Short-term heat shock perturbation affects populations of Daphnia magna and Eurytemora carolleeae: a warning to the water thermal pollution
1.Orr, J. A. et al. Towards a unified study of multiple stressors: Divisions and common goals across research disciplines. Proc. R. Soc. B 287(1926), 20200421. https://doi.org/10.1098/rspb.2020.0421 (2020).Article
PubMed
PubMed Central
Google Scholar
2.de Oliveira Naliato, D. A., Nogueira, M. G. & Perbiche-Neves, G. Discharge pulses of hydroelectric dams and their effects in the downstream limnological conditions: A case study in a large tropical river (SE Brazil). Lakes Reserv. Res. Manag. 14(4), 301–314 (2009).Article
CAS
Google Scholar
3.Brenden, T. O., Wang, L. & Su, Z. Quantitative identification of disturbance thresholds in support of aquatic resource management. Environ Manage. 42(5), 821–832 (2008).ADS
Article
Google Scholar
4.Raptis, C. E., van Vliet, M. T. & Pfister, S. Global thermal pollution of rivers from thermoelectric power plants. Environ. Res. Lett. 11, 104011. https://doi.org/10.1088/1748-9326/11/10/104011 (2016).ADS
Article
Google Scholar
5.Evans, M. S., Warren, G. J. & Page, D. I. The effects of power plant passage on zooplankton mortalities: Eight years of study at the Donald C. Cook Nuclear Plant. Water Res. 20(6), 725–734 (1986).CAS
Google Scholar
6.Jiang, Z. et al. Tolerance of copepods to short-term thermal stress caused by coastal power stations. J. Therm. Biol. 33(7), 419–423 (2008).Article
Google Scholar
7.Dziuba, M. K. et al. Temperature increase altered Daphnia community structure in artificially heated lakes: A potential scenario for a warmer future. Sci. Rep. 10(1), 1–13 (2020).Article
CAS
Google Scholar
8.Graf, R. & Wrzesiński, D. Detecting patterns of changes in river water temperature in Poland. Water 12(5), 1327 (2020).Article
Google Scholar
9.Lee, P. W., Tseng, L. C. & Hwang, J. S. Comparison of mesozooplankton mortality impacted by the cooling systems of two nuclear power plants at the northern Taiwan coast, southern East China Sea. Mar. Pollut. Bull. 136, 114–124 (2018).Article
CAS
Google Scholar
10.Madden, N., Lewis, A. & Davis, M. Thermal effluent from the power sector: An analysis of once-through cooling system impacts on surface water temperature. Environ. Res. Lett. 8, 035006. https://doi.org/10.1088/1748-9326/8/3/035006 (2013).ADS
Article
Google Scholar
11.Łabęcka, A. M., Domagala, J. & Pilecka-Rapacz, M. First record of Corbicula fluminalis (OF Muller, 1774) (Bivalvia: corbiculidae)–in Poland. Folia Malacol. 13(1), 25–27 (2005).Article
Google Scholar
12.Czerniawski, R., Pilecka-Rapacz, M. & Domagała, J. Zooplankton communities of inter-connected sections of lower River Oder (NW Poland). Open Life Sci. 8(1), 18–29 (2013).Article
Google Scholar
13.Yousey, A. E. M. et al. Resurrected ancient Daphnia genotypes show reduced thermal stress tolerance compared to modern descendants. R. Soc. Open Sci. 5, 172193. https://doi.org/10.1098/rsos.172193 (2018).ADS
Article
PubMed
PubMed Central
CAS
Google Scholar
14.Van Urk, G. The effects of a temperature shock on zooplankton. Hydrobiol. Bull. 13(2–3), 101–105 (1979).Article
Google Scholar
15.Shelford, V. E. Some concepts of bioecology. Ecology 12(3), 455–467 (1931).Article
Google Scholar
16.Halsband-Lenk, C., Hirche, H. J. & Carlotti, F. Temperature impact on reproduction and development of congener copepod populations. J. Exp. Mar. Biol. Ecol. 271(2), 121–153 (2002).Article
Google Scholar
17.Hopkin, R. S., Qari, S., Bowler, K., Hyde, D. & Cuculescu, M. Seasonal thermal tolerance in marine Crustacea. J. Exp. Mar. Biol. Ecol. 331(1), 74–81 (2006).Article
Google Scholar
18.McCauley, E. M. W. W., Murdoch, W. W. & Nisbet, R. M. Growth, reproduction, and mortality of Daphnia pulex Leydig: Life at low food. Funct. Ecol. 5, 505–514 (1990).Article
Google Scholar
19.Lürling, M., Roozen, F., Van Donk, E. & Goser, B. Response of Daphnia to substances released from crowded congeners and conspecifics. J. Plankton Res. 25(8), 967–978 (2003).Article
Google Scholar
20.Gliwicz, Z. M., Maszczyk, P. & Uszko, W. Enhanced growth at low population density in Daphnia: The absence of crowding effects or relief from visual predation?. Freshw. Biol. 57(6), 1166–1179 (2012).Article
Google Scholar
21.Macarthur, J. W. & Baillie, W. H. T. Metabolic activity and duration of life. J. Exp. Zool. 53(2), 221–242 (1929).Article
Google Scholar
22.Kozłowski, J. Optimal allocation of resources to growth and reproduction: Implications for age and size at maturity. Trends Ecol. Evol. 7(1), 15–19 (1992).MathSciNet
Article
Google Scholar
23.Mitchell, E., Halves, S. J. & Lampert, W. Coexistence of similar genotypes of Daphnia magna in intermittent populations: Response to thermal stress. Oikos 106(3), 469–478 (2004).Article
Google Scholar
24.Svetlichny, L., Hubareva, E. & Uttieri, M. Ecophysiological and behavioural responses to salinity and temperature stress in cyclopoid copepod Oithona davisae with comments on gender differences. Mediterr. Mar. Sci. 22(1), 80–101 (2021).
Google Scholar
25.Rahlff, J. et al. Short-term molecular and physiological responses to heat stress in neritic copepods Acartia tonsa and Eurytemora affinis. Comp. Biochem. Physiol. Part A Mol. Integr. 203, 348–358 (2017).Article
CAS
Google Scholar
26.Bradley, B. P., Hakimzadeh, R. & Vincent, J. S. Rapid responses to stress in Eurytemora affinis. In Biology of Copepods: Developments in Hydrobiology Vol. 47 (eds Boxshall, G. A. & Schminke, H. K.) 197–200 (Springer, 1988).Chapter
Google Scholar
27.Bartholmeé, S., Samchyshyna, L., Santer, B. & Lampert, W. Subitaneous eggs of freshwater copepods pass through fish guts: Survival, hatchability, and potential ecological implications. Limnol. Oceanogr. 50(3), 923–929 (2005).ADS
Article
Google Scholar
28.Belmonte, G. The suspected contradictory role of parental care in the adaption of planktonic calanoida to temporary freshwater. Water 13(1), 100 (2021).Article
Google Scholar
29.Hoffmeyer, M. S., Biancalana, F. & Berasategui, A. Impact of a power plant cooling system on copepod and meroplankton survival (Bahía Blanca estuary, Argentina). Iheringia Ser. Zool. 95(3), 311–318 (2005).Article
Google Scholar
30.Williams, P. J., Dick, K. B. & Yampolsky, L. Y. Heat tolerance, temperature acclimation, acute oxidative damage and canalization of haemoglobin expression in Daphnia. Evol. Ecol. 26(3), 591–609 (2012).Article
Google Scholar
31.Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322(5902), 690–692 (2008).Article
Google Scholar
32.Guzy, R. D. & Schumacker, P. T. Oxygen sensing by mitochondria at complex III: The paradox of increased reactive oxygen species during hypoxia. Exp. Physiol. 91(5), 807–819 (2006).Article
CAS
Google Scholar
33.Cao, S. S. & Kaufman, R. J. Unfolded protein response. Curr. Biol. 22(16), 622–626 (2012).Article
CAS
Google Scholar
34.Young, J. C., Moarefi, I. & Hartl, F. U. Hsp90: A specialized but essential protein-folding tool. The J. Cell Biol. 154(2), 267–274 (2001).Article
CAS
Google Scholar
35.Jolly, C. & Morimoto, R. I. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J. Natl. Cancer Inst. 92(19), 1564–1572 (2000).Article
CAS
Google Scholar
36.Mikulski, A., Bernatowicz, P., Grzesiuk, M., Kloc, M. & Pijanowska, J. Differential levels of stress proteins (HSPs) in male and female Daphnia magna in response to thermal stress: A consequence of sex-related behavioral differences?. J. Chem. Ecol. 37(7), 670–676 (2011).Article
CAS
Google Scholar
37.Schumpert, C., Handy, I., Dudycha, J. L. & Patel, R. C. Relationship between heat shock protein 70 expression and life span in Daphnia. Mech. Ageing Dev. 139, 1–10 (2014).Article
CAS
Google Scholar
38.Alekseev, V. R. & Souissi, A. A new species within the Eurytemora affinis complex (Copepoda: Calanoida) from the Atlantic Coast of USA, with observations on eight morphologically different European populations. Zootaxa 2767(1), 41–56 (2011).Article
Google Scholar
39.Sługocki, Ł., Rymaszewska, A., & Kirczuk, L. To fit or to belong: Characterization of the non-native invader Eurytemora carolleeae (Copepoda: Calanoida) in the Oder River system (Central Europe). Aquat. Invasions 16(3), 443–460 (2021).Article
Google Scholar
40.Müller, M. F., Colomer, J. & Serra, T. Temperature-driven response reversibility and short-term quasi-acclimation of Daphnia magna. PLoS ONE 13(12), e0209705. https://doi.org/10.1371/journal.pone.0209705 (2018).Article
PubMed
PubMed Central
CAS
Google Scholar More