More stories

  • in

    Historical warming consistently decreased size, dispersal and speciation rate of fish

    1.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 
    2.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).Article 

    Google Scholar 
    3.Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    4.McCauley, S. J. & Mabry, K. E. Climate change, body size, and phenotype dependent dispersal. Trends Ecol. Evol. 26, 554–555 (2011).Article 

    Google Scholar 
    5.Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).Article 

    Google Scholar 
    6.Amigo, I. The Amazon’s fragile future. Nature 578, 505–507 (2020).CAS 
    Article 

    Google Scholar 
    7.Reddin, C. J., Nätscher, P. S., Kocsis, Á. T., Pörtner, H. O. & Kiessling, W. Marine clade sensitivities to climate change conform across timescales. Nat. Clim. Change 10, 249–253 (2020).Article 

    Google Scholar 
    8.Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).Article 

    Google Scholar 
    9.Skelly, D. K. et al. Evolutionary responses to climate change. Conserv. Biol. 21, 1353–1355 (2007).Article 

    Google Scholar 
    10.Chen, I., Hill, J. K., Ohlemûller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    Article 

    Google Scholar 
    11.Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).Article 

    Google Scholar 
    12.Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3, 254–258 (2013).Article 

    Google Scholar 
    13.Crozier, L. G. & Hutchings, J. A. Plastic and evolutionary responses to climate change in fish. Evol. Appl. 7, 68–87 (2014).Article 

    Google Scholar 
    14.Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).Article 

    Google Scholar 
    15.Pauly, D. & Cheung, W. W. L. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob. Change Biol. 24, e15–e26 (2018).Article 

    Google Scholar 
    16.Tamario, C., Sunde, J., Petersson, E., Tibblin, P. & Forsman, A. Ecological and evolutionary consequences of environmental change and management actions for migrating fish. Front. Ecol. Evol. 7, 271 (2019).Article 

    Google Scholar 
    17.Ljungström, G., Claireaux, M., Fiksen, Ø. & Jørgensen, C. Body size adaptions under climate change: zooplankton community more important than temperature or food abundance in model of a zooplanktivorous fish. Mar. Ecol. Prog. Ser. 636, 1–18 (2020).Article 
    CAS 

    Google Scholar 
    18.Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).CAS 
    Article 

    Google Scholar 
    19.Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    20.Audzijonyte, A. et al. Fish body sizes change with temperature but not all species shrink with warming. Nat. Ecol. Evol. 4, 809–814 (2020).Article 

    Google Scholar 
    21.Rosenzweig, M. L. Loss of speciation rate will impoverish future diversity. Proc. Natl Acad. Sci. USA 98, 5404–5410 (2001).CAS 
    Article 

    Google Scholar 
    22.Burns, M. D. & Bloom, D. D. Migratory lineages rapidly evolve larger body sizes than non-migratory relatives in ray-finned fishes. Proc. Biol. Sci. 287, 20192615 (2020).
    Google Scholar 
    23.Comte, L. & Olden, J. D. Evidence for dispersal syndromes in freshwater fishes. Proc. R. Soc. B 285, 20172214 (2018).Article 

    Google Scholar 
    24.Bohonak, A. J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 74, 21–45 (1999).CAS 
    Article 

    Google Scholar 
    25.Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS 
    Article 

    Google Scholar 
    26.Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 
    Article 

    Google Scholar 
    27.Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052 (2014).Article 

    Google Scholar 
    28.Dieckmann, U., O’Hara, B. & Weisser, W. The evolutionary ecology of dispersal. Trends Ecol. Evol. 14, 88–90 (1999).Article 

    Google Scholar 
    29.Kokko, H. & López-Sepulcre, A. From individual dispersal to species ranges: perspectives for a changing world. Science 313, 789–791 (2006).CAS 
    Article 

    Google Scholar 
    30.Lavoué, S., Miya, M., Musikasinthorn, P., Chen, W. J. & Nishida, M. Mitogenomic evidence for an indo-west Pacific origin of the Clupeoidei (Teleostei: Clupeiformes). PLoS ONE 8, e56485 (2013).Article 
    CAS 

    Google Scholar 
    31.Bloom, D. D., Burns, M. D. & Schriever, T. A. Evolution of body size and trophic position in migratory fishes: a phylogenetic comparative analysis of Clupeiformes (anchovies, herring, shad and allies). Biol. J. Linn. Soc. 125, 302–314 (2018).Article 

    Google Scholar 
    32.O’Donovan, C., Meade, A. & Venditti, C. Dinosaurs reveal the geographical signature of an evolutionary radiation. Nat. Ecol. Evol. 2, 452–458 (2018).Article 

    Google Scholar 
    33.Cheng, L. et al. Record-setting ocean warmth continued in 2019. Adv. Atmos. Sci. 37, 137–142 (2020).Article 

    Google Scholar 
    34.Pinek, L., Mansour, I., Lakovic, M., Ryo, M. & Rillig, M. C. Rate of environmental change across scales in ecology. Biol. Rev. 95, 1798–1811 (2020).Article 

    Google Scholar 
    35.Avaria-Llautureo, J., Hernández, C. E., Rodríguez-Serrano, E. & Venditti, C. The decoupled nature of basal metabolic rate and body temperature in endotherm evolution. Nature 572, 651–654 (2019).CAS 
    Article 

    Google Scholar 
    36.Gaston, K. J. Species-range size distributions: products of speciation, extinction and transformation. Philos. Trans. R. Soc. B 353, 219–230 (1998).Article 

    Google Scholar 
    37.Baker, J., Meade, A., Pagel, M. & Venditti, C. Positive phenotypic selection inferred from phylogenies. Biol. J. Linn. Soc. 118, 95–115 (2016).Article 

    Google Scholar 
    38.Angilletta, M. J. & Dunham, A. E. The temperature–size rule in ectotherms: simple evolutionary explanations may not be general. Am. Nat. 162, 332–342 (2003).Article 

    Google Scholar 
    39.Quintero, I. & Wiens, J. J. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 16, 1095–1103 (2013).Article 

    Google Scholar 
    40.Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Jr Fishing down marine food webs. Science 279, 860–863 (1998).CAS 
    Article 

    Google Scholar 
    41.Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).CAS 
    Article 

    Google Scholar 
    42.Whitehead, P. J. P. FAO species catalogue: vol. 7 Clupeoid fishes of the world. FAO Fish. Synop. 7, 303 (1985).
    Google Scholar 
    43.Charnov, E. L. & Berrigan, D. Evolution of life history parameters in animals with indeterminate growth, particularly fish. Evol. Ecol. 5, 63–68 (1991).Article 

    Google Scholar 
    44.Önsoy, B., Tarkan, A. S., Filiz, H. & Bilge, G. Determination of the best length measurement of fish. North. West. J. Zool. 7, 178–180 (2011).
    Google Scholar 
    45.Mohseni, O. & Stefan, H. G. Stream temperature/air temperature relationship: a physical interpretation. J. Hydrol. 218, 128–141 (1999).Article 

    Google Scholar 
    46.Morrill, J. C., Bales, R. C. & Conklin, M. H. Estimating stream temperature from air temperature: implications for future water quality. J. Environ. Eng. 131, 139–146 (2005).CAS 
    Article 

    Google Scholar 
    47.Sharma, S., Jackson, D. A., Minns, C. K. & Shuter, B. J. Will northern fish populations be in hot water because of climate change? Glob. Change Biol. 13, 2052–2064 (2007).Article 

    Google Scholar 
    48.Avaria-Llautureo, J. et al. Data for: Historical Warming Consistently Decreased Size, Dispersal and Speciation Rate of Fish (Dryad, 2021); https://doi.org/10.5061/dryad.cfxpnvx5g49.Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).Article 

    Google Scholar 
    50.Venditti, C., Meade, A. & Pagel, M. Multiple routes to mammalian diversity. Nature 479, 393–396 (2011).CAS 
    Article 

    Google Scholar 
    51.Kocsis, Á. T. & Raja, N. B. chronosphere (Zenodo, 2020); https://doi.org/10.5281/zenodo.353070352.Raftery, A. E. in Markov Chain Monte Carlo in Practice (eds Gilks, W. et al.) 163–187 (Chapman & Hall, 1996).53.Hijmans, R. J. geosphere: spherical trigonometry. R package version 1.5-10 https://CRAN.R-project.org/package=geosphere (2019).54.Harvey, M. G. & Rabosky, D. L. Continuous traits and speciation rates: alternatives to state-dependent diversification models. Methods Ecol. Evol. 9, 984–993 (2018).Article 

    Google Scholar 
    55.Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: what are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821–834 (2019).Article 

    Google Scholar 
    56.Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).CAS 
    Article 

    Google Scholar 
    57.Shafir, A., Azouri, D., Goldberg, E. E. & Mayrose, I. Heterogeneity in the rate of molecular sequence evolution substantially impacts the accuracy of detecting shifts in diversification rates. Evolution 74, 1620–1639 (2020).Article 

    Google Scholar 
    58.Ganzach, Y. Misleading interaction and curvilinear terms. Psychol. Methods 2, 235–247 (1997).Article 

    Google Scholar 
    59.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    60.Lunt, D. J. et al. Palaeogeographic controls on climate and proxy interpretation. Clim. Past 12, 1181–1198 (2016).Article 

    Google Scholar  More

  • in

    Assessing effectiveness of exclusion fences in protecting threatened plants

    1.Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Chapin, F. S., Sala, O. E. & Huber-Sannwald, E. Global Biodiversity in a Changing Environment Vol 152 (Springer, 2001).Book 

    Google Scholar 
    3.Hobohm, C. Endemism in Vascular Plants (Springer, 2014). https://doi.org/10.1007/978-94-007-6913-7.Book 

    Google Scholar 
    4.Al-Rowaily, S. L. et al. Effects of open grazing and livestock exclusion on floristic composition and diversity in natural ecosystem of Western Saudi Arabia. Saudi J. Biol. Sci. 22, 430–437 (2015).Article 

    Google Scholar 
    5.Alonso, I., Hartley, S. E. & Thurlow, M. Competition between heather and grasses on Scottish moorlands: Interacting effects of nutrient enrichment and grazing regime. J. Veg. Sci. 12, 249–260 (2001).Article 

    Google Scholar 
    6.Diamond, J. Guns, Germs and Steel: The Fate of Human Societies (W.W. Norton & Company, 1997). https://doi.org/10.4324/9781912128273.Book 

    Google Scholar 
    7.Hayward, M. W. & Kerley, G. I. H. Fencing for conservation: Restriction of evolutionary potential or a riposte to threatening processes?. Biol. Conserv. 142, 1–13 (2009).Article 

    Google Scholar 
    8.Hayward, M. W. et al. Fencing for conservation: Restriction of evolutionary potential or a riposte to threatening processes?. Biol. Conserv. 142, 1–13 (2009).Article 

    Google Scholar 
    9.Santoro, R. et al. Effects of trampling limitation on coastal dune plant communities. Environ. Manag. 49, 534–542 (2012).ADS 
    Article 

    Google Scholar 
    10.Fenu, G. et al. A common approach to the conservation of threatened island vascular plants: First results in the Mediterranean Basin. Diversity 12, 157 (2020).Article 

    Google Scholar 
    11.Fenu, G., Cogoni, D. & Bacchetta, G. The role of fencing in the success of threatened plant species translocation. Plant Ecol. 217, 207–217 (2016).Article 

    Google Scholar 
    12.Fazan, L. et al. Free behind bars: Effects of browsing exclusion on the growth and regeneration of Zelkova abelicea. For. Ecol. Manag. 488, 118967 (2021).Article 

    Google Scholar 
    13.Aschero, V. & García, D. The fencing paradigm in woodland conservation: Consequences for recruitment of a semi-arid tree. Appl. Veg. Sci. 15, 307–317 (2012).Article 

    Google Scholar 
    14.Bessega, C., Pometti, C., Campos, C., Saidman, B. O. & Vilardi, J. C. Implications of mating system and pollen dispersal indices for management and conservation of the semi-arid species Prosopis flexuosa (Leguminosae). For. Ecol. Manag. 400, 218–227 (2017).Article 

    Google Scholar 
    15.Scofield, R. P., Cullen, R. & Wang, M. Are predator-proof fences the answer to New Zealand’s terrestrial faunal biodiversity crisis?. N. Z. J. Ecol. 35, 312–317 (2011).
    Google Scholar 
    16.Tanentzap, A. J. & Lloyd, K. M. Fencing in nature? Predator exclusion restores habitat for native fauna and leads biodiversity to spill over into the wider landscape. Biol. Conserv. 214, 119–126 (2017).Article 

    Google Scholar 
    17.Valderrábano, E. M., Gil, T., Heywood, V. & Montmollin, B. D. Conserving Wild Plants in the South and East Mediterranean Region (IUCN, International Union for Conservation of Nature, 2018). https://doi.org/10.2305/IUCN.CH.2018.21.en.Book 

    Google Scholar 
    18.Bañares, A., Blanca, G., Guemes, J., Moreno, J. & Ortiz, S. Atlas y Libro Rojo de la Flora Vascular Amenazada de España (Ministerio de Medio Ambiente Medio Rural y Marino, 2004).
    Google Scholar 
    19.Médail, F. & Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 36, 1333–1345 (2009).Article 

    Google Scholar 
    20.Gutiérrez, L., García, S., Cuerda, D. & Marchal, F. Aportaciones al conocimiento de la distribución y el estado de conservación del endemismo amenazado Solenanthus reverchonii Debeaux ex Degen (Boraginaceae ) en Andalucía ( España ). An. Biol. 36, 135–140 (2014).
    Google Scholar 
    21.Spooner, P., Lunt, I. & Robinson, W. Is fencing enough? The short-term effects of stock exclusion in remnant grassy woodlands in southern NSW. Ecol. Manag. Restor. 3, 117–126 (2002).Article 

    Google Scholar 
    22.Prober, S. M., Standish, R. J. & Wiehl, G. After the fence: Vegetation and topsoil condition in grazed, fenced and benchmark eucalypt woodlands of fragmented agricultural landscapes. Aust. J. Bot. 59, 369–381 (2011).Article 

    Google Scholar 
    23.Newman, M., Mitchell, F. J. G. & Kelly, D. L. Exclusion of large herbivores: Long-term changes within the plant community. For. Ecol. Manag. 321, 136–144 (2014).Article 

    Google Scholar 
    24.Cogoni, D., Fenu, G., Concas, E. & Bacchetta, G. The effectiveness of plant conservation measures: The Dianthus morisianus reintroduction. Oryx 47, 203–206 (2013).Article 

    Google Scholar 
    25.Schowalter, T. D. Herbivory. Insect Ecology 347–382 (Elsevier, 2006). https://doi.org/10.1016/B978-012088772-9/50038-8.Book 

    Google Scholar 
    26.van der Waal, C. et al. Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation. Oecologia 165, 1095–1107 (2011).ADS 
    Article 

    Google Scholar 
    27.Körner, C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 22, 569–574 (2007).Article 

    Google Scholar 
    28.Körner, C. Alpine Treelines (Springer, 2012). https://doi.org/10.1007/978-3-0348-0396-0.Book 

    Google Scholar 
    29.Anderson, P. M. L. & Hoffman, M. T. Grazing response in the vegetation communities of the Kamiesberg, South Africa: Adopting a plant functional type approach. J. Arid Environ. 75, 255–264 (2011).ADS 
    Article 

    Google Scholar 
    30.Hardin, G. The tragedy of the commons. Science (80–) 162, 1243–1248 (1968).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Vera, J. A. Geología de Andalucía. Enseñanza Cien. Tierra 2, 306–317 (1994).
    Google Scholar 
    32.Gómez-Mercado, F. Vegetación y flora de la Sierra de Cazorla. Guineana 17, 1–481 (2011).
    Google Scholar 
    33.Benavente, A. Flora y vegetacion: Parque Natural de las Sierras de Cazorla, Segura y Las Villas. Anu. Adelantamiento Cazorla 50, 149–153 (2008).
    Google Scholar 
    34.Soriguer, R., Fandos, P., Granados, J., Castillo, A. & Serrano, E. Herbivoría por ungulados silvestres en el piso mesomediterráneo de las Sierras de Cazorla, Segura y Las Villas. In “In memoriam” al profesor Dr Isidoro Ruiz Martínez 479–504 (Universidad de Jaén, 2003).
    Google Scholar 
    35.García-González, R. & Cuartas, P. A comparison of the diets of the wild goat (Capra pyrenaica), Domesc Goat (Capra hircus), Mouflon (Ovis musimon) and the domestic sheep (Ovis aries) in the Cazorla Mountain range. Acta Biol. 9, 123–132 (1989).
    Google Scholar 
    36.Araque, E. Territorio y patrimonio rural en las sierras de Cazorla, Segura y las Villas. Nuevas perspectivas de investigación. Rev. PH 84, 28–47 (2013).
    Google Scholar 
    37.Tíscar Oliver, P. Patterns of shrub diversity and tree regeneration across topographic and stand-structural gradients in a Mediterranean forest. For. Syst. 24, 1–11 (2015).
    Google Scholar 
    38.Lorite, J., Navarro, F. B. & Valle, F. Estimation of threatened orophytic flora and priority of its conservation in the Baetic range (S. Spain). Plant Biosyst. 141, 1–14 (2007).Article 

    Google Scholar 
    39.Blanca, G. et al. Flora Vascular de Andalucía Oriental. vol. 4 (Servicios de Publicaciones de las universidades de Granada, Almería, Jaén y Málaga, 2011).
    Google Scholar 
    40.Mateos, M. et al. FAME. Aplicación Web de apoyo al seguimiento, localización e integración de la información sobre flora amenazada y de interés generada en Andalucía. In Tecnologías de la Información Geográfica: La Información Geográfica al servicio de los ciudadanos 222–229 (2010).41.Valle, F. et al. Mapa de Series de Vegetación de Andalucía (Editorial Rueda, 2003).
    Google Scholar 
    42.Sutherland, W. J. Ecological Census Techniques: A Handbook 2nd edn. (Cambridge University Press, 2006).Book 

    Google Scholar 
    43.Lorite, J., Peñas, J., Benito, B., Cañadas, E. & Valle, F. Conservation status of the first known population of Polygala balansae in Europe. Ann. Bot. Fenn. 47, 45–50 (2010).Article 

    Google Scholar 
    44.Blanca, G., Cabezudo, B., Cueto, M., Morales, C. & Salazar, C. Flora vascular de Andalucía oriental (2a Edición Corregida y Aumentada) (Universidad de Granada, 2011).
    Google Scholar 
    45.R Core Development Team. R: A Language and Environment for Statistical Computing (R Core Development Team, 2019).
    Google Scholar 
    46.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-2. (2018).47.Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models. (2020).48.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R Statistics for Biology and Health (Springer, 2009). https://doi.org/10.1007/978-0-387-87458-6.Book 
    MATH 

    Google Scholar 
    49.Wheeler, R. E. R. et al. lmPerm: Permutation tests for linear models. 24 (2016).50.Wickham, H. Elegant Graphics for Data Analysis (Springer, 2009).MATH 

    Google Scholar  More

  • in

    Comparative analysis of freshwater phytoplankton communities in two lakes of Burabay National Park using morphological and molecular approaches

    1.Patrick, R., Binetti, V. P. & Halterman, S. G. Acid lakes from natural and anthropogenic causes. Science 211, 446–448 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Dokulil, M., Chen, W. & Cai, Q. Anthropogenic impacts to large lakes in China: The Tai Hu example. Aquat. Ecosyst. Health Manage. 3, 81–94 (2000).Article 

    Google Scholar 
    3.Woolway, R. I. et al. Global lake responses to climate change. Nat. Rev. Earth Environ. 1, 388–403 (2020).ADS 
    Article 

    Google Scholar 
    4.Søndergaard, M. & Jeppesen, E. Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. J. Appl. Ecol. 44, 1089–1094 (2007).Article 

    Google Scholar 
    5.Zhupankhan, A., Tussupova, K. & Berndtsson, R. Water in Kazakhstan, a key in Central Asian water management. Hydrol. Sci. J. 63, 752–762 (2018).Article 

    Google Scholar 
    6.Corell, D. L. The role of phosphorus in the euthrophication of receiving waters: A review. J. Environ. Qual. 27, 261–266 (1998).Article 

    Google Scholar 
    7.Hansson, L.-A. & Tranvik, L. A. Algal species composition and phosphorus recycling at contrasting grazing pressure: An experimental study in sub-Antarctic lakes with two trophic levels. Freshw. Biol. 37, 45–53 (1997).Article 

    Google Scholar 
    8.Gozlan, R., Karimov, B., Zadereev, E., Kuznetsova, D. & Brucet, S. Status, trends, and future dynamics of freshwater ecosystems in Europe and Central Asia. Inland Waters 9, 78–94 (2019).CAS 
    Article 

    Google Scholar 
    9.WBGU (Wissenschaftliche Beirat der Bundesregierung Globale Umweltveränderungen; German Advisory Council on Global Change). Climate Change as a Security Risk (Earthscan, 2007).
    Google Scholar 
    10.Campbell, L. et al. Response of microbial community structure to environmental forcing in the Arabian Sea. Deep Sea Res II Top. Stud. Oceanogr. 45, 2301–2325 (1998).ADS 
    Article 

    Google Scholar 
    11.Winder, M. & Sommer, U. Phytoplankton response to a changing climate. Hydrobiologia 698, 5–16 (2012).Article 

    Google Scholar 
    12.Bellinger, E. G. & Sigee, D. C. Freshwater Algae: Identification and Use as Bioindicators (Wiley, 2010).Book 

    Google Scholar 
    13.Zohary, T., Flaim, G. & Sommer, U. Temperature and the size of freshwater phytoplankton. Hydrobiologia 848, 143–155 (2021).Article 

    Google Scholar 
    14.Reynolds, C. S., Padisák, J. & Sommer, U. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: A synthesis. Hydrobiologia 249, 183–188 (1993).Article 

    Google Scholar 
    15.Likens, G. E. Plankton of Inland Waters (Academic Press, 2010).
    Google Scholar 
    16.Hutchinson, G. E. A Treatise on Limnology. Volume 2. Introduction to Lake Biology and the Limnoplankton (Wiley, 1967).
    Google Scholar 
    17.Reynolds, C. S. The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Int. Ver. Limnol. 23, 683–691 (1988).
    Google Scholar 
    18.Bartram, J. & Ballance, R. (eds) Water Quality Monitoring—A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programs (UNEP/WHO, 1996).
    Google Scholar 
    19.Lepistő, L., Holopainen, A.-L. & Vuorosto, H. Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes. Limnologica 34, 236–248 (2004).Article 

    Google Scholar 
    20.Järvinen, M. et al. Phytoplankton indicator taxa for reference conditions in Northern and Central European lowland lakes. Hydrobiologia 704, 97–113 (2013).Article 

    Google Scholar 
    21.Soares, M. C. S. et al. Light microscopy in aquatic ecology: Methods for plankton communities studies. In Light Microscopy: Methods and Protocols (eds Chiarini-Garcia, H. & Melo, R. C. N.) 215–227 (Springer, 2011).Chapter 

    Google Scholar 
    22.Findlay, D. L. & Kling, H. J. Protocols for Measuring Biodiversity: Phytoplankton in Fresh Water Lakes (Department of Fisheries and Oceans, 1998).
    Google Scholar 
    23.Maurer, D. The dark side of taxonomic sufficiency. Mar. Pollut. Bull. 40, 98–101 (2000).CAS 
    Article 

    Google Scholar 
    24.Bourlat, S. J. et al. Genomics in marine monitoring: New opportunities for assessing marine health status. Mar. Pollut. Bull. 74, 19–31 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Hering, D. et al. Implementation options for DNA-based identification into ecological status assessment under the European water framework directive. Water Res. 138, 192–205 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Ayaglas, E. et al. Translational molecular ecology in practice: Linking DNA-based methods to actionable marine environmental management. Sci. Total Environ. 744, 140780 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    27.Peperzak, L., Vrieling, E. G., Sandee, B. & Rutten, T. Immuno flow cytometry in marine phytoplankton research. Sci. Mar. 64, 165–181 (2000).Article 

    Google Scholar 
    28.Dashkova, V., Malashenkov, D., Poulton, N., Vorobjev, I. & Barteneva, N. S. Imaging flow cytometry for phytoplankton analysis. Methods 112, 188–200 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Dubelaar, G. & Jonker, R. R. Flow cytometry as a tool for the study of phytoplankton. Sci. Mar. 64, 135–156 (2000).Article 

    Google Scholar 
    30.Stockner, J. G. Phototrophic picoplankton: An overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33, 765–775 (1988).ADS 
    CAS 

    Google Scholar 
    31.Schmidt, T. M., DeLong, E. F. & Pace, N. R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J. Bacteriol. 173, 4371–4378 (1991).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Diez, B., Pedros-Aliŏ, C. & Massana, R. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 67, 2932–2941 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Stoeck, T., Hayward, B., Taylor, G. T., Varela, R. & Epstein, S. S. A multiple PCR-primer approach to access the microeukaryotic diversity in the anoxic Cariaco Basin (Caribbean Sea). Protist 157, 31–43 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Szabó, A. et al. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21, 639–649 (2017).PubMed 
    Article 

    Google Scholar 
    36.Bott, N. J. et al. Toward routine, DNA-based detection methods for marine pests. Biotechnol. Adv. 28, 706–714 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Tan, S. et al. An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics. J. Phycol. 51, 120–132 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Medlin, L. K. & Orozco, J. Molecular techniques for the detection of organisms in aquatic environments, with emphasis on harmful algal bloom species. Sensors 17, 1184 (2017).ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    39.de Bruin, A., Ibelings, B. W. & Van Donk, E. Molecular techniques in phytoplankton research: From allozyme electrophoresis to genomics. Hydrobiologia 491, 47–63 (2003).Article 

    Google Scholar 
    40.Ebenezer, V., Medlin, L. K. & Ki, J. S. Molecular detection, quantification, and diversity evaluation of microalgae. Mar. Biotechnol. 14, 129–142 (2012).CAS 
    Article 

    Google Scholar 
    41.Kim, J. et al. Microfluidic high-throughput selection of microalgal strains with superior photosynthetic productivity using competitive phototaxis. Sci. Rep. 6, 21155 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Xiao, X. et al. Use of high throughput sequencing and light microscopy show contrasting results in a study of phytoplankton occurrence in a freshwater environment. PLoS ONE 9, e106510 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. U.S.A. 103, 12115–12120 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Medinger, R. et al. Diversity in a hidden world: Potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol. Ecol. 19, 32–40 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Andersson, A. F., Riemann, L. & Bertilsson, S. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J. 4, 171–181 (2010).PubMed 
    Article 

    Google Scholar 
    46.Filker, S., Gimmler, A., Dunthorn, M., Mahe, F. & Stoeck, T. Deep sequencing uncovers protistan plankton diversity in the Portuguese Ria Formosa solar saltern ponds. Extremophiles 19, 283–295 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Eiler, A. et al. Unveiling distribution patterns of freshwater phytoplankton by a next generation sequencing based approach. PLoS ONE 8, e53516 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Visco, J. A. et al. Environmental monitoring: Inferring the diatom index from next generation sequencing data. Environ. Sci. Technol. 49, 7597–7605 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Abad, D. et al. Is metabarcoding suitable for estuarine plankton monitoring? A comparative study with microscopy. Mar. Biol. 163, 149 (2016).Article 

    Google Scholar 
    50.Gao, W. et al. Bioassessment of a drinking water reservoir using plankton: High throughput sequencing vs. traditional morphological method. Water 10, 82 (2018).Article 
    CAS 

    Google Scholar 
    51.Rimet, F., Vasselon, V., Barabar, A. & Bouchez, A. Do we similarly assess diversity with microscopy and high-throughput sequencing? Case of microalgae in lakes. Org. Divers. Evol. 18, 51–62 (2018).Article 

    Google Scholar 
    52.Kazhydromet. Environmental Monitoring Bulletin of Republic of Kazakhstan for 2007 (Kazhydromet, 2007).
    Google Scholar 
    53.Lewis, W. M. Jr. A revised classification of lakes based on mixing. Can. J. Fish. Aquat. Sci. 40, 1779–1787 (1983).Article 

    Google Scholar 
    54.Welch, E. B. & Cooke, G. D. Internal phosphorus loading in shallow lakes: Importance and control. Lake Reserv. Manage. 11, 273–281 (1995).Article 

    Google Scholar 
    55.Kabiyeva, M. & Zubairov, B. Bathymetric measurements of Lake Shortandy, Burabay National Nature Park. In Proc. Central Asia GIS Conference—GISCA “Geospatial Management of Land, Water and Resources” ( May 14–16, Tashkent) 44–48 (2015).56.Plokhikh, R. V. Ecological state of regions: Northern Kazakhstan. In Republic of Kazakhstan: Environment and Ecology Vol. 3 (eds Budnikova, T. I. et al.) (Institute of Geography, 2010).
    Google Scholar 
    57.Kumanbayeva, A. S., Khusainov, A. T. & Zhumaj, E. Ecological state of Lake Burabay, National State Park Burabay. Sci. News Kazakhstan 3, 171–178 (2019).
    Google Scholar 
    58.Sadchikov, A. P. Methods of Studying Freshwater Phytoplankton: A Manual (Universitet i shkola, 2003).
    Google Scholar 
    59.Sukhanova, I. N. Settling without the inverted microscope. In Phytoplankton Manual (ed. Sourina, A.) 97 (UNESCO, 1978).
    Google Scholar 
    60.Schwoerbel, J. Methods of Hydrobiology (Freshwater Biology) (Elsevier, 1970).
    Google Scholar 
    61.Xia, S., Cheng, Y. Y., Zhu, H., Liu, G. X. & Hu, Z. Y. Improved methodology for identification of Cryptomonads: Combining light microscopy and PCR amplification. J. Microbiol. Biotechnol. 23, 289–296 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.LeGresley, M. & McDermott, G. Counting chamber methods for quantitative phytoplankton—Haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. In Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis (eds Karlson, B. et al.) 25–30 (UNESCO, 2010).
    Google Scholar 
    63.Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).Article 

    Google Scholar 
    64.Sun, J. & Liu, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankton Res. 25, 1331–1346 (2003).Article 

    Google Scholar 
    65.Konoplya, B. I. & Soares, F. S. New geometric models for calculation of microalgal biovolume. Braz. Arch. Biol. Technol. 54, 527–534 (2011).Article 

    Google Scholar 
    66.Vadrucci, M. R., Mazziotti, C. & Fiocca, A. Cell biovolume and surface area in phytoplankton of Mediterranean transitional water ecosystems: Methodological aspects. Transit. Water. Bull. 7, 100–123 (2013).
    Google Scholar 
    67.Saccà, A. A simple yet accurate method for the estimation of the biovolume of planktonic microorganisms. PLoS ONE 11, e0151955 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Mirasbekov, Y. et al. Semi-automated classification of colonial Microcystis by FlowCam imaging flow cytometry in mesocosm experiment reveals high heterogeneity during a seasonal bloom. Sci. Rep. 11, 9377 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Aronesty, E. Comparison of sequencing utility programs. Open Bionforma J. 7, 1–8. https://doi.org/10.2174/1875036201307010001 (2013). (Accessed 6 May 2021)71.Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Padisák, J., Crossetti, L. O. & Naselli-Flores, L. Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia 621, 1–19 (2009).Article 

    Google Scholar 
    73.Lee, M. S. Y. A worrying systematic decline. Trends Ecol. Evol. 15, 346 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Kermarrec, L. et al. Next-generation sequencing to inventory taxonomic diversity in eukaryotic communities: A test for freshwater diatoms. Mol. Ecol. Resour. 13, 607–619 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Aylagas, E., Borja, Á., Irigoien, X. & Rodríguez-Ezpeleta, N. Benchmarking DNA metabarcoding for biodiversity-based monitoring and assessment. Front. Mar. Sci. 3, 96 (2016).
    Google Scholar 
    76.Bazin, P. et al. Phytoplankton diversity and community composition along the estuarine gradient of a temperate macrotidal ecosystem: Combined morphological and molecular approaches. PLoS ONE 9, e94110 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Edwards, D. L. & Knowles, L. L. Species detection and individual assignment in species delimitation: Can integrative data increase efficacy? Proc. R. Soc. B 281, 20132765 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Guillot, G., Renaud, S., Ledevin, R., Michaux, J. & Claude, J. A unifying model for the analysis of phenotypic, genetic, and geographic data. Syst. Biol. 61, 897–911 (2012).PubMed 
    Article 

    Google Scholar 
    79.Padial, J. M., Miralles, A., De la Riva, I. & Vences, M. The integrative future of taxonomy. Front. Zool. 7, 16 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).PubMed 
    Article 

    Google Scholar 
    81.Boopathi, T. & Ki, J.-S. Unresolved diversity and monthly dynamics of eukaryotic phytoplankton in a temperate freshwater reservoir explored by pyrosequencing. Mar. Freshw. Res. 67, 1680–1691 (2015).Article 

    Google Scholar 
    82.Kurmayer, R., Deng, L. & Entfellner, E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 54, 69–86 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Komárek, J. A polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. Eur. J. Phycol. 51, 346–353 (2016).Article 
    CAS 

    Google Scholar 
    84.Cellamare, M., Rolland, A. & Jacquet, S. Flow cytometry sorting of freshwater phytoplankton. J. Appl. Phycol. 22, 87–100 (2010).Article 

    Google Scholar 
    85.Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L. & Melo, S. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24, 417–428 (2002).Article 

    Google Scholar 
    86.Adl, S. M. et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399–451 (2005).PubMed 
    Article 

    Google Scholar 
    87.Adl, S. M. et al. The revised classification of eukaryotes. J. Eukaryot. Microbiol. 59, 429–493 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Komárek, J., Kaštovský, J., Mareš, J. & Johansen, J. R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86, 295–335 (2014).
    Google Scholar 
    89.Guiry, M. D. & Guiry, G. M. AlgaeBase (World-Wide Electronic Publication, National University of Ireland, 2019).
    Google Scholar  More

  • in

    Effect of EPSPS gene copy number and glyphosate selection on fitness of glyphosate-resistant Bassia scoparia in the field

    Seed sourceSeeds of a segregating GR B. scoparia population identified from a wheat field (45°54′54.76″N; 108°14′44.15″W) in 2013 in Hill County, Montana, USA (designated as MT009) were used. The field was under a continuous no-till wheat-fallow rotation for  > 8 years and had a history of repeated glyphosate use (at least 3 applications per year) for weed control during the summer fallow phase prior to winter wheat planting. The permission of land owner was obtained prior to B. scoparia seed collection. All experimental research and field studies on plants, including the collection of plant material complied with the Montana State University guidelines and state/US legislation. Seeds of the field-collected population were used to generate GS and GR B. scoparia subpopulations through recurrent group selection procedure as described below.Development of GS and GR subpopulationsField collected seeds of MT009 population were sown on the surface of plastic trays (53 by 35 by 10 cm) filled with commercial potting soil (VERMISOIL, Vermicrop Organics, 4265 Duluth Avenue, Rocklin, CA, USA) in a greenhouse in the fall of 2013 at the Montana State University Southern Agricultural Research Center (MSU-SARC) near Huntley, MT, USA. Growth conditions in greenhouse were maintained at 25/22 ± 2 °C day/night temperatures and 16/8 h day/night photoperiods supplemented with metal halide lamps (450 μmol m-2 s-1). After emergence, approximately 200 uniform seedlings were individually transplanted in plastic pots (10-cm diam) containing the same potting mixture and grown for 6 weeks. A set of three clones (3 shoot cuttings) from each plant were then prepared and transplanted in plastic pots (10-cm diam) as described by Kumar and Jha22. At the 8- to 10-cm height, all cloned seedlings were separately treated with 435 (0.5×), 870 (1×), and 1740 (2×) g ae ha−1 of glyphosate (Roundup Powermax, Bayer Crop Science, Saint Louis, MO, USA) where 1× = field-use rate of glyphosate. All three glyphosate treatments included ammonium sulfate (2% w/v). Glyphosate applications were made using a cabinet spray chamber (Research Track Sprayer, De Vries Manufacturing, RR 1 Box 184, Hollandale, MN, USA) equipped with an even flat-fan nozzle tip (Teejet 8001EXR, Spraying System Co., Wheaton, IL, USA), calibrated to deliver 140 L ha−1 of spray solution at 276 kPa. Treated seedlings were returned to the greenhouse, watered as needed, and fertilized [Miracle-Gro water soluble fertilizer (24-8-16), Scotts Miracle-Gro Products Inc., 14111 Scottslawn Road, Marysville, OH, USA] bi-weekly to maintain good plant growth. At 21 days after treatment, clones surviving the 2× rate of glyphosate were considered as ‘glyphosate-resistant (GR)’ and the clones that did not survive 1× rate of glyphosate were considered as ‘glyphosate-susceptible (GS)’. The parent B. scoparia plants corresponding to survived (resistant) or not-survived (susceptible) clones were transplanted separately in 20-L plastic pots (group of 3 to 4 plants pot−1) containing same potting soil for seed production. All 3- to 4 plants in each pot were collectively covered with a single pollination bag (DelStar Technologies, Inc., 601 Industrial drive, Middletown, DE, USA) prior to flower initiation to restrict cross-pollination between GR and GS plants. At maturity, seeds from the respective GR and GS parent plants were collected and cleaned separately using an air column blower. The collected seeds from GR plants were subjected to three generations of recurrent group selection with the 2× rate of glyphosate in each generation. Seeds of GS plants were also subjected to recurrent group selection for three generations without glyphosate. Progenies of the GS plants were grown and sprayed with 1× rate of glyphosate to confirm the susceptibility to glyphosate in each generation23. This procedure allowed the development of relatively genetically homogenous GR and GS subpopulations from within a single B. scoparia population.Determination of EPSPS gene copy numberPreviously established protocols were adopted to estimate the relative EPSPS gene copy number in seedlings of GR and GS subpopulations through quantitative real-time polymerase chain reaction (qPCR)16,17,18. The ALS gene was used as reference since the relative ALS gene copy number and transcript abundance did not vary across B. scoparia samples17,18,29. Relative EPSPS:ALS gene copy number is a ratio of EPSPS to ALS PCR product fluorescence. Due to small differences in amplicon size, qPCR run conditions, and fluorescence detection, the values presented were estimates of relative gene copy number29.A total of 600 seedlings from the GR (450 seedlings) and GS (150 seedlings) B. scoparia subpopulations (developed by recurrent group selection) were grown in a greenhouse at MSU-SARC near Huntley, MT, USA in 2015 and 2016 to select enough plants for the field study each year. At 4-to 6-cm height, young leaf tissues (100 mg) from each seedling were sampled, frozen with liquid nitrogen and ground into powder using mortar and pestle. Genomic DNA were extracted from the tissue samples using the protocol from Qiagen Dneasy plant mini kit (Qiagen Inc., Valencia, CA, USA). Genomic DNA quantity and quality were determined using a Smartspec Plus spectrophotometer (Bio-Rad Company, CA, USA) and gel electrophoresis with 1% agarose, respectively. High quality genomic DNA (260/280 ratio of ≥ 1.8) were used to determine the relative EPSPS gene copy number. Two sets of primers to amplify the EPSPS and ALS genes, the final reaction volume and reagents used for each qPCR reaction, and the qPCR conditions used in this study were the same as previously described by Kumar and Jha22. Each qPCR reaction was performed on a Bio-Rad 96-well PCR plate in triplicates and fluorescence was detected using CFX Connect Real-Time PCR detection system. A negative control consisting of 250 nM of each forward and reverse primer, 1× Perfecta SYBR Green supermix, and deionized water with no DNA template was included. The EPSPS genomic copy number relative to ALS gene was estimated by ΔCT method (ΔCT = CT, ALS-CT, EPSPS)18,29. The relative increase in the EPSPS gene copy number was calculated as 2ΔCT.Survival and fecundity traits of GR and GS B. scoparia subpopulationsSeedlings (4- to 6-cm tall) of GR and GS B. scoparia subpopulations with known EPSPS gene copy numbers were transplanted into a fallow field in the summer of 2015 and 2016 at the MSU-SARC near Huntley, MT, USA. All transplanted B. scoparia seedlings were equally spaced at 1.5 m apart from each other and all plants were fertilized biweekly [2 to 3 g of MIRACLE-GRO water soluble fertilizer (24-8-16)] and irrigated as and when needed to avoid moisture stress. Experiments were conducted with a factorial arrangement of treatments (Factor A and Factor B) in a randomized complete block design, with 6 replications. Each transplanted B. scoparia seedling was an experimental unit. The factor A (4 levels) was comprised of B. scoparia plants with 1, 2–4, 5–6, and ≥ 8 EPSPS gene copy numbers, which were categorized as susceptible, low, moderate, and highly resistant plants, respectively based on their percent visible injury response to glyphosate. The factor B (ten levels) was comprised of increasing rates of glyphosate applied as single or sequential applications. Current labels of glyphosate allow a total of 3954 g ae ha−1 in split POST applications in GR sugar beet. As per the label, the maximum glyphosate rate of 2214 g ae ha−1 is allowed from crop emergence to 8-leaf stage of sugar beet and 1740 g ae ha−1 of glyphosate from 8-leaf stage to canopy closure or 30 days prior to sugar beet harvest. Hence, the tested total glyphosate rates were 0, 108, 217, 435, 870, 1265, 1740 [870 followed by ( +) 870], 2214 [1265 + 949], 3084 [1265 + 949 + 870], and 3954 [1265 + 949 + 870 + 870] g ae ha−1 along with ammonium sulfate (2% w/v). Sequential applications were made at 7- to 14-day intervals, with first application at 8- to 10-cm tall B. scoparia seedlings using a CO2-operated backpack sprayer fitted with a single AIXR 8001 flat-fan nozzle calibrated to deliver 94 L ha−1. Glyphosate rates and applications timings were selected to simulate the 2-leaf, 6-leaf, 8–10 leaf, and the canopy closure stage of GR sugar beet.Data collectionPercent visible control (relative to the non-treated) on a scale of 0 to 100 (0 means no control and 100 means complete plant death30) for each individual plant (240 plants total each year) were assessed at 7, 14, and 21 days after glyphosate treatment. Data on number of days from transplanting to 50% flowering (half of the inflorescences from each plant were covered with visible flowers) and seed set (seeds on half of the inflorescences from each plant were turned brown) were recorded for an individual plant. Each plant was covered with a pollination bag (DelStar Technologies, Inc., 601 Industrial drive, Middletown, DE, USA) prior to flowering to prevent any cross-pollination. At the time of flowering, pollens from each survived plant were collected in early morning hours (between 8 to 10 am). At maturity, each individual plant was harvested and threshed to determine 1000-seed weight and seeds plant−1.Pollen and progeny seed viabilityPollens and seeds collected from individual B. scoparia plants (240 plants total each year) were tested for viability using a tetrazolium test. Pollens were collected in petri dishes by shaking the whole plant at the time of flowering. Four sub-samples of pollens from each petri dish were transferred into glass slides. The pollens in the glass slides were soaked with a tetrazolium chloride solution (10 g L−1), sealed with a cover slip using a nail polish and were incubated at room temperature for an hour. Viable (red) and non-viable pollens (yellow/white) were counted using a simple microscope. The physical structure of viable and non-viable pollens was also checked for any deformity using a compound microscope. Pollen viability for individual plants (240 plants total each year) was calculated as percent viable pollens of the total number of pollens counted.For seed viability test, twenty-five intact seeds collected from each individual plant (240 plants total each year) from the field were evenly placed in between two layers of filter papers (WHATMAN Grade 2, SigmaAldrich, St Louis, MO, USA) inside a 10-cm-diameter petri dish. Seeds were soaked with a 5-ml of distilled water and the filter papers were kept moist for the entire duration of the germination test. Light is not required for B. scoparia seed germination31, so the petri dishes were wrapped with a thin aluminum foil and placed inside an incubator (VMR International, Sheldon Manufacturing, Cornelius, OR, USA) with alternating day/night temperatures set to 20/25 °C23. Seeds with a visible uncoiled radicle tip longer than the seed diameter was considered germinated32,33. Radicle length was measured from three randomly selected germinated seeds 24 h after incubation to test the seedling vigor. The number of germinated seeds in each petri dish were counted daily until no further germination was observed for 10 consecutive days. Non-germinated seeds were tested for viability by soaking the seeds with tetrazolium chloride solution (10 g L−1) for 24 h23,34. Seeds with a red-stained embryo examined under a dissecting microscope (tenfold magnification) were considered viable35. Seed viability was expressed as the percentage of total viable seeds.Relative fitness (w)Fitness is the evolutionary potential for success of a genotype based on survival, competitive ability, and reproduction. Individuals with the greatest number of offspring and with the most genes contributing to the gene pool of a population are considered most fit genotypes36. Fitness of a genotype is determined by comparison of its vigor, productivity or competitiveness relative to the other genotype by quantifying specific traits such as seed dormancy, flowering date, seedling vigor, seed production, and other factors that can possibly influence the survival and reproductive success of a genotype36,37. In this study, relative fitness (w) of GR B. scoparia was calculated as the reproductive rate (seed production plant−1) of a resistant genotype (B. scoparia plants with 2–4, 5–6, and ≥ 8 EPSPS gene copies) relative to the maximum reproductive rate of the susceptible genotype (B. scoparia plants with 1 EPSPS gene copy) in the population. The relative fitness (w) of susceptible plants was assumed to be one.Statistical analysesA natural logarithm transformation was performed on data for time to 50% flowering, time to seed set, seeds plant−1. An arcsine square root transformation was performed on data for pollen viability, visible control, seed viability, and relative fitness (w) before subjecting to analysis of variance, however all data were presented in their back-transformed values. No transformation was needed for 1000-seed weight and radicle length data. Experimental year, B. scoparia plants with different EPSPS copy number groups, glyphosate rate, and their interactions were considered fixed effects and replication nested within a year was considered as a random effect in the model. Data on percent visible control, time to 50% flowering, pollen viability, time to seed set, 1000-seed weight, and seeds plant−1, seed viability and radicle length were subjected to ANOVA using Proc Mixed in SAS (SAS version 9.4, SAS Institute, Cary, NC, USA) to test the significance of experimental run, treatment factors, and interactions. The ANOVA assumptions for normality of residuals and homogeneity of variance were tested using Proc Univariate and PROC GLM in SAS. Means were separated using Tukey–Kramer’s HSD with α = 0.05. Furthermore, data on percent visible control and seeds plant-1 for each group of B. scoparia plants with different EPSPS gene copy number were regressed against total glyphosate rates using a four-parameter log-logistic model Eq. (1)38,39:$$Y=c+{d-c/{1+mathrm{exp}[bleft(mathrm{log}left(xright)-mathrm{log}left(ED50right)right)]}$$
    (1)
    where Y is the percent visible control or seed production plant−1 (% of nontreated); d is the upper asymptote (the highest estimated % control or % seed reduction); c is the lower asymptote (the lowest estimated % control or % seed reduction); ED50 is the effective rate of glyphosate needed to achieve 50% control or 50% reduction in seed production; and b denotes the slope around the inflection point “ED50.” Slope parameter (b) indicates the response rate of each group of B. scoparia plants with different EPSPS gene copy number to glyphosate rates (i.e., a slope with a large negative value suggests a rapid response of selected B. scoparia group). The Akaike Information Criterion (AIC) was used to select the nonlinear four-parameter model. A lack-of-fit test (P  > 0.10) was used to confirm that the nonlinear regression model Eq. (1) described the response data for each B. scoparia group38. Parameter estimates, ED90, and SR99 values (i.e. effective rate required for 90% control or effective rate required for 99% reduction in seed production) for each group of B. scoparia plants with different EPSPS gene copy number were determined using the ‘drc’ package in R software37,39. Parameter estimates of B. scoparia groups were compared using the approximate t-test with the ‘compParm’ and ‘EDcomp’ functions in the ‘drc’ package of the R software39,40. More

  • in

    Social communication activates the circadian gene Tctimeless in Tribolium castaneum

    1.Boyer, S., Zhang, H. & Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 102, 213–229 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Perez-Mendoza, J., Campbell, J. & Throne, J. Influence of age, mating status, sex, quantity of food, and long-term food deprivation on red four beetle (Coleoptera: Tenebrionidae) fight initiation. J. Econ. Entomol. 104, 2078–2086 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Ahmad, F., Ridley, A., Daglish, G. J., Burrill, P. R. & Walter, G. H. Response of Tribolium castaneum and Rhyzopertha dominica to various resources, near and far from grain storage. J. Appl. Entomol. 137, 773–781 (2013).Article 

    Google Scholar 
    4.Ridley, A. W. et al. The spatiotemporal dynamics of Tribolium castaneum (Herbst): adult flight and gene flow. Mol. Ecol. 20, 1635–1646 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Suzuki, T. & Sugawara, R. Isolation of an aggregation pheromone from the flour beetles, Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae). J. Appl. Entomol. 14, 228–230 (1979).CAS 

    Google Scholar 
    6.Suzuki, T. 4,8-Dimethyldecanal: the aggregation pheromone of the flour beetles, Tribolium castaneum and T. confusum (Coleoptera: Tenebrionidae). Agric. Biol. Chem. 44, 2519–2520 (1980).CAS 

    Google Scholar 
    7.Suzuki, T. A facile synthesis of 4, 8-dimethyldecanal, aggregation pheromone of flour beetles and its analogues. Agric. Biol. Chem. 45, 2641–2643 (1981).CAS 

    Google Scholar 
    8.Suzuki, T., Kozaki, J., Sugawara, R. & Mori, K. Biological activities of the analogs of the aggregation pheromone of Tribolium castaneum (Coleoptera: Tenebrionidae). Appl. Entomol. Zool. 19, 15–20 (1984).CAS 
    Article 

    Google Scholar 
    9.Oerke, E. C. & Dehne, H. W. Safeguarding production—losses in major crops and the role of crop protection. Crop. Protect. 23, 275–285 (2004).Article 

    Google Scholar 
    10.Fan, J., Zhang, T., Bai, S., Wang, Z. & He, K. Evaluation of Bt corn with pyramided genes on efficacy and Insect resistance management for the Asian corn borer in China. PLoS ONE 11, e0168442 (2016).Article 
    CAS 

    Google Scholar 
    11.He, K. et al. Efficacy of transgenic Bt cotton for resistance to the Asian corn borer (Lepidoptera: Crambidae). Crop. Protect. 25, 167–173 (2006).CAS 
    Article 

    Google Scholar 
    12.Koutroumpa, F. A. & Jacquin-Joly, E. Sex in the night: Fatty acid derived sex pheromones and corresponding membrane pheromone receptors in insects. Biochimie 107, 15–21 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Harari, A.R., Sharon, R. & Weintraub, P.G. Manipulation of insect reproductive systems as a tool in pest control. In Advances in insect control and resistance management. 93–119 Springer, Cham, (2016).14.Hussain, A. Chemical ecology of Tribolium castaneum Herbst (Coleoptera: Tenebrionidae): Factors affecting biology and application of pheromone. Dissertation, Oregon State University (1993).15.Liebhold, A. M. & Tobin, P. C. Population ecology of insect invasions and their management. Annu. Rev. Entomol. 53, 387–408 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Levinson, H. Z. & Mori, K. Chirality determines pheromone activity for flour beetles. Naturwissenschaften 70, 190–192 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Olsson, P. O. C. et al. Male-produced sex pheromone in Tribolium confusum: Behavior and investigation of pheromone production locations. J. Stored. Prod. Res. 42, 173–182 (2006).Article 
    CAS 

    Google Scholar 
    18.Duehl, A. J., Arbogast, R. T. & Teal, P. E. Age and sex related responsiveness of Tribolium castaneum (Coleoptera: Tenebrionidae) in novel behavioral bioassays. Environ. Entomol. 40, 82–87 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Verheggen, F. et al. Electrophysiological and behavioral activity of secondary metabolites in the confused flour beetle Tribolium confusum. J. Chem. Ecol. 33, 525–539 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Obeng-Ofori, D. & Coaker, T. H. Some factors affecting responses of four stored product beetles (Coleoptera: Tenebrionidae & Bostrichidae) to pheromones. Bull. Entomol. Res. 80, 433–441 (1990).Article 

    Google Scholar 
    21.Obeng-Ofori, D. & Coaker, T. Tribolium aggregation pheromone: Monitoring, range of attraction and orientation behavior of T. castaneum (Coleoptera: Tenebrionidae). Bull. Entomol. Res. 80, 443–451 (1990).Article 

    Google Scholar 
    22.Saunders, D. S. Insect circadian rhythms and photoperiodism. Invert. Neurosci. 3, 155–164 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Beer, K. & Helfrich-Förster, C. Model and non-model insects in chronobiology. Front. Behav. Neurosci. 14, 601676 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Li, C. J., Yun, X. P., Yu, X. J. & Li, B. Functional analysis of the circadian clock gene timeless in Tribolium castaneum. Insect Sci. 25, 418–428 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Yuan, Q., Metterville, D., Briscoe, A. D. & Reppert, S. M. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24, 948–955 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hideharu, N., Yosuke, M. & Tomoko, I. Common features in diverse insect clocks. Zool. Lett. 1, 1–17 (2015).Article 

    Google Scholar 
    27.Yujie, L. et al. Anatomical localization and stereoisomeric composition of Tribolium castaneum aggregation pheromones. Naturwissenschaften 98, 755 (2011).Article 
    CAS 

    Google Scholar 
    28.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods 25, 402–408 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Bates, D., Mächler, M., Bolker, S. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2014).
    Google Scholar 
    30.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Software. 82, 1–26 (2017).Article 

    Google Scholar 
    31.Barton, K. MuMIn: Multi-Model Inference. R package version 1.15.6. https://CRAN.R-project.org/package=MuMIn (2016).32.Hughes, M. E., Hogenesch, J. B. & Kornacker, K. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J. Biol. Rhythms. 25, 372–380 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Swihart, B. et al. R package version 1.1.2. https://CRAN.R-project.org/package=repeated (2019).34.Levine, J. D., Funes, P., Dowse, H. B. & Hall, J. C. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298, 2010–2012 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Krupp, J. J. et al. Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr. Biol. 18, 1373–1383 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Holman, L., Trontti, K. & Helanterä, K. Queen pheromones modulate DNA methyltransferase activity in bee and ant workers. Biol. Lett. 12, 2015103 (2016).Article 
    CAS 

    Google Scholar 
    37.Holman, L., Helanterä, H., Trontti, K. & Mikheyev, A. S. Comparative transcriptomics of social insect queen pheromones. Nat. Commun. 10, 159 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    38.Grozinger, C. M., Sharabash, N. M., Whitfield, C. W. & Robinson, G. E. Pheromone mediated gene expression in the honeybee brain. Proc. Natl. Acad. Sci. USA 100, 14519–14525 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Wanner, K. W. A honey bee odorant receptor for the queen substance 9-oxo-2- decenoic acid. Proc. Natl. Acad. Sci. USA 104, 14383–14388 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Beggs, K. T. et al. Queen pheromone modulates brain dopamine function in worker honey bees. Proc. Natl. Acad. Sci. USA 104, 2460–2464 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Ma, R., Rangel, J. & Grozinger, C. M. Honey bee (Apis mellifera) larval pheromones may regulate gene expression related to foraging task specialization. BMC Genom. 20, 592 (2019).Article 
    CAS 

    Google Scholar 
    42.Alaux, C. & Robinson, G. E. Alarm pheromone induces immediate-early gene expression and slow behavioral response in honey bees. J. Chem. Ecol. 33, 1346–1350 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.O’ceallachain, D. P. & Ryan, M. F. Production and perception of pheromones by the beetle Tribolium confusum. J. Insect Physiol. 23, 1303–1309 (1977).CAS 
    Article 

    Google Scholar 
    44.Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271–290 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Zhang, T. et al. Male- and female-biased gene expression of olfactory-related genes in the antennae of Asian corn borer Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae). PLoS ONE 10, 0128550 (2015).
    Google Scholar 
    46.Balakrishnan, K., Holighaus, G., Weißbecker, B. & Schütz, S. Electroantennographic responses of red flour beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) to volatile organic compounds. J. Appl. Entomol. 141, 477–486 (2017).CAS 
    Article 

    Google Scholar 
    47.Webb, I. C., Antle, M. C. & Mistlberger, R. E. Regulation of circadian rhythms in mammals by behavioral arousal. Behav. Neurosci. 128, 304 (2014).PubMed 
    Article 

    Google Scholar 
    48.Angelousi, A. et al. Clock genes alterations and endocrine disorders. Eur. J. Clin. Invest. 48, 12927 (2018).Article 
    CAS 

    Google Scholar 
    49.Silvegren, G., Löfstedt, C. & Rosén, W. Q. Circadian mating activity and effect of pheromone pre-exposure on pheromone response rhythms in the moth Spodoptera littoralis. J. Insect. Phys. 51, 277–286 (2005).CAS 
    Article 

    Google Scholar 
    50.Lam, V. H. & Chiu, V. C. Evolution and design of invertebrate circadian clocks. Oxford Handbook Invertebrate Neurobiol. https://doi.org/10.1093/oxfordhb/9780190456757.013.25 (2018).Article 

    Google Scholar 
    51.Chiba, Y., Cutkomp, L. K. & Halberg, F. Circadian oxygen consumption rhythm of the flour beetle Tribolium confusum. J. Insect. Physiol. 19, 2163–2172 (1973).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Rafter, M. A. Behavior in the presence of resource excess—flight of Tribolium castaneum around heavily-infested grain storage facilities. J. Pest. Sci. 92, 1227–1238 (2019).Article 

    Google Scholar 
    53.Harano, T. & Miyatake, T. Genetic basis of incidence and period length of circadian rhythm for locomotor activity in populations of a seed beetle. Heredity 105, 268–273 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Cheng, Y. & Hardin, P. E. Drosophila photoreceptors contain an autonomous circadian oscillator that can function without period mRNA cycling. J. Neurosci. 18, 741–750 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Short, C. A., Meuti, M. E., Zhang, Q. & Denlinger, D. L. Entrainment of eclosion and preliminary ontogeny of circadian clock gene expression in the flesh fly Sarcophaga crassipalpis. J. Insect Physiol. 93, 28–35 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    56.Wexler, Y. et al. Mating alters the link between movement activity and pattern in the red flour beetle: the effects of mating on behavior. Physiol. Entomol. 42, 299–306 (2017).ADS 
    Article 

    Google Scholar 
    57.Gottlieb, D. Agro-chronobiology: Integrating circadian clocks/time biology into storage management. J. Stored. Prod. Res. 82, 9–16 (2019).Article 

    Google Scholar  More

  • in

    From individual to population level: Temperature and snow cover modulate fledging success through breeding phenology in greylag geese (Anser anser)

    1.Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. 37, 637–669 (2006).Article 

    Google Scholar 
    3.Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5(6), e157. https://doi.org/10.1371/journal.pbio.0050157 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Visser, M. E., te Marvelde, L. & Lof, M. E. Adaptive phenological mismatches of birds and their food in a warming world. J. Ornithol. 153, 75–84. https://doi.org/10.1007/s10336-011-0770-6 (2012).Article 

    Google Scholar 
    5.Miller-Rushing, A., Primack, R. & Bonney, R. The history of public participation in ecological research. Front. Ecol. Environ. 10, 285–290. https://doi.org/10.1890/110278 (2012).Article 

    Google Scholar 
    6.Zohner, C. M. Phenology and the city. Nat. Ecol. Evol. 3, 1618–1619. https://doi.org/10.1038/s41559-019-1043-7 (2019).Article 
    PubMed 

    Google Scholar 
    7.Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. Lond. B 272, 2561–2569. https://doi.org/10.1098/rspb.2005.3356 (2005).Article 

    Google Scholar 
    8.Visser, M. E., Holleman, L. J. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172. https://doi.org/10.1007/s00442-005-0299-6 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    9.Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: Constraints or adaptations?. J. Anim. Ecol. 78, 73–83. https://doi.org/10.1111/j.1365-2656.2008.01458.x (2009).Article 
    PubMed 

    Google Scholar 
    10.Renner, S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182. https://doi.org/10.1146/annurev-ecolsys-110617-062535 (2018).Article 

    Google Scholar 
    11.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Sekercioglu, C. H., Schneider, S. H., Fay, J. P. & Loarie, S. R. Climate change, elevational range shifts, and bird extinctions. Conserv. Biol. 22, 140–150. https://doi.org/10.1111/j.1523-1739.2007.00852.x (2008).Article 
    PubMed 

    Google Scholar 
    13.Wingfield, J. C. et al. Putting the brakes on reproduction: Implications for conservation, global climate change and biomedicine. Gen. Comp. Endocrinol. 227, 16–26. https://doi.org/10.1016/j.ygcen.2015.10.007 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.La Sorte, F. A. & Thompson, F. R. Poleward shifts in winter ranges of North American birds. Ecology 88(7), 1803–1812. https://doi.org/10.1890/06-1072.1 (2007).Article 
    PubMed 

    Google Scholar 
    15.Visser, M. E., Perdeck, A. C., van Balen, J. H. & Both, C. Climate change leads to decreasing bird migration distances. Glob. Change Biol. 15(8), 1859–1865. https://doi.org/10.1111/j.1365-2486.2009.01865.x (2009).ADS 
    Article 

    Google Scholar 
    16.Teplitsky, C., Mills, J. A., Alho, J. S., Yarrall, J. W. & Merilä, J. Bergmann’s rule and climate change revisited: Disentangling environmental and genetic responses in a wild bird population. PNAS 105(36), 13492–13496. https://doi.org/10.1073/pnas.0800999105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Husby, A., Visser, M. E. & Kruuk, L. E. B. Speeding up microevolution: The effects of increasing temperature on selection and genetic variance in a wild bird population. PLoS Biol. 9(2), e1000585. https://doi.org/10.1371/journal.pbio.1000585 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Jenni, L. & Kéry, M. Timing of autumn bird migration under climate change: Advances in long–distance migrants, delays in short–distance migrants. Proc. R. Soc. Lond. B. 270, 1467–1471. https://doi.org/10.1098/rspb.2003.2394 (2003).Article 

    Google Scholar 
    19.Van Buskirk, J., Mulvihill, R. S. & Leberman, R. C. Variable shifts in spring and autumn migration phenology in North American songbirds associated with climate change. Glob. Change Biol. 15, 760–771. https://doi.org/10.1111/j.1365-2486.2008.01751.x (2009).ADS 
    Article 

    Google Scholar 
    20.Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Rev. Ecol. Evol. Syst. 44, 367–368 (2013).Article 

    Google Scholar 
    21.Kubelka, V. et al. Global pattern of nest predation is disrupted by climate change in shorebirds. Science 362, 680–683 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Altmann, J., Alberts, S. C., Altmann, S. A. & Roy, S. B. Dramatic change in local climate patterns in the Amboseli basin, Kenya. Afr. J. Ecol. 40, 248–251. https://doi.org/10.1046/j.1365-2028.2002.00366.x (2002).Article 

    Google Scholar 
    23.Charmantier, A. R. H. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803. https://doi.org/10.1126/science.1157174 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Balbontin, J. et al. Individual responses in spring arrival date to ecological conditions during winter and migration in a migratory bird. J. Anim. Ecol. 78, 981–989. https://doi.org/10.1111/j.1365-2656.2009.01573.x (2009).Article 
    PubMed 

    Google Scholar 
    25.Clermont, J., Réale, D. & Giroux, J.-F. Plasticity in laying dates of Canada Geese in response to spring phenology. Ibis 160, 597–607. https://doi.org/10.1111/ibi.12560 (2018).Article 

    Google Scholar 
    26.Price, T., Kirkpatrick, M. & Arnold, S. J. Directional selection and the evolution of breeding date in birds. Science 240, 798–799. https://doi.org/10.1126/science.3363360 (1988).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Rausher, M. D. The measurement of selection on quantitative traits: Biases due to environmental covariances between traits and fitness. Evolution 46, 616–626. https://doi.org/10.1111/j.1558-5646.1992.tb02070.x (1991).Article 

    Google Scholar 
    28.Bonier, F. & Martin, P. R. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology. Proc. R. Soc. B 283, 20161887. https://doi.org/10.1098/rspb.2016.1887 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Sauve, D., Divoky, G. & Friesen, V. L. Phenotypic plasticity or evolutionary change? An examination of the phenological response of an arctic seabird to climate change. Funct. Ecol. 33, 2180–2190. https://doi.org/10.1111/1365-2435.13406 (2019).Article 

    Google Scholar 
    30.Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B 281, 20141097. https://doi.org/10.1098/rspb.2014.1097 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Lameris, T. K. et al. Climate warming may affect the optimal timing of reproduction for migratory geese differently in the low and high Arctic. Oecologia 191, 1003–1014. https://doi.org/10.1007/s00442-019-04533-7 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Bonamour, S., Chevin, L.-M., Charmantier, A. & Teplitsky, C. Phenotypic plasticity in response to climate change: The importance of cue variation. Phil. Trans. R. Soc. B 374, 20180178. https://doi.org/10.1098/rstb.2018.0178 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Ball, G. F. & Ketterson, E. D. Sex differences in the response to environmental cues regulating seasonal reproduction in birds. Philos. Trans. R. Soc. B 36, 3231–3246. https://doi.org/10.1098/rstb.2007.2137 (2007).Article 

    Google Scholar 
    34.Dunn, P. O. & Winkler, D. W. Effects of climate change on timing of breeding and reproductive success in birds. In Effects of Climate Change on Birds (eds Møller, A. P. et al.) 113–128 (Oxford University Press, 2010).
    Google Scholar 
    35.Shutt, J. D. et al. The environmental predictors of spatio-temporal variation in the breeding phenology of a passerine bird. Proc. R. Soc. B 286(1908), 20190952. https://doi.org/10.1098/rspb.2019.0952 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60. https://doi.org/10.1038/nature01333 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Dunn, P. Breeding dates and reproductive performance. Adv. Ecol. Res. 35, 69–87. https://doi.org/10.1016/S0065-2504(04)35004-X (2004).Article 

    Google Scholar 
    38.Dunn, P. O. & Winkler, D. W. Climate change has affected the breeding date of tree swallows throughout North America. Proc. R. Soc. Lond. B. 266, 2487–2490. https://doi.org/10.1098/rspb.1999.0950 (1999).CAS 
    Article 

    Google Scholar 
    39.Visser, M. E., Both, C. & Lambrechts, M. M. Global climate change leads to mistimed avian reproduction. Adv. Ecol. Res. 35, 89–110. https://doi.org/10.1016/S0065-2504(04)35005-1 (2004).Article 

    Google Scholar 
    40.Both, C., Bijlsma, R. G. & Visser, M. Climatic effects on timing of spring migration and breeding in a long-distance migrant, the pied flycatcher Ficedula hypoleuca. J. Avian Biol. 36, 368–373. https://doi.org/10.1111/j.0908-8857.2005.03484.x (2005).Article 

    Google Scholar 
    41.D’Alba, L., Monaghan, P. & Neger, R. G. Advances in laying date and increasing population size suggest positive responses to climate change in Common Eiders Somateria mollissima in Iceland. Ibis 152, 19–28. https://doi.org/10.1111/j.1474-919X.2009.00978.x (2009).Article 

    Google Scholar 
    42.Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of timing of breeding in birds: Date effects in the course of a reproductive episode. J. Avian Biol. 41, 282–291. https://doi.org/10.1111/j.1600-048X.2009.04865.x (2010).Article 

    Google Scholar 
    43.Sumasgutner, P., Tate, G. J., Koeslag, A. & Amar, A. Family morph matters: Factors determining survival and recruitment in a long-lived polymorphic raptor. J. Anim. Ecol. 85, 1043–1055. https://doi.org/10.1111/1365-2656.12518 (2016).Article 
    PubMed 

    Google Scholar 
    44.Harriman, V. B., Dawson, R. D., Bortolotti, L. E. & Clark, R. G. Seasonal patterns in reproductive success of temperate-breeding birds: Experimental tests of the date and quality hypotheses. Ecol. Evol. 7, 2122–2132. https://doi.org/10.1002/ece3.2815 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Perrins, C. M. The timing of birds’ breeding seasons. Ibis 112(2), 242–255. https://doi.org/10.1111/j.1474-919X.1970.tb00096.x (1970).Article 

    Google Scholar 
    46.Verhulst, S. & Nilsson, J. -Å. The timing of birds’ breeding seasons: A review of experiments that manipulated timing of breeding. Philos. Trans. R. Soc. B 363, 399–410. https://doi.org/10.1098/rstb.2007.2146 (2008).Article 

    Google Scholar 
    47.van de Pol, M. & Wright, J. A simple method for distinguishing within-versus between-subject effects using mixed models. Anim. Behav. 77, 753–758. https://doi.org/10.1016/j.anbehav.2008.11.006 (2009).Article 

    Google Scholar 
    48.Drent, R. & Daan, S. The prudent parent: Energetic adjustments in avian breeding. Ardea 68, 225–252 (1980).
    Google Scholar 
    49.Forslund, P. & Pärt, T. Age and reproduction in birds—hypotheses and tests. TREE 10, 374–378. https://doi.org/10.1016/S0169-5347(00)89141-7 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Sergio, F., Blas, J., Forero, M. G., Donzar, J. A. & Hiraldo, F. Sequential settlement and site dependence in a migratory raptor. Behav. Ecol. 18, 811–821. https://doi.org/10.1093/beheco/arm052 (2007).Article 

    Google Scholar 
    51.Lorenz, K. Here I Am–Where Are You? (Hartcourt Brace Jovanovich, 1991).
    Google Scholar 
    52.Frigerio, D., Dittami, J., Möstl, E. & Kotrschal, K. Excreted corticosterone metabolites co-vary with ambient temperature and air pressure in male Greylag geese (Anser anser). Gen. Comp. Endocrinol. 137, 29–36 (2004).CAS 
    Article 

    Google Scholar 
    53.Hemetsberger, J. Populationsbiologische Aspekte der Grünauer Graugansschar (Anser anser). PhD Thesis (University of Vienna, 2002).54.Lepage, D., Gauthier, G. & Reed, A. Seasonal variation in growth of greater snow goose goslings: The role of food supply. Oecologia 114, 226–235. https://doi.org/10.1007/s004420050440 (1998).ADS 
    Article 
    PubMed 

    Google Scholar 
    55.Lepage, D., Gauthier, G. & Menu, S. Reproductive consequences of egg-laying decisions in snow geese. J. Anim. Ecol. 69, 414–427. https://doi.org/10.1046/j.1365-2656.2000.00404.x (2000).Article 

    Google Scholar 
    56.Rozenfeld, S. B. & Sheremetiev, I. S. Barnacle Goose (Branta leucopsis) feeding ecology and trophic relationships on Kolguev Island: The usage patterns of nutritional resources in tundra and seashore habitats. Biol. Bull. Russ. Acad. Sci. 41, 645–656. https://doi.org/10.1134/S106235901408007X (2014).Article 

    Google Scholar 
    57.Iles, D. T., Rockwell, R. F. & Koons, D. N. Reproductive success of a keystone herbivore is more variable and responsive to climate in habitats with lower resource diversity. J. Anim. Ecol. 87, 1182–1191. https://doi.org/10.1111/1365-2656.12837 (2018).Article 
    PubMed 

    Google Scholar 
    58.Del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World, Vol. 1, No. 8 (Lynx edicions, 1992).59.Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. B 372, 20160135. https://doi.org/10.1098/rstb.2016.0135 (2017).Article 

    Google Scholar 
    60.Acquaotta, F., Fratianni, S. & Garzena, D. Temperature changes in the North-Western Italian Alps from 1961 to 2010. Theor. Appl. Climatol. 122(3–4), 619–634. https://doi.org/10.1007/s00704-014-1316-7 (2014).ADS 
    Article 

    Google Scholar 
    61.Angilletta, M. J. Jr. & Sears, M. W. Coordinating theoretical and empirical efforts to understand the linkages between organisms and environments. Integr. Comp. Biol. 51(5), 653–661. https://doi.org/10.1093/icb/icr091 (2011).Article 
    PubMed 

    Google Scholar 
    62.Lack, D. Ecological Adaptations for Breeding in Birds (Methuen, 1968).
    Google Scholar 
    63.Rowe, L., Ludwig, D. & Schluter, D. Time, condition, and the seasonal decline of avian clutch size. Am. Nat. 143, 698–722. https://doi.org/10.1086/285627 (1994).Article 

    Google Scholar 
    64.Drent, R. H. The timing of birds’ breeding seasons: The Perrins hypothesis revisited especially for migrants. Ardea 94, 305–322 (2006).
    Google Scholar 
    65.Prop, J. & de Vries, J. Impact of snow and food conditions on the reproductive performance of Barnacle Geese Branta leucopsis. Ornis Scand. 24, 110–121 (1993).Article 

    Google Scholar 
    66.Eichhorn, G., van der Jeugd, H. P., Meijer, H. A. J. & Drent, R. H. Fueling Incubation: Differential use of body stores in Arctic and temperate-breeding Barnacle Geese (Branta leucopsis). Auk 127, 162–172. https://doi.org/10.1525/auk.2009.09057 (2010).Article 

    Google Scholar 
    67.Newton, I. The role of food in limiting bird numbers. Ardea 68, 11–30. https://doi.org/10.5253/arde.v68.p11 (1980).Article 

    Google Scholar 
    68.Daunt, F., Wanless, S., Harris, M. & Monaghan, P. Experimental evidence that age-specific reproductive success is independent of environmental effects. Proc. R. Soc. B 266(1427), 1489–1493. https://doi.org/10.1098/rspb.1999.0805 (1999).Article 
    PubMed Central 

    Google Scholar 
    69.Chastel, O., Weimerskirch, H. & Jouventin, P. Body condition and seabird reproductive performance: A study of three petrel species. Ecology 76(7), 2240–2246. https://doi.org/10.2307/1941698 (1995).Article 

    Google Scholar 
    70.Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 68(5), 940–950. https://doi.org/10.1046/j.1365-2656.1999.00343.x (1999).Article 

    Google Scholar 
    71.Franco, A. M. A. et al. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Glob. Change Biol. 12(8), 1545–1553. https://doi.org/10.1111/j.1365-2486.2006.01180.x (2006).ADS 
    Article 

    Google Scholar 
    72.Heard, M. J., Riskin, S. H. & Flight, P. A. Identifying potential evolutionary consequences of climate-driven phenological shifts. Evol. Ecol. 26(3), 465–473. https://doi.org/10.1007/s10682-011-9503-9 (2012).Article 

    Google Scholar 
    73.McLean, N., Lawson, C. R., Leech, D. I. & van de Pol, M. Predicting when climate-driven phenotypic change affects population dynamics. Ecol. Lett. 19(6), 595–608. https://doi.org/10.1111/ele.12599 (2016).Article 
    PubMed 

    Google Scholar 
    74.Martay, B. et al. Impacts of climate change on national biodiversity population trends. Ecography 40, 1139–1151. https://doi.org/10.1111/ecog.02411 (2017).Article 

    Google Scholar 
    75.Cunningham, S. J., Madden, C. F., Barnard, P. & Amar, A. Electric crows: Powerlines, climate change and the emergence of a native invader. Divers. Distrib. 22, 17–29. https://doi.org/10.1111/ddi.12381 (2016).Article 

    Google Scholar 
    76.Gienapp, P. & Brommer, J. E. Evolutionary dynamics in response to climate change. In Quantitative Genetics in the Wild, 254–273 (Oxford University Press, 2014)77.Tombre, I. M., Erikstad, K. E. & Bunes, V. State-dependent incubation behaviour in the high arctic barnacle geese. Polar Biol. 35, 985–992. https://doi.org/10.1007/s00300-011-1145-4 (2012).Article 

    Google Scholar 
    78.Poussart, C., Gauthier, G. & Larochelle, J. Incubation behaviour of greater snow geese in relation to weather conditions. Can. J. Zool. 79(4), 671–678. https://doi.org/10.1139/z01-023 (2001).Article 

    Google Scholar 
    79.Lamprecht, J. Predicting current reproductive success of goose Pairs Anser indicus from male and female reproductive history. Ethology 85, 123–131 (1990).Article 

    Google Scholar 
    80.Daunt, F., Wanless, S., Harris, M. P., Money, L. & Monaghan, P. Older and wiser: Improvements in breeding success are linked to better foraging performance in European shags. Funct. Ecol. 21, 561–567. https://doi.org/10.1111/j.1365-2435.2007.01260.x (2007).Article 

    Google Scholar 
    81.Sæther, B.-E. Age-specific variation in reproductive performance of birds. Curr. Ornithol. 7, 251–283 (1990).
    Google Scholar 
    82.Goutte, A., Antoine, E., Weimerskirch, H. & Chastel, O. Age and the timing of breeding in a long-lived bird: A role for stress hormones?. Funct. Ecol. 24, 1007–1016. https://doi.org/10.1111/j.1365-2435.2010.01712.x (2010).Article 

    Google Scholar 
    83.Szipl, G. et al. Parental behaviour and family proximity as key to reproductive success in Greylag geese (Anser anser). J. Ornithol. 160, 473. https://doi.org/10.1007/s10336-019-01638-x (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Fletcher, Q. E. & Selman, C. Aging in the wild: Insights from free-living and non-model organisms. Exp. Gerontol. 71, 1–3. https://doi.org/10.1016/j.exger.2015.09.015 (2015).Article 
    PubMed 

    Google Scholar 
    85.Newton, I. & Rothery, P. Senescence and reproductive value in sparrowhawks. Ecology 78, 1000–1008. https://doi.org/10.1890/0012-9658(1997)078[1000:SARVIS]2.0.CO;2() (1997).Article 

    Google Scholar 
    86.Van de Pol, M. & Verhulst, S. Age-dependent traits: A new statistical model to separate within- and between-individual effects. Am. Nat. 167, 766–773. https://doi.org/10.1086/503331 (2006).Article 
    PubMed 

    Google Scholar 
    87.Schoech, S. J. & Hahn, T. P. Food supplementation and timing of reproduction: Does the responsiveness to supplementary information vary with latitude?. J. Ornithol. 148, 625–632. https://doi.org/10.1007/s10336-007-0177-6 (2007).Article 

    Google Scholar 
    88.Lameris, T. K. et al. Arctic geese tune migration to a warming climate but still suffer from a phenological mismatch. Curr. Biol. 28(15), 2467-2473.e4. https://doi.org/10.1016/j.cub.2018.05.077 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    89.Samplonius, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob Change Biol. 24, 3780–3790. https://doi.org/10.1111/gcb.14160 (2018).ADS 
    Article 

    Google Scholar 
    90.Both, C. & Visser, M. E. Adjustment to climate change is constrained by arrival date in a long-distance migrant bird. Nature 411, 296–298. https://doi.org/10.1038/35077063 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    91.Phillimore, A. B., Leech, D. I., Pearce-Higgins, J. W. & Hadfield, J. D. Passerines may be sufficiently plastic to track temperature-mediated shifts in optimum lay date. Glob. Change Biol. 22, 3259–3272. https://doi.org/10.1111/gcb.13302 (2016).ADS 
    Article 

    Google Scholar 
    92.Hemetsberger, J., Weiß, B. M. & Scheiber, I. B. R. Greylag geese: from general principles to the Konrad Lorenz flock. In The social life of Greylag Geese. Patterns, Mechanisms and Evolutionary Function in an Avian model System (eds Scheiber, I. B. R. et al.) 3–25 (Cambridge University Press, 2013).Chapter 

    Google Scholar 
    93.Scheiber, I. B. R. “Tend and befriend”: the importance of social allies in coping with social stress. In The Social Life of Greylag Geese. Patterns, Mechanisms and Evolutionary Function in an Avian Model System (eds Scheiber, I. B. R. et al.) 3–25 (Cambridge University Press, 2013).Chapter 

    Google Scholar 
    94.R Development Core Team. A Language and Environment for Statistical Computing. R version 4.1.0 (R Foundation for Statistical Computing, 2021).
    Google Scholar 
    95.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. (B) 73, 3–36 (2011).MathSciNet 
    Article 

    Google Scholar 
    96.Wood, S. N. Thin-plate regression splines. J. R. Stat. Soc. (B) 65, 95–114 (2003).MathSciNet 
    Article 

    Google Scholar 
    97.Zuur, A. F., Ieno, E. N. & Freckleton, R. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645. https://doi.org/10.1111/2041-210x.12577 (2016).Article 

    Google Scholar 
    98.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).Article 

    Google Scholar 
    99.Cribari-Neto, F. & Zeileis, A. Beta regression in R. J. Stat. Soft. 34(2), 1–24 (2010).Article 

    Google Scholar 
    100.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).
    Google Scholar 
    101.Fox, J. & Weisberg, S. An R Companion to Applied Regression, 3rd ed. https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html (2019).102.Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, 2008).Book 

    Google Scholar 
    103.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).Book 

    Google Scholar 
    104.Tremblay, A., Statistics Canada, Ransijn, J. & University of Copenhagen. LMERConvenienceFunctions: Model Selection and Post-Hoc Analysis for (G)LMER Models. R package version 3.0. https://CRAN.R-project.org/package=LMERConvenienceFunctions (2020).105.Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. Performance: Assessment of Regression Models Performance. R package version 0.4 5 (2020).106.Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, 2002).Book 

    Google Scholar 
    107.Morrissey, M. B. & Ruxton, G. D. Multiple regression is not multiple regressions: The meaning of multiple regression and the non-problem of collinearity. Philos. Theory Pract. Biol. https://doi.org/10.3998/ptpbio.16039257.0010.003 (2018).Article 

    Google Scholar 
    108.Barton, K. MuMIn: Multi-model Inference. R package version 1.10.5 (2014).109.Mazerolle, M. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R package version 2.0-1. (2014).110.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Corrigendum to “Multimodel inference in ecology and evolution: Challenges and solutions”. J. Evol. Biol. 24, 1627–1627 (2011).Article 

    Google Scholar 
    111.Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science, In R package version 2.8.7. (2021)112.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    113.Anderson, D. R., Link, W. A., Johnson, D. H. & Burnham, K. P. Suggestions for presenting the results of data analyses. J. Wildl. Manag. 65, 373–378. https://doi.org/10.2307/3803088 (2001).Article 

    Google Scholar 
    114.Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manag. 74, 1175–1178. https://doi.org/10.1111/j.1937-2817.2010.tb01236.x (2010).Article 

    Google Scholar 
    115.Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11(1), 54–71. https://doi.org/10.1037/1082-989X.11.1.54 (2006).Article 
    PubMed 

    Google Scholar 
    116.Harris, M. P., Albon, S. D. & Wanless, S. Age-related effects on breeding phenology and success of Common Guillemots Uria aalge at a North Sea colony. Bird Study 63(3), 311–318. https://doi.org/10.1080/00063657.2016.1202889 (2016).Article 

    Google Scholar 
    117.Sumasgutner, P., Koeslag, A. & Amar, A. Senescence in the city: Exploring ageing patterns of a long-lived raptor across an urban gradient. J. Avian Biol. https://doi.org/10.1111/jav.02247 (2019).Article 

    Google Scholar 
    118.Class, B. & Brommer, J. E. Senescence of personality in a wild bird. Behav. Ecol. Sociobiol. 70, 733–744. https://doi.org/10.1007/s00265-016-2096-0 (2016).Article 

    Google Scholar 
    119.Pasch, B., Bolker, B. M. & Phelps, S. M. Interspecific dominance via vocal interactions mediates altitudinal zonation in neotropical singing mice. Am. Nat. 182(5), E161–E173. https://doi.org/10.1086/673263 (2013).Article 
    PubMed 

    Google Scholar 
    120.Frigerio, D. et al. From individual to population level: temperature and snow cover modulate fledging success through breeding phenology in Greylag geese (Anser anser), Dryad, Dataset, https://doi.org/10.5061/dryad.np5hqbztd (2021). More

  • in

    Hyperspectral data as a biodiversity screening tool can differentiate among diverse Neotropical fishes

    1.McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113. https://doi.org/10.1016/j.tree.2014.11.006 (2015).Article 

    Google Scholar 
    2.Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167. https://doi.org/10.1038/nature04246 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Thomas, C. D., Franco, A. M. A. & Hill, J. K. Range retractions and extinction in the face of climate warming. Trends Ecol. Evol. 21, 415–416. https://doi.org/10.1016/j.tree.2006.05.012 (2006).Article 
    PubMed 

    Google Scholar 
    4.Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. In Annual Review of Ecology, Evolution, and Systematics, Vol. 47 (ed Futuyma, D. J.) 333–358 (Annual Reviews, 2016).5.Drew, L. W. Are we losing the science of taxonomy?: As need grows, numbers and training are failing to keep up. Bioscience 61, 942–946. https://doi.org/10.1525/bio.2011.61.12.4 (2011).Article 

    Google Scholar 
    6.Kim, K. C. & Byrne, L. B. Biodiversity loss and the taxonomic bottleneck: Emerging biodiversity science. Ecol. Res. 21, 794–810. https://doi.org/10.1007/s11284-006-0035-7 (2006).Article 

    Google Scholar 
    7.Packer, L., Grixti, J. C., Roughley, R. E. & Hanner, R. The status of taxonomy in Canada and the impact of DNA barcoding. Can. J. Zool. 87, 1097–1110. https://doi.org/10.1139/z09-100 (2009).CAS 
    Article 

    Google Scholar 
    8.Qin, H. W., Li, X., Liang, J., Peng, Y. G. & Zhang, C. S. DeepFish: Accurate underwater live fish recognition with a deep architecture. Neurocomputing 187, 49–58. https://doi.org/10.1016/j.neucom.2015.10.122 (2016).Article 

    Google Scholar 
    9.Tharwat, A., Hemedan, A. A., Hassanien, A. E. & Gabel, T. A biometric-based model for fish species classification. Fish. Res. 204, 324–336. https://doi.org/10.1016/j.fishres.2018.03.008 (2018).Article 

    Google Scholar 
    10.Gates, D. M., Keegan, H. J., Schleter, J. C. & Weidner, V. R. Spectral properties of plants. Appl. Opt. 4, 11–000. https://doi.org/10.1364/ao.4.000011 (1965).ADS 
    Article 

    Google Scholar 
    11.Hutchison, V. H. & Larimer, J. L. Reflectivity of the integuments of some lizards from different habitats. Ecology 41, 199–209. https://doi.org/10.2307/1931954 (1960).Article 

    Google Scholar 
    12.Asner, G. P. & Martin, R. E. Spectranomics: Emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob. Ecol. Conserv. 8, 212–219. https://doi.org/10.1016/j.gecco.2016.09.010 (2016).Article 

    Google Scholar 
    13.Baldeck, C. A. et al. Operational tree species mapping in a diverse tropical forest with airborne imaging spectroscopy. PLoS ONE 10, e0118403. https://doi.org/10.1371/journal.pone.0118403 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 1–5. https://doi.org/10.1038/nplants.2016.24 (2016).Article 

    Google Scholar 
    15.Leblanc, G., Francis, C. M., Soffer, R., Kalacska, M. & de Gea, J. Spectral reflectance of polar bear and other large arctic mammal pelts; potential applications to remote sensing surveys. Remote Sens. 8, 273. https://doi.org/10.3390/rs8040273 (2016).ADS 
    Article 

    Google Scholar 
    16.Dodd, C. K. Infrared reflectance in chameleons (Chamaeleonidae) from Kenya. Biotropica 13, 161–164. https://doi.org/10.2307/2388120 (1981).Article 

    Google Scholar 
    17.Pinto, F. et al. Non-invasive measurement of frog skin reflectivity in high spatial resolution using a dual hyperspectral approach. PLoS ONE 8, e73234. https://doi.org/10.1371/journal.pone.0073234 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Schwalm, P., Starrett, P. & McDiarmid, R. Infrared reflectance in leaf-sitting neotropical frogs. Science 196, 1225–1226. https://doi.org/10.1126/science.860137 (1977).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Mielewczik, M., Liebisch, F., Walter, A. & Greven, H. Near-infrared (NIR)-reflectance in insects–phenetic studies of 181 species. Entomologie heute 24, 183–215 (2012).
    Google Scholar 
    20.Bajjouk, T. et al. Detection of changes in shallow coral reefs status: Towards a spatial approach using hyperspectral and multispectral data. Ecol. Ind. 96, 174–191. https://doi.org/10.1016/j.ecolind.2018.08.052 (2019).Article 

    Google Scholar 
    21.Chennu, A., Faber, P., De’ath, G., de Beer, D. & Fabricius, K. E. A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats. Sci. Rep. 7, 1–12. https://doi.org/10.1038/s41598-017-07337-y (2017).CAS 
    Article 

    Google Scholar 
    22.Parsons, M., Bratanov, D., Gaston, K. J. & Gonzalez, F. UAVs, hyperspectral remote sensing, and machine learning revolutionizing reef monitoring. Sensors 18, 2026. https://doi.org/10.3390/s18072026 (2018).ADS 
    Article 
    PubMed Central 

    Google Scholar 
    23.Dumke, I. et al. Underwater hyperspectral imaging as an in situ taxonomic tool for deep-sea megafauna. Sci. Rep. 8, 1–11. https://doi.org/10.1038/s41598-018-31261-4 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Akkaynak, D., Siemann, L. A., Barbosa, A. & Mathger, L. M. Changeable camouflage: How well can flounder resemble the colour and spatial scale of substrates in their natural habitats?. R. Soc. Open Sci. 4, 160824. https://doi.org/10.1098/rsos.160824 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Chiao, C. C., Wickiser, J. K., Allen, J. J., Genter, B. & Hanlon, R. T. Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators. Proc. Natl. Acad. Sci. USA. 108, 9148–9153. https://doi.org/10.1073/pnas.1019090108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Hebert, P. D. & Gregory, T. R. The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859 (2005).Article 

    Google Scholar 
    27.Fricke, R., Eschmeyer, W. N. & Van de Laan, R. Eschmeyer’s Catalog of Fishes: Genera, Species, References. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (2019).28.Orti, G., Sivasundar, A., Dietz, K. & Jégu, M. Phylogeny of the Serrasalmidae (Characiformes) based on mitochondrial DNA sequences. Genet. Mol. Biol. 31, 343–351 (2008).CAS 
    Article 

    Google Scholar 
    29.Thompson, A. W., Bentancur-R, R., López-Fernández, H. & Orti, G. A time-calibrated, multi-locus phylogeny of piranhas and pacus (Characiformes: Serrasalmidae) and a comparison of species tree methods. Mol. Phylogenet. Evol. 81, 242–257 (2014).Article 

    Google Scholar 
    30.Machado, V. N. et al. One thousand DNA barcodes of piranhas and pacus reveal geographic structure and unrecognised diversity in the Amazon. Sci. Rep. 8, 1–12. https://doi.org/10.1038/s41598-018-26550-x (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129. https://doi.org/10.1126/science.aac7082 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Huie, J. M., Summers, A. P. & Kolmann, M. A. Body shape separates guilds of rheophilic herbivores (Myleinae: Serrasalmidae) better than feeding morphology. Proc. Acad. Natl. Sci. Phila. 166, 1–15. https://doi.org/10.1635/053.166.0116 (2017).Article 

    Google Scholar 
    33.Schweikert, L. E., Fitak, R. R., Caves, E. M., Sutton, T. T. & Johnsen, S. Spectral sensitivity in ray-finned fishes: Diversity, ecology and shared descent. J. Exp. Biol. 221, jeb189761. https://doi.org/10.1242/jeb.189761 (2018).Article 
    PubMed 

    Google Scholar 
    34.Stockman, A. & Sharpe, L. T. Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vis. Res. 40, 1711–1737 (2000).CAS 
    Article 

    Google Scholar 
    35.Peichl, L., Behrmann, G. & Kröger, R. H. H. For whales and seals the ocean is not blue: A visual pigment loss in marine mammals. Eur. J. Neurosci. 13, 1520–1528 (2001).CAS 
    Article 

    Google Scholar 
    36.Kelber, A. Bird colour vision—From cones to perception. Curr. Opin. Behav. Sci. 30, 34–40. https://doi.org/10.1016/j.cobeha.2019.05.003 (2019).Article 

    Google Scholar 
    37.Chikashige, T. & Iwasaka, M. Magnetically-assembled micro/mesopixels exhibiting light intensity enhancement in the (012) planes of fish guanine crystals. AIP Adv. 8, 056704. https://doi.org/10.1063/1.5006135 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Churnside, J. H. & McGillivary, P. A. Optical-properties of several pacific fishes. Appl. Opt. 30, 2925–2927. https://doi.org/10.1364/ao.30.002925 (1991).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Funt, N., Palmer, B. A., Weiner, S. & Addadi, L. Koi fish-scale iridophore cells orient guanine crystals to maximize light reflection. ChemPlusChem 82, 914–923. https://doi.org/10.1002/cplu.201700151 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Gur, D., Leshem, B., Oron, D., Weiner, S. & Addadi, L. The structural basis for enhanced silver reflectance in Koi fish scale and skin. J. Am. Chem. Soc. 136, 17236–17242. https://doi.org/10.1021/ja509340c (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Lythgoe, J. N. & Shand, J. Changes in spectral reflections from the iridophores of the neon tetra. J. Physiol. 325, 23–000. https://doi.org/10.1113/jphysiol.1982.sp014132 (1982).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Correa, S. B. & Winemiller, K. O. Niche partitioning among frugivore fishes in response to fluctuating resources in Amazonian floodplain forest. Ecology 95, 210–224 (2014).Article 

    Google Scholar 
    43.Van Nynatten, A., Bloom, D., Chang, B. S. W. & Lovejoy, N. R. Out of the blue: Adaptive visual pigment evolution accompanies Amazon invasion. Biol. Lett. 11, 20150349. https://doi.org/10.1098/rsbl.2015.0349 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Shawkey, M. D. & D’Alba, L. Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160536. https://doi.org/10.1098/rstb.2016.0536 (2017).Article 

    Google Scholar 
    45.Jordan, R. et al. Ultraviolet reflectivity in three species of lake Malawi rock-dwelling cichlids. J. Fish Biol. 65, 876–882. https://doi.org/10.1111/j.1095-8649.2004.00483.x (2004).Article 

    Google Scholar 
    46.Wilkins, L., Marshall, N. J., Johnsen, S. & Osorio, D. Modelling colour constancy in fish: Implications for vision and signalling in water. J. Exp. Biol. 219, 1884–1892. https://doi.org/10.1242/jeb.139147 (2016).Article 
    PubMed 

    Google Scholar 
    47.Andrade, M. C., Fitzgerald, D. B., Winemiller, K. O., Barbosa, P. S. & Giarrizzo, T. Trophic niche segregation among herbivorous serrasalmids from rapids of the lower Xingu River, Brazilian Amazon. Hydrobiologia 829, 265–280. https://doi.org/10.1007/s10750-018-3838-y (2019).CAS 
    Article 

    Google Scholar 
    48.Rocha, L. A. et al. Specimen collection: An essential tool. Science 344, 814. https://doi.org/10.1126/science.344.6186.814 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Alberch, P. Museums, collections and biodiversity inventories. Trends Ecol. Evol. 8, 372–375 (1993).CAS 
    Article 

    Google Scholar 
    50.Page, L. M., MacFadden, B. J., Fortes, J. A., Soltis, P. S. & Riccardi, G. Digitization of biodiversity collections reveals biggest data on biodiversity. Bioscience 65, 841–842 (2015).Article 

    Google Scholar 
    51.Peterson, A. T., Soberon, J. & Krishtalka, L. A global perspective on decadal challenges and priorities in biodiversity informatics. BMC Ecol. 15, 15 (2015).Article 

    Google Scholar 
    52.Singer, R. A., Ellis, S. & Page, L. M. Awareness and use of biodiversity collections by fish biologists. J. Fish Biol. 96, 297–306. https://doi.org/10.1111/jfb.14167 (2020).Article 
    PubMed 

    Google Scholar 
    53.Hoeksema, B. W. et al. Unforeseen importance of historical collections as baselines to determine biotic change of coral reefs: The Saba Bank case. Mar. Ecol. 32, 135–141. https://doi.org/10.1111/j.1439-0485.2011.00434.x (2011).ADS 
    Article 

    Google Scholar 
    54.Stein, E. D., Martinez, M. C., Stiles, S., Miller, P. E. & Zakharov, E. V. Is DNA barcoding actually cheaper and faster than traditional morphological methods: Results from a survey of freshwater bioassessment efforts in the United States?. PLoS ONE 9, e95525 (2014).ADS 
    Article 

    Google Scholar 
    55.Johansen, V. E., Onelli, O. D., Steiner, L. M. & Vignolini, S. in Functional Surfaces in Biology III, Vol. 10 (eds Gorb, S. N. & Gorb, E. V.) 53–89 (Springer, 2017).56.Wainwright, D. K., Lauder, G. & Weaver, J. C. Imaging biological surface topography in situ and in vivo. Methods Ecol. Evol. 8, 1626–1638. https://doi.org/10.1111/2041-210x.12778 (2017).Article 

    Google Scholar 
    57.Andrade, M. C., Giarrizzo, T. & Jégu, M. Tometes camunani (Characiformes: Serrasalmidae), a new species of phytophagous fish from the Guiana Shield, Rio Trombetas Basin, Brazil. Neotrop. Ichthyol. 11, 297–306 (2013).Article 

    Google Scholar 
    58.Généralités, I. Gery, J. Poissons characoïdes des Guyanes. II. Famille des Serrasalmidae. Zoologische Verhandelingen 122, 1–250 (1972).
    Google Scholar 
    59.Jegu, M. & Dos Santos, G. M. Le genre Serrasalmus (Pisces, Serrasalmidae) dans le bas Tocantins (Brésil, Parà), avec la description d’une espèce nouvelle, S. geryi, du bassin Araguaia-Tocantins. Revue d’Hydrobiologie Tropicale 21, 239–274 (1988).
    Google Scholar 
    60.Kolmann, M. A. et al. Phylogenomics of piranhas and pacus (Serrasalmidae) uncovers how dietary convergence and parallelism obfuscate traditional morphological taxonomy. Syst. Biol. 70(3), 576–592 (2021).CAS 
    Article 

    Google Scholar 
    61.Feller, K. D., Jordan, T. M., Wilby, D. & Roberts, N. W. Selection of the intrinsic polarization properties of animal optical materials creates enhanced structural reflectivity and camouflage. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160336. https://doi.org/10.1098/rstb.2016.0336 (2017).CAS 
    Article 

    Google Scholar 
    62.Gur, D., Palmer, B. A., Weiner, S. & Addadi, L. Light manipulation by guanine crystals in organisms: Biogenic scatterers, mirrors, multilayer reflectors and photonic crystals. Adv. Funct. Mater. 27, 1603514. https://doi.org/10.1002/adfm.201603514 (2017).CAS 
    Article 

    Google Scholar 
    63.Elmer, K., Soffer, R., Arroyo-Mora, J. P. & Kalacska, M. ASDToolkit: A novel MATLAB processing toolbox for ASD field spectroscopy data. Data 5, 96. https://doi.org/10.3390/data5040096 (2020).Article 

    Google Scholar 
    64.Kruse, F. A. et al. The spectral image-processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44, 145–163. https://doi.org/10.1016/0034-4257(93)90013-n (1993).ADS 
    Article 

    Google Scholar 
    65.Cooksey, C., Tsai, B. K. & Allen, D. A collection and statistical analysis of skin reflectance signatures for inherent variability over the 250 nm to 2500 nm spectral range. Proc. SPIE 9082, 908201–908206. https://doi.org/10.1117/12.2053604 (2014).Article 

    Google Scholar 
    66.Manolakis, D., Marden, D. & Shaw, G. A. Hyperspectral image processing for automatic target detection applications. Lincoln Lab. J. 14, 79–116 (2003).
    Google Scholar 
    67.Manolakis, D., Lockwood, R., Cooley, T. & Jacobson, J. Is There a Best Hyperspectral Detection Algorithm? Vol. 7334 (SPIE, 2009).
    Google Scholar 
    68.van der Heijden, F., Duin, R., de Ridder, D. & Tax, D. Classification, Parameter Estimation and State Estimation, an Engineering Approach using Matlab (Wiley, 2004).Book 

    Google Scholar 
    69.Johnson, M. K. & Adelson, E. H. In Cvpr: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Vols 1–4, 1070–1077 (2009).70.Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: Investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 
    Article 

    Google Scholar 
    71.Wainwright, D. K. & Lauder, G. V. Three-dimensional analysis of scale morphology in bluegill sunfish, Lepomis marochirus. Zoology 119, 182–195 (2016).Article 

    Google Scholar  More

  • in

    A large dataset of detection and submeter-accurate 3-D trajectories of juvenile Chinook salmon

    JSATS acoustic receiver deploymentsTwo types of acoustic receivers were deployed for this study: cabled and autonomous acoustic receivers (Table 1). These systems were deployed in the Snake River in eastern Washington State and in the lower Columbia River along the Oregon/Washington border. Two hydropower dams were outfitted with cabled acoustic receiver arrays: LGS and LMN. This allowed passage routes to be defined at each of these dams for each of the tagged fish. Transects of autonomous acoustic receivers (i.e., receiver arrays) were deployed immediately upstream and downstream of each of these dams for computing dam passage survival, and at several other locations to estimate cumulative mortality. From the release site to the final autonomous acoustic receiver array, fish detected at the final array will have passed through LGS, LMN, Ice Harbor, McNary, John Day, The Dalles, and Bonneville Dams. Each of these dams feature powerhouses with large, vertical Kaplan runners19 and spillways utilizing radial or vertical lift spillway gates. Most also include juvenile bypass systems (JBS; Table 1) and surface spill weirs20 to provide safer passage routes for fish.Before deployment, all hydrophones and receivers were evaluated in an acoustic tank lined with anechoic materials at the PNNL Bio-Acoustics & Flow Laboratory (BFL21). The BFL is accredited by the American Association for Laboratory Accreditation to ISO/IEC 17025:2005, which is the international standard for calibration and testing laboratories. The accreditation scope (Certificate Number 3267.01) includes hydrophone sensitivity measurements and power-level measurements of sound sources for frequencies from 50 to 500 kHz for both military equipment and commercial components. The evaluation involved simulating transmissions from tags located at increasing distances. This allowed the performance of each receiver to be validated prior to deployment to ensure the expected detection range will likely be achieved.Cabled receivers – deployment, hardware, and data processingA JSATS cabled acoustic receiver system2 consists of up to four narrowband hydrophones; various types of hydrophone cables (e.g., four-channel “deck” cables, “y-blocks” that split the “deck” cables to individual connectors, and “wet” cables that run from the surface down into the water); a signal-conditioning, variable-gain amplifier; a data acquisition card that features a high-speed, analog-to-digital converter, a digital signal processor and field-programmable gate array; a GPS receiver for synchronizing time among multiple systems; a data acquisition computer; and software for detecting22 and decoding23,24 the acoustic waveforms. Deploying these systems within the forebay of a hydropower dam typically involves rigidly mounting slotted pipes to the upstream edge of the pier nose between the powerhouse and spillway bays. The cabled hydrophones are mounted on “trolleys” that have an L-shaped arm that protrudes and rides in the slot in the pipe and allows the hydrophone to be mounted pointing upstream. Conical baffles containing anechoic material are installed around the hydrophones to block noise coming from behind the hydrophone—either noise from the dam or reflections off the concrete. To obtain the locations of hydrophones that have been lowered below the water surface, survey equipment is used to sight the tip of the hydrophone as it is lowered down the pier nose. This provides the true direction and slope of the pier nose, which is used, along with the length of braided steel cable attached to the trolley to lower it into place, to calculate the 3-D location in space for each hydrophone. The individual “wet” cables for each hydrophone are routed to the forebay deck, where they are combined into “deck” cables carrying four signals using the “y-block” cables. The deck cables are routed to mobile trailers that house the acoustic receiver equipment. Acoustic beacons that send out JSATS tag-code signals every 15 to 60 s are deployed alongside several of the hydrophones across the array. These beacons are used primarily for quality control, to monitor (typically through the internet from an off-site location) the performance of each hydrophone to determine whether there is a reduction in performance so that any malfunctioning hydrophones can be repaired as soon as possible.Two main programs run on the JSATS cabled receiver data acquisition computer. The first program is an energy-based detector software22 that collects the raw acoustic waveforms whenever the hydrophone signal meets a prescribed set of criteria. The second is decoder software24 that processes the waveforms saved by the detector to determine whether there is a valid detection (i.e., a decoded signal that has a valid CRC). If there is a valid detection, the decoded tag-code is saved to a text file, along with the detection time and other metadata. The detector software writes the binary waveform files to the hard drive using the *.bwm file type. The decoder is configured to wait for *.bwm files to be generated. Once a new *.bwm file is detected, the decoder will open the file, decode the data contained in the file, and then change the file extension to *.com to indicate that this file was decoded. If the detector saves data faster than the decoder can process it, for example at a hydraulic structure that is generating large amounts of acoustic noise (e.g., spillways with vertical lift gates), the decoder is configured to skip waveform files to avoid falling behind. Although these files may be skipped, the data contained within these files will still be used because the two different file extensions allow for readily identifying which files were not decoded in real time so that they can be decoded offline in a separate processing step after retrieving the data. The data is physically collected every 1–2 weeks, by swapping out the data collection hard drives. To make sure that all detection waveforms are processed by the decoder, the collected hard drives are put into data processing machines to decode any files that still have the *.bwm file extension. After confirming that all files have been decoded, either in real time or through post-processing after data retrieval, the decoded data from every hydrophone is checked for gaps in data. If a hydrophone is functional, there should be no large gaps in decoded data, since there are multiple stationary acoustic beacons deployed with the cabled hydrophone receiver array.Data is filtered to remove potential false positive decodes. Data filtering for the JSATS cabled acoustic receivers (Fig. 2a) begins with a multipath filter, which removes decodes from multipath signal propagations (e.g., acoustic reflections off the surface/bottom). The multipath filter is used on the data from each individual hydrophone. Any decodes of the same tag-code that occur a very short time (e.g., typically 45 m), too far away temporally from adjacent points ( >10 min), and that result in unrealistic velocities (~2 m/s for the size of fish we studied). Further quality assurance filters remove points that occur before a transmitter was released, after the PIT tag in the fish is detected downstream, and after the acoustic transmitter is detected by downstream autonomous receiver arrays.Once the 3-D trajectories have been computed, they are used to assign passage routes through the dam for each tagged fish (Fig. 3a). The route assignment for each tagged fish is divided into three parts: main route, subroute, and hole (Table 2). The main route describes the part of the general dam structure through which the tagged fish passed. This includes the powerhouse, the spillway, and a generic category, “dam,” which is used for rare scenarios where there is confidence that the fish was physically present but a lack of confidence in specifically where the fish passed the dam. The subroute further divides the main passage route into different subcategories. For a main route of “spillway,” the two subroutes are the traditional (deep) spillbays and special surface weirs (surface spillbays20). The surface weirs reside within one of the spillbays and assignment to either of these two subroutes is made directly using the acoustic telemetry results. For a main route of “powerhouse,” the two subroutes are turbine and JBS. Assignment of the JBS subroute requires that the PIT tag of a fish assigned to the powerhouse was detected by the PIT tag readers within the JBS system; otherwise the fish is assigned the turbine subroute. PIT tag detections at dams where cabled hydrophone arrays have been deployed can be used to assign the JBS subroute, and PIT tag detections at the other dams along the migration route can serve as additional detection events. The hole assignment defines the specific powerhouse intake or spillbay where the passage occurred.Table 2 Dam passage routes (main route, subroute, and hole) at LGS and LMN Dams.Full size tablePassage routes are assigned using the last 3D tracked location and the last detection. Two methods are used because the ability to consistently track the transmitter can diminish as the tagged fish approaches or passes through the plane containing the hydrophones, and the last decoded transmission could be later than the last 3-D tracked location.When the last 3-D tracked location is used, a route is assigned according to whether the last tracked point is within a specific area. This area spans the entire dam plus 25 m on each side and extends from the dam face to 30 m upstream into the forebay. If the last tracked point is within this boundary, the 3-D track passage route is assigned to the bay corresponding to the Y coordinate in the local dam coordinate system. If the last tracked point is outside the piers on either side of the dam, the passage route is assigned to the nearest bay.Route assignment based on the last detection uses the last transmission that was detected by multiple hydrophones. The detections associated with this transmission are sorted by time, and the pier numbers for the two hydrophones on different piers that first detected this transmission are averaged; the passage bay corresponding to this average pier is assigned as the last detection passage route. The default final route assignment is the 3-D tracked route assignment. However, when the two methods indicate different main routes, subroutes, or a different hole that is more than two bays away, the 3-D tracks are manually reviewed, and a decision is made regarding which method should be relied on for the final route assignment.After the final route assignment, a final quality assurance step is to compare the final route assignment to the dam operations. In case a tag-code has been assigned to a closed passage route, the 3-D tracks are reviewed to consider the trajectory of the tagged fish and the location of the nearest open passage route. As previously mentioned, the ability to consistently track a transmitter is diminished as it approaches or passes through the plane containing the hydrophones. An example of when a tagged fish could initially be assigned to a closed passage route would be when a passage route with a strong attractive flow (e.g., surface spill weir) is adjacent to a closed passage bay.Autonomous receivers – deployment, hardware, and data processingA JSATS autonomous receiver (SR5000, Advanced Telemetry Systems [ATS], USA), along with the necessary deployment accessories, consists of a hydrophone that is connected to a cylindrical, positively buoyant, self-contained, battery-powered, autonomous acoustic receiver; a submerged buoy line; an acoustic release; a braided stainless-steel cable; and a steel anchor. These receivers are typically deployed according to the methods described by Titzler et al.10, which involves using a 34 kg or 57 kg (depending on flow) steel anchor to deploy the autonomous receiver system to the river bottom. The anchor is attached to the release side of an acoustic release using a braided stainless-steel cable. The fixed end of the acoustic release is attached to the autonomous receiver using a submerged buoy line. When the acoustic release is remotely triggered, it detaches from the anchor line, and the combined buoyancy of the acoustic receiver and the submerged buoy line bring the system up to the surface. To maintain the receiver orientation in the water column during deployment, a thin plastic sheet is folded around the cylindrical body of the receiver, creating an airfoil-like shape that keeps the receiver oriented in the flow direction. Attached to each autonomous receiver is a JSATS beacon that is similar to the JSATS beacons deployed with the cabled hydrophone receiver arrays and used in the same way. The length of time that the JSATS autonomous receivers can be deployed is largely dependent on the battery life, with data retrieval and battery changes typically done every 2–3 weeks.Although it is possible to use autonomous receivers to conduct 3-D tracking, the process is much more challenging than using the cabled hydrophone receivers because the receivers are not fixed at well-defined locations (e.g., changes in river currents could change the receiver’s depth and horizontal location relative to the anchor) and are not time synchronized with each other. The autonomous receivers are typically used to detect presence of tagged fish, although recent research has investigated methods to improve the ability to conduct 3-D tracking25. Deploying an autonomous receiver array entails deploying several receivers in a line spanning the width of a river with the detection ranges of the receivers overlapping slightly. This creates a virtual detection gate that can be used to determine when a tagged fish passes through this location in the river. In addition to simply determining the migration timing of tagged fish, the autonomous receiver arrays are typically used for analyzing dam passage survival and near-dam behavior (e.g., forebay residence time, tailrace egress time).The data collected by the autonomous receivers is filtered similarly to data from the cabled receivers (Fig. 2b). The primary difference is that the data from each individual autonomous receiver is processed entirely by itself. As a result, the single-hydrophone filter is not used, and a single-node PRI filter is used instead of the message PRI filter.After the event histories for both the cabled and the autonomous acoustic receivers have been determined, individual routes were cross-checked by tracing the chronology of detections of every tagged fish as it was detected along the river in the sequence of acoustic receiver arrays. Upstream movement past a dam or out-of-sequence detections were deemed anomalous detection events. These anomalous detection events could be a few receptions resulting from noise or repeated detections of a transmitter that had been dropped near a receiver array after fish or bird predation. If the apparent behavior was impossible for a live fish, the anomalous detection was excluded from the detection history used for subsequent analysis.JSATS transmittersThe injectable transmitters used in this study (Fig. 1b) were manufactured by PNNL. Each transmitter (model microV26, which is licensed to, and currently commercially available from, Advanced Telemetry Systems as Model SS400) was 15 mm long, had an outside diameter of 3.35 mm, a volume of 0.111 mL, and a mass of 0.216 g in air and 0.105 g in water. The transmitters are generally cylindrical; excess epoxy was eliminated to reduce the weight, and epoxy surrounding the transducer element was minimized. The transmitters had a nominal transmission rate of 1 pulse every 4.2 s. Nominal transmitter life was expected to be about 28 d at a 4.2 s pulse rate. The acoustic signal is transmitted using a carrier frequency of 416.7 kHz, a source level of approximately 156 dB (ref. to 1 µPa at 1 m), and a total signal duration of 477 µs. The transmitter emits a uniquely coded 31-bit signal2, resulting in more than 65,000 individual tag-codes, using binary phase-shift keyed (BPSK) signal encoding.Each fish also bore a PIT tag (HPT12, Biomark, USA; 12.5 mm x Ø2.03 mm; 0.106 g in air). PIT tag detections were used to assign fish to passage through the JBS at LGS and LMN to distinguish between fish that were assigned to a main route of powerhouse and the turbine or JBS subroutes.Tagged fishFor this study, 682 subyearling Chinook salmon (Oncorhynchus tshawytscha) were tagged with the injectable acoustic transmitter and released upstream of LGS Dam on the Snake River in Washington State, USA (Fig. 1a). The fish were obtained from the JBS at LMN Dam and selected using existing fish screening criteria utilized in previous juvenile salmon survival studies26. The fish selected for the study were held in holding tanks for 18 to 30 hours prior to tagging, and for 10 to 25 hours after tagging prior to release. The size criteria for tagged fish was also identical to other recent juvenile salmon survival studies26. For this study the fork-lengths ranged from 95 to 143 mm, and the weights ranged from 7.5 to 29.3 g (see Tagged Fish Data for information on each tagged fish).Tagging procedureWhile each anesthetized fish was at the data station for recording physical parameters, a second person inserted both a disinfected PIT tag and an injectable acoustic transmitter, assigned to a specific fish, into a sterilized 8-gauge stainless-steel hypodermic needle17. First, the injectable transmitter was placed into the needle, battery-end first. The PIT tag was then also inserted in the same needle. A sanitized plastic cap was then placed over each end of the needle to retain the tags. Once both tags had been placed in the needle, the tag loaded needle was handed to the surgeon working at the tagging station. Additional details for the tagging procedure are documented by Deng et al.11.Release procedureThe fish implanted with the injectable acoustic transmitters were released using the same methods as fish tagged with commercially available acoustic transmitters for a separate large-scale survival study26. All fish were tagged at LMN and transported in insulated totes by truck to the single release site (Fig. 1a). There were five release locations across the river at the release site, and equal numbers of fish were released at each of the five locations. Releases occurred for 11 consecutive days (between 22 June and 2 July, 2013) and were staggered between day and night.Data managementUse of JSATS can generate a large volume of data. An integrated suite of science-based tools known as the Hydropower Biological Evaluation Toolset (HBET; https://hydropassage.org/hbet)27 was developed to assist the characterization of hydraulic conditions at hydropower structures and to understand the potential impacts on aquatic life. HBET was initially developed to be utilized to facilitate use of the autonomous sensor technology known as Sensor Fish28. HBET allows researchers to use previously collected Sensor Fish data to design studies to evaluate hypotheses, archive field-collected data, process raw sensor data, compare different hydraulic structures or operating conditions, and to estimate the biological response for species with known dose-response relationships. More recently, HBET was adapted to also provide the functionality of archiving new or previously collected acoustic telemetry data and to produce visualizations from that data. Although it is not necessary to visualize the data set associated with this manuscript, PNNL offers free government and academic use of the HBET software package in the U.S. and a free 90-day trial version of the package to interested parties. More