Predicting species distributions and community composition using satellite remote sensing predictors
1.Lewis, S. L. & Maslin, M. A. Defining the anthropocene. Nature 519, 171â180 (2015).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
2.Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73â81 (2017).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
3.Pinto-Ledezma, J. N. & Rivero Mamani, M. L. Temporal patterns of deforestation and fragmentation in lowland Bolivia: Implications for climate change. Clim. Change 127, 43â54 (2014).ADSÂ
ArticleÂ
Google ScholarÂ
4.Allen, J. M., Folk, R. A., Soltis, P. S., Soltis, D. E. & Guralnick, R. P. Biodiversity synthesis across the green branches of the tree of life. Nat. Plants 5, 11â13 (2019).PubMedÂ
ArticleÂ
Google ScholarÂ
5.Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Accessed 15 Feb 2021. https://zenodo.org/record/3553579. https://doi.org/10.5281/ZENODO.3553579 (2019). 6.Cavender-Bares, J., Balvanera, P., King, E. & Polasky, S. Ecosystem service trade-offs across global contexts and scales. Ecol. Soc. 20, art22 (2015).ArticleÂ
Google ScholarÂ
7.Chaplin-Kramer, R. et al. Global modeling of natureâs contributions to people. Science 366, 255â258 (2019).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
8.DĂaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
9.Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360â362 (2020).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
10.Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539â551 (2019).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
11.Mateo, R. G., Mokany, K. & Guisan, A. Biodiversity models: What if unsaturation is the rule?. Trends Ecol. Evol. 32, 556â566 (2017).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
12.Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277â278 (2013).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
13.Ferrier, S. & Guisan, A. Spatial modelling of biodiversity at the community level. J. Appl. Ecol. 43, 393â404 (2006).ArticleÂ
Google ScholarÂ
14.Guisan, A. & Rahbek, C. SESAMâA new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages: Predicting spatio-temporal patterns of species assemblages. J. Biogeogr. 38, 1433â1444 (2011).ArticleÂ
Google ScholarÂ
15.Cavender-Bares, J., Schweiger, A. K., Pinto-Ledezma, J. N. & Meireles, J. E. Applying remote sensing to biodiversity science. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 13â42 (Springer, 2020). https://doi.org/10.1007/978-3-030-33157-3_2.ChapterÂ
Google ScholarÂ
16.Fawcett, D. et al. Advancing retrievals of surface reflectance and vegetation indices over forest ecosystems by combining imaging spectroscopy, digital object models, and 3D canopy modelling. Remote Sens. Environ. 204, 583â595 (2018).ADSÂ
ArticleÂ
Google ScholarÂ
17.Randin, C. F. et al. Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sens. Environ. 239, 111626 (2020).ADSÂ
ArticleÂ
Google ScholarÂ
18.Turner, W. Sensing biodiversity. Science 346, 301â302 (2014).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
19.DâAmen, M., Pradervand, J.-N. & Guisan, A. Predicting richness and composition in mountain insect communities at high resolution: A new test of the SESAM framework: Community-level models of insects. Glob. Ecol. Biogeogr. 24, 1443â1453 (2015).ArticleÂ
Google ScholarÂ
20.Pottier, J. et al. The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients: Climate and species assembly predictions. Glob. Ecol. Biogeogr. 22, 52â63 (2013).ArticleÂ
Google ScholarÂ
21.Zurell, D. et al. Testing species assemblage predictions from stacked and joint species distribution models. J. Biogeogr. 47, 101â113 (2020).ArticleÂ
Google ScholarÂ
22.DâAmen, M. et al. Improving spatial predictions of taxonomic, functional and phylogenetic diversity. J. Ecol. 106, 76â86 (2018).ArticleÂ
Google ScholarÂ
23.Dobrowski, S. Z. et al. Modeling plant ranges over 75 years of climate change in California, USA: Temporal transferability and species traits. Ecol. Monogr. 81, 241â257 (2011).ArticleÂ
Google ScholarÂ
24.Soria-Auza, R. W. et al. Impact of the quality of climate models for modelling species occurrences in countries with poor climatic documentation: A case study from Bolivia. Ecol. Model. 221, 1221â1229 (2010).ArticleÂ
Google ScholarÂ
25.Rocchini, D. et al. Satellite remote sensing to monitor species diversity: Potential and pitfalls. Remote Sens. Ecol. Conserv. 2, 25â36 (2016).ArticleÂ
Google ScholarÂ
26.Schulte to BĂŒhne, H. & Pettorelli, N. Better together: Integrating and fusing multispectral and radar satellite imagery to inform biodiversity monitoring, ecological research and conservation science. Methods Ecol. Evol. 9, 849â865 (2018).ArticleÂ
Google ScholarÂ
27.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850â853 (2013).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
28.Hobi, M. L. et al. A comparison of Dynamic Habitat Indices derived from different MODIS products as predictors of avian species richness. Remote Sens. Environ. 195, 142â152 (2017).ADSÂ
ArticleÂ
Google ScholarÂ
29.Radeloff, V. C. et al. The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. Remote Sens. Environ. 222, 204â214 (2019).ADSÂ
ArticleÂ
Google ScholarÂ
30.Pinto-Ledezma, J. N. & Cavender-Bares, J. Using remote sensing for modeling and monitoring species distributions. In Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J., Gamon, J. A. & Townsend, P. A.) 199â223 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-33157-3_9.31.FernĂĄndez, N., Ferrier, S., Navarro, L. M. & Pereira, H. M. Essential biodiversity variables: Integrating in-situ observations and remote sensing through modeling. In Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J., Gamon, J. A. & Townsend, P. A.) 485â501 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-33157-3_18.32.Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01451-x (2021).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
33.Saatchi, S., Buermann, W., ter Steege, H., Mori, S. & Smith, T. B. Modeling distribution of Amazonian tree species and diversity using remote sensing measurements. Remote Sens. Environ. 112, 2000â2017 (2008).ADSÂ
ArticleÂ
Google ScholarÂ
34.He, K. S. et al. Will remote sensing shape the next generation of species distribution models?. Remote Sens. Ecol. Conserv. 1, 4â18 (2015).ArticleÂ
Google ScholarÂ
35.Cord, A. F., Meentemeyer, R. K., LeitĂŁo, P. J. & VĂĄclavĂk, T. Modelling species distributions with remote sensing data: Bridging disciplinary perspectives. J. Biogeogr. 40, 2226â2227 (2013).ArticleÂ
Google ScholarÂ
36.Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).PubMedÂ
ArticleÂ
Google ScholarÂ
37.Scherrer, D., DâAmen, M., Fernandes, R. F., Mateo, R. G. & Guisan, A. How to best threshold and validate stacked species assemblages? Community optimisation might hold the answer. Methods Ecol. Evol. 9, 2155â2166 (2018).ArticleÂ
Google ScholarÂ
38.Cavender-Bares, J. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. New Phytol. 221, 669â692 (2019).PubMedÂ
ArticleÂ
Google ScholarÂ
39.Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823â843 (2004).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
40.Cavender-Bares, J. et al. The role of diversification in community assembly of the oaks (Quercus L.) across the continental U.S. Am. J. Bot. 105, 565â586 (2018).PubMedÂ
ArticleÂ
Google ScholarÂ
41.Colwell, R. K. & Rangel, T. F. Hutchinsonâs duality: The once and future niche. Proc. Natl. Acad. Sci. 106, 19651â19658 (2009).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
42.Townsend Peterson, A. et al. Ecological Niches and Geographic Distributions. (Princeton University Press, 2011). BookÂ
Google ScholarÂ
43.Cavender-Bares, J., Fontes, G. C. & Pinto-Ledezma, J. Open questions in understanding the adaptive significance of plant functional trait variation within a single lineage. New Phytol. https://doi.org/10.1111/nph.16652 (2020).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
44.Cavender-Bares, J., Kitajima, K. & Bazzaz, F. A. Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecol. Monogr. 74, 635â662 (2004).ArticleÂ
Google ScholarÂ
45.Menges, E. S. & Hawkes, C. V. Interactive effects of fire and microhabitat on plants of Florida scrub. Ecol. Appl. 8, 935â946 (1998).ArticleÂ
Google ScholarÂ
46.Calabrese, J. M., Certain, G., Kraan, C. & Dormann, C. F. Stacking species distribution models and adjusting bias by linking them to macroecological models: Stacking species distribution models. Glob. Ecol. Biogeogr. 23, 99â112 (2014).ArticleÂ
Google ScholarÂ
47.Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci. 104, 13384â13389 (2007).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
48.Pinto-Ledezma, J. N., Jahn, A. E., Cueto, V. R., Diniz-Filho, J. A. F. & Villalobos, F. Drivers of phylogenetic assemblage structure of the Furnariides, a widespread clade of lowland neotropical birds. Am. Nat. 193, E41âE56 (2019).PubMedÂ
ArticleÂ
Google ScholarÂ
49.Gamon, J. A. et al. Consideration of scale in remote sensing of biodiversity. In Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J., Gamon, J. A. & Townsend, P. A.) 425â447 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-33157-3_16.50.Pollock, L. J. et al. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods Ecol. Evol. 5, 397â406 (2014).ArticleÂ
Google ScholarÂ
51.Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561â576 (2017).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
52.Ovaskainen, O. Joint Species Distribution Modelling: with Applications in R (Cambridge University Press, 2020).BookÂ
Google ScholarÂ
53.Poggiato, G. et al. On the interpretations of joint modeling in community ecology. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.01.002 (2021).ArticleÂ
PubMedÂ
Google ScholarÂ
54.Wilkinson, D. P., Golding, N., Guillera-Arroita, G., Tingley, R. & McCarthy, M. A. Defining and evaluating predictions of joint species distribution models. Methods Ecol. Evol. 12, 394â404 (2021).ArticleÂ
Google ScholarÂ
55.Bystrova, D. et al. Clustering species with residual covariance matrix in joint species distribution models. Front. Ecol. Evol. 9, 601384 (2021).ArticleÂ
Google ScholarÂ
56.Mateo, R. G. et al. Hierarchical species distribution models in support of vegetation conservation at the landscape scale. J. Veg. Sci. 30, 386â396 (2019).ADSÂ
ArticleÂ
Google ScholarÂ
57.Petitpierre, B. et al. Will climate change increase the risk of plant invasions into mountains?. Ecol. Appl. 26, 530â544 (2016).PubMedÂ
ArticleÂ
Google ScholarÂ
58.Cavender-Bares, J. et al. Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales. Am. J. Bot. 104, 966â969 (2017).PubMedÂ
ArticleÂ
Google ScholarÂ
59.Schweiger, A. K. et al. Spectral Niches Reveal Taxonomic Identity and Complementarity in Plant Communities. (2020) https://doi.org/10.1101/2020.04.24.060483. 60.Cavender-Bares, J. et al. Associations of leaf spectra with genetic and phylogenetic variation in oaks: Prospects for remote detection of biodiversity. Remote Sens. 8, 221 (2016).ADSÂ
ArticleÂ
Google ScholarÂ
61.Meireles, J. E. et al. Leaf reflectance spectra capture the evolutionary history of seed plants. New Phytol. 228, 485â493 (2020).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
62.Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol. 5, 46â54 (2021).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
63.Alonso, K. et al. Data products, quality and validation of the DLR earth sensing imaging spectrometer (DESIS). Sensors 19, 4471 (2019).ADSÂ
CASÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
64.Stavros, E. N. et al. ISS observations offer insights into plant function. Nat. Ecol. Evol. 1, 0194 (2017).ArticleÂ
Google ScholarÂ
65.FĂ©ret, J.-B. & Asner, G. P. Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy. Ecol. Appl. 24, 1289â1296 (2014).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
66.Cavender-Bares, J. et al. BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world. Res. Ideas Outcomes 7, e63850 (2021).ArticleÂ
Google ScholarÂ
67.Hipp, A. L. et al. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. New Phytol. 217, 439â452 (2018).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
68.Cavender-Bares, J. et al. Phylogeny and biogeography of the American live oaks (Quercus subsection Virentes): A genomic and population genetics approach. Mol. Ecol. 24, 3668â3687 (2015).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
69.Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541â545 (2015).ArticleÂ
Google ScholarÂ
70.Lobo, J. M., JimĂ©nez-Valverde, A. & Hortal, J. The uncertain nature of absences and their importance in species distribution modelling. Ecography 33, 103â114 (2010).ArticleÂ
Google ScholarÂ
71.Barnett, D. T. et al. The plant diversity sampling design for The National Ecological Observatory Network. Ecosphere 10, e02603 (2019).
Google ScholarÂ
72.Deblauwe, V. et al. Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics: Remotely sensed climate data for tropical species distribution models. Glob. Ecol. Biogeogr. 25, 443â454 (2016).ArticleÂ
Google ScholarÂ
73.Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package version 1.3. https://CRAN.R-project.org/package=dismo (2020).74.Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214â231 (2002).ADSÂ
ArticleÂ
Google ScholarÂ
75.Gower, S. T., Kucharik, C. J. & Norman, J. M. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens. Environ. 70, 29â51 (1999).ADSÂ
ArticleÂ
Google ScholarÂ
76.Reich, P. B. Key canopy traits drive forest productivity. Proc. R. Soc. B Biol. Sci. 279, 2128â2134 (2012).ArticleÂ
Google ScholarÂ
77.Xiao, Z. et al. Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 52, 209â223 (2014).ADSÂ
ArticleÂ
Google ScholarÂ
78.SoberĂłn, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115â1123 (2007).PubMedÂ
ArticleÂ
Google ScholarÂ
79.Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).ADSÂ
ArticleÂ
Google ScholarÂ
80.Dubuis, A. et al. Predicting spatial patterns of plant species richness: A comparison of direct macroecological and species stacking modelling approaches: Predicting plant species richness. Divers. Distrib. 17, 1122â1131 (2011).ArticleÂ
Google ScholarÂ
81.Schoener, T. W. Anolis lizards of Bimini: Resource partition in a complex fauna. Ecology 49, 704â726 (1968).ArticleÂ
Google ScholarÂ
82.Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810â1819 (2011).ArticleÂ
Google ScholarÂ
83.Cooper, J. C. & SoberĂłn, J. Creating individual accessible area hypotheses improves stacked species distribution model performance. Glob. Ecol. Biogeogr. 27, 156â165 (2018).ArticleÂ
Google ScholarÂ
84.Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? How to use pseudo-absences in niche modelling?. Methods Ecol. Evol. 3, 327â338 (2012).ArticleÂ
Google ScholarÂ
85.Carlson, C. J. et al. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol. 4, 1337â1343 (2019).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
86.Chipman, H. A., George, E. I. & McCulloch, R. E. BART: Bayesian additive regression trees. Ann. Appl. Stat. 4, 266â298 (2010).MathSciNetÂ
MATHÂ
ArticleÂ
Google ScholarÂ
87.Yen, J. D. L., Thomson, J. R., Vesk, P. A. & Mac Nally, R. To what are woodland birds responding? Inference on relative importance of in-site habitat variables using several ensemble habitat modelling techniques. Ecography 34, 946â954 (2011).ArticleÂ
Google ScholarÂ
88.Carlson, C. J. embarcadero: Species distribution modelling with Bayesian additive regression trees in r. Methods Ecol. Evol. 11, 850â858 (2020).ArticleÂ
Google ScholarÂ
89.Dorie, V. dbarts: Discrete Bayesian Additive Regression Trees Sampler. (2020).90.Hastie, T. & Tibshirani, R. Bayesian backfitting. Stat. Sci. 15(3), 196â223 (2000). MathSciNetÂ
MATHÂ
ArticleÂ
Google ScholarÂ
91.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS): Assessing the accuracy of distribution models. J. Appl. Ecol. 43, 1223â1232 (2006).ArticleÂ
Google ScholarÂ
92.Di Cola, V. et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774â787 (2017).ArticleÂ
Google ScholarÂ
93.Hipp, A. L. et al. Genomic landscape of the global oak phylogeny. New Phytol. 226, 1198â1212 (2020).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
94.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475â505 (2002).ArticleÂ
Google ScholarÂ
95.Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463â1464 (2010).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
96.Kruschke, J. Doing Bayesian Data Analysis, 2nd Ed. (2014).97.Mills, J. A. & Parent, O. Bayesian MCMC estimation. In Handbook of Regional Science (eds Fischer, M. M. & Nijkamp, P.) 1571â1595 (Springer, Berlin, 2014). https://doi.org/10.1007/978-3-642-23430-9_89.ChapterÂ
Google ScholarÂ
98.Carpenter, B. et al. StanâŻ: A probabilistic programming language. J. Stat. Softw. 76, 1â32 (2017).ArticleÂ
Google ScholarÂ
99.Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. (2020).100.BĂŒrkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1â28 (2017).ArticleÂ
Google ScholarÂ
101.Makowski, D., Ben-Shachar, M. & LĂŒdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).ADSÂ
ArticleÂ
Google Scholar More