More stories

  • in

    Iran: drought must top new government’s agenda

    CORRESPONDENCE
    10 August 2021

    Iran: drought must top new government’s agenda

    Jamshid Parchizadeh

    0
    &

    Jerrold L. Belant

    1

    Jamshid Parchizadeh

    Global Wildlife Conservation Center, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Jerrold L. Belant

    Global Wildlife Conservation Center, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    We urge Iran’s incoming government to give priority to resolving the country’s worst drought in 50 years (see go.nature.com/2wkwyqn). In our view, the government needs to consult with international as well as domestic water experts to prevent the imposition of flawed agendas. It should also revise earlier policies that have contributed to the crisis.Outgoing president Hassan Rouhani blamed the drought on a 52% reduction in rainfall since last year. However, unregulated aquifer depletion and mismanagement of water resources by the authorities (see, for example, go.nature.com/3cce7or) have contributed.The drought and its associated dust haze is also severely affecting ecosystems in and around Iran (see go.nature.com/3jhauvc and http://pana.ir/news/1178597).

    Nature 596, 189 (2021)
    doi: https://doi.org/10.1038/d41586-021-02189-z

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Water resources

    Climate sciences

    Ecology

    Politics

    Latest on:

    Water resources

    Iran is draining its aquifers dry
    Research Highlight 16 JUN 21

    Most rivers and streams run dry every year
    News & Views 16 JUN 21

    Global prevalence of non-perennial rivers and streams
    Article 16 JUN 21

    Climate sciences

    IPCC climate report: Earth is warmer than it’s been in 125,000 years
    News 09 AUG 21

    Diagnosing Earth: the science behind the IPCC’s upcoming climate report
    News 05 AUG 21

    The fraction of the global population at risk of floods is growing
    News & Views 04 AUG 21

    Ecology

    COVID vaccine inequity, species swaps — the week in infographics
    News 06 AUG 21

    The world’s species are playing musical chairs: how will it end?
    News Feature 04 AUG 21

    Agrochemicals interact synergistically to increase bee mortality
    Article 04 AUG 21

    Jobs

    Postdoctoral Position

    The University of Texas MD Anderson Cancer Center
    Houston, TX, United States

    Bioinformatics Analyst II

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    FULL-TIME ACADEMIC POSITION IN MOLECULAR BIOLOGY

    Université Libre de Bruxelles (ULB)
    Gosselies, Belgium

    Assistant Professor

    Johns Hopkins University School of Medicine (JHUSOM), JHU
    Baltimore, Maryland, MD, United States

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    A global database of diversified farming effects on biodiversity and yield

    The data collection protocol is described in Sánchez et al.19 and followed Reporting Standards for Systematic Evidence Syntheses (ROSES) guidelines20. Philibert et al.21, also proposed eight criteria for conducting high quality meta-analysis, which overlap to some extent with ROSES guidelines. Our methods fulfil the Philibert et al. requirement to use a repeatable procedure for paper selection, provide a list of references, and ensure availability of the dataset, while other quality criteria are only relevant at the meta-analysis stage.Search processThe literature search was conducted on 29 November 2019 and updated on 5 January 2021, and aimed to identify relevant English language articles published in peer-reviewed literature. We searched in titles, abstracts and keyword lists of literature in the Scopus and Web of Science databases, using the following search string (formatted for Scopus; see Dataset 1 for the equivalent string formatted for Web of Science): TITLE-ABS-KEY (“agricultur*” AND “biodiversity”) AND TITLE-ABS-KEY (“agro?ecology” OR “agro?biodivers*” OR “agroforestry” OR “border plant*” OR “riparian buffer” OR “woodlot” OR “hedgerow” OR “cover crop*” OR “crop rotation” OR “crop divers*” OR “inter?crop*” OR “mixed crop*” OR “cultivar mixture” OR “plant divers*” OR “polyculture” OR “tree divers*” OR “variet* diversity” OR “fallow” OR “field margin*” OR “grass strip*” OR “*flower strip*” OR “insect* strip” OR “conservation strip” OR “vegetation strip” OR “catch crop” OR “inter?crop*” OR “crop variety” OR “crop sequenc*” OR “mixed farming” OR “land sparing” OR “landscape heterogeneity” OR “heterogeneous landscape” OR “landscape diversi*” OR “divers* landscape” OR “homogeneous landscape” OR “landscape homogeneity” OR “landscape complexity” OR “simplif* landscape” OR “complex landscape” OR “multi?function* landscape” OR “integrated crop-livestock” OR “integrated crop-forest” OR “land sharing”) AND TITLE-ABS-KEY (“ richness” OR “ abundance” OR “species diversity” OR “functional diversity” OR “index”) AND TITLE-ABS-KEY (“crop yield” OR “crop production”) AND (LIMIT-TO (LANGUAGE, “English”)). We extracted the primary studies included in all relevant meta-analyses identified from the database search. In addition, we included a small number of peer-reviewed articles known to scientists consulted through the Sustainable Foods project and which were not retrieved by the search string or from previous meta-analyses. In total, 1590 articles with the potential to be included in the meta-analysis were identified (Fig. 1).Article screeningAll identified articles were screened at full-text level. We used the PICOC (Population, Intervention, Comparator, Outcomes, Context) framework to define the inclusion-exclusion criteria as described in Sánchez et al.19. These criteria required that, to be included: (i) the article presents a quantitative comparison of a diversified farming system (Intervention) compared to either a relatively simplified farming system (first Comparator) or to natural habitat (second Comparator), ii) the article reports quantitative outcomes for any terrestrial organism that is non-domesticated (Population), iii) the article provides the mean or median, variance and sample size for biodiversity outcomes, and outcome measures in comparator and intervention sites were collected using comparable sampling approaches (Outcome), iv) results are from primary field studies and not from experiments conducted in greenhouses or laboratories (Context).Diversified farming systems were defined as agricultural plots where: i) more than one plant species or variety is cultivated at multiple temporal and/or spatial scales, such as crop rotations, intercropping or agroforestry, or ii) semi-natural habitat such as hedgerows and flower strips is embedded into the system, or iii) crop production is integrated with livestock or fish production, such as aquaculture or integrated crop-livestock systems. Simplified farming systems were agricultural plots with less diversity than in eligible interventions, i.e., plots with relatively fewer plant species or varieties (usually monocultures), less semi-natural habitat embedded, or no mixed crop-animal production. Where natural habitat was used as a comparator, this was defined as habitat that is not actively used for human activities, such as primary and secondary forests, wetlands, unmanaged grasslands and shrublands.Suitable outcome metrics for biodiversity included any comparable quantified measure, such as richness, abundance, or Shannon’s diversity index. While studies only needed to report biodiversity outcomes to be considered for inclusion, we recorded harvested yield in all cases where this was reported and met our inclusion criteria. For yield outcomes to be included, the article must have provided means or medians, variance and sample sizes, and outcome measures at intervention and comparator sites must have been collected using comparable sampling approaches. Suitable outcome metrics for yields included the land equivalent ratio, weight of harvested produce per unit land area, or counts of harvested produce per standardized unit (e.g. grape bunch per plant, apples per branch). For comparisons comparing intercropped or agroforestry systems against simplified farming systems, the land equivalent ratio was prioritized as the outcome metric while other metrics were used only when the land equivalent ratio could not be calculated.In total, 237 (14.9%) of retrieved articles met our inclusion criteria (Fig. 1).Data extractionFrom each article that met our inclusion criteria, we extracted qualitative data on: the literature source (e.g. authors, publication year, title); crop type (common name, scientific name); agricultural system (e.g. intercropping, monoculture, agroforestry, integrated crop-livestock system, crop rotation, set aside); non-domesticated taxa sampled (common and scientific names); functional group of the non-domesticated taxa, if specified (e.g. pest, decomposer, predator); biodiversity outcome metric (e.g. species richness, abundance, Shannon’s diversity index); yield metric (e.g. kilogram per hectare, grams per plant, land equivalent ratio); sampling method used (e.g. transect, trap); pesticide use (yes or no, and kg/ha); fertilizer use (yes or no, and chemical fertiliser use yes or no); soil management (e.g. tillage, no tillage, slash and burn); landscape characteristics (e.g. % agricultural land use, climate); and study location (local name, country and geographic coordinates). Following initial data-entry, we classified several variables into categories to facilitate data exploration and analysis. This included categorizing crops by the Food and Agriculture Organisation of the United Nations commodity group, woodiness (e.g. tree, shrub, herb), and growth cycle (perennial, annual), and documenting the phylum, class, order and functional group of each non-domesticated taxon.We extracted quantitative data on: biodiversity outcome means or medians, variance and sample size; yield means or median, variance and sample size; farm size, if specified; length of time that the land has been in its current state, and; sampling duration (in days, from start to finish). Data on biodiversity outcomes and yield were extracted from figures using GetData Graph Digitizer 2.26 or WebPlotDigitizer v4.2. Where outcome values or units in an article were unclear or not provided, the corresponding author was contacted by email to request this information. If the author did not respond, the data entry was removed. We provide a dictionary of how the extracted data were recorded and coded in Dataset 2.Data were organized using R-4.0.0 (R-Core Team, 2013) such that each row contained a pair of biodiversity outcomes and, where provided, a pair of yield outcomes, for a single comparator-intervention pair. In total, 237 studies containing 4076 comparisons of biodiversity outcomes and 1214 comparisons of yield outcomes were retained for analysis (Fig. 1). More

  • in

    Small pigmented eukaryote assemblages of the western tropical North Atlantic around the Amazon River plume during spring discharge

    Habitat typesThe sampled stations were classified into 5 habitat types (Fig. 1a,b) as described by Weber et al.35: young plume core (YPC), old plume core (OPC), west plume margin (WPM), east plume margin (EPM) and oceanic seawater (OSW). Each habitat was characterized by a unique combination of sea surface salinity, sea surface temperature, nitrate availability index, mixed layer depth and chlorophyll maximum depth35. Geographically, the different habitats were unevenly distributed along the transect (Fig. 1c), illustrating the dynamic and patchy nature of the ARP. At each station, the temperature and salinity profiles confirmed the stratification of the water column. Maximum Brunt–Väisälä buoyancy frequency was high (3–15 × 10–3 s−1) and close to the surface in the plume core (YPC and OPC), restricting turbulent mixing between the plume waters and the underlying ocean waters. The plume margin stations (WPM and EPM) showed deeper and more muted (1–2 × 10–3 s−1) maximum buoyancy frequency peaks while OSW stations exhibited turbulent mixing from the surface to ~ 100 m (Supplementary Fig. S1). Fluorescence profiles provided guidance to sample within the chlorophyll maximum (Supplementary Fig. S1). In the plume core, the chlorophyll peak was located above the halocline. At plume margin stations, multiple chlorophyll maxima were detected at the halocline or just below, while the oceanic seawater stations did not have haloclines, and chlorophyll peaks were far below the surface (deeper than 50 m). Surface samples from the core plume stations corresponded to high temperature-low salinity waters, with low density. These plume waters mixed with coastal waters at the surface of plume margin stations, but this was not the case at OSW stations (Supplementary Fig. S2).Figure 1Location of the study (A), distribution of sampling stations (B) and identification of the habitat types using a principal component analysis (C) and Ward’s hierarchical cluster analysis (D). The map in B shows the monthly composite surface chlorophyll concentration for May 2018 from satellite observations Reprocessed L4 (ESA-CCI: OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_093) downloaded from Copernicus Marine Service (https://resources.marine.copernicus.eu). The map was created using the NASA SeaDAS 7.5.3 software with land and exclusive economic zones boundaries (yellow lines) added with gmt v5.4.5 software. Note that all stations from EN614 were used to establish habitat types, but only the 10 stations highlighted in bold and shown on the map were used in this study. SSS, sea surface salinity; SST, sea surface temperature; NAI, nitrogen availability index; MLD, mixed layer depth; ChlMD, chlorophyll maximum depth.Full size imageSmall-sized pigmented eukaryote populations, size, abundance and biomass:Overall, the small pigmented eukaryote communities were composed of a variable combination of 3 to 4 populations per sample, with a total of 6 different populations (named P1, P2, P3, P4, P5 and P6) among all samples, identified by flow cytometry according to cell size range and pigment content (Fig. 2). Based on relative estimates from flow cytometry calibrations using beads of known sizes, most populations belonged to the picoplankton (≤ 2–3 µm). Cells in P1 were approx. 0.8 µm. P2 was a very diverse cluster resulting in a size range from ≤ 0.8 to 5 µm, with a majority of cells clustered around 2 µm, while P3 and P6 were characterized by cells of 0.8–2 µm and P4 by cells of 2–3.5 µm. Cells identified within P5 were larger, ranging from 3.5 to  > 5 µm, therefore encompassing small-sized members of the nanoplankton (3–20 µm). Studies that provide size calibrations for sorted picoeukaryote populations are rare37, making direct comparisons unreliable.Figure 2Example of a cytogram illustrating the gates used for small pigmented eukaryote population counts and sorting. Populations were first discriminated based on their position in the chlorophyll vs forward scatter cytogram (A, all events represented) and then redefined in the chlorophyll vs phycoerythrine (PE) autofluorescence cytogram (B, only events gated in A represented). In the later, we avoided Synechococcus overlapping with small pigmented eukaryote populations in A and cells exhibiting high PE fluorescence among the populations from cytogram B. Note that all 6 populations were never found present in the same sample. In particular, the sample represented here (S003 surface) did not contain P1 or P6, but the gates are represented nonetheless in panel A to provide an illustration for these populations. Note that the gating had to be adjusted between samples but the relative positions stayed similar to those illustrated here. The positions of standard size-calibrated non-fluorescent beads (dashed lines) along the x-axis were used to determine the size range of each gated population in cytogram A. Red ellipses mark the position of yellow-green reference beads of 1 and 2 µm (1-YG and 2-YG, respectively) used to maintain instrument alignment, although the bead clusters are not apparent in the sample since they were run separately (for details see “Methods”).Full size imageThe different small pigmented eukaryote populations had variable cell abundances relative to each other and varied with sampling location (Table 1). Surface communities were either dominated by population P3 (57–74% of small pigmented eukaryote abundance, hereafter counts) in the WPM (S003, S031 cast 03 (henceforth S031_03), and S031 cast 11 (henceforth S031_11)) as well as one station from EPM (S022) and one from OSW (S020), or by P2 (52–66% of counts) at the OPC (S024) and stations of the EPM (S025) and OSW (S027). All stations had lower abundances of P4 (5.7–32% of counts), and only four stations (S003, S020, S022, S031_11) also presented a small P5 population (3.1–6.3% of counts). The small pigmented eukaryote communities collected from chlorophyll maxima were all dominated by P2 (69–94% of counts) and accompanied by much less abundant P3 (5.6–23% of counts), except for station S022 whose chlorophyll maximum small pigmented eukaryote community was dominated by P3 (93% of counts). All chlorophyll maximum communities were characterized by a low contribution of P4 (0.6–6.2% of counts). The small pigmented eukaryote community collected from 40 m at S017 was characterized by the presence of population P6 (16% of counts), absent from the other stations. P1 was only present at the chlorophyll maximum of the OPC station (11% of counts). However, the amount of DNA extracted from P1 was too small to allow for sequencing of the 18S rDNA and it is therefore not part of the subsequent analyses.Table 1 Cell counts per population, as the proportion of the summed total cell density for all 6 gated populations. CM, chlorophyll maximum.Full size tableAt the surface, small pigmented eukaryotes contributed on average 1.3 ± 0.4% of the total small phytoplankton abundance (Supplementary Table S1), indicating that picocyanobacteria dominated all stations. Synechococcus dominated cell abundances at most stations (57–97%), except in the OSW (S020, S027) where Prochlorococcus dominated (92–97%). These results reflect the established paradigm that the eukaryotic component of small phytoplankton communities is less abundant than the prokaryotic component10,16,37. Nonetheless, in terms of biomass, small pigmented eukaryote dominated the small phytoplankton in all surface samples (11–44 × 103 µg C/m3; 47–71%), representing a biomass greater than or equal to the picocyanobacteria (Supplementary Table S2). The horizontal shift in surface nutrient concentrations among habitats was too modest to affect the relative contribution of small pigmented eukaryote to total small phytoplankton abundances, contrary to reports for much larger spatial scales involving greater differences in nutrient concentrations, ranging from coastal systems to the open ocean10,16. Small photosynthetic eukaryote abundance and biomass were not significantly correlated to nutrient concentrations, salinity or temperature (Spearman rho  0.05).At the chlorophyll maxima and in deeper waters, despite a consistent predominance of Prochlorococcus, small pigmented eukaryotes generally contributed more to the total small phytoplankton abundance than at the surface, similar to previous reports from the Indian Ocean7 and the south Pacific Ocean8,9. These samples showed decreased absolute abundances of ≤ 5 µm phytoplankton (Supplementary Table S1), with the plume core stations (S017, S024) exhibiting the lowest overall absolute abundances (8.2–32 × 103 cells/mL). This decrease in absolute numbers of the picocyanobacteria, concomitant with increased small pigmented eukaryote relative abundances (6–18%), indicated that eukaryotes fared better than the picocyanobacteria in the low light conditions of waters shaded by the plume. Dominance of the small phytoplankton biomass by small eukaryotes (5.9–50 µg C/m3; 53–95% of the total biomass), representing more than twice the picocyanobacterial biomass at the chlorophyll maxima and deeper water, is reminiscent of reports that small pigmented eukaryotes can contribute significantly to primary production in coastal regions12. Although this contrasts with findings from open oceans where Prochlorococcus dominates small phytoplankton biomass11,37, small pigmented eukaryotes were found to be similarly biomass-dominant and contributing up to a third of total primary production in surface seawater of the western subtropical North Atlantic under phosphorus depletion13.Taxonomic composition of small pigmented eukaryote populationsHigh-throughput sequencing of the small ribosomal subunit gene provided insights into the taxonomic composition of resident (live, inactive and recently dead) small pigmented eukaryote populations. A total of 234 operational taxonomic units (OTUs) were obtained, covering the full diversity of the populations in each sample (Supplementary Fig. S3) and after removal of metazoan OTUs and OTUs  1,000 OTUs38,39,40,41,42, the low OTU richness is a reminder that our cell sorting protocol allowed the focused targeting of small pigmented eukaryote populations. The low OTU counts (3–42) for each population (Table 2) further reflect the accuracy of the sorting method and the near taxonomic purity of some of the sorted populations.Table 2 Operational taxonomic units (OTUs) counts per population. CM, chlorophyll maximum.Full size tableMajor OTUs, constituting at least 20% of the total reads per population for at least one sample, represented 29 out of the 201 OTUs (Fig. 3; Supplementary Table S1). The most frequent OTU was a Chloropicophyceae (Chlorophyta), averaging 19.55% of total reads/sample. The second most frequent Chlorophyta OTU belonged to prasinophyte clade IX with an average of 4.36% of the total reads/sample. The Ochrophyta were represented by two Marine Ochrophyta clade 5 (MOCH-5) OTUs and five Bacillariophyceae OTUs ranging on average from 5.5 to 2.1%, and 5.3 to 1.6% of total reads per sample, respectively. Only one major OTU was associated with the prymnesiophytes, classified within the order Isochrysidales, representing 1.3% of the total reads/sample (Fig. 3). The rest of the major OTUs had lower average abundances throughout the samples ( 8 µm cells from our sorted populations. Furthermore, the consistently low abundance or absence of P5 throughout our samples suggests that this Isochrysidales OTU5 (Noelaerhabdaceae) did not dominate the small pigmented eukaryote communities of the ARP in the spring.Distinguishing the small pigmented eukaryote community composition between habitat typesA UniFrac unweighted paired group method with arithmetic mean analysis revealed stronger clustering among populations than among stations or depths, suggesting a consistency in the phylogenetic composition of the sorted populations (Supplementary Fig. S4). The only exceptions were S031_03 chlorophyll maximum and S031_11 surface samples for which the three populations clustered distinctly from the rest. A canonical correspondence analysis based on assemblages of major OTUs separated populations P2 and P4 of the OPC surface and subsurface and all four populations of S031_11 surface from the rest of the samples (Fig. 6a). The low abundance OTU composition of the surface and subsurface OPC populations and the deep YPC sample were distinct from the rest of the samples, the latter being strongly driven by salinity (Fig. 6b). The environmental variables used in the canonical correspondence analysis explain a sizable portion of the variability (33–50%), although it seems that an important driver of community composition was unaccounted for.Figure 6Canonical correspondence analysis with A major OTUs, and B low abundance OTUs.Full size imageThe YPC populations had low OTU richness (Table 2), and most of their major OTUs were shared with other stations, namely the Chloropicophyceae OTU192 and OTU165, detected in all 4 populations (16–86% of total reads/population). Notably, this sample was only distinguished from the rest by its low abundance OTU composition (Fig. 6b). Of the 15 low-abundance OTUs among the 4 populations detected, a few were shared with other samples, but only one or two at a time (Supplementary Table S3). The OPC surface was also characterized by a low OTU richness (Table 2), each population dominated by one or two major OTUs (Fig. 5). P2 was dominated by Bacillariophyta Nitzschia (OTU86), also found at other stations in lower abundance, and by a Syndiniales GrpI OTU108 unique to this station. P3 was composed of the ubiquitous Chloropicophyceae OTU192, classified as Chloropicon, and two MOCH-5 OTUs, which were also found in P4. The chlorophyll maximum sample was composed of a very similar small pigmented eukaryote community, albeit with a larger proportion of low abundance OTUs in P2. Interestingly, P3 at both surface and chlorophyll maximum was distinguished from other samples by the low abundance OTUs that accompanied the dominant Chloropicophyceae OTUs (Fig. 6b). The small pigmented eukaryote community of the sample below the chlorophyll maximum was characterized by an abundant P3 dominated by Chloropicon OTU192, accompanied by the Pelagophyceae Pelagomonas OTU232, which was also detected at S025 (EPM) and S027 (OSW). This sample collected below the halocline was distinct from the upper water column and more similar to the margin and oceanic samples. Such a pattern is consistent with the plume overriding the surrounding margin or oceanic waters and submerging the endemic communities that were there previously at the surface.In contrast to our first hypothesis regarding small pigmented eukaryote variability across the horizontal gradients of the ARP, the composition of small pigmented eukaryote communities was stable among the different habitat types. This is attributable to a combination of variability in OTU composition among samples from the same habitats and similarity of the small pigmented eukaryote assemblages between stations of different habitats. Indeed, the populations exhibited no significant differences between average UniFrac distances among habitats, stations of the same habitats and depths of the same stations (ANOVA, p  > 0.164 for P2, p  > 0.251 for P3 and p  > 0.735 for P4). The lack of statistical differences, particularly among the plume margins and oceanic waters, are indicative of the dynamic nature of large river plumes, such as reported for the Columbia River67. The meandering of the ARP creates a very dynamic system with a variable influence on local oligotrophic ocean waters68,69. It is possible that each station is too unique to establish a consensus small pigmented eukaryote community structure per habitat type, while abundant populations are shared between stations of different habitats limiting the detectable distinctions between the assemblages. For instance, the dominant Nitzschia OTU86 was shared between the OPC, one of the WPM stations and one of the EPM stations. Similarly, Chloropicon OTU192 dominated P3 at all stations, except in the surface waters of one WPM station (S031_11) and one OSW station (S027). Furthermore, our use of DNA as template for the taxonomic survey might have masked changes in the active communities among different habitats that would have been more apparent with RNA templates.The progressive mixing of oceanic waters into the plume is likely to exchange small pigmented eukaryote communities between the adjacent environments. This hydrodynamic phenomenon would allow the unrestrained dispersal of small pigmented eukaryotes between habitats, resulting in the observed similarities between the plume and surrounding ocean surface waters. In the dynamic environment of the ARP margins, the similarity between communities of different habitats is a function of time since the onset of the mixing event that exposed oceanic and plume small pigmented eukaryote communities to adjacent environments. Time-since-mixing might be the environmental parameter unaccounted for in our dataset that would explain the intra-habitat variability in major OTU composition, incidentally, obscuring the differences between habitats.Contrary to picocyanobacteria, which mostly use recycled, reduced forms of nitrogen (ammonium and urea), small pigmented eukaryotes rely more on nitrate70,71, making them more sensitive to the low nitrate concentrations in and around the ARP. While the uniformity of small pigmented eukaryote biomass between the oligotrophic ocean waters and the plume margins is likely the product of low nutrient concentrations in both environments, the variability of the OTU composition might be explained by a variable nitrate metabolism among small pigmented eukaryote taxa70. Alternatively, mixotrophy, the combination of photosynthesis and bacterivory common among small pigmented eukaryotes13,72,73,74, might confer a generalist advantage relative to picocyanobacteria by allowing maintenance of activity and abundance in rapidly varying habitats.Corroborating our second hypothesis that the small pigmented eukaryote diversity should vary with depth within the euphotic layer, the small pigmented eukaryote diversity and abundance varied vertically, with higher cell counts at the chlorophyll maximum. The taxonomic composition of chlorophyll maximum communities differed from those at the surface with populations characterized by high abundances of OTUs associated with Bacillariophecae, Pelagophyceae, radiolarians or Dinophyceae. The presence of Dinophyceae or Pelagophyceae OTUs at the chlorophyll maxima of plume stations (OPC, WPM and EPM), which were absent from surface waters, reflects the strong stratification at plume-influenced stations, reducing mixing between the surface and the bottom of the euphotic zone, the latter of which can be strongly influenced by oceanic waters. In particular at these stations (S024, S031 and S022), the chlorophyll maximum samples were collected below the halocline depth. Hence, these Dinophyceae and Pelagophyceae OTUs, uniquely shared with one of the oceanic stations, suggest that water masses under the plume-influenced surface might correspond to the oceanic water masses at the OSW stations.Station S031, a time-series station, showed a variation in major OTU assemblages between the cast conducted at 3 pm on May 26th (S031_03) and another cast carried out at 11am on May 27th (S031_11). Within this 19-h interval, in which environmental conditions remained consistent with the habitat type (Fig. 1), the OTU composition underwent a shift (Figs. 5, 6a). The relative cell abundances of each population remained similar, except for a P5 population appearing in samples from the second time point (Fig. 5). At the surface, the shift was characterized by the replacement of all OTUs from S031_03 with major OTUs assigned to Syndiniales in S031_11. The only common OTU, MAST-3A (OTU115), had low abundances (0.4–3.7%) in S031_03 and reached 14–24% in the S031_11 populations (Supplementary Table S3). Interestingly, the major Syndiniales OTUs in S031_11 were unique to this station, and different from the Syndiniales OTUs detected in the OPC and EPM stations (Fig. 5). This unexpected abundance in unpigmented Syndiniales OTUs in S031_11 might be due to the presence of dinospores in transitory free-living form, attached to or inside alveolate hosts or predators75,76. The large proportion of low abundance OTUs, which represented 70% of total reads in P3, were related to Syndiniales, ciliates and dinoflagellates (Supplementary Material SM2).Changes were also observed at the chlorophyll maximum where the unique radiolarian Collophidium OTU that dominated S031_03 disappeared in S031_11. This abundance of sequences related to the Radiolaria, large heterotrophic protozoa (≥ 100 µm), was unexpected among our targeted populations sorted by size and chlorophyll content. However, radiolarian sequences have been found among small size fractions before77,78, particularly at depth79,80 where they are suspected to descend and release small flagellate gametes called swarmers81. Hence, if attached to exopolymer-producing pigmented cells such as in the late stages of a phytoplankton bloom82, these swarmers could have been indiscriminately sorted into the three populations. In addition, three dinoflagellate OTUs appeared in P2 and P4 in cast S031_11, of which one was only found in the deep YPC, and one was shared with the chlorophyll maximum of S022 (EPM) and the surface of S027 (OSW).The radical shift in small pigmented eukaryote community composition between the two casts from station S031 reflects the dynamic nature of the ARP ecosystem and the multiple scales of heterogeneity within this system that is unlikely to be uncovered without the multiple approaches used in this study. It is unlikely that this interval of 19 h was sufficient for the resident small pigmented eukaryote community to change so radically as to completely replace the original taxa, as taxonomic turnover on daily time scales is usually very limited83,84. The salinity profiles indicated a stronger stratification at the time of cast 11, with a deeper mixing depth (22 m) compared to cast 03 (16 m), reflected in the chlorophyll profiles showing more homogenous concentrations in the top 22 m of cast 11 (Supplementary Fig. S1). In addition, the chlorophyll maximum peak sampled at 27 m was much smaller in cast 11 compared to cast 03, with a stronger secondary peak at 39 m. Satellite observations show the river plume defined as high surface chlorophyll, spreading north and eastward between the 25th and 29th of May (Supplementary Fig. S9—higher chlorophyll concentrations north of 17°N), suggesting a plume that was advecting past the ship during this time. This likely caused the deepening of the mixing depth, forcing the surface small pigmented eukaryote community northwards and the chlorophyll maximum community deeper below the mixing depth, effectively displacing the communities identified during cast 03.As a first study of the small pigmented eukaryotes and their response to the environmental habitats of the ARP, this work provides new insights into the detailed 18S rDNA-based taxonomy of an underexplored fraction of the phytoplankton. Our results illustrate that FACS is a reliable tool to enrich targeted taxonomic groups, such as Bacillariophyta, Chlorophyta and MOCH-5. The small pigmented eukaryote taxonomic composition was influenced by the ARP only at the plume core (OPC) where surface assemblages showed a strong dissimilarity with other stations, which were otherwise similar despite belonging to different habitat types. This result stands in apparent contrast to the drastic succession in community composition of the microphytoplankton driven by the nutrient gradients in the ARP1,3,4,6. The surprisingly limited influence of the ARP on surface small pigmented eukaryote communities warrants further inquiry. Sampling at different times of the year and using 18S rRNA as template for sequencing might reveal small pigmented eukaryotes to be more reactive to the habitat types earlier in the season, at the beginning of the massive discharge period from the Amazon River, or at the end of the summer when the ARP is entrained toward the east by the north equatorial countercurrent. More

  • in

    Hyperspectral data as a biodiversity screening tool can differentiate among diverse Neotropical fishes

    1.McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113. https://doi.org/10.1016/j.tree.2014.11.006 (2015).Article 

    Google Scholar 
    2.Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167. https://doi.org/10.1038/nature04246 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Thomas, C. D., Franco, A. M. A. & Hill, J. K. Range retractions and extinction in the face of climate warming. Trends Ecol. Evol. 21, 415–416. https://doi.org/10.1016/j.tree.2006.05.012 (2006).Article 
    PubMed 

    Google Scholar 
    4.Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. In Annual Review of Ecology, Evolution, and Systematics, Vol. 47 (ed Futuyma, D. J.) 333–358 (Annual Reviews, 2016).5.Drew, L. W. Are we losing the science of taxonomy?: As need grows, numbers and training are failing to keep up. Bioscience 61, 942–946. https://doi.org/10.1525/bio.2011.61.12.4 (2011).Article 

    Google Scholar 
    6.Kim, K. C. & Byrne, L. B. Biodiversity loss and the taxonomic bottleneck: Emerging biodiversity science. Ecol. Res. 21, 794–810. https://doi.org/10.1007/s11284-006-0035-7 (2006).Article 

    Google Scholar 
    7.Packer, L., Grixti, J. C., Roughley, R. E. & Hanner, R. The status of taxonomy in Canada and the impact of DNA barcoding. Can. J. Zool. 87, 1097–1110. https://doi.org/10.1139/z09-100 (2009).CAS 
    Article 

    Google Scholar 
    8.Qin, H. W., Li, X., Liang, J., Peng, Y. G. & Zhang, C. S. DeepFish: Accurate underwater live fish recognition with a deep architecture. Neurocomputing 187, 49–58. https://doi.org/10.1016/j.neucom.2015.10.122 (2016).Article 

    Google Scholar 
    9.Tharwat, A., Hemedan, A. A., Hassanien, A. E. & Gabel, T. A biometric-based model for fish species classification. Fish. Res. 204, 324–336. https://doi.org/10.1016/j.fishres.2018.03.008 (2018).Article 

    Google Scholar 
    10.Gates, D. M., Keegan, H. J., Schleter, J. C. & Weidner, V. R. Spectral properties of plants. Appl. Opt. 4, 11–000. https://doi.org/10.1364/ao.4.000011 (1965).ADS 
    Article 

    Google Scholar 
    11.Hutchison, V. H. & Larimer, J. L. Reflectivity of the integuments of some lizards from different habitats. Ecology 41, 199–209. https://doi.org/10.2307/1931954 (1960).Article 

    Google Scholar 
    12.Asner, G. P. & Martin, R. E. Spectranomics: Emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob. Ecol. Conserv. 8, 212–219. https://doi.org/10.1016/j.gecco.2016.09.010 (2016).Article 

    Google Scholar 
    13.Baldeck, C. A. et al. Operational tree species mapping in a diverse tropical forest with airborne imaging spectroscopy. PLoS ONE 10, e0118403. https://doi.org/10.1371/journal.pone.0118403 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 1–5. https://doi.org/10.1038/nplants.2016.24 (2016).Article 

    Google Scholar 
    15.Leblanc, G., Francis, C. M., Soffer, R., Kalacska, M. & de Gea, J. Spectral reflectance of polar bear and other large arctic mammal pelts; potential applications to remote sensing surveys. Remote Sens. 8, 273. https://doi.org/10.3390/rs8040273 (2016).ADS 
    Article 

    Google Scholar 
    16.Dodd, C. K. Infrared reflectance in chameleons (Chamaeleonidae) from Kenya. Biotropica 13, 161–164. https://doi.org/10.2307/2388120 (1981).Article 

    Google Scholar 
    17.Pinto, F. et al. Non-invasive measurement of frog skin reflectivity in high spatial resolution using a dual hyperspectral approach. PLoS ONE 8, e73234. https://doi.org/10.1371/journal.pone.0073234 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Schwalm, P., Starrett, P. & McDiarmid, R. Infrared reflectance in leaf-sitting neotropical frogs. Science 196, 1225–1226. https://doi.org/10.1126/science.860137 (1977).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Mielewczik, M., Liebisch, F., Walter, A. & Greven, H. Near-infrared (NIR)-reflectance in insects–phenetic studies of 181 species. Entomologie heute 24, 183–215 (2012).
    Google Scholar 
    20.Bajjouk, T. et al. Detection of changes in shallow coral reefs status: Towards a spatial approach using hyperspectral and multispectral data. Ecol. Ind. 96, 174–191. https://doi.org/10.1016/j.ecolind.2018.08.052 (2019).Article 

    Google Scholar 
    21.Chennu, A., Faber, P., De’ath, G., de Beer, D. & Fabricius, K. E. A diver-operated hyperspectral imaging and topographic surveying system for automated mapping of benthic habitats. Sci. Rep. 7, 1–12. https://doi.org/10.1038/s41598-017-07337-y (2017).CAS 
    Article 

    Google Scholar 
    22.Parsons, M., Bratanov, D., Gaston, K. J. & Gonzalez, F. UAVs, hyperspectral remote sensing, and machine learning revolutionizing reef monitoring. Sensors 18, 2026. https://doi.org/10.3390/s18072026 (2018).ADS 
    Article 
    PubMed Central 

    Google Scholar 
    23.Dumke, I. et al. Underwater hyperspectral imaging as an in situ taxonomic tool for deep-sea megafauna. Sci. Rep. 8, 1–11. https://doi.org/10.1038/s41598-018-31261-4 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Akkaynak, D., Siemann, L. A., Barbosa, A. & Mathger, L. M. Changeable camouflage: How well can flounder resemble the colour and spatial scale of substrates in their natural habitats?. R. Soc. Open Sci. 4, 160824. https://doi.org/10.1098/rsos.160824 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Chiao, C. C., Wickiser, J. K., Allen, J. J., Genter, B. & Hanlon, R. T. Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators. Proc. Natl. Acad. Sci. USA. 108, 9148–9153. https://doi.org/10.1073/pnas.1019090108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Hebert, P. D. & Gregory, T. R. The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859 (2005).Article 

    Google Scholar 
    27.Fricke, R., Eschmeyer, W. N. & Van de Laan, R. Eschmeyer’s Catalog of Fishes: Genera, Species, References. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (2019).28.Orti, G., Sivasundar, A., Dietz, K. & Jégu, M. Phylogeny of the Serrasalmidae (Characiformes) based on mitochondrial DNA sequences. Genet. Mol. Biol. 31, 343–351 (2008).CAS 
    Article 

    Google Scholar 
    29.Thompson, A. W., Bentancur-R, R., López-Fernández, H. & Orti, G. A time-calibrated, multi-locus phylogeny of piranhas and pacus (Characiformes: Serrasalmidae) and a comparison of species tree methods. Mol. Phylogenet. Evol. 81, 242–257 (2014).Article 

    Google Scholar 
    30.Machado, V. N. et al. One thousand DNA barcodes of piranhas and pacus reveal geographic structure and unrecognised diversity in the Amazon. Sci. Rep. 8, 1–12. https://doi.org/10.1038/s41598-018-26550-x (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129. https://doi.org/10.1126/science.aac7082 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Huie, J. M., Summers, A. P. & Kolmann, M. A. Body shape separates guilds of rheophilic herbivores (Myleinae: Serrasalmidae) better than feeding morphology. Proc. Acad. Natl. Sci. Phila. 166, 1–15. https://doi.org/10.1635/053.166.0116 (2017).Article 

    Google Scholar 
    33.Schweikert, L. E., Fitak, R. R., Caves, E. M., Sutton, T. T. & Johnsen, S. Spectral sensitivity in ray-finned fishes: Diversity, ecology and shared descent. J. Exp. Biol. 221, jeb189761. https://doi.org/10.1242/jeb.189761 (2018).Article 
    PubMed 

    Google Scholar 
    34.Stockman, A. & Sharpe, L. T. Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vis. Res. 40, 1711–1737 (2000).CAS 
    Article 

    Google Scholar 
    35.Peichl, L., Behrmann, G. & Kröger, R. H. H. For whales and seals the ocean is not blue: A visual pigment loss in marine mammals. Eur. J. Neurosci. 13, 1520–1528 (2001).CAS 
    Article 

    Google Scholar 
    36.Kelber, A. Bird colour vision—From cones to perception. Curr. Opin. Behav. Sci. 30, 34–40. https://doi.org/10.1016/j.cobeha.2019.05.003 (2019).Article 

    Google Scholar 
    37.Chikashige, T. & Iwasaka, M. Magnetically-assembled micro/mesopixels exhibiting light intensity enhancement in the (012) planes of fish guanine crystals. AIP Adv. 8, 056704. https://doi.org/10.1063/1.5006135 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Churnside, J. H. & McGillivary, P. A. Optical-properties of several pacific fishes. Appl. Opt. 30, 2925–2927. https://doi.org/10.1364/ao.30.002925 (1991).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Funt, N., Palmer, B. A., Weiner, S. & Addadi, L. Koi fish-scale iridophore cells orient guanine crystals to maximize light reflection. ChemPlusChem 82, 914–923. https://doi.org/10.1002/cplu.201700151 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Gur, D., Leshem, B., Oron, D., Weiner, S. & Addadi, L. The structural basis for enhanced silver reflectance in Koi fish scale and skin. J. Am. Chem. Soc. 136, 17236–17242. https://doi.org/10.1021/ja509340c (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Lythgoe, J. N. & Shand, J. Changes in spectral reflections from the iridophores of the neon tetra. J. Physiol. 325, 23–000. https://doi.org/10.1113/jphysiol.1982.sp014132 (1982).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Correa, S. B. & Winemiller, K. O. Niche partitioning among frugivore fishes in response to fluctuating resources in Amazonian floodplain forest. Ecology 95, 210–224 (2014).Article 

    Google Scholar 
    43.Van Nynatten, A., Bloom, D., Chang, B. S. W. & Lovejoy, N. R. Out of the blue: Adaptive visual pigment evolution accompanies Amazon invasion. Biol. Lett. 11, 20150349. https://doi.org/10.1098/rsbl.2015.0349 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Shawkey, M. D. & D’Alba, L. Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160536. https://doi.org/10.1098/rstb.2016.0536 (2017).Article 

    Google Scholar 
    45.Jordan, R. et al. Ultraviolet reflectivity in three species of lake Malawi rock-dwelling cichlids. J. Fish Biol. 65, 876–882. https://doi.org/10.1111/j.1095-8649.2004.00483.x (2004).Article 

    Google Scholar 
    46.Wilkins, L., Marshall, N. J., Johnsen, S. & Osorio, D. Modelling colour constancy in fish: Implications for vision and signalling in water. J. Exp. Biol. 219, 1884–1892. https://doi.org/10.1242/jeb.139147 (2016).Article 
    PubMed 

    Google Scholar 
    47.Andrade, M. C., Fitzgerald, D. B., Winemiller, K. O., Barbosa, P. S. & Giarrizzo, T. Trophic niche segregation among herbivorous serrasalmids from rapids of the lower Xingu River, Brazilian Amazon. Hydrobiologia 829, 265–280. https://doi.org/10.1007/s10750-018-3838-y (2019).CAS 
    Article 

    Google Scholar 
    48.Rocha, L. A. et al. Specimen collection: An essential tool. Science 344, 814. https://doi.org/10.1126/science.344.6186.814 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Alberch, P. Museums, collections and biodiversity inventories. Trends Ecol. Evol. 8, 372–375 (1993).CAS 
    Article 

    Google Scholar 
    50.Page, L. M., MacFadden, B. J., Fortes, J. A., Soltis, P. S. & Riccardi, G. Digitization of biodiversity collections reveals biggest data on biodiversity. Bioscience 65, 841–842 (2015).Article 

    Google Scholar 
    51.Peterson, A. T., Soberon, J. & Krishtalka, L. A global perspective on decadal challenges and priorities in biodiversity informatics. BMC Ecol. 15, 15 (2015).Article 

    Google Scholar 
    52.Singer, R. A., Ellis, S. & Page, L. M. Awareness and use of biodiversity collections by fish biologists. J. Fish Biol. 96, 297–306. https://doi.org/10.1111/jfb.14167 (2020).Article 
    PubMed 

    Google Scholar 
    53.Hoeksema, B. W. et al. Unforeseen importance of historical collections as baselines to determine biotic change of coral reefs: The Saba Bank case. Mar. Ecol. 32, 135–141. https://doi.org/10.1111/j.1439-0485.2011.00434.x (2011).ADS 
    Article 

    Google Scholar 
    54.Stein, E. D., Martinez, M. C., Stiles, S., Miller, P. E. & Zakharov, E. V. Is DNA barcoding actually cheaper and faster than traditional morphological methods: Results from a survey of freshwater bioassessment efforts in the United States?. PLoS ONE 9, e95525 (2014).ADS 
    Article 

    Google Scholar 
    55.Johansen, V. E., Onelli, O. D., Steiner, L. M. & Vignolini, S. in Functional Surfaces in Biology III, Vol. 10 (eds Gorb, S. N. & Gorb, E. V.) 53–89 (Springer, 2017).56.Wainwright, D. K., Lauder, G. & Weaver, J. C. Imaging biological surface topography in situ and in vivo. Methods Ecol. Evol. 8, 1626–1638. https://doi.org/10.1111/2041-210x.12778 (2017).Article 

    Google Scholar 
    57.Andrade, M. C., Giarrizzo, T. & Jégu, M. Tometes camunani (Characiformes: Serrasalmidae), a new species of phytophagous fish from the Guiana Shield, Rio Trombetas Basin, Brazil. Neotrop. Ichthyol. 11, 297–306 (2013).Article 

    Google Scholar 
    58.Généralités, I. Gery, J. Poissons characoïdes des Guyanes. II. Famille des Serrasalmidae. Zoologische Verhandelingen 122, 1–250 (1972).
    Google Scholar 
    59.Jegu, M. & Dos Santos, G. M. Le genre Serrasalmus (Pisces, Serrasalmidae) dans le bas Tocantins (Brésil, Parà), avec la description d’une espèce nouvelle, S. geryi, du bassin Araguaia-Tocantins. Revue d’Hydrobiologie Tropicale 21, 239–274 (1988).
    Google Scholar 
    60.Kolmann, M. A. et al. Phylogenomics of piranhas and pacus (Serrasalmidae) uncovers how dietary convergence and parallelism obfuscate traditional morphological taxonomy. Syst. Biol. 70(3), 576–592 (2021).CAS 
    Article 

    Google Scholar 
    61.Feller, K. D., Jordan, T. M., Wilby, D. & Roberts, N. W. Selection of the intrinsic polarization properties of animal optical materials creates enhanced structural reflectivity and camouflage. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160336. https://doi.org/10.1098/rstb.2016.0336 (2017).CAS 
    Article 

    Google Scholar 
    62.Gur, D., Palmer, B. A., Weiner, S. & Addadi, L. Light manipulation by guanine crystals in organisms: Biogenic scatterers, mirrors, multilayer reflectors and photonic crystals. Adv. Funct. Mater. 27, 1603514. https://doi.org/10.1002/adfm.201603514 (2017).CAS 
    Article 

    Google Scholar 
    63.Elmer, K., Soffer, R., Arroyo-Mora, J. P. & Kalacska, M. ASDToolkit: A novel MATLAB processing toolbox for ASD field spectroscopy data. Data 5, 96. https://doi.org/10.3390/data5040096 (2020).Article 

    Google Scholar 
    64.Kruse, F. A. et al. The spectral image-processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44, 145–163. https://doi.org/10.1016/0034-4257(93)90013-n (1993).ADS 
    Article 

    Google Scholar 
    65.Cooksey, C., Tsai, B. K. & Allen, D. A collection and statistical analysis of skin reflectance signatures for inherent variability over the 250 nm to 2500 nm spectral range. Proc. SPIE 9082, 908201–908206. https://doi.org/10.1117/12.2053604 (2014).Article 

    Google Scholar 
    66.Manolakis, D., Marden, D. & Shaw, G. A. Hyperspectral image processing for automatic target detection applications. Lincoln Lab. J. 14, 79–116 (2003).
    Google Scholar 
    67.Manolakis, D., Lockwood, R., Cooley, T. & Jacobson, J. Is There a Best Hyperspectral Detection Algorithm? Vol. 7334 (SPIE, 2009).
    Google Scholar 
    68.van der Heijden, F., Duin, R., de Ridder, D. & Tax, D. Classification, Parameter Estimation and State Estimation, an Engineering Approach using Matlab (Wiley, 2004).Book 

    Google Scholar 
    69.Johnson, M. K. & Adelson, E. H. In Cvpr: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Vols 1–4, 1070–1077 (2009).70.Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: Investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 
    Article 

    Google Scholar 
    71.Wainwright, D. K. & Lauder, G. V. Three-dimensional analysis of scale morphology in bluegill sunfish, Lepomis marochirus. Zoology 119, 182–195 (2016).Article 

    Google Scholar  More

  • in

    Principles, drivers and opportunities of a circular bioeconomy

    1.Haberl, H., Erb, K.-H. & Krausmann, F. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu. Rev. Environ. Resour. 39, 363–391 (2014).Article 

    Google Scholar 
    2.Krausmann, F. et al. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl Acad. Sci. USA 110, 10324–10329 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Steffen, W. et al. Planetary boundaries: guiding changing planet. Science 347, 1259855 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.Muscat, A., de Olde, E. M., de Boer, I. J. M. & Ripoll-Bosch, R. The battle for biomass: a systematic review of food-feed-fuel competition. Glob. Food Sec. 25, 100330 (2020).Article 

    Google Scholar 
    6.Befort, N. Going beyond definitions to understand tensions within the bioeconomy: the contribution of sociotechnical regimes to contested fields. Technol. Forecast. Soc. Change 153, 119923 (2020).Article 

    Google Scholar 
    7.Jørgensen, S. E. & Nielsen, S. N. Application of ecological engineering principles in agriculture. Ecol. Eng. 7, 373–381 (1996).Article 

    Google Scholar 
    8.Potting, J., Hekkert, M., Worrell, E. & Hanemaaijer, A. Circular Economy: Measuring Innovation in the Product Chain (PBL Netherlands Environmental Assessment Agency, 2016).9.Van Kernebeek, H. R. J., Oosting, S. J., van Ittersum, M. K., Ripoll-Bosch, R. & de Boer, I. J. M. Closing the phosphorus cycle in a food system: insights from a modelling exercise. Animal 12, 1755–1765 (2018).Article 
    CAS 

    Google Scholar 
    10.Scherhaufer, S., Moates, G., Hartikainen, H., Waldron, K. & Obersteiner, G. Environmental impacts of food waste in Europe. Waste Manag. 77, 98–113 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Global Food Losses and Food Waste: Extent, Causes and Prevention (FAO, 2011).12.van den Bos Verma, M., de Vreede, L., Achterbosch, T. & Rutten, M. M. Consumers discard a lot more food than widely believed: Estimates of global food waste using an energy gap approach and affluence elasticity of food waste. PLoS ONE 15, e0228369 (2020).CAS 
    Article 

    Google Scholar 
    13.Obesity and Overweight. WHO https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed 10 April 2020).14.Rico-Campà, A. et al. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. Brit. Med. J. 365, l1949 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Srour, B. et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). Brit. Med. J. 365, l1451 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Daystar, J., Chapman, L., Moore, M., Pires, S. & Golden, J. Quantifying apparel consumer use behavior in six countries: addressing a data need in life cycle assessment modeling. J. Text. Apparel Technol. Manag. 11, 1–25 (2019).
    Google Scholar 
    17.Mottet, A. et al. Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8 (2017).Article 

    Google Scholar 
    18.Cashion, T., Le Manach, F., Zeller, D. & Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 18, 837–844 (2017).Article 

    Google Scholar 
    19.Garnett, T. Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environ. Sci. Policy 12, 491–503 (2009).CAS 
    Article 

    Google Scholar 
    20.Goodland, R. Environmental sustainability in agriculture: diet matters. Ecol. Econ. 23, 189–200 (1997).Article 

    Google Scholar 
    21.Van Hal, O. et al. Upcycling food leftovers and grass resources through livestock: impact of livestock system and productivity. J. Clean. Prod. 219, 485–496 (2019).Article 

    Google Scholar 
    22.Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob. Change Biol. 24, 4185–4194 (2018).ADS 
    Article 

    Google Scholar 
    23.Zhou, S. et al. Balanced harvest: concept, policies, evidence, and management implications. Rev. Fish Biol. Fish. 29, 711–733 (2019).Article 

    Google Scholar 
    24.Haberl, H. & Geissler, S. Cascade utilization of biomass: strategies for a more efficient use of a scarce resource. Ecol. Eng. 16, 111–121 (2000).Article 

    Google Scholar 
    25.Suominen, T., Kunttu, J., Jasinevičius, G., Tuomasjukka, D. & Lindner, M. Trade-offs in sustainability impacts of introducing cascade use of wood. Scand. J. For. Res. 32, 588–597 (2017).Article 

    Google Scholar 
    26.Churkina, G. et al. Buildings as a global carbon sink. Nat. Sustain. 3, 269–276 (2020).Article 

    Google Scholar 
    27.Max-Neef, M. in Real-Life Economics (eds Ekins, P. & Max-Neef, M.) Ch. 7 (Routledge, 1992).28.Doyal, L. & Gough, I. A Theory of Human Need (Macmillan, 1991).29.Bos-Brouwers, H., Langelaan, B. & Sanders, J. Chances for biomass. Wageningen University UR https://edepot.wur.nl/248866 (2012).30.Sandin, G. & Peters, G. M. Environmental impact of textile reuse and recycling – a review. J. Clean. Prod. 184, 353–365 (2018).CAS 
    Article 

    Google Scholar 
    31.Korhonen, J., Honkasalo, A. & Seppälä, J. Circular economy: the concept and its limitations. Ecol. Econ. 143, 37–46 (2018).Article 

    Google Scholar 
    32.Castro, M. B. G., Remmerswaal, J. A. M., Brezet, J. C. & Reuter, M. A. Exergy losses during recycling and the resource efficiency of product systems. Resour. Conserv. Recycl. 52, 219–233 (2007).Article 

    Google Scholar 
    33.Bergen, S. D., Bolton, S. M. & Fridley, J. L. Design principles for ecological engineering. Ecol. Eng. 18, 201–210 (2001).Article 

    Google Scholar 
    34.Vidal, O., Goffé, B. & Arndt, N. Metals for a low-carbon society. Nat. Geosci. 6, 894–896 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Grandell, L. & Höök, M. Assessing rare metal availability challenges for solar energy technologies. Sustainability 7, 11818–11837 (2015).CAS 
    Article 

    Google Scholar 
    36.Kovacic, Z., Strand, R. & Völker, T. The Circular Economy in Europe (Routledge, 2019).37.Dammer, L. & Essel, R. Quo Vadis, Cascading Use of Biomass? (nova Institute for Ecology and Innovation, 2015).38.Cascading Use of Biomass: Opportunities and Obstacles in EU Policies 2013–2016 (Birdlife Europe & European Environmental Bureau, 2014).39.Zabaniotou, A. Redesigning a bioenergy sector in EU in the transition to circular waste-based bioeconomy: a multidisciplinary review. J. Clean. Prod. 177, 197–206 (2018).Article 

    Google Scholar 
    40.Termeer, C. J. A. M. & Metze, T. A. P. More than peanuts: transformation towards a circular economy through a small-wins governance framework. J. Clean. Prod. 240, 118272 (2019).Article 

    Google Scholar 
    41.Velenturf, A. P. M. et al. Circular economy and the matter of integrated resources. Sci. Total Environ. 689, 963–969 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.de Boer, I. J. M. & Van Ittersum, M. K. Circularity in Agricultural Production (Wageningen University & Research, 2018); https://edepot.wur.nl/47062543.Van Eijk, F. Barriers & Drivers Towards a Circular Economy (Acceleratio, 2015); https://www.circulairondernemen.nl/uploads/e00e8643951aef8adde612123e824493.pdf44.Teigiserova, D. A., Hamelin, L. & Thomsen, M. Review of high-value food waste and food residues biorefineries with focus on unavoidable wastes from processing. Resour. Conserv. Recycl. 149, 413–426 (2019).Article 

    Google Scholar 
    45.Gifford, R. & Nilsson, A. Personal and social factors that influence pro-environmental concern and behaviour: a review. Int. J. Psychol. 49, 141–157 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    46.Steg, L. & Vlek, C. Encouraging pro-environmental behaviour: an integrative review and research agenda. J. Environ. Psychol. 29, 309–317 (2009).Article 

    Google Scholar 
    47.Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Kollmuss, A. & Agyeman, J. Mind the gap: why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 8, 239–260 (2002).Article 

    Google Scholar 
    49.Rothgerber, H. Real men don’t eat (vegetable) quiche: masculinity and the justification of meat consumption. Psychol. Men Masculin. 14, 363–375 (2013).Article 

    Google Scholar 
    50.Shove, E., Watson, M. & Spurling, N. Conceptualizing connections: energy demand, infrastructures and social practices. Eur. J. Soc. Theory 18, 274–287 (2015).Article 

    Google Scholar 
    51.Barnes, S. J. Out of sight, out of mind: plastic waste exports, psychological distance and consumer plastic purchasing. Glob. Environ. Change 58, 101943 (2019).Article 

    Google Scholar 
    52.Richter, B. Knowledge and perception of food waste among German consumers. J. Clean. Prod. 166, 641–648 (2017).Article 

    Google Scholar 
    53.Schanes, K., Dobernig, K. & Gözet, B. Food waste matters: a systematic review of household food waste practices and their policy implications. J. Clean. Prod. 182, 978–991 (2018).Article 

    Google Scholar 
    54.Aschemann-Witzel, J., de Hooge, I., Amani, P., Bech-Larsen, T. & Oostindjer, M. Consumer-related food waste: causes and potential for action. Sustainability 7, 6457–6477 (2015).Article 

    Google Scholar 
    55.Priefer, C., Jörissen, J. & Bräutigam, K. R. Food waste prevention in Europe: a cause-driven approach to identify the most relevant leverage points for action. Resour. Conserv. Recycl. 109, 155–165 (2016).Article 

    Google Scholar 
    56.Ölander, F. & Thøgersen, J. Informing versus nudging in environmental policy. J. Consum. Policy 37, 341–356 (2014).Article 

    Google Scholar 
    57.Söderholm, P. Taxing virgin natural resources: lessons from aggregates taxation in Europe. Resour. Conserv. Recycl. 55, 911–922 (2011).Article 

    Google Scholar 
    58.Growth Within: A Circular Economy Vision for a Competitive Europe (Ellen Macarthur Foundation, 2015); https://www.ellenmacarthurfoundation.org/assets/downloads/publications/EllenMacArthurFoundation_Growth-Within_July15.pdf59.Spierling, S., Venkatachalam, V., Behnsen, H., Herrmann, C. & Endres, H. Bioplastics and Circular Economy—Performance Indicators to Identify Optimal Pathways (Springer, 2019).60.Van Zanten, H., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E. & de Boer, I. J. M. Global food supply: land use efficiency of livestock systems. Int. J. Life Cycle Assess. 21, 747–758 (2016).Article 
    CAS 

    Google Scholar 
    61.Odegard, I., Croezen, H. & Bergsma, G. Cascading of Biomass: 13 Solutions for a Sustainable Bio-based Economy-Making Better Choices for Use of Biomass Residues, By-products and Wastes (CE Delft, 2012).62.Szarka, N., Wolfbauer, J. & Bezama, A. A systems dynamics approach for supporting regional decisions on the energetic use of regional biomass residues. Waste Manage. Res. 36, 332–341 (2018).Article 

    Google Scholar 
    63.Koppelmaki, K., Helenius, J. & Schulte, R. P. O. Nested circularity in food systems: a Nordic case study on connecting biomass, nutrient and energy flows from field scale to continent. Resour. Conserv. Recycl. 164, 105218 (2021).Article 

    Google Scholar 
    64.Mayer, A. L. Importing timber, exporting ecological impact. Science 308, 359–360 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Mayer, A., Schaffartzik, A., Haas, W. & Rojas-Sepúlveda, A. Patterns of Global Biomass Trade: Implications for Food Sovereignty and Socio-Environmental Conflicts (EJOLT, 2015).66.Raworth, K. A doughnut for the Anthropocene: humanity’s compass in the 21st century. Lancet Planet. Health 1, e48–e49 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.O’Neill, D. W., Fanning, A. L., Lamb, W. F. & Steinberger, J. K. A good life for all within planetary boundaries. Nat. Sustain. 1, 88–95 (2018).Article 

    Google Scholar  More

  • in

    Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science

    1.Genty, B., Wonders, J. & Baker, N. R. Non-photochemical quenching of Fo in leaves is emission wavelength dependent: consequences for quenching analysis and its interpretation. Photosynth. Res. 26, 133–139 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Franck, F., Juneau, P. & Popovic, R. Resolution of the photosystem I and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature. Biochim. Biophys. Acta 1556, 239–246 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Neubauer, C. & Schreiber, U. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side. Z. f.ür. Naturforsch. C. 42, 1246–1254 (1987).CAS 
    Article 

    Google Scholar 
    4.Strasser, R. J., Tsimilli-Michael, M. & Srivastava, A. in Chlorophyll a Fluorescence. Advances in Photosynthesis and Respiration Vol. 19 (eds Papageorgiou G. C. & Govindjee) 321–362 (Springer, 2004).5.Schreiber, U., Schliwa, U. & Bilger, W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10, 51–62 (1986).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 51, 659–668 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Govindjee, E. 63 years since Kautsky-chlorophyll-a fluorescence. Aust. J. Plant Physiol. 22, 131–160 (1995).CAS 

    Google Scholar 
    8.Porcar-Castell, A. et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J. Exp. Bot. 65, 4065–4095 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Tikkanen, M., Rantala, S., Grieco, M. & Aro, E. Comparative analysis of mutant plants impaired in the main regulatory mechanisms of photosynthetic light reactions–from biophysical measurements to molecular mechanisms. Plant Physiol. Biochem. 112, 290–301 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Kolber, Z. et al. Measuring photosynthetic parameters at a distance: laser induced fluorescence transient (LIFT) method for remote measurements of photosynthesis in terrestrial vegetation. Photosynth. Res. 84, 121–129 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Keller, B. et al. Genotype specific photosynthesis × environment interactions captured by automated fluorescence canopy scans over two fluctuating growing seasons. Front. Plant Sci. 10, 1482 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Mohammed, G. H. et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress. Remote Sens. Environ. 231, 111177 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Evain, S., Camenen, L. & Moya, I. Three-channel detector for remote sensing of chlorophyll fluorescence and reflectance from vegetation. In: 8th International Symposium: Physical Measurements and Signatures in Remote Sensing (ed. Leroy, M.) 395–400 (CNES, 2001).14.Louis, J. et al. Remote sensing of sunlight-induced chlorophyll fluorescence and reflectance of Scots pine in the boreal forest during spring recovery. Remote Sens. Environ. 96, 37–48 (2005).Article 

    Google Scholar 
    15.Guanter, L. et al. Estimation of solar-induced vegetation fluorescence from space measurements. Geophys. Res. Lett. 34, L08401 (2007).Article 
    CAS 

    Google Scholar 
    16.Aasen, H. et al. Sun-induced chlorophyll fluorescence II: review of passive measurement setups, protocols, and their application at the leaf to canopy level. Remote Sens. 11, 927 (2019).Article 

    Google Scholar 
    17.Yang, X. et al. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 42, 2977–2987 (2015).CAS 
    Article 

    Google Scholar 
    18.Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA 116, 11640–11645 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Bendig, J., Malenovský, Z., Gautam, D. & Lucieer, A. Solar-induced chlorophyll fluorescence measured from an unmanned aircraft system: sensor etaloning and platform motion correction. IEEE Trans. Geosci. Remote Sens. 58, 3437–3444 (2019).Article 

    Google Scholar 
    20.Vargas, J. Q. et al. Unmanned aerial systems (UAS)-based methods for solar induced chlorophyll fluorescence (SIF) retrieval with non-imaging spectrometers: state of the art. Remote Sens. 12, 1624 (2020).Article 

    Google Scholar 
    21.Rascher, U. et al. Sun-induced fluorescence—a new probe of photosynthesis: First maps from the imaging spectrometer HyPlant. Glob. Change Biol. 21, 4673–4684 (2015).CAS 
    Article 

    Google Scholar 
    22.Frankenberg, C. et al. The chlorophyll fluorescence imaging spectrometer (CFIS), mapping far red fluorescence from aircraft. Remote Sens. Environ. 217, 523–536 (2018).Article 

    Google Scholar 
    23.Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, 17706 (2011).Article 
    CAS 

    Google Scholar 
    24.Köhler, P. et al. Global retrievals of solar-induced chlorophyll fluorescence at red wavelengths with TROPOMI. Geophys. Res. Lett. 47, e2020GL087541 (2020).Article 
    CAS 

    Google Scholar 
    25.Drusch, M. et al. The fluorescence explorer mission concept—ESA’s Earth Explorer 8. IEEE Trans. Geosci. Remote Sens. 55, 1273–1284 (2016).Article 

    Google Scholar 
    26.Olascoaga, B., Mac Arthur, A., Atherton, J. & Porcar-Castell, A. A comparison of methods to estimate photosynthetic light absorption in leaves with contrasting morphology. Tree Physiol. 36, 368–379 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Zhang, Z. et al. Assessing bi-directional effects on the diurnal cycle of measured solar-induced chlorophyll fluorescence in crop canopies. Agric. Meteorol. 295, 108147 (2020).Article 

    Google Scholar 
    28.Bittner, T., Irrgang, K., Renger, G. & Wasielewski, M. R. Ultrafast excitation energy transfer and exciton-exciton annihilation processes in isolated light harvesting complexes of photosystem II (LHC II) from spinach. J. Phys. Chem. 98, 11821–11826 (1994).CAS 
    Article 

    Google Scholar 
    29.Kalaji, H. M. et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 132, 13–66 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Genty, B., Briantais, J. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87–92 (1989).CAS 
    Article 

    Google Scholar 
    31.Anderson, J. M., Chow, W. S. & Goodchild, D. J. Thylakoid membrane organisation in sun/shade acclimation. Funct. Plant Biol. 15, 11–26 (1988).Article 

    Google Scholar 
    32.Ballottari, M., Dall’Osto, L., Morosinotto, T. & Bassi, R. Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J. Biol. Chem. 282, 8947–8958 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Schreiber, U., Klughammer, C. & Kolbowski, J. Assessment of wavelength-dependent parameters of photosynthetic electron transport with a new type of multi-color PAM chlorophyll fluorometer. Photosynth. Res. 113, 127–144 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Laisk, A. et al. A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves. Plant Cell Environ. 25, 923–943 (2002).CAS 
    Article 

    Google Scholar 
    35.Pfündel, E. Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence. Photosynthesis Res. 56, 185–195 (1998).Article 

    Google Scholar 
    36.Peterson, R. B. et al. Fluorescence Fo of photosystems II and I in developing C3 and C4 leaves, and implications on regulation of excitation balance. Photosynth. Res. 122, 41–56 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Pfündel, E. E. Simultaneously measuring pulse-amplitude-modulated (PAM) chlorophyll fluorescence of leaves at wavelengths shorter and longer than 700 nm. Photosynth. Res. 147, 345–358 (2021).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Demmig-Adams, B. & Adams, W. W. III Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. N. Phytol. 172, 11–21 (2006).CAS 
    Article 

    Google Scholar 
    39.Porcar-Castell, A. A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris. Physiol. Plant. 143, 139–153 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Van der Tol, C., Berry, J. A., Campbell, P. & Rascher, U. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. J. Geophys. Res. 119, 2312–2327 (2014).Article 

    Google Scholar 
    41.Springer, K. R., Wang, R. & Gamon, J. A. Parallel seasonal patterns of photosynthesis, fluorescence, and reflectance indices in boreal trees. Remote Sens. 9, 691 (2017).Article 

    Google Scholar 
    42.Zhang, C. et al. Do all chlorophyll fluorescence emission wavelengths capture the spring recovery of photosynthesis in boreal evergreen foliage? Plant Cell Environ. 42, 3264–3279 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Ensminger, I. et al. Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Glob. Change Biol. 10, 995–1008 (2004).Article 

    Google Scholar 
    44.Verhoeven, A. Sustained energy dissipation in winter evergreens. New Phytol. 201, 57–65 (2014).Article 

    Google Scholar 
    45.Gu, L., Han, J., Wood, J. D., Chang, C. Y. & Sun, Y. Sun-induced Chl fluorescence and its importance for biophysical modeling of photosynthesis based on light reactions. New Phytol. 223, 1179–1191 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Raczka, B. et al. Sustained nonphotochemical quenching shapes the seasonal pattern of solar-induced fluorescence at a high-elevation evergreen forest. J. Geophys. Res. 124, 2005–2020 (2019).Article 

    Google Scholar 
    47.Nixon, P. J. Chlororespiration. Philos. Trans. R. Soc. Lond. B 355, 1541–1547 (2000).CAS 
    Article 

    Google Scholar 
    48.Ogren, W. L. Photorespiration: pathways, regulation, and modification. Annu. Rev. Plant Physiol. 35, 415–442 (1984).CAS 
    Article 

    Google Scholar 
    49.Asada, K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Biol. 50, 601–639 (1999).CAS 
    Article 

    Google Scholar 
    50.Morfopoulos, C. et al. A model of plant isoprene emission based on available reducing power captures responses to atmospheric CO2. New Phytol. 203, 125–139 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Maseyk, K., Lin, T., Cochavi, A., Schwartz, A. & Yakir, D. Quantification of leaf-scale light energy allocation and photoprotection processes in a Mediterranean pine forest under extensive seasonal drought. Tree Physiol. 39, 1767–1782 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Migliavacca, M. et al. Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability. New Phytol. 214, 1078–1091 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kallel, A. FluLCVRT: Reflectance and fluorescence of leaf and canopy modeling based on Monte Carlo vector radiative transfer simulation. J. Quant. Spectrosc. Radiat. Transf. 253, 107183 (2020).CAS 
    Article 

    Google Scholar 
    54.Sabater, N. et al. Compensation of oxygen transmittance effects for proximal sensing retrieval of canopy–leaving sun–induced chlorophyll fluorescence. Remote Sens. 10, 1551 (2018).Article 

    Google Scholar 
    55.Sabater, N., Kolmonen, P., Van Wittenberghe, S., Arola, A. & Moreno, J. Challenges in the atmospheric characterization for the retrieval of spectrally resolved fluorescence and PRI region dynamics from space. Remote Sens. Environ. 254, 112226 (2021).Article 

    Google Scholar 
    56.Iermak, I., Vink, J., Bader, A. N., Wientjes, E. & van Amerongen, H. Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy. Biochim. Biophys. Acta 1857, 1473–1478 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Romero, J. M., Cordon, G. B. & Lagorio, M. G. Modeling re-absorption of fluorescence from the leaf to the canopy level. Remote Sens. Environ. 204, 138–146 (2018).Article 

    Google Scholar 
    58.Magney, T. S. et al. Disentangling changes in the spectral shape of chlorophyll fluorescence: Implications for remote sensing of photosynthesis. J. Geophys. Res. 124, 1491–1507 (2019).Article 

    Google Scholar 
    59.Murchie, E. H. et al. Measuring the dynamic photosynthome. Ann. Bot. 122, 207–220 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Magney, T. S., Barnes, M. L. & Yang, X. On the covariation of chlorophyll fluorescence and photosynthesis across scales. Geophys. Res. Lett. 47, e2020GL091098 (2020).Article 

    Google Scholar 
    61.Yang, P., van der Tol, C., Campbell, P. K. & Middleton, E. M. Unraveling the physical and physiological basis for the solar-induced chlorophyll fluorescence and photosynthesis relationship using continuous leaf and canopy measurements of a corn crop. Biogeosciences 18, 441–465 (2021).CAS 
    Article 

    Google Scholar 
    62.Liu, X. et al. Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model. Remote Sens. Environ. 231, 110772 (2019).Article 

    Google Scholar 
    63.Joiner, J. et al. Systematic orbital geometry-dependent variations in satellite solar-induced fluorescence (SIF) retrievals. Remote Sens. 12, 2346 (2020).Article 

    Google Scholar 
    64.Dechant, B. et al. Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens. Environ. 241, 111733 (2020).Article 

    Google Scholar 
    65.He, L. et al. From the ground to space: using solar-induced chlorophyll fluorescence to estimate crop productivity. Geophys. Res. Lett. 47, e2020GL087474 (2020).
    Google Scholar 
    66.Ač, A. et al. Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sens. Environ. 168, 420–436 (2015).Article 

    Google Scholar 
    67.Wohlfahrt, G. et al. Sun-induced fluorescence and gross primary productivity during a heat wave. Sci. Rep. 8, 14169 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Van Wittenberghe, S., Alonso, L., Verrelst, J., Moreno, J. & Samson, R. Bidirectional sun-induced chlorophyll fluorescence emission is influenced by leaf structure and light scattering properties: A bottom-up approach. Remote Sens. Environ. 158, 169–179 (2015).Article 

    Google Scholar 
    69.Magney, T. S. et al. Connecting active to passive fluorescence with photosynthesis: A method for evaluating remote sensing measurements of Chl fluorescence. New Phytol. 215, 1594–1608 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Rajewicz, P. A., Atherton, J., Alonso, L. & Porcar-Castell, A. Leaf-level spectral fluorescence measurements: comparing methodologies for broadleaves and needles. Remote Sens. 11, 532 (2019).Article 

    Google Scholar 
    71.Van Wittenberghe, S., Alonso, L., Malenovský, Z. & Moreno, J. In vivo photoprotection mechanisms observed from leaf spectral absorbance changes showing VIS–NIR slow-induced conformational pigment bed changes. Photosynth. Res. 142, 283–305 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Meeker, E. W., Magney, T. S., Bambach, N., Momayyezi, M. & McElrone, A. J. Modification of a gas exchange system to measure active and passive chlorophyll fluorescence simultaneously under field conditions. AoB Plants 13, plaa066 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Acebron, K. et al. Diurnal dynamics of nonphotochemical quenching in Arabidopsis npq mutants assessed by solar-induced fluorescence and reflectance measurements in the field. New Phytol. 229, 2104–2119 (2020).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    74.Malenovský, Z., Lucieer, A., King, D. H., Turnbull, J. D. & Robinson, S. A. Unmanned aircraft system advances health mapping of fragile polar vegetation. Methods Ecol. Evol. 8, 1842–1857 (2017).Article 

    Google Scholar 
    75.Atherton, J., Nichol, C. J. & Porcar-Castell, A. Using spectral chlorophyll fluorescence and the photochemical reflectance index to predict physiological dynamics. Remote Sens. Environ. 176, 17–30 (2016).Article 

    Google Scholar 
    76.Van Wittenberghe, S. et al. Combined dynamics of the 500–600 nm leaf absorption and chlorophyll fluorescence changes in vivo: evidence for the multifunctional energy quenching role of xanthophylls. Biochim. Biophys. Acta 1862, 148351 (2021).Article 
    CAS 

    Google Scholar 
    77.Gamon, J. A. et al. Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85, 1–7 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Filella, I. et al. PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int. J. Remote Sens. 30, 4443–4455 (2009).Article 

    Google Scholar 
    79.Peñuelas, J., Filella, I. & Gamon, J. A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 131, 291–296 (1995).Article 

    Google Scholar 
    80.Gamon, J. A. et al. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc. Natl Acad. Sci. USA 113, 13087–13092 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Costa, J. M., Grant, O. M. & Chaves, M. M. Thermography to explore plant-environment interactions. J. Exp. Bot. 64, 3937–3949 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Konings, A. G., Rao, K. & Steele-Dunne, S. C. Macro to micro: microwave remote sensing of plant water content for physiology and ecology. New Phytol. 223, 1166–1172 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Junttila, S. et al. Terrestrial laser scanning intensity captures diurnal variation in leaf water potential. Remote Sens. Environ. 255, 112274 (2021).Article 

    Google Scholar 
    84.Whelan, M. E. Two scientific communities striving for a common cause: innovations in carbon cycle science. Bull. Am. Meteorol. Soc. 101, E1537–1543 (2020).Article 

    Google Scholar 
    85.Farquhar, G. D., von Caemmerer, S. V. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Bacour, C. et al. Improving estimates of gross primary productivity by assimilating solar-induced fluorescence satellite retrievals in a terrestrial biosphere model using a process-based SIF model. J. Geophys. Res. 124, 3281–3306 (2019).Article 

    Google Scholar 
    87.Norton, A. J. et al. Estimating global gross primary productivity using chlorophyll fluorescence and a data assimilation system with the BETHY-SCOPE model. Biogeosciences 16, 3069–3093 (2019).CAS 
    Article 

    Google Scholar 
    88.Thum, T. et al. Modelling sun-induced fluorescence and photosynthesis with a land surface model at local and regional scales in northern Europe. Biogeosciences 14, 1969–1987 (2017).CAS 
    Article 

    Google Scholar 
    89.Qiu, B., Chen, J. M., Ju, W., Zhang, Q. & Zhang, Y. Simulating emission and scattering of solar-induced chlorophyll fluorescence at far-red band in global vegetation with different canopy structures. Remote Sens. Environ. 233, 111373 (2019).Article 

    Google Scholar 
    90.Johnson, J. E. & Berry, J. A. The role of Cytochrome b6f in the control of steady-state photosynthesis: a conceptual and quantitative model. Photosynth. Res. https://doi.org/10.1007/s11120-021-00840-4 (2021).91.Janoutová, R. et al. Influence of 3D spruce tree representation on accuracy of airborne and satellite forest reflectance simulated in DART. Forests 10, 292 (2019).Article 

    Google Scholar 
    92.Liu, W. et al. Simulating solar-induced chlorophyll fluorescence in a boreal forest stand reconstructed from terrestrial laser scanning measurements. Remote Sens. Environ. 232, 111274 (2019).Article 

    Google Scholar 
    93.Pinto, F. et al. Sun-induced chlorophyll fluorescence from high-resolution imaging spectroscopy data to quantify spatio-temporal patterns of photosynthetic function in crop canopies. Plant Cell Environ. 39, 1500–1512 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Siegmann, B. et al. The high-performance airborne imaging spectrometer HyPlant—From raw images to top-of-canopy reflectance and fluorescence products: Introduction of an automatized processing chain. Remote Sens. 11, 2760 (2019).Article 

    Google Scholar 
    95.Yang, P., van der Tol, C., Campbell, P. K. & Middleton, E. M. Fluorescence Correction Vegetation Index (FCVI): A physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence. Remote Sens. Environ. 240, 111676 (2020).Article 

    Google Scholar 
    96.Zeng, Y. et al. A radiative transfer model for solar induced fluorescence using spectral invariants theory. Remote Sens. Environ. 240, 111678 (2020).Article 

    Google Scholar 
    97.Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Wang, S. et al. Urban–rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. Nat. Ecol. Evol. 3, 1076–1085 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Long, S. P., Farage, P. K. & Garcia, R. L. Measurement of leaf and canopy photosynthetic CO2 exchange in the field. J. Exp. Bot. 47, 1629–1642 (1996).CAS 
    Article 

    Google Scholar 
    100.Baldocchi, D. D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Change Biol. 9, 479–492 (2003).Article 

    Google Scholar 
    101.Kaiser, Y. I., Menegat, A. & Gerhards, R. Chlorophyll fluorescence imaging: a new method for rapid detection of herbicide resistance in Alopecurus myosuroides. Weed Res. 53, 399–406 (2013).CAS 
    Article 

    Google Scholar 
    102.Sievänen, R., Godin, C., DeJong, T. M. & Nikinmaa, E. Functional–structural plant models: a growing paradigm for plant studies. Ann. Bot. 114, 599–603 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Damm, A., Paul-Limoges, E., Kükenbrink, D., Bachofen, C. & Morsdorf, F. Remote sensing of forest gas exchange: considerations derived from a tomographic perspective. Glob. Change Biol. 26, 2717–2727 (2020).Article 

    Google Scholar 
    104.Ensminger, I. Fast track diagnostics: Hyperspectral reflectance differentiates disease from drought stress in trees. Tree Physiol. 40, 1143–1146 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Mutka, A. M. & Bart, R. S. Image-based phenotyping of plant disease symptoms. Front. Plant Sci. 5, 734 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    106.Zarco-Tejada, P. J. et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat. Plants 4, 432–439 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Dı́az, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    108.Skidmore, A. K. et al. Environmental science: Agree on biodiversity metrics to track from space. Nature 523, 403–405 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Tagliabue, G. et al. Sun–induced fluorescence heterogeneity as a measure of functional diversity. Remote Sens. Environ. 247, 111934 (2020).Article 

    Google Scholar 
    110.Pacheco-Labrador, J. et al. Multiple-constraint inversion of SCOPE. Evaluating the potential of GPP and SIF for the retrieval of plant functional traits. Remote Sens. Environ. 234, 111362 (2019).Article 

    Google Scholar 
    111.Smith, W. K. et al. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401 (2019).Article 

    Google Scholar 
    112.Kellner, J. R., Albert, L. P., Burley, J. T. & Cushman, K. C. The case for remote sensing of individual plants. Am. J. Bot. 106, 1139–1142 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    113.Flexas, J. et al. Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiol. Plant. 114, 231–240 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Marrs, J. K. et al. Solar-induced fluorescence does not track photosynthetic carbon assimilation following induced stomatal closure. Geophys. Res. Lett. 47, e2020GL087956 (2020).CAS 
    Article 

    Google Scholar 
    115.Maes, W. H. et al. Sun-induced fluorescence closely linked to ecosystem transpiration as evidenced by satellite data and radiative transfer models. Remote Sens. Environ. 249, 112030 (2020).Article 

    Google Scholar 
    116.Shan, N. et al. A model for estimating transpiration from remotely sensed solar-induced chlorophyll fluorescence. Remote Sens. Environ. 252, 112134 (2021).Article 

    Google Scholar 
    117.Wang, X. et al. Globally consistent patterns of asynchrony in vegetation phenology derived from optical, microwave, and fluorescence satellite data. J. Geophys. Res. Biogeosci. 125, e2020JG005732 (2020).
    Google Scholar 
    118.Liu, J. et al. Contrasting carbon cycle responses of the tropical continents to the 2015-2016 El Niño. Science 358, eaam5690 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    119.Albert, L. P. et al. Stray light characterization in a high-resolution imaging spectrometer designed for solar-induced fluorescence. In Proc. SPIE 10986, Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imagery XXV (eds Velez-Reyes, M. & Messinger, D. W.) 109860G (SPIE, 2019).120.Meroni, M. et al. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 113, 2037–2051 (2009).Article 

    Google Scholar 
    121.Cendrero-Mateo, M. P. et al. Sun-induced chlorophyll fluorescence III: Benchmarking retrieval methods and sensor characteristics for proximal sensing. Remote Sens. 11, 962 (2019).Article 

    Google Scholar 
    122.Vilfan, N. et al. Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics. Remote Sens. Environ. 211, 345–356 (2018).Article 

    Google Scholar 
    123.Yang, P., Prikaziuk, E., Verhoef, W. & van der Tol, C. SCOPE 2.0: A model to simulate vegetated land surface fluxes and satellite signals. Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2020-251 (2020).124.Gastellu-Etchegorry, J. et al. DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 2640–2649 (2017).Article 

    Google Scholar  More

  • in

    Rodent host population dynamics drive zoonotic Lyme Borreliosis and Orthohantavirus infections in humans in Northern Europe

    1.Taylor, L. H., Latham, S. M. & Woolhouse, M. E. J. Risk factors for human disease emergence. Philos. Trans. R. Soc. B Biol. Sci. 356, 983–989 (2001).CAS 
    Article 

    Google Scholar 
    2.Karesh, W. B. et al. Ecology of zoonoses: Natural and unnatural histories. Lancet 380, 1936–1945 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Zhang, T., Wu, Q. & Zhang, Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr. Biol. 30, 1346-1351.e2 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Lu, R. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 395, 565–574 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl. Acad. Sci. 112, 7039–7044 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl. Acad. Sci. 117, 9423 LP – 9430 (2020).Article 
    CAS 

    Google Scholar 
    9.Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special?. Proc. R. Soc. B Biol. Sci. 280, 20122753 (2013).Article 

    Google Scholar 
    10.Wardeh, M., Sharkey, K. J. & Baylis, M. Integration of shared-pathogen networks and machine learning reveals the key aspects of zoonoses and predicts mammalian reservoirs. Proc. R. Soc. B Biol. Sci. 287, 20192882 (2020).CAS 
    Article 

    Google Scholar 
    11.Maes, P. et al. Taxonomy of the order Bunyavirales: Second update 2018. Arch. Virol. 164, 927–941 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Vapalahti, K., Virtala, A.-M., Vaheri, A. & Vapalahti, O. Case-control study on Puumala virus infection: Smoking is a risk factor. Epidemiol. Infect. 138, 576–584 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Vaheri, A. et al. Hantavirus infections in Europe and their impact on public health. Rev. Med. Virol. 23, 35–49 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Avšič-Županc, T., Saksida, A. & Korva, M. Hantavirus infections. Clin. Microbiol. Infect. 21, e6–e16 (2019).Article 

    Google Scholar 
    15.Olsson, G. E., Leirs, H. & Henttonen, H. Hantaviruses and their hosts in Europe: Reservoirs here and there, but not everywhere?. Vector-Borne Zoonotic Dis. 10, 549–561 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Cook, M. J. Lyme borreliosis: A review of data on transmission time after tick attachment. Int. J. Gen. Med. 8, 1–8 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Sykes, R. A. & Makiello, P. An estimate of Lyme borreliosis incidence in Western Europe†. J. Public Health (Bangkok) 39, 74–81 (2016).
    Google Scholar 
    18.Kuehn, B. M. CDC estimates 300000 US cases of lyme disease annually. JAMA J. Am. Med. Assoc. 310, 1110 (2013).CAS 
    Article 

    Google Scholar 
    19.Davis, S., Calvet, E. & Leirs, H. Review fluctuating rodent populations and risk to humans from rodent-borne zoonoses. Vector-Borne Zoonotic Dis. 5, 305–314 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Tian, H. Y. et al. Changes in rodent abundance and weather conditions potentially drive hemorrhagic fever with renal syndrome outbreaks in Xi’an, China, 2005–2012. PLoS Negl. Trop. Dis. 9, 2005–2012 (2015).Article 
    CAS 

    Google Scholar 
    21.Kallio, E. R. et al. Cyclic hantavirus epidemics in humans: Predicted by rodent host dynamics. Epidemics 1, 101–107 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Korpela, K. et al. Predator–vole interactions in northern Europe: The role of small mustelids revised. Proc. R. Soc. B Biol. Sci. 281, 20142119 (2014).Article 

    Google Scholar 
    24.Korpimäki, E., Norrdahl, K., Huitu, O. & Klemola, T. Predator-induced synchrony in population oscillations of coexisting small mammal species. Proc. R. Soc. B Biol. Sci. 272, 193–202 (2005).Article 

    Google Scholar 
    25.Hanski, I., Henttonen, H., Korpimäki, E., Oksanen, L. & Turchin, P. Small-rodent dynamics and predation. Ecology 82, 1505–1520 (2001).Article 

    Google Scholar 
    26.Hansson, L. & Henttonen, H. Rodent dynamics as community processes. Trends Ecol. Evol. 3, 195–200 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Sane, J. et al. Regional differences in long-term cycles and seasonality of Puumala virus infections, Finland, 1995–2014. Epidemiol. Infect. 144, 2883–2888 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Vapalahti, O. et al. Hantavirus infections in Europe. Lancet Infect. Dis. 3, 653–661 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Olsson, G. E., Hjertqvist, M., Lundkvist, Å. & Hörnfeldt, B. Predicting high risk for human hantavirus infections, Sweden. Emerg. Infect. Dis. 15, 104–106 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Khalil, H., Ecke, F., Evander, M., Bucht, G. & Hörnfeldt, B. Population dynamics of bank voles predicts human puumala hantavirus risk. EcoHealth 16, 545–557 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Jones, C. G., Ostfeld, R. S., Richard, M. P., Schauber, E. M. & Wolff, J. O. Chain reactions linking acorns to gypsy moth outbreaks and Lyme disease risk. Science 279, 1023–1026 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. & Keesing, F. The ecology of infectious disease: Effects of host diversity and community composition on lyme disease risk. Proc. Natl. Acad. Sci. U. S. A. 100, 567–571 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Ostfeld, R. S., Canham, C. D., Oggenfuss, K., Winchcombe, R. J. & Keesing, F. Climate, deer, rodents, and acorns as determinants of variation in Lyme-disease risk. PLoS Biol. 4, 1058–1068 (2006).CAS 
    Article 

    Google Scholar 
    34.Van Duijvendijk, G., Sprong, H. & Takken, W. Multi-trophic interactions driving the transmission cycle of Borrelia afzelii between Ixodes ricinus and rodents: A review. Parasit. Vectors 8, 1 (2015).Article 
    CAS 

    Google Scholar 
    35.Krawczyk, A. I. et al. Effect of rodent density on tick and tick-borne pathogen populations: Consequences for infectious disease risk. Parasit. Vectors 13, 34 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Bregnard, C., Rais, O. & Voordouw, M. J. Climate and tree seed production predict the abundance of the European Lyme disease vector over a 15-year period. Parasit. Vectors 13, 1–12 (2020).Article 

    Google Scholar 
    37.Bregnard, C., Rais, O. & Voordouw, M. J. Masting by beech trees predicts the risk of Lyme disease. Parasit. Vectors 14, 1–22 (2021).Article 
    CAS 

    Google Scholar 
    38.Schauber, E. M., Ostfeld, R. S. & Evans, A. S. What is the best predictor of annual lyme disease incidence: Weather, mice, or acorns?. Ecol. Appl. 15, 575–586 (2005).Article 

    Google Scholar 
    39.Tkadlec, E., Václavík, T. & Široký, P. Rodent host abundance and climate variability as predictors of tickborne disease risk 1 year in advance. Emerg. Infect. Dis. 25, 1738–1741 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Bogdziewicz, M. & Szymkowiak, J. Oak acorn crop and Google search volume predict Lyme disease risk in temperate Europe. Basic Appl. Ecol. 17, 300–307 (2016).Article 

    Google Scholar 
    41.Pietiäinen, H., Sundell, J., Valkama, J. & Huitu, O. vole interactions in northern Europe: The role of− Predator. (2014).42.Lindgren, E. & Jaenson, T. G. T. Lyme borreliosis in Europe: Influences of climate and climate change, epidemiology, ecology and adaptation measures. World Heal. Org. https://doi.org/10.1093/ntr/ntu261 (2006).Article 

    Google Scholar 
    43.Laaksonen, M. et al. Tick-borne pathogens in Finland: Comparison of Ixodes ricinus and I. persulcatus in sympatric and parapatric areas. Parasit. Vectors 11, 556 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Sajanti, E. et al. Lyme borreliosis in Finland in 1995–2014. Emerg. Infect. Dis. 23, 128–1288 (2017).Article 

    Google Scholar 
    45.Amori, G. et al. Myodes glareolus. In:The IUCN Red List of Threatened Species. (2007) (accessed 28 February 2020). https://www.iucnredlist.org/species/4973/1110516846.Brummer-Korvenkontio, M. et al. Nephropathia epidemica: Detection of antigen in bank voles and serologic diagnosis of human infection. J. Infect. Dis. 141, 131–134 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Kurtenbach, K. et al. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat. Rev. Microbiol. 4, 660–669 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Hanincová, K. et al. Association of Borrelia afzelii with rodents in Europe. Parasitology 126, 11–20 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Tälleklint, L., Jaenson, T. G. T. & Mather, T. N. Seasonal variation in the capacity of the bank vole to infect larval ticks (Acari: Ixodidae) with the lyme disease spirochete, Borrelia burgdorferi. J. Med. Entomol. 30, 812–815 (1993).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Gern, L. et al. European reservoir hosts of Borrelia burgdorferi sensu lato. Zentralblatt fur Bakteriol. 287, 196–204 (1998).CAS 
    Article 

    Google Scholar 
    51.Tersago, K. et al. Hantavirus outbreak in Western Europe: Reservoir host infection dynamics related to human disease patterns. Epidemiol. Infect. 139, 381–390 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Jaenson, T. G. T., Hjertqvist, M., Bergström, T. & Lundkvist, Å. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Swedena. Parasit. Vectors 5, 184 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Kurokawa, C. et al. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol. 18, 587–600 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Korpela, K. et al. Nonlinear effects of climate on boreal rodent dynamics: Mild winters do not negate high-amplitude cycles. Glob. Chang. Biol. 19, 697–710 (2013).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Koivula, M., Koskela, E., Mappes, T. & Oksanen, T. A. Cost of reproduction in the wild: Manipulation of reproductive effort in the bank vole. Ecology 84, 398–405 (2003).Article 

    Google Scholar 
    56.Cayol, C., Koskela, E., Mappes, T., Siukkola, A. & Kallio, E. R. Temporal dynamics of the tick Ixodes ricinus in northern Europe: Epidemiological implications. Parasit. Vectors 10, 1–11 (2017).Article 

    Google Scholar 
    57.Rösch, A. & Schmidbauer, H. WaveletComp: Computational Wavelet Analysis. R package version 1.1. (2018).58.R Core Team. R: A Language and Environment for Statistical Computing. R Found. Stat. Comput. Vienna, Austria (2019).59.Cazelles, B., Chavez, M., De Magny, G. C., Guégan, J. F. & Hales, S. Time-dependent spectral analysis of epidemiological time-series with wavelets. J. R. Soc. Interface 4, 625–636 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Pinherio, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. R package Version 3. 1–142 (2019).61.Ostfeld, R. S. et al. Effects of acorn production and mouse abundance on abundance and Borrelia burgdorferi infection prevalence of nymphal Ixodes scapularis ticks. Vector Borne Zoonotic Dis. 1, 55–63 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Kallio, E. R. et al. Prolonged survival of Puumala hantavirus outside the host: Evidence for indirect transmission via the environment. J. Gen. Virol. 87, 2127–2134 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference, A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).https://doi.org/10.1007/978-0-387-22456-5_7 .Book 
    MATH 

    Google Scholar 
    64.Barton, K. MuMIn: Multi-Model Inference. (2019).65.Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 26, 1–22 (2008).
    Google Scholar 
    66.Estrada-Peña, A., Gray, J. S., Kahl, O., Lane, R. S. & Nijhof, A. M. Research on the ecology of ticks and tick-borne pathogens-methodological principles and caveats. Front. Cell. Infect. Microbiol. 4, 1–12 (2013).
    Google Scholar 
    67.Lindgren, E., Tälleklint, L. & Polfeldt, T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ. Health Perspect. 108, 119–123 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Tian, H. et al. Interannual cycles of Hantaan virus outbreaks at the human-animal interface in Central China are controlled by temperature and rainfall. Proc. Natl. Acad. Sci. U. S. A. 114, 8041–8046 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Xiao, H. et al. Atmospheric moisture variability and transmission of hemorrhagic fever with renal syndrome in Changsha City, Mainland China, 1991–2010. PLoS Negl. Trop. Dis. 7, 1–7 (2013).CAS 

    Google Scholar 
    70.Guan, P. et al. Investigating the effects of climatic variables and reservoir on the incidence of hemorrhagic fever with renal syndrome in Huludao City, China: A 17-year data analysis based on structure equation model. BMC Infect. Dis. 9, 1 (2009).Article 

    Google Scholar 
    71.Amirpour Haredasht, S. et al. Modelling seasonal and multi-annual variation in bank vole populations and nephropathia epidemica. Biosyst. Eng. 121, 25–37 (2014).Article 

    Google Scholar 
    72.Hardestam, J. et al. Puumala hantavirus excretion kinetics in bank voles (Myodes glareolus). Emerg. Infect. Dis. 14, 1209–1215 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Levi, T., Kilpatrick, A. M., Mangel, M. & Wilmers, C. C. Deer, predators, and the emergence of Lyme disease. Proc. Natl. Acad. Sci. 109, 10942–10947 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Ostfeld, R. S., Levi, T., Keesing, F., Oggenfuss, K. & Canham, C. D. Tick-borne disease risk in a forest food web. Ecology 99, 1562–1573 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Wilhelmsson, P. et al. Ixodes ricinus ticks removed from humans in Northern Europe: Seasonal pattern of infestation, attachment sites and duration of feeding. Parasit. Vectors 6, 362 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Radolf, J. D., Caimano, M. J., Stevenson, B. & Hu, L. T. Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 10, 87–99 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Otranto, D. et al. Ticks infesting humans in Italy and associated pathogens. Parasit. Vectors 7, 328 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Faulde, M. K. et al. Human tick infestation pattern, tick-bite rate, and associated Borrelia burgdorferi s.l. infection risk during occupational tick exposure at the Seedorf military training area, northwestern Germany. Ticks Tick. Borne. Dis. 5, 594–599 (2014).PubMed 
    Article 

    Google Scholar 
    79.Gustav, T., Jaenson, T., Lundqvist, L., Olsen, B. & Chirico, J. Geographical distribution, host associations, and vector roles of ticks (Acari: Ixodidae, Argasidae) in Sweden mites and insects view project flavivirus view project. Artic. J. Med. Entomol. https://doi.org/10.1093/jmedent/31.2.240 (1994).Article 

    Google Scholar 
    80.Jaenson, T. G. T. et al. First evidence of established populations of the taiga tick Ixodes persulcatus (Acari: Ixodidae) in Sweden. Parasit. Vectors 9, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    81.Jaenson, T. G. T. & Wilhelmsson, P. First records of tick-borne pathogens in populations of the taiga tick Ixodes persulcatus in Sweden. Parasit. Vectors 12, 559 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Pakanen, V. M., Sormunen, J. J., Sippola, E., Blomqvist, D. & Kallio, E. R. Questing abundance of adult taiga ticks Ixodes persulcatus and their Borrelia prevalence at the north-western part of their distribution. Parasit. Vectors 13, 384 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Laaksonen, M. et al. Crowdsourcing-based nationwide tick collection reveals the distribution of Ixodes ricinus and I. persulcatus and associated pathogens in Finland. Emerg. Microbes Infect. 6, 1–7 (2017).Article 
    CAS 

    Google Scholar 
    84.Kovalevskii, Y. V. & Korenberg, E. I. Differences in Borrelia infections in adult Ixodes persulcatus and Ixodes ricinus ticks (Acari: Ixodidae) in populations of north-western Russia. Exp. Appl. Acarol. 19, 19–29 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Hanski, I., Hansson, L. & Henttonen, H. Specialist predators, generalist predators, and the microtine rodent cycle. J. Anim. Ecol. https://doi.org/10.2307/5465 (1991).Article 

    Google Scholar 
    86.Massey, F., Smith, M., Lambin, X. & Hartley, S. Are silica defences in grasses driving vole population cycles?. Biol. Lett. 4, 419–422 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Kołodziej-Sobocińska, M. Factors affecting the spread of parasites in populations of wild European terrestrial mammals. Mammal Res. 64, 301–318 (2019).Article 

    Google Scholar 
    88.Mysterud, A. et al. Contrasting emergence of Lyme disease across ecosystems. Nat. Commun. 7, 1 (2016).Article 
    CAS 

    Google Scholar 
    89.Rosà, R. & Pugliese, A. Effects of tick population dynamics and host densities on the persistence of tick-borne infections. Math. Biosci. 208, 216–240 (2007).MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    90.Rosà, R., Pugliese, A., Ghosh, M., Perkins, S. E. & Rizzoli, A. Temporal variation of Ixodes ricinus intensity on the rodent host Apodemus flavicollis in relation to local climate and host dynamics. Vector-Borne Zoonotic Dis. 7, 285–295 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Halsey, S. J. & Miller, J. R. Maintenance of Borrelia burgdorferi among vertebrate hosts: A test of dilution effect mechanisms. Ecosphere 11, e03048 (2020).Article 

    Google Scholar 
    92.Ostfeld, R. S. & Keesing, F. Biodiversity and disease risk: The case of Lyme disease. Conserv. Biol. 14, 722–728 (2000).Article 

    Google Scholar 
    93.Murray, T. S. & Shapiro, E. D. Lyme disease. Clin. Lab. Med. 30, 311–328 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Kramski, M., Achazi, K., Klempa, B. & Krüger, D. H. Nephropathia epidemica with a 6-week incubation period after occupational exposure to Puumala hantavirus. J. Clin. Virol. 44, 99–101 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Voutilainen, L., Kallio, E. R., Niemimaa, J., Vapalahti, O. & Henttonen, H. Temporal dynamics of Puumala hantavirus infection in cyclic populations of bank voles. Sci. Rep. 6, 1–15 (2016).Article 
    CAS 

    Google Scholar 
    96.Klemola, T., Korpimaki, E. & Koivula, M. Rate of population change in voles from different phases of the population cycle. Oikos 96, 291–298 (2002).Article 

    Google Scholar  More

  • in

    Plant death caused by inefficient induction of antiviral R-gene-mediated resistance may function as a suicidal population resistance mechanism

    1.Collier, S. M. & Moffett, P. NB-LRRs work a “bait and switch” on pathogens. Trends Plant Sci. 14, 521–529 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Cooley, M. B., Pathirana, S., Wu, H. J., Kachroo, P. & Klessig, D. F. Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12, 663–676 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Takahashi, H. et al. RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J. 32, 655–667 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.de Ronde, D., Butterbach, P. & Kormelink, R. Dominant resistance against plant viruses. Front. Plant Sci. 5, 307 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Takahashi, H. et al. Cyclic nucleotide-gated ion channel-mediated cell death may not be critical for R gene-conferred resistance to cucumber mosaic virus in Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 79, 40–48 (2012).CAS 
    Article 

    Google Scholar 
    6.Wright, K. et al. Analysis of the N gene hypersensitive response induced by a fluorescently tagged tobacco mosaic virus. Plant Physiol. 123, 1375–1385 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Lukan, T. et al. Cell death is not sufficient for the restriction of potato virus Y spread in hypersensitive response-conferred resistance in potato. Front. Plant Sci. 9, 168 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Bendahmane, A., Kanyuka, K. & Baulcombe, D. C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11, 781–791 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Sekine, K. T. et al. High level expression of a virus resistance gene, RCY1, confers extreme resistance to cucumber mosaic virus in Arabidopsis thaliana. Mol. Plant Microbe Interact. 21, 1398–1407 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Grech-Baran, M. et al. Extreme resistance to potato virus Y in potato carrying the Rysto gene is mediated by a TIR-NLR immune receptor. Plant Biotechnol. J. 18, 655–667 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Patel, P. N. Genetics of cowpea reactions to two strains of cowpea mosaic virus from Tanzania. Phytopathology 72, 460–466 (1982).Article 

    Google Scholar 
    12.Kiraly, L., Cole, A. B., Bourque, J. E. & Schoelz, J. E. Systemic cell death is elicited by the interaction of a single gene in Nicotiana clevelandii and gene VI of cauliflower mosaic virus. Mol. Plant Microbe Interact. 12, 919–925 (1999).CAS 
    Article 

    Google Scholar 
    13.Jones, R. A. C. & Smith, L. J. Inheritance of hypersensitive resistance to bean yellow mosaic virus in narrow-leafed lupin (Lupinus angustifolius). Ann. Appl. Biol. 146, 539–543 (2005).Article 

    Google Scholar 
    14.Ravelo, G., Kagaya, U., Inukai, T., Sato, M. & Uyeda, I. Genetic analysis of lethal tip necrosis induced by clover yellow vein virus infection in pea. J. Gen. Plant Pathol. 73, 59–65 (2007).CAS 
    Article 

    Google Scholar 
    15.Atsumi, G., Kagaya, U., Kitazawa, H., Nakahara, K. S. & Uyeda, I. Activation of the salicylic acid signaling pathway enhances clover yellow vein virus virulence in susceptible pea cultivars. Mol. Plant Microbe Interact. 22, 166–175 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Nyalugwe, E. P., Barbetti, M. J. & Jones, R. A. C. Studies on resistance phenotypes to turnip mosaic virus in five species of Brassicaceae, and identification of a virus resistance gene in Brassica juncea. Eur. J. Plant Pathol. 141, 647–666 (2015).CAS 
    Article 

    Google Scholar 
    17.Kehoe, M. A. & Jones, R. A. C. Improving potato virus Y strain nomenclature: lessons from comparing isolates obtained over a 73-year period. Plant Pathol. 65, 322–333 (2016).CAS 
    Article 

    Google Scholar 
    18.Jones, R. A. C. & Vincent, S. J. Strain-specific hypersensitive and extreme resistance phenotypes elicited by potato virus Y among 39 potato cultivars released in three world regions over a 117-year period. Plant Dis. 102, 185–196 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Xu, P., Blancaflor, E. B. & Roossinck, M. J. In spite of induced multiple defense responses, tomato plants infected with cucumber mosaic virus and D satellite RNA succumb to systemic necrosis. Mol. Plant Microbe Interact. 16, 467–476 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Seo, Y. S. et al. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proc. Natl Acad. Sci. U. S. A. 103, 11856–11861 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Kim, B., Masuta, C., Matsuura, H., Takahashi, H. & Inukai, T. Veinal necrosis induced by turnip mosaic virus infection in Arabidopsis is a form of defense response accompanying HR-like cell death. Mol. Plant Microbe Interact. 21, 260–268 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Nyalugwe, E. P., Barbetti, M. J., Clode, P. L. & Jones, R. A. C. Systemic hypersensitive resistance to turnip mosaic virus in Brassica juncea is associated with multiple defense responses, especially phloem necrosis and xylem occlusion. Plant Dis. 100, 1261–1270 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Komatsu, K. et al. Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways. Mol. Plant-Microbe Interact. 23, 283–293 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Mandadi, K. K. & Scholthof, K. B. G. Plant immune responses against viruses: how does a virus cause disease? Plant Cell 25, 1489–1505 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Michel, V. et al. NtTPN1: a RPP8-like R gene required for potato virus Y-induced veinal necrosis in tobacco. Plant J. 95, 700–714 (2018).CAS 
    Article 

    Google Scholar 
    26.Ando, S., Miyashita, S. & Takahashi, H. Plant defense systems against cucumber mosaic virus: lessons learned from CMV–Arabidopsis interactions. J. Gen. Plant Pathol. 85, 174–181 (2019).Article 

    Google Scholar 
    27.Takahashi, H. et al. Mapping the virus and host genes involved in the resistance response in cucumber mosaic virus-infected Arabidopsis thaliana. Plant Cell Physiol. 42, 340–347 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Takahashi, H. et al. RCY1-mediated resistance to cucumber mosaic virus is regulated by LRR domain-mediated interaction with CMV(Y) following degradation of RCY1. Mol. Plant Microbe Interact. 25, 1171–1185 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Ishihara, T., Sato, Y. & Takahashi, H. Microarray analysis of R-gene-mediated resistance to viruses in Plant Virology Protocols, Methods in Molecular Biology (eds Uyeda, I. & Masuta, C.) 197–218 (Humana Press, 2015). https://doi.org/10.1007/978-1-4939-1743-3_1530.Takebe, I. & Ohtsuki, Y. Infection of tobacco mesophyll protoplasts by tobacco mosaic virus. Proc. Natl Acad. Sci. U. S. A. 64, 843–848, https://www.pnas.org/content/64/3/843 (1969).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Hibi, T., Rezelman, G. & van Kammen, A. Infection of cowpea mesophyll protoplasts with cowpea mosaic virus. Virology 64, 308–318 (1975).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Motoyoshi, F., Hull, R. & Flack, I. H. Infection of tobacco mesophyll protoplasts by alfalfa mosaic virus. J. Gen. Virol. 27, 263–266 (1975).Article 

    Google Scholar 
    33.Renaudin, J., Bove, J. M., Otsuki, Y. & Takebe, I. Infection of brassica protoplasts by turnip yellow mosaic virus. Mol. Gen. Genet. 141, 59–68 (1975).Article 

    Google Scholar 
    34.Okuno, H., Furusawa, I. & Hiruki, C. Infection of barley protoplasts with brome mosaic virus. Phytopathology 67, 610–615 (1977).CAS 
    Article 

    Google Scholar 
    35.French, R. & Stenger, D. C. Evolution of wheat streak mosaic virus: dynamics of population growth within plants may explain limited variation. Annu. Rev. Phytopathol. 41, 199–214 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Miyashita, S. & Kishino, H. Estimation of the size of genetic bottlenecks in cell-to-cell movement of soil-borne wheat mosaic virus and the possible role of the bottlenecks in speeding up selection of variations in trans-acting genes or elements. J. Virol. 84, 1828–1837 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Miyashita, S., Ishibashi, K., Kishino, H. & Ishikawa, M. Viruses roll the dice: the stochastic behavior of viral genome molecules accelerates viral adaptation at the cell and tissue levels. PLoS Biol. 13, e1002094 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Nemecek, T., Fischlin, A., Derron, J. & Roth, O. Distance and direction of trivial flights of aphids in a potato field. Syst. Ecol. ETHZ (1993).39.Takahashi, H., Fukuhara, T., Kitazawa, H. & Kormelink, R. Virus latency and the impact on plants. Front. Microbiol. 10, 2764 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Farkas, G., Kiraly, Z. & Solymosy, F. Role of oxidative metabolism in the localization of plant viruses. Virology 12, 408–421 (1960).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Kiraly, L., Hafez, Y., Fodor, J. & Kiraly, Z. Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J. Gen. Virol. 89, 799–808 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Hafez, Y., Bacso, R., Kiraly, Z., Kunstler, A. & Kiraly, L. Up-regulation of antioxidants in tobacco by low concentrations of H2O2 suppresses necrotic disease symptoms. Phytopathology 102, 848–856 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Kunstler, A., Bacso, R., Gullner, G., Hafez, Y. & Kiraly, L. Staying alive – is cell death dispensable for plant disease resistance during the hypersensitive response? Physiol. Mol. Plant Pathol. 93, 75–84 (2016).Article 

    Google Scholar 
    44.Xie, Z., Fan, B., Chen, C. & Chen, Z. An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc. Natl Acad. Sci. U. S. A. 98, 6516–6521 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Li, W. et al. Callose deposition at plasmodesmata is a critical factor in restricting the cell-to-cell movement of soybean mosaic virus. Plant Cell Rep. 31, 905–916 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Miyashita, S. Studies on replication and evolution mechanisms of plant RNA viruses. J. Gen. Plant Pathol. 84, 427–428 (2018).CAS 
    Article 

    Google Scholar 
    47.Qu, F. et al. Bottleneck, Isolate, Amplify, Select (BIAS) as a mechanistic framework for intracellular population dynamics of positive sense RNA viruses. Virus Evol. 6, veaa86 (2020).Article 

    Google Scholar 
    48.Gonzalez-Jara, P., Fraile, A., Canto, T. & Garcia-Arenal, F. The multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. J. Virol. 83, 7487–7494 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Gutierrez, S. et al. Dynamics of the multiplicity of cellular infection in a plant virus. PLoS Pathog. 6, e1001113 (2010).50.Moury, B., Fabre, F., Hebrard, E. & Froissart, R. Determinants of host species range in plant viruses. J. Gen. Virol. 98, 862–873 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.McLeish, M. J., Fraile, A. & Garcia-Arenal, F. Evolution of plant–virus interactions: host range and virus emergence. Curr. Opin. Virol. 34, 50–55 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Gao, Y. et al. Out of water: the origin and early diversification of plant R-genes. Plant Physiol. 177, 82–89 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Chandra-Shekara, A. C. et al. Signaling requirements and role of salicylic acid in HRT- and rrt-mediated resistance to turnip crinkle virus in Arabidopsis. Plant J. 40, 647–659 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Ando, S., Obinata, A. & Takahashi, H. WRKY70 interacting with RCY1 disease resistance protein is required for resistance to cucumber mosaic virus in Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 85, 8–15 (2014).CAS 
    Article 

    Google Scholar 
    55.Fukuyo, M., Sasaki, A. & Kobayashi, I. Success of a suicidal defense strategy against infection in a structured habitat. Sci. Rep. 2, 1–8 (2012).Article 
    CAS 

    Google Scholar 
    56.Cheng, Y., Jones, R. A. C. & Thackray, D. J. Deploying strain specific hypersensitive resistance to diminish temporal virus spread. Ann. Appl. Biol. 140, 69–79 (2002).Article 

    Google Scholar 
    57.Thackray, D. J., Smith, L. J., Cheng, Y. & Jones, R. A. C. Effect of strain-specific hypersensitive resistance on spatial patterns of virus spread. Ann. Appl. Biol. 141, 45–59 (2002).Article 

    Google Scholar 
    58.Suzuki, M. et al. Functional analysis of deletion mutants of cucumber mosaic virus RNA3 using an in vitro transcription system. Virology 183, 106–113 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Takeshita, M. et al. Infection dynamics in viral spread and interference under the synergism between cucumber mosaic virus and turnip mosaic virus. Mol. Plant Microbe Interact. 25, 18–27 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Hodel, M. R., Corbett, A. H. & Hodel, A. E. Dissection of a nuclear localization signal. J. Biol. Chem. 276, 1317–1325 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2020).62.Miyashita, S. R scripts for MOI estimation and simulation for plant suicidal population resistance by systemic hypersensitive response. Zenodo https://doi.org/10.5281/zenodo.5105622 (2021). More