More stories

  • in

    From individual to population level: Temperature and snow cover modulate fledging success through breeding phenology in greylag geese (Anser anser)

    1.Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. 37, 637–669 (2006).Article 

    Google Scholar 
    3.Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5(6), e157. https://doi.org/10.1371/journal.pbio.0050157 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Visser, M. E., te Marvelde, L. & Lof, M. E. Adaptive phenological mismatches of birds and their food in a warming world. J. Ornithol. 153, 75–84. https://doi.org/10.1007/s10336-011-0770-6 (2012).Article 

    Google Scholar 
    5.Miller-Rushing, A., Primack, R. & Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 10, 285–290. https://doi.org/10.1890/110278 (2012).Article 

    Google Scholar 
    6.Zohner, C. M. Phenology and the city. Nat. Ecol. Evol. 3, 1618–1619. https://doi.org/10.1038/s41559-019-1043-7 (2019).Article 
    PubMed 

    Google Scholar 
    7.Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. Lond. B 272, 2561–2569. https://doi.org/10.1098/rspb.2005.3356 (2005).Article 

    Google Scholar 
    8.Visser, M. E., Holleman, L. J. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172. https://doi.org/10.1007/s00442-005-0299-6 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    9.Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: Constraints or adaptations?. J. Anim. Ecol. 78, 73–83. https://doi.org/10.1111/j.1365-2656.2008.01458.x (2009).Article 
    PubMed 

    Google Scholar 
    10.Renner, S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182. https://doi.org/10.1146/annurev-ecolsys-110617-062535 (2018).Article 

    Google Scholar 
    11.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Sekercioglu, C. H., Schneider, S. H., Fay, J. P. & Loarie, S. R. Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 22, 140–150. https://doi.org/10.1111/j.1523-1739.2007.00852.x (2008).Article 
    PubMed 

    Google Scholar 
    13.Wingfield, J. C. et al. Putting the brakes on reproduction: Implications for conservation, global climate change and biomedicine. Gen. Comp. Endocrinol. 227, 16–26. https://doi.org/10.1016/j.ygcen.2015.10.007 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.La Sorte, F. A. & Thompson, F. R. Poleward shifts in winter ranges of North American birds. Ecology 88(7), 1803–1812. https://doi.org/10.1890/06-1072.1 (2007).Article 
    PubMed 

    Google Scholar 
    15.Visser, M. E., Perdeck, A. C., van Balen, J. H. & Both, C. Climate change leads to decreasing bird migration distances. Glob. Change Biol. 15(8), 1859–1865. https://doi.org/10.1111/j.1365-2486.2009.01865.x (2009).ADS 
    Article 

    Google Scholar 
    16.Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W. & Merilä, J. Bergmann’s rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population. PNAS 105(36), 13492–13496. https://doi.org/10.1073/pnas.0800999105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Husby, A., Visser, M. E. & Kruuk, L. E. B. Speeding up microevolution: The effects of increasing temperature on selection and genetic variance in a wild bird population. PLoS Biol. 9(2), e1000585. https://doi.org/10.1371/journal.pbio.1000585 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Jenni, L. & Kéry, M. Timing of autumn bird migration under climate change: Advances in long–distance migrants, delays in short–distance migrants. Proc. R. Soc. Lond. B. 270, 1467–1471. https://doi.org/10.1098/rspb.2003.2394 (2003).Article 

    Google Scholar 
    19.Van Buskirk, J., Mulvihill, R. S. & Leberman, R. C. Variable shifts in spring and autumn migration phenology in North American songbirds associated with climate change. Glob. Change Biol. 15, 760–771. https://doi.org/10.1111/j.1365-2486.2008.01751.x (2009).ADS 
    Article 

    Google Scholar 
    20.Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Rev. Ecol. Evol. Syst. 44, 367–368 (2013).Article 

    Google Scholar 
    21.Kubelka, V. et al. Global pattern of nest predation is disrupted by climate change in shorebirds. Science 362, 680–683 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Altmann, J., Alberts, S. C., Altmann, S. A. & Roy, S. B. Dramatic change in local climate patterns in the Amboseli basin, Kenya. Afr. J. Ecol. 40, 248–251. https://doi.org/10.1046/j.1365-2028.2002.00366.x (2002).Article 

    Google Scholar 
    23.Charmantier, A. R. H. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803. https://doi.org/10.1126/science.1157174 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Balbontin, J. et al. Individual responses in spring arrival date to ecological conditions during winter and migration in a migratory bird. J. Anim. Ecol. 78, 981–989. https://doi.org/10.1111/j.1365-2656.2009.01573.x (2009).Article 
    PubMed 

    Google Scholar 
    25.Clermont, J., Réale, D. & Giroux, J.-F. Plasticity in laying dates of Canada Geese in response to spring phenology. Ibis 160, 597–607. https://doi.org/10.1111/ibi.12560 (2018).Article 

    Google Scholar 
    26.Price, T., Kirkpatrick, M. & Arnold, S. J. Directional selection and the evolution of breeding date in birds. Science 240, 798–799. https://doi.org/10.1126/science.3363360 (1988).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Rausher, M. D. The measurement of selection on quantitative traits: Biases due to environmental covariances between traits and fitness. Evolution 46, 616–626. https://doi.org/10.1111/j.1558-5646.1992.tb02070.x (1991).Article 

    Google Scholar 
    28.Bonier, F. & Martin, P. R. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology. Proc. R. Soc. B 283, 20161887. https://doi.org/10.1098/rspb.2016.1887 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Sauve, D., Divoky, G. & Friesen, V. L. Phenotypic plasticity or evolutionary change? An examination of the phenological response of an arctic seabird to climate change. Funct. Ecol. 33, 2180–2190. https://doi.org/10.1111/1365-2435.13406 (2019).Article 

    Google Scholar 
    30.Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B 281, 20141097. https://doi.org/10.1098/rspb.2014.1097 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Lameris, T. K. et al. Climate warming may affect the optimal timing of reproduction for migratory geese differently in the low and high Arctic. Oecologia 191, 1003–1014. https://doi.org/10.1007/s00442-019-04533-7 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Bonamour, S., Chevin, L.-M., Charmantier, A. & Teplitsky, C. Phenotypic plasticity in response to climate change: The importance of cue variation. Phil. Trans. R. Soc. B 374, 20180178. https://doi.org/10.1098/rstb.2018.0178 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Ball, G. F. & Ketterson, E. D. Sex differences in the response to environmental cues regulating seasonal reproduction in birds. Philos. Trans. R. Soc. B 36, 3231–3246. https://doi.org/10.1098/rstb.2007.2137 (2007).Article 

    Google Scholar 
    34.Dunn, P. O. & Winkler, D. W. Effects of climate change on timing of breeding and reproductive success in birds. In Effects of Climate Change on Birds (eds Møller, A. P. et al.) 113–128 (Oxford University Press, 2010).
    Google Scholar 
    35.Shutt, J. D. et al. The environmental predictors of spatio-temporal variation in the breeding phenology of a passerine bird. Proc. R. Soc. B 286(1908), 20190952. https://doi.org/10.1098/rspb.2019.0952 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60. https://doi.org/10.1038/nature01333 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Dunn, P. Breeding dates and reproductive performance. Adv. Ecol. Res. 35, 69–87. https://doi.org/10.1016/S0065-2504(04)35004-X (2004).Article 

    Google Scholar 
    38.Dunn, P. O. & Winkler, D. W. Climate change has affected the breeding date of tree swallows throughout North America. Proc. R. Soc. Lond. B. 266, 2487–2490. https://doi.org/10.1098/rspb.1999.0950 (1999).CAS 
    Article 

    Google Scholar 
    39.Visser, M. E., Both, C. & Lambrechts, M. M. Global climate change leads to mistimed avian reproduction. Adv. Ecol. Res. 35, 89–110. https://doi.org/10.1016/S0065-2504(04)35005-1 (2004).Article 

    Google Scholar 
    40.Both, C., Bijlsma, R. G. & Visser, M. Climatic effects on timing of spring migration and breeding in a long-distance migrant, the pied flycatcher Ficedula hypoleuca. J. Avian Biol. 36, 368–373. https://doi.org/10.1111/j.0908-8857.2005.03484.x (2005).Article 

    Google Scholar 
    41.D’Alba, L., Monaghan, P. & Neger, R. G. Advances in laying date and increasing population size suggest positive responses to climate change in Common Eiders Somateria mollissima in Iceland. Ibis 152, 19–28. https://doi.org/10.1111/j.1474-919X.2009.00978.x (2009).Article 

    Google Scholar 
    42.Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of timing of breeding in birds: Date effects in the course of a reproductive episode. J. Avian Biol. 41, 282–291. https://doi.org/10.1111/j.1600-048X.2009.04865.x (2010).Article 

    Google Scholar 
    43.Sumasgutner, P., Tate, G. J., Koeslag, A. & Amar, A. Family morph matters: Factors determining survival and recruitment in a long-lived polymorphic raptor. J. Anim. Ecol. 85, 1043–1055. https://doi.org/10.1111/1365-2656.12518 (2016).Article 
    PubMed 

    Google Scholar 
    44.Harriman, V. B., Dawson, R. D., Bortolotti, L. E. & Clark, R. G. Seasonal patterns in reproductive success of temperate-breeding birds: Experimental tests of the date and quality hypotheses. Ecol. Evol. 7, 2122–2132. https://doi.org/10.1002/ece3.2815 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Perrins, C. M. The timing of birds’ breeding seasons. Ibis 112(2), 242–255. https://doi.org/10.1111/j.1474-919X.1970.tb00096.x (1970).Article 

    Google Scholar 
    46.Verhulst, S. & Nilsson, J. -Å. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B 363, 399–410. https://doi.org/10.1098/rstb.2007.2146 (2008).Article 

    Google Scholar 
    47.van de Pol, M. & Wright, J. A simple method for distinguishing within-versus between-subject effects using mixed models. Anim. Behav. 77, 753–758. https://doi.org/10.1016/j.anbehav.2008.11.006 (2009).Article 

    Google Scholar 
    48.Drent, R. & Daan, S. The prudent parent: Energetic adjustments in avian breeding. Ardea 68, 225–252 (1980).
    Google Scholar 
    49.Forslund, P. & Pärt, T. Age and reproduction in birds—hypotheses and tests. TREE 10, 374–378. https://doi.org/10.1016/S0169-5347(00)89141-7 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Sergio, F., Blas, J., Forero, M. G., Donzar, J. A. & Hiraldo, F. Sequential settlement and site dependence in a migratory raptor. Behav. Ecol. 18, 811–821. https://doi.org/10.1093/beheco/arm052 (2007).Article 

    Google Scholar 
    51.Lorenz, K. Here I Am–Where Are You? (Hartcourt Brace Jovanovich, 1991).
    Google Scholar 
    52.Frigerio, D., Dittami, J., Möstl, E. & Kotrschal, K. Excreted corticosterone metabolites co-vary with ambient temperature and air pressure in male Greylag geese (Anser anser). Gen. Comp. Endocrinol. 137, 29–36 (2004).CAS 
    Article 

    Google Scholar 
    53.Hemetsberger, J. Populationsbiologische Aspekte der Grünauer Graugansschar (Anser anser). PhD Thesis (University of Vienna, 2002).54.Lepage, D., Gauthier, G. & Reed, A. Seasonal variation in growth of greater snow goose goslings: The role of food supply. Oecologia 114, 226–235. https://doi.org/10.1007/s004420050440 (1998).ADS 
    Article 
    PubMed 

    Google Scholar 
    55.Lepage, D., Gauthier, G. & Menu, S. Reproductive consequences of egg-laying decisions in snow geese. J. Anim. Ecol. 69, 414–427. https://doi.org/10.1046/j.1365-2656.2000.00404.x (2000).Article 

    Google Scholar 
    56.Rozenfeld, S. B. & Sheremetiev, I. S. Barnacle Goose (Branta leucopsis) feeding ecology and trophic relationships on Kolguev Island: The usage patterns of nutritional resources in tundra and seashore habitats. Biol. Bull. Russ. Acad. Sci. 41, 645–656. https://doi.org/10.1134/S106235901408007X (2014).Article 

    Google Scholar 
    57.Iles, D. T., Rockwell, R. F. & Koons, D. N. Reproductive success of a keystone herbivore is more variable and responsive to climate in habitats with lower resource diversity. J. Anim. Ecol. 87, 1182–1191. https://doi.org/10.1111/1365-2656.12837 (2018).Article 
    PubMed 

    Google Scholar 
    58.Del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World, Vol. 1, No. 8 (Lynx edicions, 1992).59.Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. B 372, 20160135. https://doi.org/10.1098/rstb.2016.0135 (2017).Article 

    Google Scholar 
    60.Acquaotta, F., Fratianni, S. & Garzena, D. Temperature changes in the North-Western Italian Alps from 1961 to 2010. Theor. Appl. Climatol. 122(3–4), 619–634. https://doi.org/10.1007/s00704-014-1316-7 (2014).ADS 
    Article 

    Google Scholar 
    61.Angilletta, M. J. Jr. & Sears, M. W. Coordinating theoretical and empirical efforts to understand the linkages between organisms and environments. Integr. Comp. Biol. 51(5), 653–661. https://doi.org/10.1093/icb/icr091 (2011).Article 
    PubMed 

    Google Scholar 
    62.Lack, D. Ecological Adaptations for Breeding in Birds (Methuen, 1968).
    Google Scholar 
    63.Rowe, L., Ludwig, D. & Schluter, D. Time, condition, and the seasonal decline of avian clutch size. Am. Nat. 143, 698–722. https://doi.org/10.1086/285627 (1994).Article 

    Google Scholar 
    64.Drent, R. H. The timing of birds’ breeding seasons: The Perrins hypothesis revisited especially for migrants. Ardea 94, 305–322 (2006).
    Google Scholar 
    65.Prop, J. & de Vries, J. Impact of snow and food conditions on the reproductive performance of Barnacle Geese Branta leucopsis. Ornis Scand. 24, 110–121 (1993).Article 

    Google Scholar 
    66.Eichhorn, G., van der Jeugd, H. P., Meijer, H. A. J. & Drent, R. H. Fueling Incubation: Differential use of body stores in Arctic and temperate-breeding Barnacle Geese (Branta leucopsis). Auk 127, 162–172. https://doi.org/10.1525/auk.2009.09057 (2010).Article 

    Google Scholar 
    67.Newton, I. The role of food in limiting bird numbers. Ardea 68, 11–30. https://doi.org/10.5253/arde.v68.p11 (1980).Article 

    Google Scholar 
    68.Daunt, F., Wanless, S., Harris, M. & Monaghan, P. Experimental evidence that age-specific reproductive success is independent of environmental effects. Proc. R. Soc. B 266(1427), 1489–1493. https://doi.org/10.1098/rspb.1999.0805 (1999).Article 
    PubMed Central 

    Google Scholar 
    69.Chastel, O., Weimerskirch, H. & Jouventin, P. Body condition and seabird reproductive performance: A study of three petrel species. Ecology 76(7), 2240–2246. https://doi.org/10.2307/1941698 (1995).Article 

    Google Scholar 
    70.Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 68(5), 940–950. https://doi.org/10.1046/j.1365-2656.1999.00343.x (1999).Article 

    Google Scholar 
    71.Franco, A. M. A. et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Change Biol. 12(8), 1545–1553. https://doi.org/10.1111/j.1365-2486.2006.01180.x (2006).ADS 
    Article 

    Google Scholar 
    72.Heard, M. J., Riskin, S. H. & Flight, P. A. Identifying potential evolutionary consequences of climate-driven phenological shifts. Evol. Ecol. 26(3), 465–473. https://doi.org/10.1007/s10682-011-9503-9 (2012).Article 

    Google Scholar 
    73.McLean, N., Lawson, C. R., Leech, D. I. & van de Pol, M. Predicting when climate-driven phenotypic change affects population dynamics. Ecol. Lett. 19(6), 595–608. https://doi.org/10.1111/ele.12599 (2016).Article 
    PubMed 

    Google Scholar 
    74.Martay, B. et al. Impacts of climate change on national biodiversity population trends. Ecography 40, 1139–1151. https://doi.org/10.1111/ecog.02411 (2017).Article 

    Google Scholar 
    75.Cunningham, S. J., Madden, C. F., Barnard, P. & Amar, A. Electric crows: Powerlines, climate change and the emergence of a native invader. Divers. Distrib. 22, 17–29. https://doi.org/10.1111/ddi.12381 (2016).Article 

    Google Scholar 
    76.Gienapp, P. & Brommer, J. E. Evolutionary dynamics in response to climate change. In Quantitative Genetics in the Wild, 254–273 (Oxford University Press, 2014)77.Tombre, I. M., Erikstad, K. E. & Bunes, V. State-dependent incubation behaviour in the high arctic barnacle geese. Polar Biol. 35, 985–992. https://doi.org/10.1007/s00300-011-1145-4 (2012).Article 

    Google Scholar 
    78.Poussart, C., Gauthier, G. & Larochelle, J. Incubation behaviour of greater snow geese in relation to weather conditions. Can. J. Zool. 79(4), 671–678. https://doi.org/10.1139/z01-023 (2001).Article 

    Google Scholar 
    79.Lamprecht, J. Predicting current reproductive success of goose Pairs Anser indicus from male and female reproductive history. Ethology 85, 123–131 (1990).Article 

    Google Scholar 
    80.Daunt, F., Wanless, S., Harris, M. P., Money, L. & Monaghan, P. Older and wiser: Improvements in breeding success are linked to better foraging performance in European shags. Funct. Ecol. 21, 561–567. https://doi.org/10.1111/j.1365-2435.2007.01260.x (2007).Article 

    Google Scholar 
    81.Sæther, B.-E. Age-specific variation in reproductive performance of birds. Curr. Ornithol. 7, 251–283 (1990).
    Google Scholar 
    82.Goutte, A., Antoine, E., Weimerskirch, H. & Chastel, O. Age and the timing of breeding in a long-lived bird: A role for stress hormones?. Funct. Ecol. 24, 1007–1016. https://doi.org/10.1111/j.1365-2435.2010.01712.x (2010).Article 

    Google Scholar 
    83.Szipl, G. et al. Parental behaviour and family proximity as key to reproductive success in Greylag geese (Anser anser). J. Ornithol. 160, 473. https://doi.org/10.1007/s10336-019-01638-x (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Fletcher, Q. E. & Selman, C. Aging in the wild: Insights from free-living and non-model organisms. Exp. Gerontol. 71, 1–3. https://doi.org/10.1016/j.exger.2015.09.015 (2015).Article 
    PubMed 

    Google Scholar 
    85.Newton, I. & Rothery, P. Senescence and reproductive value in sparrowhawks. Ecology 78, 1000–1008. https://doi.org/10.1890/0012-9658(1997)078[1000:SARVIS]2.0.CO;2() (1997).Article 

    Google Scholar 
    86.Van de Pol, M. & Verhulst, S. Age-dependent traits: A new statistical model to separate within- and between-individual effects. Am. Nat. 167, 766–773. https://doi.org/10.1086/503331 (2006).Article 
    PubMed 

    Google Scholar 
    87.Schoech, S. J. & Hahn, T. P. Food supplementation and timing of reproduction: Does the responsiveness to supplementary information vary with latitude?. J. Ornithol. 148, 625–632. https://doi.org/10.1007/s10336-007-0177-6 (2007).Article 

    Google Scholar 
    88.Lameris, T. K. et al. Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. Curr. Biol. 28(15), 2467-2473.e4. https://doi.org/10.1016/j.cub.2018.05.077 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    89.Samplonius, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob Change Biol. 24, 3780–3790. https://doi.org/10.1111/gcb.14160 (2018).ADS 
    Article 

    Google Scholar 
    90.Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298. https://doi.org/10.1038/35077063 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    91.Phillimore, A. B., Leech, D. I., Pearce-Higgins, J. W. & Hadfield, J. D. Passerines may be sufficiently plastic to track temperature-mediated shifts in optimum lay date. Glob. Change Biol. 22, 3259–3272. https://doi.org/10.1111/gcb.13302 (2016).ADS 
    Article 

    Google Scholar 
    92.Hemetsberger, J., Weiß, B. M. & Scheiber, I. B. R. Greylag geese: from general principles to the Konrad Lorenz flock. In The social life of Greylag Geese. Patterns, Mechanisms and Evolutionary Function in an Avian model System (eds Scheiber, I. B. R. et al.) 3–25 (Cambridge University Press, 2013).Chapter 

    Google Scholar 
    93.Scheiber, I. B. R. “Tend and befriend”: the importance of social allies in coping with social stress. In The Social Life of Greylag Geese. Patterns, Mechanisms and Evolutionary Function in an Avian Model System (eds Scheiber, I. B. R. et al.) 3–25 (Cambridge University Press, 2013).Chapter 

    Google Scholar 
    94.R Development Core Team. A Language and Environment for Statistical Computing. R version 4.1.0 (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    95.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. (B) 73, 3–36 (2011).MathSciNet 
    Article 

    Google Scholar 
    96.Wood, S. N. Thin-plate regression splines. J. R. Stat. Soc. (B) 65, 95–114 (2003).MathSciNet 
    Article 

    Google Scholar 
    97.Zuur, A. F., Ieno, E. N. & Freckleton, R. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645. https://doi.org/10.1111/2041-210x.12577 (2016).Article 

    Google Scholar 
    98.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).Article 

    Google Scholar 
    99.Cribari-Neto, F. & Zeileis, A. Beta regression in R. J. Stat. Soft. 34(2), 1–24 (2010).Article 

    Google Scholar 
    100.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).
    Google Scholar 
    101.Fox, J. & Weisberg, S. An R Companion to Applied Regression, 3rd ed. https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html (2019).102.Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, 2008).Book 

    Google Scholar 
    103.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).Book 

    Google Scholar 
    104.Tremblay, A., Statistics Canada, Ransijn, J. & University of Copenhagen. LMERConvenienceFunctions: Model Selection and Post-Hoc Analysis for (G)LMER Models. R package version 3.0. https://CRAN.R-project.org/package=LMERConvenienceFunctions (2020).105.Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. Performance: Assessment of Regression Models Performance. R package version 0.4 5 (2020).106.Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, 2002).Book 

    Google Scholar 
    107.Morrissey, M. B. & Ruxton, G. D. Multiple regression is not multiple regressions: The meaning of multiple regression and the non-problem of collinearity. Philos. Theory Pract. Biol. https://doi.org/10.3998/ptpbio.16039257.0010.003 (2018).Article 

    Google Scholar 
    108.Barton, K. MuMIn: Multi-model Inference. R package version 1.10.5 (2014).109.Mazerolle, M. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R package version 2.0-1. (2014).110.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Corrigendum to “Multimodel inference in ecology and evolution: Challenges and solutions”. J. Evol. Biol. 24, 1627–1627 (2011).Article 

    Google Scholar 
    111.Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science, In R package version 2.8.7. (2021)112.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    113.Anderson, D. R., Link, W. A., Johnson, D. H. & Burnham, K. P. Suggestions for presenting the results of data analyses. J. Wildl. Manag. 65, 373–378. https://doi.org/10.2307/3803088 (2001).Article 

    Google Scholar 
    114.Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manag. 74, 1175–1178. https://doi.org/10.1111/j.1937-2817.2010.tb01236.x (2010).Article 

    Google Scholar 
    115.Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11(1), 54–71. https://doi.org/10.1037/1082-989X.11.1.54 (2006).Article 
    PubMed 

    Google Scholar 
    116.Harris, M. P., Albon, S. D. & Wanless, S. Age-related effects on breeding phenology and success of Common Guillemots Uria aalge at a North Sea colony. Bird Study 63(3), 311–318. https://doi.org/10.1080/00063657.2016.1202889 (2016).Article 

    Google Scholar 
    117.Sumasgutner, P., Koeslag, A. & Amar, A. Senescence in the city: Exploring ageing patterns of a long-lived raptor across an urban gradient. J. Avian Biol. https://doi.org/10.1111/jav.02247 (2019).Article 

    Google Scholar 
    118.Class, B. & Brommer, J. E. Senescence of personality in a wild bird. Behav. Ecol. Sociobiol. 70, 733–744. https://doi.org/10.1007/s00265-016-2096-0 (2016).Article 

    Google Scholar 
    119.Pasch, B., Bolker, B. M. & Phelps, S. M. Interspecific dominance via vocal interactions mediates altitudinal zonation in neotropical singing mice. Am. Nat. 182(5), E161–E173. https://doi.org/10.1086/673263 (2013).Article 
    PubMed 

    Google Scholar 
    120.Frigerio, D. et al. From individual to population level: temperature and snow cover modulate fledging success through breeding phenology in Greylag geese (Anser anser), Dryad, Dataset, https://doi.org/10.5061/dryad.np5hqbztd (2021). More

  • in

    Hyperspectral data as a biodiversity screening tool can differentiate among diverse Neotropical fishes

    1.McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113. https://doi.org/10.1016/j.tree.2014.11.006 (2015).Article 

    Google Scholar 
    2.Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167. https://doi.org/10.1038/nature04246 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Thomas, C. D., Franco, A. M. A. & Hill, J. K. Range retractions and extinction in the face of climate warming. Trends Ecol. Evol. 21, 415–416. https://doi.org/10.1016/j.tree.2006.05.012 (2006).Article 
    PubMed 

    Google Scholar 
    4.Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. In Annual Review of Ecology, Evolution, and Systematics, Vol. 47 (ed Futuyma, D. J.) 333–358 (Annual Reviews, 2016).5.Drew, L. W. Are we losing the science of taxonomy?: As need grows, numbers and training are failing to keep up. Bioscience 61, 942–946. https://doi.org/10.1525/bio.2011.61.12.4 (2011).Article 

    Google Scholar 
    6.Kim, K. C. & Byrne, L. B. Biodiversity loss and the taxonomic bottleneck: Emerging biodiversity science. Ecol. Res. 21, 794–810. https://doi.org/10.1007/s11284-006-0035-7 (2006).Article 

    Google Scholar 
    7.Packer, L., Grixti, J. C., Roughley, R. E. & Hanner, R. The status of taxonomy in Canada and the impact of DNA barcoding. Can. J. Zool. 87, 1097–1110. https://doi.org/10.1139/z09-100 (2009).CAS 
    Article 

    Google Scholar 
    8.Qin, H. W., Li, X., Liang, J., Peng, Y. G. & Zhang, C. S. DeepFish: Accurate underwater live fish recognition with a deep architecture. Neurocomputing 187, 49–58. https://doi.org/10.1016/j.neucom.2015.10.122 (2016).Article 

    Google Scholar 
    9.Tharwat, A., Hemedan, A. A., Hassanien, A. E. & Gabel, T. A biometric-based model for fish species classification. Fish. Res. 204, 324–336. https://doi.org/10.1016/j.fishres.2018.03.008 (2018).Article 

    Google Scholar 
    10.Gates, D. M., Keegan, H. J., Schleter, J. C. & Weidner, V. R. Spectral properties of plants. Appl. Opt. 4, 11–000. https://doi.org/10.1364/ao.4.000011 (1965).ADS 
    Article 

    Google Scholar 
    11.Hutchison, V. H. & Larimer, J. L. Reflectivity of the integuments of some lizards from different habitats. Ecology 41, 199–209. https://doi.org/10.2307/1931954 (1960).Article 

    Google Scholar 
    12.Asner, G. P. & Martin, R. E. Spectranomics: Emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob. Ecol. Conserv. 8, 212–219. https://doi.org/10.1016/j.gecco.2016.09.010 (2016).Article 

    Google Scholar 
    13.Baldeck, C. A. et al. Operational tree species mapping in a diverse tropical forest with airborne imaging spectroscopy. PLoS ONE 10, e0118403. https://doi.org/10.1371/journal.pone.0118403 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 1–5. https://doi.org/10.1038/nplants.2016.24 (2016).Article 

    Google Scholar 
    15.Leblanc, G., Francis, C. M., Soffer, R., Kalacska, M. & de Gea, J. Spectral reflectance of polar bear and other large arctic mammal pelts; potential applications to remote sensing surveys. Remote Sens. 8, 273. https://doi.org/10.3390/rs8040273 (2016).ADS 
    Article 

    Google Scholar 
    16.Dodd, C. K. Infrared reflectance in chameleons (Chamaeleonidae) from Kenya. Biotropica 13, 161–164. https://doi.org/10.2307/2388120 (1981).Article 

    Google Scholar 
    17.Pinto, F. et al. Non-invasive measurement of frog skin reflectivity in high spatial resolution using a dual hyperspectral approach. PLoS ONE 8, e73234. https://doi.org/10.1371/journal.pone.0073234 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Schwalm, P., Starrett, P. & McDiarmid, R. Infrared reflectance in leaf-sitting neotropical frogs. Science 196, 1225–1226. https://doi.org/10.1126/science.860137 (1977).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Mielewczik, M., Liebisch, F., Walter, A. & Greven, H. Near-infrared (NIR)-reflectance in insects–phenetic studies of 181 species. Entomologie heute 24, 183–215 (2012).
    Google Scholar 
    20.Bajjouk, T. et al. Detection of changes in shallow coral reefs status: Towards a spatial approach using hyperspectral and multispectral data. Ecol. Ind. 96, 174–191. https://doi.org/10.1016/j.ecolind.2018.08.052 (2019).Article 

    Google Scholar 
    21.Chennu, A., Faber, P., De’ath, G., de Beer, D. & Fabricius, K. E. A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats. Sci. Rep. 7, 1–12. https://doi.org/10.1038/s41598-017-07337-y (2017).CAS 
    Article 

    Google Scholar 
    22.Parsons, M., Bratanov, D., Gaston, K. J. & Gonzalez, F. UAVs, hyperspectral remote sensing, and machine learning revolutionizing reef monitoring. Sensors 18, 2026. https://doi.org/10.3390/s18072026 (2018).ADS 
    Article 
    PubMed Central 

    Google Scholar 
    23.Dumke, I. et al. Underwater hyperspectral imaging as an in situ taxonomic tool for deep-sea megafauna. Sci. Rep. 8, 1–11. https://doi.org/10.1038/s41598-018-31261-4 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Akkaynak, D., Siemann, L. A., Barbosa, A. & Mathger, L. M. Changeable camouflage: How well can flounder resemble the colour and spatial scale of substrates in their natural habitats?. R. Soc. Open Sci. 4, 160824. https://doi.org/10.1098/rsos.160824 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Chiao, C. C., Wickiser, J. K., Allen, J. J., Genter, B. & Hanlon, R. T. Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators. Proc. Natl. Acad. Sci. USA. 108, 9148–9153. https://doi.org/10.1073/pnas.1019090108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Hebert, P. D. & Gregory, T. R. The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859 (2005).Article 

    Google Scholar 
    27.Fricke, R., Eschmeyer, W. N. & Van de Laan, R. Eschmeyer’s Catalog of Fishes: Genera, Species, References. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (2019).28.Orti, G., Sivasundar, A., Dietz, K. & Jégu, M. Phylogeny of the Serrasalmidae (Characiformes) based on mitochondrial DNA sequences. Genet. Mol. Biol. 31, 343–351 (2008).CAS 
    Article 

    Google Scholar 
    29.Thompson, A. W., Bentancur-R, R., López-Fernández, H. & Orti, G. A time-calibrated, multi-locus phylogeny of piranhas and pacus (Characiformes: Serrasalmidae) and a comparison of species tree methods. Mol. Phylogenet. Evol. 81, 242–257 (2014).Article 

    Google Scholar 
    30.Machado, V. N. et al. One thousand DNA barcodes of piranhas and pacus reveal geographic structure and unrecognised diversity in the Amazon. Sci. Rep. 8, 1–12. https://doi.org/10.1038/s41598-018-26550-x (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129. https://doi.org/10.1126/science.aac7082 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Huie, J. M., Summers, A. P. & Kolmann, M. A. Body shape separates guilds of rheophilic herbivores (Myleinae: Serrasalmidae) better than feeding morphology. Proc. Acad. Natl. Sci. Phila. 166, 1–15. https://doi.org/10.1635/053.166.0116 (2017).Article 

    Google Scholar 
    33.Schweikert, L. E., Fitak, R. R., Caves, E. M., Sutton, T. T. & Johnsen, S. Spectral sensitivity in ray-finned fishes: Diversity, ecology and shared descent. J. Exp. Biol. 221, jeb189761. https://doi.org/10.1242/jeb.189761 (2018).Article 
    PubMed 

    Google Scholar 
    34.Stockman, A. & Sharpe, L. T. Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vis. Res. 40, 1711–1737 (2000).CAS 
    Article 

    Google Scholar 
    35.Peichl, L., Behrmann, G. & Kröger, R. H. H. For whales and seals the ocean is not blue: A visual pigment loss in marine mammals. Eur. J. Neurosci. 13, 1520–1528 (2001).CAS 
    Article 

    Google Scholar 
    36.Kelber, A. Bird colour vision—From cones to perception. Curr. Opin. Behav. Sci. 30, 34–40. https://doi.org/10.1016/j.cobeha.2019.05.003 (2019).Article 

    Google Scholar 
    37.Chikashige, T. & Iwasaka, M. Magnetically-assembled micro/mesopixels exhibiting light intensity enhancement in the (012) planes of fish guanine crystals. AIP Adv. 8, 056704. https://doi.org/10.1063/1.5006135 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Churnside, J. H. & McGillivary, P. A. Optical-properties of several pacific fishes. Appl. Opt. 30, 2925–2927. https://doi.org/10.1364/ao.30.002925 (1991).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Funt, N., Palmer, B. A., Weiner, S. & Addadi, L. Koi fish-scale iridophore cells orient guanine crystals to maximize light reflection. ChemPlusChem 82, 914–923. https://doi.org/10.1002/cplu.201700151 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Gur, D., Leshem, B., Oron, D., Weiner, S. & Addadi, L. The structural basis for enhanced silver reflectance in Koi fish scale and skin. J. Am. Chem. Soc. 136, 17236–17242. https://doi.org/10.1021/ja509340c (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Lythgoe, J. N. & Shand, J. Changes in spectral reflections from the iridophores of the neon tetra. J. Physiol. 325, 23–000. https://doi.org/10.1113/jphysiol.1982.sp014132 (1982).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Correa, S. B. & Winemiller, K. O. Niche partitioning among frugivore fishes in response to fluctuating resources in Amazonian floodplain forest. Ecology 95, 210–224 (2014).Article 

    Google Scholar 
    43.Van Nynatten, A., Bloom, D., Chang, B. S. W. & Lovejoy, N. R. Out of the blue: Adaptive visual pigment evolution accompanies Amazon invasion. Biol. Lett. 11, 20150349. https://doi.org/10.1098/rsbl.2015.0349 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Shawkey, M. D. & D’Alba, L. Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160536. https://doi.org/10.1098/rstb.2016.0536 (2017).Article 

    Google Scholar 
    45.Jordan, R. et al. Ultraviolet reflectivity in three species of lake Malawi rock-dwelling cichlids. J. Fish Biol. 65, 876–882. https://doi.org/10.1111/j.1095-8649.2004.00483.x (2004).Article 

    Google Scholar 
    46.Wilkins, L., Marshall, N. J., Johnsen, S. & Osorio, D. Modelling colour constancy in fish: Implications for vision and signalling in water. J. Exp. Biol. 219, 1884–1892. https://doi.org/10.1242/jeb.139147 (2016).Article 
    PubMed 

    Google Scholar 
    47.Andrade, M. C., Fitzgerald, D. B., Winemiller, K. O., Barbosa, P. S. & Giarrizzo, T. Trophic niche segregation among herbivorous serrasalmids from rapids of the lower Xingu River, Brazilian Amazon. Hydrobiologia 829, 265–280. https://doi.org/10.1007/s10750-018-3838-y (2019).CAS 
    Article 

    Google Scholar 
    48.Rocha, L. A. et al. Specimen collection: An essential tool. Science 344, 814. https://doi.org/10.1126/science.344.6186.814 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Alberch, P. Museums, collections and biodiversity inventories. Trends Ecol. Evol. 8, 372–375 (1993).CAS 
    Article 

    Google Scholar 
    50.Page, L. M., MacFadden, B. J., Fortes, J. A., Soltis, P. S. & Riccardi, G. Digitization of biodiversity collections reveals biggest data on biodiversity. Bioscience 65, 841–842 (2015).Article 

    Google Scholar 
    51.Peterson, A. T., Soberon, J. & Krishtalka, L. A global perspective on decadal challenges and priorities in biodiversity informatics. BMC Ecol. 15, 15 (2015).Article 

    Google Scholar 
    52.Singer, R. A., Ellis, S. & Page, L. M. Awareness and use of biodiversity collections by fish biologists. J. Fish Biol. 96, 297–306. https://doi.org/10.1111/jfb.14167 (2020).Article 
    PubMed 

    Google Scholar 
    53.Hoeksema, B. W. et al. Unforeseen importance of historical collections as baselines to determine biotic change of coral reefs: The Saba Bank case. Mar. Ecol. 32, 135–141. https://doi.org/10.1111/j.1439-0485.2011.00434.x (2011).ADS 
    Article 

    Google Scholar 
    54.Stein, E. D., Martinez, M. C., Stiles, S., Miller, P. E. & Zakharov, E. V. Is DNA barcoding actually cheaper and faster than traditional morphological methods: Results from a survey of freshwater bioassessment efforts in the United States?. PLoS ONE 9, e95525 (2014).ADS 
    Article 

    Google Scholar 
    55.Johansen, V. E., Onelli, O. D., Steiner, L. M. & Vignolini, S. in Functional Surfaces in Biology III, Vol. 10 (eds Gorb, S. N. & Gorb, E. V.) 53–89 (Springer, 2017).56.Wainwright, D. K., Lauder, G. & Weaver, J. C. Imaging biological surface topography in situ and in vivo. Methods Ecol. Evol. 8, 1626–1638. https://doi.org/10.1111/2041-210x.12778 (2017).Article 

    Google Scholar 
    57.Andrade, M. C., Giarrizzo, T. & Jégu, M. Tometes camunani (Characiformes: Serrasalmidae), a new species of phytophagous fish from the Guiana Shield, Rio Trombetas Basin, Brazil. Neotrop. Ichthyol. 11, 297–306 (2013).Article 

    Google Scholar 
    58.Généralités, I. Gery, J. Poissons characoïdes des Guyanes. II. Famille des Serrasalmidae. Zoologische Verhandelingen 122, 1–250 (1972).
    Google Scholar 
    59.Jegu, M. & Dos Santos, G. M. Le genre Serrasalmus (Pisces, Serrasalmidae) dans le bas Tocantins (Brésil, Parà), avec la description d’une espèce nouvelle, S. geryi, du bassin Araguaia-Tocantins. Revue d’Hydrobiologie Tropicale 21, 239–274 (1988).
    Google Scholar 
    60.Kolmann, M. A. et al. Phylogenomics of piranhas and pacus (Serrasalmidae) uncovers how dietary convergence and parallelism obfuscate traditional morphological taxonomy. Syst. Biol. 70(3), 576–592 (2021).CAS 
    Article 

    Google Scholar 
    61.Feller, K. D., Jordan, T. M., Wilby, D. & Roberts, N. W. Selection of the intrinsic polarization properties of animal optical materials creates enhanced structural reflectivity and camouflage. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160336. https://doi.org/10.1098/rstb.2016.0336 (2017).CAS 
    Article 

    Google Scholar 
    62.Gur, D., Palmer, B. A., Weiner, S. & Addadi, L. Light manipulation by guanine crystals in organisms: Biogenic scatterers, mirrors, multilayer reflectors and photonic crystals. Adv. Funct. Mater. 27, 1603514. https://doi.org/10.1002/adfm.201603514 (2017).CAS 
    Article 

    Google Scholar 
    63.Elmer, K., Soffer, R., Arroyo-Mora, J. P. & Kalacska, M. ASDToolkit: A novel MATLAB processing toolbox for ASD field spectroscopy data. Data 5, 96. https://doi.org/10.3390/data5040096 (2020).Article 

    Google Scholar 
    64.Kruse, F. A. et al. The spectral image-processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44, 145–163. https://doi.org/10.1016/0034-4257(93)90013-n (1993).ADS 
    Article 

    Google Scholar 
    65.Cooksey, C., Tsai, B. K. & Allen, D. A collection and statistical analysis of skin reflectance signatures for inherent variability over the 250 nm to 2500 nm spectral range. Proc. SPIE 9082, 908201–908206. https://doi.org/10.1117/12.2053604 (2014).Article 

    Google Scholar 
    66.Manolakis, D., Marden, D. & Shaw, G. A. Hyperspectral image processing for automatic target detection applications. Lincoln Lab. J. 14, 79–116 (2003).
    Google Scholar 
    67.Manolakis, D., Lockwood, R., Cooley, T. & Jacobson, J. Is There a Best Hyperspectral Detection Algorithm? Vol. 7334 (SPIE, 2009).
    Google Scholar 
    68.van der Heijden, F., Duin, R., de Ridder, D. & Tax, D. Classification, Parameter Estimation and State Estimation, an Engineering Approach using Matlab (Wiley, 2004).Book 

    Google Scholar 
    69.Johnson, M. K. & Adelson, E. H. In Cvpr: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Vols 1–4, 1070–1077 (2009).70.Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: Investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 
    Article 

    Google Scholar 
    71.Wainwright, D. K. & Lauder, G. V. Three-dimensional analysis of scale morphology in bluegill sunfish, Lepomis marochirus. Zoology 119, 182–195 (2016).Article 

    Google Scholar  More

  • in

    Principles, drivers and opportunities of a circular bioeconomy

    1.Haberl, H., Erb, K.-H. & Krausmann, F. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour. 39, 363–391 (2014).Article 

    Google Scholar 
    2.Krausmann, F. et al. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl Acad. Sci. USA 110, 10324–10329 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Steffen, W. et al. Planetary boundaries: guiding changing planet. Science 347, 1259855 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.Muscat, A., de Olde, E. M., de Boer, I. J. M. & Ripoll-Bosch, R. The battle for biomass: a systematic review of food-feed-fuel competition. Glob. Food Sec. 25, 100330 (2020).Article 

    Google Scholar 
    6.Befort, N. Going beyond definitions to understand tensions within the bioeconomy: the contribution of sociotechnical regimes to contested fields. Technol. Forecast. Soc. Change 153, 119923 (2020).Article 

    Google Scholar 
    7.Jørgensen, S. E. & Nielsen, S. N. Application of ecological engineering principles in agriculture. Ecol. Eng. 7, 373–381 (1996).Article 

    Google Scholar 
    8.Potting, J., Hekkert, M., Worrell, E. & Hanemaaijer, A. Circular Economy: Measuring Innovation in the Product Chain (PBL Netherlands Environmental Assessment Agency, 2016).9.Van Kernebeek, H. R. J., Oosting, S. J., van Ittersum, M. K., Ripoll-Bosch, R. & de Boer, I. J. M. Closing the phosphorus cycle in a food system: insights from a modelling exercise. Animal 12, 1755–1765 (2018).Article 
    CAS 

    Google Scholar 
    10.Scherhaufer, S., Moates, G., Hartikainen, H., Waldron, K. & Obersteiner, G. Environmental impacts of food waste in Europe. Waste Manag. 77, 98–113 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Global Food Losses and Food Waste: Extent, Causes and Prevention (FAO, 2011).12.van den Bos Verma, M., de Vreede, L., Achterbosch, T. & Rutten, M. M. Consumers discard a lot more food than widely believed: Estimates of global food waste using an energy gap approach and affluence elasticity of food waste. PLoS ONE 15, e0228369 (2020).CAS 
    Article 

    Google Scholar 
    13.Obesity and Overweight. WHO https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed 10 April 2020).14.Rico-Campà, A. et al. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. Brit. Med. J. 365, l1949 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Srour, B. et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). Brit. Med. J. 365, l1451 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Daystar, J., Chapman, L., Moore, M., Pires, S. & Golden, J. Quantifying apparel consumer use behavior in six countries: addressing a data need in life cycle assessment modeling. J. Text. Apparel Technol. Manag. 11, 1–25 (2019).
    Google Scholar 
    17.Mottet, A. et al. Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8 (2017).Article 

    Google Scholar 
    18.Cashion, T., Le Manach, F., Zeller, D. & Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 18, 837–844 (2017).Article 

    Google Scholar 
    19.Garnett, T. Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environ. Sci. Policy 12, 491–503 (2009).CAS 
    Article 

    Google Scholar 
    20.Goodland, R. Environmental sustainability in agriculture: diet matters. Ecol. Econ. 23, 189–200 (1997).Article 

    Google Scholar 
    21.Van Hal, O. et al. Upcycling food leftovers and grass resources through livestock: impact of livestock system and productivity. J. Clean. Prod. 219, 485–496 (2019).Article 

    Google Scholar 
    22.Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 24, 4185–4194 (2018).ADS 
    Article 

    Google Scholar 
    23.Zhou, S. et al. Balanced harvest: concept, policies, evidence, and management implications. Rev. Fish Biol. Fish. 29, 711–733 (2019).Article 

    Google Scholar 
    24.Haberl, H. & Geissler, S. Cascade utilization of biomass: strategies for a more efficient use of a scarce resource. Ecol. Eng. 16, 111–121 (2000).Article 

    Google Scholar 
    25.Suominen, T., Kunttu, J., Jasinevičius, G., Tuomasjukka, D. & Lindner, M. Trade-offs in sustainability impacts of introducing cascade use of wood. Scand. J. For. Res. 32, 588–597 (2017).Article 

    Google Scholar 
    26.Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).Article 

    Google Scholar 
    27.Max-Neef, M. in Real-Life Economics (eds Ekins, P. & Max-Neef, M.) Ch. 7 (Routledge, 1992).28.Doyal, L. & Gough, I. A Theory of Human Need (Macmillan, 1991).29.Bos-Brouwers, H., Langelaan, B. & Sanders, J. Chances for biomass. Wageningen University UR https://edepot.wur.nl/248866 (2012).30.Sandin, G. & Peters, G. M. Environmental impact of textile reuse and recycling – a review. J. Clean. Prod. 184, 353–365 (2018).CAS 
    Article 

    Google Scholar 
    31.Korhonen, J., Honkasalo, A. & Seppälä, J. Circular economy: the concept and its limitations. Ecol. Econ. 143, 37–46 (2018).Article 

    Google Scholar 
    32.Castro, M. B. G., Remmerswaal, J. A. M., Brezet, J. C. & Reuter, M. A. Exergy losses during recycling and the resource efficiency of product systems. Resour. Conserv. Recycl. 52, 219–233 (2007).Article 

    Google Scholar 
    33.Bergen, S. D., Bolton, S. M. & Fridley, J. L. Design principles for ecological engineering. Ecol. Eng. 18, 201–210 (2001).Article 

    Google Scholar 
    34.Vidal, O., Goffé, B. & Arndt, N. Metals for a low-carbon society. Nat. Geosci. 6, 894–896 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Grandell, L. & Höök, M. Assessing rare metal availability challenges for solar energy technologies. Sustainability 7, 11818–11837 (2015).CAS 
    Article 

    Google Scholar 
    36.Kovacic, Z., Strand, R. & Völker, T. The Circular Economy in Europe (Routledge, 2019).37.Dammer, L. & Essel, R. Quo Vadis, Cascading Use of Biomass? (nova Institute for Ecology and Innovation, 2015).38.Cascading Use of Biomass: Opportunities and Obstacles in EU Policies 2013–2016 (Birdlife Europe & European Environmental Bureau, 2014).39.Zabaniotou, A. Redesigning a bioenergy sector in EU in the transition to circular waste-based bioeconomy: a multidisciplinary review. J. Clean. Prod. 177, 197–206 (2018).Article 

    Google Scholar 
    40.Termeer, C. J. A. M. & Metze, T. A. P. More than peanuts: transformation towards a circular economy through a small-wins governance framework. J. Clean. Prod. 240, 118272 (2019).Article 

    Google Scholar 
    41.Velenturf, A. P. M. et al. Circular economy and the matter of integrated resources. Sci. Total Environ. 689, 963–969 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.de Boer, I. J. M. & Van Ittersum, M. K. Circularity in Agricultural Production (Wageningen University & Research, 2018); https://edepot.wur.nl/47062543.Van Eijk, F. Barriers & Drivers Towards a Circular Economy (Acceleratio, 2015); https://www.circulairondernemen.nl/uploads/e00e8643951aef8adde612123e824493.pdf44.Teigiserova, D. A., Hamelin, L. & Thomsen, M. Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resour. Conserv. Recycl. 149, 413–426 (2019).Article 

    Google Scholar 
    45.Gifford, R. & Nilsson, A. Personal and social factors that influence pro-environmental concern and behaviour: a review. Int. J. Psychol. 49, 141–157 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    46.Steg, L. & Vlek, C. Encouraging pro-environmental behaviour: an integrative review and research agenda. J. Environ. Psychol. 29, 309–317 (2009).Article 

    Google Scholar 
    47.Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Kollmuss, A. & Agyeman, J. Mind the gap: why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 8, 239–260 (2002).Article 

    Google Scholar 
    49.Rothgerber, H. Real men don’t eat (vegetable) quiche: masculinity and the justification of meat consumption. Psychol. Men Masculin. 14, 363–375 (2013).Article 

    Google Scholar 
    50.Shove, E., Watson, M. & Spurling, N. Conceptualizing connections: energy demand, infrastructures and social practices. Eur. J. Soc. Theory 18, 274–287 (2015).Article 

    Google Scholar 
    51.Barnes, S. J. Out of sight, out of mind: plastic waste exports, psychological distance and consumer plastic purchasing. Glob. Environ. Change 58, 101943 (2019).Article 

    Google Scholar 
    52.Richter, B. Knowledge and perception of food waste among German consumers. J. Clean. Prod. 166, 641–648 (2017).Article 

    Google Scholar 
    53.Schanes, K., Dobernig, K. & Gözet, B. Food waste matters: a systematic review of household food waste practices and their policy implications. J. Clean. Prod. 182, 978–991 (2018).Article 

    Google Scholar 
    54.Aschemann-Witzel, J., de Hooge, I., Amani, P., Bech-Larsen, T. & Oostindjer, M. Consumer-related food waste: causes and potential for action. Sustainability 7, 6457–6477 (2015).Article 

    Google Scholar 
    55.Priefer, C., Jörissen, J. & Bräutigam, K. R. Food waste prevention in Europe: a cause-driven approach to identify the most relevant leverage points for action. Resour. Conserv. Recycl. 109, 155–165 (2016).Article 

    Google Scholar 
    56.Ölander, F. & Thøgersen, J. Informing versus nudging in environmental policy. J. Consum. Policy 37, 341–356 (2014).Article 

    Google Scholar 
    57.Söderholm, P. Taxing virgin natural resources: lessons from aggregates taxation in Europe. Resour. Conserv. Recycl. 55, 911–922 (2011).Article 

    Google Scholar 
    58.Growth Within: A Circular Economy Vision for a Competitive Europe (Ellen Macarthur Foundation, 2015); https://www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_Growth-Within_July15.pdf59.Spierling, S., Venkatachalam, V., Behnsen, H., Herrmann, C. & Endres, H. Bioplastics and Circular Economy—Performance Indicators to Identify Optimal Pathways (Springer, 2019).60.Van Zanten, H., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E. & de Boer, I. J. M. Global food supply: land use efficiency of livestock systems. Int. J. Life Cycle Assess. 21, 747–758 (2016).Article 
    CAS 

    Google Scholar 
    61.Odegard, I., Croezen, H. & Bergsma, G. Cascading of Biomass: 13 Solutions for a Sustainable Bio-based Economy-Making Better Choices for Use of Biomass Residues, By-products and Wastes (CE Delft, 2012).62.Szarka, N., Wolfbauer, J. & Bezama, A. A systems dynamics approach for supporting regional decisions on the energetic use of regional biomass residues. Waste Manage. Res. 36, 332–341 (2018).Article 

    Google Scholar 
    63.Koppelmaki, K., Helenius, J. & Schulte, R. P. O. Nested circularity in food systems: a Nordic case study on connecting biomass, nutrient and energy flows from field scale to continent. Resour. Conserv. Recycl. 164, 105218 (2021).Article 

    Google Scholar 
    64.Mayer, A. L. Importing timber, exporting ecological impact. Science 308, 359–360 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Mayer, A., Schaffartzik, A., Haas, W. & Rojas-Sepúlveda, A. Patterns of Global Biomass Trade: Implications for Food Sovereignty and Socio-Environmental Conflicts (EJOLT, 2015).66.Raworth, K. A doughnut for the Anthropocene: humanity’s compass in the 21st century. Lancet Planet. Health 1, e48–e49 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).Article 

    Google Scholar  More

  • in

    Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science

    1.Genty, B., Wonders, J. & Baker, N. R. Non-photochemical quenching of Fo in leaves is emission wavelength dependent: consequences for quenching analysis and its interpretation. Photosynth. Res. 26, 133–139 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Franck, F., Juneau, P. & Popovic, R. Resolution of the photosystem I and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochim. Biophys. Acta 1556, 239–246 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Neubauer, C. & Schreiber, U. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side. Z. f.ür. Naturforsch. C. 42, 1246–1254 (1987).CAS 
    Article 

    Google Scholar 
    4.Strasser, R. J., Tsimilli-Michael, M. & Srivastava, A. in Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration Vol. 19 (eds Papageorgiou G. C. & Govindjee) 321–362 (Springer, 2004).5.Schreiber, U., Schliwa, U. & Bilger, W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10, 51–62 (1986).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51, 659–668 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Govindjee, E. 63 years since Kautsky-chlorophyll-a fluorescence. Aust. J. Plant Physiol. 22, 131–160 (1995).CAS 

    Google Scholar 
    8.Porcar-Castell, A. et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J. Exp. Bot. 65, 4065–4095 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Tikkanen, M., Rantala, S., Grieco, M. & Aro, E. Comparative analysis of mutant plants impaired in the main regulatory mechanisms of photosynthetic light reactions–from biophysical measurements to molecular mechanisms. Plant Physiol. Biochem. 112, 290–301 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Kolber, Z. et al. Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation. Photosynth. Res. 84, 121–129 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Keller, B. et al. Genotype specific photosynthesis × environment interactions captured by automated fluorescence canopy scans over two fluctuating growing seasons. Front. Plant Sci. 10, 1482 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Mohammed, G. H. et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 231, 111177 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Evain, S., Camenen, L. & Moya, I. Three-channel detector for remote sensing of chlorophyll fluorescence and reflectance from vegetation. In: 8th International Symposium: Physical Measurements and Signatures in Remote Sensing (ed. Leroy, M.) 395–400 (CNES, 2001).14.Louis, J. et al. Remote sensing of sunlight-induced chlorophyll fluorescence and reflectance of Scots pine in the boreal forest during spring recovery. Remote Sens. Environ. 96, 37–48 (2005).Article 

    Google Scholar 
    15.Guanter, L. et al. Estimation of solar-induced vegetation fluorescence from space measurements. Geophys. Res. Lett. 34, L08401 (2007).Article 
    CAS 

    Google Scholar 
    16.Aasen, H. et al. Sun-induced chlorophyll fluorescence II: review of passive measurement setups, protocols, and their application at the leaf to canopy level. Remote Sens. 11, 927 (2019).Article 

    Google Scholar 
    17.Yang, X. et al. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 42, 2977–2987 (2015).CAS 
    Article 

    Google Scholar 
    18.Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA 116, 11640–11645 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Bendig, J., Malenovský, Z., Gautam, D. & Lucieer, A. Solar-induced chlorophyll fluorescence measured from an unmanned aircraft system: sensor etaloning and platform motion correction. IEEE Trans. Geosci. Remote Sens. 58, 3437–3444 (2019).Article 

    Google Scholar 
    20.Vargas, J. Q. et al. Unmanned aerial systems (UAS)-based methods for solar induced chlorophyll fluorescence (SIF) retrieval with non-imaging spectrometers: state of the art. Remote Sens. 12, 1624 (2020).Article 

    Google Scholar 
    21.Rascher, U. et al. Sun-induced fluorescence—a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant. Glob. Change Biol. 21, 4673–4684 (2015).CAS 
    Article 

    Google Scholar 
    22.Frankenberg, C. et al. The chlorophyll fluorescence imaging spectrometer (CFIS), mapping far red fluorescence from aircraft. Remote Sens. Environ. 217, 523–536 (2018).Article 

    Google Scholar 
    23.Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, 17706 (2011).Article 
    CAS 

    Google Scholar 
    24.Köhler, P. et al. Global retrievals of solar-induced chlorophyll fluorescence at red wavelengths with TROPOMI. Geophys. Res. Lett. 47, e2020GL087541 (2020).Article 
    CAS 

    Google Scholar 
    25.Drusch, M. et al. The fluorescence explorer mission concept—ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 55, 1273–1284 (2016).Article 

    Google Scholar 
    26.Olascoaga, B., Mac Arthur, A., Atherton, J. & Porcar-Castell, A. A comparison of methods to estimate photosynthetic light absorption in leaves with contrasting morphology. Tree Physiol. 36, 368–379 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Zhang, Z. et al. Assessing bi-directional effects on the diurnal cycle of measured solar-induced chlorophyll fluorescence in crop canopies. Agric. Meteorol. 295, 108147 (2020).Article 

    Google Scholar 
    28.Bittner, T., Irrgang, K., Renger, G. & Wasielewski, M. R. Ultrafast excitation energy transfer and exciton-exciton annihilation processes in isolated light harvesting complexes of photosystem II (LHC II) from spinach. J. Phys. Chem. 98, 11821–11826 (1994).CAS 
    Article 

    Google Scholar 
    29.Kalaji, H. M. et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 132, 13–66 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Genty, B., Briantais, J. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87–92 (1989).CAS 
    Article 

    Google Scholar 
    31.Anderson, J. M., Chow, W. S. & Goodchild, D. J. Thylakoid membrane organisation in sun/shade acclimation. Funct. Plant Biol. 15, 11–26 (1988).Article 

    Google Scholar 
    32.Ballottari, M., Dall’Osto, L., Morosinotto, T. & Bassi, R. Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J. Biol. Chem. 282, 8947–8958 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Schreiber, U., Klughammer, C. & Kolbowski, J. Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth. Res. 113, 127–144 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Laisk, A. et al. A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves. Plant Cell Environ. 25, 923–943 (2002).CAS 
    Article 

    Google Scholar 
    35.Pfündel, E. Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynthesis Res. 56, 185–195 (1998).Article 

    Google Scholar 
    36.Peterson, R. B. et al. Fluorescence Fo of photosystems II and I in developing C3 and C4 leaves, and implications on regulation of excitation balance. Photosynth. Res. 122, 41–56 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Pfündel, E. E. Simultaneously measuring pulse-amplitude-modulated (PAM) chlorophyll fluorescence of leaves at wavelengths shorter and longer than 700 nm. Photosynth. Res. 147, 345–358 (2021).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Demmig-Adams, B. & Adams, W. W. III Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. N. Phytol. 172, 11–21 (2006).CAS 
    Article 

    Google Scholar 
    39.Porcar-Castell, A. A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris. Physiol. Plant. 143, 139–153 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Van der Tol, C., Berry, J. A., Campbell, P. & Rascher, U. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. J. Geophys. Res. 119, 2312–2327 (2014).Article 

    Google Scholar 
    41.Springer, K. R., Wang, R. & Gamon, J. A. Parallel seasonal patterns of photosynthesis, fluorescence, and reflectance indices in boreal trees. Remote Sens. 9, 691 (2017).Article 

    Google Scholar 
    42.Zhang, C. et al. Do all chlorophyll fluorescence emission wavelengths capture the spring recovery of photosynthesis in boreal evergreen foliage? Plant Cell Environ. 42, 3264–3279 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Ensminger, I. et al. Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Glob. Change Biol. 10, 995–1008 (2004).Article 

    Google Scholar 
    44.Verhoeven, A. Sustained energy dissipation in winter evergreens. New Phytol. 201, 57–65 (2014).Article 

    Google Scholar 
    45.Gu, L., Han, J., Wood, J. D., Chang, C. Y. & Sun, Y. Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytol. 223, 1179–1191 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Raczka, B. et al. Sustained nonphotochemical quenching shapes the seasonal pattern of solar-induced fluorescence at a high-elevation evergreen forest. J. Geophys. Res. 124, 2005–2020 (2019).Article 

    Google Scholar 
    47.Nixon, P. J. Chlororespiration. Philos. Trans. R. Soc. Lond. B 355, 1541–1547 (2000).CAS 
    Article 

    Google Scholar 
    48.Ogren, W. L. Photorespiration: pathways, regulation, and modification. Annu. Rev. Plant Physiol. 35, 415–442 (1984).CAS 
    Article 

    Google Scholar 
    49.Asada, K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Biol. 50, 601–639 (1999).CAS 
    Article 

    Google Scholar 
    50.Morfopoulos, C. et al. A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2. New Phytol. 203, 125–139 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Maseyk, K., Lin, T., Cochavi, A., Schwartz, A. & Yakir, D. Quantification of leaf-scale light energy allocation and photoprotection processes in a Mediterranean pine forest under extensive seasonal drought. Tree Physiol. 39, 1767–1782 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Migliavacca, M. et al. Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability. New Phytol. 214, 1078–1091 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kallel, A. FluLCVRT: Reflectance and fluorescence of leaf and canopy modeling based on Monte Carlo vector radiative transfer simulation. J. Quant. Spectrosc. Radiat. Transf. 253, 107183 (2020).CAS 
    Article 

    Google Scholar 
    54.Sabater, N. et al. Compensation of oxygen transmittance effects for proximal sensing retrieval of canopy–leaving sun–induced chlorophyll fluorescence. Remote Sens. 10, 1551 (2018).Article 

    Google Scholar 
    55.Sabater, N., Kolmonen, P., Van Wittenberghe, S., Arola, A. & Moreno, J. Challenges in the atmospheric characterization for the retrieval of spectrally resolved fluorescence and PRI region dynamics from space. Remote Sens. Environ. 254, 112226 (2021).Article 

    Google Scholar 
    56.Iermak, I., Vink, J., Bader, A. N., Wientjes, E. & van Amerongen, H. Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy. Biochim. Biophys. Acta 1857, 1473–1478 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Romero, J. M., Cordon, G. B. & Lagorio, M. G. Modeling re-absorption of fluorescence from the leaf to the canopy level. Remote Sens. Environ. 204, 138–146 (2018).Article 

    Google Scholar 
    58.Magney, T. S. et al. Disentangling changes in the spectral shape of chlorophyll fluorescence: Implications for remote sensing of photosynthesis. J. Geophys. Res. 124, 1491–1507 (2019).Article 

    Google Scholar 
    59.Murchie, E. H. et al. Measuring the dynamic photosynthome. Ann. Bot. 122, 207–220 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Magney, T. S., Barnes, M. L. & Yang, X. On the covariation of chlorophyll fluorescence and photosynthesis across scales. Geophys. Res. Lett. 47, e2020GL091098 (2020).Article 

    Google Scholar 
    61.Yang, P., van der Tol, C., Campbell, P. K. & Middleton, E. M. Unraveling the physical and physiological basis for the solar-induced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop. Biogeosciences 18, 441–465 (2021).CAS 
    Article 

    Google Scholar 
    62.Liu, X. et al. Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model. Remote Sens. Environ. 231, 110772 (2019).Article 

    Google Scholar 
    63.Joiner, J. et al. Systematic orbital geometry-dependent variations in satellite solar-induced fluorescence (SIF) retrievals. Remote Sens. 12, 2346 (2020).Article 

    Google Scholar 
    64.Dechant, B. et al. Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens. Environ. 241, 111733 (2020).Article 

    Google Scholar 
    65.He, L. et al. From the ground to space: using solar-induced chlorophyll fluorescence to estimate crop productivity. Geophys. Res. Lett. 47, e2020GL087474 (2020).
    Google Scholar 
    66.Ač, A. et al. Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sens. Environ. 168, 420–436 (2015).Article 

    Google Scholar 
    67.Wohlfahrt, G. et al. Sun-induced fluorescence and gross primary productivity during a heat wave. Sci. Rep. 8, 14169 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Van Wittenberghe, S., Alonso, L., Verrelst, J., Moreno, J. & Samson, R. Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties: A bottom-up approach. Remote Sens. Environ. 158, 169–179 (2015).Article 

    Google Scholar 
    69.Magney, T. S. et al. Connecting active to passive fluorescence with photosynthesis: A method for evaluating remote sensing measurements of Chl fluorescence. New Phytol. 215, 1594–1608 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Rajewicz, P. A., Atherton, J., Alonso, L. & Porcar-Castell, A. Leaf-level spectral fluorescence measurements: comparing methodologies for broadleaves and needles. Remote Sens. 11, 532 (2019).Article 

    Google Scholar 
    71.Van Wittenberghe, S., Alonso, L., Malenovský, Z. & Moreno, J. In vivo photoprotection mechanisms observed from leaf spectral absorbance changes showing VIS–NIR slow-induced conformational pigment bed changes. Photosynth. Res. 142, 283–305 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Meeker, E. W., Magney, T. S., Bambach, N., Momayyezi, M. & McElrone, A. J. Modification of a gas exchange system to measure active and passive chlorophyll fluorescence simultaneously under field conditions. AoB Plants 13, plaa066 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Acebron, K. et al. Diurnal dynamics of nonphotochemical quenching in Arabidopsis npq mutants assessed by solar-induced fluorescence and reflectance measurements in the field. New Phytol. 229, 2104–2119 (2020).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    74.Malenovský, Z., Lucieer, A., King, D. H., Turnbull, J. D. & Robinson, S. A. Unmanned aircraft system advances health mapping of fragile polar vegetation. Methods Ecol. Evol. 8, 1842–1857 (2017).Article 

    Google Scholar 
    75.Atherton, J., Nichol, C. J. & Porcar-Castell, A. Using spectral chlorophyll fluorescence and the photochemical reflectance index to predict physiological dynamics. Remote Sens. Environ. 176, 17–30 (2016).Article 

    Google Scholar 
    76.Van Wittenberghe, S. et al. Combined dynamics of the 500–600 nm leaf absorption and chlorophyll fluorescence changes in vivo: evidence for the multifunctional energy quenching role of xanthophylls. Biochim. Biophys. Acta 1862, 148351 (2021).Article 
    CAS 

    Google Scholar 
    77.Gamon, J. A. et al. Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85, 1–7 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Filella, I. et al. PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int. J. Remote Sens. 30, 4443–4455 (2009).Article 

    Google Scholar 
    79.Peñuelas, J., Filella, I. & Gamon, J. A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 131, 291–296 (1995).Article 

    Google Scholar 
    80.Gamon, J. A. et al. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc. Natl Acad. Sci. USA 113, 13087–13092 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Costa, J. M., Grant, O. M. & Chaves, M. M. Thermography to explore plant-environment interactions. J. Exp. Bot. 64, 3937–3949 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Konings, A. G., Rao, K. & Steele-Dunne, S. C. Macro to micro: microwave remote sensing of plant water content for physiology and ecology. New Phytol. 223, 1166–1172 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Junttila, S. et al. Terrestrial laser scanning intensity captures diurnal variation in leaf water potential. Remote Sens. Environ. 255, 112274 (2021).Article 

    Google Scholar 
    84.Whelan, M. E. Two scientific communities striving for a common cause: innovations in carbon cycle science. Bull. Am. Meteorol. Soc. 101, E1537–1543 (2020).Article 

    Google Scholar 
    85.Farquhar, G. D., von Caemmerer, S. V. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Bacour, C. et al. Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF model. J. Geophys. Res. 124, 3281–3306 (2019).Article 

    Google Scholar 
    87.Norton, A. J. et al. Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. Biogeosciences 16, 3069–3093 (2019).CAS 
    Article 

    Google Scholar 
    88.Thum, T. et al. Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe. Biogeosciences 14, 1969–1987 (2017).CAS 
    Article 

    Google Scholar 
    89.Qiu, B., Chen, J. M., Ju, W., Zhang, Q. & Zhang, Y. Simulating emission and scattering of solar-induced chlorophyll fluorescence at far-red band in global vegetation with different canopy structures. Remote Sens. Environ. 233, 111373 (2019).Article 

    Google Scholar 
    90.Johnson, J. E. & Berry, J. A. The role of Cytochrome b6f in the control of steady-state photosynthesis: a conceptual and quantitative model. Photosynth. Res. https://doi.org/10.1007/s11120-021-00840-4 (2021).91.Janoutová, R. et al. Influence of 3D spruce tree representation on accuracy of airborne and satellite forest reflectance simulated in DART. Forests 10, 292 (2019).Article 

    Google Scholar 
    92.Liu, W. et al. Simulating solar-induced chlorophyll fluorescence in a boreal forest stand reconstructed from terrestrial laser scanning measurements. Remote Sens. Environ. 232, 111274 (2019).Article 

    Google Scholar 
    93.Pinto, F. et al. Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies. Plant Cell Environ. 39, 1500–1512 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Siegmann, B. et al. The high-performance airborne imaging spectrometer HyPlant—From raw images to top-of-canopy reflectance and fluorescence products: Introduction of an automatized processing chain. Remote Sens. 11, 2760 (2019).Article 

    Google Scholar 
    95.Yang, P., van der Tol, C., Campbell, P. K. & Middleton, E. M. Fluorescence Correction Vegetation Index (FCVI): A physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence. Remote Sens. Environ. 240, 111676 (2020).Article 

    Google Scholar 
    96.Zeng, Y. et al. A radiative transfer model for solar induced fluorescence using spectral invariants theory. Remote Sens. Environ. 240, 111678 (2020).Article 

    Google Scholar 
    97.Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Wang, S. et al. Urban–rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. Nat. Ecol. Evol. 3, 1076–1085 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Long, S. P., Farage, P. K. & Garcia, R. L. Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J. Exp. Bot. 47, 1629–1642 (1996).CAS 
    Article 

    Google Scholar 
    100.Baldocchi, D. D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Change Biol. 9, 479–492 (2003).Article 

    Google Scholar 
    101.Kaiser, Y. I., Menegat, A. & Gerhards, R. Chlorophyll fluorescence imaging: a new method for rapid detection of herbicide resistance in Alopecurus myosuroides. Weed Res. 53, 399–406 (2013).CAS 
    Article 

    Google Scholar 
    102.Sievänen, R., Godin, C., DeJong, T. M. & Nikinmaa, E. Functional–structural plant models: a growing paradigm for plant studies. Ann. Bot. 114, 599–603 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Damm, A., Paul-Limoges, E., Kükenbrink, D., Bachofen, C. & Morsdorf, F. Remote sensing of forest gas exchange: considerations derived from a tomographic perspective. Glob. Change Biol. 26, 2717–2727 (2020).Article 

    Google Scholar 
    104.Ensminger, I. Fast track diagnostics: Hyperspectral reflectance differentiates disease from drought stress in trees. Tree Physiol. 40, 1143–1146 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Mutka, A. M. & Bart, R. S. Image-based phenotyping of plant disease symptoms. Front. Plant Sci. 5, 734 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    106.Zarco-Tejada, P. J. et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat. Plants 4, 432–439 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Dı́az, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    108.Skidmore, A. K. et al. Environmental science: Agree on biodiversity metrics to track from space. Nature 523, 403–405 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Tagliabue, G. et al. Sun–induced fluorescence heterogeneity as a measure of functional diversity. Remote Sens. Environ. 247, 111934 (2020).Article 

    Google Scholar 
    110.Pacheco-Labrador, J. et al. Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits. Remote Sens. Environ. 234, 111362 (2019).Article 

    Google Scholar 
    111.Smith, W. K. et al. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401 (2019).Article 

    Google Scholar 
    112.Kellner, J. R., Albert, L. P., Burley, J. T. & Cushman, K. C. The case for remote sensing of individual plants. Am. J. Bot. 106, 1139–1142 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    113.Flexas, J. et al. Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiol. Plant. 114, 231–240 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Marrs, J. K. et al. Solar-induced fluorescence does not track photosynthetic carbon assimilation following induced stomatal closure. Geophys. Res. Lett. 47, e2020GL087956 (2020).CAS 
    Article 

    Google Scholar 
    115.Maes, W. H. et al. Sun-induced fluorescence closely linked to ecosystem transpiration as evidenced by satellite data and radiative transfer models. Remote Sens. Environ. 249, 112030 (2020).Article 

    Google Scholar 
    116.Shan, N. et al. A model for estimating transpiration from remotely sensed solar-induced chlorophyll fluorescence. Remote Sens. Environ. 252, 112134 (2021).Article 

    Google Scholar 
    117.Wang, X. et al. Globally consistent patterns of asynchrony in vegetation phenology derived from optical, microwave, and fluorescence satellite data. J. Geophys. Res. Biogeosci. 125, e2020JG005732 (2020).
    Google Scholar 
    118.Liu, J. et al. Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Niño. Science 358, eaam5690 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    119.Albert, L. P. et al. Stray light characterization in a high-resolution imaging spectrometer designed for solar-induced fluorescence. In Proc. SPIE 10986, Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXV (eds Velez-Reyes, M. & Messinger, D. W.) 109860G (SPIE, 2019).120.Meroni, M. et al. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 113, 2037–2051 (2009).Article 

    Google Scholar 
    121.Cendrero-Mateo, M. P. et al. Sun-induced chlorophyll fluorescence III: Benchmarking retrieval methods and sensor characteristics for proximal sensing. Remote Sens. 11, 962 (2019).Article 

    Google Scholar 
    122.Vilfan, N. et al. Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics. Remote Sens. Environ. 211, 345–356 (2018).Article 

    Google Scholar 
    123.Yang, P., Prikaziuk, E., Verhoef, W. & van der Tol, C. SCOPE 2.0: A model to simulate vegetated land surface fluxes and satellite signals. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2020-251 (2020).124.Gastellu-Etchegorry, J. et al. DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 2640–2649 (2017).Article 

    Google Scholar  More

  • in

    Rodent host population dynamics drive zoonotic Lyme Borreliosis and Orthohantavirus infections in humans in Northern Europe

    1.Taylor, L. H., Latham, S. M. & Woolhouse, M. E. J. Risk factors for human disease emergence. Philos. Trans. R. Soc. B Biol. Sci. 356, 983–989 (2001).CAS 
    Article 

    Google Scholar 
    2.Karesh, W. B. et al. Ecology of zoonoses: Natural and unnatural histories. Lancet 380, 1936–1945 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Zhang, T., Wu, Q. & Zhang, Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 30, 1346-1351.e2 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl. Acad. Sci. 112, 7039–7044 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl. Acad. Sci. 117, 9423 LP – 9430 (2020).Article 
    CAS 

    Google Scholar 
    9.Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special?. Proc. R. Soc. B Biol. Sci. 280, 20122753 (2013).Article 

    Google Scholar 
    10.Wardeh, M., Sharkey, K. J. & Baylis, M. Integration of shared-pathogen networks and machine learning reveals the key aspects of zoonoses and predicts mammalian reservoirs. Proc. R. Soc. B Biol. Sci. 287, 20192882 (2020).CAS 
    Article 

    Google Scholar 
    11.Maes, P. et al. Taxonomy of the order Bunyavirales: Second update 2018. Arch. Virol. 164, 927–941 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Vapalahti, K., Virtala, A.-M., Vaheri, A. & Vapalahti, O. Case-control study on Puumala virus infection: Smoking is a risk factor. Epidemiol. Infect. 138, 576–584 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Vaheri, A. et al. Hantavirus infections in Europe and their impact on public health. Rev. Med. Virol. 23, 35–49 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Avšič-Županc, T., Saksida, A. & Korva, M. Hantavirus infections. Clin. Microbiol. Infect. 21, e6–e16 (2019).Article 

    Google Scholar 
    15.Olsson, G. E., Leirs, H. & Henttonen, H. Hantaviruses and their hosts in Europe: Reservoirs here and there, but not everywhere?. Vector-Borne Zoonotic Dis. 10, 549–561 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Cook, M. J. Lyme borreliosis: A review of data on transmission time after tick attachment. Int. J. Gen. Med. 8, 1–8 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Sykes, R. A. & Makiello, P. An estimate of Lyme borreliosis incidence in Western Europe†. J. Public Health (Bangkok) 39, 74–81 (2016).
    Google Scholar 
    18.Kuehn, B. M. CDC estimates 300000 US cases of lyme disease annually. JAMA J. Am. Med. Assoc. 310, 1110 (2013).CAS 
    Article 

    Google Scholar 
    19.Davis, S., Calvet, E. & Leirs, H. Review fluctuating rodent populations and risk to humans from rodent-borne zoonoses. Vector-Borne Zoonotic Dis. 5, 305–314 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Tian, H. Y. et al. Changes in rodent abundance and weather conditions potentially drive hemorrhagic fever with renal syndrome outbreaks in Xi’an, China, 2005–2012. PLoS Negl. Trop. Dis. 9, 2005–2012 (2015).Article 
    CAS 

    Google Scholar 
    21.Kallio, E. R. et al. Cyclic hantavirus epidemics in humans: Predicted by rodent host dynamics. Epidemics 1, 101–107 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Korpela, K. et al. Predator–vole interactions in northern Europe: The role of small mustelids revised. Proc. R. Soc. B Biol. Sci. 281, 20142119 (2014).Article 

    Google Scholar 
    24.Korpimäki, E., Norrdahl, K., Huitu, O. & Klemola, T. Predator-induced synchrony in population oscillations of coexisting small mammal species. Proc. R. Soc. B Biol. Sci. 272, 193–202 (2005).Article 

    Google Scholar 
    25.Hanski, I., Henttonen, H., Korpimäki, E., Oksanen, L. & Turchin, P. Small-rodent dynamics and predation. Ecology 82, 1505–1520 (2001).Article 

    Google Scholar 
    26.Hansson, L. & Henttonen, H. Rodent dynamics as community processes. Trends Ecol. Evol. 3, 195–200 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Sane, J. et al. Regional differences in long-term cycles and seasonality of Puumala virus infections, Finland, 1995–2014. Epidemiol. Infect. 144, 2883–2888 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Vapalahti, O. et al. Hantavirus infections in Europe. Lancet Infect. Dis. 3, 653–661 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Olsson, G. E., Hjertqvist, M., Lundkvist, Å. & Hörnfeldt, B. Predicting high risk for human hantavirus infections, Sweden. Emerg. Infect. Dis. 15, 104–106 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Khalil, H., Ecke, F., Evander, M., Bucht, G. & Hörnfeldt, B. Population dynamics of bank voles predicts human puumala hantavirus risk. EcoHealth 16, 545–557 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Jones, C. G., Ostfeld, R. S., Richard, M. P., Schauber, E. M. & Wolff, J. O. Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279, 1023–1026 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. & Keesing, F. The ecology of infectious disease: Effects of host diversity and community composition on lyme disease risk. Proc. Natl. Acad. Sci. U. S. A. 100, 567–571 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Ostfeld, R. S., Canham, C. D., Oggenfuss, K., Winchcombe, R. J. & Keesing, F. Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol. 4, 1058–1068 (2006).CAS 
    Article 

    Google Scholar 
    34.Van Duijvendijk, G., Sprong, H. & Takken, W. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: A review. Parasit. Vectors 8, 1 (2015).Article 
    CAS 

    Google Scholar 
    35.Krawczyk, A. I. et al. Effect of rodent density on tick and tick-borne pathogen populations: Consequences for infectious disease risk. Parasit. Vectors 13, 34 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Bregnard, C., Rais, O. & Voordouw, M. J. Climate and tree seed production predict the abundance of the European Lyme disease vector over a 15-year period. Parasit. Vectors 13, 1–12 (2020).Article 

    Google Scholar 
    37.Bregnard, C., Rais, O. & Voordouw, M. J. Masting by beech trees predicts the risk of Lyme disease. Parasit. Vectors 14, 1–22 (2021).Article 
    CAS 

    Google Scholar 
    38.Schauber, E. M., Ostfeld, R. S. & Evans, A. S. What is the best predictor of annual lyme disease incidence: Weather, mice, or acorns?. Ecol. Appl. 15, 575–586 (2005).Article 

    Google Scholar 
    39.Tkadlec, E., Václavík, T. & Široký, P. Rodent host abundance and climate variability as predictors of tickborne disease risk 1 year in advance. Emerg. Infect. Dis. 25, 1738–1741 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Bogdziewicz, M. & Szymkowiak, J. Oak acorn crop and Google search volume predict Lyme disease risk in temperate Europe. Basic Appl. Ecol. 17, 300–307 (2016).Article 

    Google Scholar 
    41.Pietiäinen, H., Sundell, J., Valkama, J. & Huitu, O. vole interactions in northern Europe: The role of− Predator. (2014).42.Lindgren, E. & Jaenson, T. G. T. Lyme borreliosis in Europe: Influences of climate and climate change, epidemiology, ecology and adaptation measures. World Heal. Org. https://doi.org/10.1093/ntr/ntu261 (2006).Article 

    Google Scholar 
    43.Laaksonen, M. et al. Tick-borne pathogens in Finland: Comparison of Ixodes ricinus and I. persulcatus in sympatric and parapatric areas. Parasit. Vectors 11, 556 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Sajanti, E. et al. Lyme borreliosis in Finland in 1995–2014. Emerg. Infect. Dis. 23, 128–1288 (2017).Article 

    Google Scholar 
    45.Amori, G. et al. Myodes glareolus. In:The IUCN Red List of Threatened Species. (2007) (accessed 28 February 2020). https://www.iucnredlist.org/species/4973/1110516846.Brummer-Korvenkontio, M. et al. Nephropathia epidemica: Detection of antigen in bank voles and serologic diagnosis of human infection. J. Infect. Dis. 141, 131–134 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Kurtenbach, K. et al. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat. Rev. Microbiol. 4, 660–669 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Hanincová, K. et al. Association of Borrelia afzelii with rodents in Europe. Parasitology 126, 11–20 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Tälleklint, L., Jaenson, T. G. T. & Mather, T. N. Seasonal variation in the capacity of the bank vole to infect larval ticks (Acari: Ixodidae) with the lyme disease spirochete, Borrelia burgdorferi. J. Med. Entomol. 30, 812–815 (1993).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Gern, L. et al. European reservoir hosts of Borrelia burgdorferi sensu lato. Zentralblatt fur Bakteriol. 287, 196–204 (1998).CAS 
    Article 

    Google Scholar 
    51.Tersago, K. et al. Hantavirus outbreak in Western Europe: Reservoir host infection dynamics related to human disease patterns. Epidemiol. Infect. 139, 381–390 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Jaenson, T. G. T., Hjertqvist, M., Bergström, T. & Lundkvist, Å. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Swedena. Parasit. Vectors 5, 184 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Kurokawa, C. et al. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol. 18, 587–600 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Korpela, K. et al. Nonlinear effects of climate on boreal rodent dynamics: Mild winters do not negate high-amplitude cycles. Glob. Chang. Biol. 19, 697–710 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Koivula, M., Koskela, E., Mappes, T. & Oksanen, T. A. Cost of reproduction in the wild: Manipulation of reproductive effort in the bank vole. Ecology 84, 398–405 (2003).Article 

    Google Scholar 
    56.Cayol, C., Koskela, E., Mappes, T., Siukkola, A. & Kallio, E. R. Temporal dynamics of the tick Ixodes ricinus in northern Europe: Epidemiological implications. Parasit. Vectors 10, 1–11 (2017).Article 

    Google Scholar 
    57.Rösch, A. & Schmidbauer, H. WaveletComp: Computational Wavelet Analysis. R package version 1.1. (2018).58.R Core Team. R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. Vienna, Austria (2019).59.Cazelles, B., Chavez, M., De Magny, G. C., Guégan, J. F. & Hales, S. Time-dependent spectral analysis of epidemiological time-series with wavelets. J. R. Soc. Interface 4, 625–636 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Pinherio, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. R package Version 3. 1–142 (2019).61.Ostfeld, R. S. et al. Effects of acorn production and mouse abundance on abundance and Borrelia burgdorferi infection prevalence of nymphal Ixodes scapularis ticks. Vector Borne Zoonotic Dis. 1, 55–63 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Kallio, E. R. et al. Prolonged survival of Puumala hantavirus outside the host: Evidence for indirect transmission via the environment. J. Gen. Virol. 87, 2127–2134 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference, A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).https://doi.org/10.1007/978-0-387-22456-5_7 .Book 
    MATH 

    Google Scholar 
    64.Barton, K. MuMIn: Multi-Model Inference. (2019).65.Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 26, 1–22 (2008).
    Google Scholar 
    66.Estrada-Peña, A., Gray, J. S., Kahl, O., Lane, R. S. & Nijhof, A. M. Research on the ecology of ticks and tick-borne pathogens-methodological principles and caveats. Front. Cell. Infect. Microbiol. 4, 1–12 (2013).
    Google Scholar 
    67.Lindgren, E., Tälleklint, L. & Polfeldt, T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ. Health Perspect. 108, 119–123 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Tian, H. et al. Interannual cycles of Hantaan virus outbreaks at the human-animal interface in Central China are controlled by temperature and rainfall. Proc. Natl. Acad. Sci. U. S. A. 114, 8041–8046 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Xiao, H. et al. Atmospheric moisture variability and transmission of hemorrhagic fever with renal syndrome in Changsha City, Mainland China, 1991–2010. PLoS Negl. Trop. Dis. 7, 1–7 (2013).CAS 

    Google Scholar 
    70.Guan, P. et al. Investigating the effects of climatic variables and reservoir on the incidence of hemorrhagic fever with renal syndrome in Huludao City, China: A 17-year data analysis based on structure equation model. BMC Infect. Dis. 9, 1 (2009).Article 

    Google Scholar 
    71.Amirpour Haredasht, S. et al. Modelling seasonal and multi-annual variation in bank vole populations and nephropathia epidemica. Biosyst. Eng. 121, 25–37 (2014).Article 

    Google Scholar 
    72.Hardestam, J. et al. Puumala hantavirus excretion kinetics in bank voles (Myodes glareolus). Emerg. Infect. Dis. 14, 1209–1215 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Levi, T., Kilpatrick, A. M., Mangel, M. & Wilmers, C. C. Deer, predators, and the emergence of Lyme disease. Proc. Natl. Acad. Sci. 109, 10942–10947 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Ostfeld, R. S., Levi, T., Keesing, F., Oggenfuss, K. & Canham, C. D. Tick-borne disease risk in a forest food web. Ecology 99, 1562–1573 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Wilhelmsson, P. et al. Ixodes ricinus ticks removed from humans in Northern Europe: Seasonal pattern of infestation, attachment sites and duration of feeding. Parasit. Vectors 6, 362 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Radolf, J. D., Caimano, M. J., Stevenson, B. & Hu, L. T. Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 10, 87–99 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Otranto, D. et al. Ticks infesting humans in Italy and associated pathogens. Parasit. Vectors 7, 328 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Faulde, M. K. et al. Human tick infestation pattern, tick-bite rate, and associated Borrelia burgdorferi s.l. infection risk during occupational tick exposure at the Seedorf military training area, northwestern Germany. Ticks Tick. Borne. Dis. 5, 594–599 (2014).PubMed 
    Article 

    Google Scholar 
    79.Gustav, T., Jaenson, T., Lundqvist, L., Olsen, B. & Chirico, J. Geographical distribution, host associations, and vector roles of ticks (Acari: Ixodidae, Argasidae) in Sweden mites and insects view project flavivirus view project. Artic. J. Med. Entomol. https://doi.org/10.1093/jmedent/31.2.240 (1994).Article 

    Google Scholar 
    80.Jaenson, T. G. T. et al. First evidence of established populations of the taiga tick Ixodes persulcatus (Acari: Ixodidae) in Sweden. Parasit. Vectors 9, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    81.Jaenson, T. G. T. & Wilhelmsson, P. First records of tick-borne pathogens in populations of the taiga tick Ixodes persulcatus in Sweden. Parasit. Vectors 12, 559 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Pakanen, V. M., Sormunen, J. J., Sippola, E., Blomqvist, D. & Kallio, E. R. Questing abundance of adult taiga ticks Ixodes persulcatus and their Borrelia prevalence at the north-western part of their distribution. Parasit. Vectors 13, 384 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Laaksonen, M. et al. Crowdsourcing-based nationwide tick collection reveals the distribution of Ixodes ricinus and I. persulcatus and associated pathogens in Finland. Emerg. Microbes Infect. 6, 1–7 (2017).Article 
    CAS 

    Google Scholar 
    84.Kovalevskii, Y. V. & Korenberg, E. I. Differences in Borrelia infections in adult Ixodes persulcatus and Ixodes ricinus ticks (Acari: Ixodidae) in populations of north-western Russia. Exp. Appl. Acarol. 19, 19–29 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Hanski, I., Hansson, L. & Henttonen, H. Specialist predators, generalist predators, and the microtine rodent cycle. J. Anim. Ecol. https://doi.org/10.2307/5465 (1991).Article 

    Google Scholar 
    86.Massey, F., Smith, M., Lambin, X. & Hartley, S. Are silica defences in grasses driving vole population cycles?. Biol. Lett. 4, 419–422 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Kołodziej-Sobocińska, M. Factors affecting the spread of parasites in populations of wild European terrestrial mammals. Mammal Res. 64, 301–318 (2019).Article 

    Google Scholar 
    88.Mysterud, A. et al. Contrasting emergence of Lyme disease across ecosystems. Nat. Commun. 7, 1 (2016).Article 
    CAS 

    Google Scholar 
    89.Rosà, R. & Pugliese, A. Effects of tick population dynamics and host densities on the persistence of tick-borne infections. Math. Biosci. 208, 216–240 (2007).MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    90.Rosà, R., Pugliese, A., Ghosh, M., Perkins, S. E. & Rizzoli, A. Temporal variation of Ixodes ricinus intensity on the rodent host Apodemus flavicollis in relation to local climate and host dynamics. Vector-Borne Zoonotic Dis. 7, 285–295 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Halsey, S. J. & Miller, J. R. Maintenance of Borrelia burgdorferi among vertebrate hosts: A test of dilution effect mechanisms. Ecosphere 11, e03048 (2020).Article 

    Google Scholar 
    92.Ostfeld, R. S. & Keesing, F. Biodiversity and disease risk: The case of Lyme disease. Conserv. Biol. 14, 722–728 (2000).Article 

    Google Scholar 
    93.Murray, T. S. & Shapiro, E. D. Lyme disease. Clin. Lab. Med. 30, 311–328 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Kramski, M., Achazi, K., Klempa, B. & Krüger, D. H. Nephropathia epidemica with a 6-week incubation period after occupational exposure to Puumala hantavirus. J. Clin. Virol. 44, 99–101 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Voutilainen, L., Kallio, E. R., Niemimaa, J., Vapalahti, O. & Henttonen, H. Temporal dynamics of Puumala hantavirus infection in cyclic populations of bank voles. Sci. Rep. 6, 1–15 (2016).Article 
    CAS 

    Google Scholar 
    96.Klemola, T., Korpimaki, E. & Koivula, M. Rate of population change in voles from different phases of the population cycle. Oikos 96, 291–298 (2002).Article 

    Google Scholar  More

  • in

    Plant death caused by inefficient induction of antiviral R-gene-mediated resistance may function as a suicidal population resistance mechanism

    1.Collier, S. M. & Moffett, P. NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci. 14, 521–529 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Cooley, M. B., Pathirana, S., Wu, H. J., Kachroo, P. & Klessig, D. F. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12, 663–676 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Takahashi, H. et al. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J. 32, 655–667 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.de Ronde, D., Butterbach, P. & Kormelink, R. Dominant resistance against plant viruses. Front. Plant Sci. 5, 307 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Takahashi, H. et al. Cyclic nucleotide-gated ion channel-mediated cell death may not be critical for R gene-conferred resistance to cucumber mosaic virus in Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 79, 40–48 (2012).CAS 
    Article 

    Google Scholar 
    6.Wright, K. et al. Analysis of the N gene hypersensitive response induced by a fluorescently tagged tobacco mosaic virus. Plant Physiol. 123, 1375–1385 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Lukan, T. et al. Cell death is not sufficient for the restriction of potato virus Y spread in hypersensitive response-conferred resistance in potato. Front. Plant Sci. 9, 168 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Bendahmane, A., Kanyuka, K. & Baulcombe, D. C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11, 781–791 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Sekine, K. T. et al. High level expression of a virus resistance gene, RCY1, confers extreme resistance to cucumber mosaic virus in Arabidopsis thaliana. Mol. Plant Microbe Interact. 21, 1398–1407 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Grech-Baran, M. et al. Extreme resistance to potato virus Y in potato carrying the Rysto gene is mediated by a TIR-NLR immune receptor. Plant Biotechnol. J. 18, 655–667 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Patel, P. N. Genetics of cowpea reactions to two strains of cowpea mosaic virus from Tanzania. Phytopathology 72, 460–466 (1982).Article 

    Google Scholar 
    12.Kiraly, L., Cole, A. B., Bourque, J. E. & Schoelz, J. E. Systemic cell death is elicited by the interaction of a single gene in Nicotiana clevelandii and gene VI of cauliflower mosaic virus. Mol. Plant Microbe Interact. 12, 919–925 (1999).CAS 
    Article 

    Google Scholar 
    13.Jones, R. A. C. & Smith, L. J. Inheritance of hypersensitive resistance to bean yellow mosaic virus in narrow-leafed lupin (Lupinus angustifolius). Ann. Appl. Biol. 146, 539–543 (2005).Article 

    Google Scholar 
    14.Ravelo, G., Kagaya, U., Inukai, T., Sato, M. & Uyeda, I. Genetic analysis of lethal tip necrosis induced by clover yellow vein virus infection in pea. J. Gen. Plant Pathol. 73, 59–65 (2007).CAS 
    Article 

    Google Scholar 
    15.Atsumi, G., Kagaya, U., Kitazawa, H., Nakahara, K. S. & Uyeda, I. Activation of the salicylic acid signaling pathway enhances clover yellow vein virus virulence in susceptible pea cultivars. Mol. Plant Microbe Interact. 22, 166–175 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Nyalugwe, E. P., Barbetti, M. J. & Jones, R. A. C. Studies on resistance phenotypes to turnip mosaic virus in five species of Brassicaceae, and identification of a virus resistance gene in Brassica juncea. Eur. J. Plant Pathol. 141, 647–666 (2015).CAS 
    Article 

    Google Scholar 
    17.Kehoe, M. A. & Jones, R. A. C. Improving potato virus Y strain nomenclature: lessons from comparing isolates obtained over a 73-year period. Plant Pathol. 65, 322–333 (2016).CAS 
    Article 

    Google Scholar 
    18.Jones, R. A. C. & Vincent, S. J. Strain-specific hypersensitive and extreme resistance phenotypes elicited by potato virus Y among 39 potato cultivars released in three world regions over a 117-year period. Plant Dis. 102, 185–196 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Xu, P., Blancaflor, E. B. & Roossinck, M. J. In spite of induced multiple defense responses, tomato plants infected with cucumber mosaic virus and D satellite RNA succumb to systemic necrosis. Mol. Plant Microbe Interact. 16, 467–476 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Seo, Y. S. et al. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proc. Natl Acad. Sci. U. S. A. 103, 11856–11861 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Kim, B., Masuta, C., Matsuura, H., Takahashi, H. & Inukai, T. Veinal necrosis induced by turnip mosaic virus infection in Arabidopsis is a form of defense response accompanying HR-like cell death. Mol. Plant Microbe Interact. 21, 260–268 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Nyalugwe, E. P., Barbetti, M. J., Clode, P. L. & Jones, R. A. C. Systemic hypersensitive resistance to turnip mosaic virus in Brassica juncea is associated with multiple defense responses, especially phloem necrosis and xylem occlusion. Plant Dis. 100, 1261–1270 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Komatsu, K. et al. Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways. Mol. Plant-Microbe Interact. 23, 283–293 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Mandadi, K. K. & Scholthof, K. B. G. Plant immune responses against viruses: how does a virus cause disease? Plant Cell 25, 1489–1505 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Michel, V. et al. NtTPN1: a RPP8-like R gene required for potato virus Y-induced veinal necrosis in tobacco. Plant J. 95, 700–714 (2018).CAS 
    Article 

    Google Scholar 
    26.Ando, S., Miyashita, S. & Takahashi, H. Plant defense systems against cucumber mosaic virus: lessons learned from CMV–Arabidopsis interactions. J. Gen. Plant Pathol. 85, 174–181 (2019).Article 

    Google Scholar 
    27.Takahashi, H. et al. Mapping the virus and host genes involved in the resistance response in cucumber mosaic virus-infected Arabidopsis thaliana. Plant Cell Physiol. 42, 340–347 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Takahashi, H. et al. RCY1-mediated resistance to cucumber mosaic virus is regulated by LRR domain-mediated interaction with CMV(Y) following degradation of RCY1. Mol. Plant Microbe Interact. 25, 1171–1185 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Ishihara, T., Sato, Y. & Takahashi, H. Microarray analysis of R-gene-mediated resistance to viruses in Plant Virology Protocols, Methods in Molecular Biology (eds Uyeda, I. & Masuta, C.) 197–218 (Humana Press, 2015). https://doi.org/10.1007/978-1-4939-1743-3_1530.Takebe, I. & Ohtsuki, Y. Infection of tobacco mesophyll protoplasts by tobacco mosaic virus. Proc. Natl Acad. Sci. U. S. A. 64, 843–848, https://www.pnas.org/content/64/3/843 (1969).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Hibi, T., Rezelman, G. & van Kammen, A. Infection of cowpea mesophyll protoplasts with cowpea mosaic virus. Virology 64, 308–318 (1975).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Motoyoshi, F., Hull, R. & Flack, I. H. Infection of tobacco mesophyll protoplasts by alfalfa mosaic virus. J. Gen. Virol. 27, 263–266 (1975).Article 

    Google Scholar 
    33.Renaudin, J., Bove, J. M., Otsuki, Y. & Takebe, I. Infection of brassica protoplasts by turnip yellow mosaic virus. Mol. Gen. Genet. 141, 59–68 (1975).Article 

    Google Scholar 
    34.Okuno, H., Furusawa, I. & Hiruki, C. Infection of barley protoplasts with brome mosaic virus. Phytopathology 67, 610–615 (1977).CAS 
    Article 

    Google Scholar 
    35.French, R. & Stenger, D. C. Evolution of wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation. Annu. Rev. Phytopathol. 41, 199–214 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Miyashita, S. & Kishino, H. Estimation of the size of genetic bottlenecks in cell-to-cell movement of soil-borne wheat mosaic virus and the possible role of the bottlenecks in speeding up selection of variations in trans-acting genes or elements. J. Virol. 84, 1828–1837 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Miyashita, S., Ishibashi, K., Kishino, H. & Ishikawa, M. Viruses roll the dice: the stochastic behavior of viral genome molecules accelerates viral adaptation at the cell and tissue levels. PLoS Biol. 13, e1002094 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Nemecek, T., Fischlin, A., Derron, J. & Roth, O. Distance and direction of trivial flights of aphids in a potato field. Syst. Ecol. ETHZ (1993).39.Takahashi, H., Fukuhara, T., Kitazawa, H. & Kormelink, R. Virus latency and the impact on plants. Front. Microbiol. 10, 2764 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Farkas, G., Kiraly, Z. & Solymosy, F. Role of oxidative metabolism in the localization of plant viruses. Virology 12, 408–421 (1960).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Kiraly, L., Hafez, Y., Fodor, J. & Kiraly, Z. Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J. Gen. Virol. 89, 799–808 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Hafez, Y., Bacso, R., Kiraly, Z., Kunstler, A. & Kiraly, L. Up-regulation of antioxidants in tobacco by low concentrations of H2O2 suppresses necrotic disease symptoms. Phytopathology 102, 848–856 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Kunstler, A., Bacso, R., Gullner, G., Hafez, Y. & Kiraly, L. Staying alive – is cell death dispensable for plant disease resistance during the hypersensitive response? Physiol. Mol. Plant Pathol. 93, 75–84 (2016).Article 

    Google Scholar 
    44.Xie, Z., Fan, B., Chen, C. & Chen, Z. An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc. Natl Acad. Sci. U. S. A. 98, 6516–6521 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Li, W. et al. Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of soybean mosaic virus. Plant Cell Rep. 31, 905–916 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Miyashita, S. Studies on replication and evolution mechanisms of plant RNA viruses. J. Gen. Plant Pathol. 84, 427–428 (2018).CAS 
    Article 

    Google Scholar 
    47.Qu, F. et al. Bottleneck, Isolate, Amplify, Select (BIAS) as a mechanistic framework for intracellular population dynamics of positive sense RNA viruses. Virus Evol. 6, veaa86 (2020).Article 

    Google Scholar 
    48.Gonzalez-Jara, P., Fraile, A., Canto, T. & Garcia-Arenal, F. The multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. J. Virol. 83, 7487–7494 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Gutierrez, S. et al. Dynamics of the multiplicity of cellular infection in a plant virus. PLoS Pathog. 6, e1001113 (2010).50.Moury, B., Fabre, F., Hebrard, E. & Froissart, R. Determinants of host species range in plant viruses. J. Gen. Virol. 98, 862–873 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.McLeish, M. J., Fraile, A. & Garcia-Arenal, F. Evolution of plant–virus interactions: host range and virus emergence. Curr. Opin. Virol. 34, 50–55 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Gao, Y. et al. Out of water: the origin and early diversification of plant R-genes. Plant Physiol. 177, 82–89 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Chandra-Shekara, A. C. et al. Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant J. 40, 647–659 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Ando, S., Obinata, A. & Takahashi, H. WRKY70 interacting with RCY1 disease resistance protein is required for resistance to cucumber mosaic virus in Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 85, 8–15 (2014).CAS 
    Article 

    Google Scholar 
    55.Fukuyo, M., Sasaki, A. & Kobayashi, I. Success of a suicidal defense strategy against infection in a structured habitat. Sci. Rep. 2, 1–8 (2012).Article 
    CAS 

    Google Scholar 
    56.Cheng, Y., Jones, R. A. C. & Thackray, D. J. Deploying strain specific hypersensitive resistance to diminish temporal virus spread. Ann. Appl. Biol. 140, 69–79 (2002).Article 

    Google Scholar 
    57.Thackray, D. J., Smith, L. J., Cheng, Y. & Jones, R. A. C. Effect of strain-specific hypersensitive resistance on spatial patterns of virus spread. Ann. Appl. Biol. 141, 45–59 (2002).Article 

    Google Scholar 
    58.Suzuki, M. et al. Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system. Virology 183, 106–113 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Takeshita, M. et al. Infection dynamics in viral spread and interference under the synergism between cucumber mosaic virus and turnip mosaic virus. Mol. Plant Microbe Interact. 25, 18–27 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Hodel, M. R., Corbett, A. H. & Hodel, A. E. Dissection of a nuclear localization signal. J. Biol. Chem. 276, 1317–1325 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2020).62.Miyashita, S. R scripts for MOI estimation and simulation for plant suicidal population resistance by systemic hypersensitive response. Zenodo https://doi.org/10.5281/zenodo.5105622 (2021). More

  • in

    Identifying structural connectivity priorities in eastern Paraguay’s fragmented Atlantic Forest

    1.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1, e1500052 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.FAO. Global Forest Resources Assessment 2015. (2015).3.Sloan, S. & Sayer, J. A. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For. Ecol. Manag. 352, 134–145 (2015).Article 

    Google Scholar 
    4.Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).Article 

    Google Scholar 
    5.Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Costa, L. P. & Leite, Y. L. R. Biogeography of South American forest mammals: Endemism and diversity in the Atlantic Forest. Phys.Chem. Earth B Hydrol. Oceans Atmos. 87, 2–881 (2000).
    Google Scholar 
    8.Oliveira-Filho, A. T. & Fontes, M. A. L. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32, 793 (2000).Article 

    Google Scholar 
    9.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Visconti, P. et al. Future hotspots of terrestrial mammal loss. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2693–2702 (2011).
    Google Scholar 
    11.Mittermeier, R. A., Myers, N., Gil, P. R. & Mittermeier, C.G . Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions (Cemex, Conservation International and Agrupacion Sierra Madre, Monterrey, Mexico, 1999).
    Google Scholar 
    12.Huang, C. et al. Rapid loss of Paraguay’s Atlantic forest and the status of protected areas—a Landsat assessment. Remote Sens. Environ. 106, 460–466 (2007).ADS 
    Article 

    Google Scholar 
    13.Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153 (2009).Article 

    Google Scholar 
    14.Rezende, C. L. et al. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspect. Ecol. Conserv. 16, 208–214 (2018).
    Google Scholar 
    15.Bicudo da Silva, R. F., Millington, J. D. A., Moran, E. F., Batistella, M. & Liu, J. Three decades of land-use and land-cover change in mountain regions of the Brazilian Atlantic Forest. Landsc. Urban Plann. 204, 103948 (2020).Article 

    Google Scholar 
    16.Da Ponte, E. et al. Tropical forest cover dynamics for Latin America using Earth observation data: A review covering the continental, regional, and local scale. Int. J. Remote Sens. 36, 3196–3242 (2015).Article 

    Google Scholar 
    17.Da Ponte, E., Roch, M., Leinenkugel, P., Dech, S. & Kuenzer, C. Paraguay’s Atlantic Forest cover loss—Satellite-based change detection and fragmentation analysis between 2003 and 2013. Appl. Geogr. 79, 37–49 (2017).Article 

    Google Scholar 
    18.Rosa, M. R. et al. Hidden destruction of older forests threatens Brazil’s Atlantic Forest and challenges restoration programs. Sci. Adv. 7, eabc4547 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Nowosad, J. & Stepinski, T. F. Stochastic, empirically informed model of landscape dynamics and its application to deforestation scenarios. Geophys. Res. Lett. 46, 13845–13852 (2019).ADS 
    Article 

    Google Scholar 
    20.Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. U. S. A. 107, 8650–8655 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    22.de la Sancha, N. U. Patterns of small mammal diversity in fragments of subtropical Interior Atlantic Forest in eastern Paraguay. Mammalia 78, 437–449 (2014).
    Google Scholar 
    23.de la Sancha, N. U., Higgins, C. L., Presley, S. J. & Strauss, R. E. Metacommunity structure in a highly fragmented forest: Has deforestation in the Atlantic Forest altered historic biogeographic patterns? Divers. Distrib. 20, 1058–1070 (2014).Article 

    Google Scholar 
    24.de la Sancha, N. U. et al. An annotated checklist of the mammals of Paraguay. Therya 8, 241–260 (2017).Article 

    Google Scholar 
    25.Lanzone, C. et al. Diversidad, sistemática y conservación de roedores en el extremo sudoccidental del Bosque Atlántico Interior. Rev. Mus. Argent. Cienc. Nat. 20, 151–164 (2018).Article 

    Google Scholar 
    26.Da Ponte, E. et al. Forest cover loss in Paraguay and perception of ecosystem services: A case study of the Upper Parana Forest. Ecosyst. Serv. 24, 200–212 (2017).Article 

    Google Scholar 
    27.Da Ponte, E. et al. Assessing forest cover dynamics and forest perception in the Atlantic Forest of Paraguay, combining remote sensing and household level data. For. Trees Livelihoods 8, 389 (2017).
    Google Scholar 
    28.Fleytas, F. C. Cambios en el paisaje: Evolución de la cobertura vegetal en la Región Oriental del Paraguay. In Biodiversidad del Paraguay: Una Aproximación a Sus Realidades (eds. Salas Dueñas, D. A. & Facetti, J. F.), 77–88 (Fundación Moisés Bertoni, 2007).29.Esquivel, A. et al. Conservation status and challenges of the Atlantic Forest birds of Paraguay. Divers. 11, 247 (2019).Article 

    Google Scholar 
    30.de la Sancha, N. U. & Boyle, S. A. Predictive sampling effort and species-area relationship models for estimating richness in fragmented landscapes. PLoS One 14, e0226529 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.de la Sancha, N. U., Maestri, R., Bovendorp, R. S. & Higgins, C. L. Disentangling drivers of small mammal diversity in a highly fragmented forest system. Biotropica 52, 182–195 (2020).Article 

    Google Scholar 
    32.Andelman, S. J. & Willig, M. R. Alternative configurations of conservation reserves for Paraguayan bats: Considerations of spatial scale. Conserv. Biol. 16, 1352–1363 (2002).Article 

    Google Scholar 
    33.Gorresen, P. M., Marcos Gorresen, P. & Willig, M. R. Landscape responses of bats to habitat fragmentation in Atlantic Forest of Paraguay. J. Mammal. 85, 688–697 (2004).Article 

    Google Scholar 
    34.McCulloch, E. S. et al. Fragmentation of Atlantic forest has not affected gene flow of a widespread seed-dispersing bat. Molec. Ecol. 22, 4619–4633 (2013).Article 

    Google Scholar 
    35.Crooks, K. R. & Sanjayan, M. Connectivity conservation: Maintaining connections for nature. In Connectivity Conservation. (eds. Crooks, K. R. & Sanjayan, M.), 1–20 (Cambridge University Press, 2006).36.Calabrese, J. M. & Fagan, W. F. A comparison-shopper’s guide to connectivity metrics. Front. Ecol. Environ. 2, 529–536 (2004).Article 

    Google Scholar 
    37.Minor, E. S. & Urban, D. L. A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv. Biol. 22, 297–307 (2008).PubMed 
    Article 

    Google Scholar 
    38.de la Sancha, N.U., Boyle S.A., McIntyre, N.E., Brooks, D.M, Yanosky, A., Cuellar Soto E., Mereles, F., Camino, M., & Stevens, R. D. The disappearing Dry Chaco, one of the last dry forest systems on earth. Landscape Ecol. https://doi.org/10.1007/s10980-021-01291-x (2021).Article 

    Google Scholar 
    39.Keitt, T., Urban, D. & Milne, B. Detecting critical scales in fragmented landscapes. Conserv. Ecol. 1(1), (1997).40.Tischendorf, L. & Fahrig, L. How should we measure landscape connectivity?. Landsc. Ecol. 15, 633–641 (2000).Article 

    Google Scholar 
    41.McIntyre, N. E., Collins, S. D., Heintzman, L. J., Starr, S. M. & van Gestel, N. The challenge of assaying landscape connectivity in a changing world: A 27-year case study in the southern Great Plains (USA) playa network. Ecol. Indic. 91, 607–616 (2018).Article 

    Google Scholar 
    42.Ruiz, L. et al. Dynamic connectivity of temporary wetlands in the southern Great Plains. Landsc. Ecol. 29, 507–516 (2014).Article 

    Google Scholar 
    43.Bovendorp, R. S. et al. Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography 42, 23–35 (2019).Article 

    Google Scholar 
    44.Schipper, J. et al. The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science 322, 225–230 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Stevens, R. D., Rowe, R. J. & Badgley, C. Gradients of mammalian biodiversity through space and time. J. Mammal. 100, 1069–1086 (2019).Article 

    Google Scholar 
    46.Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    47.McBride, R. T. & Thompson, J. J. Spatial ecology of Paraguay’s last remaining Atlantic Forest Jaguars (Panthera onca): Implications for their long-term survival. Biodivers. 20, 20–26 (2019).Article 

    Google Scholar 
    48.Morato, R. G. et al. Space use and movement of a neotropical top predator: The endangered jaguar. PLoS One 11, e0168176 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Prevedello, J. A. & Vieira, M. V. Does the type of matrix matter? A quantitative review of the evidence. Biodivers. Conserv. 19, 1205–1223 (2010).Article 

    Google Scholar 
    50.Prevedello, J. A., Forero-Medina, G. & Vieira, M. V. Movement behaviour within and beyond perceptual ranges in three small mammals: Effects of matrix type and body mass. J. Anim. Ecol. 79, 1315–1323 (2010).PubMed 
    Article 

    Google Scholar 
    51.Cartes, J. L. et al. Cetartiodactyla y Perissodactyla: Animales con pezuñas. In Libro Rojo de los Mamíferos del Paraguay: Especies amenazadas de extinción (eds. Saldivar, S., Rojas, V. & Giménez, D.), 103–121 (CREATIO, 2017).52.Vieira, M. V. et al. Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic Forest remnants. Biol. Conserv. 142, 1191–1200 (2009).Article 

    Google Scholar 
    53.Prevedello, J. A., Forero-Medina, G. & Vieira, M. V. Does land use affect perceptual range? Evidence from two marsupials of the Atlantic Forest. J. Zool. 284, 53–59 (2011).Article 

    Google Scholar 
    54.Pires, A. S., Lira, P. K., Fernandez, F. A. S., Schittini, G. M. & Oliveira, L. C. Frequency of movements of small mammals among Atlantic Coastal Forest fragments in Brazil. Biol. Conserv. 108, 229–237 (2002).Article 

    Google Scholar 
    55.Pardini, R. Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodivers. Conserv. 13, 2567–2586 (2004).Article 

    Google Scholar 
    56.Umetsu, F. & Pardini, R. Small mammals in a mosaic of forest remnants and anthropogenic habitats—evaluating matrix quality in an Atlantic forest landscape. Landsc. Ecol. 22, 517–530 (2007).Article 

    Google Scholar 
    57.Umetsu, F., Paul Metzger, J. & Pardini, R. Importance of estimating matrix quality for modeling species distribution in complex tropical landscapes: A test with Atlantic forest small mammals. Ecography 31, 359–370 (2008).Article 

    Google Scholar 
    58.Boyle, S. A., de la Sancha, N. U., Pérez, P. & Kabelik, D. Small mammal glucocorticoid concentrations vary with forest fragment size, trap type, and mammal taxa in the Interior Atlantic Forest. Sci. Rep. 11, 1–13 (2021).Article 
    CAS 

    Google Scholar 
    59.Diniz, M. F., Coelho, M. T. P., de Sousa, F. G., Hasui, É. & Loyola, R. The underestimated role of small fragments for carnivore dispersal in the Atlantic Forest. Perspect. Ecol. Conser. 19, 81–89 (2021).
    Google Scholar 
    60.Johnston, C. A. & McIntyre, N. E. Effects of cropland encroachment on prairie pothole wetlands: Numbers, density, size, shape, and structural connectivity. Landsc. Ecol. 34, 827–841 (2019).Article 

    Google Scholar 
    61.Galpern, P., Manseau, M. & Fall, A. Patch-based graphs of landscape connectivity: A guide to construction, analysis and application for conservation. Biol. Conserv. 144, 44–55 (2011).Article 

    Google Scholar 
    62.de la Sancha, N. U., Libardi, G. S. & Pardiñas, U. F. J. Discovery of a new genus record for Paraguay, the Atlantic Forest endemic rodent Abrawayaomys (Cricetidae, Sigmodontinae). Mammalia 84, 366–371 (2020).Article 

    Google Scholar 
    63.Gardner, R. H. & Gustafson, E. J. Simulating dispersal of reintroduced species within heterogeneous landscapes. Ecol. Modell. 171, 339–358 (2004).Article 

    Google Scholar 
    64.Fahrig, L. Rethinking patch size and isolation effects: The habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013).Article 

    Google Scholar 
    65.Catie, U. Proyecto: Mejorando la Conservación de la Biodiversidad y el Manejo Sostenible de la Tierra en el Bosque Atlántico del Paraguay Oriental: (Paraguay Biodiversidad): Módulo De Capacitación: Cadenas De Valor Agropecuarias Y Forestales. (2018).66.Di Bitteti, M., Placci, G. & Dietz, L. A. A Biodiversity Vision of the Upper Paraná Atlantic Forest Ecoregion: Designing a Biodiversity Landscape and Setting Priorities for Conservation Action. 1–145 (World Wildlife Fund, 2003).67.McIntyre, N. E., Drake, J. C. & Griffis-Kyle, K. L. A connectivity and wildlife management conflict in isolated desert waters: Connectivity of isolated desert waters. J. Wildl. Manag. 80, 655–666 (2016).Article 

    Google Scholar 
    68.Drake, J. C., Griffis-Kyle, K. & McIntyre, N. E. Using nested connectivity models to resolve management conflicts of isolated water networks in the Sonoran Desert. Ecosphere 8, e01652 (2017).Article 

    Google Scholar 
    69.Boyle, S. A. et al. High-resolution satellite imagery is an important yet underutilized resource in conservation biology. PLoS One 9, e86908 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Turner, W. et al. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18, 306–314 (2003).Article 

    Google Scholar 
    71.ESRI. ArcGIS. (2019).72.Csardi, G. & Nepusz, T. The igraph software package for complex network research. Int. J. Comp. Sys. 1695 (2006).73.R Core Team. R: A language and environment for statistical computing. (2013).74.Bovendorp, R. S. et al. Atlantic small-mammal: A dataset of communities of rodents and marsupials of the Atlantic forests of South America. Ecology 98, 2226 (2017).PubMed 
    Article 

    Google Scholar 
    75.Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026113 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Clauset, A., Newman, M. E. J. & Moore, C. Finding community structure in very large networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70, 066111 (2004).Article 
    CAS 

    Google Scholar 
    77.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    78.Galetti, M., Bovendorp, R. S. & Guevara, R. Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests. Global Ecol. Conserv. 3, 824–830 (2015).Article 

    Google Scholar 
    79.Galpern, P. Modelling landscape connectivity for highly-mobile terrestrial animals: A continuous and scalable approach. (Natural Resources Institute, 2012).80.Minor, E. S. & Urban, D. L. Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol. Appl. 17, 1771–1782 (2007).PubMed 
    Article 

    Google Scholar 
    81.Fusco-Costa, R., Ingberman, B., do Couto, H. T. Z., Nakano-Oliveira, E. & de Araujo Monteiro-Filho, E. L. Population density of a coastal island population of the ocelot in Atlantic Forest, southeastern Brazil. Mamm. Biol. 75, 358–362 (2010).Article 

    Google Scholar 
    82.Medici, E. P. Assessing the viability of lowland Tapir populations in a fragmented landscape. (University of Kent, 2010).83.Bianconi, G. V., Mikich, S. B. & Pedro, W. A. Movements of bats (Mammalia, Chiroptera) in the Atlantic Forest remnants in southern Brazil. Rev. Bras. Zool. 23, 1199–1206 (2006).Article 

    Google Scholar 
    84.Lira, P. K., dos Santos Fernandez, F. A., Carlos, H. S. A. & de Lima Curzio, P. Use of a fragmented landscape by three species of opossum in south-eastern Brazil. J. Trop. Ecol. 23, 427–435 (2007).Article 

    Google Scholar 
    85.Mendel, S. M. & Vieira, M. V. Movement distances and density estimation of small mammals using the spool-and-line technique. Acta Theriol. 48, 289–300 (2003).Article 

    Google Scholar 
    86.Passamani, M. & Fernando, A. S. Movements of small mammals among Atlantic Forest fragments in Espırito Santo, Southeastern Brazil. Mammalia 75, 83–86 (2011).Article 

    Google Scholar 
    87.Püttker, T., Meyer-Lucht, Y. & Sommer, S. Movement distances of five rodent and two marsupial species in forest fragments of the coastal Atlantic Rainforest, Brazil. Ecotropica 12, 131–139 (2006).
    Google Scholar 
    88.Moraes Junior, E. A. & Chiarello, A. G. A radio tracking study of home range and movements of the marsupial Micoureus demerarae (Thomas) (Mammalia, Didelphidae) in the Atlantic Forest of south-eastern Brazil. Rev. Bras. Zool. 22, 85–91 (2005).Article 

    Google Scholar 
    89.Delciellos, A. C., Ribeiro, S. E. & Vieira, M. V. Habitat fragmentation effects on fine-scale movements and space use of an opossum in the Atlantic Forest. J. Mammal. 98, 1129–1136 (2017).Article 

    Google Scholar 
    90.Püttker, T., de Barros, C. dos S., Martins, T. K., Sommer, S. & Pardini, R. Suitability of distance metrics as indexes of home-range size in tropical rodent species. J. Mammal. 93, 115–123 (2012).Article 

    Google Scholar  More

  • in

    Anti-racist interventions to transform ecology, evolution and conservation biology departments

    1.Allen, W. R., Epps, E. G., Guillory, E. A., Suh, S. A. & Bonous-Hammarth, M. The Black academic: faculty status among African Americans in US higher education. J. Negro Educ. 69, 112–127 (2000).
    Google Scholar 
    2.Halsey, S. J., Strickland, L. R., Scott-Richardson, M., Perrin-Stower, T. & Massenburg, L. Elevate, don’t assimilate, to revolutionize the experience of scientists who are Black, Indigenous and people of colour. Nat. Ecol. Evol. 4, 1291–1293 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Chaudhury, A. & Colla, S. Next steps in dismantling discrimination: lessons from ecology and conservation science. Conserv. Lett. 14, e12774 (2020).
    Google Scholar 
    4.Schell, C. J. et al. Recreating Wakanda by promoting Black excellence in ecology and evolution. Nat. Ecol. Evol. 4, 1285–1287 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Chaudhary, B. & Berhe, A. A. Ten simple rules for building an anti-racist lab. PLoS Comput. Biol. 16, e1008210 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Gewin, V. The time tax put on scientists of colour. Nature 583, 479–481 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Kendi, I. X. How to be an Antiracist (One World, 2019).8.Miriti, M. N. The elephant in the room: race and STEM diversity. BioScience 70, 237–242 (2020).Article 

    Google Scholar 
    9.Balcarczyk, K. L., Smaldone, D., Selin, S. W., Pierskalla, C. D. & Maumbe, K. Barriers and supports to entering a natural resource career: perspectives of culturally diverse recent hires. J. For. 113, 231–239 (2015).
    Google Scholar 
    10.Haynes, N. A. & Jacobsen, S. Barriers and perceptions of natural resource careers by minority students. J. Environ. Educ. 46, 166–182 (2015).Article 

    Google Scholar 
    11.Morales, N. et al. Promoting inclusion in ecological field experiences: examining and overcoming barriers to a professional rite of passage. Bull. Ecol. Soc. Am. 101, e01742 (2020).Article 

    Google Scholar 
    12.O’Brien, L. T., Bart, H. & Garcia, D. Why are there so few ethnic minorities in ecology and evolutionary biology? Challenges to inclusion and the role of sense of belonging. Soc. Psychol. Educ. 23, 449–477 (2020).Article 

    Google Scholar 
    13.Kou-Giesbrecht, S. Asian Americans: the forgotten minority in ecology. Bull. Ecol. Soc. Am. 101, e01696 (2020).Article 

    Google Scholar 
    14.Tseng, M. et al. Strategies and support for Black, Indigenous, and people of colour in ecology and evolutionary biology. Nat. Ecol. Evol. 4, 1288–1290 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Li, D. & Koedel, C. Representation and salary gaps by race—ethnicity and gender at selective public universities. Educ. Res. 46, 343–354 (2017).Article 

    Google Scholar 
    16.Wanelik, K. M., Griffin, J. S., Head, M. L., Ingleby, F. C. & Lewis, Z. Breaking barriers? Ethnicity and socioeconomic background impact on early career progression in the fields of ecology and evolution. Ecol. Evol. 10, 6870–6880 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Page, S., Trudgett, M. & Sullivan, C. Past, present and future: acknowledging Indigenous achievement and aspiration in higher education. HERDSA Rev. High. Educ. 4, 29–51 (2017).
    Google Scholar 
    18.Davis, R. et al. Increasing diversity in our profession. Wildl. Soc. Bull. 30, 628–633 (2002).
    Google Scholar 
    19.Beck, C. W., Boersma, K., Tysor, C. S. & Middendorf, G. Diversity at 100: women and underrepresented minorities in the ESA: peer-reviewed letter. Front. Ecol. Environ. 12, 434–436 (2014).Article 

    Google Scholar 
    20.Ginther, D. K. Race, ethnicity, and NIH research awards. Science 333, 1015–1019 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Malone, K. R. & Barabino, G. Narrations of race in STEM research settings: identity formation and its discontents. Sci. Educ. 93, 485–510 (2009).Article 

    Google Scholar 
    22.Diep, F. ‘I was fed up’: How the #BlackInTheIvory got started, and what its founders want to see next. The Chronicles of Higher Education (9 June 2020).23.Lambert, J. A #BlackBirdersWeek cofounder aims to amplify Black nature enthusiasts. Science News (4 June 2020).24.Thorp, H. H. Time to look in the mirror. Science 368, 1161 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Linnaeus, C. Systema Naturae per Regna Tria Naturae Systematice Proposita per Classes, Ordines, Genera, & Species (Lugduni Batavorum apud Theodorum Haak, 1758).26.Shiffman, D. Scientists should stop naming species after awful people. Scientific American (8 November 2019).27.De Vos, A. The problem of ‘colonial science’. Scientific American (1 July 2020).28.Hardin, G. The tragedy of the commons. Science 162, 1243–1248 (1968).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Ehrlich, P. The Population Bomb (Ballantine Books, 1968).30.Dyett, J. & Thomas, C. Overpopulation discourse: patriarchy, racism, and the specter of ecofascism. Perspect. Glob. Dev. Technol. 18, 205–224 (2019).Article 

    Google Scholar 
    31.Graves, J. L. African Americans in evolutionary science: where we have been, and what’s next. Evolution 12, 18 (2019).
    Google Scholar 
    32.Shields, S. A. & Bahtia, S. Darwin on race, gender, and culture. Am. Psychol. 64, 111–119 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Gannett, L. Racism and human genome diversity research: the ethical limits of ‘population thinking’. Phil. Sci. 68, S479–S492 (2001).Article 

    Google Scholar 
    34.Carter, R. Genes, genomes and genealogies: the return of scientific racism. Ethn. Racial Stud. 30, 546–556 (2007).Article 

    Google Scholar 
    35.Winston, A. S. Why mainstream research will not end scientific racism in psychology. Theory Psychol. 30, 425–430 (2020).Article 

    Google Scholar 
    36.Lewontin, R. in The Concept of Race in Natural and Social Sciences (ed. Gates, E. N.) 381–398 (Routledge, 1972).37.Bamshad, M., Wooding, S., Salisbury, B. A. & Claiborne Stephens, J. Deconstructing the relationship between genetics and race. Ethn. Racial Stud. 30, 546–556 (2007).Article 

    Google Scholar 
    38.Reardon, J. & Tallbear, K. “Your DNA is Our History”: genomics, anthropology, and the construction of whiteness as property. Curr. Anthropol. 53, S233–S245 (2012).Article 

    Google Scholar 
    39.Das, S. & Lowe, M. Nature read in black and white: decolonial approaches to interpreting natural history collections. J. Nat. Sci. Collect. Assoc. 6, 4–14 (2018).
    Google Scholar 
    40.Cox, P. A. & Elmqvist, T. Ecocolonialism and Indigenous-controlled rainforest preserves in Samoa. Ambio 26, 84–89 (1997).
    Google Scholar 
    41.Hayward et al. Deconstructing compassionate conservation. Conserv. Biol. 33, 760–768 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kantor, I. Ethnic cleansing and America’s creation of national parks. Pub. Land Resour. Law Rev. 28, 41–64 (2007).
    Google Scholar 
    43.Poirier, A. & Ostergren, D. Evicting people from nature: Indigenous land rights and national parks in Australia, Russia, and the United States. Nat. Resour. J. 41, 331–352 (2002).
    Google Scholar 
    44.Lee, R. & Ahtone, T. Land-grab universities. High Country News (30 March 2020).45.The Next 100 Years of American Conservation (US Interior Department, 2016); https://medium.com/@Interior/the-next-100-years-of-american-conservation-397c42b8f1f246.Brune, M. Pulling Down Our Monuments (Sierra Club, 2020); https://www.sierraclub.org/michael-brune/2020/07/john-muir-early-history-sierra-club47.Hodder, S. Reckoning with the League Founders’ Eugenics Past (Save the Redwoods League, 2020); https://www.savetheredwoods.org/blog/reckoning-with-the-league-founders-eugenics-past/48.Henderson, C., Bach, A. & Finkelstein, N. Facilitating change in undergraduate STEM instructional practices: an analytic review of the literature. J. Res. Sci. Teach. 48, 952–984 (2011).Article 

    Google Scholar 
    49.Carpi, A. & Lents, N. L. Research by undergraduates helped underfinanced colleges as well as students. Chron. High. Educ. 60, B30–B31 (2013).
    Google Scholar 
    50.Pèrez, D. Exploring the nexus between community and cultural wealth and the academic and social experiences of Latino male achievers at two predominantly White research universities. Int. J. Qual. Stud. Educ. 27, 747–767 (2014).Article 

    Google Scholar 
    51.Koenig, K., Schen, M., Edwards, M. & Bao, L. Addressing STEM retention through a scientific thought and methods course. J. Coll. Sci. Teach. 41, 23–29 (2012).
    Google Scholar 
    52.Penner, M. R. Building an inclusive classroom. J. Undergrad. Neurosci. Educ. 16, A268–A272 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    53.Mervis, J. Weed-out courses hamper diversity. Science 334, 1333 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Theobald, E. et al. Active learning narrows achievement gaps for underrepresented students in undergraduate science, technology, engineering, and math. Proc. Natl Acad. Sci. USA 117, 6476–6483 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Beltran, R. S. et al. Field courses narrow demographic achievement gaps in ecology and evolution. Ecol. Evol. 10, 5184–5196 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Freeman, S. et al. Active learning increases student performance in science, engineering, and mathematics. Proc. Natl Acad. Sci. USA 111, 8410–8415 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Zavaleta, E. S., Beltran, R. S. & Borker, A. L. How field courses propel inclusion and collective excellence. Trends Ecol. Evol. 35, 953–956 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Faculty Dialogue Series: Creating Inclusive Classrooms (University of California, Berkeley, 2020); https://cejce.berkeley.edu/faculty/our-programs-and-services/faculty-dialogue-series59.Walton, G. The new science of wise psychological interventions. Curr. Direct. Psychol. Sci. 23, 73–82 (2014).Article 

    Google Scholar 
    60.Harackiewicz, J. M., Canning, E. A., Tibbetts, Y., Priniski, S. J. & Hyde, J. S. Closing achievement gaps with a utility-value intervention: disentangling race and social class. J. Pers. Soc. Psychol. 111, 745–765 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Harackiewicz, J. M. & Priniski, S. J. Improving student outcomes in higher education: the science of targeted intervention. Ann. Rev. Psychol. 69, 409–435 (2018).Article 

    Google Scholar 
    62.Casad, B. et al. Wise psychological interventions to improve gender and racial equality in STEM. Group Process. Intergroup Relat. 21, 767–787 (2018).Article 

    Google Scholar 
    63.Durkin, E. DNA scientist James Watson stripped of honors over views on race. The Guardian (13 January 2019).64.Kimmerer, R. W. Weaving traditional ecological knowledge into biological education: a call to action. BioScience 52, 432–438 (2002).Article 

    Google Scholar 
    65.Zafra-Calvo, N. et al. Towards an indicator system to assess equitable management in protected areas. Biol. Conserv. 211, 134–141 (2017).Article 

    Google Scholar 
    66.Schuster, R., Germain, R. R., Bennett, J. R., Reo, N. J. & Arcese, P. Vertebrate biodiversity on Indigenous-managed lands in Australia, Brazil, and Canada equals that in protected areas. Environ. Sci. Pol. 101, 1–6 (2019).Article 

    Google Scholar 
    67.Posey, D. Cultural and Spiritual Values of Biodiversity (IT Publishing, 1999).68.Cooper, N., Brady, E., Steen, H. & Bryce, R. Aesthetic and spiritual values of ecosystems: recognising the ontological and axiological plurality of cultural ecosystem ‘services’. Ecosyst. Serv. 21, 218–229 (2016).Article 

    Google Scholar 
    69.Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369, eaay4497 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Tallbear, K. Native American DNA: Tribal Belonging and the False Promise of Genetic Science (Univ. Minnesota Press, 2013).71.Holt, F. The catch-22 of conservation: Indigenous peoples, biologists, and cultural change. Hum. Ecol. 33, 199–215 (2005).Article 

    Google Scholar 
    72.McGill, B. M. et al. You are welcome here: a practical guide to diversity, equity, and inclusion for undergraduates embarking on an ecological research experience. Ecol. Evol. 11, 3636–3645 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Wood, S. et al. A scientist like me: demographic analysis of biology textbooks reveals both progress and long-term lags. Proc. Royal Soc. B 287, 20200877 (2020).Article 

    Google Scholar 
    74.Schinske, J. N., Perkins, H., Snyder, A. & Wyer, M. Scientist spotlight homework assignments shift students’ stereotypes of scientists and enhance science identity in a diverse introductory science class. CBE Life Sci. Educ.15, ar47 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Bergenhenegouwen, G. Hidden curriculum in the university. High. Educ. 16, 535–543 (1987).Article 

    Google Scholar 
    76.Smith, B. Mentoring At-Risk Students Through the Hidden Curriculum of Higher Education (Lexington Books, 2013).77.Jones, M. T., Barlow, A. E. L. & Villarejo, M. Importance of undergraduate research for minority persistence and achievement in biology. J. High. Educ. 81, 82–115 (2010).Article 

    Google Scholar 
    78.Houser, C. & Lemmons, K. Implicit bias in letters of recommendation for an undergraduate research internship. J. Furth. High. Educ. 42, 585–595 (2018).Article 

    Google Scholar 
    79.Developing Community Agreements (National Equity Project, 2020); https://www.nationalequityproject.org/tools/developing-community-agreements80.Hubert, A. & Reichwein, D. Code of Conduct for Responsible Geoengineering Research (2017).81.Clark, M. A., Michel, J. S., Zhdanova, L., Pui, S. Y. & Baltes, B. B. All work and no play? A meta-analytic examination of the correlates and outcomes of workaholism. J. Manage. 42, 1836–1873 (2016).
    Google Scholar 
    82.Montgomery, B. L. Effective mentors show up healed. Beronda L. Montgomery https://www.berondamontgomery.com/2019/12/ (2019).83.Sorcinelli, M. D. & Yun, J. From mentor to mentoring networks: mentoring in the new academy. Change 39, 58–61 (2007).Article 

    Google Scholar 
    84.Demery, A. J. C. & Pipkin, M. A. Safe fieldwork strategies for at-risk individuals, their supervisors and institutions. Nat. Ecol. Evol. 5, 5–9 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Lee, S. P., McGee, R., Pfund, C. & Branchaw, J. in The Mentoring Continuum: From Graduate School to Tenure (ed. Wright, G.) 133–154 (The Graduate School Press, 2015).86.Baker, K., Eichhorn, M. P. & Griffiths, M. Decolonizing field ecology. Biotropica 51, 288–292 (2019).Article 

    Google Scholar 
    87.TallBear, K.Standing with and speaking as faith: a feminist-Indigenous approach to inquiry. J. Res. Pract. 10, N17 (2014).
    Google Scholar 
    88.Ban, N. C. et al. Incorporate Indigenous perspectives for impactful research and effective management. Nat. Ecol. Evol. 2, 1680–1683 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Whyte, W. F. Advancing scientific knowledge through participatory action research. Sociol. Forum 4, 367–385 (1989).Article 

    Google Scholar 
    90.Reid, R. & Garson, K. Rethinking multicultural group work as intercultural learning. J. Stud. Int. Educ. 21, 195–212 (2017).Article 

    Google Scholar 
    91.Tallis, H. & Lubchenco, J. Working together: a call for inclusive conservation. Nature 515, 27–28 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Amah Mutsun Relearning Program (Univ. California, Santa Cruz, 2020); https://arboretum.ucsc.edu/education/relearning-program/93.MacKey, T. K. & Liang, B. A. Integrating biodiversity management and Indigenous biopiracy protection to promote environmental justice and global health. Am. J. Public Health 102, 1091–1095 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Nagoya Protocol on Access and Benefit-Sharing (Convention on Biological Diversity, 2011).95.Nelson, R. G., Rutherford, J. N., Hinde, K. & Clancy, K. B. H. Signaling safety: characterizing fieldwork experiences and their implications for career trajectories. Am. Anthropol. 119, 710–722 (2017).Article 

    Google Scholar 
    96.Wilson, Z. S. Hierarchical mentoring: a transformative strategy for improving diversity and retention in undergraduate STEM disciplines. J. Sci. Educ. Technol. 21, 148–156 (2012).Article 

    Google Scholar 
    97.Inclusion, Diversity, Equity, & Action (IDEA) (Univ. California, Santa Cruz, 2020); https://www.eeb.ucsc.edu/about/idea_committee.html98.Wijesingha, R. & Ramos, H. Human capital or cultural taxation: what accounts for differences in tenure and promotion of racialized and female faculty? Can. J. High. Educ. 47, 54–75 (2017).Article 

    Google Scholar 
    99.O’Meara, K., Culpepper, D. & Templeton, L. L. Nudging toward diversity: applying behavioral design to faculty hiring. Rev. Educ. Res. 90, 311–348 (2020).Article 

    Google Scholar 
    100.Bilimoria, D. & Buch, K. K. The search is on: engendering faculty diversity through more effective search and recruitment. Change 42, 27–32 (2010).Article 

    Google Scholar 
    101.Bhalla, N. Strategies to improve equity in faculty hiring. Mol. Biol. Cell 30, 2744–2749 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Flaherty, C. Breaking down diversity statements. Inside Higher Ed (19 November 2018).103.Speech on Campus (ACLU, 2020); https://www.aclu.org/other/speech-campus104.Hekman, D. R., Johnson, S. K., Foo, M. & Yang, W. Does diversity-valuing behavior result in diminished performance ratings for non-white and female leaders? Acad. Manage. J. 60, 771–797 (2017).Article 

    Google Scholar 
    105.Hanasono, L. et al. Secret service: revealing gender biases in the visibility and value of faculty service. J. Divers. High. Educ. 12, 85–98 (2019).Article 

    Google Scholar 
    106.Lisnic, R., Zajicek, A. & Morimoto, S. Gender and race differences in faculty assessment of tenure clarity: the influence of departmental relationships and practices. Sociol. Race Ethn. 5, 244–260 (2019).Article 

    Google Scholar 
    107.Farr, C. M. et al. Addressing the gender gap in distinguished speakers at professional ecology conferences. BioScience 67, 464–468 (2017).Article 

    Google Scholar 
    108.Price, J. The effect of instructor race and gender on student persistence in STEM fields. Econ. Educ. Rev. 29, 901–910 (2010).Article 

    Google Scholar 
    109.Torres, K. ‘Culture Shock’: Black students account for their distinctiveness at an elite college. Ethn. Racial Stud. 32, 883–905 (2009).Article 

    Google Scholar 
    110.Carter-Sowell, A. R. et al. Bloom where you are planted: reflections on effecting campus climate change to retain minoritized faculty scholars in STEM fields. In Growing Diverse STEM Communities: Methodology, Impact, and Evidence 197–214 (ACS Symposium Series Vol. 1328, ACS Publications, 2019).111.Lee, J. & Rice, C. Welcome to America? International student perceptions of discrimination. High. Educ. 53, 381–409 (2007).Article 

    Google Scholar 
    112.George Mwangi, C. A. Exploring sense of belonging among Black international students at an HBCU. J. Int. Stud. 6, 1015–1037 (2016).
    Google Scholar 
    113.Bevis, T. B. At a glance: international students in the United States. Int. Educ. 11, 12–17 (2002).
    Google Scholar 
    114.Heng, T. T. Understanding the heterogeneity of international students’ experiences: a case study of Chinese international students in US universities. J. Stud. Int. Educ. 23, 607–623 (2019).Article 

    Google Scholar 
    115.George Mwangi, C. A., Changamire, N. & Mosselson, J. An intersectional understanding of African graduate students’ experiences in US higher education. J. Divers. High. Educ. 12, 52–64 (2018).Article 

    Google Scholar 
    116.Wilson, M. A., DePass, A. L. & Bean, A. J. Institutional interventions that remove barriers to recruit and retain diverse biomedical PhD students. CBE Life Sci. Educ. 17, ar27 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    117.Gewin, V. What Black scientists want from colleagues and their institutions. Nature 583, 319–322 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    118.Lawrence, S. M. Contextual matters: teachers’ perceptions of the success of antiracist classroom practices. J. Educ. Res. 98, 350–365 (2005).Article 

    Google Scholar 
    119.Whittaker, J. & Montgomery, B. Cultivating diversity and competency in STEM: challenges and remedies for removing virtual barriers to constructing diverse higher education communities of success. J. Undergrad. Neurosci. Educ. 11, 44–51 (2012).
    Google Scholar 
    120.Anderson, D. R. The racism of confederate statues. Hobble Creek https://hobblecreek.us/blog/entry/where-do-Confederate-monuments-go-to-die (2020).121.Whitford, E. & Burke, L. Students demand campuses cut ties with police. Inside Higher Ed (5 June 2020).122.Felton, R. Officer who shot Samuel Dubose faces murder trial as city braces for protests. The Guardian (25 October 2016).123.Freire, P. Pedagogy of the Oppressed (Seabury, 1968).124.Kishimoto, K. Anti-racist pedagogy: from faculty’s self-reflection to organizing within and beyond the classroom. Race Ethn. Educ. 21, 540–554 (2018).Article 

    Google Scholar 
    125.Marx, D. M. & Goff, P. A. Clearing the air: the effect of experimenter race on target’s test performance and subjective experience. Br. J. Soc. Psychol. 44, 645–657 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    126.Chang, M. J. The Positive Educational Effects of Racial Diversity on Campus (US Department of Education, 2001).127.Hagedorn, L. S., Chi, W., Cepeda, R. M. & McLain, M. An investigation of critical mass: the role of Latino representation in the success of urban community college students. Res. High. Educ. 48, 73–91 (2007).Article 

    Google Scholar 
    128.Pascarella, E. T., Bohr, L., Nora, A. & Terenzini, P. T. Is differential exposure to college linked to the development of critical thinking? Res. High. Educ. 37, 159–174 (1996).Article 

    Google Scholar 
    129.Denson, N. & Chang, M. Racial diversity matters: the impact of diversity-related student engagement and institutional context. Am. Educ. Res. J. 46, 322–353 (2009).Article 

    Google Scholar 
    130.McLeod, P. L., Lobel, S. A. & Cox, T. H. Jr. Ethnic diversity and creativity in small groups. Small Group Res. 27, 248–264 (1996).Article 

    Google Scholar 
    131.Antonio, A. L. When does race matter in college friendships? Exploring men’s diverse and homogenous friendship groups. Rev. High. Educ. 27, 553–575 (2004).Article 

    Google Scholar 
    132.Page, S. E. The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies (Princeton Univ. Press, 2007).133.Freeman, R. B. & Huang, W. Collaboration: strength in diversity. Nature 513, 305 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    134.Lewis, N. A. Jr What I’ve learned about being a Black scientist. Science (16 June 2020).135.Purdy, J. Environmentalism’s racist history. The New Yorker (13 April 2015).136.Chen, S. Researchers around the world prepare to #ShutDownSTEM and ‘Strike For Black Lives’. Science (9 June 2020).137.Bashford, A. & Levine, P. The Oxford Handbook of the History of Eugenics (Oxford Univ. Press, 2010).138.Bowler, P. The role of the history of science in the understanding of social Darwinism and eugenics. Impact Sci. Soc. 40, 273–278 (1990).
    Google Scholar 
    139.Pressman, L. How Evolution was Used to Support Scientific Racism (Trinity College, 2017).140.Agrawal, A. & Redford, K. Conservation and displacement: an overview. Conserv. Soc. 7, 1–10 (2009).Article 

    Google Scholar 
    141.Spiro, J. P. Defending the Master Race: Conservation, Eugenics, and the Legacy of Madison Grant (Univ. Press of New England, 2009).142.Hart, A. G., Leather, S. R. & Sharma, M. V. Overseas conservation education and research: the new colonialism? J. Biol. Educ. https://doi.org/10.1080/00219266.2020.1739117 (2020).143.Tang, R. & Gavin, M. C. A classification of threats to traditional ecological knowledge and conservation responses. Conserv. Soc. 14, 57–70 (2016).Article 

    Google Scholar 
    144.Duffy et al. Why we must question the militarization of conservation. Biol. Conserv. 232, 66–73 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    145.Dweck, C. S. Mindset: The New Psychology of Success (Ballantine Books, 2006).146.Dweck, C. S., Walton, G. M. & Cohen, G. L. Academic Tenacity: Mindsets and Skills that Promote Long-Term Learning (Bill & Melinda Gates Foundation, 2014).147.Hochanadel, A. & Finamore, D. Fixed and growth mindset in education and how grit helps students persist in the face of adversity. J. Int. Educ. Res. 11, 47–50 (2015).
    Google Scholar 
    148.Fink, A., Cahill, M. J., McDaniel, M. A., Hoffman, A. & Frey, R. F. Improving general chemistry performance through a growth mindset intervention: selective effects on underrepresented minorities. Chem. Educ. Res. Pract. 19, 783–806 (2018).Article 

    Google Scholar 
    149.Mahmud, A. & Gagnon, J. Racial disparities in student outcomes in British higher education: examining mindsets and bias. Teach. High. Educ. https://doi.org/10.1080/13562517.2020.1796619 (2020).150.Hulleman, C. S., Godes, O., Hendricks, B. L. & Harackiewicz, J. M. Enhancing interest and performance with a utility value intervention. J. Educ. Psychol. 102, 880–895 (2010).Article 

    Google Scholar 
    151.Canning et al. Improving performance and retention in introductory biology with a utility–value intervention. J. Educ. Psychol. 110, 834–839 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    152.Miyake, A. et al. Reducing the gender achievement gap in college science: a classroom study of values affirmation. Science 330, 1234–1237 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    153.Creswell, J. D. et al. Affirmation of personal values buffers neuroendocrine and psychological stress responses. Psychol. Sci. 16, 846–851 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    154.Steele, C. M. & Liu, T. J. Dissonance processes as self-affirmation. J. Pers. Soc. Psychol. 45, 5–19 (1983).Article 

    Google Scholar 
    155.Purdie-Vaughns, V. et al. Improving minority academic performance: how a values-affirmation intervention works. Teachers College Record (23 September 2009).156.Shnabel, N., Purdie-Vaughns, V., Cook, J. E., Garcia, J. & Cohen, G. L. Demystifying values-affirmation interventions: writing about social belonging is a key to buffering against identity threat. Pers. Soc. Psychol. Bull. 39, 663–676 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    157.Cook, J. E., Purdie-Vaughns, V., Garcia, J. & Cohen, G. L. Chronic threat and contingent belonging: protective benefits of values affirmation on identity development. J. Pers. Soc. Psychol. 102, 479–496 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    158.Brady, S. T. et al. The psychology of the affirmed learner: spontaneous self-affirmation in the face of stress. J. Educ. Psychol. 108, 353–373 (2016).Article 

    Google Scholar 
    159.Survey of Earned Doctorates (National Science Foundation, 2018); https://www.nsf.gov/statistics/srvydoctorates/#tabs-2160.QuickFacts (US Census Bureau, 2018); https://www.census.gov/quickfacts/fact/table/US/PST045219161.Haraway, D. Situated knowledges: the science question in feminism and the privilege of partial perspective. Fem. Stud. 14, 575–599 (1988).Article 

    Google Scholar 
    162.Davis, A. Freedom is a Constant Struggle: Ferguson, Palestine, and the Foundations of a Movement (ed. Barat, F.) (Haymarket Books, 2015).163.Tsing, A. L. Friction: An Ethnography of Global Connection (Princeton Univ. Press, 2005).164.Schuurman, N. & Pratt, G. Care of the subject: feminism and critiques of GIS. Gend. Place Cult. 9, 291–299 (2002).Article 

    Google Scholar 
    165.Charleston, L. J., Adserias, R. P., Lang, N. M. & Jackson, J. F. L. Intersectionality and STEM: the role of race and gender in the academic pursuits of African American women in STEM. J. Prog. Policy Pract. 2, 239–254 (2014).
    Google Scholar 
    166.Mackay, A., Adger, D., Bond, A. L., Giles, S. & Ochu, E. Straight-washing ecological legacies. Nat. Ecol. Evol. 3, 1611 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    167.Nichols, S. & Stahl, G. Intersectionality in higher education research: a systematic literature review. High. Educ. Res. Dev. 38, 1255–1268 (2019).Article 

    Google Scholar 
    168.State of the Science: Implicit Bias Review (Kirwan Institute, 2017).169.Allport, G. W. The Nature of Prejudice (Addison-Wesley, 1954).170.Pager, D. & Shepherd, H. The sociology of discrimination: Racial discrimination in employment, housing, credit, and consumer markets. Annu. Rev. Sociol. 34, 181–209 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    171.Sue, D. W., Capodilupo, C. M., Torino, G. C., Bucceri, J. M., Holder, A. M. B., Nadal, K. L. & Esquilin, M. Racial microaggressions in everyday life: implications for clinical practice. Am. Psychol. 62, 271–286 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    172.Hate speech and violence. ECRI https://www.coe.int/en/web/european-commission-against-racism-and-intolerance/hate-speech-and-violence (2021).173.Cardwell, M. The Dictionary of Psychology (Fitzroy Dearborn, 1996).174.Steele, C. M. & Aronson, J. Stereotype threat and the intellectual test performance of African Americans.J. Pers. Soc. Psychol. 69, 797–811 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    175.McIntonsh, P. White Privilege and Male Privilege (Wellesley Centers for Women, 1998); https://www.wcwonline.org/images/pdf/White_Privilege_and_Male_Privilege_Personal_Account-Peggy_McIntosh.pdf More