High taxonomic resolution surveys and trait-based analyses reveal multiple benthic regimes in North Sulawesi (Indonesia)
1.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS
CAS
PubMed
Article
Google Scholar
2.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS
CAS
PubMed
Article
Google Scholar
3.Freeman, L. A., Kleypas, J. A. & Miller, A. J. Coral reef habitat response to climate change scenarios. PLoS One 8, e82404 (2013).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
4.Salo, T., Mattila, J. & Eklöf, J. Long-term warming affects ecosystem functioning through species turnover and intraspecific trait variation. Oikos 129, 283–295 (2020).Article
Google Scholar
5.Alvarez-Filip, L., Dulvy, N. K., Côte, I. M., Watkinson, A. R. & Gill, J. A. Coral identity underpins architectural complexity on Caribbean reefs. Ecol. Appl. 21, 2223–2231 (2011).PubMed
Article
Google Scholar
6.Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: Toward a global functional homogenization?. Front. Ecol. Environ. 9, 222–228 (2011).Article
Google Scholar
7.Darling, E. S. et al. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat. Ecol. Evol. 3, 1341–1350 (2019).PubMed
Article
Google Scholar
8.Richardson, L. E., Graham, N. A. J. & Hoey, A. S. Coral species composition drives key ecosystem function on coral reefs. Proc. R. Soc. B Biol. Sci. 287, 20192214 (2020).Article
Google Scholar
9.Ainsworth, C. H. & Mumby, P. J. Coral–algal phase shifts alter fish communities and reduce fisheries production. Glob. Change Biol. 21, 165–172 (2015).ADS
Article
Google Scholar
10.McWilliam, M., Pratchett, M. S., Hoogenboom, M. O. & Hughes, T. P. Deficits in functional trait diversity following recovery on coral reefs. Proc. R. Soc. B Biol. Sci. 287, 20192628 (2020).Article
Google Scholar
11.Adjeroud, M. et al. Recovery of coral assemblages despite acute and recurrent disturbances on a South Central Pacific reef. Sci. Rep. 8, 9680 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
12.Bozec, Y.-M. & Mumby, P. J. Synergistic impacts of global warming on the resilience of coral reefs. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130267 (2015).Article
Google Scholar
13.Chaves-Fonnegra, A. et al. Bleaching events regulate shifts from corals to excavating sponges in algae-dominated reefs. Glob. Change Biol. 24, 773–785 (2018).ADS
Article
Google Scholar
14.Lasker, H., Bramanti, L., Tsounis, G. & Edmunds, P. The rise of octocoral forests on Caribbean reefs. Adv. Mar. Biol. 86, 361–410 (2020).Article
Google Scholar
15.Dixson, D. L., Abrego, D. & Hay, M. E. Chemically mediated behavior of recruiting corals and fishes: A tipping point that may limit reef recovery. Science 345, 892–897 (2014).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
16.Rogers, A., Blanchard, J. L. & Mumby, P. J. Vulnerability of coral reef fisheries to a loss of structural complexity. Curr. Biol. 24, 1000–1005 (2014).CAS
PubMed
Article
Google Scholar
17.Ampou, E. E., Ouillon, S., Iovan, C. & Andréfouët, S. Change detection of Bunaken Island coral reefs using 15 years of very high resolution satellite images: A kaleidoscope of habitat trajectories. Mar. Pollut. Bull. 131, 83–95 (2018).CAS
PubMed
Article
Google Scholar
18.Di Martino, E., Jackson, J. B. C., Taylor, P. D. & Johnson, K. G. Differences in extinction rates drove modern biogeographic patterns of tropical marine biodiversity. Sci. Adv. 4, eaaq1508 (2018).ADS
PubMed
PubMed Central
Article
Google Scholar
19.Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).PubMed
Article
Google Scholar
20.Brandl, S. et al. Coral reef ecosystem functioning: Eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).Article
Google Scholar
21.Jouffray, J.-B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130268 (2015).Article
Google Scholar
22.Reverter, M., Jackson, M., Daraghmeh, N., von Mach, C. & Milton, N. 11-yr of coral community dynamics in reefs around Dahab (Gulf of Aqaba, Red Sea): The collapse of urchins and rise of macroalgae and cyanobacterial mats. Coral Reefs 39, 1605–1618 (2020).Article
Google Scholar
23.Schläppy, M.-L. et al. Making waves: Marine citizen science for impact. Front. Mar. Sci. 4, 146 (2017).Article
Google Scholar
24.de Bakker, D. M. et al. 40 Years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: The rise of slimy cyanobacterial mats. Coral Reefs 36, 355–367 (2017).ADS
Article
Google Scholar
25.González-Barrios, F. J., Cabral-Tena, R. A. & Alvarez-Filip, L. Recovery disparity between coral cover and the physical functionality of reefs with impaired coral assemblages. Glob. Change Biol. 27, 640–651 (2021).ADS
Article
Google Scholar
26.Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).PubMed
Article
Google Scholar
27.Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).PubMed
Article
Google Scholar
28.Bellwood, D., Streit, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term “function” in ecology: A coral reef perspective. Funct. Ecol. 33, 948–961 (2021).Article
Google Scholar
29.Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl. Acad. Sci. U.S.A. 111, 13757–13762 (2014).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
30.Madin, J. S. et al. A trait-based approach to advance coral reef science. Trends Ecol. Evol. 31, 419–428 (2016).PubMed
Article
Google Scholar
31.Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).ADS
Article
Google Scholar
32.Denis, V., Ribas-Deulofeu, L., Sturaro, N., Kuo, C.-Y. & Chen, C. A. A functional approach to the structural complexity of coral assemblages based on colony morphological features. Sci. Rep. 7, 9849 (2017).ADS
PubMed
PubMed Central
Article
Google Scholar
33.Kubicek, A., Breckling, B., Hoegh-Guldberg, O. & Reuter, H. Climate change drives trait-shifts in coral reef communities. Sci. Rep. 9, 3721 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
34.Hoeksema, B. Delineation of the Indo-Malayan Centre of Maximum Marine Biodiversity: The Coral Triangle, Vol. 29 117-178 (2007)35.Ponti, M. et al. Baseline reef health surveys at Bangka Island (North Sulawesi, Indonesia) reveal new threats. PeerJ 4, e2614 (2016).PubMed
PubMed Central
Article
Google Scholar
36.Roff, G. et al. Exposure-driven macroalgal phase shift following catastrophic disturbance on coral reefs. Coral Reefs 34(3), 715–725. https://doi.org/10.1007/s00338-015-1305-z (2015).ADS
Article
Google Scholar
37.Doropoulos, C., Roff, G., Visser, M.-S. & Mumby, P. J. Sensitivity of coral recruitment to subtle shifts in early community succession. Ecology 98(2), 304–314. https://doi.org/10.1002/ecy.166 (2017).Article
PubMed
PubMed Central
Google Scholar
38.Donovan, M. K. et al. Local conditions magnify coral loss after marine heatwaves. Science 372, 977–980. https://doi.org/10.1126/science.abd9464 (2021).CAS
Article
PubMed
Google Scholar
39.Otaño-Cruz, A. et al. Caribbean near-shore coral reef benthic community response to changes on sedimentation dynamics and environmental conditions. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00551 (2019).Article
Google Scholar
40.Goatley, C. H. R. & Bellwood, D. R. Ecological consequences of sediment on high-energy coral reefs. PLoS One 8(10), e77737. https://doi.org/10.1371/journal.pone.0077737 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
41.Powell, A. et al. Reduced diversity and high sponge abundance on a sedimented Indo-Pacific reef system: Implications for future changes in environmental quality. PLoS One 9(1), e85253. https://doi.org/10.1371/journal.pone.0085253 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
42.Lester, S. E. et al. Caribbean reefs of the Anthropocene: Variance in ecosystem metrics indicates bright spots on coral depauperate reefs. Glob. Change Biol. 26, 4785–4799 (2020).ADS
Article
Google Scholar
43.Pombo-Ayora, L., Coker, D. J., Carvalho, S., Short, G. & Berumen, M. L. Morphological and ecological trait diversity reveal sensitivity of herbivorous fish assemblages to coral reef benthic conditions. Mar. Environ. Res. 162, 105102 (2020).CAS
PubMed
Article
Google Scholar
44.Fox, H. E., Pet, J. S., Dahuri, R. & Caldwell, R. L. Recovery in rubble fields: Long-term impacts of blast fishing. Mar. Pollut. Bull. 46, 1024–1031 (2003).CAS
PubMed
Article
Google Scholar
45.Lam, V. Y. Y., Doropoulos, C. & Mumby, P. J. The influence of resilience-based management on coral reef monitoring: A systematic review. PLoS One 12, e0172064 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
46.Donovan, M. K. et al. Combining fish and benthic communities into multiple regimes reveals complex reef dynamics. Sci. Rep. 8, 16943 (2019).ADS
Article
CAS
Google Scholar
47.Smith, J. E. et al. Re-evaluating the health of coral reef communities: Baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. Sci. B. 283, 20151985 (2016).Article
CAS
Google Scholar
48.Althaus, F. et al. A Standardised vocabulary for identifying benthic biota and substrata from underwater magery: The CATAMI classification scheme. PLoS One 10, e0141039 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
49.Wee, H. B. et al. Zoantharian abundance in coral reef benthic communities at Terengganu Islands, Malaysia. Reg. Stud. Mar. Sci. 12, 58–63 (2017).Article
Google Scholar
50.McFadden, C. S. et al. Species boundaries in the absence of morphological, ecological or geographical differentiation in the Red Sea octocoral genus Ovabunda (Alcyonacea: Xeniidae). Mol. Phylogenet. Evol. 112, 174–184 (2017).PubMed
Article
Google Scholar
51.Ruiz, C. et al. Descriptions of new sponge species and genus, including aspiculate Plakinidae, overturn the Homoscleromorpha classification. Zool. J. Linn. Soc. 179, 707–724 (2017).
Google Scholar
52.Koido, T., Imahara, Y. & Fukami, H. High species diversity of the soft coral family Xeniidae (Octocorallia, Alcyonacea) in the temperate region of Japan revealed by morphological and molecular analyses. Zookeys 862, 1–22 (2019).PubMed
PubMed Central
Article
Google Scholar
53.Schönberg, C.H.L. & Fromont, J. Sponge functional growth forms as a means for classifying sponges without taxonomy. http://ningaloo-atlas.org.au/AIMS. [02/12/2020]. http://ningaloo-atlas.org.au/content/sponge-functional-growth-forms-means-classifying-spo (2014).54.Atrigenio, M., Aliño, P. & Conaco, C. Influence of the blue coral Heliopora coerulea on scleractinian coral larval recruitment. J. Mar. Biol. 2017, 6015143 (2017).Article
Google Scholar
55.Guzman, C., Atrigenio, M., Shinzato, C., Aliño, P. & Conaco, C. Warm seawater temperature promotes substrate colonization by the blue coral, Heliopora coerulea. PeerJ 7, e7785 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
56.Baum, G., Januar, I., Ferse, S. C. A., Wild, C. & Kunzmann, A. Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia. PeerJ 4, e2625 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
57.Biggerstaff, A., Jompa, J. & Bell, J. J. Increasing benthic dominance of the phototrophic sponge Lamellodysidea herbacea on a sedimented reef within the Coral Triangle. Mar. Biol. 164, 220 (2017).Article
Google Scholar
58.Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Expansion of a colonial ascidian following consecutive mass coral bleaching at Lizard Island, Australia. Mar. Environ. Res. 144, 125–129 (2019).CAS
PubMed
Article
Google Scholar
59.Vollstedt, S., Xiang, N., Simancas-Giraldo, S. M. & Wild, C. Organic eutrophication increases resistance of the pulsating soft coral Xenia umbellata to warming. PeerJ 8, e9182 (2020).PubMed
PubMed Central
Article
Google Scholar
60.Marlow, J. et al. Spatial variation in the benthic community composition of coral reefs in the Wakatobi Marine National Park, Indonesia: Updated baselines and limited benthic community shifts. J. Mar. Biol. Assoc. U. K. 100, 37–44 (2019).Article
Google Scholar
61.Roth, F., Lange, I., Sánchez Noguera, C., Carvalho, S. & Wild, C. Simulated overfishing and natural eutrophication promote the relative success of a non-indigenous ascidian in coral reefs at the Pacific coast of Costa Rica. Aquat. Invasions 12, 435–446 (2017).Article
Google Scholar
62.Plass-Johnson, J. G. et al. Spatio-temporal patterns in the coral reef communities of the Spermonde archipelago, 2012–2014, II: Fish assemblages display structured variation related to benthic condition. Front. Mar. Sci. 5, 36 (2018).Article
Google Scholar
63.Russ, G. R., Rizzari, J. R., Abesamis, R. A. & Alcala, A. C. Coral cover a stronger driver of reef fish trophic biomass than fishing. Ecol. Appl. 31, e02224 (2020).PubMed
PubMed Central
Google Scholar
64.Atrigenio, M. P. & Aliño, P. M. Effects of the soft coral Xenia puertogalerae on the recruitment of scleractinian corals. J. Exp. Mar. Biol. Ecol. 203, 179–189 (1996).Article
Google Scholar
65.Maida, M., Sammarco, P. W. & Coll, J. C. Effects of soft corals on scleractinian coral recruitment. II: Allelopathy, spat survivorship and reef community structure. Mar. Ecol. 22, 397–414 (2001).ADS
Article
Google Scholar
66.Helber, S. B., Hoeijmakers, D. J. J., Muhando, C. A., Rohde, S. & Schupp, P. J. Sponge chemical defenses are a possible mechanism for increasing sponge abundance on reefs in Zanzibar. PLoS One 13, e0197617 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
67.de Goeij, J., Lesser, M. P. & Pawlick, J. R. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In Climate Change, Ocean Acidification and Sponges (eds Carballo, J. & Bell, J.) (Springer, 2017).
Google Scholar
68.Loh, T.-L., McMurray, S. E., Henkel, T. P., Vicente, J. & Pawlik, J. R. Indirect effects of overfishing on Caribbean reefs: Sponges overgrow reef-building corals. PeerJ 3, e901 (2015).PubMed
PubMed Central
Article
Google Scholar
69.Lesser, M. P. & Slattery, M. Will coral reef sponges be winners in the Anthropocene?. Glob. Change Biol. 26, 3202–3211 (2020).ADS
Article
Google Scholar
70.Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Annu. Rev. Mar. Sci. 12, 315–337 (2020).ADS
Article
Google Scholar
71.McMurray, S. E., Blum, J. E. & Pawlik, J. R. Redwood of the reef: Growth and age of the giant barrel sponge Xetospongia muta in the Florida Keys. Mar. Biol. 155, 159–171 (2008).Article
Google Scholar
72.Yomogida, M., Mizuyama, M., Kubomura, T. & Davis Reimer, J. Disappearance and return of an outbreak of the coral-killing cyanobacteriosponge Terpios hoshinota in Southern Japan. Zool. Stud. 56, e7 (2017).PubMed
PubMed Central
Google Scholar
73.McGrath, E. C., Woods, L., Jompa, J., Haris, A. & Bell, J. J. Growth and longevity in giant barrel sponges: Redwoods of the reef or Pines in the Indo-Pacific?. Sci. Rep. 9, 18033 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
74.De Vantier, L. & Turak, E. Managing marine tourism in Bunaken National Park and adjacent waters, North Sulawesi, Indonesia (NRM III, 2004).75.Kohler, K. & Gill, S. Coral point count with Excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).ADS
Article
Google Scholar
76.Froese, R. Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 22, 241–253 (2006).Article
Google Scholar
77.Froese, R. & Pauly, D. Editors. FishBase. World Wide Web electronic publication. http://www.fishbase.org, version (2019).78.MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).ADS
CAS
PubMed
Article
Google Scholar
79.Bierwagen, S. L., Emslie, M. J., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Reef-scale variability in fish and coral assemblages on the central Great Barrier Reef. Mar. Biol. 165, 144 (2018).Article
Google Scholar
80.R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.81.Oksanen, J., et al. Package “vegan”: Community ecology package. R package version 2.5-6 (2019).82.White, D. & Gramacy, R. B. Package “maptree”: Mapping, pruning and graphing tree models. R package version 1.4-7 (2015).83.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed
Article
Google Scholar
84.Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).Article
Google Scholar
85.Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).Article
Google Scholar
86.Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S. & Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 118, 391–402 (2009).Article
Google Scholar
87.Bello, F., Carmona, C. P., Mason, N. W. H. & Leps, J. Which trait dissimilarity for functional diversity: Trait means or trait overlap?. J. Sci. Veg. https://doi.org/10.1111/jvs.12008 (2012).Article
Google Scholar
88.Laliberté, E., Legendre, P. & Shipley B. Package “FD”: Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package version 1.-0.12 (2015). More