https://doi.org/10.1006/Anbe.2002.2024 (2003).Article 

    Google Scholar 
    27.Aitken, R. J. Impact of oxidative stress on male and female germ cells: implications for fertility. Reproduction 159, R189–R201. https://doi.org/10.1530/REP-19-0452 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Reinhardt, K. Evolutionary consequences of sperm cell aging. Q. Rev. Biol. 82, 375–393 (2007).Article 

    Google Scholar 
    29.Pizzari, T., Dean, R., Pacey, A., Moore, H. & Bonsall, M. B. The evolutionary ecology of pre- and post-meiotic sperm senescence. Trends Ecol. Evol. 23, 131–140. https://doi.org/10.1016/j.tree.2007.12.003 (2008).Article 
    PubMed 

    Google Scholar 
    30.Gasparini, C., Dosselli, R. & Evans, J. P. Sperm storage by males causes changes in sperm phenotype and influences the reproductive fitness of males and their sons. Evol. Lett. 1, 16–25. https://doi.org/10.1002/evl3.2 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Reinhardt, K. & Turnell, B. Sperm ageing: a complex business. Funct. Ecol. 33, 1188–1189. https://doi.org/10.1098/rspb.2018.2873 (2019).Article 

    Google Scholar 
    32.Tarin, J. J., Pérez-Albalà, S. & Cano, A. Consequences on offspring of abnormal function in ageing gametes. Hum. Reprod. Update 6, 532–549 (2000).CAS 
    Article 

    Google Scholar 
    33.Li, J. et al. The effect of male sexual abstinence periods on the clinical outcomes of fresh embryo transfer cycles following assisted reproductive technology: a meta-analysis. Male Sexual Reprod. Health 4, 1–8 (2020).
    Google Scholar 
    34.Periyasamy, A. J. et al. Does duration of abstinence affect the live-birth rate after assisted reproductive technology? A retrospective analysis of 1,030 cycles. Fertil. Steril. 108, 988–992. https://doi.org/10.1016/j.fertnstert.2017.08.034 (2017).Article 
    PubMed 

    Google Scholar 
    35.World Health Organization. WHO laboratory manual for the examination and processing of human semen 5th ed. (Geneva: World Health Organization, 2010).36.Comar, V. A. et al. Influence of the abstinence period on human sperm quality: analysis of 2,458 semen samples. JBRA Assist. Reprod. 21, 306–312. https://doi.org/10.5935/1518-0557.20170052 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Gasparini, C., Kelley, J. L. & Evans, J. P. Male sperm storage compromises sperm motility in guppies. Biol. Let. 10, 20140681. https://doi.org/10.1098/rsbl.2014.0681 (2014).Article 

    Google Scholar 
    38.Poli, F., Immler, S., Gasparini, C. & Taborsky, M. Effects of ovarian fluid on sperm traits and its implications for cryptic female choice in zebrafish. Behav. Ecol. 30, 1298–1305. https://doi.org/10.1093/beheco/arz077 (2019).Article 

    Google Scholar 
    39.Riesco, M. F., Valcarce, D. G., Martinez-Vazquez, J. M. & Robles, V. Effect of low sperm quality on progeny: a study on zebrafish as model species. Sci. Rep. https://doi.org/10.1038/s41598-019-47702-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Hagedorn, M. & Carter, V. L. Zebrafish reproduction: revisiting in vitro fertilization to increase sperm cryopreservation success. PLoS ONE 6, e21059. https://doi.org/10.1371/journal.pone.0021059 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Zajitschek, S., Hotzy, C., Zajitschek, F. & Immler, S. Short-term variation in sperm competition causes sperm-mediated epigenetic effects on early offspring performance in the zebrafish. Proc. R. Soc. B-Biol. Sci. 281, 20140422. https://doi.org/10.1098/rspb.2014.0422 (2014).Article 

    Google Scholar 
    42.R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/ (2020).43.Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644. https://doi.org/10.1111/2041-210X.12797 (2017).Article 

    Google Scholar 
    44.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    45.Fox, J. & Weisberg, S. An R companion to applied regression 3rd edn. (Sage, 2019).
    Google Scholar 
    46.Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33. https://doi.org/10.18637/jss.v069.i01 (2016).Article 

    Google Scholar 
    47.White, J. et al. Multiple deleterious effects of experimentally aged sperm in a monogamous bird. Proc. Natl. Acad. Sci. U.S.A. 105, 13947–13952 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Reinhardt, K. & Siva-Jothy, M. T. An advantage for young sperm in the house cricket Acheta domesticus. Am. Nat. 165, 718–723 (2005).Article 

    Google Scholar 
    49.Gage, M. J. G. et al. Spermatozoal traits and sperm competition in Atlantic salmon: relative sperm velocity is the primary determinant of fertilization success. Curr. Biol. (CB) 14, 44–47 (2004).CAS 

    Google Scholar 
    50.Fitzpatrick, J. L. et al. Female promiscuity promotes the evolution of faster sperm in cichlid fishes. Proc. Natl. Acad. Sci. U.S.A. 106, 1128–1132. https://doi.org/10.1073/pnas.0809990106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Alavioon, G. et al. Haploid selection within a single ejaculate increases offspring fitness. Proc. Natl. Acad. Sci. U.S.A. 114, 8053–8058. https://doi.org/10.1073/pnas.1705601114 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Cosson, J. Frenetic activation of fish spermatozoa flagella entails short-term motility, portending their precocious decadence. J. Fish Biol. 76, 240–279. https://doi.org/10.1111/j.1095-8649.2009.02504.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Levitan, D. R. Sperm velocity and longevity trade off each other and influence fertilization in the sea urchin Lytechinus variegatus. Proc. R. Soc. B-Biol. Sci. 267, 531–534 (2000).CAS 
    Article 

    Google Scholar 
    54.Taborsky, M., Schütz, D., Goffinet, O. & van Doorn, G. S. Alternative male morphs solve sperm performance/longevity trade-off in opposite directions. Sci. Adv. 4, 8563 (2018).ADS 
    Article 

    Google Scholar 
    55.Cardozo, G., Devigili, A., Antonelli, P. & Pilastro, A. Female sperm storage mediates post-copulatory costs and benefits of ejaculate anticipatory plasticity in the guppy. J. Evol. Biol. 33, 1294–1305. https://doi.org/10.1111/jeb.13673 (2020).Article 
    PubMed 

    Google Scholar 
    56.delBarco-Trillo, J. et al. A cost for high levels of sperm competition in rodents: increased sperm DNA fragmentation. Proc. R. Soc. B-Biol. Sci. 283, 20152708 (2016).Article 

    Google Scholar 
    57.Firman, R. C., Young, F. J., Rowe, D. C., Duong, H. T. & Gasparini, C. Sexual rest and post-meiotic sperm ageing in house mice. J. Evol. Biol. 28, 1373–1382. https://doi.org/10.1111/jeb.12661 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Gosálvez, J., López-Fernández, C., Hermoso, A., Fernández, J. L. & Kjelland, M. E. Sperm DNA fragmentation in zebrafish (Danio rerio) and its impact on fertility and embryo viability—implications for fisheries and aquaculture. Aquaculture 433, 173–182. https://doi.org/10.1016/j.aquaculture.2014.05.036 (2014).CAS 
    Article 

    Google Scholar 
    59.Perez-Cerezales, S., Martinez-Paramo, S., Beirao, J. & Herraez, M. P. Fertilization capacity with rainbow trout DNA-damaged sperm and embryo developmental success. Reproduction 139, 989–997. https://doi.org/10.1530/REP-10-0037 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Quay, W. Cloacal sperm in spring migrants: occurrence and interpretation. The Condor 87, 273–280 (1985).Article 

    Google Scholar 
    61.Thomsen, R., Soltis, J. & Teltscher, C. Sperm competition and the function of male masturbation in non-human primates. Sexual selection and reproductive competition in primates: New perspectives and directions (Jones, 2003).62.Engeszer, R. E., Patterson, L. B., Rao, A. A. & Parichy, D. M. Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish 4, 21–40. https://doi.org/10.1089/zeb.2006.9997 (2007).Article 
    PubMed 

    Google Scholar 
    63.Spence, R. & Smith, C. Mating preference of female zebrafish, Danio rerio, in relation to male dominance. Behav. Ecol. 17, 779–783. https://doi.org/10.1093/beheco/arl016 (2006).Article 

    Google Scholar 
    64.Spence, R. & Smith, C. Male territoriality mediates density and sex ratio effects on oviposition in the zebrafish, Danio rerio. Anim. Behav. 69, 1317–1323. https://doi.org/10.1016/j.anbehav.2004.10.010 (2005).Article 

    Google Scholar 
    65.Parker, G. A. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 45, 525–567 (1970).Article 

    Google Scholar 
    66.Parker, G. A. Sperm competition games: raffles and roles. Proc. R. Soc. B-Biol. Sci. 242, 120–126 (1990).ADS 
    Article 

    Google Scholar  More

  • in

    Predation risk is a function of seasonality rather than habitat complexity in a tropical semiarid forest

    1.Pianka, E. R. Niche relations of desert lizards in Ecology and Evolution of Communities, Cody, M. L. & Diamond, J. M. (Eds). (Harvard University Press, 1975).2.Castilla, A. M. & Labra, A. Predation and spatial distribution of the lizard Podarcis hipanica atrata: an experimental approach. Acta Oecol. 19, 107–114 (1998).ADS 
    Article 

    Google Scholar 
    3.Cantwell, L. R. & Forrest, T. G. Response of Anolis sagrei to acoustic calls from predatory and non-predatory birds. J. Herpetol. 47, 293–298 (2013).Article 

    Google Scholar 
    4.Edmund, M. Defense in animals: A survey of antipredator defenses. (Longman Press, 1974).5.Wilcove, D. Nest predation in forest tracts and the decline of migratory songbirds. Ecology 66, 121l-l214 (1985).Article 

    Google Scholar 
    6.Endler, J. A. Defense against predators in Predator-prey relationships, Feder, M. E. & Lauder, G. V. (Eds). (The University of Chicago Press, 1986).7.Constantini, D., Bruner, E., Fanfani, A. & Dell’Omo, G. Male-biased predation of western green lizards by Eurasian kestrels. Naturwissenschaften 94, 1015–1020. https://doi.org/10.1007/s00114-007-0284-5 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Barnett, A. A. et al. Run, hide or fight: anti-predation strategies in Endangered red-nosed cuxiú (Chiropotes albinasus, Pitheciidae) in south-eastern Amazonia. Primates 58, 353–360. https://doi.org/10.1007/s10329-017-0596-9 (2017).Article 
    PubMed 

    Google Scholar 
    9.Barnett, A. A. et al. Honest error, precaution or alertness advertisement? Reactions to vertebrate pseudopredators in red-nosed cuxiús (Chiropotes albinasus), a high-canopy neo-tropical primate. Ethology 124, 177–187. https://doi.org/10.1111/eth.12721 (2018).Article 

    Google Scholar 
    10.Roslin, T. et al. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742–744. https://doi.org/10.1126/science.aaj1631 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Shepard, D. B. Habitat but not body shape affects predator attack frequency on lizard models in the Brazilian Cerrado. Herpetologica 63, 193–202. https://doi.org/10.1655/0018-0831(2007)63[193:HBNBSA]2.0.CO;2 (2007).Article 

    Google Scholar 
    12.Salvidio, S., Costa, A. & Romano, A. The use of clay models in amphibian field studies: a short review. Bull. Env. Life Sc. 1, 8 (2019).
    Google Scholar 
    13.Castilla, A. M., Gosá, A., Galán, P. & Pérez-Mellado, V. Green tails in lizards of the genus Podarcis: do they influence the intensity of predation?. Herpetologica 55, 530–537 (1999).
    Google Scholar 
    14.Bateman, P. W., Fleming, P. A. & Wolfe, A. K. A different kind of ecological modelling: the use of clay model organisms to explore predator-prey interactions in vertebrates. J. Zool. 301, 251–262. https://doi.org/10.1111/jzo.12415 (2017).Article 

    Google Scholar 
    15.Rössler, D., Pröhl, H. & Lötters, S. The future of clay model studies. BMC Zool. 3, 6. https://doi.org/10.1186/s40850-018-0033-6 (2018).Article 

    Google Scholar 
    16.Major, R. E. & Kendal, C. E. The contribution of artificial nest experiments to understanding avian reproductive success: a review of methods and conclusions. Ibis 138, 298–307 (1996).Article 

    Google Scholar 
    17.Kuchta, S. R. Experimental support for aposematic coloration in the salamander Ensatina eschscholtzii xanthoptica: implications for mimicry of Pacific newts. Copeia 267–271, 2005. https://doi.org/10.1643/CH-04-173R (2005).Article 

    Google Scholar 
    18.Kraemer, A. C., Serb, J. M. & Adams, D. C. Both novelty and conspicuousness influence selection by mammalian predators on the colour pattern of Plethodon cinereus (Urodela: Plethodontidae). Biol. J. Linn. Soc. 118, 889–900. https://doi.org/10.1111/bij.12780 (2016).Article 

    Google Scholar 
    19.Salvidio, S., Palumbi, G., Romano, A. & Costa, A. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats. Sci. Nat. 104, 3–4. https://doi.org/10.1007/s00114-017-1443-y (2017).CAS 
    Article 

    Google Scholar 
    20.Mcelroy, M. T. Teasing apart crypsis and aposematism-evidence that disruptive coloration reduces predation on a noxious toad. Biol. J. Linn. Soc. 17, 285–294. https://doi.org/10.1111/bij.12669 (2016).Article 

    Google Scholar 
    21.Nordberg, E. J. & Schwarzkopf, L. Predation risk is a function of alternative prey availability rather than predator abundance in a tropical savanna woodland ecosystem. Sci. Rep. 9, 7718. https://doi.org/10.1038/s41598-019-44159-6 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Costa, A., Coroller, S. & Salvidio, S. Comparing day and night predation rates on lizard-Like clay models. Herpetol. Conserv. Biol. 15, 198–203 (2020).
    Google Scholar 
    23.Nour, N., Matthysen, E. & Dhondt, A. A. Artificial nest predation and habitat fragmentation: different trends in birds and mammal predators. Ecography 16, 111–116 (1993).Article 

    Google Scholar 
    24.Castilla, A. M. Intensive predation of Audouin’s Gull nests by the yellow legged gull in the Columbretes islands. Colon Waterbirds 18, 226–230. https://doi.org/10.2307/1521487 (1995).Article 

    Google Scholar 
    25.Diego-Rasilla, F. J. Influence of predation pressure on the escape behaviour of Podarcis muralis lizards. Behav. Processes 63, 1–7. https://doi.org/10.1016/S0376-6357(03)00026-3 (2003).Article 
    PubMed 

    Google Scholar 
    26.Stuart-fox, D. M., Moussalli, A., Marshall, N. J. & Owens, I. P. F. Conspicuous males suffer higher predation risk: Visual modeling and experimental evidence from lizards. Anim. Behav. 66, 541–550. https://doi.org/10.1006/anbe.2003.2235 (2003).Article 

    Google Scholar 
    27.Husak, J. F., Macedonia, J. M., Fox, S. F. & Sauceda, R. C. Predation cost of conspicuous male coloration in collared lizards (Crotaphytus collaris): an experimental test using clay-covered model lizards. Ethology 112, 572–580. https://doi.org/10.1111/j.1439-0310.2005.01189.x (2006).Article 

    Google Scholar 
    28.Keehn, J. E. & Feldman, C. R. Predator attack rates and anti-predator behavior of Side-blotched Lizards (Uta stransbuiana) at Southern California Wind Farms, USA. Herpetol. Conserv. Biol. 13, 194–204 (2018).
    Google Scholar 
    29.Hansen, N. A., Sato, C. F., Michael, D. L., Lindenmayer, D. B. & Driscoll, D. A. Predation risk for reptiles is highest at remnant edges in agricultural landscapes. J. Appl. Ecol. 56, 31–43. https://doi.org/10.1111/1365-2664.13269 (2019).Article 

    Google Scholar 
    30.Hegna, R. H., Saporito, R. A., Gerow, K. G. & Donnelly, M. A. Contrasting colours in an aposematic frog do not affect predation. Ann. Zool. 48, 29–38. https://doi.org/10.5735/086.048.0103 (2011).Article 

    Google Scholar 
    31.Paluh, D. J., Hantak, M. M. & Saporito, R. A. A test of aposematism in the dendrobatid poison frog Oophaga pumilio: the importance of movement in clay model experiments. J. Herpetol. 48, 249–254. https://doi.org/10.1670/13-027 (2014).Article 

    Google Scholar 
    32.Rojas, D. P., Stow, A., Amézquita, A., Simões, P. I. & Lima, A. P. No predatory bias with respect to colour familiarity for the aposematic Adelphobates galactonotus (Anura: Dendrobatidae). Behaviour 152, 1637–165. https://doi.org/10.1163/1568539X-00003297 (2015).Article 

    Google Scholar 
    33.Brodie, E. D. I. I. I. Differential avoidance of coral snake banded patterns by free-ranging avian predators in Costa Rica. Evolution 47, 227–235. https://doi.org/10.1111/j.1558-5646.1993.tb01212.x (1993).Article 
    PubMed 

    Google Scholar 
    34.Brodie, E. D. I. I. I. & Janzen, F. J. Experimental studies of coral snake mimicry: Generalized avoidance of ringed snake patterns by free-ranging avian predators. Funct. Ecol. 9, 186–190. https://doi.org/10.2307/2390563 (1995).Article 

    Google Scholar 
    35.Pfennig, D. W., Harper, G. R. Jr., Brumo, A. F., Harcombe, W. R. & Pfennig, K. S. Population differences in predation on Batesian mimics in allopatry with their model: Selection against mimics is strongest when they are common. Behav. Ecol. Sociobiol. 61, 505–511. https://doi.org/10.1007/s00265-006-0278-x (2006).Article 

    Google Scholar 
    36.Martín, J. & López, P. An experimental test of the costs of antipredatory refuge use in the wall lizard, Podarcis muralis. Oikos 84, 499–505 (1999).Article 

    Google Scholar 
    37.Amo, L., López, P. & Martín, J. Refuge use: a conflict between avoiding predation and losing mass in lizards. Physiol. Behav. 90, 334–343. https://doi.org/10.1016/j.physbeh.2006.09.035 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Endler, J. A. Interactions between predators and prey in Behavioural Ecology: An Evolutionary Approach, Krebs, J. R. & Davies, N. B., (Eds). (Blackwell, 1991).39.Denno, R. F., Finke, D. L. & Langellotto, G. A. Direct and indirect effects of vegetation structure and habitat complexity on predator-prey and predator-predator interactions in Ecology of Predator-prey Interactions, Barbosa, P. & Castellanos, I. (Eds). (Oxford University Press, 2005).40.Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The evolutionary ecology of crypsis, warning signals, and mimicry. (Oxford University Press, 2004).41.Sih, A. To hide or not to hide? Refuge use in a fluctuating environment. Trends Ecol. Evol. 12, 375–6 (1997).CAS 
    Article 

    Google Scholar 
    42.Martín, J., López, P. & Cooper, W. E. Jr. When to come out from a refuge: balancing predation risk and foraging opportunities in an alpine lizard. Ethology 109, 77–87. https://doi.org/10.1046/j.1439-0310.2003.00855.x (2003).Article 

    Google Scholar 
    43.Bulova, S. J. Ecological correlates of population and individual variation in antipredator behaviour of two species of desert lizards. Copeia 4, 980–992. https://doi.org/10.2307/1446721 (1994).Article 

    Google Scholar 
    44.Vanhooydonck, B. & Van Damme, R. Relationships between locomotor performance, microhabitat use and antipredator behaviour in lacertid lizards. Func. Ecol. 17, 160–169. https://doi.org/10.1046/j.1365-2435.2003.00716.x (2003).Article 

    Google Scholar 
    45.Vervust, B., Grbac, I. L. & Van Damme, R. Differences in morphology, performance and behavior between recently diverged populations of Podarcis sicula mirror differences in predation pressure. Oikos 116, 1343–1352. https://doi.org/10.1111/j.2007.0030-1299.15989.x (2007).Article 

    Google Scholar 
    46.Smith, G. R. & Ballinger, R. E. The ecological consequences of habitat and microhabitat use in lizards: a review. Contemp. Herpetol. 3, 1–13. https://doi.org/10.1002/3527600213.ch1 (2001).Article 

    Google Scholar 
    47.Wüster, W. et al. Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc. Roy. Soc. London 271, 2495–2499. https://doi.org/10.1098/rspb.2004.2894 (2004).Article 

    Google Scholar 
    48.Worthington-Hill, O. & Gill, A. Effects of large-scale heathland management on thermal regimes and predation on adders Vipera berus. Anim. Conserv. 22, 481–492. https://doi.org/10.1111/acv.12489 (2019).Article 

    Google Scholar 
    49.Chiang, J. C. H. & Koutavas, A. Tropical flip-flop connection. Nature 432, 684–685. https://doi.org/10.1038/432684a (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Carmo, R. F. R., Amorim, H. P. & Vasconcelos, S. D. Scorpion diversity in two types of seasonally dry tropical forest in the semi-arid region of Northeastern Brazil. Biota. Neotrop. 13, 340–344. https://doi.org/10.1590/S1676-06032013000200037 (2013).Article 

    Google Scholar 
    51.Warrick, G. D., Kato, T. T. & Rose, B. R. Microhabitat use and home range characteristics of Blunt-nosed leopard lizards. J. Herpetol. 32, 183–191 (1998).Article 

    Google Scholar 
    52.Constantini, D. & Dell’Omo, G. Sex-Specific predation on two lizard species by kestrels. Russ. J. Ecol. 41, 99–101. https://doi.org/10.1134/S1067413610010182 (2010).Article 

    Google Scholar 
    53.Poulin, B. et al. Avian predation upon lizards and frogs in a neotropical forest understory. J. Trop. Ecol. 17, 21–40. https://doi.org/10.1017/S026646740100102X (2001).Article 

    Google Scholar 
    54.Araújo, C. S., Candido, D. M., Araújo, H. F. P., Dias, S. C. & Vasconcellos, A. Seasonal variations in scorpion activities (Arachnida: Scorpiones) in an area of Caatinga vegetation in Northeastern Brazil. Zoologia 27, 372–376. https://doi.org/10.1590/S1984-46702010000300008 (2010).Article 

    Google Scholar 
    55.Vasconcellos, A. et al. Seasonality of insects in the semi-arid Caatinga of northeastern Brazil. Rev. Bras. Entomol. 54, 471–476. https://doi.org/10.1590/S0085-56262010000300019 (2010).Article 

    Google Scholar 
    56.Schall, J. J. & Pianka, E. R. Evolution of escape behavior diversity. Am. Nat. 115, 551–566 (1980).Article 

    Google Scholar 
    57.Martín, J. & López, P. Influence of habitat structure on the escape tactics of the lizard Psammodromus algirus. Can. J. Zool. 73, 129–132 (1995).Article 

    Google Scholar 
    58.Rocha, C. F. D. & Bergallo, H. G. Intercommunity variation in the distribution of abundance of dominant lizard species in restinga habitats. Ciencia e Cultura 49, 269–274 (1997).
    Google Scholar 
    59.Van-Sluys, M. Growth and body condition of the saxicolous lizard Tropidurus itambere in southeastern Brazil. J. Herpetol. 32, 359–365 (1998).Article 

    Google Scholar 
    60.Liebezeit, J. R. & Zack, S. Point counts underestimate the importance of arctic foxes as avian nest predators: evidence from remote video cameras in arctic Alaskan oil fields. Arctic 61, 153–161 (2008).
    Google Scholar 
    61.DeGregorio, B. A., Weatherhead, P. J. & Sperry, J. H. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity. Ecol. Evol. 4, 1589–1600. https://doi.org/10.1002/ece3.1049 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Huey, R. B. & Pianka, E. R. Ecological consequences of foraging mode. Ecology 62, 991–999 (1981).Article 

    Google Scholar 
    63.Greene, H. W. Antipredator mechanisms in reptiles in Biology of Reptilian, Gans, C. & Huey, R. B. (Eds.). (Springer, 1998).64.Martín, J. & López, P. Amphibians and reptiles as prey of birds in southwestern Europe. Smit. Herpetol. Inform. Serv. 82, 1–43 (1990).
    Google Scholar 
    65.Steffen, J. E. Perch-height specific predation on tropical lizard clay models: implications for habitat selection in mainland neotropical lizards. Rev. Biol. Trop. 57, 859–864. https://doi.org/10.15517/rbt.v57i3.5498 (2009).Article 
    PubMed 

    Google Scholar 
    66.Dunham, A. E., Grant, B. W. & Overall, K. L. Interfaces between biophysical and physiological ecology and the population ecology of terrestrial vertebrate ectotherms. Physiol. Zool. 62, 335–355 (1989).Article 

    Google Scholar 
    67.Ruiz-Esparza, J. et al. Birds of the Grota do Angico Natural Monument in the semi-arid Caatinga scrublands of northeastern Brazil. Biota. Neotrop. 11, 1–8. https://doi.org/10.1590/S1676-06032011000200027 (2011).Article 

    Google Scholar 
    68.Lima, C. P., Santos, S. S. & Lima, R. C. Levantamento e Anilhamento da Ornitofauna na Pátria da Arara-Azul-de-Lear (Anodorhynchus leari, Bonaparte, 1856): um complemento ao Levantamento realizado por Sick, H., Gonzaga, L. P. e Teixeira, D. M., 1987. Atual. Ornitol. 112, 11–22 (2003).69.Roos, A. L. et al. Avifauna da região do Lago de Sobradinho: composição, riqueza e biologia. Ornithologia 1, 135–160 (2006).
    Google Scholar 
    70.Farias, G. B., Pereira, G. P. & Burgos, K. Q. Aves da Floresta Nacional de Negreiros (Serrita, Pernambuco). Atual. Ornitol. 157, 41–46 (2010).
    Google Scholar 
    71.Sousa, P. A. G. & Freire, E. M. X. Coleodactylus natalensis (NCN). Predation. Herpetol. Rev. 41, 218 (2010).
    Google Scholar 
    72.Ribeiro, L. B., Gogliath, M. & Freire, E. M. X. Hemidactylus brasilianus (Amaral’s Brazilian Gecko) and Cnemidophorus ocellifer (Spix`s Whiptail). Predation. Herpetol. Bull. 117, 31–32 (2011).
    Google Scholar 
    73.De-Carvalho, C. B. et al. Gymnodactylus geckoides (Naked-Toed Gecko): Predation. Herpetol. Bull. 121, 41–43 (2012).
    Google Scholar 
    74.McCormick, S. & Polis, G. A. Arthropods that prey on vertebrates. Biol. Rev. 57, 29–58 (1982).Article 

    Google Scholar 
    75.Rocha, C. F. D. & Vrcibradic, D. Reptiles as predators of vertebrates and as preys in a restinga habitat of southeastern Brazil. Ciencia e Cultura 50, 364–368 (1998).
    Google Scholar 
    76.Armas, L. F. Frogs and lizards as prey of some Greater Antillean arachnids. Rev. Iberica Aracnol. 3, 87–88 (2000).
    Google Scholar 
    77.Schatz, B., Suzzoni, J. P., Corbara, B. & Dejean, A. Selection and capture of prey in the African ponerine ant Plectroctena minor (Hymenoptera: formicidae). Acta Oecol. 22, 55–60. https://doi.org/10.1016/S1146-609X(00)01100-0 (2001).ADS 
    Article 

    Google Scholar 
    78.Nordberg, E. J., Edwards, L. & Schwarzkopf, L. Terrestrial invertebrates: an underestimated predator guild for small vertebrate groups. Food Webs 15, e00080 (2018).Article 

    Google Scholar 
    79.Seifert, C. L., Schulze, C. H., Dreschke, T. C. T., Frötscher, H. & Fiedler, K. Day vs. night predation on artificial caterpillars in primary rainforest habitats-an experimental approach. Entomol. Exp. Appl. 158, 54–59. https://doi.org/10.1111/eea.12379 (2016).Article 

    Google Scholar 
    80.Andrade, L. A., Pereira, I. M., Leite, U. T. & Barbosa, M. R. V. Análise da cobertura de duas fitofisionomias de Caatinga, com diferentes históricos de uso, no município de São João do Cariri, estado da Paraíba. Cerne 11, 253–262 (2005).
    Google Scholar 
    81.Castelletti, C. H. M., Silva, J. M. C., Tabarelli, M. & Santos, A. M. M. Quanto ainda resta da Caatinga? Uma estimative preliminar in Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação, Silva, J. M. C., Tabarelli, M., Fonseca, M. T. & Lins, L. V. (Eds.). (Ministério do Meio Ambiente Publishing, 2004).82.Albuquerque, U. P. et al. Caatinga revisited: ecology and conservation of an important seasonal dry forest. Sci. World J. 1–18, 2012. https://doi.org/10.1100/2012/205182 (2012).Article 

    Google Scholar 
    83.Da Silva, A. C. C., Prata, A. P. N. & Mello, A. A. Flowering plants of the Grota do Angico Natural Monument, Caatinga of Sergipe, Brazil. Check List 9, 733–739 (2013).Article 

    Google Scholar 
    84.Nimer, E. Climatologia da Região Nordeste do Brasil: Introdução à Climatologia Dinâmica. Rev. Bras. Geog. 34, 3–51 (1972).
    Google Scholar 
    85.Santos, A. F. & Andrade, J. A. O quadro natural: caracterização e delimitação do semi-árido sergipano. Sergipe. Brazil. (CNPq/UFS, 1992).86.SEMARH–Secretaria de Estado do Meio Ambiente e dos Recursos Hídricos. Plano de Manejo do Monumento Natural Grota do Angico. Sergipe, Brazil. (Secretaria de Estado do Meio Ambiente e dos Recursos Hídricos, 2011)87.Ferreira, A. S., Silva, A. O., Conceição, B. M. & Faria, R. G. The diet of six species of lizards in an area of Caatiga, Brazil. Herpetol. J. 27, 151–160 (2017).
    Google Scholar 
    88.Rocha, S. M. et al. Lizards from the Alto Sertão region of Sergipe state, northeastern Brazil. Biota Neotrop. 21(2), e20201137 (2021).Article 

    Google Scholar 
    89.Bennett, A. T. D., Cuthill, I. C. & Norris, K. J. Sexual selection and the mismeasure of color. Am. Nat. 144, 848–860 (1994).Article 

    Google Scholar 
    90.Niskanen, M. & Mappes, J. Significance of the dorsal zigzag pattern of Vipera latastei gaditana against avian predators. J. Anim. Ecol. 74, 1091–1101. https://doi.org/10.1111/j.1365-2656.2005.01008.x (2005).Article 

    Google Scholar 
    91.R Core Team. R: A language and environment for statistical computing (2020). More