A global-scale expert assessment of drivers and risks associated with pollinator decline
1.The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (IPBES, 2016).2.Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).CAS
PubMed
Article
Google Scholar
3.Chaplin-Kramer, R. et al. Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc. R. Soc. B https://doi.org/10.1098/rspb.2014.1799 (2014).4.Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
5.Koh, I. et al. Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc. Natl Acad. Sci. USA 113, 140–145 (2016).CAS
PubMed
Article
Google Scholar
6.Reilly, J. R. et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. R. Soc. B 287, 20200922 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
7.Aizen, M. A. et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Change Biol. 25, 3516–3527 (2019).Article
Google Scholar
8.Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).CAS
PubMed
Article
Google Scholar
9.Moritz, R. F. A. & Erler, S. Lost colonies found in a data mine: global honey trade but not pests or pesticides as a major cause of regional honeybee colony declines. Agric. Ecosyst. Environ. 216, 44–50 (2016).Article
Google Scholar
10.Senapathi, D., Goddard, M. A., Kunin, W. E. & Baldock, K. C. R. Landscape impacts on pollinator communities in temperate systems: evidence and knowledge gaps. Funct. Ecol. 31, 26–37 (2017).Article
Google Scholar
11.Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685 (2020).CAS
PubMed
Article
Google Scholar
12.Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395 (2017).CAS
PubMed
Article
Google Scholar
13.Carvell, C. et al. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543, 547 (2017).CAS
PubMed
Article
Google Scholar
14.Tonietto Rebecca, K. & Larkin Daniel, J. Habitat restoration benefits wild bees: a meta‐analysis. J. Appl. Ecol. 55, 582–590 (2017).Article
Google Scholar
15.Wintermantel, D., Odoux, J.-F., Chadœuf, J. & Bretagnolle, V. Organic farming positively affects honeybee colonies in a flower-poor period in agricultural landscapes. J. Appl. Ecol. 56, 1960–1969 (2019).
Google Scholar
16.Dicks, L. V. et al. Ten policies for pollinators. Science 354, 975–976 (2016).CAS
PubMed
Article
Google Scholar
17.FAO’s Global Action on Pollination Services for Sustainable Agriculture: National Initiatives (FAO, 2020); http://www.fao.org/pollination/major-initiatives/national-initiatives/en/18.Conservation and Sustainable Use of Pollinators CBD/COP/DEC/14/6 30 November 2018 (Convention on Biological Diversity, 2018).19.Teichroew, J. L. et al. Is China’s unparalleled and understudied bee diversity at risk? Biol. Conserv. 210, 19–28 (2017).Article
Google Scholar
20.Breeze, T. D., Gallai, N., Garibaldi, L. A. & Li, X. S. Economic measures of pollination services: shortcomings and future directions. TREE 31, 927–939 (2016).PubMed
Google Scholar
21.Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).22.Hall, D. M. & Steiner, R. Insect pollinator conservation policy innovations at subnational levels: lessons for lawmakers. Environ. Sci. Policy 93, 118–128 (2019).Article
Google Scholar
23.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).PubMed
Article
CAS
Google Scholar
24.Mukherjee, N. et al. The Delphi technique in ecology and biological conservation: applications and guidelines. Methods Ecol. Evol. 6, 1097–1109 (2015).Article
Google Scholar
25.Kovács-Hostyánszki, A. et al. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol. Lett. 20, 673–689 (2017).PubMed
PubMed Central
Article
Google Scholar
26.Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).PubMed
Article
Google Scholar
27.Basu, P. et al. Scale dependent drivers of wild bee diversity in tropical heterogeneous agricultural landscapes. Ecol. Evol. 6, 6983–6992 (2016).PubMed
PubMed Central
Article
Google Scholar
28.Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).PubMed
PubMed Central
Article
Google Scholar
29.Jayne, T. S., Snapp, S., Place, F. & Sitko, N. Sustainable agricultural intensification in an era of rural transformation in Africa. Glob. Food Security 20, 105–113 (2019).Article
Google Scholar
30.Mitchell, E. A. D. et al. A worldwide survey of neonicotinoids in honey. Science 358, 109–111 (2017).CAS
PubMed
Article
Google Scholar
31.Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
32.Rundlof, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).PubMed
Article
CAS
Google Scholar
33.Schreinemachers, P. & Tipraqsa, P. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37, 616–626 (2012).Article
Google Scholar
34.Neonicotinoid Insecticides: Use and Effects in African Agriculture: a Review and Recommendations to Policymakers (NASAC, 2019); https://nasaconline.org/en/index.php/2020/05/26/neonicotinoid-insecticides-use-and-effects-in-african-agriculture-a-review-and-recommendations-to-policy-makers/35.Herrando, S. et al. Contrasting impacts of precipitation on Mediterranean birds and butterflies. Sci. Rep. 9, 5680 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
36.Brookes, G. & Barfoot, P. GM Crops: Global Socio-economic and Environmental Impacts 1996-2018 (PG Economics Ltd, 2020); https://pgeconomics.co.uk/pdf/globalimpactfinalreportJuly2020.pdf37.Farina, W. M., Balbuena, M. S., Herbert, L. T., Gonalons, C. M. & Vazquez, D. E. Effects of the herbicide glyphosate on honey bee sensory and cognitive abilities: individual impairments with implications for the hive. Insects 10, 354 (2019).PubMed Central
Article
PubMed
Google Scholar
38.Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).Article
Google Scholar
39.Regan, E. C. et al. Global trends in the status of bird and mammal pollinators. Conserv. Lett. 8, 397–403 (2015).Article
Google Scholar
40.Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
41.Samnegård, U., Hambäck, P. A., Lemessa, D., Nemomissa, S. & Hylander, K. A heterogeneous landscape does not guarantee high crop pollination. Proc. Biol. Sci. 283, 20161472 (2016).PubMed
PubMed Central
Google Scholar
42.Groeneveld, J. H., Tscharntke, T., Moser, G. & Clough, Y. Experimental evidence for stronger cacao yield limitation by pollination than by plant resources. Perspect. Plant Ecol. Evol. Syst. 12, 183–191 (2010).Article
Google Scholar
43.Lautenbach, S., Seppelt, R., Liebscher, J. & Dormann, C. F. Spatial and temporal trends of global pollination benefit. PLoS ONE 7, e35954 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
44.Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A. & Harder, L. D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl Acad. Sci. USA 108, 5909–5914 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
45.Ritchie, H. & Roser, M. Urbanization (Our World in Data, 2018); https://ourworldindata.org/urbanization46.Hipolito, J., Boscolo, D. & Viana, B. F. Landscape and crop management strategies to conserve pollination services and increase yields in tropical coffee farms. Agriculture Ecosyst. Environ. 256, 218–225 (2018).Article
Google Scholar
47.Begotti, R. A. & Peres, C. A. Rapidly escalating threats to the biodiversity and ethnocultural capital of Brazilian Indigenous Lands. Land Use Policy 96, 10 (2020).Article
Google Scholar
48.Pirk, C. W. W., Strauss, U., Yusuf, A. A., Démares, F. & Human, H. Honeybee health in Africa—a review. Apidologie 47, 276–300 (2016).Article
Google Scholar
49.Gebremedhn, H., Amssalu, B., Smet, L. D. & de Graaf, D. C. Factors restraining the population growth of Varroa destructor in Ethiopian honey bees (Apis mellifera simensis). PLoS ONE 14, e0223236 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
50.Junge, X., Lindemann-Matthies, P., Hunziker, M. & Schüpbach, B. Aesthetic preferences of non-farmers and farmers for different land-use types and proportions of ecological compensation areas in the Swiss lowlands. Biol. Conserv. 144, 1430–1440 (2011).Article
Google Scholar
51.Lee, H., Sumner, D. A. & Champetier, A. Pollination markets and the coupled futures of almonds and honey bees: simulating impacts of shifts in demands and costs. Am. J. Agric. Econ. 101, 230–249 (2019).Article
Google Scholar
52.Rucker, R. R., Thurman, W. N. & Burgett, M. Colony collapse and the consequences of bee disease: market adaptation to environmental change. J. Assoc. Environ. Resour. Econ. 6, 927–960 (2019).
Google Scholar
53.Breeze, T. D. et al. Linking farmer and beekeeper preferences with ecological knowledge to improve crop pollination. People Nat. 1, 562–572 (2019).Article
Google Scholar
54.Hall, D. M. & Martins, D. J. Human dimensions of insect pollinator conservation. Curr. Opin. Insect Sci. 38, 107–114 (2020).PubMed
Article
Google Scholar
55.Zommers, Z. et al. Burning embers: towards more transparent and robust climate-change risk assessments. Nat. Rev. Earth Environ. 1, 516–529 (2020).Article
Google Scholar
56.Duijm, N. J. Recommendations on the use and design of risk matrices. Saf. Sci. 76, 21–31 (2015).Article
Google Scholar
57.Peace, C. The risk matrix: uncertain results? Policy Pract. Health Saf. 15, 131–144 (2017).Article
Google Scholar
58.Morgan, M. G. Use (and abuse) of expert elicitation in support of decision making for public policy. Proc. Natl Acad. Sci. USA 111, 7176–7184 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
59.Regan, H. M., Colyvan, M. & Burgman, M. A. A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecol. Appl. 12, 618–628 (2002).Article
Google Scholar
60.FAOStat (FAO, 2017); http://www.fao.org/faostat/en/#data61.Regional Report for Africa on Pollinators and Pollination and Food Production UNEP/CBD/COP/13/INF/36 (Convention on Biological Diversity, 2016).62.Sutherland, W. J., Fleishman, E., Mascia, M. B., Pretty, J. & Rudd, M. A. Methods for collaboratively identifying research priorities and emerging issues in science and policy. Methods Ecol. Evol. 2, 238–247 (2011).Article
Google Scholar
63.Wickham, H. ggplot2. R v.4.0.0 https://ggplot2.tidyverse.org/ (2016).64.Christensen, R. H. B. ordinal. R v.4.0.3 http://www.cran.r-project.org/package=ordinal/ (2018).65.Menard, S. Applied Logistic Regression Analysis (SAGE Publications, 2002).66.Hill, R. et al. Biocultural approaches to pollinator conservation. Nat. Sustain. 2, 214–222 (2019).Article
Google Scholar More