More stories

  • in

    Detecting alternative attractors in ecosystem dynamics

    Detecting alternative attractors in ecosystem dynamicsWe use empirical dynamical modeling, a set of equation-free tools for analyzing non-linear time series (for a review and assumptions see25,26, respectively), to test if the temporal dynamics of alternative dynamical regimes are qualitatively different. Empirical dynamic modeling builds fundamentally on Takens embedding theorem, which shows that attractors of multi-dimensional dynamical systems can be reconstructed using higher order lags of its embedded time series27. However, if a dynamical system has gone through a bifurcation, or switched to an alternative basin of attraction, attractors are qualitative dissimilar in the two regimes. Theoretically, this infers that it should be possible to reconstruct the attractor of one regime using information from the same regime, but not from the other regime. In practice, this implies that if a model (attractor reconstruction) based on one dynamical regime is used to predict the dynamics of variables from the same dynamical regime predictions should be accurate (i.e. low prediction errors), whereas if an attractor reconstruction based on one dynamical regime is used to predict the dynamics of variables of another attractor predictions should be less accurate (i.e. high prediction errors). We make use of this idea by specifically testing if prediction errors of across and within regime predictions are different. As explained below this idea can be used for both univariate and multivariate time series data.Univariate approachUnivariate attractor reconstructions can be found using the simplex algorithm28,29. First, for a given dynamical regime, a time series can be split into a library of vectors, and each vector is described by$${underline{y}}_{A}(t)= < {Y}_{A}(t),{Y}_{A}(t-1),{Y}_{A}(t-2),ldots ,{Y}_{A}(t-(E-1)) > ,$$
    (1)
    where ({Y}_{A}(t)) is an observation of variable Y at time t in dynamical regime A and E is the reconstructed attractors embedding dimension. Using the simplex projection algorithm, a one-step ahead forecast is produced as follows:$${hat{Y}}_{A}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{B}=mathop{sum}limits_{m=1ldots E+1}{w}_{m}{Y}_{B}({t}_{m}+1),$$
    (2)
    where tm is a time index of an observation in dynamical regime B, E is the embedding dimension of regime B, and wm is an exponential weighting described by:$${w}_{m}={u}_{m}/mathop{sum}limits_{n=1,ldots ,E+1}{u}_{n},$$
    (3)
    where n and m belongs to the set of the E+1 nearest neighbors of vector ({underline{y}}_{A}(t)) in the set of vectors ({{underline{y}}_{B}({t}_{m})}), ({u}_{m}=exp {-d[{underline{y}}_{A}(t),{underline{y}}_{B}({t}_{m})]/d[{underline{y}}_{A}(t),{underline{y}}_{B}({t}_{1})]}), and (d[{underline{y}}_{A}(t),{underline{y}}_{B}({t}_{1})],)is the Euclidean distance between the prediction vector ({underline{y}}_{A}(t)) and its nearest neighbor ({underline{y}}_{B}({t}_{1})) in the set ({{underline{y}}_{B}({t}_{m})}).The only parameter that is estimated using the simplex algorithm is the embedding dimension E. This parameter is estimated by optimizing the correlation between observations (({Y}_{A}(t+1))) and predictions (({hat{Y}}_{A}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{A})) using a leave-one-out cross validation approach (See Supplementary Discussion). The embedding dimension E and its corresponding set of E-dimensional vectors (Eq. 1) constitutes the reconstructed attractor, MA, of a given dynamical regime A. This reconstructed attractor (MA) is then used to predict data for both the same dynamical regime (({hat{Y}}_{A}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{A})), and the contrasting dynamical regime ({hat{Y}}_{B}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{A}). Likewise, the reconstructed attractor MB can be used to predict time series dynamics from both dynamical regimes; that is, ({hat{Y}}_{A}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{B}) and ({hat{Y}}_{B}(t+1)|{{{{{{boldsymbol{M}}}}}}}_{B}), respectively.Multivariate approachA multivariate time series describes a number of simultaneously evolving variables. For example, a bivariate time series can be described by variables X and Y. For such time series, Sugihara et al.30 developed an approach for testing if two variables (time series) are dynamically coupled. Their methodology builds on the fact that a reconstructed attractor should map 1:1 to the original attractor on which the reconstruction is based. This infers that two attractor reconstructions (based on two different variables) should also map 1:1 to each other30. Practically, this means that if two variables are dynamically coupled one-time series should be predictable based on an attractor reconstruction of another variable. However, if a dynamical system has gone through a bifurcation, or potentially switched to an alternative basin of attraction, a new set of rules will govern the dynamics of the system. Hence, a new attractor should have emerged. Now, since this new attractor is most likely governed by a new set of rules it should be difficult to predict the dynamics of this new alternative attractor based on information from the former attractor. Thus, if one variable in one dynamical regime is used to predict another variable in another dynamical regime, predictions should be biased. Yet, if one variable from one dynamical regime is used to predict another variable from the same regime predictions should be more accurate.The simplex algorithm can be used to make predictions of a variable Y using a time series of another variable X30. Predictions are produced as follows:$${hat{Y}}_{{{{{{boldsymbol{A}}}}}}}(t)|{{{{{{boldsymbol{M}}}}}}}_{B}=mathop{sum}limits_{m=1ldots E+1}{w}_{m}{Y}_{B}({t}_{m}),$$
    (4)
    where tm is the time series index of a vector of variable X of dynamical regime B, wm is an exponential weighting based on variable X:$${w}_{m}={u}_{m}/mathop{sum}limits_{n=1,ldots ,E+1}{u}_{n},$$
    (5)
    where n and m belongs to the set of the E+1 nearest neighbors of ({underline{x}}_{A}(t)) in ({{underline{x}}_{B}({t}_{m})}), ({u}_{m}=exp {-d[{underline{x}}_{A}(t),{underline{x}}_{B}({t}_{m})]/d[{underline{x}}_{A}(t),{underline{x}}_{B}({t}_{1})]}), and (d[{underline{x}}_{A}(t),{underline{x}}_{B}({t}_{1})],)is the Euclidean distance between the prediction vector(,{underline{x}}_{A}(t)) and its nearest neighbor ({underline{x}}_{B}({t}_{1})) in dynamical regime (B).The reconstructed attractors, MA and MB, for each variable and regime are found using the univariate simplex algorithm described above28,29,30. Similar to the univariate case, the reconstructed attractor (MA) is used to predict data from the same dynamical regime (({hat{Y}}_{{{{{{boldsymbol{A}}}}}}}(t)|{{{{{{boldsymbol{M}}}}}}}_{A})), and to predict time series of a contrasting dynamical regime (({hat{Y}}_{{{{{{boldsymbol{A}}}}}}}(t)|{{{{{{boldsymbol{M}}}}}}}_{B})). Yet, it is important to stress that MA here reflects an attractor reconstruction based on a variable that is not being predicted (that is, variable X is used to predict variable Y). This prediction approach thus infers that predictions are made on data that was not used to fit the model (X predicts Y and vice versa). Thus, neither across nor within regime predictions are made on data used to fit a model.Test statisticWe used mean absolute prediction errors to test for difference between across and within regime predictions. Alternative metrics, such as mean sum of square errors, can also be used. However, since our approach gives skewed prediction errors we used mean absolute prediction errors to reduce the impact of extreme values. Further, since the absolute prediction errors are non-normally distributed we used a permutation test. The null hypothesis that is tested reads:$$H0:{{{{{rm{MAP{E}}}}}}}_{A} < {{{{{rm{MAP{E}}}}}}}_{w},$$ (6) where MAPEA is the mean absolute prediction error for across regime predictions (that is, ({{{{{rm{MAP{E}}}}}}}_{A}=frac{1}{n}mathop{sum}limits_{t=1:n}{{{{{rm{abs}}}}}}({hat{Y}}_{{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{A}}}}}}}}(t)|{{{{{{boldsymbol{M}}}}}}}_{B}-{Y}_{{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{A}}}}}}}}(t))), and ({{{{{rm{MAP{E}}}}}}}_{w}) is the mean absolute prediction error for within regime predictions (that is, ({{{{{rm{MAP{E}}}}}}}_{w}=frac{1}{n}mathop{sum}limits_{t=1:n}{{{{{rm{abs}}}}}}({hat{Y}}_{{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{A}}}}}}}}(t)|{{{{{{boldsymbol{M}}}}}}}_{A}-{Y}_{{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{A}}}}}}}}(t))). A test is consider significant if observed difference in across and within regime mean prediction errors is larger than the 95th percentile of 1000 permuted data sets.Food-chain modelWe used a food-chain model parameterized as in McCann and Yodzis31 to simulate food-chain dynamics:$$frac{{{{{{rm{d}}}}}}R}{{{{{{rm{d}}}}}}t}=Rleft(1-frac{R}{K}right)-frac{{x}_{c}{y}_{c}CR}{R+{R}_{0}}$$ (7) $$frac{{{{{{rm{d}}}}}}C}{{{{{{rm{d}}}}}}t}={x}_{c}Cleft(-1+frac{{y}_{C}R}{R+{R}_{0}}right)-frac{{x}_{P}{y}_{P}PC}{C+{C}_{0}}$$$$,frac{{{{{{rm{d}}}}}}P}{{{{{{rm{d}}}}}}t}={x}_{P}Pleft(-1+frac{{y}_{P}C}{C+{C}_{0}}right),$$where R is the resource density, C consumer density, and P predator density. All parameters, except half-saturation constants R0 (here set to 0.16129) and C0 (here set to 0.5), and resource carrying capacity K, are derived from bioenergetics and body size allometry30 (xc = 0.4, yc = 2.009, yp = 2.876, R0, r = 1, xp = 0.08).This model can display a rich set of dynamics depending on parameter values31. Here we alter resource carrying capacity K in order to simulate the dynamics (using the deSolve package32 in R) of qualitatively different attractors (See Supplementary Fig. 1; K = 0.78, equilibrium; K = 0.85; two-point limit cycle; K = 0.92, four-point limit cycle; K = 0.997, chaotic dynamics). Every fifth time step of the simulated dynamics, corresponding to a sampling frequency of ≈10 samples per cycle for the 2-point limit cycle, was sampled. Observation noise was thereafter added to the deterministic dynamics produced by the model:$${N}_{l}(t)={N}_{l}^{prime}(t)+rho * e(t);e(t) sim N(0,{sigma }_{N^{prime_{l}}}),$$ (8) where (N_{l}^{prime}(t)) is the abundance of species l (P, C or R) simulated by the food-chain model at time point t, (rho) is the level of observation noise and ({sigma }_{N_{l}^{prime}}) is the standard deviation of the deterministic dynamics of species l produced by the food chain model.In order to investigate how time series length and observation noise affects the probability of detecting alternative attractors we derived probability landscapes. These were derived by testing the null-hypothesis (H0:(|{hat{{{{{{boldsymbol{Y}}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{i}}}}}}}-{{{{{{boldsymbol{Y}}}}}}}_{{{{{{boldsymbol{i}}}}}}}| > |{hat{{{{{{boldsymbol{Y}}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{j}}}}}}}-{{{{{{boldsymbol{Y}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|); See Test statistic above) across 100 replicates for each combination of time series length and level of observation noise, (rho). Time-series length was varied from 10 to 100 in steps of 10, and observation noise, (rho), was varied from 0.01 to 0.3 in steps of 0.01, in total yielding 300 combinations of observation noise and time series length, for each combination of dynamical regimes i and j. Predator dynamics was used to predict consumer and resource dynamics using the multivariate approach described above (results for the cases where consumer or resource dynamics are used to predict the other species´ dynamics are presented in Supplementary Figs. 2, 3). All time series were standardized ((mu =0;sd=1)) prior testing for dynamical difference.Experimental data setThe experimental data set was given by Fussman et al.7. This data set contains 14 time series of a predator Brachionus calyciflorus and its prey Chlorella vulgaris derived from chemostat experiments. Time series for different dilution rates were produced by keeping the dilution rate fixed in different chemostats (Supplementary Figs. 3–11). Brachionus calyciflorus and Chlorella vulgaris time series were used to predict Chlorella vulgaris and Brachionus calyciflorus time series, respectively, using the multivariate approach described above. We tested for qualitative difference in the temporal dynamics across all time series, which were standardized ((mu =0;sd=1)) prior testing.Alternative stable state modelWe used a stochastic version of a well-known alternative stable state model4,33 to produce alternative stochastic dynamical regimes. The model is described by:$${{{{{rm{d}}}}}}x=left(xleft(1-frac{x}{{{{{{rm{K}}}}}}}right)+frac{c{x}^{2}}{1-{x}^{2}}right){{{{{rm{d}}}}}}t+sigma {{{{{rm{d}}}}}}w,$$
    (9)
    where K is the carrying capacity (here set to 11), c is a harvest rate, and σ (here set to 0.01) is the magnitude of noise which is described by a Wiener process (dw).The model was simulated for fixed harvest rates (c) assuming that the system state resides in either of its two basins of attraction. The initial value for the simulation was set to the equilibrium of the noise-free model skeleton for fixed harvest rates c, and σ is set low in order to avoid stochastic flips, so-called flickering, between alternative basins of attraction. Dynamics was integrated (Δt = 0.01) using the matlab-package SDE-Tools34.In order to investigate how time-series length and harvest rate, c, affects the probability of detecting alternative attractors in stochastic regimes we derived probability landscapes.These were derived by testing the null-hypothesis H0:(|{hat{{{{{{boldsymbol{Y}}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{i}}}}}}}-{{{{{{boldsymbol{Y}}}}}}}_{{{{{{boldsymbol{i}}}}}}}| > |{hat{{{{{{boldsymbol{Y}}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|{{{{{{boldsymbol{M}}}}}}}_{{{{{{boldsymbol{j}}}}}}}-{{{{{{boldsymbol{Y}}}}}}}_{{{{{{boldsymbol{i}}}}}}}|) (permutation test p = 0.05) across 100 simulated data sets for each combination of time series length and harvest rate, c. Time-series length was varied between 50 and 150 in steps of 10, and c was varied between 1.83 and 2.73 in steps of 0.05, in total yielding 209 combinations of time series length and harvest rate. Each time series was standardized ((mu =0;sd=1)) prior testing for difference in temporal dynamics of contrasting regimes.Natural time-series dataIn a previous study on early warning signals of impending regime shifts, Gsell et al.18 used breakpoint analysis to identify two potential alternative dynamical regimes. We here test if these two-time series segments constitute alternative dynamical attractors. Prior analysis, we imputed a few missing observations (n = 24) using a kalman smoother35. The two time series segments, i.e. pre- and post-breakpoint time series, were standardized ((mu =0;sd=1)) prior testing for dynamical difference.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Male sperm storage impairs sperm quality in the zebrafish

    1.Ward, P. I. Intraspecific variation in sperm size characters. Heredity 80, 655–659 (1998).Article 

    Google Scholar 
    2.Schulte-Hostedde, A. I. & Montgomerie, R. Intraspecific variation in ejaculate traits of the northern watersnake (Nerodia sipedon). J. Zool. 270, 147–152. https://doi.org/10.1111/j.1469-7998.2006.00101.x (2006).Article 

    Google Scholar 
    3.Morrow, E. H. & Gage, A. R. Consistent signicant variation between individual males in spermatozoal morphometry. J. Zool. 254, 147–153 (2001).Article 

    Google Scholar 
    4.Locatello, L., Pilastro, A., Deana, R., Zarpellon, A. & Rasotto, M. B. Variation pattern of sperm quality traits in two gobies with alternative mating tactics. Funct. Ecol. 21, 975–981 (2007).Article 

    Google Scholar 
    5.Iglesias-Carrasco, M., Harrison, L., Jennions, M. D. & Head, M. L. Combined effects of rearing and testing temperatures on sperm traits. J. Evol. Biol. 33, 1715–1724. https://doi.org/10.1111/jeb.13710 (2020).Article 
    PubMed 

    Google Scholar 
    6.Evans, J. P. & Magurran, A. E. Geographic variation in sperm production by Trinidadian guppies. Proc. R. Soc. B-Biol. Sci. 266, 2083–2087 (1999).Article 

    Google Scholar 
    7.Morrow, E. H., Leijon, A. & Meerupati, A. Hemiclonal analysis reveals significant genetic, environmental and genotype x environment effects on sperm size in Drosophila melanogaster. J. Evol. Biol. 21, 1692–1702. https://doi.org/10.1111/j.1420-9101.2008.01585.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Firman, R. C., Klemme, I. & Simmons, L. W. Strategic adjustments in sperm production within and between two island populations of house mice. Evolution 67, 3061–3070. https://doi.org/10.5061/dryad.87pk2 (2013).Article 
    PubMed 

    Google Scholar 
    9.Taborsky, M. Sperm competition in fish: ‘bourgeois’ males and parasitic spawning. Trends Ecol. Evol. 13, 222–227 (1998).CAS 
    Article 

    Google Scholar 
    10.Kustra, M. C. & Alonzo, S. H. Sperm and alternative reproductive tactics: a review of existing theory and empirical data. Philos. Trans. R. Soc. B-Biol. Sci. 375, 20200075. https://doi.org/10.1098/rstb.2020.0075 (2020).Article 

    Google Scholar 
    11.Marshall, D. J. Environmentally induced (co)variance in sperm and offspring phenotypes as a source of epigenetic effects. J. Exp. Biol. 218, 107–113. https://doi.org/10.1242/jeb.106427 (2015).Article 
    PubMed 

    Google Scholar 
    12.Vega-Trejo, R. et al. The effects of male age, sperm age and mating history on ejaculate senescence. Funct. Ecol. 33, 1267–1279. https://doi.org/10.1111/1365-2435.13305 (2019).Article 

    Google Scholar 
    13.Macartney, E. L., Crean, A. J., Nakagawa, S. & Bonduriansky, R. Effects of nutrient limitation on sperm and seminal fluid: a systematic review and meta-analysis. Biol. Rev. Camb. Philos. Soc. 94, 1722–1739. https://doi.org/10.1111/brv.12524 (2019).Article 
    PubMed 

    Google Scholar 
    14.Johnson, S. L. et al. Evidence that fertility trades off with early offspring fitness as males age. Proc. R. Soc. B-Biol. Sci. https://doi.org/10.1098/rspb.2017.2174 (2018).Article 

    Google Scholar 
    15.Gasparini, C., Marino, I. A. M., Boschetto, C. & Pilastro, A. Effect of male age on sperm traits and sperm competition success in the guppy (Poecilia reticulata). J. Evol. Biol. 23, 124–135 (2010).CAS 
    Article 

    Google Scholar 
    16.Velando, A., Noguera, J. C., Drummond, H. & Torres, R. Senescent males carry premutagenic lesions in sperm. J. Evol. Biol. 24, 693–697 (2011).CAS 
    Article 

    Google Scholar 
    17.Pilastro, A., Scaggiante, M. & Rasotto, M. B. Individual adjustment of sperm expenditure accords with sperm competition theory. Proc. Natl. Acad. Sci. U.S.A. 99, 9913–9915 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Nicholls, E. H., Burke, T. & Birkhead, T. R. Ejaculate allocation by male sand martins, Riparia riparia. Proc. R. Soc. B-Biol. Sci. 268, 1265–1270. https://doi.org/10.1098/rspb.2001.1615 (2001).CAS 
    Article 

    Google Scholar 
    19.Oppliger, A., Hosken, D. J. & Ribi, G. Snail sperm production characteristics vary with sperm competition risk. Proc. R. Soc. B-Biol. Sci. 265, 1527–1534 (1998).Article 

    Google Scholar 
    20.Crean, A. J. & Marshall, D. J. Gamete plasticity in a broadcast spawning marine invertebrate. Proc. Natl. Acad. Sci. U.S.A. 105, 13508–13513 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Fisher, H. S., Hook, K. A., Weber, W. D. & Hoekstra, H. E. Sibling rivalry: males with more brothers develop larger testes. Ecol. Evol. 8, 8197–8203. https://doi.org/10.1002/ece3.4337 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Ramm, S. A. & Stockley, P. Adaptive plasticity of mammalian sperm production in response to social experience. Proc. R. Soc. B-Biol. Sci. 276, 745–751 (2009).Article 

    Google Scholar 
    23.Pizzari, T., Cornwallis, C. K. & Froman, D. P. Social competitiveness associated with rapid fluctuations in sperm quality in male fowl. Proc. R. Soc. B-Biol. Sci. 274, 853–860. https://doi.org/10.1098/rspb.2006.0080 (2007).Article 

    Google Scholar 
    24.Silva, W. et al. The effects of male social environment on sperm phenotype and genome integrity. J. Evol. Biol. 32, 535–544. https://doi.org/10.1111/jeb.13435 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Firman, R. C., Garcia-Gonzalez, F., Simmons, L. W. & Andre, G. I. A competitive environment influences sperm production, but not testes tissue composition, in house mice. J. Evol. Biol. 31, 1647–1654. https://doi.org/10.1111/jeb.13360 (2018).Article 
    PubMed 

    Google Scholar 
    26.Bozynski, C. C. & Liley, N. R. The effect of female presence on spermiation, and of male sexual activity on “ready” sperm in the male guppy. Anim. Behav. 65, 53–58. https://doi.org/10.1006/Anbe.2002.2024 (2003).Article 

    Google Scholar 
    27.Aitken, R. J. Impact of oxidative stress on male and female germ cells: implications for fertility. Reproduction 159, R189–R201. https://doi.org/10.1530/REP-19-0452 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Reinhardt, K. Evolutionary consequences of sperm cell aging. Q. Rev. Biol. 82, 375–393 (2007).Article 

    Google Scholar 
    29.Pizzari, T., Dean, R., Pacey, A., Moore, H. & Bonsall, M. B. The evolutionary ecology of pre- and post-meiotic sperm senescence. Trends Ecol. Evol. 23, 131–140. https://doi.org/10.1016/j.tree.2007.12.003 (2008).Article 
    PubMed 

    Google Scholar 
    30.Gasparini, C., Dosselli, R. & Evans, J. P. Sperm storage by males causes changes in sperm phenotype and influences the reproductive fitness of males and their sons. Evol. Lett. 1, 16–25. https://doi.org/10.1002/evl3.2 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Reinhardt, K. & Turnell, B. Sperm ageing: a complex business. Funct. Ecol. 33, 1188–1189. https://doi.org/10.1098/rspb.2018.2873 (2019).Article 

    Google Scholar 
    32.Tarin, J. J., Pérez-Albalà, S. & Cano, A. Consequences on offspring of abnormal function in ageing gametes. Hum. Reprod. Update 6, 532–549 (2000).CAS 
    Article 

    Google Scholar 
    33.Li, J. et al. The effect of male sexual abstinence periods on the clinical outcomes of fresh embryo transfer cycles following assisted reproductive technology: a meta-analysis. Male Sexual Reprod. Health 4, 1–8 (2020).
    Google Scholar 
    34.Periyasamy, A. J. et al. Does duration of abstinence affect the live-birth rate after assisted reproductive technology? A retrospective analysis of 1,030 cycles. Fertil. Steril. 108, 988–992. https://doi.org/10.1016/j.fertnstert.2017.08.034 (2017).Article 
    PubMed 

    Google Scholar 
    35.World Health Organization. WHO laboratory manual for the examination and processing of human semen 5th ed. (Geneva: World Health Organization, 2010).36.Comar, V. A. et al. Influence of the abstinence period on human sperm quality: analysis of 2,458 semen samples. JBRA Assist. Reprod. 21, 306–312. https://doi.org/10.5935/1518-0557.20170052 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Gasparini, C., Kelley, J. L. & Evans, J. P. Male sperm storage compromises sperm motility in guppies. Biol. Let. 10, 20140681. https://doi.org/10.1098/rsbl.2014.0681 (2014).Article 

    Google Scholar 
    38.Poli, F., Immler, S., Gasparini, C. & Taborsky, M. Effects of ovarian fluid on sperm traits and its implications for cryptic female choice in zebrafish. Behav. Ecol. 30, 1298–1305. https://doi.org/10.1093/beheco/arz077 (2019).Article 

    Google Scholar 
    39.Riesco, M. F., Valcarce, D. G., Martinez-Vazquez, J. M. & Robles, V. Effect of low sperm quality on progeny: a study on zebrafish as model species. Sci. Rep. https://doi.org/10.1038/s41598-019-47702-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Hagedorn, M. & Carter, V. L. Zebrafish reproduction: revisiting in vitro fertilization to increase sperm cryopreservation success. PLoS ONE 6, e21059. https://doi.org/10.1371/journal.pone.0021059 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Zajitschek, S., Hotzy, C., Zajitschek, F. & Immler, S. Short-term variation in sperm competition causes sperm-mediated epigenetic effects on early offspring performance in the zebrafish. Proc. R. Soc. B-Biol. Sci. 281, 20140422. https://doi.org/10.1098/rspb.2014.0422 (2014).Article 

    Google Scholar 
    42.R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/ (2020).43.Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644. https://doi.org/10.1111/2041-210X.12797 (2017).Article 

    Google Scholar 
    44.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    45.Fox, J. & Weisberg, S. An R companion to applied regression 3rd edn. (Sage, 2019).
    Google Scholar 
    46.Lenth, R. V. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33. https://doi.org/10.18637/jss.v069.i01 (2016).Article 

    Google Scholar 
    47.White, J. et al. Multiple deleterious effects of experimentally aged sperm in a monogamous bird. Proc. Natl. Acad. Sci. U.S.A. 105, 13947–13952 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Reinhardt, K. & Siva-Jothy, M. T. An advantage for young sperm in the house cricket Acheta domesticus. Am. Nat. 165, 718–723 (2005).Article 

    Google Scholar 
    49.Gage, M. J. G. et al. Spermatozoal traits and sperm competition in Atlantic salmon: relative sperm velocity is the primary determinant of fertilization success. Curr. Biol. (CB) 14, 44–47 (2004).CAS 

    Google Scholar 
    50.Fitzpatrick, J. L. et al. Female promiscuity promotes the evolution of faster sperm in cichlid fishes. Proc. Natl. Acad. Sci. U.S.A. 106, 1128–1132. https://doi.org/10.1073/pnas.0809990106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Alavioon, G. et al. Haploid selection within a single ejaculate increases offspring fitness. Proc. Natl. Acad. Sci. U.S.A. 114, 8053–8058. https://doi.org/10.1073/pnas.1705601114 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Cosson, J. Frenetic activation of fish spermatozoa flagella entails short-term motility, portending their precocious decadence. J. Fish Biol. 76, 240–279. https://doi.org/10.1111/j.1095-8649.2009.02504.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Levitan, D. R. Sperm velocity and longevity trade off each other and influence fertilization in the sea urchin Lytechinus variegatus. Proc. R. Soc. B-Biol. Sci. 267, 531–534 (2000).CAS 
    Article 

    Google Scholar 
    54.Taborsky, M., Schütz, D., Goffinet, O. & van Doorn, G. S. Alternative male morphs solve sperm performance/longevity trade-off in opposite directions. Sci. Adv. 4, 8563 (2018).ADS 
    Article 

    Google Scholar 
    55.Cardozo, G., Devigili, A., Antonelli, P. & Pilastro, A. Female sperm storage mediates post-copulatory costs and benefits of ejaculate anticipatory plasticity in the guppy. J. Evol. Biol. 33, 1294–1305. https://doi.org/10.1111/jeb.13673 (2020).Article 
    PubMed 

    Google Scholar 
    56.delBarco-Trillo, J. et al. A cost for high levels of sperm competition in rodents: increased sperm DNA fragmentation. Proc. R. Soc. B-Biol. Sci. 283, 20152708 (2016).Article 

    Google Scholar 
    57.Firman, R. C., Young, F. J., Rowe, D. C., Duong, H. T. & Gasparini, C. Sexual rest and post-meiotic sperm ageing in house mice. J. Evol. Biol. 28, 1373–1382. https://doi.org/10.1111/jeb.12661 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Gosálvez, J., López-Fernández, C., Hermoso, A., Fernández, J. L. & Kjelland, M. E. Sperm DNA fragmentation in zebrafish (Danio rerio) and its impact on fertility and embryo viability—implications for fisheries and aquaculture. Aquaculture 433, 173–182. https://doi.org/10.1016/j.aquaculture.2014.05.036 (2014).CAS 
    Article 

    Google Scholar 
    59.Perez-Cerezales, S., Martinez-Paramo, S., Beirao, J. & Herraez, M. P. Fertilization capacity with rainbow trout DNA-damaged sperm and embryo developmental success. Reproduction 139, 989–997. https://doi.org/10.1530/REP-10-0037 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Quay, W. Cloacal sperm in spring migrants: occurrence and interpretation. The Condor 87, 273–280 (1985).Article 

    Google Scholar 
    61.Thomsen, R., Soltis, J. & Teltscher, C. Sperm competition and the function of male masturbation in non-human primates. Sexual selection and reproductive competition in primates: New perspectives and directions (Jones, 2003).62.Engeszer, R. E., Patterson, L. B., Rao, A. A. & Parichy, D. M. Zebrafish in the wild: a review of natural history and new notes from the field. Zebrafish 4, 21–40. https://doi.org/10.1089/zeb.2006.9997 (2007).Article 
    PubMed 

    Google Scholar 
    63.Spence, R. & Smith, C. Mating preference of female zebrafish, Danio rerio, in relation to male dominance. Behav. Ecol. 17, 779–783. https://doi.org/10.1093/beheco/arl016 (2006).Article 

    Google Scholar 
    64.Spence, R. & Smith, C. Male territoriality mediates density and sex ratio effects on oviposition in the zebrafish, Danio rerio. Anim. Behav. 69, 1317–1323. https://doi.org/10.1016/j.anbehav.2004.10.010 (2005).Article 

    Google Scholar 
    65.Parker, G. A. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 45, 525–567 (1970).Article 

    Google Scholar 
    66.Parker, G. A. Sperm competition games: raffles and roles. Proc. R. Soc. B-Biol. Sci. 242, 120–126 (1990).ADS 
    Article 

    Google Scholar  More

  • in

    Predation risk is a function of seasonality rather than habitat complexity in a tropical semiarid forest

    1.Pianka, E. R. Niche relations of desert lizards in Ecology and Evolution of Communities, Cody, M. L. & Diamond, J. M. (Eds). (Harvard University Press, 1975).2.Castilla, A. M. & Labra, A. Predation and spatial distribution of the lizard Podarcis hipanica atrata: an experimental approach. Acta Oecol. 19, 107–114 (1998).ADS 
    Article 

    Google Scholar 
    3.Cantwell, L. R. & Forrest, T. G. Response of Anolis sagrei to acoustic calls from predatory and non-predatory birds. J. Herpetol. 47, 293–298 (2013).Article 

    Google Scholar 
    4.Edmund, M. Defense in animals: A survey of antipredator defenses. (Longman Press, 1974).5.Wilcove, D. Nest predation in forest tracts and the decline of migratory songbirds. Ecology 66, 121l-l214 (1985).Article 

    Google Scholar 
    6.Endler, J. A. Defense against predators in Predator-prey relationships, Feder, M. E. & Lauder, G. V. (Eds). (The University of Chicago Press, 1986).7.Constantini, D., Bruner, E., Fanfani, A. & Dell’Omo, G. Male-biased predation of western green lizards by Eurasian kestrels. Naturwissenschaften 94, 1015–1020. https://doi.org/10.1007/s00114-007-0284-5 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Barnett, A. A. et al. Run, hide or fight: anti-predation strategies in Endangered red-nosed cuxiú (Chiropotes albinasus, Pitheciidae) in south-eastern Amazonia. Primates 58, 353–360. https://doi.org/10.1007/s10329-017-0596-9 (2017).Article 
    PubMed 

    Google Scholar 
    9.Barnett, A. A. et al. Honest error, precaution or alertness advertisement? Reactions to vertebrate pseudopredators in red-nosed cuxiús (Chiropotes albinasus), a high-canopy neo-tropical primate. Ethology 124, 177–187. https://doi.org/10.1111/eth.12721 (2018).Article 

    Google Scholar 
    10.Roslin, T. et al. Higher predation risk for insect prey at low latitudes and elevations. Science 356, 742–744. https://doi.org/10.1126/science.aaj1631 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Shepard, D. B. Habitat but not body shape affects predator attack frequency on lizard models in the Brazilian Cerrado. Herpetologica 63, 193–202. https://doi.org/10.1655/0018-0831(2007)63[193:HBNBSA]2.0.CO;2 (2007).Article 

    Google Scholar 
    12.Salvidio, S., Costa, A. & Romano, A. The use of clay models in amphibian field studies: a short review. Bull. Env. Life Sc. 1, 8 (2019).
    Google Scholar 
    13.Castilla, A. M., Gosá, A., Galán, P. & Pérez-Mellado, V. Green tails in lizards of the genus Podarcis: do they influence the intensity of predation?. Herpetologica 55, 530–537 (1999).
    Google Scholar 
    14.Bateman, P. W., Fleming, P. A. & Wolfe, A. K. A different kind of ecological modelling: the use of clay model organisms to explore predator-prey interactions in vertebrates. J. Zool. 301, 251–262. https://doi.org/10.1111/jzo.12415 (2017).Article 

    Google Scholar 
    15.Rössler, D., Pröhl, H. & Lötters, S. The future of clay model studies. BMC Zool. 3, 6. https://doi.org/10.1186/s40850-018-0033-6 (2018).Article 

    Google Scholar 
    16.Major, R. E. & Kendal, C. E. The contribution of artificial nest experiments to understanding avian reproductive success: a review of methods and conclusions. Ibis 138, 298–307 (1996).Article 

    Google Scholar 
    17.Kuchta, S. R. Experimental support for aposematic coloration in the salamander Ensatina eschscholtzii xanthoptica: implications for mimicry of Pacific newts. Copeia 267–271, 2005. https://doi.org/10.1643/CH-04-173R (2005).Article 

    Google Scholar 
    18.Kraemer, A. C., Serb, J. M. & Adams, D. C. Both novelty and conspicuousness influence selection by mammalian predators on the colour pattern of Plethodon cinereus (Urodela: Plethodontidae). Biol. J. Linn. Soc. 118, 889–900. https://doi.org/10.1111/bij.12780 (2016).Article 

    Google Scholar 
    19.Salvidio, S., Palumbi, G., Romano, A. & Costa, A. Safe caves and dangerous forests? Predation risk may contribute to salamander colonization of subterranean habitats. Sci. Nat. 104, 3–4. https://doi.org/10.1007/s00114-017-1443-y (2017).CAS 
    Article 

    Google Scholar 
    20.Mcelroy, M. T. Teasing apart crypsis and aposematism-evidence that disruptive coloration reduces predation on a noxious toad. Biol. J. Linn. Soc. 17, 285–294. https://doi.org/10.1111/bij.12669 (2016).Article 

    Google Scholar 
    21.Nordberg, E. J. & Schwarzkopf, L. Predation risk is a function of alternative prey availability rather than predator abundance in a tropical savanna woodland ecosystem. Sci. Rep. 9, 7718. https://doi.org/10.1038/s41598-019-44159-6 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Costa, A., Coroller, S. & Salvidio, S. Comparing day and night predation rates on lizard-Like clay models. Herpetol. Conserv. Biol. 15, 198–203 (2020).
    Google Scholar 
    23.Nour, N., Matthysen, E. & Dhondt, A. A. Artificial nest predation and habitat fragmentation: different trends in birds and mammal predators. Ecography 16, 111–116 (1993).Article 

    Google Scholar 
    24.Castilla, A. M. Intensive predation of Audouin’s Gull nests by the yellow legged gull in the Columbretes islands. Colon Waterbirds 18, 226–230. https://doi.org/10.2307/1521487 (1995).Article 

    Google Scholar 
    25.Diego-Rasilla, F. J. Influence of predation pressure on the escape behaviour of Podarcis muralis lizards. Behav. Processes 63, 1–7. https://doi.org/10.1016/S0376-6357(03)00026-3 (2003).Article 
    PubMed 

    Google Scholar 
    26.Stuart-fox, D. M., Moussalli, A., Marshall, N. J. & Owens, I. P. F. Conspicuous males suffer higher predation risk: Visual modeling and experimental evidence from lizards. Anim. Behav. 66, 541–550. https://doi.org/10.1006/anbe.2003.2235 (2003).Article 

    Google Scholar 
    27.Husak, J. F., Macedonia, J. M., Fox, S. F. & Sauceda, R. C. Predation cost of conspicuous male coloration in collared lizards (Crotaphytus collaris): an experimental test using clay-covered model lizards. Ethology 112, 572–580. https://doi.org/10.1111/j.1439-0310.2005.01189.x (2006).Article 

    Google Scholar 
    28.Keehn, J. E. & Feldman, C. R. Predator attack rates and anti-predator behavior of Side-blotched Lizards (Uta stransbuiana) at Southern California Wind Farms, USA. Herpetol. Conserv. Biol. 13, 194–204 (2018).
    Google Scholar 
    29.Hansen, N. A., Sato, C. F., Michael, D. L., Lindenmayer, D. B. & Driscoll, D. A. Predation risk for reptiles is highest at remnant edges in agricultural landscapes. J. Appl. Ecol. 56, 31–43. https://doi.org/10.1111/1365-2664.13269 (2019).Article 

    Google Scholar 
    30.Hegna, R. H., Saporito, R. A., Gerow, K. G. & Donnelly, M. A. Contrasting colours in an aposematic frog do not affect predation. Ann. Zool. 48, 29–38. https://doi.org/10.5735/086.048.0103 (2011).Article 

    Google Scholar 
    31.Paluh, D. J., Hantak, M. M. & Saporito, R. A. A test of aposematism in the dendrobatid poison frog Oophaga pumilio: the importance of movement in clay model experiments. J. Herpetol. 48, 249–254. https://doi.org/10.1670/13-027 (2014).Article 

    Google Scholar 
    32.Rojas, D. P., Stow, A., Amézquita, A., Simões, P. I. & Lima, A. P. No predatory bias with respect to colour familiarity for the aposematic Adelphobates galactonotus (Anura: Dendrobatidae). Behaviour 152, 1637–165. https://doi.org/10.1163/1568539X-00003297 (2015).Article 

    Google Scholar 
    33.Brodie, E. D. I. I. I. Differential avoidance of coral snake banded patterns by free-ranging avian predators in Costa Rica. Evolution 47, 227–235. https://doi.org/10.1111/j.1558-5646.1993.tb01212.x (1993).Article 
    PubMed 

    Google Scholar 
    34.Brodie, E. D. I. I. I. & Janzen, F. J. Experimental studies of coral snake mimicry: Generalized avoidance of ringed snake patterns by free-ranging avian predators. Funct. Ecol. 9, 186–190. https://doi.org/10.2307/2390563 (1995).Article 

    Google Scholar 
    35.Pfennig, D. W., Harper, G. R. Jr., Brumo, A. F., Harcombe, W. R. & Pfennig, K. S. Population differences in predation on Batesian mimics in allopatry with their model: Selection against mimics is strongest when they are common. Behav. Ecol. Sociobiol. 61, 505–511. https://doi.org/10.1007/s00265-006-0278-x (2006).Article 

    Google Scholar 
    36.Martín, J. & López, P. An experimental test of the costs of antipredatory refuge use in the wall lizard, Podarcis muralis. Oikos 84, 499–505 (1999).Article 

    Google Scholar 
    37.Amo, L., López, P. & Martín, J. Refuge use: a conflict between avoiding predation and losing mass in lizards. Physiol. Behav. 90, 334–343. https://doi.org/10.1016/j.physbeh.2006.09.035 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Endler, J. A. Interactions between predators and prey in Behavioural Ecology: An Evolutionary Approach, Krebs, J. R. & Davies, N. B., (Eds). (Blackwell, 1991).39.Denno, R. F., Finke, D. L. & Langellotto, G. A. Direct and indirect effects of vegetation structure and habitat complexity on predator-prey and predator-predator interactions in Ecology of Predator-prey Interactions, Barbosa, P. & Castellanos, I. (Eds). (Oxford University Press, 2005).40.Ruxton, G. D., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The evolutionary ecology of crypsis, warning signals, and mimicry. (Oxford University Press, 2004).41.Sih, A. To hide or not to hide? Refuge use in a fluctuating environment. Trends Ecol. Evol. 12, 375–6 (1997).CAS 
    Article 

    Google Scholar 
    42.Martín, J., López, P. & Cooper, W. E. Jr. When to come out from a refuge: balancing predation risk and foraging opportunities in an alpine lizard. Ethology 109, 77–87. https://doi.org/10.1046/j.1439-0310.2003.00855.x (2003).Article 

    Google Scholar 
    43.Bulova, S. J. Ecological correlates of population and individual variation in antipredator behaviour of two species of desert lizards. Copeia 4, 980–992. https://doi.org/10.2307/1446721 (1994).Article 

    Google Scholar 
    44.Vanhooydonck, B. & Van Damme, R. Relationships between locomotor performance, microhabitat use and antipredator behaviour in lacertid lizards. Func. Ecol. 17, 160–169. https://doi.org/10.1046/j.1365-2435.2003.00716.x (2003).Article 

    Google Scholar 
    45.Vervust, B., Grbac, I. L. & Van Damme, R. Differences in morphology, performance and behavior between recently diverged populations of Podarcis sicula mirror differences in predation pressure. Oikos 116, 1343–1352. https://doi.org/10.1111/j.2007.0030-1299.15989.x (2007).Article 

    Google Scholar 
    46.Smith, G. R. & Ballinger, R. E. The ecological consequences of habitat and microhabitat use in lizards: a review. Contemp. Herpetol. 3, 1–13. https://doi.org/10.1002/3527600213.ch1 (2001).Article 

    Google Scholar 
    47.Wüster, W. et al. Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc. Roy. Soc. London 271, 2495–2499. https://doi.org/10.1098/rspb.2004.2894 (2004).Article 

    Google Scholar 
    48.Worthington-Hill, O. & Gill, A. Effects of large-scale heathland management on thermal regimes and predation on adders Vipera berus. Anim. Conserv. 22, 481–492. https://doi.org/10.1111/acv.12489 (2019).Article 

    Google Scholar 
    49.Chiang, J. C. H. & Koutavas, A. Tropical flip-flop connection. Nature 432, 684–685. https://doi.org/10.1038/432684a (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Carmo, R. F. R., Amorim, H. P. & Vasconcelos, S. D. Scorpion diversity in two types of seasonally dry tropical forest in the semi-arid region of Northeastern Brazil. Biota. Neotrop. 13, 340–344. https://doi.org/10.1590/S1676-06032013000200037 (2013).Article 

    Google Scholar 
    51.Warrick, G. D., Kato, T. T. & Rose, B. R. Microhabitat use and home range characteristics of Blunt-nosed leopard lizards. J. Herpetol. 32, 183–191 (1998).Article 

    Google Scholar 
    52.Constantini, D. & Dell’Omo, G. Sex-Specific predation on two lizard species by kestrels. Russ. J. Ecol. 41, 99–101. https://doi.org/10.1134/S1067413610010182 (2010).Article 

    Google Scholar 
    53.Poulin, B. et al. Avian predation upon lizards and frogs in a neotropical forest understory. J. Trop. Ecol. 17, 21–40. https://doi.org/10.1017/S026646740100102X (2001).Article 

    Google Scholar 
    54.Araújo, C. S., Candido, D. M., Araújo, H. F. P., Dias, S. C. & Vasconcellos, A. Seasonal variations in scorpion activities (Arachnida: Scorpiones) in an area of Caatinga vegetation in Northeastern Brazil. Zoologia 27, 372–376. https://doi.org/10.1590/S1984-46702010000300008 (2010).Article 

    Google Scholar 
    55.Vasconcellos, A. et al. Seasonality of insects in the semi-arid Caatinga of northeastern Brazil. Rev. Bras. Entomol. 54, 471–476. https://doi.org/10.1590/S0085-56262010000300019 (2010).Article 

    Google Scholar 
    56.Schall, J. J. & Pianka, E. R. Evolution of escape behavior diversity. Am. Nat. 115, 551–566 (1980).Article 

    Google Scholar 
    57.Martín, J. & López, P. Influence of habitat structure on the escape tactics of the lizard Psammodromus algirus. Can. J. Zool. 73, 129–132 (1995).Article 

    Google Scholar 
    58.Rocha, C. F. D. & Bergallo, H. G. Intercommunity variation in the distribution of abundance of dominant lizard species in restinga habitats. Ciencia e Cultura 49, 269–274 (1997).
    Google Scholar 
    59.Van-Sluys, M. Growth and body condition of the saxicolous lizard Tropidurus itambere in southeastern Brazil. J. Herpetol. 32, 359–365 (1998).Article 

    Google Scholar 
    60.Liebezeit, J. R. & Zack, S. Point counts underestimate the importance of arctic foxes as avian nest predators: evidence from remote video cameras in arctic Alaskan oil fields. Arctic 61, 153–161 (2008).
    Google Scholar 
    61.DeGregorio, B. A., Weatherhead, P. J. & Sperry, J. H. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity. Ecol. Evol. 4, 1589–1600. https://doi.org/10.1002/ece3.1049 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Huey, R. B. & Pianka, E. R. Ecological consequences of foraging mode. Ecology 62, 991–999 (1981).Article 

    Google Scholar 
    63.Greene, H. W. Antipredator mechanisms in reptiles in Biology of Reptilian, Gans, C. & Huey, R. B. (Eds.). (Springer, 1998).64.Martín, J. & López, P. Amphibians and reptiles as prey of birds in southwestern Europe. Smit. Herpetol. Inform. Serv. 82, 1–43 (1990).
    Google Scholar 
    65.Steffen, J. E. Perch-height specific predation on tropical lizard clay models: implications for habitat selection in mainland neotropical lizards. Rev. Biol. Trop. 57, 859–864. https://doi.org/10.15517/rbt.v57i3.5498 (2009).Article 
    PubMed 

    Google Scholar 
    66.Dunham, A. E., Grant, B. W. & Overall, K. L. Interfaces between biophysical and physiological ecology and the population ecology of terrestrial vertebrate ectotherms. Physiol. Zool. 62, 335–355 (1989).Article 

    Google Scholar 
    67.Ruiz-Esparza, J. et al. Birds of the Grota do Angico Natural Monument in the semi-arid Caatinga scrublands of northeastern Brazil. Biota. Neotrop. 11, 1–8. https://doi.org/10.1590/S1676-06032011000200027 (2011).Article 

    Google Scholar 
    68.Lima, C. P., Santos, S. S. & Lima, R. C. Levantamento e Anilhamento da Ornitofauna na Pátria da Arara-Azul-de-Lear (Anodorhynchus leari, Bonaparte, 1856): um complemento ao Levantamento realizado por Sick, H., Gonzaga, L. P. e Teixeira, D. M., 1987. Atual. Ornitol. 112, 11–22 (2003).69.Roos, A. L. et al. Avifauna da região do Lago de Sobradinho: composição, riqueza e biologia. Ornithologia 1, 135–160 (2006).
    Google Scholar 
    70.Farias, G. B., Pereira, G. P. & Burgos, K. Q. Aves da Floresta Nacional de Negreiros (Serrita, Pernambuco). Atual. Ornitol. 157, 41–46 (2010).
    Google Scholar 
    71.Sousa, P. A. G. & Freire, E. M. X. Coleodactylus natalensis (NCN). Predation. Herpetol. Rev. 41, 218 (2010).
    Google Scholar 
    72.Ribeiro, L. B., Gogliath, M. & Freire, E. M. X. Hemidactylus brasilianus (Amaral’s Brazilian Gecko) and Cnemidophorus ocellifer (Spix`s Whiptail). Predation. Herpetol. Bull. 117, 31–32 (2011).
    Google Scholar 
    73.De-Carvalho, C. B. et al. Gymnodactylus geckoides (Naked-Toed Gecko): Predation. Herpetol. Bull. 121, 41–43 (2012).
    Google Scholar 
    74.McCormick, S. & Polis, G. A. Arthropods that prey on vertebrates. Biol. Rev. 57, 29–58 (1982).Article 

    Google Scholar 
    75.Rocha, C. F. D. & Vrcibradic, D. Reptiles as predators of vertebrates and as preys in a restinga habitat of southeastern Brazil. Ciencia e Cultura 50, 364–368 (1998).
    Google Scholar 
    76.Armas, L. F. Frogs and lizards as prey of some Greater Antillean arachnids. Rev. Iberica Aracnol. 3, 87–88 (2000).
    Google Scholar 
    77.Schatz, B., Suzzoni, J. P., Corbara, B. & Dejean, A. Selection and capture of prey in the African ponerine ant Plectroctena minor (Hymenoptera: formicidae). Acta Oecol. 22, 55–60. https://doi.org/10.1016/S1146-609X(00)01100-0 (2001).ADS 
    Article 

    Google Scholar 
    78.Nordberg, E. J., Edwards, L. & Schwarzkopf, L. Terrestrial invertebrates: an underestimated predator guild for small vertebrate groups. Food Webs 15, e00080 (2018).Article 

    Google Scholar 
    79.Seifert, C. L., Schulze, C. H., Dreschke, T. C. T., Frötscher, H. & Fiedler, K. Day vs. night predation on artificial caterpillars in primary rainforest habitats-an experimental approach. Entomol. Exp. Appl. 158, 54–59. https://doi.org/10.1111/eea.12379 (2016).Article 

    Google Scholar 
    80.Andrade, L. A., Pereira, I. M., Leite, U. T. & Barbosa, M. R. V. Análise da cobertura de duas fitofisionomias de Caatinga, com diferentes históricos de uso, no município de São João do Cariri, estado da Paraíba. Cerne 11, 253–262 (2005).
    Google Scholar 
    81.Castelletti, C. H. M., Silva, J. M. C., Tabarelli, M. & Santos, A. M. M. Quanto ainda resta da Caatinga? Uma estimative preliminar in Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação, Silva, J. M. C., Tabarelli, M., Fonseca, M. T. & Lins, L. V. (Eds.). (Ministério do Meio Ambiente Publishing, 2004).82.Albuquerque, U. P. et al. Caatinga revisited: ecology and conservation of an important seasonal dry forest. Sci. World J. 1–18, 2012. https://doi.org/10.1100/2012/205182 (2012).Article 

    Google Scholar 
    83.Da Silva, A. C. C., Prata, A. P. N. & Mello, A. A. Flowering plants of the Grota do Angico Natural Monument, Caatinga of Sergipe, Brazil. Check List 9, 733–739 (2013).Article 

    Google Scholar 
    84.Nimer, E. Climatologia da Região Nordeste do Brasil: Introdução à Climatologia Dinâmica. Rev. Bras. Geog. 34, 3–51 (1972).
    Google Scholar 
    85.Santos, A. F. & Andrade, J. A. O quadro natural: caracterização e delimitação do semi-árido sergipano. Sergipe. Brazil. (CNPq/UFS, 1992).86.SEMARH–Secretaria de Estado do Meio Ambiente e dos Recursos Hídricos. Plano de Manejo do Monumento Natural Grota do Angico. Sergipe, Brazil. (Secretaria de Estado do Meio Ambiente e dos Recursos Hídricos, 2011)87.Ferreira, A. S., Silva, A. O., Conceição, B. M. & Faria, R. G. The diet of six species of lizards in an area of Caatiga, Brazil. Herpetol. J. 27, 151–160 (2017).
    Google Scholar 
    88.Rocha, S. M. et al. Lizards from the Alto Sertão region of Sergipe state, northeastern Brazil. Biota Neotrop. 21(2), e20201137 (2021).Article 

    Google Scholar 
    89.Bennett, A. T. D., Cuthill, I. C. & Norris, K. J. Sexual selection and the mismeasure of color. Am. Nat. 144, 848–860 (1994).Article 

    Google Scholar 
    90.Niskanen, M. & Mappes, J. Significance of the dorsal zigzag pattern of Vipera latastei gaditana against avian predators. J. Anim. Ecol. 74, 1091–1101. https://doi.org/10.1111/j.1365-2656.2005.01008.x (2005).Article 

    Google Scholar 
    91.R Core Team. R: A language and environment for statistical computing (2020). More

  • in

    European primary forest database v2.0

    1.Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Eco. Evo. 2, 599–610 (2018).Article 

    Google Scholar 
    2.European Commission. in COM(2020) 380 final (Brussels, 2020).3.Vandekerkhove, K. et al. Reappearance of Old-Growth Elements in Lowland Woodlands in Northern Belgium: Do the Associated Species Follow? Silva Fenn. 45, 909–935 (2011).Article 

    Google Scholar 
    4.Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.Frey, S. J. K. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Zhou, G. Y. et al. Old-growth forests can accumulate carbon in soils. Science 314, 1417–1417 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Burrascano, S., Keeton, W. S., Sabatini, F. M. & Blasi, C. Commonality and variability in the structural attributes of moist temperate old-growth forests: A global review. For. Ecol. Manag. 291, 458–479 (2013).Article 

    Google Scholar 
    8.Bauhus, J., Puettmann, K. & Messier, C. Silviculture for old-growth attributes. For. Ecol. Manag. 258, 525–537 (2009).Article 

    Google Scholar 
    9.Moore, K. D. In the shadow of the cedars: the spiritual values of old-growth forests. Conserv. Biol. 21, 1120–1123 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.FOREST EUROPE. State of Europe’s Forests 2015. (Ministerial Conference on the Protection of Forests in Europe, Madrid, 2015).11.Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Levers, C. et al. Drivers of forest harvesting intensity patterns in Europe. For. Ecol. Manag. 315, 160–172 (2014).Article 

    Google Scholar 
    13.Potapov, P. et al. The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3 (2017).14.Schickhofer, M. & Schwarz, U. Inventory of Potential Primary and Old-Growth Forest Areas in Romania (PRIMOFARO). Identifying the largest intact forests in the temperate zone of the European Union. (Euronatur Foundation, 2019).15.Knorn, J. et al. Continued loss of temperate old-growth forests in the Romanian Carpathians despite an increasing protected area network. Environ. Conserv. 40, 182–193 (2013).Article 

    Google Scholar 
    16.Court of Justice of the European Union. C-441/17 – Commission v Poland (Forêt de Białowieża) Judgment of the Court (Grand Chamber) of 17 April 2018 (2018).17.Chylarecki, P. & Selva, N. Ancient forest: spare it from clearance. Nature 530, 419–419 (2016).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    18.Earthsight. Complicit in corruption. How billion-dollar firms and EU governments are failing Ukraine’s forests. (Earthsight, 2018).19.Mikoláš, M. et al. Primary forest distribution and representation in a Central European landscape: Results of a large-scale field-based census. For. Ecol. Manag. 449, 117466 (2019).Article 

    Google Scholar 
    20.Hance, J. IKEA Logging Old-growth Forest for Low-price Furniture in Russia. https://news.mongabay.com/2012/05/ikea-logging-old-growth-forest-for-low-price-furniture-in-russia/ (2012).21.Sabatini, F. M. et al. Protection gaps and restoration opportunities for primary forests in Europe. Divers. Distrib. 26, 1646–1662 (2020).Article 

    Google Scholar 
    22.Barredo Cano, J. I. et al. Mapping and assessment of primary and old-growth forests in Europe. (EUR 30661 EN, Publications Office of the European Union, 2021).23.Adam, D. & Vrška, T. Important localities of old-growth forests in Landscape Atlas of the Czech Republic (eds T Hrnčiarová, P Mackovčin, & I Zvara) (Ministry of Environment and Silva Tarouca Research Institute, Prague–Silva Tarouca Research Institute for Landscape and Ornamental Gardening, 2009).24.Diaci, J. Virgin forests and forest reserves in Central and East European countries-History, present status and future development. Proceedings of the invited lecturers’ reports presented at the COST E4 management committee and working groups meeting in Ljubljana, Slovenia (1999).25.Kirchmeir, H. & Kovarovics, A. Nomination Dossier “Primeval Beech Forests of the Carpathians and Other Regions of Europe“ as extension to the existing Natural World Heritage Site “Primeval Beech Forests of the Carpathians and the Ancient Beech Forests of Germany” (1133bis). (2016).26.García Feced, C., Berglund, H. & Strnad, M. Scoping document: information related to European old growth forests. (ETC/BD report to the EEA, 2015).27.Veen, P. et al. Virgin forests in Romania and Bulgaria: results of two national inventory projects and their implications for protection. Biodivers. Conserv. 19, 1805–1819 (2010).Article 

    Google Scholar 
    28.Ibisch, P. L. & Ursu, A. Potential primary forests of Romania. (Greenpeace CEE Romania; Centre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development; Geography Department, A. I. Cuza University of Iași, 2017).29.Spracklen, B. D. & Spracklen, D. V. Identifying European Old-Growth Forests using Remote Sensing: A Study in the Ukrainian Carpathians. Forests 10, 127 (2019).Article 

    Google Scholar 
    30.Frank, G. et al. COST Action E27. Protected Forest Areas in Europe-analysis and harmonisation (PROFOR): results, conclusions and recommendations. (Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), 2007).31.Sabatini, F. M. et al. Where are Europe’s last primary forests? Divers. Distrib. 24, 1426–1439 (2018).Article 

    Google Scholar 
    32.McRoberts, R. E., Susanne, W., Gherardo, C. & Elizabeth, L. Assessing Forest Naturalness. For. Sci. 58, 294–309 (2012).Article 

    Google Scholar 
    33.Sabatini, F. M. et al. European Primary Forest Database. figshare https://doi.org/10.6084/m9.figshare.13194095.v1 (2020).34.FAO. Global Forest Resources Assessment 2015. Terms and definitions. (FAO, 2015).35.Buchwald, E. A hierarchical terminology for more or less natural forests in relation to sustainable management and biodiversity conservation in Proceedings: Third expert meeting on harmonizing forest-related definitions for use by various stakeholders (Food and Agriculture Organization of the United Nations, 2005).36.Blasi, C., Burrascano, S., Maturani, A. & Sabatini, F. M. Old-growth forests in Italy. (Palombi Editori, 2010).37.Cateau, E. et al. Le patrimoine forestier des réserves naturelles. Focus sur les forêts à caractère naturel. Cahier n°7. (Réserves Naturelles de France, 2017).38.Svoboda, M. et al. Landscape-level variability in historical disturbance in primary Picea abies mountain forests of the Eastern Carpathians, Romania. J. Veg. Sci. 25, 386–401 (2014).Article 

    Google Scholar 
    39.Potapov, P. et al. Mapping the world’s intact forest landscapes by remote sensing. Ecol. Soc. 13 (2008).40.Britz, H. et al. Nomination of the “Ancient Beech Forests of Germany” as Extension to the World Natural heritage “Primeval Beech Forests of the Carpathians”. Nationale Naturlandschaften, Federal Republic of Germany. Nieden-stein: Specialised editing Cognitio Kommunikation & Planung (2009).41.UNEP-WCMC & IUCN. Protected Area Profile for Ancient and Primeval Beech Forests of the Carpathians and Other Regions of Europe from the World Database of Protected Areas https://www.protectedplanet.net/903141 (2019).42.EEA. Biogeographical regions of Europe https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3 (2016).43.EEA. European forest types. Categories and types for sustainable forest management reporting and policy. (EEA Technical Report No 9/2006. EEA, Copenhagen, 2006).44.Bohn, U. et al. Map of the natural vegetation of Europe. Explanatory text with CD-ROM, (German Federal Agency for Nature Conservation, Bonn, Germany, 2003).45.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    46.R Development Core Team. R: A language and environment for statistical computing v. 3.6.1. R Foundation for Statistical Computing http://www.R-project.org/ (2019).47.Miljødirektoratet. (2016).48.FAO. Global Forest Resources Assessment 2015. Desk reference. 245 (FAO, Rome, 2015).49.FOREST EUROPE. Quantitative Indicators Country reports 2015 https://foresteurope.org/state-europes-forests-2015-report/#1476295965372-d3bb1dd0-e9a0 (2015).50.Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E. & Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 205, 131–140 (2018).ADS 
    Article 

    Google Scholar 
    51.Kennedy, E. R. et al. Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sensing 10 (2018).52.Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 
    Article 

    Google Scholar 
    53.Kennedy, R. E., Yang, Z. & Cohen, W. B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 114, 2897–2910 (2010).ADS 
    Article 

    Google Scholar 
    54.Griffiths, P., Van Der Linden, S., Kuemmerle, T. & Hostert, P. A pixel-based landsat compositing algorithm for large area land cover mapping IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6, 2088–2101 (2013).55.Cohen, W. B. & Spies, T. A. Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery. Remote Sens. Environ. 41, 1–17 (1992).ADS 
    Article 

    Google Scholar 
    56.Czerwinski, C. J., King, D. J. & Mitchell, S. W. Mapping forest growth and decline in a temperate mixed forest using temporal trend analysis of Landsat imagery, 1987–2010. Remote Sens. Environ. 141, 188–200 (2014).ADS 
    Article 

    Google Scholar 
    57.Cohen, W. B., Yang, Z. & Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 114, 2911–2924 (2010).ADS 
    Article 

    Google Scholar 
    58.Grogan, K., Pflugmacher, D., Hostert, P., Kennedy, R. & Fensholt, R. Cross-border forest disturbance and the role of natural rubber in mainland Southeast Asia using annual Landsat time series. Remote Sens. Environ. 169, 438–453 (2015).ADS 
    Article 

    Google Scholar 
    59.De Marzo, T. et al. Characterizing forest disturbances across the Argentine Dry Chaco based on Landsat time series. International Journal of Applied Earth Observation and Geoinformation 98, 102310 (2021).Article 

    Google Scholar 
    60.Frank, A. Inventering av nyckelbiotoper: resultat till och med 2003. (Skogsstyr., 2004).61.Länsstyrelsen Västerbotten. LstAC Skogar med höga naturvärden ovan gränsen för fjällnära skog 2003–2015 https://ext-geodatakatalog.lansstyrelsen.se/GeodataKatalogen/ (2019).62.Naturvårdsverket. Skyddsvärda statliga skogar http://mdp.vic-metria.nu/miljodataportalen/GetMetaDataById?UUID=3919E66E-2E09-440D-9171-B5074DF0C0ED (2017).63.Naturvårdsverket. Skogliga värdekärnor http://gpt.vic-metria.nu/data/land/skogliga_vardekarnor_2016.zip (2016).64.Naturvårdsverket. Preciserad kartering av kontinuitetsskog i Jämtlands län http://gpt.vic-metria.nu/data/land/Preciserad_kskog_jamtland.zip (2019).65.Ahlkrona, E., Giljam, C. & Wennberg, S. Kartering av kontinuitetsskogi boreal region. Metria AB på uppdrag av Naturvårdsverket (2017).66.Naturvårdsverket. Skyddad fjallbarrskog https://gpt.vic-metria.nu/data/land/NMD/Skyddad_Fjallbarrskog.zip (2019).67.Trotsiuk, V. et al. A mixed severity disturbance regime in the primary Picea abies (L.) Karst. forests of the Ukrainian Carpathians. For. Ecol. Manag. 334, 144–153 (2014).Article 

    Google Scholar 
    68.Kozák, D. et al. Profile of tree-related microhabitats in European primary beech-dominated forests. For. Ecol. Manag. 429, 363–374 (2018).Article 

    Google Scholar 
    69.Garbarino, M. et al. Gap disturbances and regeneration patterns in a Bosnian old-growth forest: a multispectral remote sensing and ground-based approach. Ann. For. Sci. 69, 617–625 (2012).Article 

    Google Scholar 
    70.Keren, S. et al. Comparative Structural Dynamics of the Janj Mixed Old-Growth Mountain Forest in Bosnia and Herzegovina: Are Conifers in a Long-Term Decline? Forests 5, 1243–1266 (2014).Article 

    Google Scholar 
    71.Motta, R. et al. Structure, spatio-temporal dynamics and disturbance regime of the mixed beech–silver fir–Norway spruce old-growth forest of Biogradska Gora (Montenegro). Plant Biosyst. 149, 966–975 (2015).Article 

    Google Scholar 
    72.Motta, R. et al. Development of old-growth characteristics in uneven-aged forests of the Italian Alps. Eur. J. For. Res. 134, 19–31 (2015).Article 

    Google Scholar 
    73.Panayotov, M. et al. Mountain coniferous forests in Bulgaria – structure and natural dynamics. (University of Forestry and Geosoft, 2016).74.Lõhmus, A. & Kraut, A. Stand structure of hemiboreal old-growth forests: Characteristic features, variation among site types, and a comparison with FSC-certified mature stands in Estonia. For. Ecol. Manag. 260, 155–165 (2010).Article 

    Google Scholar 
    75.EEA. Developing a forest naturalness indicator for Europe. Concept and methodology for a high nature value (HNV) forest indicator. (EEA Technical report No 13/2014, Luxembourg: Publications Office of the European Union, 2014).76.Rossi, M., Bardin, P., Cateau, E. & Vallauri, D. Forêts anciennes de Méditerrané e et des montagnes limitrophes: références pour la naturalité régionale. WWF France, Marseille, France, 144 (2013).77.Myhre, T. Skogkur 2020. redningsplan for Norges unike skoger. WWF Verdens villmarksfond, Norges naturvernforbund, SABIMA (2012).78.Ruete, A., Snäll, T. & Jönsson, M. Dynamic anthropogenic edge effects on the distribution and diversity of fungi in fragmented old-growth forests. Ecol. Appl. 26, 1475–1485 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Heiri, C., Wolf, A., Rohrer, L., Brang, P. & Bugmann, H. Successional pathways in Swiss mountain forest reserves. Eur. J. For. Res. 131, 503–518 (2012).Article 

    Google Scholar 
    80.Brang, P., Heiri, C. & Bugmann, H. Waldreservate: 50 Jahre natürliche Waldentwicklung in der Schweiz. (Haupt, 2011).81.Pantić, D. et al. Structural, production and dynamic characteristics of the strict forest reserve’Račanska šljivovica’on Mt. Tara. Glasnik Šumarskog fakulteta, 93–114 (2011).82.Savoie, J. M. et al. Vieilles forêts pyrénéennes de Midi-Pyrénées. Deuxième phase. Evaluation et cartographie des sites. Recommandations. Rapport final. (Ecole d’Ingénieurs de PURPAN/DREAL Midi-Pyrénées, 2015).83.Savoie, J. M. et al. Forêts pyrénéennes anciennes de Midi-Pyrénées. Rapport d’Etude de projet FEDER 2008–2011. 320 (Ecole d’Ingénieurs de PURPAN/DREAL Midi-Pyrénées, 2011).84.WWF Finland. Kansallisomaisuus turvaan – valtion omistamia suojelun arvoisia metsä- ja suoalueita, (WWF Suomen raportteja, 2012).85.Kitenberga, M. et al. A mixture of human and climatic effects shapes the 250-year long fire history of a semi-natural pine dominated landscape of Northern Latvia. For. Ecol. Manag. 441, 192–201 (2019).Article 

    Google Scholar 
    86.Baders, E., Senhofa, S., Purina, L. & Jansons, A. Natural succession of Norway spruce stands in hemiboreal forests: case study in Slitere national park, Latvia. Baltic Forestry 23, 522–528 (2017).
    Google Scholar 
    87.Kokarēviča, I. et al. Vegetation changes in boreo–nemoral forest stands depending on soil factors and past land use during an 80 year period of no human impact. Can. J. For. Res. 46, 376–386 (2016).Article 

    Google Scholar 
    88.Fernandez López, A. B. Parque Nacional de Garajonay, Patrimonio Mundial. (Organismo Autonomo Parques Nacionales, 2009).89.TRAGSATEC. Segundo inventario ecológico del Parque Nacional de Garajonay. (Parque Nacional de Garajonay, 2006).90.Fernández, A. B. & Gómez, L. Qué son los bosques antiguos de laurisilva. Su valor y situación en Canarias. La Gomera, entre bosques y taparuchas, 177–236 (2016).91.Matović, B. et al. Comparison of stand structure in managed and virgin european beech forests in Serbia. Šumarski list 142, 47–57 (2018).Article 

    Google Scholar 
    92.Kiš, A., Stojšić, V., & Dinić, A. In 2nd International Symposium on Nature Conservation. Proceedings 373–382 (Institute for Nature Conservation of Vojvodina Province, Novi Sad, 2016).93.Kobyakov, K. & Jakolev, J. Atlas of high conservation value areas, and analysis of gaps and representativeness of the protected area network in northwest Russia. (Finnish Environment Institute, 2013).94.Diku, A. & Shuka, L. Pyjet e vjetër të ahut në shqipëri (Old Beech forests in Albania). (PSEDA – ILIRIA, 2017).95.Burrascano, S. et al. It’s a long way to the top: Plant species diversity in the transition from managed to old-growth forests. J. Veg. Sci. 29, 98–109 (2018).Article 

    Google Scholar  More

  • in

    Genetic melting pot and importance of long-distance dispersal indicated in the Gladiolus imbricatus L. populations in the Polish Carpathians

    1.Zarzycki, K. Paprotniki i rośliny kwiatowe (rośliny naczyniowe). In: Flora i Fauna Pienin. (ed. Razowski J). Monogr. Pienińskie 1, 75–79 (2000).
    Google Scholar 
    2.Środoń, W. Pieniny w historii szaty roślinnej Podhala [Pieniny in the history of plant cover in Podhale region]. In : K. Zarzycki (ed.). Przyroda Pienin w obliczu zmian [The nature of the Pieniny Mts (West Carpathians) in face of the coming changes]. Stud. Nat. 30B, 115–126 (1982).
    Google Scholar 
    3.Deptuła, C. Nad rekonstrukcją dziejów regionu czartoryskiego w XIII I XIV wieku [On the reconstruction of the history of the Czorsztyn region from the 13th to 16th centuries]. Pieniny—Człowiek Przyroda 5, 21–35 (1997) (in Polish with English summary).
    Google Scholar 
    4.Kierś, M. (ed.) Wołosi: Nomadzi Bałkanów (Uniwersytet Jagielloński, 2013).
    Google Scholar 
    5.Oravcová, M. & Krupa, E. Pedigree analysis of the former Valachian sheep. Slovak. J. Anim. Sci. 44, 6–12 (2011).
    Google Scholar 
    6.Wace, A.J.B. & Thompson, M.S. The Nomads of the Balkans. Vol. 6 (Methuen & Co., 1914). https://archive.org/stream/nomadsofbalkansa00wace#page/n9/mode/2up. Accessed 28 June 2021.7.Stachurska-Swakoń, A. Phytogeographical aspects of grasses occuring in tall-herb vegetation in the Carpathians. in Grasses in Poland and Elsewhere (ed. Frey, L.). 39–47. (W. Szafer Institute of Botany, Polish Academy of Sciences, 2009).8.Stachurska-Swakoń, A. Syntaxonomical revision of the communities with Rumex alpinus L. in the Carpathians. Phytocoenologia 39, 217–234. https://doi.org/10.1127/0340-269X/2009/0039-0217 (2009).Article 

    Google Scholar 
    9.Ralska-Jasiewiczowa, M., Nalepka, D. & Goslar, T. Some problems of forest transformation at the transition to the oligocratic/Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe. Veg. Hist. Archaeobot. 12, 233–247. https://doi.org/10.1007/s00334-003-0021-8 (2003).Article 

    Google Scholar 
    10.Pawłowski, B., Pawłowska, S. & Zarzycki, K. Zespoły roślinne kośnych łąk północnej części Tatr i Podtatrza. Fragm. Flor. Geobot. Pol. 6(2), 95–222 (1960).
    Google Scholar 
    11.Korzeniak, J. 6520* Mountain Yellow Trisetum and Bent-Grass Hay Meadows 55–67 (Methodological guide. GIOŚ, 2013).
    Google Scholar 
    12.Wróbel, I. Pasterstwo w regionie pienińskim [Sheep farming in the Pieniny region]. Pieniny Człowiek Przyroda 5, 43–52 (1997) (in Polish with English summary).
    Google Scholar 
    13.Kostrakiewicz-Gierałt, K., Palic, C. C., Stachurska-Swakoń, A., Nedeff, V. & Sandu, I. The causes of disappearance of sward lily Gladiolus imbricatus L from natural stands—Synthesis of current state of knowledge. Int. J. Conserv. Sci. 9, 821–834 (2018).
    Google Scholar 
    14.Wróbel, I. Szata roślinna Pienińskiego Parku Narodowego – podsumowanie Planu Ochrony na lata 2001–2020 [Plant cover of the Pieniny National Park – summing up the Protection Plan for the years 2001–2020]. Pieniny Człowiek Przyroda 8, 63–69 (2003).
    Google Scholar 
    15.Kubíková, P. & Zeidler, M. Habitat demands and population characteristics of the rare plant species Gladiolus imbricatus L. in the Frenštát region (NE Moravia, the Czech Republic). Čas. Slez. Muz. Opava 60(A), 154–164 (2011).
    Google Scholar 
    16.Mirek, Z., Piękoś-Mirkowa, H., Zając, A. & Zając, M. Flowering Plants and Pteridophytes of Poland, a Checklist (W. Szafer Institute of Botany, Polish Academy of Sciences, 2002).
    Google Scholar 
    17.Hamilton, A. P. The European Gladioli. Quart. Bull. Alp. Gard. Soc. 44, 140–146 (1976).
    Google Scholar 
    18.Kornaś, J. M. & Medwecka-Kornaś, A. Zespoły roślinne Gorców. I. Naturalne i na wpół naturalne zespoły nieleśne. Fragm. Flor. Geobot. Polon. 13(2), 167–316 (1967).
    Google Scholar 
    19.Ascherson, P. & Engler, A. Beiträge zur Flora Westgaliziens und der Central-Karpaten. Osterr. Bot. Z. 15, 273–285. https://doi.org/10.1007/BF01623075 (1865).Article 

    Google Scholar 
    20.Wołoszczak, E. Zapiski botaniczne z Karpat Sądeckich. Spraw. Komis. Fizjogr. AU 30, 174–206 (1895).
    Google Scholar 
    21.Zapałowicz, H. Conspectus Florae Galiciae Criticus Vol. 1 (Nakł. Akad. Umiej., 1906).
    Google Scholar 
    22.Piękoś-Mirkowa, H. & Mirek, Z. Flora Polski. Rośliny Chronione (Oficyna Wydawnicza Multico, 2006).
    Google Scholar 
    23.Dembicz, I. et al. New locality of Trollius europaeus L. and Gladiolus imbricatus L. near Sochocin by Płońsk (Central Poland). Opole Sci. Soc. Nat. J. 44, 36–46 (2011).
    Google Scholar 
    24.Kropač, Z. & Mochnacký, S. Contribution to the segetal communities of Slovakia, Thaiszia. J. Bot. 19, 145–211 (2009).
    Google Scholar 
    25.Mirek, Z., Nikel, A. & Wilk, Ł. Ozdoba łąk reglowych. Tatry 4(50), 50–51 (2014).
    Google Scholar 
    26.Kołos, A. A new locality of Gladiolus imbricatus (Iridaceae) in the North Podlasie Lowland. Fragm. Florist. Geobot. Polon. 22(2), 390–395 (2015).
    Google Scholar 
    27.Falkowski, M. Nowe stanowisko Gladiolus imbricatus (Iridaceae) w dolinie środkowej Wisły. Fragm. Florist. Geobot. Polon. 9, 369–370 (2002).
    Google Scholar 
    28.Nowak, A. & Antonin, A. Interesujące stanowiska Gladiolus imbricatus (Iridaceae) w Bramie Morawskiej. Fragm. Florist. Geobot. Polon. 13(1), 17–22 (2006).
    Google Scholar 
    29.Stepansky, A., Kovalski, I. & Perl-Treves, R. Interspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst. Evol. 271, 313–332. https://doi.org/10.1007/BF00984373 (1999).Article 

    Google Scholar 
    30.Gupta, M., Chyi, Y.-S., Romero-Sverson, J. & Owen. J.L. Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theor. Appl. Genet. 89, 998–1006. https://doi.org/10.1007/BF00224530 (1994).31.Sutkowska, A., Pasierbiński, A., Warzecha, T., Mandal, A. & Mitka, J. Refugial pattern of Bromus erectus in Central Europe based on ISSR fingerprinting. Acta Biol. Cracov. Ser. Bot. 55(2), 107–119. https://doi.org/10.2478/abcsb-2013-0026 (2013).Article 

    Google Scholar 
    32.Bonin, A. et al. How to track and assess genotyping errors in population genetic studies. Mol. Ecol. 3, 3261–3273. https://doi.org/10.1111/j.1365-294X.2004.02346.x (2004).CAS 
    Article 

    Google Scholar 
    33.Vekemans, X. AFLP-surv 1.0: A Program for Genetic Diversity Analysis with AFLP (and RAPD) Population Data. https://ebe.ulb.ac.be/ebe/AFLP-SURV.html (Laboratoire de Génétique et d’Ecologie Végétales, Université Libre de Bruxelles, 2002).34.Yeh, F., Yang, R. & Boyle, T. POPGENE Version 1.32. Microsoft-Based Freeware for Population Genetic Analysis. https://www.softpedia.com/get/Science-CAD/Popgene-Population-Genetic-Analysis.shtml (Molecular Biology and Biotechnology Center, University of Alberta, 1999).35.Schönswetter, P. & Tribsch, A. Vicariance and dispersal in the Alpine perennial Bupleurum stellatum L (Apiaceae). Taxon 54, 725–732. https://doi.org/10.2307/25065429 (2005).Article 

    Google Scholar 
    36.Ehrich, D. AFLPdat: A collection of r functions for convenient handling of AFLP data. Mol. Ecol. Notes 6, 603–604. https://doi.org/10.1111/j.1471-8286.2006.01380.x. https://mybiosoftware.com/tag/aflpdat (2006).37.Paun, O., Schönswetter, P. & Winkler, M., Intrabiodiv Consortium & Tribsch, A. Historical divergence versus contemporary gene flow: Evolutionary history of the calcicole Ranunculus alpestris group (Ranunculaceae) in the European Alps and the Carpathians. Mol. Ecol. 17, 4263–4275. https://doi.org/10.1111/j.1365-294x.2008.03908.x (2008).38.Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491. https://doi.org/10.1093/genetics/131.2.479 (1992).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Biol. 1, 47–50. http://cmpg.unibe.ch/software/arlequin3/. https://doi.org/10.1177/117693430500100003 (2005).40.Lynch, M. & Milligan, B. Analysis of population-genetic structure using RAPD markers. Mol. Ecol. 3, 91–99. http://cmpg.unibe.ch/software/arlequin3/. https://doi.org/10.1111/j.1365-294x.1994.tb00109.x (1994).41.Saitou, N. & Nei, M. The neighbour-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Makarenkov, V. T-Rex: Reconstructing and visualizing phylogenetic trees and reticulation networks. Bioinformatics 17, 664–668. http://www.fas.umontreal.ca/biol/casgrain/en/labo/t-rex. https://doi.org/10.1093/bioinformatics/17.7.664 (2001).43.Makarenkov, V. & Legendre, P. The fitting of a tree metric to a given dissimilarity with the weighted least squares criterion. J. Classif. 16, 3–26. https://doi.org/10.1007/s003579900040 (1999).Article 

    Google Scholar 
    44.Felsenstein, J. Phylip (Phylogeny Inference Package) Version 3.6. https://evolution.genetics.washington.edu/phylip.html (University of Washington, 2005).45.Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273. https://doi.org/10.1073/pnas.76.10.5269 (1979).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    46.Kruskal, J. B. Nonmetric multidimensional scaling: A new numerical method. Psychometrika 29, 115–129 (1964).MathSciNet 
    Article 

    Google Scholar 
    47.Rohlf, F. J. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis, Version 2.1. https://ntsyspc.software.informer.com/ (Exeter Software, 2002).48.Pritchard, J. K, Stephens, M. & Donelly P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959. http://web.stanford.edu/group/pritchardlab/structure.html (2000).49.Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578. https://doi.org/10.1111/j.1471-8286.2007.01758.x (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Nordborg, M., Hu, T. T., Ishino, Y., Jhaveri, J. & Toomajian, C. The pattern of polymorphism in Arabidopsis thaliana. PLOS Biol. 3(7), e196. https://doi.org/10.1371/journal.pbio.0030196 (2005).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Dybova-Jachowicz, S. & Sadowska, A. (eds) Palinologia (Inst. Botaniki im. W. Szafera, Polska Akademia Nauk, 2003).
    Google Scholar 
    53.Cieślak, E., Szczepaniak, M., Kamiński, R. & Heine, W. Stan zachowania krytycznie zagrożonego gatunku Gladiolus paluster (Iridaceae) w Polsce – Analiza zmienności genetycznej osobników w uprawie Ogrodu Botanicznego Uniwersytetu Wrocławskiego w kontekście prowadzonych działań ochronnych. Fragm. Florist. Geobot. Polon. 21(1), 49–66 (2014).
    Google Scholar 
    54.Kutlunina, N., Permyakova, M. & Belyaev, A. Genetic diversity and reproductive traits in triploid and tetraploid populations of Gladiolus tenuis (Iridaceae). Plant Syst. Evol. 303, 1–10. https://doi.org/10.1007/s00606-016-1347-x (2017).Article 

    Google Scholar 
    55.Sutkowska, A., Pasierbiński, A., Warzecha, T. & Mitka, J. Multiple cryptic refugia of forest grass Bromus benekenii in Europe as revealed by ISSR fingerprinting and species distribution modelling. Plant Syst. Evol. 300, 1437–1452. https://doi.org/10.2478/abcsb-2013-0026 (2014).Article 

    Google Scholar 
    56.Gajewski, Z, Boroń, P, Lenart-Boroń, A, Nowak, B., Sitek, E. & Mitka, J. Conservation of Primula farinosa in Poland with respect to the genetic structure of populations. Acta Soc. Bot. Pol. 87(2), 3577 (2018). https://doi.org/10.5586/asbp.3577.Article 

    Google Scholar 
    57.Stojak, J., McDevitt, A. D., Herman, J. S., Searle, J. B. & Wójcik, J. M. Post-glacial colonization of eastern Europe from the Carpathian refugium: evidence from mitochondrial DNA of the common vole Microtus arvalis. Biol. J. Linn. Soc. 115, 927–939. https://doi.org/10.1111/bij.1253541 (2015).Article 

    Google Scholar 
    58.Szczepaniak, M. & Cieślak, E. Low level of genetic variation within Melica transsilvanica populations from the Kraków-Częstochowa Upland and the Pieniny Mts revealed by AFLPs analysis. Acta Soc. Bot. Pol. 76(4), 321–331. https://doi.org/10.5586/asbp.2007.036 (2007).Article 

    Google Scholar 
    59.Bennett, K. D. & Provan, J. What do we mean by ‘refugia’?. Quatern. Sci. Rev. 27, 27–28. https://doi.org/10.1016/j.quascirev.2008.08.019 (2008).Article 

    Google Scholar 
    60.Petit, R. J. et al. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 300(5625), 1563–1565. https://doi.org/10.1126/science.1083264 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Brus, R. Growing evidence for the existence of glacial refugia of European beech (Fagus sylvatica L.) in the south-eastern Alps and north-western Dinaric Alps. Periodicum Biol. 112, 239–246 (2010).
    Google Scholar 
    62.Jŏgar, Ü. & Moora, M. Reintroduction of a rare plant (Gladiolus imbricatus) population to a river floodplain—How important is meadow management?. Restor. Ecol. 16, 382–385. https://doi.org/10.1111/j.1526-100X.2008.00435.x (2008).Article 

    Google Scholar 
    63.Mitka, J., Boroń, P., Wróblewska, A. & Bąba, W. AFLP analysis reveals intraspecific phylogenetic relationships and population genetic structure of two species of Aconitum in Central Europe. Acta Soc. Bot. Pol. 84(2), 267–276. https://doi.org/10.5586/asbp.2015.012 (2015).CAS 
    Article 

    Google Scholar 
    64.Biernacka, M. Dawne oraz współczesne formy organizacji pasterstwa w Bieszczadach. Etnogr. Polska 6, 41–61. http://webcache.googleusercontent.com/search?q=cache:JDjzqMdApxIJ:cyfrowaetnografia.pl/Content/454+&cd=1&hl=pl&ct=clnk&gl=pl (1962).65.Stachurska-Swakoń, A., Cieślak, E. & Ronikier, M. Phylogeography of subalpine tall-herb species in Central Europe: the case of Cicerbita alpina. Preslia 84, 121–140. https://doi.org/10.1111/j.1095-8339.2012.01323.x (2012).Article 

    Google Scholar  More

  • in

    Dayara bugyal restoration model in the alpine and subalpine region of the Central Himalaya: a step toward minimizing the impacts

    Restoration response evaluationMulti-criteria response analysis has been a crucial part of restoration evaluation work as a proper practical achievement which always includes multiple objectives defined by diverse stakeholders. In current work, a new framework was designed for restoration response evaluation by assessing three categories, direct management measure (M), environmental desirability (E) and socio-economic feasibility (SE). In total, 9 sub-categories and 22 individual variables were considered for evaluation of the present work41 (Table 6).Table 6 Response evaluation parameters.Full size tableDirect management measure (M) evaluationDuring the starting phase of the work, excessive grazing, uncontrolled tourism and continuous soil erosion were identified as major drivers behind the degradation of Dayara bugyal. Therefore, in the first category of the evaluation work, direct management measures to control the above-mentioned activities were analysed. The disturbances were controlled by managing both anthropogenic (M1) and natural (M2) processes. Under anthropogenic control process, grazing (A1) and tourism (A2) control activities were measured and soil erosion (B1) control activities was considered under natural control sub-category.Livestock carrying capacityLivestock carrying capacity of the pastureland was a measure for proper control of the estimation of grazing capacity. Forage yield of the area was calculated by considering the shoot production of 10 dominant palatable species of the area. Sample plant materials at the end of the growing season, were oven-dried at 80 (^circ)C till it reached at constant weight and then weighed in the laboratory. Thereafter, density of individual plant was measured by laying 30 quadrates of 1 × 1 m randomly placed within 50 × 50 m grid in the herb community (Eq. 1)42. Total 80 grids were sampled for analysis of 40 hectare degraded grazing land of the Dayara alpine pasture from the Papad Gad and Swari Gad area. Thereafter, 10 dominant palatable species covering ~ 33% of the total dry weight of the palatable and unpalatable species were considered for forage production calculation. Peak biomass was calculated by summing up the peak biomass of each individual to get the forage yield (Eq. 2). Finally, standard dry forage yield and proper rangeland carrying capacity was calculated by using Eqs. (3) and (4)43 as follows.$${text{Density }} = frac{{text{Total number of individuals of a species in all quadrates}}}{{text{Total number of quadrates laid}}}$$
    (1)
    $$Y = Y{text{p}} times A$$
    (2)
    where, Y = forage yield in a certain area (kg), Yp i = forage yield per unit area (kg/km2), A = land area of rangeland (km2) (i.e., total grazing area of the Dayara occupies 3.235 km2).$$F = mathop sum limits_{i = 1}^{n} Y_{{text{i}}} times {text{ U}}_{{text{i}}} times {text{ C}}_{{text{i}}}$$
    (3)
    where F = yield of standard dry forage (kg), Yi = forage yield (kg), Ui = utilizable rate (%), Ci = conversion coefficient.Utilization rate 50% and conversion coefficient 1 for meadow was considered for current work43 .$$Cc = frac{{text{F}}}{{{text{I}} times {text{D}}}}$$
    (4)
    where, Cc = proper livestock numbers that meadow can bear, F = yield of standard dry forage (kg), I = daily intake for an animal unit (7.5 kg/day, Table 7)*, D = Grazing days (May to September, 153 days).Table 7 Animal unit and forage requirement.Full size table*One animal consumes 3% of its body weight as dry forage44. Animal unit conversion was done after Rawat (2020)45.Tourists’ Carrying Capacity (TCC)The general formula of carrying capacity assessment for protected areas was first proposed by Cifuentes (1992), which was further applied in different fields46. The approach is to establish the capacity of an area for maximum visits based on existing physical, biological, and management conditions through the physical carrying capacity (PCC), and real carrying capacity (RCC). TCC is divided into the following levels:Physical Carrying Capacity (PCC)The PCC is the maximum number of tourists that can physically accommodate into or onto a specific area, over a particular time. The PCC (Eq. 5) may be estimated as follows:$${text{PCC }} = {text{ A}}/{text{Au}} times {text{ Rf}}$$
    (5)
    where, PCC = physical carrying capacity; A = Available area for tourists use ; 15%-18% area of the total geographical area is considered for the present work according to the expert opinion and URDPFI guidelines for hill towns47.Au = Area required per tourist; in general, it is considered 3 m2. However in the present work, 5 m2 area is considered for one person based on nature of the area is relatively more sensitive to degradation.Rf = Daily open period / average time of visit.Average opening time = 6 h (according to the field survey, tourists like timing for a day visit between 9 AM to 3 PM), time required by one tourist to visit the Dayara bugyal = 3 h.Rf = 6 h/3 h = 2.Real Carrying Capacity (RCC) (Eq. 6)Maximum permissible number of tourists to a specific site could be determined once the Correction factors (CF) becomes possible to derive out of the particular characteristics of the site. CF is applied to the PCC as follows.$${text{RCC }} = {text{ PCC }} times , left( {{text{Cf1}} times {text{ Cf2}} times {text{ Cf3}} times {text{ Cf4}} times cdots {text{Cfn}}} right)$$
    (6)
    where RCC = Real Carrying Capacity, PCC = Physical Carrying Capacity, Cf = Correction factors.Correction factors are calculated using the following formula.$${text{Cfx }} = { 1 }{-}{text{ Lmx }}/{text{ Tmx}}$$where Cfx = Correction factors of variable x, Lmx = Limiting magnitude of variable x, Tmx = Total magnitude of variable x.Tourism is dependent on nature. In the present work, number of days with heavy rain ( > 250 mm per day) and snowfall ( > 8 cm per day) were considered as limiting variables that control tourism for the area. The calculations were done by analyzing the rainfall and snowfall data from 2017 to 2019 considering March to November as rainfall months and December to February as snowfall months. Total numbers of days in the months were considered as total variables (Tmx) and the days with heavy rain/snow fall were considered as limiting variables (Lmx). For example, during 2017 to 2019 total number of days from March to November were 909 days (Tmx) and in 369 heavy rainfall occurred, therefore, Cf1 was 0.59 (1—Lmx/Tmx). Similarly, during this time heavy snowfall occurred for 51 days out of 186 days, and Cf2 was 0.72.Measurement of soil erosion controlEco-friendly bio-degradable coir geo-textile (9000 sq m) purchased from Coir Board of India, locally available pine needle (240 tonne) along with bamboo were roped in, to create a series of check dams and channels to control soil erosion, gully formation and vegetation loss. Prior to commencement, the leveling of uneven surfaces was done before laying the coir geo-textile. The open degraded sites in different patches of the bugyal, the eroded lateral sites of the gullies were then covered with geo-textile to control soil erosion. Total 38 check dams in the Swari Gad area were examined for draining soil holding capacity. After one year of the treatment, total mass of debris stored by each check dams was evaluated using core density method. The core density of bulk soil in each check dam was determined in triplicates, using an iron core of 2.5 cm radius and 30 cm height. The mass of draining soil checked by each check dam was calculated as under48:$${text{Md }} = {text{ V }} times , rho {text{b}}$$where, Md = The mass of debris in each check dam, V = Volume of check dam, ρb = Mean core density of bulk of soil in each check dam.Environmental desirability (E) assessmentIn this part, environmental desirability, the direct ecological outputs of the work were considered under this category, as habitat enhancement is the most crucial component of the activity. The sub-component considered under the category included vegetation structure (vegetation diversity, vegetation cover) and ecological progress (soil chemical properties)20. Vegetation sampling was done by considering 30 randomly placed quadrates of 1 × 1 m inside 9 sample plots of 5-50 m along three different zones of the treated water channel areas using vertical belt transact method49. The zones were: (i) geo-coir treated area, (ii) untreated degraded area, (iii) reference untreated non-degraded area along with both sides of the water channels wherein total vegetation density (Eq. 1) was analysed following the methodology of Misra (1968) and Mueller-Dombois & Ellenberg (1974)50,51.Soil samplingSoil samples (30 cm depth) were collected from the experimental site in triplicates using random sampling method from all the three investigation zones, namely, Untreated undegraded zone (R), Geo-coir Treated Zone (GTZ) and Untreated Degraded Zone (UTZ). Fresh samples were taken from each plot (50 random soil cores per replicate per investigation zones) and were mixed thoroughly as one composite sample for further study. Here, it is to mention that utmost care was taken to collect each replicate as composite soil sample to appropriately represent the investigation zones of varied topography. Hence, total 9 soil samples (3 samples per investigation zones) were collected to determine its physico-chemical characteristics. After collection, the soil samples were preserved in a portable storage box and transported to the lab immediately. After air drying and grinding, it was passed through 2-mm sieve, and selected soil properties viz. soil organic carbon (SOC) (%), soil pH, total nitrogen (N), phosphorus (P), potassium (K) contents (%), and water holding capacity (WHC) (%) were determined.Soil physico-chemical analysisThe SOC content in soil was determined by wet oxidation method using K2Cr2O752. The soil pH was measured with a suspension of soil in water at a 1:2.5 (soil : water) soil-to-solution ratio using a glass electrode. Calibration of the pH meter was done with the help of two buffer solutions of pH 7.0 and 9.253. The WHC of the soil was determined by measuring the ratio of total water in the wet soil to the weight of the air-dried soil using a Keen– Rackzowski box54. Total N was analysed following the micro Kjeldahl method55. Total phosphorous (TP) was determined using the HClO4-H2SO4 method56 and total potassium (TK) was measured by Flame Photometer (NaOH melting)57.Socio-economic feasibility (SE) assessmentTo investigate the opinion of local residents about the restoration initiative, village survey was conducted in two adjacent villages of the Dayara bugyal, Barsu (2232 m) and Raithal (2258 m). Participants had to indicate the degree of the work in above mentioned three scales (M, E and SE). The questionnaire comprising of questions covered perception about the above discussed six categories (Supplementary S10). Total 60 respondents from different households were randomly selected from each village. The sample consisted of villagers as well as administrative staff. The informants were randomly chosen across 3 different age groups, 20–40, 40–60 and  > 60 year58. Economic feasibility was the first class and parameters considered under this category included cost-effectiveness of the material used, economic efficiency, i.e., benefit–cost ratio and economic impact of the generated income. In addition, social acceptability is the next category, where two sub-parameters were considered, procedural equity (inclusivity and participatory) in response to planning and designing and social preference that covers over current practices, access to resources and services. In the fourth category, technical feasibility was considered which included three subcategories. Adoption lag means waiting period required to adopt the response, replicability of the response and technical sophistication associated with response. In sixth category, cultural acceptability was considered to deal with alignment of the work with cultural, spiritual and aesthetic heritage values, beliefs and social norms and use of traditional (indigenous and local) knowledge and practices. In the last category, political feasibility was considered, where existing policy/legislation and governance mechanism (clarity on roles/responsibilities of stakeholders) was analysed. Each restoration response is ranked using a relative effectiveness or performance rating scale of low (L), moderate (M), or high (H). These effectiveness response ratings for each sub-criterion also reflect no (or minimal), some (or moderate) and major (or substantial) improvement, respectively, relative to the initial condition (pre-response).Index score calculationRestoration success index was calculated, by considering three categories, viz., direct management measure (M), environmental desirability (E), and socio-economic feasibility (SE). In the first scoring part, all the 22 individual variables were evaluated for calculation of “variable index”, by assigning index score between 0 and 3, where 0 rated for ‘not satisfactory’ and 3 rated for ‘satisfactory’. For first two categories, i.e., direct management measure (M), environmental desirability (E), and direct field values were considered. The last category, socio-economic feasibility was indexed depending on village questionnaire survey. The second score “category index” was calculated by adding all variable index and divided by number of independent variables within that category. Finally, the “restoration evaluation index” was evaluated by summing all category scores, dividing by the maximum possible score (16) and multiplying by 10059 (Fig. 8). Ecosystem differences between reference, degraded and restored sites category and ecosystem index scores were determined using unpaired one way ANOVA by using categories viz., direct management measure (M) and environmental desirability (E). To estimate the most affected variable between references, degraded and restored sites, discriminant function analysis (DFA) was carried out, using the field values of all measured independent variables under second category.Figure 8Detailed outline of the scoring process applied for restoration evaluation index calculation for the Dayara bugyal.Full size image More

  • in

    High taxonomic resolution surveys and trait-based analyses reveal multiple benthic regimes in North Sulawesi (Indonesia)

    1.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Freeman, L. A., Kleypas, J. A. & Miller, A. J. Coral reef habitat response to climate change scenarios. PLoS One 8, e82404 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Salo, T., Mattila, J. & Eklöf, J. Long-term warming affects ecosystem functioning through species turnover and intraspecific trait variation. Oikos 129, 283–295 (2020).Article 

    Google Scholar 
    5.Alvarez-Filip, L., Dulvy, N. K., Côte, I. M., Watkinson, A. R. & Gill, J. A. Coral identity underpins architectural complexity on Caribbean reefs. Ecol. Appl. 21, 2223–2231 (2011).PubMed 
    Article 

    Google Scholar 
    6.Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: Toward a global functional homogenization?. Front. Ecol. Environ. 9, 222–228 (2011).Article 

    Google Scholar 
    7.Darling, E. S. et al. Social–environmental drivers inform strategic management of coral reefs in the Anthropocene. Nat. Ecol. Evol. 3, 1341–1350 (2019).PubMed 
    Article 

    Google Scholar 
    8.Richardson, L. E., Graham, N. A. J. & Hoey, A. S. Coral species composition drives key ecosystem function on coral reefs. Proc. R. Soc. B Biol. Sci. 287, 20192214 (2020).Article 

    Google Scholar 
    9.Ainsworth, C. H. & Mumby, P. J. Coral–algal phase shifts alter fish communities and reduce fisheries production. Glob. Change Biol. 21, 165–172 (2015).ADS 
    Article 

    Google Scholar 
    10.McWilliam, M., Pratchett, M. S., Hoogenboom, M. O. & Hughes, T. P. Deficits in functional trait diversity following recovery on coral reefs. Proc. R. Soc. B Biol. Sci. 287, 20192628 (2020).Article 

    Google Scholar 
    11.Adjeroud, M. et al. Recovery of coral assemblages despite acute and recurrent disturbances on a South Central Pacific reef. Sci. Rep. 8, 9680 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Bozec, Y.-M. & Mumby, P. J. Synergistic impacts of global warming on the resilience of coral reefs. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130267 (2015).Article 

    Google Scholar 
    13.Chaves-Fonnegra, A. et al. Bleaching events regulate shifts from corals to excavating sponges in algae-dominated reefs. Glob. Change Biol. 24, 773–785 (2018).ADS 
    Article 

    Google Scholar 
    14.Lasker, H., Bramanti, L., Tsounis, G. & Edmunds, P. The rise of octocoral forests on Caribbean reefs. Adv. Mar. Biol. 86, 361–410 (2020).Article 

    Google Scholar 
    15.Dixson, D. L., Abrego, D. & Hay, M. E. Chemically mediated behavior of recruiting corals and fishes: A tipping point that may limit reef recovery. Science 345, 892–897 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Rogers, A., Blanchard, J. L. & Mumby, P. J. Vulnerability of coral reef fisheries to a loss of structural complexity. Curr. Biol. 24, 1000–1005 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Ampou, E. E., Ouillon, S., Iovan, C. & Andréfouët, S. Change detection of Bunaken Island coral reefs using 15 years of very high resolution satellite images: A kaleidoscope of habitat trajectories. Mar. Pollut. Bull. 131, 83–95 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Di Martino, E., Jackson, J. B. C., Taylor, P. D. & Johnson, K. G. Differences in extinction rates drove modern biogeographic patterns of tropical marine biodiversity. Sci. Adv. 4, eaaq1508 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).PubMed 
    Article 

    Google Scholar 
    20.Brandl, S. et al. Coral reef ecosystem functioning: Eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).Article 

    Google Scholar 
    21.Jouffray, J.-B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130268 (2015).Article 

    Google Scholar 
    22.Reverter, M., Jackson, M., Daraghmeh, N., von Mach, C. & Milton, N. 11-yr of coral community dynamics in reefs around Dahab (Gulf of Aqaba, Red Sea): The collapse of urchins and rise of macroalgae and cyanobacterial mats. Coral Reefs 39, 1605–1618 (2020).Article 

    Google Scholar 
    23.Schläppy, M.-L. et al. Making waves: Marine citizen science for impact. Front. Mar. Sci. 4, 146 (2017).Article 

    Google Scholar 
    24.de Bakker, D. M. et al. 40 Years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: The rise of slimy cyanobacterial mats. Coral Reefs 36, 355–367 (2017).ADS 
    Article 

    Google Scholar 
    25.González-Barrios, F. J., Cabral-Tena, R. A. & Alvarez-Filip, L. Recovery disparity between coral cover and the physical functionality of reefs with impaired coral assemblages. Glob. Change Biol. 27, 640–651 (2021).ADS 
    Article 

    Google Scholar 
    26.Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).PubMed 
    Article 

    Google Scholar 
    27.Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).PubMed 
    Article 

    Google Scholar 
    28.Bellwood, D., Streit, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term “function” in ecology: A coral reef perspective. Funct. Ecol. 33, 948–961 (2021).Article 

    Google Scholar 
    29.Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl. Acad. Sci. U.S.A. 111, 13757–13762 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Madin, J. S. et al. A trait-based approach to advance coral reef science. Trends Ecol. Evol. 31, 419–428 (2016).PubMed 
    Article 

    Google Scholar 
    31.Richardson, L. E., Graham, N. A. J., Pratchett, M. S., Eurich, J. G. & Hoey, A. S. Mass coral bleaching causes biotic homogenization of reef fish assemblages. Glob. Change Biol. 24, 3117–3129 (2018).ADS 
    Article 

    Google Scholar 
    32.Denis, V., Ribas-Deulofeu, L., Sturaro, N., Kuo, C.-Y. & Chen, C. A. A functional approach to the structural complexity of coral assemblages based on colony morphological features. Sci. Rep. 7, 9849 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Kubicek, A., Breckling, B., Hoegh-Guldberg, O. & Reuter, H. Climate change drives trait-shifts in coral reef communities. Sci. Rep. 9, 3721 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Hoeksema, B. Delineation of the Indo-Malayan Centre of Maximum Marine Biodiversity: The Coral Triangle, Vol. 29 117-178 (2007)35.Ponti, M. et al. Baseline reef health surveys at Bangka Island (North Sulawesi, Indonesia) reveal new threats. PeerJ 4, e2614 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Roff, G. et al. Exposure-driven macroalgal phase shift following catastrophic disturbance on coral reefs. Coral Reefs 34(3), 715–725. https://doi.org/10.1007/s00338-015-1305-z (2015).ADS 
    Article 

    Google Scholar 
    37.Doropoulos, C., Roff, G., Visser, M.-S. & Mumby, P. J. Sensitivity of coral recruitment to subtle shifts in early community succession. Ecology 98(2), 304–314. https://doi.org/10.1002/ecy.166 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Donovan, M. K. et al. Local conditions magnify coral loss after marine heatwaves. Science 372, 977–980. https://doi.org/10.1126/science.abd9464 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Otaño-Cruz, A. et al. Caribbean near-shore coral reef benthic community response to changes on sedimentation dynamics and environmental conditions. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00551 (2019).Article 

    Google Scholar 
    40.Goatley, C. H. R. & Bellwood, D. R. Ecological consequences of sediment on high-energy coral reefs. PLoS One 8(10), e77737. https://doi.org/10.1371/journal.pone.0077737 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Powell, A. et al. Reduced diversity and high sponge abundance on a sedimented Indo-Pacific reef system: Implications for future changes in environmental quality. PLoS One 9(1), e85253. https://doi.org/10.1371/journal.pone.0085253 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Lester, S. E. et al. Caribbean reefs of the Anthropocene: Variance in ecosystem metrics indicates bright spots on coral depauperate reefs. Glob. Change Biol. 26, 4785–4799 (2020).ADS 
    Article 

    Google Scholar 
    43.Pombo-Ayora, L., Coker, D. J., Carvalho, S., Short, G. & Berumen, M. L. Morphological and ecological trait diversity reveal sensitivity of herbivorous fish assemblages to coral reef benthic conditions. Mar. Environ. Res. 162, 105102 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Fox, H. E., Pet, J. S., Dahuri, R. & Caldwell, R. L. Recovery in rubble fields: Long-term impacts of blast fishing. Mar. Pollut. Bull. 46, 1024–1031 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Lam, V. Y. Y., Doropoulos, C. & Mumby, P. J. The influence of resilience-based management on coral reef monitoring: A systematic review. PLoS One 12, e0172064 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Donovan, M. K. et al. Combining fish and benthic communities into multiple regimes reveals complex reef dynamics. Sci. Rep. 8, 16943 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    47.Smith, J. E. et al. Re-evaluating the health of coral reef communities: Baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. Sci. B. 283, 20151985 (2016).Article 
    CAS 

    Google Scholar 
    48.Althaus, F. et al. A Standardised vocabulary for identifying benthic biota and substrata from underwater magery: The CATAMI classification scheme. PLoS One 10, e0141039 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Wee, H. B. et al. Zoantharian abundance in coral reef benthic communities at Terengganu Islands, Malaysia. Reg. Stud. Mar. Sci. 12, 58–63 (2017).Article 

    Google Scholar 
    50.McFadden, C. S. et al. Species boundaries in the absence of morphological, ecological or geographical differentiation in the Red Sea octocoral genus Ovabunda (Alcyonacea: Xeniidae). Mol. Phylogenet. Evol. 112, 174–184 (2017).PubMed 
    Article 

    Google Scholar 
    51.Ruiz, C. et al. Descriptions of new sponge species and genus, including aspiculate Plakinidae, overturn the Homoscleromorpha classification. Zool. J. Linn. Soc. 179, 707–724 (2017).
    Google Scholar 
    52.Koido, T., Imahara, Y. & Fukami, H. High species diversity of the soft coral family Xeniidae (Octocorallia, Alcyonacea) in the temperate region of Japan revealed by morphological and molecular analyses. Zookeys 862, 1–22 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Schönberg, C.H.L. & Fromont, J. Sponge functional growth forms as a means for classifying sponges without taxonomy. http://ningaloo-atlas.org.au/AIMS. [02/12/2020]. http://ningaloo-atlas.org.au/content/sponge-functional-growth-forms-means-classifying-spo (2014).54.Atrigenio, M., Aliño, P. & Conaco, C. Influence of the blue coral Heliopora coerulea on scleractinian coral larval recruitment. J. Mar. Biol. 2017, 6015143 (2017).Article 

    Google Scholar 
    55.Guzman, C., Atrigenio, M., Shinzato, C., Aliño, P. & Conaco, C. Warm seawater temperature promotes substrate colonization by the blue coral, Heliopora coerulea. PeerJ 7, e7785 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Baum, G., Januar, I., Ferse, S. C. A., Wild, C. & Kunzmann, A. Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia. PeerJ 4, e2625 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Biggerstaff, A., Jompa, J. & Bell, J. J. Increasing benthic dominance of the phototrophic sponge Lamellodysidea herbacea on a sedimented reef within the Coral Triangle. Mar. Biol. 164, 220 (2017).Article 

    Google Scholar 
    58.Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Expansion of a colonial ascidian following consecutive mass coral bleaching at Lizard Island, Australia. Mar. Environ. Res. 144, 125–129 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Vollstedt, S., Xiang, N., Simancas-Giraldo, S. M. & Wild, C. Organic eutrophication increases resistance of the pulsating soft coral Xenia umbellata to warming. PeerJ 8, e9182 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Marlow, J. et al. Spatial variation in the benthic community composition of coral reefs in the Wakatobi Marine National Park, Indonesia: Updated baselines and limited benthic community shifts. J. Mar. Biol. Assoc. U. K. 100, 37–44 (2019).Article 

    Google Scholar 
    61.Roth, F., Lange, I., Sánchez Noguera, C., Carvalho, S. & Wild, C. Simulated overfishing and natural eutrophication promote the relative success of a non-indigenous ascidian in coral reefs at the Pacific coast of Costa Rica. Aquat. Invasions 12, 435–446 (2017).Article 

    Google Scholar 
    62.Plass-Johnson, J. G. et al. Spatio-temporal patterns in the coral reef communities of the Spermonde archipelago, 2012–2014, II: Fish assemblages display structured variation related to benthic condition. Front. Mar. Sci. 5, 36 (2018).Article 

    Google Scholar 
    63.Russ, G. R., Rizzari, J. R., Abesamis, R. A. & Alcala, A. C. Coral cover a stronger driver of reef fish trophic biomass than fishing. Ecol. Appl. 31, e02224 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    64.Atrigenio, M. P. & Aliño, P. M. Effects of the soft coral Xenia puertogalerae on the recruitment of scleractinian corals. J. Exp. Mar. Biol. Ecol. 203, 179–189 (1996).Article 

    Google Scholar 
    65.Maida, M., Sammarco, P. W. & Coll, J. C. Effects of soft corals on scleractinian coral recruitment. II: Allelopathy, spat survivorship and reef community structure. Mar. Ecol. 22, 397–414 (2001).ADS 
    Article 

    Google Scholar 
    66.Helber, S. B., Hoeijmakers, D. J. J., Muhando, C. A., Rohde, S. & Schupp, P. J. Sponge chemical defenses are a possible mechanism for increasing sponge abundance on reefs in Zanzibar. PLoS One 13, e0197617 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.de Goeij, J., Lesser, M. P. & Pawlick, J. R. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In Climate Change, Ocean Acidification and Sponges (eds Carballo, J. & Bell, J.) (Springer, 2017).
    Google Scholar 
    68.Loh, T.-L., McMurray, S. E., Henkel, T. P., Vicente, J. & Pawlik, J. R. Indirect effects of overfishing on Caribbean reefs: Sponges overgrow reef-building corals. PeerJ 3, e901 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Lesser, M. P. & Slattery, M. Will coral reef sponges be winners in the Anthropocene?. Glob. Change Biol. 26, 3202–3211 (2020).ADS 
    Article 

    Google Scholar 
    70.Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Annu. Rev. Mar. Sci. 12, 315–337 (2020).ADS 
    Article 

    Google Scholar 
    71.McMurray, S. E., Blum, J. E. & Pawlik, J. R. Redwood of the reef: Growth and age of the giant barrel sponge Xetospongia muta in the Florida Keys. Mar. Biol. 155, 159–171 (2008).Article 

    Google Scholar 
    72.Yomogida, M., Mizuyama, M., Kubomura, T. & Davis Reimer, J. Disappearance and return of an outbreak of the coral-killing cyanobacteriosponge Terpios hoshinota in Southern Japan. Zool. Stud. 56, e7 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    73.McGrath, E. C., Woods, L., Jompa, J., Haris, A. & Bell, J. J. Growth and longevity in giant barrel sponges: Redwoods of the reef or Pines in the Indo-Pacific?. Sci. Rep. 9, 18033 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.De Vantier, L. & Turak, E. Managing marine tourism in Bunaken National Park and adjacent waters, North Sulawesi, Indonesia (NRM III, 2004).75.Kohler, K. & Gill, S. Coral point count with Excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).ADS 
    Article 

    Google Scholar 
    76.Froese, R. Cube law, condition factor and weight-length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 22, 241–253 (2006).Article 

    Google Scholar 
    77.Froese, R. & Pauly, D. Editors. FishBase. World Wide Web electronic publication. http://www.fishbase.org, version (2019).78.MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Bierwagen, S. L., Emslie, M. J., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Reef-scale variability in fish and coral assemblages on the central Great Barrier Reef. Mar. Biol. 165, 144 (2018).Article 

    Google Scholar 
    80.R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.81.Oksanen, J., et al. Package “vegan”: Community ecology package. R package version 2.5-6 (2019).82.White, D. & Gramacy, R. B. Package “maptree”: Mapping, pruning and graphing tree models. R package version 1.4-7 (2015).83.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed 
    Article 

    Google Scholar 
    84.Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).Article 

    Google Scholar 
    85.Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).Article 

    Google Scholar 
    86.Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S. & Daniel, H. On the challenge of treating various types of variables: Application for improving the measurement of functional diversity. Oikos 118, 391–402 (2009).Article 

    Google Scholar 
    87.Bello, F., Carmona, C. P., Mason, N. W. H. & Leps, J. Which trait dissimilarity for functional diversity: Trait means or trait overlap?. J. Sci. Veg. https://doi.org/10.1111/jvs.12008 (2012).Article 

    Google Scholar 
    88.Laliberté, E., Legendre, P. & Shipley B. Package “FD”: Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R package version 1.-0.12 (2015). More

  • in

    Mammalian body size is determined by interactions between climate, urbanization, and ecological traits

    1.Gould, S. J. Allometry and size in ontogeny and phylogeny. Biol. Rev. 41, 587–638 (1966).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Brown, J. H. & Maurer, B. A. Body size, ecological dominance and Cope’s rule. Nature 324, 248–250 (1986).Article 

    Google Scholar 
    3.Brown, J. H., Marquet, P. A. & Taper, M. L. Evolution of body size: consequences of an energetic definition of fitness. Am. Nat. 142, 573–584 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Peters, R. H. The ecological implications of body size. Cambridge University Press. (1983).5.White, E. P., Ernest, S. K. M., Kerkhoff, A. J. & Enquist, B. J. Relationship between body size and abundance in ecology. Trends Ecol. Evo 22, 323–330 (2007).Article 

    Google Scholar 
    6.Yom-Tov, Y. & Geffen, E. Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls. Biol. Rev. 86, 531–541 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Bergmann, C. About the relationships between heat conservation and body size of animals. Goett. Stud. (original Ger.) 1, 595–708 (1847).
    Google Scholar 
    8.Ashton, K. G., Tracy, M. C. & de Queiroz, A. Is Bergmann’s rule valid for mammals? Am. Nat. 156, 390–415 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351 (2003).Article 

    Google Scholar 
    10.Riemer, K., Guralnick, R. P. & White, E. P. No general relationship between mass and temperature in endothermic species. elife 7, e27166 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Alroy, J. A multispecies overkill simulation of the end- Pleistocene megafaunal mass extinction. Science 292, 1893–1896 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Pineda-Munoz, S., Evans, A. & Alroy, J. The relationship between diet and body mass in terrestrial mammals. Paleobiology 42, 659–669 (2016).Article 

    Google Scholar 
    13.Tomassini, A., Colangelo, P., Agnelli, P., Jones, G. & Russo, D. Cranial size has increased over 133 years in a common bat, Pipistrellus kuhlii: a response to changing climate or urbanization? J. Biogeogr. 41, 944–953 (2014).Article 

    Google Scholar 
    14.Fischer, J. D., Cleeton, S. H., Lyons, T. P. & Miller, J. R. Urbanization and the predation paradox: the role of trophic dynamics in structuring vertebrate communities. Bioscience 62, 809–818 (2012).Article 

    Google Scholar 
    15.Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    16.Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108, 1–24 (1882).
    Google Scholar 
    17.Blackburn, T. M. & Hawkins, B. A. Bergmann’s rule and the mammal fauna of northern North America. Ecography 27, 715–724 (2004).Article 

    Google Scholar 
    18.Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Rapacciuolo, G. et al. The signature of human pressure history on the biogeography of body mass in tetrapods. Glob. Ecol. Biogeogr. 26, 1022–1034 (2017).Article 

    Google Scholar 
    20.Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Merckx, T. et al. Body‐size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Magura, T., Ferrante, M. & Lövei, G. L. Only habitat specialists become smaller with advancing urbanization. Glob. Ecol. Biogeor. 29, 1978–1987 (2020).Article 

    Google Scholar 
    23.Pergams, O. R. W. & Lacy, R. C. Rapid morphological and genetic change in Chicago-area Peromyscus. Mol. Ecol. 17, 450–463 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.McKinney, M. L. Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    25.McNab, B. K. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164, 13–23 (2010).PubMed 
    Article 

    Google Scholar 
    26.Schmidt, N. M. & Jensen, P. M. Changes in mammalian body length over 175 years – adaptations to a fragmented landscape? Conserv. Ecol. 72, 6 (2003).
    Google Scholar 
    27.Schmidt, N. M. & Jensen, P. M. Concomitant patterns in avian and mammalian body length changes in Denmark. Ecol. Soc. 10, 5 (2005).Article 

    Google Scholar 
    28.Nowak, R. M. Walker’s mammals of the world. Baltimore: The Johns Hopkins University Press. (1999).29.Lindstedt, S. L. & Boyce, M. S. Seasonality, fasting endurance, and body size in mammals. Am. Nat. 125, 873–878 (1985).Article 

    Google Scholar 
    30.McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).Article 

    Google Scholar 
    31.Naya, D. E., Naya, H. & Cook, J. Climate change and body size trends in aquatic and terrestrial endotherms: does habitat matter? PLoS ONE 12, e0183051 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Johnson, G. E. Hibernation in mammals. Q. Rev. Biol. 6, 439–461 (1931).Article 

    Google Scholar 
    33.Terrien, J., Perret, M. & Aujard, F. Behavioral thermoregulation in mammals: a review. Front. Biosci. 16, 1428–1444 (2011).Article 

    Google Scholar 
    34.Kuussaari, M. et al. Butterfly species’ responses to urbanization: differing effects of human population density and built-up area. Urban Ecosyst. 24, 515–527 (2021).Article 

    Google Scholar 
    35.McNab, B. K. Food habits, energetics, and the population biology of mammals. Am. Nat. 116, 106–124 (1980).Article 

    Google Scholar 
    36.Guralnick, R., Hantak, M. M., Li, D. & McLean, B. S. Body size trends in response to climate and urbanization in the widespread North American deer mouse, Peromyscus maniculatus. Sci. Rep. 10, 8882 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Robinette, W. L., Baer, C. H., Pillmore, R. E. & Knittle, C. E. Effects of nutritional change on captive mule deer. J. Wildl. Manag. 37, 312–326 (1973).Article 

    Google Scholar 
    38.Beckmann, J. P. & Berger, J. Using black bears to test ideal-free distribution models experimentally. J. Mammal. 84, 594–606 (2003).Article 

    Google Scholar 
    39.Liow, L. H., Fortelius, M., Lintulaakso, K., Mannila, H. & Stenseth, N. C. Lower extinction risk in sleep-or-hide mammals. Am. Nat. 173, 264–272 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Eastman, L. M., Morelli, T. L., Rowe, K. C., Conroy, C. J. & Moritz, C. Size increase in high elevation ground squirrels over the last century. Glob. Change Biol. 18, 1499–1508 (2012).Article 

    Google Scholar 
    41.Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).Article 

    Google Scholar 
    43.Scheffers, B. R., Edward, D. P., Diesmos, A., William, S. E. & Evans, T. A. Microhabitats reduce animal’s exposure to climate extremes. Glob. Change Biol. 20, 495–503 (2014).Article 

    Google Scholar 
    44.Smith, F. A., Betancourt, J. L. & Brown, J. H. Evolution of body size in the woodrat over the past 25,000 years of climate change. Science 270, 2012–2014 (1995).CAS 
    Article 

    Google Scholar 
    45.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).Article 

    Google Scholar 
    46.Gohli, J. & Voje, K. L. An interspecific assessment of Bergmann’s rule in 22 mammalian families. BMC Evolut. Biol. 16, 222 (2016).Article 

    Google Scholar 
    47.Babinska-Werka, J. Food of the striped field mouse in different types of urban areas. Acta Theriol. 26, 285–299 (1981).Article 

    Google Scholar 
    48.Brown, J. S., Kotler, B. P. & Porter, W. P. How foraging allometries are resource dynamics could explain Bergmann’s rule and the body-size diet relationship in mammals. Oikos 126, 224–230 (2017).Article 

    Google Scholar 
    49.Santini, L. et al. One strategy does not fit all: Determinants of urban adaptation in mammals. Ecol. Lett. 22, 365–376 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Nielsen, S. E. et al. Environmental, biological and anthropogenic effects on grizzly bear body size: temporal and spatial considerations. BMC Ecol. 13, 31 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Dahirel, M., De Cock, M., Vantieghem, P. & Bonte, D. Urbanization-driven changes in web building and body size in an orb web spider. J. Anim. Ecol. 88, 79–91 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Hart, M. A. & Sailor, D. J. Quantifying the influence of land-use and surface characteristics on spatial variability in the urban heat island. Theor. Appl. Climatol. 95, 397–406 (2009).Article 

    Google Scholar 
    53.Yom-Tov, Y. Body sizes of carnivores commensal with humans have increased over the past 50 years. Funct. Ecol. 17, 323–327 (2003).Article 

    Google Scholar 
    54.Bateman, P. W. & Fleming, P. A. Big city life: carnivores in urban environments. J. Zool. 287, 1–23 (2012).Article 

    Google Scholar 
    55.Metcalfe, N. B. & Ure, S. E. Diurnal variation in flight performance and hence potential predation risk in small birds. Proc. R. Soc. B Biol. Sci. 261, 395–400 (1995).Article 

    Google Scholar 
    56.Kullberg, C., Fransson, T. & Jakobsson, S. Impaired predator evasion in fat blackcaps (Sylvia atricapilla). Proc. R. Soc. B Biol. Sci. 263, 1671–1675 (1996).Article 

    Google Scholar 
    57.Downes, S. Trading heat and food for safety: costs of predator avoidance in a lizard. Ecology 82, 2870–2881 (2001).Article 

    Google Scholar 
    58.Macleod, R., Gosler, A. G. & Cresswell, W. Diurnal mass gain strategies and perceived predation risk in the great tit Parus major. J. Anim. Ecol. 74, 956–964 (2005).Article 

    Google Scholar 
    59.Harris, S. E. & Munshi-South, J. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol. Ecol. 26, 6336–6350 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Ordeñana, M. A. et al. Effects of urbanization on carnivore species distribution and richness. J. Mammal. 91, 1322–1331 (2010).Article 

    Google Scholar 
    61.Croci, S., Butet, A. & Clergeau, P. Does urbanization filter birds on the basis of their biological traits? Condor 110, 223–240 (2008).Article 

    Google Scholar 
    62.Jokimäki, J., Suhonen, J., Jokimäki-Kaisanlahti, M.-L. & Carbó-Ramirez, P. Effects of urbanization on breeding birds in European towns: Impacts of species traits. Urban Ecosyst. 19, 1565–1577 (2016).Article 

    Google Scholar 
    63.Jung, K. & Threlfall, C. G. Trait-dependent tolerance of bats to urbanization: a global meta-analysis. Proc. R. Soc. B Biol. Sci. 285, 20181222 (2018).Article 

    Google Scholar 
    64.Parsons, A. W. et al. Mammal communities are larger and more diverse in moderately developed areas. eLife 7, e38012 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Fuller, A., Mitchell, D., Maloney, S. K. & Hetem, R. S. Towards a mechanistic understanding of the responses of large terrestrial mammals to heat and aridity associated with climate change. Clim. Change Resp. 3, 10 (2016).Article 

    Google Scholar 
    66.Ruf, T. & Geiser, F. Daily torpor and hibernation in birds and mammals. Biol. Rev. 90, 891–926 (2015).PubMed 
    Article 

    Google Scholar 
    67.Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).Article 

    Google Scholar 
    68.Riddell, E. A. et al. Exposure to climate drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Law, C. J., Slater, G. J. & Mehta, R. S. Shared extremes by ectotherms and endotherms: body elongation in mustelids is associated with small size and reduced limbs. Evolution 73, 735–749 (2019).PubMed 
    Article 

    Google Scholar 
    70.Freckleton, R. P., Harvey, P. H. & Pagel, M. Bergmann’s rule and body size in mammals. Am. Nat. 161, 821–825 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Nengovhela, A., Denys, C. & Taylor, P. J. Life history and habitat do not mediate temporal changes in body size due to climate warming in rodents. PeerJ 8, 9792 (2020).Article 

    Google Scholar 
    72.Merckx, T., Kaiser, A. & Van Dyck, H. Increased body size along urbanization gradients at both community and intraspecific level in macro-moths. Glob. Change Biol. 24, 3837–3848 (2018).Article 

    Google Scholar 
    73.Ohlberger, J. Climate warming and ectotherm body size – from individual physiology to community ecology. Funct. Ecol. 27, 991–1001 (2013).Article 

    Google Scholar 
    74.Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Christensen, J. H. et al. Climate Phenomena and their Relevance for Future Regional Climate Change in Climate Change 2013: The Physical Science Basis. Contribution Working Group I Fifth Assess. Rep. Intergovernmental Panel Clim. Change 1–6, 1217–1308 (2013). pp.
    Google Scholar 
    77.Guralnick, R. & Constable, H. VertNet: creating a data-sharing community. Bioscience 60, 258–259 (2010).Article 

    Google Scholar 
    78.National Ecological Observatory Network. Data Products: DP1.10072.001. Provisional data downloaded from http://data.neonscience.org on May 10, 2019. Battelle, Boulder, CO, USA. (2019).79.Calhoun, J. B. North American census of small mammals. Release no. 1. Announcement of program. Rodent ecology program. Johns Hopkins University Pres. (1948).80.Calhoun, J. B. North American census of small mammals. Release no. 2. Annual report of census made in 1948. Rodent ecology program. Johns Hopkins University Press. (1949).81.Calhoun, J. B. North American census of small mammals. Release no. 3. Annual report of census made in 1949. Roscoe B. Jackson Memorial Laboratory. (1950).82.Calhoun, J. B. North American census of small mammals. Release no. 4. Annual report of census made in 1950. Roscoe B. Jackson Memorial Laboratory. (1951).83.Calhoun, J. B. Population dynamics of vertebrates. Compilations of research data. Release no. 5. 1951 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1956).84.Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 6. 1952 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).85.Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 7. 1953 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).86.Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 8. 1954 Annual report – North American census of small mammals. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).87.Calhoun, J. B. & Arata, A. A. Population dynamics of vertebrates. Compilations of research data. Release no. 9. 1955 and 1956 Annual report – North American census of small mammals and certain summaries for the years 1948–1956. U.S. Department of Health, Education, and Welfare, Public Health Service, National Institute of Mental Health. (1957).88.Guralnick, R. P. et al. The Importance of digitized biocollections as a source of trait data and a new VertNet resource. Database 2016, baw158 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Laney, C. & Lunch, C. neonUtilities: utilities for working with NEON data. R package version 1.3.1. https://cran.r-project.org/web/packages/neonUtilities. (2019).90.Chapman, A. D. & Wieczorek, J. Guide to best practices for georeferencing. Global Biodiversity Information Facility. (2006).91.Wieczorek, J., Guo, Q., Boureau, C. & Wieczorek, C. Georeferencing calculator. http://manisnet.org/gci2.html. (2001).92.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, https://www.R-project.org/. (2021).93.Tiwari, V. & Kashikar, A. OutlierDetection: Outlier Detection. R package version 0.1.1. https://cran.r-project.org/web/packages/OutlierDetection/index.html. (2019).94.Fang, Y. & Jawitz, J. W. High-resolution reconstruction of the United States human population distribution, 1790 to 2010. Sci. Data 5, 180067 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Venter, O. et al. Global Human Footprint maps for 1993 and 2009. Sci. Data 3, 10067 (2016).Article 

    Google Scholar 
    96.Li, D., Stucky, B. J., Deck, J., Baiser, B. & Guralnick, R. P. The effect of urbanization on plant phenology depends on regional temperature. Nat. Ecol. Evol. 3, 1661–1667 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Li, D. et al. Climate, urbanization, and species traits interactively drive flowering duration. Glob. Change Biol. 27, 892–903 (2021).Article 

    Google Scholar 
    98.PRISM Climate Group. PRISM climate data. Available at https://prism.oregonstate.edu. (2020).99.Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLOS Biol. 17, e3000494 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. (2014).101.Brown, James H. Macroecology. University of Chicago Press. (1995).102.Smith, F. A. et al. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. Am. Nat. 163, 672–691 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    104.Barton, K. Package ‘MuMIn’. Model selection and model averaging based on information criteria. R package version 3.2.4. http://cran.r-project.org/web/packages/MuMIn/index.html. (2012).105.Li, D., Dinnage, R., Helmus, M. & Ives, A. phyr: An R package for phylogenetic species‐distribution modelling in ecological communities. Methods Ecol. Evol. 11, 1455–1463 (2020).Article 

    Google Scholar 
    106.Ives, A. R. & Li, D. rr2: an R package to calculate R2s for regression models. J. Open Source Softw. 3, 1028 (2018).Article 

    Google Scholar  More