Stochasticity in host-parasitoid models informs mechanisms regulating population dynamics
1.Benincà, E., Ballantine, B., Ellner, S.P. & Huisman, J. Species fluctuations sustained by a cyclic succession at the edge of chaos. Proc. Natl. Acad. Sci. 112, 6389–6394 (2015).2.Lande, R. et al. Stochastic Population Dynamics in Ecology and Conservation (Oxford University Press, 2003).3.Bonsall, M. B. & Hastings, A. Demographic and environmental stochasticity in predator-prey metapopulation dynamics. J. Anim. Ecol. 73, 1043–1055 (2004).Article
Google Scholar
4.Nisbet, R. M. & Gurney, W. Modelling Fluctuating Populations: reprint of first Edition (1982) (Blackburn Press, 2003).5.Hening, A. & Nguyen, D. H. Stochastic Lotka–Volterra food chains. J. Math. Biol. 77(1), 135–163 (2018).MathSciNet
Article
Google Scholar
6.Khasminskii, R. et al. Long term behavior of solutions of the Lotka–Volterra system under small random perturbations. Ann. Appl. Probab. 11(3), 952–963 (2001).MathSciNet
Article
Google Scholar
7.Huang, W., Hauert, C. & Traulsen, A. Stochastic game dynamics under demographic fluctuations. Proc. Natl. Acad. Sci., 112(29), 9064–9069 (2015).8.Suvinthra, M. & Balachandran, K. Large deviations for the stochastic predator-prey model with nonlinear functional response. J. Appl. Probab. 54(2), 507 (2017).MathSciNet
Article
Google Scholar
9.Zou, X. & Wang, K. Optimal harvesting for a stochastic Lotka–Volterra predator-prey system with jumps and nonselective harvesting hypothesis. Optim. Control Appl. Methods 37(4), 641–662 (2016).MathSciNet
Article
Google Scholar
10.Larsen, A. E. Modeling multiple nonconsumptive effects in simple food webs: a modified Lotka–Volterra approach. Behav. Ecol. 23(5), 1115–1125 (2012).Article
Google Scholar
11.Singh, A. Stochastic dynamics of consumer-resource interactions. bioRxiv (2021).12.Bashkirtseva, I., Ryashko, L. & Tsvetkov, I. Analysis of stochastic phenomena in ricker-type population model with delay. In AIP Conference Proceedings, vol. 1895, p. 050003 (2017).13.Halley, J. M. & Iwasa, Y. Extinction rate of a population under both demographic and environmental stochasticity. Theor. Popul. Biol. 53, 1–15 (1998).CAS
Article
Google Scholar
14.Hassell, M. P. (Oxford University Press, 2000).15.Gurney, W. S. C. & Nisbet, R. M. Ecological Dynamics (Oxford University Press, 1998).16.Murdoch, W. W., Briggs, C. J. & Nisbet, R. M. Consumer-Resouse Dynamics (Princeton University Press, 2003).17.Kakehashi, N., Suzuki, Y. & Iwasa, Y. Niche overlap of parasitoids in host-parasitoid systems: its consequence to single versus multiple introduction controversy in biological control. J. Appl. Ecol. 21, 115–131 (1984).Article
Google Scholar
18.May, R. M. & Hassell, M. P. The dynamics of multiparasitoid-host interactions. Am. Nat. 117(3), 234–261 (1981).MathSciNet
Article
Google Scholar
19.Hackett-Jones, E., Cobbold, C. & White, A. Coexistence of multiple parasitoids on a single host due to differences in parasitoid phenology. Theor. Ecol. 2(1), 19–31 (2009).Article
Google Scholar
20.van Velzen, E., Pérez-Vila, S. & Etienne, R. S. The role of within-host competition for coexistence in multiparasitoid-host systems. Am. Nat. 187(1), 48–59 (2016).Article
Google Scholar
21.Nicholson, A. & Bailey, V. A. The balance of animal populations. Part 1. Proc. Zool. Soc. Lond. 3, 551–598 (1935).Article
Google Scholar
22.Singh, A., Murdoch, W. W. & Nisbet, R. M. Skewed attacks, stability, and host suppression. Ecology 90(6), 1679–1686 (2009).Article
Google Scholar
23.Bešo, E., Kalabušić, S., Mujić, N. & Pilav, E. Stability of a certain class of a host-parasitoid models with a spatial refuge effect. J. Biol. Dyn. 14(1), 1–31 (2020).MathSciNet
Article
Google Scholar
24.Taylor, A. D. Heterogeneity in host-parasitoid interactions: ‘aggregation of risk’ and the (cv^2 >1) rule. Trends Ecol. Evolu. 8, 400–405 (1993).25.Hassell, M. P., May, R. M., Pacala, S. W. & Chesson, P. L. The persistence of host-parasitoid associations in patchy environments. I. A general criterion. Am. Nat. 138, 568–583 (1991).Article
Google Scholar
26.Pacala, S. W. & Hassell, M. P. The persistence of host- parasitoid associations in patchy environments. II. Evaluation of field data. Am. Nat. 138, 584–605 (1991).Article
Google Scholar
27.Bernstein, C. Density dependence and the stability of host-parasitoid systems. Oikos 47, 176–180 (1986).Article
Google Scholar
28.Free, C., Beddington, J. & Lawton, J. On the inadequacy of simple models of mutual interference for parasitism and predation. J. Anim. Ecol. 46, 543–554 (1977).Article
Google Scholar
29.Rogers, D. & Hassell, M. General models for insect parasite and predator searching behaviour: interference. J. Anim. Ecol. 43, 239–253 (1974).Article
Google Scholar
30.Reeve, J. D., Cronin, J. T. & Strong, D. R. Parasitoid aggregation and the stabilization of a salt marsh host- parasitoid system. Ecology 75, 288–295 (1994).Article
Google Scholar
31.Rohani, P., Godfray, H. C. J. & Hassell, M. P. Aggregation and the dynamics of host-parasitoid systems: A discrete-generation model with within-generation redistribution. Am. Nat. 144(3), 491–509 (1994).Article
Google Scholar
32.May, R. M. Host-parasitoid systems in patchy environments: A phenomenological model. J. Anim. Ecol. 47, 833–844 (1978).Article
Google Scholar
33.Singh, A. & Nisbet, R. M. Semi-discrete host-parasitoid models. J. Theor. Biol. 247(4), 733–742 (2007).ADS
MathSciNet
Article
Google Scholar
34.Singh, A. Population dynamics of multi-host communities attacked by a common parasitoid, bioRxiv (2021).35.Singh, A. & Emerick, B. Hybrid systems framework for modeling host-parasitoid population dynamics. In 2020 59th IEEE Conference on Decision and Control (CDC), 4628–4633 (2020).36.Lane, S. D., St, C. M. Mary, & Getz, W. M. Coexistence of attack-limited parasitoids sequentially exploiting the same resource and its implications for biological control. Ann. Zool. Fenn. 43, 17–34 (2006).
Google Scholar
37.Pedersen, B. S. & Mills, N. J. Single vs. multiple introduction in biological control: the roles of parasitoid efficiency, antagonism and niche overlap. J. Appl. Ecol. 41(5), 973–984 (2004).Article
Google Scholar
38.Abram, P. K., Brodeur, J., Burte, V. & Boivin, G. Parasitoid-induced host egg abortion; an underappreciated component of biological control services provided by egg parasitoids. Biol. Control 98, 52–60 (2016).Article
Google Scholar
39.Jervis, M. A., Hawkin, B. A. & Kidd, N. A. C. The usefulness of destructive host-feeding parasitoids in classical biological control: Theory and observation conflict. Ecol. Entomol. 21(1), 41–46 (1996).Article
Google Scholar
40.Okuyama, T. Density-dependent distribution of parasitism risk among underground hosts. Bull. Entomol. Res. 109(4), 528–533 (2019).CAS
Article
Google Scholar
41.Cobbold, C. A., Roland, J. & Lewis, M. A. The impact of parasitoid emergence time on host-parastioid population dynamics. Theor. Popul. Biol. 75(2), 201–215 (2009).Article
Google Scholar
42.Liere, H., Jackson, D. & Vandermeer, J. Ecological complexity in a coffee agroecosystem: Spatial heterogeneity, popoulation persistence and biological control. PLoS One 7(9), e45508 (2012).43.Zoroa, N., Lesigne, E., Fernandez-Saez, M.J., Zoroa, P. & Casas, J. The coupon collector urn model with unequal probabilities in ecology and evolution, J. R. Soc. Interface 14, 20160643 (2017).44.Singh, A. & Emerick, B. Generalized stability conditions for host-parasitoid population dynamics: Implications for biological control. Ecol. Model. 456, 109656 (2021).45.Ledder, G. Mathematics for the Life Sciences: Calculus, Modeling, Probability, and Dynamical Systems (Springer Science & Business Media, 2013).46.Elaydi, S. An Introduction to Difference Equations (Springer, 1996).47.Gajic, Z. & Qureshi, M. T. J. Lyapunov matrix equation in system stability and control. (Courier Corporation, 2008).48.Singh, A. & Nisbet, R. M. Variation in risk in single-species discrete-time models. Math. Biosci. Eng. 5, 859–875 (2008).MathSciNet
Article
Google Scholar
49.Emerick, B. K. & Singh, A. The effects of host-feeding on stability of discrete-time host-parasitoid population dynamic models. Math. Biosci. 272, 54–63 (2016).MathSciNet
Article
Google Scholar
50.Pachepsky, E., Nisbet, R. M. & Murdoch, W. W. Between discrete and continuous: Consumer-resource dynamics with synchronized reproduction. Ecology 89(1), 280–288 (2007).Article
Google Scholar
51.Emerick, B. K., Singh, A & Chhetri, S. R. Global redistribution and local migration in semi-discrete host-parasitoid population dynamic models. Math. Biosci. 327, 108409 (2020).52.Rogers, D. J. Random searching and incest population models. J. Anim. Ecol. 41, 369–383 (1972).Article
Google Scholar
53.Hassell, M. P. & Comins, H. N. Sigmoid functional responses and population stability. Theor. Popul. Biol. 14, 62–66 (1978).CAS
Article
Google Scholar
54.Fernández-arhex, V. & Corley, J. C. The functional response of parasitoids and its implications for biological control. Biocontrol Sci. Technol. 13(4), 403–413 (2003).Article
Google Scholar
55.Okuyama, T. Dilution effects enhance variation in parasitism risk among hosts and stabilize host-parasitoid population dynamics. Ecol. Model. 441, 109425 (2021). More