More stories

  • in

    High taxonomic resolution surveys and trait-based analyses reveal multiple benthic regimes in North Sulawesi (Indonesia)

    1.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Freeman, L. A., Kleypas, J. A. & Miller, A. J. Coral reef habitat response to climate change scenarios. PLoS One 8, e82404 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Salo, T., Mattila, J. & Eklöf, J. Long-term warming affects ecosystem functioning through species turnover and intraspecific trait variation. Oikos 129, 283–295 (2020).Article 

    Google Scholar 
    5.Alvarez-Filip, L., Dulvy, N. K., Côte, I. M., Watkinson, A. R. & Gill, J. A. Coral identity underpins architectural complexity on Caribbean reefs. Ecol. Appl. 21, 2223–2231 (2011).PubMed 
    Article 

    Google Scholar 
    6.Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: Toward a global functional homogenization?. Front. Ecol. Environ. 9, 222–228 (2011).Article 

    Google Scholar 
    7.Darling, E. S. et al. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat. Ecol. Evol. 3, 1341–1350 (2019).PubMed 
    Article 

    Google Scholar 
    8.Richardson, L. E., Graham, N. A. J. & Hoey, A. S. Coral species composition drives key ecosystem function on coral reefs. Proc. R. Soc. B Biol. Sci. 287, 20192214 (2020).Article 

    Google Scholar 
    9.Ainsworth, C. H. & Mumby, P. J. Coral–algal phase shifts alter fish communities and reduce fisheries production. Glob. Change Biol. 21, 165–172 (2015).ADS 
    Article 

    Google Scholar 
    10.McWilliam, M., Pratchett, M. S., Hoogenboom, M. O. & Hughes, T. P. Deficits in functional trait diversity following recovery on coral reefs. Proc. R. Soc. B Biol. Sci. 287, 20192628 (2020).Article 

    Google Scholar 
    11.Adjeroud, M. et al. Recovery of coral assemblages despite acute and recurrent disturbances on a South Central Pacific reef. Sci. Rep. 8, 9680 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Bozec, Y.-M. & Mumby, P. J. Synergistic impacts of global warming on the resilience of coral reefs. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130267 (2015).Article 

    Google Scholar 
    13.Chaves-Fonnegra, A. et al. Bleaching events regulate shifts from corals to excavating sponges in algae-dominated reefs. Glob. Change Biol. 24, 773–785 (2018).ADS 
    Article 

    Google Scholar 
    14.Lasker, H., Bramanti, L., Tsounis, G. & Edmunds, P. The rise of octocoral forests on Caribbean reefs. Adv. Mar. Biol. 86, 361–410 (2020).Article 

    Google Scholar 
    15.Dixson, D. L., Abrego, D. & Hay, M. E. Chemically mediated behavior of recruiting corals and fishes: A tipping point that may limit reef recovery. Science 345, 892–897 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Rogers, A., Blanchard, J. L. & Mumby, P. J. Vulnerability of coral reef fisheries to a loss of structural complexity. Curr. Biol. 24, 1000–1005 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Ampou, E. E., Ouillon, S., Iovan, C. & Andréfouët, S. Change detection of Bunaken Island coral reefs using 15 years of very high resolution satellite images: A kaleidoscope of habitat trajectories. Mar. Pollut. Bull. 131, 83–95 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Di Martino, E., Jackson, J. B. C., Taylor, P. D. & Johnson, K. G. Differences in extinction rates drove modern biogeographic patterns of tropical marine biodiversity. Sci. Adv. 4, eaaq1508 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).PubMed 
    Article 

    Google Scholar 
    20.Brandl, S. et al. Coral reef ecosystem functioning: Eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).Article 

    Google Scholar 
    21.Jouffray, J.-B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130268 (2015).Article 

    Google Scholar 
    22.Reverter, M., Jackson, M., Daraghmeh, N., von Mach, C. & Milton, N. 11-yr of coral community dynamics in reefs around Dahab (Gulf of Aqaba, Red Sea): The collapse of urchins and rise of macroalgae and cyanobacterial mats. Coral Reefs 39, 1605–1618 (2020).Article 

    Google Scholar 
    23.Schläppy, M.-L. et al. Making waves: Marine citizen science for impact. Front. Mar. Sci. 4, 146 (2017).Article 

    Google Scholar 
    24.de Bakker, D. M. et al. 40 Years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: The rise of slimy cyanobacterial mats. Coral Reefs 36, 355–367 (2017).ADS 
    Article 

    Google Scholar 
    25.González-Barrios, F. J., Cabral-Tena, R. A. & Alvarez-Filip, L. Recovery disparity between coral cover and the physical functionality of reefs with impaired coral assemblages. Glob. Change Biol. 27, 640–651 (2021).ADS 
    Article 

    Google Scholar 
    26.Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).PubMed 
    Article 

    Google Scholar 
    27.Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).PubMed 
    Article 

    Google Scholar 
    28.Bellwood, D., Streit, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term “function” in ecology: A coral reef perspective. Funct. Ecol. 33, 948–961 (2021).Article 

    Google Scholar 
    29.Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl. Acad. Sci. U.S.A. 111, 13757–13762 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Madin, J. S. et al. A trait-based approach to advance coral reef science. Trends Ecol. Evol. 31, 419–428 (2016).PubMed 
    Article 

    Google Scholar 
    31.Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).ADS 
    Article 

    Google Scholar 
    32.Denis, V., Ribas-Deulofeu, L., Sturaro, N., Kuo, C.-Y. & Chen, C. A. A functional approach to the structural complexity of coral assemblages based on colony morphological features. Sci. Rep. 7, 9849 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Kubicek, A., Breckling, B., Hoegh-Guldberg, O. & Reuter, H. Climate change drives trait-shifts in coral reef communities. Sci. Rep. 9, 3721 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Hoeksema, B. Delineation of the Indo-Malayan Centre of Maximum Marine Biodiversity: The Coral Triangle, Vol. 29 117-178 (2007)35.Ponti, M. et al. Baseline reef health surveys at Bangka Island (North Sulawesi, Indonesia) reveal new threats. PeerJ 4, e2614 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Roff, G. et al. Exposure-driven macroalgal phase shift following catastrophic disturbance on coral reefs. Coral Reefs 34(3), 715–725. https://doi.org/10.1007/s00338-015-1305-z (2015).ADS 
    Article 

    Google Scholar 
    37.Doropoulos, C., Roff, G., Visser, M.-S. & Mumby, P. J. Sensitivity of coral recruitment to subtle shifts in early community succession. Ecology 98(2), 304–314. https://doi.org/10.1002/ecy.166 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Donovan, M. K. et al. Local conditions magnify coral loss after marine heatwaves. Science 372, 977–980. https://doi.org/10.1126/science.abd9464 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Otaño-Cruz, A. et al. Caribbean near-shore coral reef benthic community response to changes on sedimentation dynamics and environmental conditions. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00551 (2019).Article 

    Google Scholar 
    40.Goatley, C. H. R. & Bellwood, D. R. Ecological consequences of sediment on high-energy coral reefs. PLoS One 8(10), e77737. https://doi.org/10.1371/journal.pone.0077737 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Powell, A. et al. Reduced diversity and high sponge abundance on a sedimented Indo-Pacific reef system: Implications for future changes in environmental quality. PLoS One 9(1), e85253. https://doi.org/10.1371/journal.pone.0085253 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Lester, S. E. et al. Caribbean reefs of the Anthropocene: Variance in ecosystem metrics indicates bright spots on coral depauperate reefs. Glob. Change Biol. 26, 4785–4799 (2020).ADS 
    Article 

    Google Scholar 
    43.Pombo-Ayora, L., Coker, D. J., Carvalho, S., Short, G. & Berumen, M. L. Morphological and ecological trait diversity reveal sensitivity of herbivorous fish assemblages to coral reef benthic conditions. Mar. Environ. Res. 162, 105102 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Fox, H. E., Pet, J. S., Dahuri, R. & Caldwell, R. L. Recovery in rubble fields: Long-term impacts of blast fishing. Mar. Pollut. Bull. 46, 1024–1031 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Lam, V. Y. Y., Doropoulos, C. & Mumby, P. J. The influence of resilience-based management on coral reef monitoring: A systematic review. PLoS One 12, e0172064 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Donovan, M. K. et al. Combining fish and benthic communities into multiple regimes reveals complex reef dynamics. Sci. Rep. 8, 16943 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    47.Smith, J. E. et al. Re-evaluating the health of coral reef communities: Baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. Sci. B. 283, 20151985 (2016).Article 
    CAS 

    Google Scholar 
    48.Althaus, F. et al. A Standardised vocabulary for identifying benthic biota and substrata from underwater magery: The CATAMI classification scheme. PLoS One 10, e0141039 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Wee, H. B. et al. Zoantharian abundance in coral reef benthic communities at Terengganu Islands, Malaysia. Reg. Stud. Mar. Sci. 12, 58–63 (2017).Article 

    Google Scholar 
    50.McFadden, C. S. et al. Species boundaries in the absence of morphological, ecological or geographical differentiation in the Red Sea octocoral genus Ovabunda (Alcyonacea: Xeniidae). Mol. Phylogenet. Evol. 112, 174–184 (2017).PubMed 
    Article 

    Google Scholar 
    51.Ruiz, C. et al. Descriptions of new sponge species and genus, including aspiculate Plakinidae, overturn the Homoscleromorpha classification. Zool. J. Linn. Soc. 179, 707–724 (2017).
    Google Scholar 
    52.Koido, T., Imahara, Y. & Fukami, H. High species diversity of the soft coral family Xeniidae (Octocorallia, Alcyonacea) in the temperate region of Japan revealed by morphological and molecular analyses. Zookeys 862, 1–22 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Schönberg, C.H.L. & Fromont, J. Sponge functional growth forms as a means for classifying sponges without taxonomy. http://ningaloo-atlas.org.au/AIMS. [02/12/2020]. http://ningaloo-atlas.org.au/content/sponge-functional-growth-forms-means-classifying-spo (2014).54.Atrigenio, M., Aliño, P. & Conaco, C. Influence of the blue coral Heliopora coerulea on scleractinian coral larval recruitment. J. Mar. Biol. 2017, 6015143 (2017).Article 

    Google Scholar 
    55.Guzman, C., Atrigenio, M., Shinzato, C., Aliño, P. & Conaco, C. Warm seawater temperature promotes substrate colonization by the blue coral, Heliopora coerulea. PeerJ 7, e7785 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Baum, G., Januar, I., Ferse, S. C. A., Wild, C. & Kunzmann, A. Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia. PeerJ 4, e2625 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Biggerstaff, A., Jompa, J. & Bell, J. J. Increasing benthic dominance of the phototrophic sponge Lamellodysidea herbacea on a sedimented reef within the Coral Triangle. Mar. Biol. 164, 220 (2017).Article 

    Google Scholar 
    58.Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Expansion of a colonial ascidian following consecutive mass coral bleaching at Lizard Island, Australia. Mar. Environ. Res. 144, 125–129 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Vollstedt, S., Xiang, N., Simancas-Giraldo, S. M. & Wild, C. Organic eutrophication increases resistance of the pulsating soft coral Xenia umbellata to warming. PeerJ 8, e9182 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Marlow, J. et al. Spatial variation in the benthic community composition of coral reefs in the Wakatobi Marine National Park, Indonesia: Updated baselines and limited benthic community shifts. J. Mar. Biol. Assoc. U. K. 100, 37–44 (2019).Article 

    Google Scholar 
    61.Roth, F., Lange, I., Sánchez Noguera, C., Carvalho, S. & Wild, C. Simulated overfishing and natural eutrophication promote the relative success of a non-indigenous ascidian in coral reefs at the Pacific coast of Costa Rica. Aquat. Invasions 12, 435–446 (2017).Article 

    Google Scholar 
    62.Plass-Johnson, J. G. et al. Spatio-temporal patterns in the coral reef communities of the Spermonde archipelago, 2012–2014, II: Fish assemblages display structured variation related to benthic condition. Front. Mar. Sci. 5, 36 (2018).Article 

    Google Scholar 
    63.Russ, G. R., Rizzari, J. R., Abesamis, R. A. & Alcala, A. C. Coral cover a stronger driver of reef fish trophic biomass than fishing. Ecol. Appl. 31, e02224 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    64.Atrigenio, M. P. & Aliño, P. M. Effects of the soft coral Xenia puertogalerae on the recruitment of scleractinian corals. J. Exp. Mar. Biol. Ecol. 203, 179–189 (1996).Article 

    Google Scholar 
    65.Maida, M., Sammarco, P. W. & Coll, J. C. Effects of soft corals on scleractinian coral recruitment. II: Allelopathy, spat survivorship and reef community structure. Mar. Ecol. 22, 397–414 (2001).ADS 
    Article 

    Google Scholar 
    66.Helber, S. B., Hoeijmakers, D. J. J., Muhando, C. A., Rohde, S. & Schupp, P. J. Sponge chemical defenses are a possible mechanism for increasing sponge abundance on reefs in Zanzibar. PLoS One 13, e0197617 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.de Goeij, J., Lesser, M. P. & Pawlick, J. R. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In Climate Change, Ocean Acidification and Sponges (eds Carballo, J. & Bell, J.) (Springer, 2017).
    Google Scholar 
    68.Loh, T.-L., McMurray, S. E., Henkel, T. P., Vicente, J. & Pawlik, J. R. Indirect effects of overfishing on Caribbean reefs: Sponges overgrow reef-building corals. PeerJ 3, e901 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Lesser, M. P. & Slattery, M. Will coral reef sponges be winners in the Anthropocene?. Glob. Change Biol. 26, 3202–3211 (2020).ADS 
    Article 

    Google Scholar 
    70.Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Annu. Rev. Mar. Sci. 12, 315–337 (2020).ADS 
    Article 

    Google Scholar 
    71.McMurray, S. E., Blum, J. E. & Pawlik, J. R. Redwood of the reef: Growth and age of the giant barrel sponge Xetospongia muta in the Florida Keys. Mar. Biol. 155, 159–171 (2008).Article 

    Google Scholar 
    72.Yomogida, M., Mizuyama, M., Kubomura, T. & Davis Reimer, J. Disappearance and return of an outbreak of the coral-killing cyanobacteriosponge Terpios hoshinota in Southern Japan. Zool. Stud. 56, e7 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    73.McGrath, E. C., Woods, L., Jompa, J., Haris, A. & Bell, J. J. Growth and longevity in giant barrel sponges: Redwoods of the reef or Pines in the Indo-Pacific?. Sci. Rep. 9, 18033 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.De Vantier, L. & Turak, E. Managing marine tourism in Bunaken National Park and adjacent waters, North Sulawesi, Indonesia (NRM III, 2004).75.Kohler, K. & Gill, S. Coral point count with Excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).ADS 
    Article 

    Google Scholar 
    76.Froese, R. Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 22, 241–253 (2006).Article 

    Google Scholar 
    77.Froese, R. & Pauly, D. Editors. FishBase. World Wide Web electronic publication. http://www.fishbase.org, version (2019).78.MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Bierwagen, S. L., Emslie, M. J., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Reef-scale variability in fish and coral assemblages on the central Great Barrier Reef. Mar. Biol. 165, 144 (2018).Article 

    Google Scholar 
    80.R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.81.Oksanen, J., et al. Package “vegan”: Community ecology package. R package version 2.5-6 (2019).82.White, D. & Gramacy, R. B. Package “maptree”: Mapping, pruning and graphing tree models. R package version 1.4-7 (2015).83.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed 
    Article 

    Google Scholar 
    84.Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).Article 

    Google Scholar 
    85.Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).Article 

    Google Scholar 
    86.Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S. & Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 118, 391–402 (2009).Article 

    Google Scholar 
    87.Bello, F., Carmona, C. P., Mason, N. W. H. & Leps, J. Which trait dissimilarity for functional diversity: Trait means or trait overlap?. J. Sci. Veg. https://doi.org/10.1111/jvs.12008 (2012).Article 

    Google Scholar 
    88.Laliberté, E., Legendre, P. & Shipley B. Package “FD”: Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package version 1.-0.12 (2015). More

  • in

    Mammalian body size is determined by interactions between climate, urbanization, and ecological traits

    1.Gould, S. J. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41, 587–638 (1966).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Brown, J. H. & Maurer, B. A. Body size, ecological dominance and Cope’s rule. Nature 324, 248–250 (1986).Article 

    Google Scholar 
    3.Brown, J. H., Marquet, P. A. & Taper, M. L. Evolution of body size: consequences of an energetic definition of fitness. Am. Nat. 142, 573–584 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Peters, R. H. The ecological implications of body size. Cambridge University Press. (1983).5.White, E. P., Ernest, S. K. M., Kerkhoff, A. J. & Enquist, B. J. Relationship between body size and abundance in ecology. Trends Ecol. Evo 22, 323–330 (2007).Article 

    Google Scholar 
    6.Yom-Tov, Y. & Geffen, E. Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls. Biol. Rev. 86, 531–541 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Bergmann, C. About the relationships between heat conservation and body size of animals. Goett. Stud. (original Ger.) 1, 595–708 (1847).
    Google Scholar 
    8.Ashton, K. G., Tracy, M. C. & de Queiroz, A. Is Bergmann’s rule valid for mammals? Am. Nat. 156, 390–415 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351 (2003).Article 

    Google Scholar 
    10.Riemer, K., Guralnick, R. P. & White, E. P. No general relationship between mass and temperature in endothermic species. elife 7, e27166 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Alroy, J. A multispecies overkill simulation of the end- Pleistocene megafaunal mass extinction. Science 292, 1893–1896 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Pineda-Munoz, S., Evans, A. & Alroy, J. The relationship between diet and body mass in terrestrial mammals. Paleobiology 42, 659–669 (2016).Article 

    Google Scholar 
    13.Tomassini, A., Colangelo, P., Agnelli, P., Jones, G. & Russo, D. Cranial size has increased over 133 years in a common bat, Pipistrellus kuhlii: a response to changing climate or urbanization? J. Biogeogr. 41, 944–953 (2014).Article 

    Google Scholar 
    14.Fischer, J. D., Cleeton, S. H., Lyons, T. P. & Miller, J. R. Urbanization and the predation paradox: the role of trophic dynamics in structuring vertebrate communities. Bioscience 62, 809–818 (2012).Article 

    Google Scholar 
    15.Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    16.Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1882).
    Google Scholar 
    17.Blackburn, T. M. & Hawkins, B. A. Bergmann’s rule and the mammal fauna of northern North America. Ecography 27, 715–724 (2004).Article 

    Google Scholar 
    18.Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Rapacciuolo, G. et al. The signature of human pressure history on the biogeography of body mass in tetrapods. Glob. Ecol. Biogeogr. 26, 1022–1034 (2017).Article 

    Google Scholar 
    20.Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Merckx, T. et al. Body‐size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Magura, T., Ferrante, M. & Lövei, G. L. Only habitat specialists become smaller with advancing urbanization. Glob. Ecol. Biogeor. 29, 1978–1987 (2020).Article 

    Google Scholar 
    23.Pergams, O. R. W. & Lacy, R. C. Rapid morphological and genetic change in Chicago-area Peromyscus. Mol. Ecol. 17, 450–463 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.McKinney, M. L. Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    25.McNab, B. K. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164, 13–23 (2010).PubMed 
    Article 

    Google Scholar 
    26.Schmidt, N. M. & Jensen, P. M. Changes in mammalian body length over 175 years – adaptations to a fragmented landscape? Conserv. Ecol. 72, 6 (2003).
    Google Scholar 
    27.Schmidt, N. M. & Jensen, P. M. Concomitant patterns in avian and mammalian body length changes in Denmark. Ecol. Soc. 10, 5 (2005).Article 

    Google Scholar 
    28.Nowak, R. M. Walker’s mammals of the world. Baltimore: The Johns Hopkins University Press. (1999).29.Lindstedt, S. L. & Boyce, M. S. Seasonality, fasting endurance, and body size in mammals. Am. Nat. 125, 873–878 (1985).Article 

    Google Scholar 
    30.McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).Article 

    Google Scholar 
    31.Naya, D. E., Naya, H. & Cook, J. Climate change and body size trends in aquatic and terrestrial endotherms: does habitat matter? PLoS ONE 12, e0183051 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Johnson, G. E. Hibernation in mammals. Q. Rev. Biol. 6, 439–461 (1931).Article 

    Google Scholar 
    33.Terrien, J., Perret, M. & Aujard, F. Behavioral thermoregulation in mammals: a review. Front. Biosci. 16, 1428–1444 (2011).Article 

    Google Scholar 
    34.Kuussaari, M. et al. Butterfly species’ responses to urbanization: differing effects of human population density and built-up area. Urban Ecosyst. 24, 515–527 (2021).Article 

    Google Scholar 
    35.McNab, B. K. Food habits, energetics, and the population biology of mammals. Am. Nat. 116, 106–124 (1980).Article 

    Google Scholar 
    36.Guralnick, R., Hantak, M. M., Li, D. & McLean, B. S. Body size trends in response to climate and urbanization in the widespread North American deer mouse, Peromyscus maniculatus. Sci. Rep. 10, 8882 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Robinette, W. L., Baer, C. H., Pillmore, R. E. & Knittle, C. E. Effects of nutritional change on captive mule deer. J. Wildl. Manag. 37, 312–326 (1973).Article 

    Google Scholar 
    38.Beckmann, J. P. & Berger, J. Using black bears to test ideal-free distribution models experimentally. J. Mammal. 84, 594–606 (2003).Article 

    Google Scholar 
    39.Liow, L. H., Fortelius, M., Lintulaakso, K., Mannila, H. & Stenseth, N. C. Lower extinction risk in sleep-or-hide mammals. Am. Nat. 173, 264–272 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Eastman, L. M., Morelli, T. L., Rowe, K. C., Conroy, C. J. & Moritz, C. Size increase in high elevation ground squirrels over the last century. Glob. Change Biol. 18, 1499–1508 (2012).Article 

    Google Scholar 
    41.Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).Article 

    Google Scholar 
    43.Scheffers, B. R., Edward, D. P., Diesmos, A., William, S. E. & Evans, T. A. Microhabitats reduce animal’s exposure to climate extremes. Glob. Change Biol. 20, 495–503 (2014).Article 

    Google Scholar 
    44.Smith, F. A., Betancourt, J. L. & Brown, J. H. Evolution of body size in the woodrat over the past 25,000 years of climate change. Science 270, 2012–2014 (1995).CAS 
    Article 

    Google Scholar 
    45.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).Article 

    Google Scholar 
    46.Gohli, J. & Voje, K. L. An interspecific assessment of Bergmann’s rule in 22 mammalian families. BMC Evolut. Biol. 16, 222 (2016).Article 

    Google Scholar 
    47.Babinska-Werka, J. Food of the striped field mouse in different types of urban areas. Acta Theriol. 26, 285–299 (1981).Article 

    Google Scholar 
    48.Brown, J. S., Kotler, B. P. & Porter, W. P. How foraging allometries are resource dynamics could explain Bergmann’s rule and the body-size diet relationship in mammals. Oikos 126, 224–230 (2017).Article 

    Google Scholar 
    49.Santini, L. et al. One strategy does not fit all: Determinants of urban adaptation in mammals. Ecol. Lett. 22, 365–376 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Nielsen, S. E. et al. Environmental, biological and anthropogenic effects on grizzly bear body size: temporal and spatial considerations. BMC Ecol. 13, 31 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Dahirel, M., De Cock, M., Vantieghem, P. & Bonte, D. Urbanization-driven changes in web building and body size in an orb web spider. J. Anim. Ecol. 88, 79–91 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Hart, M. A. & Sailor, D. J. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol. 95, 397–406 (2009).Article 

    Google Scholar 
    53.Yom-Tov, Y. Body sizes of carnivores commensal with humans have increased over the past 50 years. Funct. Ecol. 17, 323–327 (2003).Article 

    Google Scholar 
    54.Bateman, P. W. & Fleming, P. A. Big city life: carnivores in urban environments. J. Zool. 287, 1–23 (2012).Article 

    Google Scholar 
    55.Metcalfe, N. B. & Ure, S. E. Diurnal variation in flight performance and hence potential predation risk in small birds. Proc. R. Soc. B Biol. Sci. 261, 395–400 (1995).Article 

    Google Scholar 
    56.Kullberg, C., Fransson, T. & Jakobsson, S. Impaired predator evasion in fat blackcaps (Sylvia atricapilla). Proc. R. Soc. B Biol. Sci. 263, 1671–1675 (1996).Article 

    Google Scholar 
    57.Downes, S. Trading heat and food for safety: costs of predator avoidance in a lizard. Ecology 82, 2870–2881 (2001).Article 

    Google Scholar 
    58.Macleod, R., Gosler, A. G. & Cresswell, W. Diurnal mass gain strategies and perceived predation risk in the great tit Parus major. J. Anim. Ecol. 74, 956–964 (2005).Article 

    Google Scholar 
    59.Harris, S. E. & Munshi-South, J. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol. Ecol. 26, 6336–6350 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Ordeñana, M. A. et al. Effects of urbanization on carnivore species distribution and richness. J. Mammal. 91, 1322–1331 (2010).Article 

    Google Scholar 
    61.Croci, S., Butet, A. & Clergeau, P. Does urbanization filter birds on the basis of their biological traits? Condor 110, 223–240 (2008).Article 

    Google Scholar 
    62.Jokimäki, J., Suhonen, J., Jokimäki-Kaisanlahti, M.-L. & Carbó-Ramirez, P. Effects of urbanization on breeding birds in European towns: Impacts of species traits. Urban Ecosyst. 19, 1565–1577 (2016).Article 

    Google Scholar 
    63.Jung, K. & Threlfall, C. G. Trait-dependent tolerance of bats to urbanization: a global meta-analysis. Proc. R. Soc. B Biol. Sci. 285, 20181222 (2018).Article 

    Google Scholar 
    64.Parsons, A. W. et al. Mammal communities are larger and more diverse in moderately developed areas. eLife 7, e38012 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Fuller, A., Mitchell, D., Maloney, S. K. & Hetem, R. S. Towards a mechanistic understanding of the responses of large terrestrial mammals to heat and aridity associated with climate change. Clim. Change Resp. 3, 10 (2016).Article 

    Google Scholar 
    66.Ruf, T. & Geiser, F. Daily torpor and hibernation in birds and mammals. Biol. Rev. 90, 891–926 (2015).PubMed 
    Article 

    Google Scholar 
    67.Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).Article 

    Google Scholar 
    68.Riddell, E. A. et al. Exposure to climate drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Law, C. J., Slater, G. J. & Mehta, R. S. Shared extremes by ectotherms and endotherms: body elongation in mustelids is associated with small size and reduced limbs. Evolution 73, 735–749 (2019).PubMed 
    Article 

    Google Scholar 
    70.Freckleton, R. P., Harvey, P. H. & Pagel, M. Bergmann’s rule and body size in mammals. Am. Nat. 161, 821–825 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Nengovhela, A., Denys, C. & Taylor, P. J. Life history and habitat do not mediate temporal changes in body size due to climate warming in rodents. PeerJ 8, 9792 (2020).Article 

    Google Scholar 
    72.Merckx, T., Kaiser, A. & Van Dyck, H. Increased body size along urbanization gradients at both community and intraspecific level in macro-moths. Glob. Change Biol. 24, 3837–3848 (2018).Article 

    Google Scholar 
    73.Ohlberger, J. Climate warming and ectotherm body size – from individual physiology to community ecology. Funct. Ecol. 27, 991–1001 (2013).Article 

    Google Scholar 
    74.Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Christensen, J. H. et al. Climate Phenomena and their Relevance for Future Regional Climate Change in Climate Change 2013: The Physical Science Basis. Contribution Working Group I Fifth Assess. Rep. Intergovernmental Panel Clim. Change 1–6, 1217–1308 (2013). pp.
    Google Scholar 
    77.Guralnick, R. & Constable, H. VertNet: creating a data-sharing community. Bioscience 60, 258–259 (2010).Article 

    Google Scholar 
    78.National Ecological Observatory Network. Data Products: DP1.10072.001. Provisional data downloaded from http://data.neonscience.org on May 10, 2019. Battelle, Boulder, CO, USA. (2019).79.Calhoun, J. B. North American census of small mammals. Release no. 1. Announcement of program. Rodent ecology program. Johns Hopkins University Pres. (1948).80.Calhoun, J. B. North American census of small mammals. Release no. 2. Annual report of census made in 1948. Rodent ecology program. Johns Hopkins University Press. (1949).81.Calhoun, J. B. North American census of small mammals. Release no. 3. Annual report of census made in 1949. Roscoe B. Jackson Memorial Laboratory. (1950).82.Calhoun, J. B. North American census of small mammals. Release no. 4. Annual report of census made in 1950. Roscoe B. Jackson Memorial Laboratory. (1951).83.Calhoun, J. B. Population dynamics of vertebrates. Compilations of research data. Release no. 5. 1951 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1956).84.Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 6. 1952 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).85.Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 7. 1953 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).86.Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 8. 1954 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).87.Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 9. 1955 and 1956 Annual report – North American census of small mammals and certain summaries for the years 1948–1956. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).88.Guralnick, R. P. et al. The Importance of digitized biocollections as a source of trait data and a new VertNet resource. Database 2016, baw158 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Laney, C. & Lunch, C. neonUtilities: utilities for working with NEON data. R package version 1.3.1. https://cran.r-project.org/web/packages/neonUtilities. (2019).90.Chapman, A. D. & Wieczorek, J. Guide to best practices for georeferencing. Global Biodiversity Information Facility. (2006).91.Wieczorek, J., Guo, Q., Boureau, C. & Wieczorek, C. Georeferencing calculator. http://manisnet.org/gci2.html. (2001).92.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, https://www.R-project.org/. (2021).93.Tiwari, V. & Kashikar, A. OutlierDetection: Outlier Detection. R package version 0.1.1. https://cran.r-project.org/web/packages/OutlierDetection/index.html. (2019).94.Fang, Y. & Jawitz, J. W. High-resolution reconstruction of the United States human population distribution, 1790 to 2010. Sci. Data 5, 180067 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Venter, O. et al. Global Human Footprint maps for 1993 and 2009. Sci. Data 3, 10067 (2016).Article 

    Google Scholar 
    96.Li, D., Stucky, B. J., Deck, J., Baiser, B. & Guralnick, R. P. The effect of urbanization on plant phenology depends on regional temperature. Nat. Ecol. Evol. 3, 1661–1667 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Li, D. et al. Climate, urbanization, and species traits interactively drive flowering duration. Glob. Change Biol. 27, 892–903 (2021).Article 

    Google Scholar 
    98.PRISM Climate Group. PRISM climate data. Available at https://prism.oregonstate.edu. (2020).99.Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biol. 17, e3000494 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. (2014).101.Brown, James H. Macroecology. University of Chicago Press. (1995).102.Smith, F. A. et al. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. Am. Nat. 163, 672–691 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    104.Barton, K. Package ‘MuMIn’. Model selection and model averaging based on information criteria. R package version 3.2.4. http://cran.r-project.org/web/packages/MuMIn/index.html. (2012).105.Li, D., Dinnage, R., Helmus, M. & Ives, A. phyr: An R package for phylogenetic species‐distribution modelling in ecological communities. Methods Ecol. Evol. 11, 1455–1463 (2020).Article 

    Google Scholar 
    106.Ives, A. R. & Li, D. rr2: an R package to calculate R2s for regression models. J. Open Source Softw. 3, 1028 (2018).Article 

    Google Scholar  More

  • in

    Multiple thresholds and trajectories of microbial biodiversity predicted across browning gradients by neural networks and decision tree learning

    1.Vik JO, Brinch CN, Boutin S, Stenseth NC. Interlinking hare and lynx dynamics using a century’s worth of annual data. Popul Ecol. 2008;50:267–74.Article 

    Google Scholar 
    2.Luo G, Han Q, Zhou D, Li L, Chen X, Li Y, et al. Moderate grazing can promote aboveground primary production of grassland under water stress. Ecol Complex. 2012;11:126–36.Article 

    Google Scholar 
    3.McNaughton S. Grazing as an optimization process: grass-ungulate relationships in the Serengeti. Am Nat. 1979;113:691–703.Article 

    Google Scholar 
    4.Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Zhang Z, Yan C, Krebs CJ, Stenseth NC. Ecological non-monotonicity and its effects on complexity and stability of populations, communities and ecosystems. Ecol Modell. 2015;312:374–84.Article 

    Google Scholar 
    6.Devin S, Giamberini L, Pain-Devin S. Variation in variance means more than mean variations: what does variability tell us about population health status? Environ Int. 2014;73:282–7.PubMed 
    Article 

    Google Scholar 
    7.Steudel B, Hector A, Friedl T, Löfke C, Lorenz M, Wesche M, et al. Biodiversity effects on ecosystem functioning change along environmental stress gradients. Ecol Lett. 2012;15:1397–405.PubMed 
    Article 

    Google Scholar 
    8.Christin S, Hervet É, Lecomte N. Applications for deep learning in ecology. Methods Ecol Evol. 2019;10:1632–44.Article 

    Google Scholar 
    9.De’ath G, Fabricius KE. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology. 2000;81:3178–92.Article 

    Google Scholar 
    10.Larsen PE, Field D, Gilbert JA. Predicting bacterial community assemblages using an artificial neural network approach. Nat Methods. 2012;9:621–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Sperlea T, Kreuder N, Beisser D, Hattab G, Boenigk J, Heider D. Quantification of the covariation of lake microbiomes and environmental variables using a machine learning‐based framework. Mol Ecol. 2021;30:2131–44.PubMed 
    Article 

    Google Scholar 
    12.Schiel DR, Lilley SA, South PM. Ecological tipping points for an invasive kelp in rocky reef algal communities. Mar Ecol Prog Ser. 2018;587:93–104.Article 

    Google Scholar 
    13.Robinson B, Cohen JS, Herman JD. Detecting early warning signals of long-term water supply vulnerability using machine learning. Environ Model Softw. 2020;131:104781.Article 

    Google Scholar 
    14.Hessen DO, Andersen T, Lyehe A. Carbon metabolism in a humic lake: pool sizes and cycling through zooplankton. Limnol Oceanogr. 1990;35:84–99.CAS 
    Article 

    Google Scholar 
    15.Nebbioso A, Piccolo A. Molecular characterization of dissolved organic matter (DOM): a critical review. Anal Bioanal Chem. 2013;405:109–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Coble PG, Lead J, Baker A, Reynolds DM, Spencer RG (eds). Aquatic organic matter fluorescence. Cambridge: Cambridge University Press; 2014.17.Finstad AG, Andersen T, Larsen S, Tominaga K, Blumentrath S, de Wit HA, et al. From greening to browning: catchment vegetation development and reduced S-deposition promote organic carbon load on decadal time scales in Nordic lakes. Sci Rep. 2016;6:1–8.Article 
    CAS 

    Google Scholar 
    18.Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Høgåsen T, et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature. 2007;450:537–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.de Wit HA, Valinia S, Weyhenmeyer GA, Futter MN, Kortelainen P, Austnes K, et al. Current browning of surface waters will be further promoted by wetter climate. Environ Sci Technol Lett. 2016;3:430–5.Article 
    CAS 

    Google Scholar 
    20.Meyer-Jacob C, Tolu J, Bigler C, Yang H, Bindler R. Early land use and centennial scale changes in lake-water organic carbon prior to contemporary monitoring. Proc Natl Acad Sci USA. 2015;112:6579–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Nelson DM, Smith W Jr. Sverdrup revisited: critical depths, maximum chlorophyll levels, and the control of Southern Ocean productivity by the irradiance‐mixing regime. Limnol Oceanogr. 1991;36:1650–61.Article 

    Google Scholar 
    22.Thrane J-E, Hessen DO, Andersen T. The absorption of light in lakes: negative impact of dissolved organic carbon on primary productivity. Ecosystems. 2014;17:1040–52.CAS 
    Article 

    Google Scholar 
    23.Tranvik LJ. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. In: Salonen KKT, Jones RI, editors. Dissolved organic matter in lacustrine ecosystems. Vol. 73. Dordrecht: Springer; 1992. p. 107–14.24.Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A. Freshwater methane emissions offset the continental carbon sink. Science. 2011;331:50.CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Cole JJ, Caraco NF, Kling GW, Kratz TK. Carbon dioxide supersaturation in the surface waters of lakes. Science. 1994;265:1568–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Yang H, Andersen T, Dörsch P, Tominaga K, Thrane JE, Hessen DO. Greenhouse gas metabolism in Nordic boreal lakes. Biogeochemistry. 2015;126:211–25.CAS 
    Article 

    Google Scholar 
    27.Cottrell MT, Kirchman DL. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Appl Environ Microbiol. 2000;66:1692–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Crump BC, Kling GW, Bahr M, Hobbie JE. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl Environ Microbiol. 2003;69:2253–68.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Jones SE, Newton RJ, McMahon KD. Evidence for structuring of bacterial community composition by organic carbon source in temperate lakes. Environ Microbiol. 2009;11:2463–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Kritzberg ES, Langenheder S, Lindström ES. Influence of dissolved organic matter source on lake bacterioplankton structure and function–implications for seasonal dynamics of community composition. FEMS Microbiol Ecol. 2006;56:406–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Lindström ES. Bacterioplankton community composition in five lakes differing in trophic status and humic content. Microb Ecol. 2000;40:104–13.PubMed 
    Article 

    Google Scholar 
    32.D’Andrilli J, Junker JR, Smith HJ, Scholl EA, Foreman CM. DOM composition alters ecosystem function during microbial processing of isolated sources. Biogeochemistry. 2019;142:281–98.Article 
    CAS 

    Google Scholar 
    33.Eiler A, Langenheder S, Bertilsson S, Tranvik LJ. Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations. Appl Environ Microbiol. 2003;69:3701–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Guillemette F, del Giorgio PA. Reconstructing the various facets of dissolved organic carbon bioavailability in freshwater ecosystems. Limnol Oceanogr. 2011;56:734–48.CAS 
    Article 

    Google Scholar 
    35.Judd KE, Crump BC, Kling GW. Variation in dissolved organic matter controls bacterial production and community composition. Ecology. 2006;87:2068–79.PubMed 
    Article 

    Google Scholar 
    36.Romera-Castillo C, Sarmento H, Alvarez-Salgado XA, Gasol JM, Marrasé C. Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. Appl Environ Microbiol. 2011;77:7490–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Kawasaki N, Benner R. Bacterial release of dissolved organic matter during cell growth and decline: molecular origin and composition. Limnol Oceanogr. 2006;51:2170–80.CAS 
    Article 

    Google Scholar 
    38.Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. The boundless carbon cycle. Nat Geosci. 2009;2:598–600.CAS 
    Article 

    Google Scholar 
    39.Osterholz H, Singer G, Wemheuer B, Daniel R, Simon M, Niggemann J, et al. Deciphering associations between dissolved organic molecules and bacterial communities in a pelagic marine system. ISME J. 2016;10:1717–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Cory RM, Kling GW. Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum. Limnol Oceanogr Lett. 2018;3:102–16.CAS 
    Article 

    Google Scholar 
    41.Khomich M, Kauserud H, Logares R, Rasconi S, Andersen T. Planktonic protistan communities in lakes along a large-scale environmental gradient. FEMS Microbiol Ecol. 2017;93:fiw231.42.Khomich M, Davey ML, Kauserud H, Rasconi S, Andersen T. Fungal communities in Scandinavian lakes along a longitudinal gradient. Fungal Ecol. 2017;27:36–46.Article 

    Google Scholar 
    43.Andersen T, Hessen DO, Håll JP, Khomich M, Kyle M, Lindholm M, et al. Congruence, but no cascade-pelagic biodiversity across 3 trophic levels in Nordic lakes. Ecol Evol. 2020;10:8153–65.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Lyche Solheim A, Rekolainen S, Moe SJ, Carvalho L, Phillips G, Ptacnik R, et al. Ecological threshold responses in European lakes and their applicability for the Water Framework Directive (WFD) implementation: synthesis of lakes results from the REBECCA project. Aquatic Ecol. 2008;42:317–34.CAS 
    Article 

    Google Scholar 
    45.Henriksen A, Skjelvåle BL, Mannio J, Wilander A, Harriman R, Curtis C, et al. Northern European lake survey, 1995: Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales. Ambio. 1998;27:80–91.46.Ptacnik R, Andersen T, Brettum P, Lepistö L, Willén E. Regional species pools control community saturation in lake phytoplankton. Proc Royal Soc B. 2010;277:3755–64.Article 

    Google Scholar 
    47.Mitchell BG, Kahru M, Wieland J, Stramska M. Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples. In: Mueller JL, Fargion GS, McClain CR, editors. Ocean optics protocols for satellite ocean color sensor validation, Revision IV. Vol. 4. Greenbelt, Maryland: Goddard Space Flight Center; 2003. p. 39–64.48.Weishaar JL, Aiken GR, Bergamaschi BA, Fram MS, Fujii R, Mopper K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol. 2003;37:4702–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Bricaud A, Stramski D. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling areaand the Sargasso Sea. Limnol Oceanogr. 1990;35:562–82.CAS 
    Article 

    Google Scholar 
    50.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.Article 

    Google Scholar 
    51.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. [Internet]. 2017.55.Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB et al. vegan: community ecology package. R package version 2.5-6. 2019. https://CRAN.R-project.org/package=vegan.56.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Venables W, Ripley B. Modern applied statistics with S. New York, NY: Springer; 2002.58.van Buuren S. MICE: multivariate imputation by chained equations. R package version 2.22. 2015. https://mran.microsoft.com/snapshot/2014-11-17/web/packages/mice/mice.pdf. Accessed 12 Aug 2019.59.Minchin PR. An evaluation of the relative robustness of techniques for ecological ordination. In: Prentice IC, van der Maarel E, editors. Theory and models in vegetation science. Dordrecht: Springer; 1987. p. 89–107.60.Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533–6.Article 

    Google Scholar 
    61.He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Malik J, Wang X, Yan S, Tang X, Jia J, editors. Proceedings of the IEEE international conference on computer vision. IEEE; 1730 Massachusetts Ave., NW Washington, DC, United States. 2015. p. 1026–34.62.Reshef DN, Reshef YA, Finucane HK, Grossman SR, McVean G, Turnbaugh PJ, et al. Detecting novel associations in large data sets. Science. 2011;334:1518–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev. 2011;75:14–49.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han S-K. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol. 2002;28:141–55.Article 

    Google Scholar 
    65.Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Qiu Z, Coleman MA, Provost E, Campbell AH, Kelaher BP, Dalton SJ, et al. Future climate change is predicted to affect the microbiome and condition of habitat-forming kelp. Proc Royal Soc B. 2019;286:20181887.Article 

    Google Scholar 
    67.Kovárová-Kovar K, Egli T. Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev. 1998;62:646–66.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. Catastrophic shifts in ecosystems. Nature. 2001;413:591–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Borchani H, Varando G, Bielza C, Larranaga P. A survey on multi‐output regression. Wiley Interdiscip Rev Data Min Knowl Discov. 2015;5:216–33.Article 

    Google Scholar 
    70.del Giorgio PA, Cole JJ. Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Evol Syst. 1998;29:503–41.Article 

    Google Scholar 
    71.Tranvik LJ. Bacterioplankton growth on fractions of dissolved organic carbon of different molecular weights from humic and clear waters. Appl Environ Microbiol. 1990;56:1672–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Hilbe C, Nowak MA, Sigmund K. Evolution of extortion in iterated prisoner’s dilemma games. Proc Natl Acad Sci USA. 2013;110:6913–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Palen WJ, Schindler DE, Adams MJ, Pearl CA, Bury RB, Diamond SA. Optical characteristics of natural waters protect amphibians from UV‐B in the US Pacific Northwest. Ecology. 2002;83:2951–7.Article 

    Google Scholar  More

  • in

    Best practice for protecting pollinators

    1.Adams, W. M. et al. Science 306, 1146–1149 (2004).CAS 
    Article 

    Google Scholar 
    2.Klein, A. M. et al. Proc. R. Soc. B 274, 303–313 (2007).Article 

    Google Scholar 
    3.Potts, S. G. et al. Trends Ecol. Evol. 25, 345–353 (2010).Article 

    Google Scholar 
    4.Aizen, M. A. et al. Global Change Biol. 25, 3516–3527 (2019).Article 

    Google Scholar 
    5.Dicks, L. V. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01534-9 (2021).6.Mazor, T. et al. Nat. Ecol. Evol. 2, 1071–1074 (2018).Article 

    Google Scholar 
    7.Brittain, C. A., Vighi, M., Bommarco, R., Settele, J. & Potts, S. G. Basic Appl. Ecol. 11, 106–115 (2010).CAS 
    Article 

    Google Scholar 
    8.Roubik, D. W. Pollinator Safety in Agriculture (Food and Agricultural Organisation of the United Nations, 2014).9.Ecobichon, D. J. Toxicology 160, 27–33 (2001).CAS 
    Article 

    Google Scholar 
    10.Ravindranath, N. H. & Sathaye, J. A. In Climate Change and Developing Countries 247–265 (Springer, 2002).11.The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (eds Potts, S. G. et al.) (IPBES, 2016).12.Summary for Policymakers of the Assessment Report of the Intergovernmental Science-Policy Platform On Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (eds Potts, S. G. et al.) (IPBES, 2016). More

  • in

    A global-scale expert assessment of drivers and risks associated with pollinator decline

    1.The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production (IPBES, 2016).2.Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Chaplin-Kramer, R. et al. Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc. R. Soc. B https://doi.org/10.1098/rspb.2014.1799 (2014).4.Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Koh, I. et al. Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc. Natl Acad. Sci. USA 113, 140–145 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Reilly, J. R. et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. R. Soc. B 287, 20200922 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Aizen, M. A. et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Change Biol. 25, 3516–3527 (2019).Article 

    Google Scholar 
    8.Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Moritz, R. F. A. & Erler, S. Lost colonies found in a data mine: global honey trade but not pests or pesticides as a major cause of regional honeybee colony declines. Agric. Ecosyst. Environ. 216, 44–50 (2016).Article 

    Google Scholar 
    10.Senapathi, D., Goddard, M. A., Kunin, W. E. & Baldock, K. C. R. Landscape impacts on pollinator communities in temperate systems: evidence and knowledge gaps. Funct. Ecol. 31, 26–37 (2017).Article 

    Google Scholar 
    11.Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356, 1393–1395 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Carvell, C. et al. Bumblebee family lineage survival is enhanced in high-quality landscapes. Nature 543, 547 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Tonietto Rebecca, K. & Larkin Daniel, J. Habitat restoration benefits wild bees: a meta‐analysis. J. Appl. Ecol. 55, 582–590 (2017).Article 

    Google Scholar 
    15.Wintermantel, D., Odoux, J.-F., Chadœuf, J. & Bretagnolle, V. Organic farming positively affects honeybee colonies in a flower-poor period in agricultural landscapes. J. Appl. Ecol. 56, 1960–1969 (2019).
    Google Scholar 
    16.Dicks, L. V. et al. Ten policies for pollinators. Science 354, 975–976 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.FAO’s Global Action on Pollination Services for Sustainable Agriculture: National Initiatives (FAO, 2020); http://www.fao.org/pollination/major-initiatives/national-initiatives/en/18.Conservation and Sustainable Use of Pollinators CBD/COP/DEC/14/6 30 November 2018 (Convention on Biological Diversity, 2018).19.Teichroew, J. L. et al. Is China’s unparalleled and understudied bee diversity at risk? Biol. Conserv. 210, 19–28 (2017).Article 

    Google Scholar 
    20.Breeze, T. D., Gallai, N., Garibaldi, L. A. & Li, X. S. Economic measures of pollination services: shortcomings and future directions. TREE 31, 927–939 (2016).PubMed 

    Google Scholar 
    21.Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).22.Hall, D. M. & Steiner, R. Insect pollinator conservation policy innovations at subnational levels: lessons for lawmakers. Environ. Sci. Policy 93, 118–128 (2019).Article 

    Google Scholar 
    23.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    24.Mukherjee, N. et al. The Delphi technique in ecology and biological conservation: applications and guidelines. Methods Ecol. Evol. 6, 1097–1109 (2015).Article 

    Google Scholar 
    25.Kovács-Hostyánszki, A. et al. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol. Lett. 20, 673–689 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).PubMed 
    Article 

    Google Scholar 
    27.Basu, P. et al. Scale dependent drivers of wild bee diversity in tropical heterogeneous agricultural landscapes. Ecol. Evol. 6, 6983–6992 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Jayne, T. S., Snapp, S., Place, F. & Sitko, N. Sustainable agricultural intensification in an era of rural transformation in Africa. Glob. Food Security 20, 105–113 (2019).Article 

    Google Scholar 
    30.Mitchell, E. A. D. et al. A worldwide survey of neonicotinoids in honey. Science 358, 109–111 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Rundlof, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    33.Schreinemachers, P. & Tipraqsa, P. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37, 616–626 (2012).Article 

    Google Scholar 
    34.Neonicotinoid Insecticides: Use and Effects in African Agriculture: a Review and Recommendations to Policymakers (NASAC, 2019); https://nasaconline.org/en/index.php/2020/05/26/neonicotinoid-insecticides-use-and-effects-in-african-agriculture-a-review-and-recommendations-to-policy-makers/35.Herrando, S. et al. Contrasting impacts of precipitation on Mediterranean birds and butterflies. Sci. Rep. 9, 5680 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Brookes, G. & Barfoot, P. GM Crops: Global Socio-economic and Environmental Impacts 1996-2018 (PG Economics Ltd, 2020); https://pgeconomics.co.uk/pdf/globalimpactfinalreportJuly2020.pdf37.Farina, W. M., Balbuena, M. S., Herbert, L. T., Gonalons, C. M. & Vazquez, D. E. Effects of the herbicide glyphosate on honey bee sensory and cognitive abilities: individual impairments with implications for the hive. Insects 10, 354 (2019).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    38.Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).Article 

    Google Scholar 
    39.Regan, E. C. et al. Global trends in the status of bird and mammal pollinators. Conserv. Lett. 8, 397–403 (2015).Article 

    Google Scholar 
    40.Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Samnegård, U., Hambäck, P. A., Lemessa, D., Nemomissa, S. & Hylander, K. A heterogeneous landscape does not guarantee high crop pollination. Proc. Biol. Sci. 283, 20161472 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    42.Groeneveld, J. H., Tscharntke, T., Moser, G. & Clough, Y. Experimental evidence for stronger cacao yield limitation by pollination than by plant resources. Perspect. Plant Ecol. Evol. Syst. 12, 183–191 (2010).Article 

    Google Scholar 
    43.Lautenbach, S., Seppelt, R., Liebscher, J. & Dormann, C. F. Spatial and temporal trends of global pollination benefit. PLoS ONE 7, e35954 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A. & Harder, L. D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl Acad. Sci. USA 108, 5909–5914 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Ritchie, H. & Roser, M. Urbanization (Our World in Data, 2018); https://ourworldindata.org/urbanization46.Hipolito, J., Boscolo, D. & Viana, B. F. Landscape and crop management strategies to conserve pollination services and increase yields in tropical coffee farms. Agriculture Ecosyst. Environ. 256, 218–225 (2018).Article 

    Google Scholar 
    47.Begotti, R. A. & Peres, C. A. Rapidly escalating threats to the biodiversity and ethnocultural capital of Brazilian Indigenous Lands. Land Use Policy 96, 10 (2020).Article 

    Google Scholar 
    48.Pirk, C. W. W., Strauss, U., Yusuf, A. A., Démares, F. & Human, H. Honeybee health in Africa—a review. Apidologie 47, 276–300 (2016).Article 

    Google Scholar 
    49.Gebremedhn, H., Amssalu, B., Smet, L. D. & de Graaf, D. C. Factors restraining the population growth of Varroa destructor in Ethiopian honey bees (Apis mellifera simensis). PLoS ONE 14, e0223236 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Junge, X., Lindemann-Matthies, P., Hunziker, M. & Schüpbach, B. Aesthetic preferences of non-farmers and farmers for different land-use types and proportions of ecological compensation areas in the Swiss lowlands. Biol. Conserv. 144, 1430–1440 (2011).Article 

    Google Scholar 
    51.Lee, H., Sumner, D. A. & Champetier, A. Pollination markets and the coupled futures of almonds and honey bees: simulating impacts of shifts in demands and costs. Am. J. Agric. Econ. 101, 230–249 (2019).Article 

    Google Scholar 
    52.Rucker, R. R., Thurman, W. N. & Burgett, M. Colony collapse and the consequences of bee disease: market adaptation to environmental change. J. Assoc. Environ. Resour. Econ. 6, 927–960 (2019).
    Google Scholar 
    53.Breeze, T. D. et al. Linking farmer and beekeeper preferences with ecological knowledge to improve crop pollination. People Nat. 1, 562–572 (2019).Article 

    Google Scholar 
    54.Hall, D. M. & Martins, D. J. Human dimensions of insect pollinator conservation. Curr. Opin. Insect Sci. 38, 107–114 (2020).PubMed 
    Article 

    Google Scholar 
    55.Zommers, Z. et al. Burning embers: towards more transparent and robust climate-change risk assessments. Nat. Rev. Earth Environ. 1, 516–529 (2020).Article 

    Google Scholar 
    56.Duijm, N. J. Recommendations on the use and design of risk matrices. Saf. Sci. 76, 21–31 (2015).Article 

    Google Scholar 
    57.Peace, C. The risk matrix: uncertain results? Policy Pract. Health Saf. 15, 131–144 (2017).Article 

    Google Scholar 
    58.Morgan, M. G. Use (and abuse) of expert elicitation in support of decision making for public policy. Proc. Natl Acad. Sci. USA 111, 7176–7184 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Regan, H. M., Colyvan, M. & Burgman, M. A. A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecol. Appl. 12, 618–628 (2002).Article 

    Google Scholar 
    60.FAOStat (FAO, 2017); http://www.fao.org/faostat/en/#data61.Regional Report for Africa on Pollinators and Pollination and Food Production UNEP/CBD/COP/13/INF/36 (Convention on Biological Diversity, 2016).62.Sutherland, W. J., Fleishman, E., Mascia, M. B., Pretty, J. & Rudd, M. A. Methods for collaboratively identifying research priorities and emerging issues in science and policy. Methods Ecol. Evol. 2, 238–247 (2011).Article 

    Google Scholar 
    63.Wickham, H. ggplot2. R v.4.0.0 https://ggplot2.tidyverse.org/ (2016).64.Christensen, R. H. B. ordinal. R v.4.0.3 http://www.cran.r-project.org/package=ordinal/ (2018).65.Menard, S. Applied Logistic Regression Analysis (SAGE Publications, 2002).66.Hill, R. et al. Biocultural approaches to pollinator conservation. Nat. Sustain. 2, 214–222 (2019).Article 

    Google Scholar  More

  • in

    Towards a multidimensional biodiversity index for national application

    1.Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).2.Measuring Progress: Towards Achieving the Environmental Dimension of the SDGs (UNEP, 2019).3.Blicharska, M. et al. Biodiversity’s contributions to sustainable development. Nat. Sustain 2, 1083–1093 (2019).Article 

    Google Scholar 
    4.The Global Risks Report 2020 (World Economic Forum, 2020).5.Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).Article 

    Google Scholar 
    6.Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review (HM Treasury, 2021).7.Pascual, U. et al. Biodiversity and the challenge of pluralism. Nat. Sustain. 4, 567–572 (2021).Article 

    Google Scholar 
    8.The Assessment Report on Land Degradation and Restoration (IPBES Secretariat, 2018).9.UNEP Frontiers 2016 Report: Emerging Issues of Environment Concern (UNEP, 2016).10.Workshop Report on Biodiversity and Pandemics of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2020).11.Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).CAS 
    Article 

    Google Scholar 
    12.Global Biodiversity Outlook Vol. 25 (Secretariat of the CBD, 2014).13.Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).CAS 
    Article 

    Google Scholar 
    14.Butchart, S. H. M. et al. Improvements to the Red List Index. PLoS ONE 2, e140 (2007).Article 

    Google Scholar 
    15.McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).Article 

    Google Scholar 
    16.Pascual, U. et al. Valuing nature’s contributions to people: the IPBES approach. Curr. Opin. Environ. Sustain. 26–27, 7–16 (2017).Article 

    Google Scholar 
    17.Human Development Report 2020: The Next Frontier—Human Development and the Anthropocene (UNDP, 2020).18.Global Multidimensional Poverty Index 2020—Charting Pathways out of Multidimensional Poverty (UNDP & OPHI, 2020).19.Becker, F. G. et al. Global Slavery Index 2018 (Walk Free Foundation, 2018).20.2020 ITUC Global Rights Index: The World’s Worst Countries for Workers (ITUC, 2020).21.Corruption Perceptions Index 2020 (Transparency International, 2020).22.Soto-Navarro, C. A. et al. Building a Multidimensional Biodiversity Index—A Scorecard for Biodiversity Health (UNEP-WCMC, 2020); https://www.unep-wcmc.org/resources-and-data/building-a-multidimensional-biodiversity-index23.Stiglitz, J. E., Fitoussi, J.-P. & Durand, M. Beyond GDP: Measuring What Counts for Economic and Social Performance (OECD, 2018).24.Van den Bergh, J. C. J. M. The GDP paradox. J. Econ. Psychol. 30, 117–135 (2009).Article 

    Google Scholar 
    25.UNDP Strategic Plan, 2018-2021 (UNDP, 2017).26.Dasgupta, P. Human Well-Being and the Natural Environment (Oxford Univ. Press, 2001).Book 

    Google Scholar 
    27.Costanza, R. et al. Time to leave GDP behind. Nature 505, 283–285 (2014).Article 

    Google Scholar 
    28.Raworth, K. Doughnut Economics: Seven Ways to Think Like a 21st-Century Economist (Random House, 2017).29.Mazzucato, M. The Value of Everything: Making and Taking in the Global Economy (Penguin, 2019).30.Perrings, C. et al. Biodiversity in agricultural landscapes: saving natural capital without losing interest. Conserv. Biol. 20, 263–264 (2006).Article 

    Google Scholar 
    31.Primmer, E. & Paavola, J. Insurance value of ecosystems: an introduction. Ecol. Econ. 184, 107001 (2021).Article 

    Google Scholar 
    32.Jørgensen, S. L., Termansen, M. & Pascual, U. Natural insurance as condition for market insurance: climate change adaptation in agriculture. Ecol. Econ. 169, 106489 (2020).Article 

    Google Scholar 
    33.UNEP/CBD/COP/DEC/X/2 Strategic Plan for Biodiversity (2011-2020) and the Aichi Biodiversity Targets (CBD, 2010).34.Hansen, M. H., Li, H. & Svarverud, R. Ecological civilization: interpreting the Chinese past, projecting the global future. Glob. Environ. Change 53, 195–203 (2018).Article 

    Google Scholar 
    35.Gruetzmacher, K. et al. The Berlin principles on one health—bridging global health and conservation. Sci. Total Environ. 764, 142919 (2021).CAS 
    Article 

    Google Scholar 
    36.IPCC: Summary for Policymakers. In Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).37.2019—Global Report on Food Crises: Joint Analysis for Better Decisions (Food Security Information Network, 2019).38.CBD/WG2020/2/4 29 Report of the Open-Ended Working Group on the Post-2020 Global Biodiversity Framework on its Second Meeting (CBD, 2020).39.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    Article 

    Google Scholar 
    40.Chan, K. M. A. et al. Opinion: why protect nature? Rethinking values and the environment. Proc. Natl Acad. Sci. USA 113, 1462–1465 (2016).CAS 
    Article 

    Google Scholar 
    41.Chan, K. M. A., Gould, R. K. & Pascual, U. Editorial overview: relational values: what are they, and what’s the fuss about? Curr. Opin. Environ. Sustain. 35, A1–A7 (2018).Article 

    Google Scholar 
    42.Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).Article 

    Google Scholar 
    43.Convention on Biological Diversity (United Nations, 1992).44.Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain 1, 448–451 (2018).Article 

    Google Scholar 
    45.Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).CAS 
    Article 

    Google Scholar 
    46.Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).CAS 
    Article 

    Google Scholar 
    47.Greco, S., Ishizaka, A., Tasiou, M. & Torrisi, G. On the methodological framework of composite indices: a review of the issues of weighting, aggregation, and robustness. Soc. Indic. Res. 141, 61–94 (2019).Article 

    Google Scholar 
    48.Handbook on Constructing Composite Indicators—Methodology and User Guide (OECD, 2008).49.Kumar, P. (ed.) The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations (Earthscan, 2010).50.Folke, C., Biggs, R., Norström, A. V., Reyers, B. & Rockström, J. Social-ecological resilience and biosphere-based sustainability science. Ecol. Soc. 21, 41 (2016).Article 

    Google Scholar 
    51.The Global Goals for Sustainable Development (Global Goals); http://www.globalgoals.org/resources52.Zenghelis, D. et al. Valuing Wealth, Building Prosperity: Wealth Economy Project First Year Report to LetterOne (Bennett Institute for Public Policy, 2020).53.Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).CAS 
    Article 

    Google Scholar 
    54.Wendling, Z. A. et al. 2020 Environmental Performance Index (Yale Center for Environmental Law & Policy, 2020).55.Borucke, M. et al. Accounting for demand and supply of the biosphere’s regenerative capacity: the national footprint accounts’ underlying methodology and framework. Ecol. Indic. 24, 518–533 (2013).Article 

    Google Scholar 
    56.Sachs, J. et al. The Sustainable Development Goals and COVID-19: Sustainable Development Report 2020 (Cambridge Univ. Press, 2020).57.Usubiago-Liano, A. & Ekins, P. Developing a Novel Index of Strong Environmental Sustainability: Preliminary Results (Institute for Sustainable Resources, University College London, 2019).58.Acosta, L. A. et al. Green Growth Index 2020—Measuring Performance in Achieving SDG Targets Technical Report No. 16 (GGGI, 2020).59.Agrobiodiversity Index Report 2019: Risk and Resilience (Biodiversity International, 2019).60.Angulo, R., Díaz, Y. & Pardo, R. The Colombian multidimensional poverty index: measuring poverty in a public policy context. Soc. Indic. Res. 127, 1–38 (2016).Article 

    Google Scholar 
    61.Watts, K. et al. Ecological time lags and the journey towards conservation success. Nat. Ecol. Evol. 4, 304–311 (2020).Article 

    Google Scholar  More

  • in

    Scientific foundations for an ecosystem goal, milestones and indicators for the post-2020 global biodiversity framework

    1.Convention on Biological Diversity (UN, 1992).2.Strategic Plan for Biodiversity 2011–2020, Including Aichi Biodiversity Targets (CBD, 2011); http://www.cbd.int/sp/3.Transforming Our World: the 2030 Agenda for Sustainable Development A/RES/70/1 (UN, 2015).4.Global Biodiversity Outlook 5 (Secretariat of the Convention on Biological Diversity, 2020).5.Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds Brondizio, E. S. et al.) (IPBES, 2019); https://doi.org/10.5281/zenodo.38316736.Bolam, F. C. et al. How many bird and mammal extinctions has recent conservation action prevented? Conserv. Lett. https://doi.org/10.1111/conl.12762 (2020).7.Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Green, E. J. et al. Relating characteristics of global biodiversity targets to reported progress. Conserv. Biol. 33, 1360–1369 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Piipponen-Doyle, S., Bolam, F. C. & Mair, L. Disparity between ecological and political timeframes for species conservation targets. Biodivers. Conserv. 30, 1899–1912 (2021).Article 

    Google Scholar 
    11.Keith, D. A. et al. The IUCN Red List of Ecosystems: motivations, challenges, and applications. Conserv. Lett. 8, 214–226 (2015).Article 

    Google Scholar 
    12.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Reyers, B. & Selig, E. R. Global targets that reveal the social–ecological interdependencies of sustainable development. Nat. Ecol. Evol. 4, 1011–1019 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Open-Ended Working Group On The Post-2020 Global Biodiversity Framework First Draft of the Post 2020 Global Biodiversity Framework CBD/WG2020/3/3 (CBD, 2021).17.Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    18.Rounsevell, M. D. A. et al. A biodiversity target based on species extinctions. Science 368, 1193–1195 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Williams, B. A. et al. A robust goal is needed for species in the Post-2020 Global Biodiversity Framework. Conserv. Lett. 14, e12778 (2021).Article 

    Google Scholar 
    20.Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).Article 

    Google Scholar 
    21.Hunter, D. et al. Including Food Systems, Biodiversity, Nutrition and Dietary Health in the Zero Draft of the Post-2020 Global Biodiversity Framework (Alliance of Bioversity International and the International Center for Tropical Agriculture and the United Nations Environment Programme, 2020); https://hdl.handle.net/10568/10709622.Halewood, M., Ferreira de Souza Dias, B., Nnadozie, K., Noriega, I. & Toledo, A. Including Access and Benefit Sharing in the Post-2020 Global Biodiversity Framework (AfricaRice, Alliance of Bioversity International and CIAT, ICARDA, ICRISAT, IITA, ILRI, CIMMYT, CIP, IRRI, World Agroforestry Centre, The Secretariat of International Treaty on Plant Genetic Resources for Food and Agriculture, UNEP and The ABS Capacity Development Initiative, 2020); https://cgspace.cgiar.org/handle/10568/11127323.Delabre, I. et al. Actions on sustainable food production and consumption for the post-2020 global biodiversity framework. Sci. Adv. 7, eabc8259 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Lyons, M. B. et al. Mapping the world’s coral reefs using a global multiscale earth observation framework. Remote Sens. Ecol. Conserv. 6, 557–568 (2020).Article 

    Google Scholar 
    26.Keith, D. A., Ferrer-Paris, J. R., Nicholson, E. & Kingsford, R. T. The IUCN Global Ecosystem Typology v2.0: Descriptive profiles for Biomes and Ecosystem Functional Groups (IUCN, 2020).27.Pettorelli, N. et al. Satellite remote sensing of ecosystem functions: opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 4, 71–93 (2018).Article 

    Google Scholar 
    28.Murray, N. J. et al. The role of satellite remote sensing in structured ecosystem risk assessments. Sci. Total Environ. 619–620, 249–257 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    29.Keith, D. A. et al. Scientific foundations for an IUCN Red List of Ecosystems. PLoS ONE 8, e62111 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Bland, L. M., Keith, D. A., Miller, R. M., Murray, N. J. & Rodríguez, J. P. (eds.) Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria v. 1.1 (IUCN, 2017).31.Bland, L. M. et al. Impacts of the IUCN Red List of Ecosystems on conservation policy and practice. Conserv. Lett. 12, e12666 (2019).Article 

    Google Scholar 
    32.Alaniz, A. J., Pérez-Quezada, J. F., Galleguillos, M., Vásquez, A. E. & Keith, D. A. Operationalizing the IUCN Red List of Ecosystems in public policy. Conserv. Lett. 0, e12665 (2019).
    Google Scholar 
    33.Botts, E. A. et al. More than just a (red) list: over a decade of using South Africa’s threatened ecosystems in policy and practice. Biol. Conserv. 246, 108559 (2020).Article 

    Google Scholar 
    34.Mace, G. M. The ecology of natural capital accounting. Oxford Rev. Econ. Policy 35, 54–67 (2019).Article 

    Google Scholar 
    35.Hein, L. et al. Progress in natural capital accounting for ecosystems. Science 367, 514–515 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl Acad. Sci. USA 116, 909–914 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Soanes, K. et al. Correcting common misconceptions to inspire conservation action in urban environments. Conserv. Biol. 33, 300–306 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Campbell, L. M., Hagerman, S. & Gray, N. J. Producing targets for conservation: science and politics at the tenth conference of the parties to the convention on biological diversity. Glob. Environ. Politics 14, 41–63 (2014).Article 

    Google Scholar 
    40.Rogalla von Bieberstein, K. et al. Improving collaboration in the implementation of global biodiversity conventions. Conserv. Biol. 33, 821–831 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Martínez-Jauregui, M., Touza, J., White, P. C. L. & Soliño, M. Choice of biodiversity indicators may affect societal support for conservation programs. Ecol. Indic. 121, 107203 (2021).Article 

    Google Scholar 
    42.Nicholson, E., Keith, D. A. & Wilcove, D. S. Assessing the threat status of ecological communities. Conserv. Biol. 23, 259–274 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Harpole, W. S. & Tilman, D. Grassland species loss resulting from reduced niche dimension. Nature 446, 791–793 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Shi, J., Ma, K., Wang, J., Zhao, J. & He, K. Vascular plant species richness on wetland remnants is determined by both area and habitat heterogeneity. Biodivers. Conserv. 19, 1279–1295 (2010).Article 

    Google Scholar 
    45.Brooks, T. M. et al. Habitat loss and extinction in the hotspots of biodiversity. Conserv. Biol. 16, 909–923 (2002).Article 

    Google Scholar 
    46.Murray, N. J. et al. The use of range size to assess risks to biodiversity from stochastic threats. Divers. Distrib. 23, 474–483 (2017).Article 

    Google Scholar 
    47.Cooper, G. S., Willcock, S. & Dearing, J. A. Regime shifts occur disproportionately faster in larger ecosystems. Nat. Commun. 11, 1175 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Gervais, C. R., Champion, C. & Pecl, G. T. Species on the move around the Australian coastline: a continental scale review of climate-driven species redistribution in marine systems. Glob. Change Biol. https://doi.org/10.1111/gcb.15634 (2021).49.Bergstrom, D. M. et al. Combating ecosystem collapse from the tropics to the Antarctic. Glob. Change Biol. 27, 1692–1703 (2021).Article 

    Google Scholar 
    50.Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature https://doi.org/10.1038/s41586-019-1567-7 (2019).51.Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.DeFries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Rowland, J. A. et al. Selecting and applying indicators of ecosystem collapse for risk assessments. Conserv. Biol. 32, 1233–1245 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Wilkins, S., Keith, D. A. & Adam, P. Measuring success: evaluating the restoration of a grassy eucalypt woodland on the Cumberland Plain, Sydney, Australia. Restor. Ecol. 11, 489–503 (2003).Article 

    Google Scholar 
    56.Noss, R. F. Indicators for monitoring biodiversity: a hierarchical approach. Conserv. Biol. 4, 355–364 (1990).Article 

    Google Scholar 
    57.Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Burgman, M. A., Ferson, S. & Akcakaya, H. R. Risk Assessment in Conservation Biology (Chapman and Hall, 1993).59.Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Update of the Zero Draft of the Post 2020 Global Biodiversity Framework CBD/POST2020/PREP/2/1 (CBD, 2020).61.Cumming, G. S. & Peterson, G. D. Unifying research on social–ecological resilience and collapse. Trends Ecol. Evol. 32, 695–713 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Burgass, M. J. et al. Three key considerations for biodiversity conservation in multilateral agreements. Conserv. Lett. 14, e12764 (2021).Article 

    Google Scholar 
    63.Rice, W. S., Sowman, M. R. & Bavinck, M. Using theory of change to improve post-2020 conservation: a proposed framework and recommendations for use. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.301 (2020).64.Nicholson, E. et al. Scenarios and models to support global conservation targets. Trends Ecol. Evol. 34, 57–68 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Zero Draft of the Post 2020 Global Biodiversity Framework CBD/WG2020/2/3 (CBD, 2020).66.Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0504-8 (2018).67.Niemeijer, D. & de Groot, R. S. A conceptual framework for selecting environmental indicator sets. Ecol. Indic. 8, 14–25 (2008).Article 

    Google Scholar 
    68.Reyers, B., Stafford-Smith, M., Erb, K.-H., Scholes, R. J. & Selomane, O. Essential variables help to focus Sustainable Development Goals monitoring. Curr. Opin. Environ. Sustain. 26-27, 97–105 (2017).Article 

    Google Scholar 
    69.Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature https://doi.org/10.1038/s41586-020-2705-y (2020).70.Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl Acad. Sci. USA 117, 9906–9911 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Turner, I. M. & T. Corlett, R. The conservation value of small, isolated fragments of lowland tropical rain forest. Trends Ecol. Evol. 11, 330–333 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46 (2019).Article 

    Google Scholar 
    75.Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Hein, M. Y., Willis, B. L., Beeden, R. & Birtles, A. The need for broader ecological and socioeconomic tools to evaluate the effectiveness of coral restoration programs. Restor. Ecol. 25, 873–883 (2017).Article 

    Google Scholar 
    77.Crouzeilles, R. et al. A global meta-analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 11666 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. B Biol. Sci. 285, 20172577 (2018).Article 

    Google Scholar 
    79.Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Watts, K. et al. Ecological time lags and the journey towards conservation success. Nat. Ecol. Evol. 4, 304–311 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Etter, A., Andrade, A., Nelson, C. R., Cortés, J. & Saavedra, K. Assessing restoration priorities for high-risk ecosystems: an application of the IUCN Red List of Ecosystems. Land Use Policy 99, 104874 (2020).Article 

    Google Scholar 
    82.Bekessy, S. A. et al. The biodiversity bank cannot be a lending bank. Conserv. Lett. 3, 151–158 (2010).Article 

    Google Scholar 
    83.SBSTTA Draft Monitoring Framework for the Post-2020 Global Biodiversity Framework for Review (Subsidiary Body on Scientific, Technical and Technological Advice, 2020); https://www.cbd.int/sbstta24/review.shtml84.Indicators for the Post-2020 Global Biodiversity Framework—Information Document Prepared for SBSTTA24 by UNEP-WCMC in Collaboration with the Biodiversity Indicators Partnership (UNEP-WCMC, 2020); https://www.cbd.int/sbstta24/review.shtml85.Post-2020 Global Biodiversity Framework: Scientific and Technical Information to Support the Review of the Updated Goals and Targets, and Related Indicators and Baselines. Proposed Indicators and Monitoring Approach for the Post-2020 Global Biodiversity Framework CBD/SBSTTA/24/3Add.1 (Subsidiary Body on Scientific, Technical and Technological Advice, 2020).86.Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Zero Draft of the Post 2020 Global Biodiversity Framework. Addendum. Appendices: Preliminary Draft Monitoring Framework for the Goals And Preliminary Draft Monitoring Framework for Targets CBD/WG2020/2/3/Add.1 (CBD, 2020).87.UNEP-WCMC Indicators for the Post-2020 Global Biodiversity Framework. Information Document Prepared for SBSTTA24 by UNEP-WCMC in Collaboration with the Biodiversity Indicators Partnership and Incorporating Inputs from Peer Review CBD/SBSTTA/24/INF/20 (CBD, 2021).88.Open-Ended Working Group On The Post-2020 Global Biodiversity Framework Proposed Headline Indicators of the Monitoring Framework for the Post-2020 Global Biodiversity Framework CBD/WG2020/3/3/Add.1 (CBD, 2021).89.Geldmann, J. et al. Essential indicators for measuring site-based conservation effectiveness in the post-2020 global biodiversity framework. Conserv. Lett. https://doi.org/10.1111/conl.12792 (2021).90.Rowland, J. A. et al. Ecosystem indices to support global biodiversity conservation. Conserv. Lett. 13, e12680 (2020).Article 

    Google Scholar 
    91.Ferrer-Paris, J. R. et al. An ecosystem risk assessment of temperate and tropical forests of the Americas with an outlook on future conservation strategies. Conserv. Lett. 12, e12623 (2019).Article 

    Google Scholar 
    92.Brown, C. J. et al. Opportunities for improving recognition of coastal wetlands in global ecosystem assessment frameworks. Ecol. Indic. 126, 107694 (2021).Article 

    Google Scholar 
    93.Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. & Windnagel, A. K. Sea Ice Index, Version 3 Monthly Sea Ice Extent (NSIDC, 2017).94.Karger, D. N., Kessler, M., Lehnert, M. & Jetz, W. Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01450-y (2021).95.Skowno, A. L., Jewitt, D. & Slingsby, J. A. Rates and patterns of habitat loss across South Africa’s vegetation biomes. South Afr. J. Sci. 117, 8182 (2021).
    Google Scholar 
    96.Murray, N. J. et al. Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. v. 1.0 (Wildlife Conservation Society, 2020).97.Lee, C. K. F., Nicholson, E., Duncan, C. & Murray, N. J. Estimating changes and trends in ecosystem extent with dense time-series satellite remote sensing. Conserv. Biol. 35, 325–335 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Fuller, R. M., Smith, G. M. & Devereux, B. J. The characterisation and measurement of land cover change through remote sensing: problems in operational applications? Int. J. Appl. Earth Observ. Geoinf. 4, 243–253 (2003).Article 

    Google Scholar 
    99.Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).Article 

    Google Scholar 
    100.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    101.Tropek, R. et al. Comment on “High-resolution global maps of 21st-century forest cover change”. Science 344, 981–981 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    103.Amano, T. & Sutherland, W. J. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security. Proc. R. Soc. B 280, 20122649 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. Sci. Rep. 7, 9132 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    105.Fraixedas, S. et al. A state-of-the-art review on birds as indicators of biodiversity: advances, challenges, and future directions. Ecol. Indic. 118, 106728 (2020).Article 

    Google Scholar 
    106.Martin, P. A., Green, R. E. & Balmford, A. The biodiversity intactness index may underestimate losses. Nat. Ecol. Evol. 3, 862–863 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Duncan, C., Thompson, J. R. & Pettorelli, N. The quest for a mechanistic understanding of biodiversity–ecosystem services relationships. Proc. R. Soc. B Biol. Sci. 282, 20151348 (2015).Article 

    Google Scholar 
    108.Peterson, G. D., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).Article 

    Google Scholar 
    109.Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Benítez-López, A., Santini, L., Schipper, A. M., Busana, M. & Huijbregts, M. A. J. Intact but empty forests? Patterns of hunting-induced mammal defaunation in the tropics. PLOS Biol. 17, e3000247 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    111.Parrish, J. D., Braun, D. P. & Unnasch, R. S. Are we conserving what we say we are? Measuring eological integrity within protected areas. Bioscience 53, 851–860 (2003).Article 

    Google Scholar 
    112.Burgass, M. J., Halpern, B. S., Nicholson, E. & Milner-Gulland, E. J. Navigating uncertainty in environmental composite indicators. Ecol. Indic. 75, 268–278 (2017).Article 

    Google Scholar 
    113.Juffe-Bignoli, D. et al. Assessing the cost of global biodiversity and conservation knowledge. PLoS ONE 11, e0160640 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    114.Rowland, J. A., Lee, C. K. F., Bland, L. M. & Nicholson, E. Testing the performance of ecosystem indices for biodiversity monitoring. Ecol. Indic. 116, 106453 (2020).Article 

    Google Scholar 
    115.Collen, B. & Nicholson, E. Taking the measure of change. Science 346, 166–167 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Branch, T. A. et al. The trophic fingerprint of marine fisheries. Nature 468, 431–435 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    117.Fu, C. et al. Making ecological indicators management ready: assessing the specificity, sensitivity, and threshold response of ecological indicators. Ecol. Indic. 105, 16–28 (2019).Article 

    Google Scholar 
    118.Watermeyer, K. E. et al. Using decision science to evaluate global biodiversity indices. Conserv. Biol. 35, 492–501 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    119.Hansen, M. C. & Loveland, T. R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 122, 66–74 (2012).Article 

    Google Scholar 
    120.Stevenson, S. L. et al. Matching biodiversity indicators to policy needs. Conserv. Biol. 35, 522–532 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    121.Han, X. et al. Monitoring national conservation progress with indicators derived from global and national datasets. Biol. Conserv. 213, 325–334 (2017).Article 

    Google Scholar 
    122.Stephenson, P. J. & Stengel, C. An inventory of biodiversity data sources for conservation monitoring. PLoS ONE 15, e0242923 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Bhatt, R. et al. Uneven use of biodiversity indicators in 5th National Reports to the Convention on Biological Diversity. Environ. Conserv. 47, 15–21 (2020).Article 

    Google Scholar 
    124.Hein, L. et al. Defining ecosystem assets for natural capital accounting. PLoS ONE 11, e0164460 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    125.Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    126.Cid, N. et al. A metacommunity approach to improve biological assessments in highly dynamic freshwater ecosystems. Bioscience 70, 427–438 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    127.Goodwin, K. D. et al. DNA Sequencing as a tool to monitor marine ecological status. Front. Marine Sci. 4, 107 (2017).Article 

    Google Scholar 
    128.Pace, M. L., Carpenter, S. R. & Cole, J. J. With and without warning: managing ecosystems in a changing world. Front. Ecol. Environ. 13, 460–467 (2015).Article 

    Google Scholar 
    129.Scheffer, M., Carpenter, S. R., Dakos, V. & Nes, E. H. V. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145–167 (2015).Article 

    Google Scholar 
    130.Kéfi, S. et al. Early warning signals of ecological transitions: methods for spatial patterns. PLoS ONE 9, e92097 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    131.Clements, C. F. & Ozgul, A. Indicators of transitions in biological systems. Ecol. Lett. 21, 905–919 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    132.Zhao, L.-X. et al. Fairy circles reveal the resilience of self-organized salt marshes. Sci. Adv. 7, eabe1100 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    133.Sievers, M. et al. Integrating outcomes of IUCN red list of ecosystems assessments for connected coastal wetlands. Ecol. Indic. 116, 106489 (2020).Article 

    Google Scholar 
    134.Allen, C. R. et al. Quantifying spatial resilience. J. Appl Ecol. 53, 625–635 (2016).Article 

    Google Scholar 
    135.Borer, E. T., Grace, J. B., Harpole, W. S., MacDougall, A. S. & Seabloom, E. W. A decade of insights into grassland ecosystem responses to global environmental change. Nat. Ecol. Evol. 1, 0118 (2017).Article 

    Google Scholar 
    136.Moonlight, P. W. et al. Expanding tropical forest monitoring into dry forests: The DRYFLOR protocol for permanent plots. Plants People Planet 3, 295–300 (2021).Article 

    Google Scholar 
    137.Réjou-Méchain, M. et al. Unveiling African rainforest composition and vulnerability to global change. Nature 593, 90–94 (2021).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    138.Zeng, Y. et al. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain. 3, 795–798 (2020).Article 

    Google Scholar 
    139.Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    140.Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2020).Article 

    Google Scholar 
    141.Ellis, E. C., Beusen, A. H. W. & Goldewijk, K. K. Anthropogenic biomes: 10,000 BCE to 2015 CE. Land 9, 129 (2020).Article 

    Google Scholar 
    142.The IUCN Red List of Threatened Species. Version 2020-2 (IUCN, 2020); https://www.iucnredlist.org/143.An Indicator of the Conservation Status of Useful Wild Plants (CIAT, 2020); https://ciat.cgiar.org/usefulplants-indicator/144.Measuring Change in the Extent of Water-Related Ecosystems Over time. Sustainable Development Goal Monitoring Methodology Indicator 6.6.1 (UNEP, UN Water, 2020).145.Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738 (2016).Article 

    Google Scholar 
    146.Keenan, R. J. et al. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352, 9–20 (2015).Article 

    Google Scholar 
    147.Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).Article 

    Google Scholar 
    148.Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12, e0179302 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    149.Morales-Hidalgo, D., Oswalt, S. N. & Somanathan, E. Status and trends in global primary forest, protected areas, and areas designated for conservation of biodiversity from the Global Forest Resources Assessment 2015. Forest Ecol. Manag. 352, 68–77 (2015).Article 

    Google Scholar 
    150.Dixon, M. J. R. et al. Tracking global change in ecosystem area: the Wetland Extent Trends index. Biol. Conserv. 193, 27–35 (2016).Article 

    Google Scholar 
    151.Ferrier, S., Harwood, T. D., Ware, C. & Hoskins, A. J. A globally applicable indicator of the capacity of terrestrial ecosystems to retain biological diversity under climate change: The bioclimatic ecosystem resilience index. Ecol. Indic. 117, 106554 (2020).Article 

    Google Scholar 
    152.Allnutt, T. F. et al. A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar. Conserv. Lett. 1, 173–181 (2008).Article 

    Google Scholar 
    153.McRae, L., Deinet, S. & Freeman, R. The Diversity-Weighted Living Planet Index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    154.Schipper, A. M. et al. Projecting terrestrial biodiversity intactness with GLOBIO 4. Glob. Change Biol. 26, 760–771 (2020).Article 

    Google Scholar 
    155.Butchart, S. H. M. et al. Improvements to the Red List Index. PLoS ONE 2, e140 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    156.Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).Article 

    Google Scholar 
    157.Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, e12592 (2020).Article 

    Google Scholar 
    158.Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    159.DiMiceli, C., Townshend, J., Carroll, M. & Sohlberg, R. Evolution of the representation of global vegetation by vegetation continuous fields. Remote Sens. Environ. 254, 112271 (2021).Article 

    Google Scholar 
    160.Obura, D. O. et al. Coral reef monitoring, reef assessment technologies, and ecosystem-based management. Front. Marine Sci. 6, 580 (2019).Article 

    Google Scholar 
    161.Sims, N. C. et al. Developing good practice guidance for estimating land degradation in the context of the United Nations Sustainable Development Goals. Environ. Sci. Policy 92, 349–355 (2019).Article 

    Google Scholar 
    162.Kogan, F. N. Global drought watch from space. Bull. Am. Meteorol. Soc. 78, 621–636 (1997).Article 

    Google Scholar 
    163.Stelzer, K., Simis, S. & Müller, D. Copernicus Global Land Operations, Cryosphere and Water, CGLOPS-2, Framework Service Contract N° 199496 (JRC): Product User Manual Lake Waters, 300M and 1KM products, Versions 1.3.0–1.4.0, Issue I1.10 (Copernicus, 2020).164.Liu, G., Strong, A. E., Skirving, W. J. & Arzayus, L. F. Overview of NOAA Coral Reef Watch Program’s near-real-time satellite global coral bleaching monitoring activities. In Proc. 10th International Coral Reef Symposium 1783–1793 (2006).165.Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).Article 

    Google Scholar 
    166.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    167.Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    168.Purvis, A. A single apex target for biodiversity would be bad news for both nature and people. Nat. Ecol. Evol. 4, 768–769 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    169.Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl Acad. Sci. USA 117, 30882–30891 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    170.Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    171.Preston, B. J. & Adam, P. Describing and listing threatened ecological communities under the Threatened Species Conservation Act 1995 (NSW): part 1—the assemblage of species and the particular area. Environ. Plan. Law J. 21, 250–263 (2004).
    Google Scholar 
    172.Noss, R. F. Ecosystems as conservation targets. Trends Ecol. Evol. 11, 351 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    173.Bland, L. M. et al. Developing a standardized definition of ecosystem collapse for risk assessment. Front Ecol. Environ. 16, 29–36 (2018).Article 

    Google Scholar 
    174.Sato, C. F. & Lindenmayer, D. B. Meeting the global ecosystem collapse challenge. Conserv. Lett. 11, e12348 (2018).Article 

    Google Scholar 
    175.Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).Article 

    Google Scholar 
    176.Grafton, R. Q. et al. Realizing resilience for decision-making. Nat. Sustain. 2, 907–913 (2019).Article 

    Google Scholar 
    177.Chambers, J. C., Allen, C. R. & Cushman, S. A. Operationalizing ecological resilience concepts for managing species and ecosystems at risk. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00241 (2019).178.Higuera, P. E. et al. Integrating subjective and objective dimensions of resilience in fire-prone landscapes. Bioscience 69, 379–388 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    179.Newton, A. C. Biodiversity risks of adopting resilience as a policy goal. Conserv. Lett. 9, 369–376 (2016).Article 

    Google Scholar 
    180.Williams, R. J. et al. An International Union for the Conservation of Nature Red List ecosystems risk assessment for alpine snow patch herbfields, South-Eastern Australia. Austral Ecol. 40, 433–443 (2015).Article 

    Google Scholar 
    181.Clark, G. F., Raymond, B., Riddle, M. J., Stark, J. S. & Johnston, E. L. Vulnerability of Antarctic shallow invertebrate-dominated ecosystems. Austral Ecol. 40, 482–491 (2015).Article 

    Google Scholar 
    182.Rohwer, Y. & Marris, E. Ecosystem integrity is neither real nor valuable. Conserv. Sci. Pract. 3, e411 (2021).
    Google Scholar 
    183.Post-2020 Global Biodiversity Framework: Scientific and Technical Information to Support the Review of the Updated Goals and Targets, and Related Indicators and Baselines. Scientific and Technical information to support the review of the Proposed Goals and Targets in the Updated Zero Draft of the Post-2020 Global Biodiversity Framework CBD/SBSTTA/24/3/Add.2 (CBD, 2021).184.McNellie, M. J. et al. Reference state and benchmark concepts for better biodiversity conservation in contemporary ecosystems. Glob. Change Biol. 26, 6702–6714 (2020).Article 

    Google Scholar 
    185.Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118, e2023483118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Flood disturbance affects morphology and reproduction of woody riparian plants

    Study siteOur study was undertaken in the Yellingbo Nature Conservation Reserve located around 45 km east of Melbourne, Victoria, Australia (Fig. 2). The reserve is embedded in an agricultural landscape and is around 640 ha comprising narrow riparian zones bordering local creeks. Low-lying floodplains along the Cockatoo and Macclesfield Creeks, which were focus of our surveys, are dominated by ‘Sedge-rich Eucalyptus camphora Swamp’ community26. These forests naturally experience seasonal to near-permanent inundation and vary in structure from open forest to woodland. The highly flood-tolerant mountain swamp gum Eucalyptus camphora is the sole overstorey species. The midstorey is dominated by thickets of woolly tea tree Leptospermum lanigerum and scented paperbark Melaleuca squarrosa, both of which are flood tolerant small trees or shrubs27. The largest remnants of this forest type are found within the Yellingbo Nature Conservation Reserve where they suffer dieback as a result of past human alterations of local watercourses28. The long-term survival of this threatened riparian forest likely depends on management interventions. Despite thorough documentation of declining tree and shrub condition, the ecology of the three major woody species is not well understood29,30.Figure 2Map of all surveyed individuals of the three studied species within the Yellingbo Nature Conservation Reserve (green polygon). Shading represents flooding gradient categories used for sample point stratification (with grey indicating non-flood-prone areas and blues indicating flood-prone areas with darker blues representing higher flood-proneness). The map was generated in ArcMap version 10.5.1 (https://desktop.arcgis.com/).Full size imageSurvey designWe confined the survey area to elevations lower than 120 m above sea level as Eucalyptus camphora swamp does not occur above this elevation within the reserve27. Only areas mapped as vegetation communities containing the studied species were included. The survey area was further limited to match the extent of a hydrological model (see below) and was in total 1.69 km2.In order to ensure that survey points were distributed across the hydrological gradient, we simulated different sized flooding events using a hydrologic model (described below). The spatial extents of these events were then used to classify the study area into four broad flooding categories. Flooding categories one, two and three comprised areas which were flooded by low, medium and high flow events, respectively. Flooding category one represents the wettest parts of the floodplain whereas categories two and three are less frequently flooded. Flooding category four contained the rarely inundated parts of the survey area that remained unflooded in the modelled flow events.To equally represent all flooding categories, we used a stratified random sampling approach. We generated 40 random coordinates within the area represented by each category and four additional points per point were generated as spares in case some positions were unsuitable for sampling.During field surveys, we visited locations by navigating with a handheld GPS device (Garmin etrx30) to the predefined points. From there, we surveyed the nearest individual of each of the species E. camphora, M. squarrosa and L. lanigerum and mapped their actual geographic position. If no tree was found within a radius of 10 m of a given sample point, we visited the closest point from the spare dataset instead. If no individual was present near any of the four closest spare points no tree was recorded at the location.After visiting all of the original points (including the four extra points) additional points were generated randomly in the areas where the two shrub species were found during the course of previous sampling. We thereby increased sample size for each of these less widespread species to approximately 20 individuals per flooding category. We conducted all surveying and tree and shrub measurements from March to April 2018 to take advantage of low water levels and therefore best accessibility. In total, we sampled 292 trees comprising 133 E. camphora, 78 L. lanigerum and 84 M. squarrosa.Tree surveysElongated stems are a major feature of woody plants defining their overall architecture. To characterise and compare growth habits, we measured diameter at breast height (DBH) and height (to highest live foliage) of each tree and shrub. In some cases (for 21/133 E. camphora and 1/84 L. lanigerum) visibility impairment precluded height measurement via clinometer. For multi-stemmed individuals, we counted all stems, measured their DBH, and determined height of the tallest one. To yield crown width we measured maximum crown diameter and perpendicular crown diameter for every sampled plant and calculated the mean.Flooding and associated unstable, boggy substrates might deter trees from the usual vertical growth and force them into leaning positions. Thus, we recorded inclination angle of the main stem (at DBH level) relative to vertical using a protractor.The emergence of epicormic sprouts, be it a symptom of stress or sign of recovery31, is a common reaction to disturbance and reflects a tree’s ability to regenerate vegetatively. We estimated epicormic growth using a scale from 0 to 3 indicating absent, scarce, common or abundant expression of epicormic growth32.Using the same scale, we assessed sexual reproduction by estimating the combined relative abundance of reproductive structures, namely buds, flowers and capsules. Flowers indicate only current reproductive activity and not all species were flowering during the fieldwork campaign. Owing to serotiny and the long timespan for bud crop development, different developmental stages of reproductive structures (current and past reproduction) can appear simultaneously on a single tree.Growth and reproduction may both be affected by plant condition, for which crown vigour has been proven as a suitable and rapid measure22,31,33. For each sampled plant, we assessed crown vigour by visually estimating the proportion of the potential crown supporting live foliage to the nearest 5%.Moreover, growth rates and tree shapes can be significantly influenced by competition. For each sampled tree or shrub, we therefore measured the distances to its nearest four neighbours, one in each compass quadrant and calculated the average nearest-neighbour distance. For E. camphora, only neighbouring trees were included, whereas for L. leptospermum and M. squarrosa, both trees and shrubs were considered neighbours.Hydrologic modellingThe surveyed floodplain area has a very low elevational gradient such that floods are low energy and geomorphology does not vary greatly across the system. As such, we did not explicitly examine geomorphology in this study and focused on hydrology. After completing tree surveys, we determined local flood regime history for each study tree using the output of a grid-based, 2-dimensional hydrological model built in TUFLOW classic (www.tuflow.com), which was calibrated with recent water-level data from four sites within the study area. The model generated historic-flow series (1998–present) of water levels across the study area with a 5-m grid-cell spatial resolution and a daily temporal resolution. See Greet et al.34 for more details.We extracted water-level time series for each surveyed tree and shrub from the model output. Using the recorded coordinates, individual water-level data were extracted for the grid cell in which the respective tree or shrub was located. Some individuals that were located next to the stream were allocated to a grid-cell that the model designated as the stream channel, resulting in them being erroneously characterised as permanently inundated. In these cases, water level data was extracted for the eight surrounding cells. We then excluded those that were also permanently inundated, and the average of the remaining cells was used to create a water level time series for that individual.To characterise the flood regime history for each tree, we considered water levels of zero as dry and values greater than zero as inundated. Therefore, the first day with a water level greater zero marked the start of a flooding event and the reduction to zero the end of the respective event. Consequently, the number of consecutive days of flooding defined the length of a flooding event.We calculated the following flood regime metrics for the modelled 20-year period (1998–2018): mean and maximum length of flooding periods, mean and maximum length of dry spells (not inundated periods), the mean length of flooding periods during the growing season (November–June), the average number of flooding events per year and mean flooding depth. All variables were skewed and thus log-transformed before we tested for correlation (Online Resource 1, Fig. SM1). Although flood magnitude has been found to affect herbaceous riparian vegetation in other systems35, we assumed the observed flooding magnitude, i.e. mean water levels (mean = 0.06 cm, median = 0.01 cm, max = 0.92 cm), to be less important for the relatively tall trees and shrubs studied here (Fig. 3b). We further assumed maximum values to be less influential for tree and shrub growth over long periods. Hence, we selected two contrasting aspects characterizing long-term flood regime as predictors for further statistical analysis. These were the mean length of flooding events and the average number of flooding events per year representing duration and frequency of flooding. They were not strongly correlated with each other (Pearson correlation coefficient = 0.18). Both flooding duration and frequency have been shown to impact tree development in riparian ecosystems36,37.14 out of 292 sampled trees from across the study area were excluded from statistical analyses due to model outputs suggesting unrealistic high flood duration (i.e. mean inundation duration  > 500 days) or frequency (i.e.  > 300 events), likely owing to errors of local topography representation based on our field observations.Statistical analysisWe performed multiple regression separately for each of the three species to:

    1.

    Assess the strength of relationships between flood regime (flood frequency, flood duration) and tree and shrub morphology (DBH of main stem, height, crown width, stem number, leaning and crown extent); and flood regime and reproductive strategy (the extent of sexual reproduction and epicormic growth), thereby testing hypothesis 1 and 2 (H1 and H2); and

    2.

    assess the relationships between morphology and both reproduction types, testing hypothesis 3 (H3).

    For each analysis we used hierarchical partitioning to identify those variables which independently explained the most variance in morphology and reproduction, respectively.First, we tested how much variation in morphology and reproductive strategy variables was explained by each of the two flood regime variables (H1 and H2). We fit 8 generalised linear models (response variables: main stream DBH, height and crown width, stem number, leaning, crown extent, sexual reproduction, and epicormic growth; predictor variables: flood frequency, flood duration). We chose the appropriate distribution used in the linear model for each variable (Table 1). Beta regression was undertaken using the betareg package38 and ordinal regression using the MASS package39.Table 1 Measured morphology and reproduction variables and distribution for model fitting.Full size tableWe initially included the average nearest neighbour distance (a surrogate for competition) in models predicting morphology variables (H1). However, we later omitted this additional predictor as it generally did not increase the proportion of explained variance (Online Resource 2, Table SM1).To assess how much variation in reproductive strategy variables was explained by morphology variables (H3), for each species, we calculated two additional linear models for the response variables of sexual reproduction and epicormic growth with each six predictor variables (main stem DBH, height, crown width, stem number, leaning and crown extent). Both of these models used a binomial distribution adapted for ordered factors.For each model, we used hierarchical partitioning of log-likelihood values using the hier.part package40 to determine the proportion of explained variance explained independently by each predictor variable41. This method allows identification of variables that have a strong independent correlation with the dependent variable, in contrast to variables that have little independent effect but have a high correlation with the dependent variable resulting from joint correlation with other predictor variables. Variables that independently explained a larger proportion of variance than could be explained by chance were identified by comparison of the observed value of independent contribution to explained variance (I) to a population of Is from 1000 randomizations of the data matrix. Significance was accepted at the upper 95% confidence limit (Z score  > 1.65: Mac Nally42, Mac Nally and Walsh40).To assess the goodness of fit for each model, we present R2 or pseudo-R2 values (according to Nagelkerke using the DescTools package: Signorell et al.43) for ordinal regression and Ferrari and Cribari-Neto62 for beta regression, respectively. We considered variables with a total contribution to explained variance (i.e. proportion explained × R2)  > 0.05 to be influential variables and the direction of their effect important.Lastly, we performed a PCA analyses and ordination to assess associations between different morphology attributes and reproduction variables across all species (H3).All statistical analysis was performed in R version 3.5.044. More