More stories

  • in

    Plant death caused by inefficient induction of antiviral R-gene-mediated resistance may function as a suicidal population resistance mechanism

    1.Collier, S. M. & Moffett, P. NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci. 14, 521–529 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Cooley, M. B., Pathirana, S., Wu, H. J., Kachroo, P. & Klessig, D. F. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12, 663–676 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Takahashi, H. et al. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J. 32, 655–667 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.de Ronde, D., Butterbach, P. & Kormelink, R. Dominant resistance against plant viruses. Front. Plant Sci. 5, 307 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Takahashi, H. et al. Cyclic nucleotide-gated ion channel-mediated cell death may not be critical for R gene-conferred resistance to cucumber mosaic virus in Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 79, 40–48 (2012).CAS 
    Article 

    Google Scholar 
    6.Wright, K. et al. Analysis of the N gene hypersensitive response induced by a fluorescently tagged tobacco mosaic virus. Plant Physiol. 123, 1375–1385 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Lukan, T. et al. Cell death is not sufficient for the restriction of potato virus Y spread in hypersensitive response-conferred resistance in potato. Front. Plant Sci. 9, 168 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Bendahmane, A., Kanyuka, K. & Baulcombe, D. C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11, 781–791 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Sekine, K. T. et al. High level expression of a virus resistance gene, RCY1, confers extreme resistance to cucumber mosaic virus in Arabidopsis thaliana. Mol. Plant Microbe Interact. 21, 1398–1407 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Grech-Baran, M. et al. Extreme resistance to potato virus Y in potato carrying the Rysto gene is mediated by a TIR-NLR immune receptor. Plant Biotechnol. J. 18, 655–667 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Patel, P. N. Genetics of cowpea reactions to two strains of cowpea mosaic virus from Tanzania. Phytopathology 72, 460–466 (1982).Article 

    Google Scholar 
    12.Kiraly, L., Cole, A. B., Bourque, J. E. & Schoelz, J. E. Systemic cell death is elicited by the interaction of a single gene in Nicotiana clevelandii and gene VI of cauliflower mosaic virus. Mol. Plant Microbe Interact. 12, 919–925 (1999).CAS 
    Article 

    Google Scholar 
    13.Jones, R. A. C. & Smith, L. J. Inheritance of hypersensitive resistance to bean yellow mosaic virus in narrow-leafed lupin (Lupinus angustifolius). Ann. Appl. Biol. 146, 539–543 (2005).Article 

    Google Scholar 
    14.Ravelo, G., Kagaya, U., Inukai, T., Sato, M. & Uyeda, I. Genetic analysis of lethal tip necrosis induced by clover yellow vein virus infection in pea. J. Gen. Plant Pathol. 73, 59–65 (2007).CAS 
    Article 

    Google Scholar 
    15.Atsumi, G., Kagaya, U., Kitazawa, H., Nakahara, K. S. & Uyeda, I. Activation of the salicylic acid signaling pathway enhances clover yellow vein virus virulence in susceptible pea cultivars. Mol. Plant Microbe Interact. 22, 166–175 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Nyalugwe, E. P., Barbetti, M. J. & Jones, R. A. C. Studies on resistance phenotypes to turnip mosaic virus in five species of Brassicaceae, and identification of a virus resistance gene in Brassica juncea. Eur. J. Plant Pathol. 141, 647–666 (2015).CAS 
    Article 

    Google Scholar 
    17.Kehoe, M. A. & Jones, R. A. C. Improving potato virus Y strain nomenclature: lessons from comparing isolates obtained over a 73-year period. Plant Pathol. 65, 322–333 (2016).CAS 
    Article 

    Google Scholar 
    18.Jones, R. A. C. & Vincent, S. J. Strain-specific hypersensitive and extreme resistance phenotypes elicited by potato virus Y among 39 potato cultivars released in three world regions over a 117-year period. Plant Dis. 102, 185–196 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Xu, P., Blancaflor, E. B. & Roossinck, M. J. In spite of induced multiple defense responses, tomato plants infected with cucumber mosaic virus and D satellite RNA succumb to systemic necrosis. Mol. Plant Microbe Interact. 16, 467–476 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Seo, Y. S. et al. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proc. Natl Acad. Sci. U. S. A. 103, 11856–11861 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Kim, B., Masuta, C., Matsuura, H., Takahashi, H. & Inukai, T. Veinal necrosis induced by turnip mosaic virus infection in Arabidopsis is a form of defense response accompanying HR-like cell death. Mol. Plant Microbe Interact. 21, 260–268 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Nyalugwe, E. P., Barbetti, M. J., Clode, P. L. & Jones, R. A. C. Systemic hypersensitive resistance to turnip mosaic virus in Brassica juncea is associated with multiple defense responses, especially phloem necrosis and xylem occlusion. Plant Dis. 100, 1261–1270 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Komatsu, K. et al. Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways. Mol. Plant-Microbe Interact. 23, 283–293 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Mandadi, K. K. & Scholthof, K. B. G. Plant immune responses against viruses: how does a virus cause disease? Plant Cell 25, 1489–1505 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Michel, V. et al. NtTPN1: a RPP8-like R gene required for potato virus Y-induced veinal necrosis in tobacco. Plant J. 95, 700–714 (2018).CAS 
    Article 

    Google Scholar 
    26.Ando, S., Miyashita, S. & Takahashi, H. Plant defense systems against cucumber mosaic virus: lessons learned from CMV–Arabidopsis interactions. J. Gen. Plant Pathol. 85, 174–181 (2019).Article 

    Google Scholar 
    27.Takahashi, H. et al. Mapping the virus and host genes involved in the resistance response in cucumber mosaic virus-infected Arabidopsis thaliana. Plant Cell Physiol. 42, 340–347 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Takahashi, H. et al. RCY1-mediated resistance to cucumber mosaic virus is regulated by LRR domain-mediated interaction with CMV(Y) following degradation of RCY1. Mol. Plant Microbe Interact. 25, 1171–1185 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Ishihara, T., Sato, Y. & Takahashi, H. Microarray analysis of R-gene-mediated resistance to viruses in Plant Virology Protocols, Methods in Molecular Biology (eds Uyeda, I. & Masuta, C.) 197–218 (Humana Press, 2015). https://doi.org/10.1007/978-1-4939-1743-3_1530.Takebe, I. & Ohtsuki, Y. Infection of tobacco mesophyll protoplasts by tobacco mosaic virus. Proc. Natl Acad. Sci. U. S. A. 64, 843–848, https://www.pnas.org/content/64/3/843 (1969).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Hibi, T., Rezelman, G. & van Kammen, A. Infection of cowpea mesophyll protoplasts with cowpea mosaic virus. Virology 64, 308–318 (1975).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Motoyoshi, F., Hull, R. & Flack, I. H. Infection of tobacco mesophyll protoplasts by alfalfa mosaic virus. J. Gen. Virol. 27, 263–266 (1975).Article 

    Google Scholar 
    33.Renaudin, J., Bove, J. M., Otsuki, Y. & Takebe, I. Infection of brassica protoplasts by turnip yellow mosaic virus. Mol. Gen. Genet. 141, 59–68 (1975).Article 

    Google Scholar 
    34.Okuno, H., Furusawa, I. & Hiruki, C. Infection of barley protoplasts with brome mosaic virus. Phytopathology 67, 610–615 (1977).CAS 
    Article 

    Google Scholar 
    35.French, R. & Stenger, D. C. Evolution of wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation. Annu. Rev. Phytopathol. 41, 199–214 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Miyashita, S. & Kishino, H. Estimation of the size of genetic bottlenecks in cell-to-cell movement of soil-borne wheat mosaic virus and the possible role of the bottlenecks in speeding up selection of variations in trans-acting genes or elements. J. Virol. 84, 1828–1837 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Miyashita, S., Ishibashi, K., Kishino, H. & Ishikawa, M. Viruses roll the dice: the stochastic behavior of viral genome molecules accelerates viral adaptation at the cell and tissue levels. PLoS Biol. 13, e1002094 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Nemecek, T., Fischlin, A., Derron, J. & Roth, O. Distance and direction of trivial flights of aphids in a potato field. Syst. Ecol. ETHZ (1993).39.Takahashi, H., Fukuhara, T., Kitazawa, H. & Kormelink, R. Virus latency and the impact on plants. Front. Microbiol. 10, 2764 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Farkas, G., Kiraly, Z. & Solymosy, F. Role of oxidative metabolism in the localization of plant viruses. Virology 12, 408–421 (1960).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Kiraly, L., Hafez, Y., Fodor, J. & Kiraly, Z. Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J. Gen. Virol. 89, 799–808 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Hafez, Y., Bacso, R., Kiraly, Z., Kunstler, A. & Kiraly, L. Up-regulation of antioxidants in tobacco by low concentrations of H2O2 suppresses necrotic disease symptoms. Phytopathology 102, 848–856 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Kunstler, A., Bacso, R., Gullner, G., Hafez, Y. & Kiraly, L. Staying alive – is cell death dispensable for plant disease resistance during the hypersensitive response? Physiol. Mol. Plant Pathol. 93, 75–84 (2016).Article 

    Google Scholar 
    44.Xie, Z., Fan, B., Chen, C. & Chen, Z. An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc. Natl Acad. Sci. U. S. A. 98, 6516–6521 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Li, W. et al. Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of soybean mosaic virus. Plant Cell Rep. 31, 905–916 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Miyashita, S. Studies on replication and evolution mechanisms of plant RNA viruses. J. Gen. Plant Pathol. 84, 427–428 (2018).CAS 
    Article 

    Google Scholar 
    47.Qu, F. et al. Bottleneck, Isolate, Amplify, Select (BIAS) as a mechanistic framework for intracellular population dynamics of positive sense RNA viruses. Virus Evol. 6, veaa86 (2020).Article 

    Google Scholar 
    48.Gonzalez-Jara, P., Fraile, A., Canto, T. & Garcia-Arenal, F. The multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. J. Virol. 83, 7487–7494 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Gutierrez, S. et al. Dynamics of the multiplicity of cellular infection in a plant virus. PLoS Pathog. 6, e1001113 (2010).50.Moury, B., Fabre, F., Hebrard, E. & Froissart, R. Determinants of host species range in plant viruses. J. Gen. Virol. 98, 862–873 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.McLeish, M. J., Fraile, A. & Garcia-Arenal, F. Evolution of plant–virus interactions: host range and virus emergence. Curr. Opin. Virol. 34, 50–55 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Gao, Y. et al. Out of water: the origin and early diversification of plant R-genes. Plant Physiol. 177, 82–89 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Chandra-Shekara, A. C. et al. Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant J. 40, 647–659 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Ando, S., Obinata, A. & Takahashi, H. WRKY70 interacting with RCY1 disease resistance protein is required for resistance to cucumber mosaic virus in Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 85, 8–15 (2014).CAS 
    Article 

    Google Scholar 
    55.Fukuyo, M., Sasaki, A. & Kobayashi, I. Success of a suicidal defense strategy against infection in a structured habitat. Sci. Rep. 2, 1–8 (2012).Article 
    CAS 

    Google Scholar 
    56.Cheng, Y., Jones, R. A. C. & Thackray, D. J. Deploying strain specific hypersensitive resistance to diminish temporal virus spread. Ann. Appl. Biol. 140, 69–79 (2002).Article 

    Google Scholar 
    57.Thackray, D. J., Smith, L. J., Cheng, Y. & Jones, R. A. C. Effect of strain-specific hypersensitive resistance on spatial patterns of virus spread. Ann. Appl. Biol. 141, 45–59 (2002).Article 

    Google Scholar 
    58.Suzuki, M. et al. Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system. Virology 183, 106–113 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Takeshita, M. et al. Infection dynamics in viral spread and interference under the synergism between cucumber mosaic virus and turnip mosaic virus. Mol. Plant Microbe Interact. 25, 18–27 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Hodel, M. R., Corbett, A. H. & Hodel, A. E. Dissection of a nuclear localization signal. J. Biol. Chem. 276, 1317–1325 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2020).62.Miyashita, S. R scripts for MOI estimation and simulation for plant suicidal population resistance by systemic hypersensitive response. Zenodo https://doi.org/10.5281/zenodo.5105622 (2021). More

  • in

    Rodent host population dynamics drive zoonotic Lyme Borreliosis and Orthohantavirus infections in humans in Northern Europe

    1.Taylor, L. H., Latham, S. M. & Woolhouse, M. E. J. Risk factors for human disease emergence. Philos. Trans. R. Soc. B Biol. Sci. 356, 983–989 (2001).CAS 
    Article 

    Google Scholar 
    2.Karesh, W. B. et al. Ecology of zoonoses: Natural and unnatural histories. Lancet 380, 1936–1945 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Zhang, T., Wu, Q. & Zhang, Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 30, 1346-1351.e2 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl. Acad. Sci. 112, 7039–7044 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl. Acad. Sci. 117, 9423 LP – 9430 (2020).Article 
    CAS 

    Google Scholar 
    9.Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special?. Proc. R. Soc. B Biol. Sci. 280, 20122753 (2013).Article 

    Google Scholar 
    10.Wardeh, M., Sharkey, K. J. & Baylis, M. Integration of shared-pathogen networks and machine learning reveals the key aspects of zoonoses and predicts mammalian reservoirs. Proc. R. Soc. B Biol. Sci. 287, 20192882 (2020).CAS 
    Article 

    Google Scholar 
    11.Maes, P. et al. Taxonomy of the order Bunyavirales: Second update 2018. Arch. Virol. 164, 927–941 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Vapalahti, K., Virtala, A.-M., Vaheri, A. & Vapalahti, O. Case-control study on Puumala virus infection: Smoking is a risk factor. Epidemiol. Infect. 138, 576–584 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Vaheri, A. et al. Hantavirus infections in Europe and their impact on public health. Rev. Med. Virol. 23, 35–49 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Avšič-Županc, T., Saksida, A. & Korva, M. Hantavirus infections. Clin. Microbiol. Infect. 21, e6–e16 (2019).Article 

    Google Scholar 
    15.Olsson, G. E., Leirs, H. & Henttonen, H. Hantaviruses and their hosts in Europe: Reservoirs here and there, but not everywhere?. Vector-Borne Zoonotic Dis. 10, 549–561 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Cook, M. J. Lyme borreliosis: A review of data on transmission time after tick attachment. Int. J. Gen. Med. 8, 1–8 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Sykes, R. A. & Makiello, P. An estimate of Lyme borreliosis incidence in Western Europe†. J. Public Health (Bangkok) 39, 74–81 (2016).
    Google Scholar 
    18.Kuehn, B. M. CDC estimates 300000 US cases of lyme disease annually. JAMA J. Am. Med. Assoc. 310, 1110 (2013).CAS 
    Article 

    Google Scholar 
    19.Davis, S., Calvet, E. & Leirs, H. Review fluctuating rodent populations and risk to humans from rodent-borne zoonoses. Vector-Borne Zoonotic Dis. 5, 305–314 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Tian, H. Y. et al. Changes in rodent abundance and weather conditions potentially drive hemorrhagic fever with renal syndrome outbreaks in Xi’an, China, 2005–2012. PLoS Negl. Trop. Dis. 9, 2005–2012 (2015).Article 
    CAS 

    Google Scholar 
    21.Kallio, E. R. et al. Cyclic hantavirus epidemics in humans: Predicted by rodent host dynamics. Epidemics 1, 101–107 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Korpela, K. et al. Predator–vole interactions in northern Europe: The role of small mustelids revised. Proc. R. Soc. B Biol. Sci. 281, 20142119 (2014).Article 

    Google Scholar 
    24.Korpimäki, E., Norrdahl, K., Huitu, O. & Klemola, T. Predator-induced synchrony in population oscillations of coexisting small mammal species. Proc. R. Soc. B Biol. Sci. 272, 193–202 (2005).Article 

    Google Scholar 
    25.Hanski, I., Henttonen, H., Korpimäki, E., Oksanen, L. & Turchin, P. Small-rodent dynamics and predation. Ecology 82, 1505–1520 (2001).Article 

    Google Scholar 
    26.Hansson, L. & Henttonen, H. Rodent dynamics as community processes. Trends Ecol. Evol. 3, 195–200 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Sane, J. et al. Regional differences in long-term cycles and seasonality of Puumala virus infections, Finland, 1995–2014. Epidemiol. Infect. 144, 2883–2888 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Vapalahti, O. et al. Hantavirus infections in Europe. Lancet Infect. Dis. 3, 653–661 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Olsson, G. E., Hjertqvist, M., Lundkvist, Å. & Hörnfeldt, B. Predicting high risk for human hantavirus infections, Sweden. Emerg. Infect. Dis. 15, 104–106 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Khalil, H., Ecke, F., Evander, M., Bucht, G. & Hörnfeldt, B. Population dynamics of bank voles predicts human puumala hantavirus risk. EcoHealth 16, 545–557 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Jones, C. G., Ostfeld, R. S., Richard, M. P., Schauber, E. M. & Wolff, J. O. Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279, 1023–1026 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. & Keesing, F. The ecology of infectious disease: Effects of host diversity and community composition on lyme disease risk. Proc. Natl. Acad. Sci. U. S. A. 100, 567–571 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Ostfeld, R. S., Canham, C. D., Oggenfuss, K., Winchcombe, R. J. & Keesing, F. Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol. 4, 1058–1068 (2006).CAS 
    Article 

    Google Scholar 
    34.Van Duijvendijk, G., Sprong, H. & Takken, W. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: A review. Parasit. Vectors 8, 1 (2015).Article 
    CAS 

    Google Scholar 
    35.Krawczyk, A. I. et al. Effect of rodent density on tick and tick-borne pathogen populations: Consequences for infectious disease risk. Parasit. Vectors 13, 34 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Bregnard, C., Rais, O. & Voordouw, M. J. Climate and tree seed production predict the abundance of the European Lyme disease vector over a 15-year period. Parasit. Vectors 13, 1–12 (2020).Article 

    Google Scholar 
    37.Bregnard, C., Rais, O. & Voordouw, M. J. Masting by beech trees predicts the risk of Lyme disease. Parasit. Vectors 14, 1–22 (2021).Article 
    CAS 

    Google Scholar 
    38.Schauber, E. M., Ostfeld, R. S. & Evans, A. S. What is the best predictor of annual lyme disease incidence: Weather, mice, or acorns?. Ecol. Appl. 15, 575–586 (2005).Article 

    Google Scholar 
    39.Tkadlec, E., Václavík, T. & Široký, P. Rodent host abundance and climate variability as predictors of tickborne disease risk 1 year in advance. Emerg. Infect. Dis. 25, 1738–1741 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Bogdziewicz, M. & Szymkowiak, J. Oak acorn crop and Google search volume predict Lyme disease risk in temperate Europe. Basic Appl. Ecol. 17, 300–307 (2016).Article 

    Google Scholar 
    41.Pietiäinen, H., Sundell, J., Valkama, J. & Huitu, O. vole interactions in northern Europe: The role of− Predator. (2014).42.Lindgren, E. & Jaenson, T. G. T. Lyme borreliosis in Europe: Influences of climate and climate change, epidemiology, ecology and adaptation measures. World Heal. Org. https://doi.org/10.1093/ntr/ntu261 (2006).Article 

    Google Scholar 
    43.Laaksonen, M. et al. Tick-borne pathogens in Finland: Comparison of Ixodes ricinus and I. persulcatus in sympatric and parapatric areas. Parasit. Vectors 11, 556 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Sajanti, E. et al. Lyme borreliosis in Finland in 1995–2014. Emerg. Infect. Dis. 23, 128–1288 (2017).Article 

    Google Scholar 
    45.Amori, G. et al. Myodes glareolus. In:The IUCN Red List of Threatened Species. (2007) (accessed 28 February 2020). https://www.iucnredlist.org/species/4973/1110516846.Brummer-Korvenkontio, M. et al. Nephropathia epidemica: Detection of antigen in bank voles and serologic diagnosis of human infection. J. Infect. Dis. 141, 131–134 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Kurtenbach, K. et al. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat. Rev. Microbiol. 4, 660–669 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Hanincová, K. et al. Association of Borrelia afzelii with rodents in Europe. Parasitology 126, 11–20 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Tälleklint, L., Jaenson, T. G. T. & Mather, T. N. Seasonal variation in the capacity of the bank vole to infect larval ticks (Acari: Ixodidae) with the lyme disease spirochete, Borrelia burgdorferi. J. Med. Entomol. 30, 812–815 (1993).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Gern, L. et al. European reservoir hosts of Borrelia burgdorferi sensu lato. Zentralblatt fur Bakteriol. 287, 196–204 (1998).CAS 
    Article 

    Google Scholar 
    51.Tersago, K. et al. Hantavirus outbreak in Western Europe: Reservoir host infection dynamics related to human disease patterns. Epidemiol. Infect. 139, 381–390 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Jaenson, T. G. T., Hjertqvist, M., Bergström, T. & Lundkvist, Å. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Swedena. Parasit. Vectors 5, 184 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Kurokawa, C. et al. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol. 18, 587–600 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Korpela, K. et al. Nonlinear effects of climate on boreal rodent dynamics: Mild winters do not negate high-amplitude cycles. Glob. Chang. Biol. 19, 697–710 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Koivula, M., Koskela, E., Mappes, T. & Oksanen, T. A. Cost of reproduction in the wild: Manipulation of reproductive effort in the bank vole. Ecology 84, 398–405 (2003).Article 

    Google Scholar 
    56.Cayol, C., Koskela, E., Mappes, T., Siukkola, A. & Kallio, E. R. Temporal dynamics of the tick Ixodes ricinus in northern Europe: Epidemiological implications. Parasit. Vectors 10, 1–11 (2017).Article 

    Google Scholar 
    57.Rösch, A. & Schmidbauer, H. WaveletComp: Computational Wavelet Analysis. R package version 1.1. (2018).58.R Core Team. R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. Vienna, Austria (2019).59.Cazelles, B., Chavez, M., De Magny, G. C., Guégan, J. F. & Hales, S. Time-dependent spectral analysis of epidemiological time-series with wavelets. J. R. Soc. Interface 4, 625–636 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Pinherio, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. R package Version 3. 1–142 (2019).61.Ostfeld, R. S. et al. Effects of acorn production and mouse abundance on abundance and Borrelia burgdorferi infection prevalence of nymphal Ixodes scapularis ticks. Vector Borne Zoonotic Dis. 1, 55–63 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Kallio, E. R. et al. Prolonged survival of Puumala hantavirus outside the host: Evidence for indirect transmission via the environment. J. Gen. Virol. 87, 2127–2134 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference, A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).https://doi.org/10.1007/978-0-387-22456-5_7 .Book 
    MATH 

    Google Scholar 
    64.Barton, K. MuMIn: Multi-Model Inference. (2019).65.Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 26, 1–22 (2008).
    Google Scholar 
    66.Estrada-Peña, A., Gray, J. S., Kahl, O., Lane, R. S. & Nijhof, A. M. Research on the ecology of ticks and tick-borne pathogens-methodological principles and caveats. Front. Cell. Infect. Microbiol. 4, 1–12 (2013).
    Google Scholar 
    67.Lindgren, E., Tälleklint, L. & Polfeldt, T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ. Health Perspect. 108, 119–123 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Tian, H. et al. Interannual cycles of Hantaan virus outbreaks at the human-animal interface in Central China are controlled by temperature and rainfall. Proc. Natl. Acad. Sci. U. S. A. 114, 8041–8046 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Xiao, H. et al. Atmospheric moisture variability and transmission of hemorrhagic fever with renal syndrome in Changsha City, Mainland China, 1991–2010. PLoS Negl. Trop. Dis. 7, 1–7 (2013).CAS 

    Google Scholar 
    70.Guan, P. et al. Investigating the effects of climatic variables and reservoir on the incidence of hemorrhagic fever with renal syndrome in Huludao City, China: A 17-year data analysis based on structure equation model. BMC Infect. Dis. 9, 1 (2009).Article 

    Google Scholar 
    71.Amirpour Haredasht, S. et al. Modelling seasonal and multi-annual variation in bank vole populations and nephropathia epidemica. Biosyst. Eng. 121, 25–37 (2014).Article 

    Google Scholar 
    72.Hardestam, J. et al. Puumala hantavirus excretion kinetics in bank voles (Myodes glareolus). Emerg. Infect. Dis. 14, 1209–1215 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Levi, T., Kilpatrick, A. M., Mangel, M. & Wilmers, C. C. Deer, predators, and the emergence of Lyme disease. Proc. Natl. Acad. Sci. 109, 10942–10947 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Ostfeld, R. S., Levi, T., Keesing, F., Oggenfuss, K. & Canham, C. D. Tick-borne disease risk in a forest food web. Ecology 99, 1562–1573 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Wilhelmsson, P. et al. Ixodes ricinus ticks removed from humans in Northern Europe: Seasonal pattern of infestation, attachment sites and duration of feeding. Parasit. Vectors 6, 362 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Radolf, J. D., Caimano, M. J., Stevenson, B. & Hu, L. T. Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 10, 87–99 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Otranto, D. et al. Ticks infesting humans in Italy and associated pathogens. Parasit. Vectors 7, 328 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Faulde, M. K. et al. Human tick infestation pattern, tick-bite rate, and associated Borrelia burgdorferi s.l. infection risk during occupational tick exposure at the Seedorf military training area, northwestern Germany. Ticks Tick. Borne. Dis. 5, 594–599 (2014).PubMed 
    Article 

    Google Scholar 
    79.Gustav, T., Jaenson, T., Lundqvist, L., Olsen, B. & Chirico, J. Geographical distribution, host associations, and vector roles of ticks (Acari: Ixodidae, Argasidae) in Sweden mites and insects view project flavivirus view project. Artic. J. Med. Entomol. https://doi.org/10.1093/jmedent/31.2.240 (1994).Article 

    Google Scholar 
    80.Jaenson, T. G. T. et al. First evidence of established populations of the taiga tick Ixodes persulcatus (Acari: Ixodidae) in Sweden. Parasit. Vectors 9, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    81.Jaenson, T. G. T. & Wilhelmsson, P. First records of tick-borne pathogens in populations of the taiga tick Ixodes persulcatus in Sweden. Parasit. Vectors 12, 559 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Pakanen, V. M., Sormunen, J. J., Sippola, E., Blomqvist, D. & Kallio, E. R. Questing abundance of adult taiga ticks Ixodes persulcatus and their Borrelia prevalence at the north-western part of their distribution. Parasit. Vectors 13, 384 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Laaksonen, M. et al. Crowdsourcing-based nationwide tick collection reveals the distribution of Ixodes ricinus and I. persulcatus and associated pathogens in Finland. Emerg. Microbes Infect. 6, 1–7 (2017).Article 
    CAS 

    Google Scholar 
    84.Kovalevskii, Y. V. & Korenberg, E. I. Differences in Borrelia infections in adult Ixodes persulcatus and Ixodes ricinus ticks (Acari: Ixodidae) in populations of north-western Russia. Exp. Appl. Acarol. 19, 19–29 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Hanski, I., Hansson, L. & Henttonen, H. Specialist predators, generalist predators, and the microtine rodent cycle. J. Anim. Ecol. https://doi.org/10.2307/5465 (1991).Article 

    Google Scholar 
    86.Massey, F., Smith, M., Lambin, X. & Hartley, S. Are silica defences in grasses driving vole population cycles?. Biol. Lett. 4, 419–422 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Kołodziej-Sobocińska, M. Factors affecting the spread of parasites in populations of wild European terrestrial mammals. Mammal Res. 64, 301–318 (2019).Article 

    Google Scholar 
    88.Mysterud, A. et al. Contrasting emergence of Lyme disease across ecosystems. Nat. Commun. 7, 1 (2016).Article 
    CAS 

    Google Scholar 
    89.Rosà, R. & Pugliese, A. Effects of tick population dynamics and host densities on the persistence of tick-borne infections. Math. Biosci. 208, 216–240 (2007).MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    90.Rosà, R., Pugliese, A., Ghosh, M., Perkins, S. E. & Rizzoli, A. Temporal variation of Ixodes ricinus intensity on the rodent host Apodemus flavicollis in relation to local climate and host dynamics. Vector-Borne Zoonotic Dis. 7, 285–295 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Halsey, S. J. & Miller, J. R. Maintenance of Borrelia burgdorferi among vertebrate hosts: A test of dilution effect mechanisms. Ecosphere 11, e03048 (2020).Article 

    Google Scholar 
    92.Ostfeld, R. S. & Keesing, F. Biodiversity and disease risk: The case of Lyme disease. Conserv. Biol. 14, 722–728 (2000).Article 

    Google Scholar 
    93.Murray, T. S. & Shapiro, E. D. Lyme disease. Clin. Lab. Med. 30, 311–328 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Kramski, M., Achazi, K., Klempa, B. & Krüger, D. H. Nephropathia epidemica with a 6-week incubation period after occupational exposure to Puumala hantavirus. J. Clin. Virol. 44, 99–101 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Voutilainen, L., Kallio, E. R., Niemimaa, J., Vapalahti, O. & Henttonen, H. Temporal dynamics of Puumala hantavirus infection in cyclic populations of bank voles. Sci. Rep. 6, 1–15 (2016).Article 
    CAS 

    Google Scholar 
    96.Klemola, T., Korpimaki, E. & Koivula, M. Rate of population change in voles from different phases of the population cycle. Oikos 96, 291–298 (2002).Article 

    Google Scholar  More

  • in

    Identifying structural connectivity priorities in eastern Paraguay’s fragmented Atlantic Forest

    1.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1, e1500052 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.FAO. Global Forest Resources Assessment 2015. (2015).3.Sloan, S. & Sayer, J. A. Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For. Ecol. Manag. 352, 134–145 (2015).Article 

    Google Scholar 
    4.Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).Article 

    Google Scholar 
    5.Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Costa, L. P. & Leite, Y. L. R. Biogeography of South American forest mammals: Endemism and diversity in the Atlantic Forest. Phys.Chem. Earth B Hydrol. Oceans Atmos. 87, 2–881 (2000).
    Google Scholar 
    8.Oliveira-Filho, A. T. & Fontes, M. A. L. Patterns of floristic differentiation among Atlantic Forests in Southeastern Brazil and the influence of climate. Biotropica 32, 793 (2000).Article 

    Google Scholar 
    9.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Visconti, P. et al. Future hotspots of terrestrial mammal loss. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2693–2702 (2011).
    Google Scholar 
    11.Mittermeier, R. A., Myers, N., Gil, P. R. & Mittermeier, C.G . Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions (Cemex, Conservation International and Agrupacion Sierra Madre, Monterrey, Mexico, 1999).
    Google Scholar 
    12.Huang, C. et al. Rapid loss of Paraguay’s Atlantic forest and the status of protected areas—a Landsat assessment. Remote Sens. Environ. 106, 460–466 (2007).ADS 
    Article 

    Google Scholar 
    13.Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153 (2009).Article 

    Google Scholar 
    14.Rezende, C. L. et al. From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspect. Ecol. Conserv. 16, 208–214 (2018).
    Google Scholar 
    15.Bicudo da Silva, R. F., Millington, J. D. A., Moran, E. F., Batistella, M. & Liu, J. Three decades of land-use and land-cover change in mountain regions of the Brazilian Atlantic Forest. Landsc. Urban Plann. 204, 103948 (2020).Article 

    Google Scholar 
    16.Da Ponte, E. et al. Tropical forest cover dynamics for Latin America using Earth observation data: A review covering the continental, regional, and local scale. Int. J. Remote Sens. 36, 3196–3242 (2015).Article 

    Google Scholar 
    17.Da Ponte, E., Roch, M., Leinenkugel, P., Dech, S. & Kuenzer, C. Paraguay’s Atlantic Forest cover loss—Satellite-based change detection and fragmentation analysis between 2003 and 2013. Appl. Geogr. 79, 37–49 (2017).Article 

    Google Scholar 
    18.Rosa, M. R. et al. Hidden destruction of older forests threatens Brazil’s Atlantic Forest and challenges restoration programs. Sci. Adv. 7, eabc4547 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Nowosad, J. & Stepinski, T. F. Stochastic, empirically informed model of landscape dynamics and its application to deforestation scenarios. Geophys. Res. Lett. 46, 13845–13852 (2019).ADS 
    Article 

    Google Scholar 
    20.Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. U. S. A. 107, 8650–8655 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    22.de la Sancha, N. U. Patterns of small mammal diversity in fragments of subtropical Interior Atlantic Forest in eastern Paraguay. Mammalia 78, 437–449 (2014).
    Google Scholar 
    23.de la Sancha, N. U., Higgins, C. L., Presley, S. J. & Strauss, R. E. Metacommunity structure in a highly fragmented forest: Has deforestation in the Atlantic Forest altered historic biogeographic patterns? Divers. Distrib. 20, 1058–1070 (2014).Article 

    Google Scholar 
    24.de la Sancha, N. U. et al. An annotated checklist of the mammals of Paraguay. Therya 8, 241–260 (2017).Article 

    Google Scholar 
    25.Lanzone, C. et al. Diversidad, sistemática y conservación de roedores en el extremo sudoccidental del Bosque Atlántico Interior. Rev. Mus. Argent. Cienc. Nat. 20, 151–164 (2018).Article 

    Google Scholar 
    26.Da Ponte, E. et al. Forest cover loss in Paraguay and perception of ecosystem services: A case study of the Upper Parana Forest. Ecosyst. Serv. 24, 200–212 (2017).Article 

    Google Scholar 
    27.Da Ponte, E. et al. Assessing forest cover dynamics and forest perception in the Atlantic Forest of Paraguay, combining remote sensing and household level data. For. Trees Livelihoods 8, 389 (2017).
    Google Scholar 
    28.Fleytas, F. C. Cambios en el paisaje: Evolución de la cobertura vegetal en la Región Oriental del Paraguay. In Biodiversidad del Paraguay: Una Aproximación a Sus Realidades (eds. Salas Dueñas, D. A. & Facetti, J. F.), 77–88 (Fundación Moisés Bertoni, 2007).29.Esquivel, A. et al. Conservation status and challenges of the Atlantic Forest birds of Paraguay. Divers. 11, 247 (2019).Article 

    Google Scholar 
    30.de la Sancha, N. U. & Boyle, S. A. Predictive sampling effort and species-area relationship models for estimating richness in fragmented landscapes. PLoS One 14, e0226529 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.de la Sancha, N. U., Maestri, R., Bovendorp, R. S. & Higgins, C. L. Disentangling drivers of small mammal diversity in a highly fragmented forest system. Biotropica 52, 182–195 (2020).Article 

    Google Scholar 
    32.Andelman, S. J. & Willig, M. R. Alternative configurations of conservation reserves for Paraguayan bats: Considerations of spatial scale. Conserv. Biol. 16, 1352–1363 (2002).Article 

    Google Scholar 
    33.Gorresen, P. M., Marcos Gorresen, P. & Willig, M. R. Landscape responses of bats to habitat fragmentation in Atlantic Forest of Paraguay. J. Mammal. 85, 688–697 (2004).Article 

    Google Scholar 
    34.McCulloch, E. S. et al. Fragmentation of Atlantic forest has not affected gene flow of a widespread seed-dispersing bat. Molec. Ecol. 22, 4619–4633 (2013).Article 

    Google Scholar 
    35.Crooks, K. R. & Sanjayan, M. Connectivity conservation: Maintaining connections for nature. In Connectivity Conservation. (eds. Crooks, K. R. & Sanjayan, M.), 1–20 (Cambridge University Press, 2006).36.Calabrese, J. M. & Fagan, W. F. A comparison-shopper’s guide to connectivity metrics. Front. Ecol. Environ. 2, 529–536 (2004).Article 

    Google Scholar 
    37.Minor, E. S. & Urban, D. L. A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv. Biol. 22, 297–307 (2008).PubMed 
    Article 

    Google Scholar 
    38.de la Sancha, N.U., Boyle S.A., McIntyre, N.E., Brooks, D.M, Yanosky, A., Cuellar Soto E., Mereles, F., Camino, M., & Stevens, R. D. The disappearing Dry Chaco, one of the last dry forest systems on earth. Landscape Ecol. https://doi.org/10.1007/s10980-021-01291-x (2021).Article 

    Google Scholar 
    39.Keitt, T., Urban, D. & Milne, B. Detecting critical scales in fragmented landscapes. Conserv. Ecol. 1(1), (1997).40.Tischendorf, L. & Fahrig, L. How should we measure landscape connectivity?. Landsc. Ecol. 15, 633–641 (2000).Article 

    Google Scholar 
    41.McIntyre, N. E., Collins, S. D., Heintzman, L. J., Starr, S. M. & van Gestel, N. The challenge of assaying landscape connectivity in a changing world: A 27-year case study in the southern Great Plains (USA) playa network. Ecol. Indic. 91, 607–616 (2018).Article 

    Google Scholar 
    42.Ruiz, L. et al. Dynamic connectivity of temporary wetlands in the southern Great Plains. Landsc. Ecol. 29, 507–516 (2014).Article 

    Google Scholar 
    43.Bovendorp, R. S. et al. Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography 42, 23–35 (2019).Article 

    Google Scholar 
    44.Schipper, J. et al. The status of the world’s land and marine mammals: Diversity, threat, and knowledge. Science 322, 225–230 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Stevens, R. D., Rowe, R. J. & Badgley, C. Gradients of mammalian biodiversity through space and time. J. Mammal. 100, 1069–1086 (2019).Article 

    Google Scholar 
    46.Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    47.McBride, R. T. & Thompson, J. J. Spatial ecology of Paraguay’s last remaining Atlantic Forest Jaguars (Panthera onca): Implications for their long-term survival. Biodivers. 20, 20–26 (2019).Article 

    Google Scholar 
    48.Morato, R. G. et al. Space use and movement of a neotropical top predator: The endangered jaguar. PLoS One 11, e0168176 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Prevedello, J. A. & Vieira, M. V. Does the type of matrix matter? A quantitative review of the evidence. Biodivers. Conserv. 19, 1205–1223 (2010).Article 

    Google Scholar 
    50.Prevedello, J. A., Forero-Medina, G. & Vieira, M. V. Movement behaviour within and beyond perceptual ranges in three small mammals: Effects of matrix type and body mass. J. Anim. Ecol. 79, 1315–1323 (2010).PubMed 
    Article 

    Google Scholar 
    51.Cartes, J. L. et al. Cetartiodactyla y Perissodactyla: Animales con pezuñas. In Libro Rojo de los Mamíferos del Paraguay: Especies amenazadas de extinción (eds. Saldivar, S., Rojas, V. & Giménez, D.), 103–121 (CREATIO, 2017).52.Vieira, M. V. et al. Land use vs. fragment size and isolation as determinants of small mammal composition and richness in Atlantic Forest remnants. Biol. Conserv. 142, 1191–1200 (2009).Article 

    Google Scholar 
    53.Prevedello, J. A., Forero-Medina, G. & Vieira, M. V. Does land use affect perceptual range? Evidence from two marsupials of the Atlantic Forest. J. Zool. 284, 53–59 (2011).Article 

    Google Scholar 
    54.Pires, A. S., Lira, P. K., Fernandez, F. A. S., Schittini, G. M. & Oliveira, L. C. Frequency of movements of small mammals among Atlantic Coastal Forest fragments in Brazil. Biol. Conserv. 108, 229–237 (2002).Article 

    Google Scholar 
    55.Pardini, R. Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodivers. Conserv. 13, 2567–2586 (2004).Article 

    Google Scholar 
    56.Umetsu, F. & Pardini, R. Small mammals in a mosaic of forest remnants and anthropogenic habitats—evaluating matrix quality in an Atlantic forest landscape. Landsc. Ecol. 22, 517–530 (2007).Article 

    Google Scholar 
    57.Umetsu, F., Paul Metzger, J. & Pardini, R. Importance of estimating matrix quality for modeling species distribution in complex tropical landscapes: A test with Atlantic forest small mammals. Ecography 31, 359–370 (2008).Article 

    Google Scholar 
    58.Boyle, S. A., de la Sancha, N. U., Pérez, P. & Kabelik, D. Small mammal glucocorticoid concentrations vary with forest fragment size, trap type, and mammal taxa in the Interior Atlantic Forest. Sci. Rep. 11, 1–13 (2021).Article 
    CAS 

    Google Scholar 
    59.Diniz, M. F., Coelho, M. T. P., de Sousa, F. G., Hasui, É. & Loyola, R. The underestimated role of small fragments for carnivore dispersal in the Atlantic Forest. Perspect. Ecol. Conser. 19, 81–89 (2021).
    Google Scholar 
    60.Johnston, C. A. & McIntyre, N. E. Effects of cropland encroachment on prairie pothole wetlands: Numbers, density, size, shape, and structural connectivity. Landsc. Ecol. 34, 827–841 (2019).Article 

    Google Scholar 
    61.Galpern, P., Manseau, M. & Fall, A. Patch-based graphs of landscape connectivity: A guide to construction, analysis and application for conservation. Biol. Conserv. 144, 44–55 (2011).Article 

    Google Scholar 
    62.de la Sancha, N. U., Libardi, G. S. & Pardiñas, U. F. J. Discovery of a new genus record for Paraguay, the Atlantic Forest endemic rodent Abrawayaomys (Cricetidae, Sigmodontinae). Mammalia 84, 366–371 (2020).Article 

    Google Scholar 
    63.Gardner, R. H. & Gustafson, E. J. Simulating dispersal of reintroduced species within heterogeneous landscapes. Ecol. Modell. 171, 339–358 (2004).Article 

    Google Scholar 
    64.Fahrig, L. Rethinking patch size and isolation effects: The habitat amount hypothesis. J. Biogeogr. 40, 1649–1663 (2013).Article 

    Google Scholar 
    65.Catie, U. Proyecto: Mejorando la Conservación de la Biodiversidad y el Manejo Sostenible de la Tierra en el Bosque Atlántico del Paraguay Oriental: (Paraguay Biodiversidad): Módulo De Capacitación: Cadenas De Valor Agropecuarias Y Forestales. (2018).66.Di Bitteti, M., Placci, G. & Dietz, L. A. A Biodiversity Vision of the Upper Paraná Atlantic Forest Ecoregion: Designing a Biodiversity Landscape and Setting Priorities for Conservation Action. 1–145 (World Wildlife Fund, 2003).67.McIntyre, N. E., Drake, J. C. & Griffis-Kyle, K. L. A connectivity and wildlife management conflict in isolated desert waters: Connectivity of isolated desert waters. J. Wildl. Manag. 80, 655–666 (2016).Article 

    Google Scholar 
    68.Drake, J. C., Griffis-Kyle, K. & McIntyre, N. E. Using nested connectivity models to resolve management conflicts of isolated water networks in the Sonoran Desert. Ecosphere 8, e01652 (2017).Article 

    Google Scholar 
    69.Boyle, S. A. et al. High-resolution satellite imagery is an important yet underutilized resource in conservation biology. PLoS One 9, e86908 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Turner, W. et al. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 18, 306–314 (2003).Article 

    Google Scholar 
    71.ESRI. ArcGIS. (2019).72.Csardi, G. & Nepusz, T. The igraph software package for complex network research. Int. J. Comp. Sys. 1695 (2006).73.R Core Team. R: A language and environment for statistical computing. (2013).74.Bovendorp, R. S. et al. Atlantic small-mammal: A dataset of communities of rodents and marsupials of the Atlantic forests of South America. Ecology 98, 2226 (2017).PubMed 
    Article 

    Google Scholar 
    75.Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 026113 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Clauset, A., Newman, M. E. J. & Moore, C. Finding community structure in very large networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70, 066111 (2004).Article 
    CAS 

    Google Scholar 
    77.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    78.Galetti, M., Bovendorp, R. S. & Guevara, R. Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests. Global Ecol. Conserv. 3, 824–830 (2015).Article 

    Google Scholar 
    79.Galpern, P. Modelling landscape connectivity for highly-mobile terrestrial animals: A continuous and scalable approach. (Natural Resources Institute, 2012).80.Minor, E. S. & Urban, D. L. Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol. Appl. 17, 1771–1782 (2007).PubMed 
    Article 

    Google Scholar 
    81.Fusco-Costa, R., Ingberman, B., do Couto, H. T. Z., Nakano-Oliveira, E. & de Araujo Monteiro-Filho, E. L. Population density of a coastal island population of the ocelot in Atlantic Forest, southeastern Brazil. Mamm. Biol. 75, 358–362 (2010).Article 

    Google Scholar 
    82.Medici, E. P. Assessing the viability of lowland Tapir populations in a fragmented landscape. (University of Kent, 2010).83.Bianconi, G. V., Mikich, S. B. & Pedro, W. A. Movements of bats (Mammalia, Chiroptera) in the Atlantic Forest remnants in southern Brazil. Rev. Bras. Zool. 23, 1199–1206 (2006).Article 

    Google Scholar 
    84.Lira, P. K., dos Santos Fernandez, F. A., Carlos, H. S. A. & de Lima Curzio, P. Use of a fragmented landscape by three species of opossum in south-eastern Brazil. J. Trop. Ecol. 23, 427–435 (2007).Article 

    Google Scholar 
    85.Mendel, S. M. & Vieira, M. V. Movement distances and density estimation of small mammals using the spool-and-line technique. Acta Theriol. 48, 289–300 (2003).Article 

    Google Scholar 
    86.Passamani, M. & Fernando, A. S. Movements of small mammals among Atlantic Forest fragments in Espırito Santo, Southeastern Brazil. Mammalia 75, 83–86 (2011).Article 

    Google Scholar 
    87.Püttker, T., Meyer-Lucht, Y. & Sommer, S. Movement distances of five rodent and two marsupial species in forest fragments of the coastal Atlantic Rainforest, Brazil. Ecotropica 12, 131–139 (2006).
    Google Scholar 
    88.Moraes Junior, E. A. & Chiarello, A. G. A radio tracking study of home range and movements of the marsupial Micoureus demerarae (Thomas) (Mammalia, Didelphidae) in the Atlantic Forest of south-eastern Brazil. Rev. Bras. Zool. 22, 85–91 (2005).Article 

    Google Scholar 
    89.Delciellos, A. C., Ribeiro, S. E. & Vieira, M. V. Habitat fragmentation effects on fine-scale movements and space use of an opossum in the Atlantic Forest. J. Mammal. 98, 1129–1136 (2017).Article 

    Google Scholar 
    90.Püttker, T., de Barros, C. dos S., Martins, T. K., Sommer, S. & Pardini, R. Suitability of distance metrics as indexes of home-range size in tropical rodent species. J. Mammal. 93, 115–123 (2012).Article 

    Google Scholar  More

  • in

    Anti-racist interventions to transform ecology, evolution and conservation biology departments

    1.Allen, W. R., Epps, E. G., Guillory, E. A., Suh, S. A. & Bonous-Hammarth, M. The Black academic: faculty status among African Americans in US higher education. J. Negro Educ. 69, 112–127 (2000).
    Google Scholar 
    2.Halsey, S. J., Strickland, L. R., Scott-Richardson, M., Perrin-Stower, T. & Massenburg, L. Elevate, don’t assimilate, to revolutionize the experience of scientists who are Black, Indigenous and people of colour. Nat. Ecol. Evol. 4, 1291–1293 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Chaudhury, A. & Colla, S. Next steps in dismantling discrimination: lessons from ecology and conservation science. Conserv. Lett. 14, e12774 (2020).
    Google Scholar 
    4.Schell, C. J. et al. Recreating Wakanda by promoting Black excellence in ecology and evolution. Nat. Ecol. Evol. 4, 1285–1287 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Chaudhary, B. & Berhe, A. A. Ten simple rules for building an anti-racist lab. PLoS Comput. Biol. 16, e1008210 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Gewin, V. The time tax put on scientists of colour. Nature 583, 479–481 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Kendi, I. X. How to be an Antiracist (One World, 2019).8.Miriti, M. N. The elephant in the room: race and STEM diversity. BioScience 70, 237–242 (2020).Article 

    Google Scholar 
    9.Balcarczyk, K. L., Smaldone, D., Selin, S. W., Pierskalla, C. D. & Maumbe, K. Barriers and supports to entering a natural resource career: perspectives of culturally diverse recent hires. J. For. 113, 231–239 (2015).
    Google Scholar 
    10.Haynes, N. A. & Jacobsen, S. Barriers and perceptions of natural resource careers by minority students. J. Environ. Educ. 46, 166–182 (2015).Article 

    Google Scholar 
    11.Morales, N. et al. Promoting inclusion in ecological field experiences: examining and overcoming barriers to a professional rite of passage. Bull. Ecol. Soc. Am. 101, e01742 (2020).Article 

    Google Scholar 
    12.O’Brien, L. T., Bart, H. & Garcia, D. Why are there so few ethnic minorities in ecology and evolutionary biology? Challenges to inclusion and the role of sense of belonging. Soc. Psychol. Educ. 23, 449–477 (2020).Article 

    Google Scholar 
    13.Kou-Giesbrecht, S. Asian Americans: the forgotten minority in ecology. Bull. Ecol. Soc. Am. 101, e01696 (2020).Article 

    Google Scholar 
    14.Tseng, M. et al. Strategies and support for Black, Indigenous, and people of colour in ecology and evolutionary biology. Nat. Ecol. Evol. 4, 1288–1290 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Li, D. & Koedel, C. Representation and salary gaps by race—ethnicity and gender at selective public universities. Educ. Res. 46, 343–354 (2017).Article 

    Google Scholar 
    16.Wanelik, K. M., Griffin, J. S., Head, M. L., Ingleby, F. C. & Lewis, Z. Breaking barriers? Ethnicity and socioeconomic background impact on early career progression in the fields of ecology and evolution. Ecol. Evol. 10, 6870–6880 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Page, S., Trudgett, M. & Sullivan, C. Past, present and future: acknowledging Indigenous achievement and aspiration in higher education. HERDSA Rev. High. Educ. 4, 29–51 (2017).
    Google Scholar 
    18.Davis, R. et al. Increasing diversity in our profession. Wildl. Soc. Bull. 30, 628–633 (2002).
    Google Scholar 
    19.Beck, C. W., Boersma, K., Tysor, C. S. & Middendorf, G. Diversity at 100: women and underrepresented minorities in the ESA: peer-reviewed letter. Front. Ecol. Environ. 12, 434–436 (2014).Article 

    Google Scholar 
    20.Ginther, D. K. Race, ethnicity, and NIH research awards. Science 333, 1015–1019 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Malone, K. R. & Barabino, G. Narrations of race in STEM research settings: identity formation and its discontents. Sci. Educ. 93, 485–510 (2009).Article 

    Google Scholar 
    22.Diep, F. ‘I was fed up’: How the #BlackInTheIvory got started, and what its founders want to see next. The Chronicles of Higher Education (9 June 2020).23.Lambert, J. A #BlackBirdersWeek cofounder aims to amplify Black nature enthusiasts. Science News (4 June 2020).24.Thorp, H. H. Time to look in the mirror. Science 368, 1161 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Linnaeus, C. Systema Naturae per Regna Tria Naturae Systematice Proposita per Classes, Ordines, Genera, & Species (Lugduni Batavorum apud Theodorum Haak, 1758).26.Shiffman, D. Scientists should stop naming species after awful people. Scientific American (8 November 2019).27.De Vos, A. The problem of ‘colonial science’. Scientific American (1 July 2020).28.Hardin, G. The tragedy of the commons. Science 162, 1243–1248 (1968).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Ehrlich, P. The Population Bomb (Ballantine Books, 1968).30.Dyett, J. & Thomas, C. Overpopulation discourse: patriarchy, racism, and the specter of ecofascism. Perspect. Glob. Dev. Technol. 18, 205–224 (2019).Article 

    Google Scholar 
    31.Graves, J. L. African Americans in evolutionary science: where we have been, and what’s next. Evolution 12, 18 (2019).
    Google Scholar 
    32.Shields, S. A. & Bahtia, S. Darwin on race, gender, and culture. Am. Psychol. 64, 111–119 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Gannett, L. Racism and human genome diversity research: the ethical limits of ‘population thinking’. Phil. Sci. 68, S479–S492 (2001).Article 

    Google Scholar 
    34.Carter, R. Genes, genomes and genealogies: the return of scientific racism. Ethn. Racial Stud. 30, 546–556 (2007).Article 

    Google Scholar 
    35.Winston, A. S. Why mainstream research will not end scientific racism in psychology. Theory Psychol. 30, 425–430 (2020).Article 

    Google Scholar 
    36.Lewontin, R. in The Concept of Race in Natural and Social Sciences (ed. Gates, E. N.) 381–398 (Routledge, 1972).37.Bamshad, M., Wooding, S., Salisbury, B. A. & Claiborne Stephens, J. Deconstructing the relationship between genetics and race. Ethn. Racial Stud. 30, 546–556 (2007).Article 

    Google Scholar 
    38.Reardon, J. & Tallbear, K. “Your DNA is Our History”: genomics, anthropology, and the construction of whiteness as property. Curr. Anthropol. 53, S233–S245 (2012).Article 

    Google Scholar 
    39.Das, S. & Lowe, M. Nature read in black and white: decolonial approaches to interpreting natural history collections. J. Nat. Sci. Collect. Assoc. 6, 4–14 (2018).
    Google Scholar 
    40.Cox, P. A. & Elmqvist, T. Ecocolonialism and Indigenous-controlled rainforest preserves in Samoa. Ambio 26, 84–89 (1997).
    Google Scholar 
    41.Hayward et al. Deconstructing compassionate conservation. Conserv. Biol. 33, 760–768 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kantor, I. Ethnic cleansing and America’s creation of national parks. Pub. Land Resour. Law Rev. 28, 41–64 (2007).
    Google Scholar 
    43.Poirier, A. & Ostergren, D. Evicting people from nature: Indigenous land rights and national parks in Australia, Russia, and the United States. Nat. Resour. J. 41, 331–352 (2002).
    Google Scholar 
    44.Lee, R. & Ahtone, T. Land-grab universities. High Country News (30 March 2020).45.The Next 100 Years of American Conservation (US Interior Department, 2016); https://medium.com/@Interior/the-next-100-years-of-american-conservation-397c42b8f1f246.Brune, M. Pulling Down Our Monuments (Sierra Club, 2020); https://www.sierraclub.org/michael-brune/2020/07/john-muir-early-history-sierra-club47.Hodder, S. Reckoning with the League Founders’ Eugenics Past (Save the Redwoods League, 2020); https://www.savetheredwoods.org/blog/reckoning-with-the-league-founders-eugenics-past/48.Henderson, C., Bach, A. & Finkelstein, N. Facilitating change in undergraduate STEM instructional practices: an analytic review of the literature. J. Res. Sci. Teach. 48, 952–984 (2011).Article 

    Google Scholar 
    49.Carpi, A. & Lents, N. L. Research by undergraduates helped underfinanced colleges as well as students. Chron. High. Educ. 60, B30–B31 (2013).
    Google Scholar 
    50.Pèrez, D. Exploring the nexus between community and cultural wealth and the academic and social experiences of Latino male achievers at two predominantly White research universities. Int. J. Qual. Stud. Educ. 27, 747–767 (2014).Article 

    Google Scholar 
    51.Koenig, K., Schen, M., Edwards, M. & Bao, L. Addressing STEM retention through a scientific thought and methods course. J. Coll. Sci. Teach. 41, 23–29 (2012).
    Google Scholar 
    52.Penner, M. R. Building an inclusive classroom. J. Undergrad. Neurosci. Educ. 16, A268–A272 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    53.Mervis, J. Weed-out courses hamper diversity. Science 334, 1333 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Theobald, E. et al. Active learning narrows achievement gaps for underrepresented students in undergraduate science, technology, engineering, and math. Proc. Natl Acad. Sci. USA 117, 6476–6483 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Beltran, R. S. et al. Field courses narrow demographic achievement gaps in ecology and evolution. Ecol. Evol. 10, 5184–5196 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Freeman, S. et al. Active learning increases student performance in science, engineering, and mathematics. Proc. Natl Acad. Sci. USA 111, 8410–8415 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Zavaleta, E. S., Beltran, R. S. & Borker, A. L. How field courses propel inclusion and collective excellence. Trends Ecol. Evol. 35, 953–956 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Faculty Dialogue Series: Creating Inclusive Classrooms (University of California, Berkeley, 2020); https://cejce.berkeley.edu/faculty/our-programs-and-services/faculty-dialogue-series59.Walton, G. The new science of wise psychological interventions. Curr. Direct. Psychol. Sci. 23, 73–82 (2014).Article 

    Google Scholar 
    60.Harackiewicz, J. M., Canning, E. A., Tibbetts, Y., Priniski, S. J. & Hyde, J. S. Closing achievement gaps with a utility-value intervention: disentangling race and social class. J. Pers. Soc. Psychol. 111, 745–765 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Harackiewicz, J. M. & Priniski, S. J. Improving student outcomes in higher education: the science of targeted intervention. Ann. Rev. Psychol. 69, 409–435 (2018).Article 

    Google Scholar 
    62.Casad, B. et al. Wise psychological interventions to improve gender and racial equality in STEM. Group Process. Intergroup Relat. 21, 767–787 (2018).Article 

    Google Scholar 
    63.Durkin, E. DNA scientist James Watson stripped of honors over views on race. The Guardian (13 January 2019).64.Kimmerer, R. W. Weaving traditional ecological knowledge into biological education: a call to action. BioScience 52, 432–438 (2002).Article 

    Google Scholar 
    65.Zafra-Calvo, N. et al. Towards an indicator system to assess equitable management in protected areas. Biol. Conserv. 211, 134–141 (2017).Article 

    Google Scholar 
    66.Schuster, R., Germain, R. R., Bennett, J. R., Reo, N. J. & Arcese, P. Vertebrate biodiversity on Indigenous-managed lands in Australia, Brazil, and Canada equals that in protected areas. Environ. Sci. Pol. 101, 1–6 (2019).Article 

    Google Scholar 
    67.Posey, D. Cultural and Spiritual Values of Biodiversity (IT Publishing, 1999).68.Cooper, N., Brady, E., Steen, H. & Bryce, R. Aesthetic and spiritual values of ecosystems: recognising the ontological and axiological plurality of cultural ecosystem ‘services’. Ecosyst. Serv. 21, 218–229 (2016).Article 

    Google Scholar 
    69.Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369, eaay4497 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Tallbear, K. Native American DNA: Tribal Belonging and the False Promise of Genetic Science (Univ. Minnesota Press, 2013).71.Holt, F. The catch-22 of conservation: Indigenous peoples, biologists, and cultural change. Hum. Ecol. 33, 199–215 (2005).Article 

    Google Scholar 
    72.McGill, B. M. et al. You are welcome here: a practical guide to diversity, equity, and inclusion for undergraduates embarking on an ecological research experience. Ecol. Evol. 11, 3636–3645 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Wood, S. et al. A scientist like me: demographic analysis of biology textbooks reveals both progress and long-term lags. Proc. Royal Soc. B 287, 20200877 (2020).Article 

    Google Scholar 
    74.Schinske, J. N., Perkins, H., Snyder, A. & Wyer, M. Scientist spotlight homework assignments shift students’ stereotypes of scientists and enhance science identity in a diverse introductory science class. CBE Life Sci. Educ.15, ar47 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Bergenhenegouwen, G. Hidden curriculum in the university. High. Educ. 16, 535–543 (1987).Article 

    Google Scholar 
    76.Smith, B. Mentoring At-Risk Students Through the Hidden Curriculum of Higher Education (Lexington Books, 2013).77.Jones, M. T., Barlow, A. E. L. & Villarejo, M. Importance of undergraduate research for minority persistence and achievement in biology. J. High. Educ. 81, 82–115 (2010).Article 

    Google Scholar 
    78.Houser, C. & Lemmons, K. Implicit bias in letters of recommendation for an undergraduate research internship. J. Furth. High. Educ. 42, 585–595 (2018).Article 

    Google Scholar 
    79.Developing Community Agreements (National Equity Project, 2020); https://www.nationalequityproject.org/tools/developing-community-agreements80.Hubert, A. & Reichwein, D. Code of Conduct for Responsible Geoengineering Research (2017).81.Clark, M. A., Michel, J. S., Zhdanova, L., Pui, S. Y. & Baltes, B. B. All work and no play? A meta-analytic examination of the correlates and outcomes of workaholism. J. Manage. 42, 1836–1873 (2016).
    Google Scholar 
    82.Montgomery, B. L. Effective mentors show up healed. Beronda L. Montgomery https://www.berondamontgomery.com/2019/12/ (2019).83.Sorcinelli, M. D. & Yun, J. From mentor to mentoring networks: mentoring in the new academy. Change 39, 58–61 (2007).Article 

    Google Scholar 
    84.Demery, A. J. C. & Pipkin, M. A. Safe fieldwork strategies for at-risk individuals, their supervisors and institutions. Nat. Ecol. Evol. 5, 5–9 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Lee, S. P., McGee, R., Pfund, C. & Branchaw, J. in The Mentoring Continuum: From Graduate School to Tenure (ed. Wright, G.) 133–154 (The Graduate School Press, 2015).86.Baker, K., Eichhorn, M. P. & Griffiths, M. Decolonizing field ecology. Biotropica 51, 288–292 (2019).Article 

    Google Scholar 
    87.TallBear, K.Standing with and speaking as faith: a feminist-Indigenous approach to inquiry. J. Res. Pract. 10, N17 (2014).
    Google Scholar 
    88.Ban, N. C. et al. Incorporate Indigenous perspectives for impactful research and effective management. Nat. Ecol. Evol. 2, 1680–1683 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Whyte, W. F. Advancing scientific knowledge through participatory action research. Sociol. Forum 4, 367–385 (1989).Article 

    Google Scholar 
    90.Reid, R. & Garson, K. Rethinking multicultural group work as intercultural learning. J. Stud. Int. Educ. 21, 195–212 (2017).Article 

    Google Scholar 
    91.Tallis, H. & Lubchenco, J. Working together: a call for inclusive conservation. Nature 515, 27–28 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Amah Mutsun Relearning Program (Univ. California, Santa Cruz, 2020); https://arboretum.ucsc.edu/education/relearning-program/93.MacKey, T. K. & Liang, B. A. Integrating biodiversity management and Indigenous biopiracy protection to promote environmental justice and global health. Am. J. Public Health 102, 1091–1095 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Nagoya Protocol on Access and Benefit-Sharing (Convention on Biological Diversity, 2011).95.Nelson, R. G., Rutherford, J. N., Hinde, K. & Clancy, K. B. H. Signaling safety: characterizing fieldwork experiences and their implications for career trajectories. Am. Anthropol. 119, 710–722 (2017).Article 

    Google Scholar 
    96.Wilson, Z. S. Hierarchical mentoring: a transformative strategy for improving diversity and retention in undergraduate STEM disciplines. J. Sci. Educ. Technol. 21, 148–156 (2012).Article 

    Google Scholar 
    97.Inclusion, Diversity, Equity, & Action (IDEA) (Univ. California, Santa Cruz, 2020); https://www.eeb.ucsc.edu/about/idea_committee.html98.Wijesingha, R. & Ramos, H. Human capital or cultural taxation: what accounts for differences in tenure and promotion of racialized and female faculty? Can. J. High. Educ. 47, 54–75 (2017).Article 

    Google Scholar 
    99.O’Meara, K., Culpepper, D. & Templeton, L. L. Nudging toward diversity: applying behavioral design to faculty hiring. Rev. Educ. Res. 90, 311–348 (2020).Article 

    Google Scholar 
    100.Bilimoria, D. & Buch, K. K. The search is on: engendering faculty diversity through more effective search and recruitment. Change 42, 27–32 (2010).Article 

    Google Scholar 
    101.Bhalla, N. Strategies to improve equity in faculty hiring. Mol. Biol. Cell 30, 2744–2749 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Flaherty, C. Breaking down diversity statements. Inside Higher Ed (19 November 2018).103.Speech on Campus (ACLU, 2020); https://www.aclu.org/other/speech-campus104.Hekman, D. R., Johnson, S. K., Foo, M. & Yang, W. Does diversity-valuing behavior result in diminished performance ratings for non-white and female leaders? Acad. Manage. J. 60, 771–797 (2017).Article 

    Google Scholar 
    105.Hanasono, L. et al. Secret service: revealing gender biases in the visibility and value of faculty service. J. Divers. High. Educ. 12, 85–98 (2019).Article 

    Google Scholar 
    106.Lisnic, R., Zajicek, A. & Morimoto, S. Gender and race differences in faculty assessment of tenure clarity: the influence of departmental relationships and practices. Sociol. Race Ethn. 5, 244–260 (2019).Article 

    Google Scholar 
    107.Farr, C. M. et al. Addressing the gender gap in distinguished speakers at professional ecology conferences. BioScience 67, 464–468 (2017).Article 

    Google Scholar 
    108.Price, J. The effect of instructor race and gender on student persistence in STEM fields. Econ. Educ. Rev. 29, 901–910 (2010).Article 

    Google Scholar 
    109.Torres, K. ‘Culture Shock’: Black students account for their distinctiveness at an elite college. Ethn. Racial Stud. 32, 883–905 (2009).Article 

    Google Scholar 
    110.Carter-Sowell, A. R. et al. Bloom where you are planted: reflections on effecting campus climate change to retain minoritized faculty scholars in STEM fields. In Growing Diverse STEM Communities: Methodology, Impact, and Evidence 197–214 (ACS Symposium Series Vol. 1328, ACS Publications, 2019).111.Lee, J. & Rice, C. Welcome to America? International student perceptions of discrimination. High. Educ. 53, 381–409 (2007).Article 

    Google Scholar 
    112.George Mwangi, C. A. Exploring sense of belonging among Black international students at an HBCU. J. Int. Stud. 6, 1015–1037 (2016).
    Google Scholar 
    113.Bevis, T. B. At a glance: international students in the United States. Int. Educ. 11, 12–17 (2002).
    Google Scholar 
    114.Heng, T. T. Understanding the heterogeneity of international students’ experiences: a case study of Chinese international students in US universities. J. Stud. Int. Educ. 23, 607–623 (2019).Article 

    Google Scholar 
    115.George Mwangi, C. A., Changamire, N. & Mosselson, J. An intersectional understanding of African graduate students’ experiences in US higher education. J. Divers. High. Educ. 12, 52–64 (2018).Article 

    Google Scholar 
    116.Wilson, M. A., DePass, A. L. & Bean, A. J. Institutional interventions that remove barriers to recruit and retain diverse biomedical PhD students. CBE Life Sci. Educ. 17, ar27 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    117.Gewin, V. What Black scientists want from colleagues and their institutions. Nature 583, 319–322 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    118.Lawrence, S. M. Contextual matters: teachers’ perceptions of the success of antiracist classroom practices. J. Educ. Res. 98, 350–365 (2005).Article 

    Google Scholar 
    119.Whittaker, J. & Montgomery, B. Cultivating diversity and competency in STEM: challenges and remedies for removing virtual barriers to constructing diverse higher education communities of success. J. Undergrad. Neurosci. Educ. 11, 44–51 (2012).
    Google Scholar 
    120.Anderson, D. R. The racism of confederate statues. Hobble Creek https://hobblecreek.us/blog/entry/where-do-Confederate-monuments-go-to-die (2020).121.Whitford, E. & Burke, L. Students demand campuses cut ties with police. Inside Higher Ed (5 June 2020).122.Felton, R. Officer who shot Samuel Dubose faces murder trial as city braces for protests. The Guardian (25 October 2016).123.Freire, P. Pedagogy of the Oppressed (Seabury, 1968).124.Kishimoto, K. Anti-racist pedagogy: from faculty’s self-reflection to organizing within and beyond the classroom. Race Ethn. Educ. 21, 540–554 (2018).Article 

    Google Scholar 
    125.Marx, D. M. & Goff, P. A. Clearing the air: the effect of experimenter race on target’s test performance and subjective experience. Br. J. Soc. Psychol. 44, 645–657 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    126.Chang, M. J. The Positive Educational Effects of Racial Diversity on Campus (US Department of Education, 2001).127.Hagedorn, L. S., Chi, W., Cepeda, R. M. & McLain, M. An investigation of critical mass: the role of Latino representation in the success of urban community college students. Res. High. Educ. 48, 73–91 (2007).Article 

    Google Scholar 
    128.Pascarella, E. T., Bohr, L., Nora, A. & Terenzini, P. T. Is differential exposure to college linked to the development of critical thinking? Res. High. Educ. 37, 159–174 (1996).Article 

    Google Scholar 
    129.Denson, N. & Chang, M. Racial diversity matters: the impact of diversity-related student engagement and institutional context. Am. Educ. Res. J. 46, 322–353 (2009).Article 

    Google Scholar 
    130.McLeod, P. L., Lobel, S. A. & Cox, T. H. Jr. Ethnic diversity and creativity in small groups. Small Group Res. 27, 248–264 (1996).Article 

    Google Scholar 
    131.Antonio, A. L. When does race matter in college friendships? Exploring men’s diverse and homogenous friendship groups. Rev. High. Educ. 27, 553–575 (2004).Article 

    Google Scholar 
    132.Page, S. E. The Difference: How the Power of Diversity Creates Better Groups, Firms, Schools, and Societies (Princeton Univ. Press, 2007).133.Freeman, R. B. & Huang, W. Collaboration: strength in diversity. Nature 513, 305 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    134.Lewis, N. A. Jr What I’ve learned about being a Black scientist. Science (16 June 2020).135.Purdy, J. Environmentalism’s racist history. The New Yorker (13 April 2015).136.Chen, S. Researchers around the world prepare to #ShutDownSTEM and ‘Strike For Black Lives’. Science (9 June 2020).137.Bashford, A. & Levine, P. The Oxford Handbook of the History of Eugenics (Oxford Univ. Press, 2010).138.Bowler, P. The role of the history of science in the understanding of social Darwinism and eugenics. Impact Sci. Soc. 40, 273–278 (1990).
    Google Scholar 
    139.Pressman, L. How Evolution was Used to Support Scientific Racism (Trinity College, 2017).140.Agrawal, A. & Redford, K. Conservation and displacement: an overview. Conserv. Soc. 7, 1–10 (2009).Article 

    Google Scholar 
    141.Spiro, J. P. Defending the Master Race: Conservation, Eugenics, and the Legacy of Madison Grant (Univ. Press of New England, 2009).142.Hart, A. G., Leather, S. R. & Sharma, M. V. Overseas conservation education and research: the new colonialism? J. Biol. Educ. https://doi.org/10.1080/00219266.2020.1739117 (2020).143.Tang, R. & Gavin, M. C. A classification of threats to traditional ecological knowledge and conservation responses. Conserv. Soc. 14, 57–70 (2016).Article 

    Google Scholar 
    144.Duffy et al. Why we must question the militarization of conservation. Biol. Conserv. 232, 66–73 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    145.Dweck, C. S. Mindset: The New Psychology of Success (Ballantine Books, 2006).146.Dweck, C. S., Walton, G. M. & Cohen, G. L. Academic Tenacity: Mindsets and Skills that Promote Long-Term Learning (Bill & Melinda Gates Foundation, 2014).147.Hochanadel, A. & Finamore, D. Fixed and growth mindset in education and how grit helps students persist in the face of adversity. J. Int. Educ. Res. 11, 47–50 (2015).
    Google Scholar 
    148.Fink, A., Cahill, M. J., McDaniel, M. A., Hoffman, A. & Frey, R. F. Improving general chemistry performance through a growth mindset intervention: selective effects on underrepresented minorities. Chem. Educ. Res. Pract. 19, 783–806 (2018).Article 

    Google Scholar 
    149.Mahmud, A. & Gagnon, J. Racial disparities in student outcomes in British higher education: examining mindsets and bias. Teach. High. Educ. https://doi.org/10.1080/13562517.2020.1796619 (2020).150.Hulleman, C. S., Godes, O., Hendricks, B. L. & Harackiewicz, J. M. Enhancing interest and performance with a utility value intervention. J. Educ. Psychol. 102, 880–895 (2010).Article 

    Google Scholar 
    151.Canning et al. Improving performance and retention in introductory biology with a utility–value intervention. J. Educ. Psychol. 110, 834–839 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    152.Miyake, A. et al. Reducing the gender achievement gap in college science: a classroom study of values affirmation. Science 330, 1234–1237 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    153.Creswell, J. D. et al. Affirmation of personal values buffers neuroendocrine and psychological stress responses. Psychol. Sci. 16, 846–851 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    154.Steele, C. M. & Liu, T. J. Dissonance processes as self-affirmation. J. Pers. Soc. Psychol. 45, 5–19 (1983).Article 

    Google Scholar 
    155.Purdie-Vaughns, V. et al. Improving minority academic performance: how a values-affirmation intervention works. Teachers College Record (23 September 2009).156.Shnabel, N., Purdie-Vaughns, V., Cook, J. E., Garcia, J. & Cohen, G. L. Demystifying values-affirmation interventions: writing about social belonging is a key to buffering against identity threat. Pers. Soc. Psychol. Bull. 39, 663–676 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    157.Cook, J. E., Purdie-Vaughns, V., Garcia, J. & Cohen, G. L. Chronic threat and contingent belonging: protective benefits of values affirmation on identity development. J. Pers. Soc. Psychol. 102, 479–496 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    158.Brady, S. T. et al. The psychology of the affirmed learner: spontaneous self-affirmation in the face of stress. J. Educ. Psychol. 108, 353–373 (2016).Article 

    Google Scholar 
    159.Survey of Earned Doctorates (National Science Foundation, 2018); https://www.nsf.gov/statistics/srvydoctorates/#tabs-2160.QuickFacts (US Census Bureau, 2018); https://www.census.gov/quickfacts/fact/table/US/PST045219161.Haraway, D. Situated knowledges: the science question in feminism and the privilege of partial perspective. Fem. Stud. 14, 575–599 (1988).Article 

    Google Scholar 
    162.Davis, A. Freedom is a Constant Struggle: Ferguson, Palestine, and the Foundations of a Movement (ed. Barat, F.) (Haymarket Books, 2015).163.Tsing, A. L. Friction: An Ethnography of Global Connection (Princeton Univ. Press, 2005).164.Schuurman, N. & Pratt, G. Care of the subject: feminism and critiques of GIS. Gend. Place Cult. 9, 291–299 (2002).Article 

    Google Scholar 
    165.Charleston, L. J., Adserias, R. P., Lang, N. M. & Jackson, J. F. L. Intersectionality and STEM: the role of race and gender in the academic pursuits of African American women in STEM. J. Prog. Policy Pract. 2, 239–254 (2014).
    Google Scholar 
    166.Mackay, A., Adger, D., Bond, A. L., Giles, S. & Ochu, E. Straight-washing ecological legacies. Nat. Ecol. Evol. 3, 1611 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    167.Nichols, S. & Stahl, G. Intersectionality in higher education research: a systematic literature review. High. Educ. Res. Dev. 38, 1255–1268 (2019).Article 

    Google Scholar 
    168.State of the Science: Implicit Bias Review (Kirwan Institute, 2017).169.Allport, G. W. The Nature of Prejudice (Addison-Wesley, 1954).170.Pager, D. & Shepherd, H. The sociology of discrimination: Racial discrimination in employment, housing, credit, and consumer markets. Annu. Rev. Sociol. 34, 181–209 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    171.Sue, D. W., Capodilupo, C. M., Torino, G. C., Bucceri, J. M., Holder, A. M. B., Nadal, K. L. & Esquilin, M. Racial microaggressions in everyday life: implications for clinical practice. Am. Psychol. 62, 271–286 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    172.Hate speech and violence. ECRI https://www.coe.int/en/web/european-commission-against-racism-and-intolerance/hate-speech-and-violence (2021).173.Cardwell, M. The Dictionary of Psychology (Fitzroy Dearborn, 1996).174.Steele, C. M. & Aronson, J. Stereotype threat and the intellectual test performance of African Americans.J. Pers. Soc. Psychol. 69, 797–811 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    175.McIntonsh, P. White Privilege and Male Privilege (Wellesley Centers for Women, 1998); https://www.wcwonline.org/images/pdf/White_Privilege_and_Male_Privilege_Personal_Account-Peggy_McIntosh.pdf More

  • in

    Differences in the temperature dependence of wetland CO2 and CH4 emissions vary with water table depth

    1.Davidson, N., Fluet-Chouinard, E. & Finlayson, M. Global extent and distribution of wetlands: trends and issues. Mar. Freshw. Res. 69, 620–627 (2018).Article 

    Google Scholar 
    2.Mitsch, W. J. et al. Wetlands, carbon, and climate change. Landsc. Ecol. 28, 583–597 (2013).Article 

    Google Scholar 
    3.Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B 363, 815–830 (2008).CAS 
    Article 

    Google Scholar 
    4.Nahlik, A. M. & Fennessy, M. S. Carbon storage in US wetlands. Nat. Commun. 7, 13835 (2016).CAS 
    Article 

    Google Scholar 
    5.Yvon-Durocher, G., Montoya, J. M., Woodward, G., Jones, J. I. & Trimmer, M. J. G. C. B. Warming increases the proportion of primary production emitted as methane from freshwater mesocosms. Glob. Change Biol. 17, 1225–1234 (2011).Article 

    Google Scholar 
    6.IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).7.Dean, J. F. et al. Methane feedbacks to the global climate system in a warmer world. Rev. Geophys. 56, 207–250 (2018).Article 

    Google Scholar 
    8.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS 
    Article 

    Google Scholar 
    9.Comer-Warner, S. A. et al. Thermal sensitivity of CO2 and CH4 emissions varies with streambed sediment properties. Nat. Commun. 9, 2803 (2018).Article 
    CAS 

    Google Scholar 
    10.Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K. & Zhuang, Q. L. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Change Biol. 19, 1325–1346 (2013).Article 

    Google Scholar 
    11.Xu, X. et al. Reviews and syntheses: four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences 13, 3735–3755 (2016).CAS 
    Article 

    Google Scholar 
    12.Riley, W. et al. Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences 8, 1925–1953 (2011).CAS 
    Article 

    Google Scholar 
    13.Luo, Y. et al. Toward more realistic projections of soil carbon dynamics by Earth system models. Glob. Biogeochem. Cycles 30, 40–56 (2016).CAS 
    Article 

    Google Scholar 
    14.Chen, H., Zhu, T., Li, B., Fang, C. & Nie, M. The thermal response of soil microbial methanogenesis decreases in magnitude with changing temperature. Nat. Commun. 11, 5733 (2020).CAS 
    Article 

    Google Scholar 
    15.Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).CAS 
    Article 

    Google Scholar 
    16.Koffi, E. N., Bergamaschi, P., Alkama, R. & Cescatti, A. An observation-constrained assessment of the climate sensitivity and future trajectories of wetland methane emissions. Sci. Adv. 6, eaay4444 (2020).CAS 
    Article 

    Google Scholar 
    17.Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).CAS 
    Article 

    Google Scholar 
    18.Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).CAS 
    Article 

    Google Scholar 
    19.Segers, R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41, 23–51 (1998).CAS 
    Article 

    Google Scholar 
    20.Walter, B. P. & Heimann, M. A process‐based, climate‐sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Glob. Biogeochem. Cycles 14, 745–765 (2000).CAS 
    Article 

    Google Scholar 
    21.Christensen, T. R. et al. Factors controlling large scale variations in methane emissions from wetlands. Geophys. Res. Lett. 30, 1414 (2003).Article 
    CAS 

    Google Scholar 
    22.Inglett, K. S., Inglett, P. W., Reddy, K. R. & Osborne, T. Z. Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation. Biogeochemistry 108, 77–90 (2012).CAS 
    Article 

    Google Scholar 
    23.Vicca, S., Janssens, I. A., Flessa, H., Fiedler, S. & Jungkunst, H. F. Temperature dependence of greenhouse gas emissions from three hydromorphic soils at different groundwater levels. Geobiology 7, 465–476 (2009).CAS 
    Article 

    Google Scholar 
    24.Leroy, F. et al. Vegetation composition controls temperature sensitivity of CO2 and CH4 emissions and DOC concentration in peatlands. Soil Biol. Biochem. 107, 164–167 (2017).CAS 
    Article 

    Google Scholar 
    25.Whiting, G. J. & Chanton, J. P. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B 53, 521–528 (2001).
    Google Scholar 
    26.Messager, M. L. et al. Global prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).CAS 
    Article 

    Google Scholar 
    27.Zhu, J. et al. Modeling the potential impacts of climate change on the water table level of selected forested wetlands in the southeastern United States. Hydrol. Earth Syst. Sci. 21, 6289–6305 (2017).Article 

    Google Scholar 
    28.Amatya, D., Chescheir, G., Williams, T., Skaggs, R. & Tian, S. Long–term water table dynamics of forested wetlands: drivers and their effects on wetland hydrology in the Southeastern Atlantic Coastal Plain. Wetlands 40, 65–79 (2020).Article 

    Google Scholar 
    29.Fan, Y. & Miguez-Macho, G. A simple hydrologic framework for simulating wetlands in climate and earth system models. Clim. Dynam. 37, 253–278 (2011).Article 

    Google Scholar 
    30.Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).CAS 
    Article 

    Google Scholar 
    31.Moore, T. & Roulet, N. T. Methane flux: water table relations in northern wetlands. Geophys. Res. Lett. 20, 587–590 (1993).CAS 
    Article 

    Google Scholar 
    32.Yang, J. et al. Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of Northeast China. Soil Biol. Biochem. 61, 52–60 (2013).CAS 
    Article 

    Google Scholar 
    33.Moore, T. & Knowles, R. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can. J. Soil Sci. 69, 33–38 (1989).CAS 
    Article 

    Google Scholar 
    34.Eyring, H. The activated complex and the absolute rate of chemical reactions. Chem. Rev. 17, 65–77 (1935).CAS 
    Article 

    Google Scholar 
    35.Lafleur, P. M., Moore, T. R., Roulet, N. T. & Frolking, S. Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8, 619–629 (2005).CAS 
    Article 

    Google Scholar 
    36.Matysek, M. et al. Impact of fertiliser, water table, and warming on celery yield and CO2 and CH4 emissions from fenland agricultural peat. Sci. Total Environ. 667, 179–190 (2019).CAS 
    Article 

    Google Scholar 
    37.Juszczak, R. et al. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth. Plant Soil 366, 505–520 (2013).CAS 
    Article 

    Google Scholar 
    38.Yang, G. et al. Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China. Soil Biol. Biochem. 78, 83–89 (2014).CAS 
    Article 

    Google Scholar 
    39.Zhao, M. et al. Responses of soil CO2 and CH4 emissions to changing water table level in a coastal wetland. J. Clean. Prod. 269, 122316 (2020).CAS 
    Article 

    Google Scholar 
    40.Olefeldt, D. et al. A decade of boreal rich fen greenhouse gas fluxes in response to natural and experimental water table variability. Glob. Change Biol. 23, 2428–2440 (2017).Article 

    Google Scholar 
    41.Turetsky, M. R. et al. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. J. Geophys. Res. Biogeosci. 113, G00A10 (2008).Article 
    CAS 

    Google Scholar 
    42.Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dynam. 43, 2607–2627.43.Xi, Y., Peng, S., Ciais, P. & Chen, Y. Future impacts of climate change on inland Ramsar wetlands. Nat. Clim. Change 11, 45–51 (2021).Article 

    Google Scholar 
    44.Evans et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).CAS 

    Google Scholar 
    45.Chen, H., Zou, J., Cui, J., Nie, M. & Fang, C. Wetland drying increases the temperature sensitivity of soil respiration. Soil Biol. Biochem. 120, 24–27 (2018).CAS 
    Article 

    Google Scholar 
    46.Humpenoeder, F. et al. Peatland protection and restoration are key for climate change mitigation. Environ. Res. Lett. 15, 104093 (2020).Article 

    Google Scholar 
    47.Manton, M. et al. Assessment and spatial planning for peatland conservation and restoration: Europe’s trans-border Neman river basin as a case study. Land 10, 174 (2021).Article 

    Google Scholar 
    48.Gedney, N., Cox, P. & Huntingford, C. Climate feedback from wetland methane emissions. Geophys. Res. Lett. 31, L20503 (2004).Article 
    CAS 

    Google Scholar 
    49.Spahni, R. et al. Constraining global methane emissions and uptake by ecosystems. Biogeosciences 8, 1643–1665 (2011).CAS 
    Article 

    Google Scholar 
    50.Matthews, G. V. T. The Ramsar Convention on Wetlands: Its History and Development (Ramsar Convention Bureau, 1993)51.Pinheiro, J. & Bates, D. Mixed-Effects Models in S and S-PLUS (Springer Science & Business Media, 2006).52.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).53.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); http://www.r-project.org54.Schenker, N. & Gentleman, J. F. On judging the significance of differences by examining the overlap between confidence intervals. Am. Stat. 55, 182–186 (2001).Article 

    Google Scholar 
    55.Payton, M. E., Greenstone, M. H. & Schenker, N. Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance? J. Insect Sci. 3, 34 (2003).Article 

    Google Scholar  More

  • in

    From the 1990s climate change has decreased cool season catchment precipitation reducing river heights in Australia’s southern Murray-Darling Basin

    The JJAS river heights at Hay (Fig. 2a) have clearly reduced variability over the 27-year period 1965–1991 compared with 1992–2018 (p-value = 0.005, Table 4). Despite the apparent decrease in the mean and variance of JJAS Murrumbidgee River heights at Hay from the 1960s, as shown by the low p-values (0.309, 0.332), respectively, for the 27-year intervals 1938–1964 to 1965–1991 (Table 4), the decrease is not statistically significant. However, the decrease is consistent with the suggestion that a change point occurred from the late 1950s between unregulated to regulated flow at Hay11.While the mean JJAS precipitation of the three catchment locations of Burrinjuck Dam, Blowering Dam and Tumut indicate a slight decrease in percentile extremes from the 1990s, with 2016 (due to September) only above the 95th percentile (Fig. 3), they exhibit no significant change in mean or variance based on the bootstrapped intervals JJAS 1964–1991 to 1992–2018. Consequently, the question arises of why the significant decrease in mean and variance of the JJAS Murrumbidgee River height at Wagga Wagga and in variance at Hay does not match a similar significant decrease in mean or variance of JJAS catchment rainfall. A rainfall decline in recent decades was found to be most pronounced in late autumn20,21 and that without sufficient autumn rainfall to moisten catchments in southern Australia, follow-up rainfall in winter cannot be efficiently converted to run-off and catchment inflows22. There have been statistically significant decreases in April–May mean precipitation at the catchment locations of Blowering Dam, Burrinjuck Dam and Tumut from 1964 to 1991 to 1992–2018 and also for the mean inflows to the two Dams (Table 4). Furthermore, as a result of the Millennium Drought (1997–2009), modelling experiments indicate that, starting from very dry conditions, the run-off response to rainfall only will return to the normal pre-drought conditions after about 10–20 years of average rainfall23. Therefore, the significant decrease in variance of Murrumbidgee River heights at Hay and in mean and variance at Wagga Wagga, is most likely due to the April–May reduced dam inflows and precipitation, and from average JJAS catchment precipitation since 1991. Any role played by water extraction for irrigation between Wagga Wagga and Hay, where irrigation is concentrated, is likely to be small owing to the highly significant mean river height reduction at Wagga Wagga which is upstream from Hay. However, irrigation, and other water usage, is sourced from the dams, so there is a long-term impact of irrigation over the months preceding JJAS on flows at Wagga Wagga, due to the reduction in water stored in the upstream dams. The dams integrate the water extracted for irrigation and all other usage since the last spill event, and therefore the extractions over an extended period can have an impact on when the dam will fill, and hence on the flows downstream, including Wagga Wagga. The minimum water level in the dams, which typically occurs near the end of Autumn, is due to the reduction in inflows (impacted by climate change), and extractions from the dam. Coupled with the tendency for a slower fill rate due to reduced inflows, this results in fewer spill events. As a consequence, there is a change in the distribution between spill events and irrigation releases, changing the frequency distribution of flows. This will be particularly the case for the JJAS period, as a delayed dam filling will have a major impact in dam levels in that period. Before the 1990s the river at Wagga Wagga and Hay reached flood level height or close to flood level height regularly in JJAS from precipitation-driven inflows regardless of the amount of water that was extracted (see Fig. 2a,b). Since the mid-1990s less water reaching Wagga Wagga has significantly reduced the river height owing to significantly decreased April–May and JJAS precipitation-driven inflows at the upstream catchment dams of Burrinjuck and Blowering Dams and significantly decreased mean precipitation at Tumut, which also represents the catchment area of Blowering Dam (Fig. 2c,d; Table 4). Moreover, there has been no overallocation or hoarding of water found in the southern MDB24. In a different southern MDB catchment study of the Millennium Drought 1997–2008, factors for a disproportionate reduction in rainfall run-off were reduced mean annual rainfall, less interannual variability of rainfall, changed seasonality of rainfall and lastly increased potential evaporation25. However, the last two factors mentioned have since become well established in the last decade with reference to the work in this study. It was suggested that a rainfall reduction alone does not explain the observed inflow reduction trend26. Even after a major rain event, the soils are so dry that they absorb more water than before the rain event, and less reaches the dams and rivers than on a wet catchment. In the last three decades it is unknown what the effect on run-off into dams and the Murrumbidgee river has been in JJAS from major rain events because, apart from August–September 2016, there have been no major catchment net inflows since 1991 (Fig. 2c,d). There were significant precipitation-driven inflows during SON 2010 which led to flood level exceedances at Wagga Wagga and Hay in December 2010. In June and July 1991 there was a series of rain-producing cut-off low pressure systems over inland NSW and the adjacent coast influencing the catchment, interspersed with persistent, precipitation-producing frontal systems embedded in the westerly airflow during July and August. Rain producing inland cut-off low pressure systems over southeast Australia are the main influence on enhancing JJAS rainfall totals8.Decreased JJAS precipitation in continental southeast Australia has been evident for at least the last two decades, as anticipated by climate scientists. The naturally periodic La Niña phenomenon provided spring and summer precipitation during much of 2010 to 2012, which ended the Millennium Drought (1997–2009). The only other recent widespread significant rainfall in southeast continental Australia was in August–September 2016 due to a negative phase of the Indian Ocean Dipole (IOD). A negative IOD phase typically is associated with wetter than normal spring conditions for southeast Australia7,8.Although the SAM is an atmospheric index with a time scale typically of a few weeks, an annual average SAM reconstruction shows that since the 1970s it is in its most positive state over at least the past 1000 years27. Prior to the 1990s soil wetness would have been in phase with the annual cycle of winter/spring peak rainfall, dry summer/early autumn and without a long term trend in SAM. However, because SAM has trended positive since the 1970s, the annual cycle of soil wetness of the MDB has been increasingly disrupted particularly since the Millennium Drought23 and there is also a potential long-term impact from groundwater systems28. This is supported by the most recent available annual area-averaged actual evapotranspiration and soil moisture deciles in Fig. 7a,b. These figures show the anomalously dry MDB catchment area in the period 2018–2019. In the southeast corner of the MDB, actual evapotranspiration is below average and soil moisture is very much below average.Figure 7Available at: http://www.bom.gov.au/water/nwa/2019/mdb/climateandwater/climateandwater.shtml.Annual deciles of actual evapotranspiration and soil moisture 2018–2019. Map of southeast Australia showing for the MDB region deciles during the 2018–2019 year for, (a) annual area-averaged actual evapotranspiration. Note the below average decile in the southeast corner of the MDB, and (b) annual area-averaged soil moisture. Note the very much below average decile in the southeast corner of the MDB. (Reproduced with permission under Creative Commons Attribution Licence 3.0 from the Australian Bureau of Meteorology.Full size imageTwo Supplementary Tables showing historical April–May (S1) and JJAS (S2) maximum river heights above flood level at Hay (6.7 m) in IPO phases indicate, as expected, more in negative IPO phases than positive phases and importantly a dissociation with the IPO resulting from none in the most recent negative phase from 1998 and the preceding positive phase after the early 1990s. The implication is that accelerated global warming since the 1990s has overwhelmed the influence of negative IPO on precipitation.The MDB plan, introduced from 201329 provided, for the first time, regulated allocations to environmental flows for ecosystem sustainability of rivers in southeast Australia such as the Murrumbidgee. However, the plan requires that each year on 1 July a fixed amount of water is locked in for future consumption, split three ways with the highest priority for human consumption and irrigation for permanent crops (e.g., fruit trees and nuts). The remaining allocations are split between non-permanent crops (e.g., cotton, rice) and environmental flow. A major issue is that the forecast net inflows upon which the allocations are based are the minimum inflows experienced in the 120 years up to the end of the twentieth century. However, as shown, even lower inflows have been experienced in the past two decades. It is not surprising that there is a significant decrease in the JJAS variance of the Murrumbidgee River height at Hay (p-value = 0.005) and both the JJAS mean and variance at Wagga Wagga from the periods 1965–1991 to 1992–2018 (mean p-value = 0.0044, variance p-value = 0.095; Table 4) since this period corresponds with the significantly reduced mean April–May catchment precipitation and mean April–May dam net inflows. The fact that there has been no significant change in the mean Murrumbidgee River height since 1991 is an indication that there has been a lack of major April-September rain events. The lack of significant catchment rainfall events from April to September is the reason for the reduction in the mean and variance of river heights at Wagga Wagga. Floods in April–May are rare along the Murrumbidgee River and the six years since 1874 in which April–May floods occurred at Hay prior to 1991 (Table 3), were dominated by precipitation that occurred as a result of mid-latitude interaction with either tropical or subtropical moisture, whereas the last flood that occurred in March 2012, was the result of a rain-producing tropical low pressure trough in the easterly wind regime that extended from northwest Australia to a low pressure centre in southern New South Wales near the Murrumbidgee catchment. Moreover, given the significant decline in April–May, Murrumbidgee catchment rainfall, JJAS run-off into the dams and Murrumbidgee River height at Wagga Wagga since 1991, the implication for water allocations of irrigated agriculture downstream from Wagga Wagga and for flood plain environmental flows required for sustainable wetlands downstream from Hay, will continue to be a problem. More

  • in

    Impact of elevation and slope aspect on floristic composition in wadi Elkor, Sarawat Mountain, Saudi Arabia

    1.Cunningham, S. C. et al. Balancing the environmental benefits of reforestation in agricultural regions. Perspect. Plant Ecol. Evol. Syst. 17, 301–317. https://doi.org/10.1016/j.ppees.2015.06.001 (2015).Article 

    Google Scholar 
    2.Pearse, I. S. & Hipp, A. L. Phylogenetic and trait similarity to a native speciespredict herbivory on non-native oaks. Proc. Natl. Acad. Sci. U. S. A. 106, 18097–18102 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Abdel Khalik, K., El-Sheikh, M. & El-Aidarous, A. Floristic diversity and vegetation analysisof wadi Al Noman, Holy Mecca, Saudi Arabia. Turk. J. Bot. 37, 894–907. https://doi.org/10.3906/bot-1209-56 (2013).Article 

    Google Scholar 
    4.Al-Sherif, E. A., Ayesh, A. M. & Rawi, S. M. Floristic composition, life form and chorology of plant life at Khulais region western Saudi Arabia. Pak. J. Bot. 45, 29–38 (2013).
    Google Scholar 
    5.Al-Sherif, E. A. & Fadl, M. A. Floristic study of the Al-Shafa Highlands in Taif, western Saudi Arabia. Flora 225, 20–29. https://doi.org/10.1016/j.flora.2016.09.004 (2016).Article 

    Google Scholar 
    6.Al-Nafie, A. H. Phytogeography of Saudi Arabia. Saudi J. Biol. Sci. 15, 159–176 (2008).
    Google Scholar 
    7.Mossa, J. S., Al-Yahya, M. A. & Al-Meshal, I. A. Medicinal Plants of Saudi Arabia (King Saud University Press, 1987).
    Google Scholar 
    8.Körner, C. Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol. Evol. 15, 513–514. https://doi.org/10.1016/S01695347(00)02004-8 (2000).Article 

    Google Scholar 
    9.Cano-Ortiz, A., Musarella, C. M., PiNar Fuentes, J. C., Gomes, C. J. P. & Cano, E. Distribution patterns of endemic flora to define hotspots on Hispaniola. Syst. Biodiv. 14, 261–275. https://doi.org/10.1080/14772000.2015.1135195 (2016).Article 

    Google Scholar 
    10.Hedberg, O. The flora of Ethiopia: a progress report. in Research in Ethiopia Flora (ed. Hedberg, I.). Symb. Bot. Ups. 26, 17–18 (1986).11.Cowling, R. M., Esler, K. J., Midgley, G. F. & Honing, M. A. Plant functional diversity, species diversity and climate in arid and semi-arid southern Africa. J. Arid Environ. 27, 141–158. https://doi.org/10.1006/jare.1994.1054 (1994).ADS 
    Article 

    Google Scholar 
    12.Montana, C. & Valientebanuet, A. Floristic and life-form diversity along an altitudinal gradient in an intertropical semiarid Mexican region. Southwest. Nat. 43, 25–39 (1998).
    Google Scholar 
    13.Pavón, N. P., Hernández-Trejo, H. & Rico-Gray, V. Distribution of plant lifeforms along an altitudinal gradient in the semi-arid valley of Zapotitlón, Mexico. J. Veg. Sci. 11, 39–42. https://doi.org/10.2307/3236773 (2000).Article 

    Google Scholar 
    14.Raunkiaer, C. Statistik der Lebensformen als Grundlage für die biologische Pflanzengeographie. Beih. Bot. Centralbl. 27, 171–206 (1910).
    Google Scholar 
    15.Sarmiento, G. & Monasterio, M. Life form and phenology. In Tropical Savannas (ed. Bourlièrre, F.) 79–108 (Elsevier, 1983).
    Google Scholar 
    16.Meher-Homji, V. M. Environmental implications of life-form spectra from India. J. Econ. Tax. Bot. 2, 23–30 (1981).
    Google Scholar 
    17.Campbell, B. M. & Werger, M. J. A. Plant form in mountains of the Cape, South Africa. J. Ecol. 76, 637–653 (1988).Article 

    Google Scholar 
    18.Komárková, V. & McKendrick, J.D. Patterns in vascular plant growth forms in arctic communities and environment at Atkasook, Alaska. in Plant Form and Vegetation Structure (eds. Werger, M. J. A., van der Aart, P. J. M., During, H. J. & Verhoeven, J. T. A.) 45–70 (SPB Academic Publishing BV, 1988).
    Google Scholar 
    19.Cody, M. L. Growth-form diversity and community structure in desert plants. J. Arid Environ. 17, 199–209 (1989).ADS 
    Article 

    Google Scholar 
    20.Danin, A. & Orshan, G. The distribution of Raunkiaer life forms in Israel in relation to the environment. J. Veg. Sci. 1, 41–48 (1990).Article 

    Google Scholar 
    21.Osman, A. K., Al-Ghamdi, F. & Bawadekji, A. Floristic diversity and vegetation analysis of Wadi Arar: a typical desert Wadi of the Northern Border region of Saudi Arabia. Saud. J. Biol. Sci. 21, 554–565. https://doi.org/10.1016/j.sjbs.2014.02.001 (2014).Article 

    Google Scholar 
    22.Grime, J. P. Plant Strategies and Vegetation Processes (John Wiley, 1979).
    Google Scholar 
    23.Palmer, M. W. The coexistence of species in fractal landscapes. Am. Nat. 139, 375–397 (1992).Article 

    Google Scholar 
    24.Huston, M. & DeAngelis, D. L. Competition and coexistence: the effects of resource transport and supply rates. Am. Nat. 144, 954–977. https://doi.org/10.1086/285720 (1994).Article 

    Google Scholar 
    25.Szaro, R. C. Riparian forest and scrubland communities of Arizona and New Mexico. Desert Plants 9, 69–138 (1989).
    Google Scholar 
    26.DeBano, L. F. & Schimdt, L. J. Potential for enhancing riparian habitat in the Southwestern United States with watershed practices. For. Ecol. Manag. 33(34), 385–403. https://doi.org/10.1016/0378-1127(90)90205-P (1990).Article 

    Google Scholar 
    27.Lieberman, D., Lieberman, M., Peralta, R. & Hartshorn, G. S. Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J. Ecol. 84, 137–152. https://doi.org/10.2307/2261350 (1996).Article 

    Google Scholar 
    28.Zimmerman, J. C., DeWald, L. E. & Rowlands, P. G. Vegetation diversity in an interconnected ephemeral riparian system of north-central Arizona, USA. Biol. Conserv. 90, 217–228. https://doi.org/10.1016/S0006-3207(99)00035-X (1999).Article 

    Google Scholar 
    29.Brown, J. Mammals on mountainsides: elevational patterns of diversity. Glob. Ecol. Biogeogr. 10, 101–109. https://doi.org/10.1046/j.1466-822x.2001.00228.x (2001).Article 

    Google Scholar 
    30.Lomolino, M. V. Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13. https://doi.org/10.1046/j.1466822x.2001.00229.x (2001).Article 

    Google Scholar 
    31.Ahmed, M. J., Murtaza, G., Shaheen, H. & Habib, T. Distribution pattern and associated flora of Jurinea dolomiaea in the western Himalayan highlands of Kashmir: an indicator endemic plant of alpine phytodiversity. Ecol. Ind. 116, 106461. https://doi.org/10.1016/j.ecolind.2020.106461 (2020).Article 

    Google Scholar 
    32.Bhat, J. A. et al. Influence of altitude on the distribution pattern of flora in a protected area of Western Himalaya. Acta Ecol. Sin. 40, 30–43. https://doi.org/10.1016/j.chnaes.2018.10.006 (2020).Article 

    Google Scholar 
    33.Kutiel, P. & Lavee, H. Effect of slope aspect on soil and vegetation properties along an aridity transect. Isr. J. Plant Sci. 47, 169–178. https://doi.org/10.1080/07929978.1999.10676770 (1999).Article 

    Google Scholar 
    34.Cantlon, J. Vegetation and microclimates of north and south slopes of Cushetunk mountain. New Jersey. Ecol. Monogr. 23, 241–270 (1953).Article 

    Google Scholar 
    35.Vetaas, O. R. Gradients in field-layer vegetation on an arid misty mountain plateau in the Sudan. J. Veg. Sci. 3, 527–534 (1992).Article 

    Google Scholar 
    36.Kirkpatrick, J., Fensham, R., Nunez, M. & Bowman, D. Vegetation-radiation relation in the wet-dry tropics: granite hills in northern Australia. Vegetatio 76, 103–112 (1998).
    Google Scholar 
    37.Ady, J. The Taif escarpment, Saudi Arabia: a study for nature conservation and recreational development. Mt. Res. Dev. 15, 101–120 (1995).Article 

    Google Scholar 
    38.Almazroui, M., Nazrul Islam, M., Athar, H., Jones, P. D. & Rahman, M. A. Recent climate change in the Arabian Peninsula: annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int. J. Climatol. https://doi.org/10.1002/joc.3446 (2012).Article 

    Google Scholar 
    39.Migahid, A. M. Flora of Saudi Arabia 4th edn. (King Saud University Press, 1996).
    Google Scholar 
    40.Collenette, S. Wild Flowers of Saudi Arabia (National Commission for Wildlife Conservation and Development, 1999).
    Google Scholar 
    41.Chaudhary, S. Flora of the Kingdom of Saudi Arabia (Ministry of Agriculture and Water, 2001).
    Google Scholar 
    42.Raunkiaer, C. Life Forms of Plants and Statistical Plant Geography (Collected Paper Translated into English) (University Press, 1934).
    Google Scholar 
    43.Wickens, G. E. The Flora of Jebel Morra (Sudan Republic) and Its Geographical Affinities. Kew Bulletin Additional Series V (HMSO, London, 1976).
    Google Scholar 
    44.Zohary, M. Geobotanical Foundations of the Middle East Vol. 2 (GustavFischer Verlag, 1973).
    Google Scholar 
    45.Broadbent, F. E. Organic matter. In Methods of Soil Analysis Part 1 (ed. Black, C. A.) 1397–1400 (American Society of Agronomy, Inc, 1965).
    Google Scholar 
    46.Bremmer, J. M. Total nitrogen. In Methods of Soil Analysis Part 1 (ed. Black, C. A.) 1149–1176 (American Society of Agronomy, Inc, 1965).
    Google Scholar 
    47.Ward, J. H. Hierarchical grouping to optimize an objective function. Am. Stat. Assoc. J. 58, 236–244 (1963).MathSciNet 
    Article 

    Google Scholar 
    48.Castro, S. A. & Jaksic, F. M. Patterns of turnover and floristic similarity show a non random distribution of naturalized flora in Chile. South America. Rev. Hist. Nat. 81, 111–121 (2008).
    Google Scholar 
    49.Magurran, A. E. Ecological Diversity and Its Measurements (Princeton University Press, 1988).Book 

    Google Scholar 
    50.Pielou, E. C. Ecological Diversity 1st edn. (Wiely Interscience, 1975).
    Google Scholar 
    51.Hosni, H. A. & Hegazy, A. K. Contribution to the flora of Asir, Saudi Arabia. Candollea 51, 169–202 (1996).
    Google Scholar 
    52.Al-Turki, T. A. & Al-Olayan, H. A. Contribution to the flora of Saudi Arabia: hail region. Saud. J. Biol. Sci. 10, 190–222 (2003).
    Google Scholar 
    53.Abd El-Ghani, M. M. & Abdel-Khalik, K. N. Floristic diversity and phytogeography of the gebel Elba national park South-East Egypt. Turk. J. Bot. 30, 121–136 (2006).
    Google Scholar 
    54.Panthi, M. P., Chaudhary, R. P. & Vetaas, O. R. Plant species richness and composition in a trans Himalayan inner valley of mananging district, Central Nepal. Himal. J. Sci. 4, 57–64. https://doi.org/10.3126/hjs.v4i6.983 (2007).Article 

    Google Scholar 
    55.Burke, A. Properties of soil pockets on arid Nama karoo inselbergsethe effect of geology and derived landforms. J. Arid Environ. 50, 219–234. https://doi.org/10.1006/jare.2001.0907 (2002).ADS 
    Article 

    Google Scholar 
    56.Måren, I. E., Karki, S., Prajapati, C., Yadav, R. K. & Shrestha, B. B. Facing north or south: does slope aspect impact forest standcharacteristics and soil properties in a semiarid trans-Himalayanvalley?. J. Arid Environ. 121, 112–123. https://doi.org/10.1016/j.jaridenv.2015.06.004 (2015).ADS 
    Article 

    Google Scholar 
    57.Boyko, H. On the role of plants as quantitative climate indicators and the geoecological law of distributions. J. Ecol. 25, 138–157 (1947).Article 

    Google Scholar 
    58.Andersen, G. L. & Krzywinski, K. Longevity and growth of Acacia tortilis; insights from 14C content and anatomy of wood. BMC Ecol. 7, 4. https://doi.org/10.1186/1472-6785-7-4 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Tiwari, N., Srivastava, N. & Sharma, V. Comparative analysis of total phenolic content and antioxidant activity of in vivo and in vitro grown plant parts of Carica papaya L. Ind. J. Plant Physiol. 19, 356–362 (2014).Article 

    Google Scholar 
    60.Daur, I. Plant flora in the rangeland of Western Saudi Arabia. Pak. J. Bot. 44, 23–26 (2012).
    Google Scholar 
    61.El-Demerdash, M. A., Hegazy, A. K. & Zilay, A. M. Distribution of plant communities in Tihamah coastal plains of Jazan region, Saudi Arabia. Vegetatio 112, 141–151 (1994).Article 

    Google Scholar 
    62.El-Ghanim, W. M., Hassan, L. M., Galal, T. M. & Badr, A. Floristic composition and vegetation analysis in Hail region north of Central Saudi Arabia. Saudi J. Biol. Sci. 17, 119–128. https://doi.org/10.1016/j.sjbs.2010.02.004 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Abd El-Ghani, M. M. Environmental correlates of species distribution in arid desert ecosystems of eastern Egypt. J. Arid Environ. 38, 297–313 (1998).ADS 
    Article 

    Google Scholar 
    64.Sharma, M. & Rajpal, K. Life-forms and biological spectrum of the flora of the Punjab state, India. Bull. Bot. Surv. India 33, 276–280. https://doi.org/10.1078/1439-1791-00163 (1991).Article 

    Google Scholar 
    65.Hegazy, A. K., El-Demerdash, M. A. & Hosni, H. A. Vegetation, species diversity and floristic relations along an altitudinal gradient in South-West Saudi Arabia. J. Arid Environ. 38, 3–13. https://doi.org/10.1006/jare.1997.0311 (1998).ADS 
    Article 

    Google Scholar 
    66.Kassas, M. & Girgis, W. A. Habitats and plant communities in the Egyptian deserts. V. The limestone plateau. J. Ecol. 52, 107–119 (1964).Article 

    Google Scholar 
    67.Orshan, G. The desert of the middle east. In Ecosystems of the World, 12B, Hot Desert and Arid Shrublands (eds Evenari, M. et al.) 1–28 (Elsevier, 1986).
    Google Scholar 
    68.Shaltout, K. H., Sheded, M. G. & Salem, A. M. Vegetation spatial heterogeneity in a hyper arid biosphere reserve area in North Africa. Act. Bot. Croat. 69, 31–46 (2010).
    Google Scholar 
    69.Stewart, L. et al. The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate. Ecol. Biogeogr. 25, 430–442. https://doi.org/10.1111/geb.12424 (2016).Article 

    Google Scholar 
    70.Cain, S. A. & Castro, M. O. Manual of Vegetation Analysis (Harper Brothers, 1959).
    Google Scholar 
    71.Dickoré, W. B. & Nüsser, M. Flora of Nanga Parbat (NW Himalaya, Pakistan): an annotated inventory of vascular plants with remarks on vegetation dynamics. Englera 19, 1–253. https://doi.org/10.2307/3776769 (2000).Article 

    Google Scholar 
    72.Hoffmann, A. J. & Hoffmann, A. E. Altitudinal ranges of phanerophytes and chamaephytes in central Chile. Vegetatio 48, 151–163. https://doi.org/10.1007/BF00726885 (1982).Article 

    Google Scholar 
    73.White, F. & Leonard, J. Phytogeographical links between Africa and Southwest Asia. Flora Veg. Mundi. 9, 229–246. https://doi.org/10.1007/BF01117080 (1991).Article 

    Google Scholar 
    74.König, P. Phytogeography of South-Western Saudi Arabia (Asir, Tihama). Erde 119, 75–89 (1988).
    Google Scholar 
    75.White, F. The vegetation of Africa: A descriptive memoir to accompany the UNSECO, AETFAT, UNSO vegetation map of Africa (United Nations Educational, Scientific and Cultural Organization, Paris, 1983).
    Google Scholar  More

  • in

    Double jeopardy for fish diversity

    1.Garilli, V. et al. Nat. Clim. Change 5, 678–682 (2015).CAS 
    Article 

    Google Scholar 
    2.Verberk, W. C. E. P. et al. Biol. Rev. 96, 247–268 (2020).Article 

    Google Scholar 
    3.Rhein, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 255–297 (Cambridge Univ. Press, 2013).4.Gardner, J. L. et al. Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    5.Avaria-Llautureo, J. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01123-5 (2021).6.Burns, M. D. & Bloom, D. D. Proc. Biol. Sci. 287, 20192615 (2020).
    Google Scholar 
    7.Cheung, W. W. L. et al. Nat. Clim. Change 3, 254–258 (2013).Article 

    Google Scholar 
    8.Bernardi, G. Mol. Ecol. 22, 5487–5502 (2013).Article 

    Google Scholar 
    9.Lunt, D. et al. Clim. Past 12, 1181–1198 (2016).Article 

    Google Scholar 
    10.Warnock, R. et al. Paleobiology 46, 137–157 (2020).Article 

    Google Scholar 
    11.Zachos, J. et al. Science 292, 686–693 (2001).CAS 
    Article 

    Google Scholar 
    12.Marrama, G. & Carnevale, G. Hist. Biol. 29, 904–917 (2016).Article 

    Google Scholar 
    13.Marrama, G. & Carnevale, G. PalZ 92, 107–120 (2018).Article 

    Google Scholar 
    14.Burke, K. D. et al. Proc. Natl Acad. Sci. USA 115, 13288–13293 (2018).CAS 
    Article 

    Google Scholar  More