More stories

  • in

    Dulled dragonfly displays

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Seasonal and geographic variation in packed cell volume and selected serum chemistry of platypuses

    1.Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108 (1956).Article 

    Google Scholar 
    2.Sand, H., Cederlund, G. & Danell, K. Geographical and latitudinal variation in growth patterns and adult body size of Swedish moose (Alces alces). Oecologia 102, 433–442 (1995).ADS 
    PubMed 
    Article 

    Google Scholar 
    3.Gigliotti, L. C. et al. Latitudinal variation in snowshoe hare (Lepus americanus) body mass: a test of Bergmann’s rule. Can. J. Zool. 98, 88–95 (2020).Article 

    Google Scholar 
    4.Best, T. L. Intraspecific Variation in the Agile Kangaroo Rat (Dipodomys agilis). J. Mammal. 64, 426–436. https://doi.org/10.2307/1380355 (1983).Article 

    Google Scholar 
    5.Terada, C., Tatsuzawa, S. & Saitoh, T. Ecological correlates and determinants in the geographical variation of deer morphology. Oecologia 169, 981–994 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    6.Gigliotti, L. C., Diefenbach, D. R. & Sheriff, M. J. Geographic variation in winter adaptations of snowshoe hares (Lepus americanus). Can. J. Zool. 95, 539–545 (2017).Article 

    Google Scholar 
    7.Singaravelan, N. et al. Adaptation of pelage color and pigment variations in Israeli subterranean blind mole rats, Spalax ehrenbergi. PloS ONE 8, 119 (2013).Article 

    Google Scholar 
    8.Price, T., Ndiaye, O., Hammerschmidt, K. & Fischer, J. Limited geographic variation in the acoustic structure of and responses to adult male alarm barks of African green monkeys. Behav. Ecol. Sociobiol. 68, 815–825 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Lagos, L. & Bárcena, F. Spatial variability in wolf diet and prey selection in Galicia (NW Spain). Mammal Res. 63, 125–139. https://doi.org/10.1007/s13364-018-0352-6 (2018).Article 

    Google Scholar 
    10.Ashton, K. G., Tracy, M. C. & Queiroz, A. D. Is Bergmann’s rule valid for mammals?. Am. Nat. 156, 390–415 (2000).PubMed 
    Article 

    Google Scholar 
    11.Watt, C., Mitchell, S. & Salewski, V. Bergmann’s rule; a concept cluster?. Oikos 119, 89–100 (2010).Article 

    Google Scholar 
    12.Yom-Tov, Y. & Geffen, E. Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls. Biol. Rev. 86, 531–541 (2011).PubMed 
    Article 

    Google Scholar 
    13.Basuony, M., Mohamed, W. & Shalabi, M. Food and feeding ecology of the Egyptian Mongoose, Herpestes ichneumon (Linnaeus, 1758) in Egypt. J. Appl. Sci. Res. 9, 5811–5816 (2013).
    Google Scholar 
    14.McNab, B. K. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164, 13–23 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    15.Wang, M. et al. Ambient temperature correlates with geographic variation in body size of least horseshoe bats. Curr. Zool. 2, 19 (2020).
    Google Scholar 
    16.Taggart, D. A. et al. Environmental factors influencing hairy-nosed wombat abundance in semi-arid rangelands. J. Wildl. Manag. 84, 921–929 (2020).Article 

    Google Scholar 
    17.Brandimarti, M. E. et al. Reference intervals for parameters of health of eastern grey kangaroos Macropus giganteus and management implications across their geographic range. Wildl. Biol. 2020 (2020).18.Fancourt, B. A., Hawkins, C. E. & Nicol, S. C. Mechanisms of climate-change-induced species decline: spatial, temporal and long-term variation in the diet of an endangered marsupial carnivore, the eastern quoll. Wildl. Res. 45, 737–750 (2019).Article 

    Google Scholar 
    19.Phillips, B. L. & Shine, R. Adapting to an invasive species: toxic cane toads induce morphological change in Australian snakes. Proc. Natl. Acad. Sci. 101, 17150–17155 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Both, C. & Visser, M. E. The effect of climate change on the correlation between avian life-history traits. Global Change Biol. 11, 1606–1613 (2005).ADS 
    Article 

    Google Scholar 
    21.Borg, C., Majolo, B., Qarro, M. & Semple, S. A comparison of body size, coat condition and endoparasite diversity of wild Barbary macaques exposed to different levels of tourism. Anthrozoös 27, 49–63 (2014).Article 

    Google Scholar 
    22.Maceda-Veiga, A., Green, A. J. & De Sostoa, A. Scaled body-mass index shows how habitat quality influences the condition of four fish taxa in north-eastern Spain and provides a novel indicator of ecosystem health. Freshwat. Biol. 59, 1145–1160 (2014).Article 

    Google Scholar 
    23.Thatcher, H. R., Downs, C. T. & Koyama, N. F. Using parasitic load to measure the effect of anthropogenic disturbance on vervet monkeys. EcoHealth 15, 676–681 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Boyce, M. S. Population viability analysis. Annu. Rev. Ecol. Syst. 23, 481–497 (1992).Article 

    Google Scholar 
    25.Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N., Loison, A. & Toigo, C. Temporal variation in fitness components and population dynamics of large herbivores. Annu. Rev. Ecol. Syst. 31, 367–393 (2000).Article 

    Google Scholar 
    26.Reed, D. H., O’Grady, J. J., Brook, B. W., Ballou, J. D. & Frankham, R. Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biol. Conserv. 113, 23–34 (2003).Article 

    Google Scholar 
    27.Stevenson, R. & Woods, W. A. Jr. Condition indices for conservation: new uses for evolving tools. Integr. Comp. Biol. 46, 1169–1190 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Schulte-Hostedde, A. I., Zinner, B., Millar, J. S. & Hickling, G. J. Restitution of mass–size residuals: validating body condition indices. Ecology 86, 155–163 (2005).Article 

    Google Scholar 
    29.Weiss, D. J. & Wardrop, K. J. Schalm’s Veterinary Hematology (Wiley, 2011).
    Google Scholar 
    30.Hanks, J., Fowler, C. & Smith, T. Dynamics of large mammal populations. Dyn. Large Mamm. Popul. 2, 47–73 (1981).
    Google Scholar 
    31.Mapfumo, L., Muchenje, V., Mupangwa, J. F. & Scholtz, M. M. Changes in biochemical proxy indicators for nutritional stress resilience from Boran and Nguni cows reared in dry arid rangeland. Trop. Anim. Health Prod. 49, 1383–1392 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Miller, D. S. et al. Biomedical evaluation of free-ranging ring-tailed lemurs (Lemur catta) in three habitats at the Beza Mahafaly Special Reserve, Madagascar. J. Zoo Wildl. Med. 38, 201–216 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Pérez, J. M. et al. Distinguishing disease effects from environmental effects in a mountain ungulate: seasonal variation in body weight, hematology, and serum chemistry among Iberian ibex (Capra pyrenaica) affected by sarcoptic mange. J. Wildl. Dis. 51, 148–156 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Webster, K. N., Hill, N. J., Burnett, L. & Deane, E. M. Ectoparasite infestation patterns, haematology and serum biochemistry of urban-dwelling common brushtail possums. Wildl. Biol. 20, 206–216 (2014).Article 

    Google Scholar 
    35.Perrault, J. R. & Stacy, N. I. Note on the unique physiologic state of loggerhead sea turtles (Caretta caretta) during nesting season as evidenced by a suite of health variables. Mar. Biol. 165, 71 (2018).Article 

    Google Scholar 
    36.O’Brien, J., Schmitt, T., Nollens, H., Dubach, J. & Robeck, T. Reproductive physiology of the female Magellanic penguin (Spheniscus magellanicus): insights from the study of a zoological colony. Gen. Comp. Endocrinol. 225, 81–94 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Robert, K. A. & Schwanz, L. E. Monitoring the health status of free-ranging tammar wallabies using hematology, serum biochemistry, and parasite loads. J. Wildl. Manag. 77, 1232–1243 (2013).Article 

    Google Scholar 
    38.Portas, T. J. et al. Beyond morbidity and mortality in reintroduction programmes: changing health parameters in reintroduced eastern bettongs Bettongia gaimardi. Oryx 50, 674–683 (2016).Article 

    Google Scholar 
    39.Lücker, A., Secomb, T. W., Weber, B. & Jenny, P. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue. Microcirculation 24, e12337. https://doi.org/10.1111/micc.12337 (2017).CAS 
    Article 

    Google Scholar 
    40.Shield, J. A seasonal change in blood cell volume of the Rottnest Island quokka, Setonix brachyurus. J. Zool. 165, 343–354 (1971).Article 

    Google Scholar 
    41.Sealander, J. A. Seasonal changes in blood values of deer mice and other small mammals. Ecology 12, 107–119 (1962).Article 

    Google Scholar 
    42.Trumble, S. J., Castellini, M. A., Mau, T. L. & Castellini, J. M. Dietary and seasonal influences on blood chemistry and hematology in captive harbor seals. Mar. Mamm. Sci. 22, 104–123 (2006).Article 

    Google Scholar 
    43.Boonstra, R., McColl, C. J. & Karels, T. J. Reproduction at all costs: The adaptive stress response of male Arctic ground squirrels. Ecology 82, 1930–1946. (2001).Article 

    Google Scholar 
    44.Stockham, S. L. & Scott, M. A. Fundamentals of Veterinary Clinical Pathology (Wiley, 2013).
    Google Scholar 
    45.Thrall, M. A., Weiser, G., Allison, R. W. & Campbell, T. W. Veterinary Hematology and Clinical Chemistry (Wiley, 2012).
    Google Scholar 
    46.Gruys, E., Toussaint, M., Niewold, T. & Koopmans, S. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 6, 1045 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Serrano, E. et al. The use of total serum proteins and triglycerides for monitoring body condition in the Iberian wild goat (Capra pyrenaica). J. Zoo Wildl. Med. 39, 646–649 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Stevens, L. A. & Levey, A. S. Measurement of kidney function. . Med. Clin. 89, 457–473 (2005).
    Google Scholar 
    49.Vanholder, R., Glorieux, G., De Smet, R. & Lameire, N. New insights in uremic toxins. Kidney Int. 63, S6–S10 (2003).Article 

    Google Scholar 
    50.Caldeira, R., Belo, A., Santos, C., Vazques, M. & Portugal, A. The effect of body condition score on blood metabolites and hormonal profiles in ewes. Small Rumin. Res. 68, 233–241 (2007).Article 

    Google Scholar 
    51.Schutte, J. E., Longhurst, J. C., Gaffney, F. A., Bastian, B. C. & Blomqvist, C. G. Total plasma creatinine: an accurate measure of total striated muscle mass. J. Appl. Physiol. 51, 762–766 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Kaneko, J. J., Harvey, J. W. & Bruss, M. L. Clinical Biochemistry of Domestic Animals. (Academic Press, 2008).53.Stirrat, S. C. Body condition and blood chemistry of agile wallabies (Macropus agilis) in the wet–dry tropics. Wildl. Res. 30, 59–67 (2003).CAS 
    Article 

    Google Scholar 
    54.Lassen, E. Perspectives in data interpretation. Vet. Hematol. Clini. Chem. 5, 45–49 (2004).
    Google Scholar 
    55.Maceda-Veiga, A. et al. Inside the Redbox: applications of haematology in wildlife monitoring and ecosystem health assessment. Sci. Total Environ. 514, 322–332 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Brandimarti, M. E., Gray, R., Silva, F. R. & Herbert, C. A. Kangaroos at maximum capacity: health assessment of free-ranging eastern grey kangaroos on a coastal headland. J. Mamm. 2, 96 (2021).
    Google Scholar 
    57.Clark, P. Haematology of Australian Mammals. (CSIRO Publishing, 2004).58.Solberg, H. A guide to IFCC recommendations on reference values. J. Int. Fed. Clin. Chem. 5, 162–165 (1993).CAS 
    PubMed 

    Google Scholar 
    59.Gongora, J. et al. Genetic structure and phylogeography of platypuses revealed by mitochondrial DNA. J. Zool. 286, 110–119 (2012).Article 

    Google Scholar 
    60.Grant, T. & Fanning, D. The Platypus: A Unique Mammal. (University of New South Wales Press, 1995).61.Furlan, E. et al. Is body size variation in the platypus (Ornithorhynchus anatinus) associated with environmental variables?. Aust. J. Zool. 59, 201–215 (2012).Article 

    Google Scholar 
    62.Allen, A. Allens rule. The influence of Physical conditions in the genesis of species. Rad. Rev. 1, 108–140 (1877).
    Google Scholar 
    63.Bergmann, C. Uber die Verhaltnisse der warmeokonomie der Thiere zu uber Grosso. Gottinger Studien 3, 595–708 (1847).
    Google Scholar 
    64.Grant, T., Griffiths, M. & Temple-Smith, P. in Proc. Linn. Soc. N.S.W. 227 (Linnean Society of New South Wales).65.Munks, S., Otley, H., Bethge, P. & Jackson, J. Reproduction, diet and daily energy expenditure of the platypus in a sub-alpine Tasmanian lake. Aust. Mamm. 21, 260–261 (2000).
    Google Scholar 
    66.Temple-Smith, P. & Grant, T. Uncertain breeding: a short history of reproduction in monotremes. Reprod. Fertil. Dev. 13, 487–497 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Chessman, B. C. & Williams, S. A. Biodiversity and conservation of river macroinvertebrates on an expanding urban fringe: western Sydney, New South Wales, Australia. Pac. Conserv. Biol. 5, 36–55 (1999).Article 

    Google Scholar 
    68.Magierowski, R. H., Davies, P. E., Read, S. M. & Horrigan, N. Impacts of land use on the structure of river macroinvertebrate communities across Tasmania, Australia: spatial scales and thresholds. Mar. Freshw. Res. 63, 762–776 (2012).Article 

    Google Scholar 
    69.Verkaik, I., Prat, N., Rieradevall, M., Reich, P. & Lake, P. S. Effects of bushfire on macroinvertebrate communities in south-east Australian streams affected by a megadrought. Mar. Freshw. Res. 65, 359–369 (2014).Article 

    Google Scholar 
    70.Stitz, L., Fabbro, L. & Kinnear, S. Response of macroinvertebrate communities to seasonal hydrologic changes in three sub-tropical Australian streams. Environ. Monit. Assess. 189, 254 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    71.McLachlan-Troup, T., Dickman, C. & Grant, T. Diet and dietary selectivity of the platypus in relation to season, sex and macroinvertebrate assemblages. J. Zool. 280, 237–246 (2010).Article 

    Google Scholar 
    72.Bino, G. et al. The platypus: evolutionary history, biology, and an uncertain future. J. Mamm. 100, 308–327 (2019).Article 

    Google Scholar 
    73.Grant, T. & Temple-Smith, P. Conservation of the platypus, Ornithorhynchus anatinus: threats and challenges. Aquat. Ecosyst. Health Manag. 6, 5–18 (2003).Article 

    Google Scholar 
    74.Gust, N. et al. Distribution, prevalence and persistence of mucormycosis in Tasmanian platypuses (Ornithorhynchus anatinus). Aust. J. Zool. 57, 245–254 (2009).Article 

    Google Scholar 
    75.Klamt, M., Thompson, R. & Davis, J. Early response of the platypus to climate warming. Global Change Biol. 17, 3011–3018 (2011).ADS 
    Article 

    Google Scholar 
    76.Richmond, E. K. et al. A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nat. Commun. 9, 4491 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Scheelings, T. Morbidity and mortality of monotremes admitted to the Australian Wildlife Health Centre, Healesville Sanctuary, Australia, 2000–2014. Aust. Vet. J. 94, 121–124 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Hawke, T., Bino, G. & Kingsford, R. T. A silent demise: historical insights into population changes of the iconic platypus (Ornithorhynchus anatinus). Global Ecol. Conserv. 20, 720 (2019).
    Google Scholar 
    79.Connolly, J., Obendorf, D. & Whittington, R. Haematological, serum biochemical and serological features of platypuses with and without mycotic granulomatous dermatitis. Aust. Vet. J. 77, 809–813 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Geraghty, D. P., Griffiths, J., Stewart, N., Robertson, I. K. & Gust, N. Hematologic, plasma biochemical, and other indicators of the health of Tasmanian platypuses (Ornithorhynchus anatinus): predictors of mucormycosis. J. Wildl. Dis. 47, 483–493 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Macgregor, J. W. et al. A need for dynamic hematology and serum biochemistry reference tools: Novel use of sine wave functions to produce seasonally varying reference curves in platypuses (Ornithorhynchus anatinus). J. Wildl. Dis. 53, 235–247. https://doi.org/10.7589/2015-12-336 (2017).Article 
    PubMed 

    Google Scholar 
    82.Booth, R. & Connolly, J. in Medicine in Australian Mammals 103–132 (CSIRO Publishing, 2008).83.Whittington, R. & Grant, T. Haematology and blood chemistry of the free-living platypus, Ornithorhynchus anatinus (Shaw) (Monotremata: Ornithorhynchidae). Aust. J. Zool. 31, 475–482 (1983).CAS 
    Article 

    Google Scholar 
    84.Whittington, R. & Grant, T. Haematology and Blood Chemistry of the Conscious Platypus, Ornithorhynchus anatinus (Shaw) (Monotremata: Ornithorhynchidae). Aust. J. Zool. 32, 631–635. https://doi.org/10.1071/ZO9840631 (1984).CAS 
    Article 

    Google Scholar 
    85.Grant, T. & Carrick, F. Some aspects of the ecology of the platypus, Ornithorhynchus anatinus, in the upper Shoalhaven River. New South Wales. Australian Zool. 20, 181–199 (1978).
    Google Scholar 
    86.Bino, G., Kingsford, R. T., Grant, T., Taylor, M. D. & Vogelnest, L. Use of implanted acoustic tags to assess platypus movement behaviour across spatial and temporal scales. Sci. Rep. 8, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    87.Hawke, T., Bino, G. & Kingsford, R. T. Damming insights: impacts and implications of river regulation on platypus populations. Aquatic Conservation in press (2020).88.Gallant, J. & Read, A. A near-global bare-Earth DEM from SRTM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 41, B4 (2016).
    Google Scholar 
    89.Temple-Smith, P. D. M. Seasonal breeding biology of the platypus, Ornithorhynchus anatinus (Shaw, 1799), with special reference to the male. (1973).90.Williams, G., Serena, M. & Grant, T. Age-related change in spurs and spur sheaths of the platypus (Ornithorhynchus anatinus). Australian Mammalogy 35, 107–114 (2013).Article 

    Google Scholar 
    91.Grueber, C., Nakagawa, S., Laws, R. & Jamieson, I. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).MathSciNet 
    Article 

    Google Scholar 
    93.R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing., (R Foundation for Statistical Computing., 2020).94.Wickham, H. ggplot2-Elegant Graphics for Data Analysis (Springer International Publishing, 2016).MATH 

    Google Scholar 
    95.Wood, S. Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL. R Package Version, 1.8–23 (2018).96.Wood, S. & Wood, M. S. Package ‘mgcv’. R Package Ver. 1, 29 (2015).
    Google Scholar 
    97.Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56 (2017).Article 

    Google Scholar 
    98.Geffré, A., Concordet, D., Braun, J. P. & Trumel, C. Reference Value Advisor: a new freeware set of macroinstructions to calculate reference intervals with Microsoft Excel. Vet. Clin. Pathol. 40, 107–112 (2011).PubMed 
    Article 

    Google Scholar 
    99.Friedrichs, K. R. et al. ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 41, 441–453 (2012).PubMed 
    Article 

    Google Scholar 
    100.Calver, M. C., Goldman, B., Hutchings, P. A. & Kingsford, R. T. Why discrepancies in searching the conservation biology literature matter. Biol. Conserv. 213, 19–26 (2017).Article 

    Google Scholar 
    101.Pfeffermann, D. The role of sampling weights when modeling survey data. International Statistical Review/Revue Internationale de Statistique, 317–337 (1993).102.Deem, S. L., Karesh, W. B. & Weisman, W. Putting theory into practice: wildlife health in conservation. Conserv. Biol. 15, 1224–1233 (2001).Article 

    Google Scholar 
    103.Isaksson, C. Urbanization, oxidative stress and inflammation: a question of evolving, acclimatizing or coping with urban environmental stress. Funct. Ecol. 29, 913–923 (2015).Article 

    Google Scholar 
    104.Karesh, W. B. & Cook, R. A. Applications of veterinary medicine to in situ conservation efforts. Oryx 29, 244–252 (1995).Article 

    Google Scholar 
    105.Cahill, A. E. et al. Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. J. Biogeogr. 41, 429–442 (2014).Article 

    Google Scholar 
    106.Elmore, R. D. et al. Implications of the thermal environment for terrestrial wildlife management. Wildl. Soc. Bull. 41, 183–193 (2017).Article 

    Google Scholar 
    107.Todgham, A. E. & Stillman, J. H. Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr. Comput. Biol. 53, 539–544 (2013).Article 

    Google Scholar 
    108.Brice, P. H. Thermoregulation in monotremes: riddles in a mosaic. Aust. J. Zool. 57, 255–263 (2009).Article 

    Google Scholar 
    109.Grant, T. Body temperatures of free-ranging platypuses, Ornithorhynchus anatinus (Monotremata), with observations on their use of burrows. Aust. J. Zool. 31, 117–122 (1983).Article 

    Google Scholar 
    110.Grant, T. & Dawson, T. Temperature regulation in the platypus, Ornithorhynchus anatinus: maintenance of body temperature in air and water. Physiol. Zool. 51, 1–6 (1978).Article 

    Google Scholar 
    111.Grant, T. & Dawson, T. J. Temperature regulation in the platypus, Ornithorhynchus anatinus: production and loss of metabolic heat in air and water. Physiol. Zool. 51, 315–332 (1978).Article 

    Google Scholar 
    112.Connolly, J. H., Claridge, T., Cordell, S. M., Nielsen, S. & Dutton, G. J. Distribution and characteristics of the platypus (Ornithorhynchus anatinus) in the Murrumbidgee catchment. Aust. Mamm. 38, 58–67 (2016).Article 

    Google Scholar 
    113.Grant, T. Historical and current distribution of the platypus, Ornithorhynchus anatinus. Australia. In Platypus and echidnas (ed. ML Augee), 232–254 (1992).114.Grant, T., Gehrke, P., Harris, J. & Hartley, S. Distribution of the platypus (Ornithorhynchus anatinus) in NSW: results of the 1994–96 NSW Rivers Survey. Aust. Mamm. 21, 177–184 (2000).Article 

    Google Scholar 
    115.Nazifi, S., Gheisari, H. & Poorabbas, H. The influences of thermal stress on serum biochemical parameters of dromedary camels and their correlation with thyroid activity. Comp. Haematol. Int. 9, 49–54 (1999).Article 

    Google Scholar 
    116.Singh, K. M. et al. Evaluation of Indian sheep breeds of arid zone under heat stress condition. Small Rumin. Res. 141, 113–117 (2016).Article 

    Google Scholar 
    117.Zhang, Y. & Kieffer, J. D. Critical thermal maximum (CTmax) and hematology of shortnose sturgeons (Acipenser brevirostrum) acclimated to three temperatures. Can. J. Zool. 92, 215–221 (2014).CAS 
    Article 

    Google Scholar 
    118.Burgmer, T., Hillebrand, H. & Pfenninger, M. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151, 93–103 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    119.Carr, M., Li, L., Sadeghian, A., Phillips, I. D. & Lindenschmidt, K. E. Modelling the possible impacts of climate change on the thermal regime and macroinvertebrate species of a regulated prairie river. Ecohydrology 12, e2102 (2019).Article 

    Google Scholar 
    120.Daufresne, M., Bady, P. & Fruget, J.-F. Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhône River. Oecologia 151, 544–559 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    121.Durance, I. & Ormerod, S. J. Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biol. 13, 942–957 (2007).ADS 
    Article 

    Google Scholar 
    122.Walsh, C. J. Biological indicators of stream health using macroinvertebrate assemblage composition: a comparison of sensitivity to an urban gradient. Mar. Freshw. Res. 57, 37–47 (2006).Article 

    Google Scholar 
    123.Marchant, R. & Grant, T. The productivity of the macroinvertebrate prey of the platypus in the upper Shoalhaven River, New South Wales. Mar. Freshw. Res. 66, 1128–1137 (2015).Article 

    Google Scholar 
    124.Bino, G., Kingsford, R. T. & Wintle, B. A. A stitch in time–Synergistic impacts to platypus metapopulation extinction risk. Biol. Conserv. 242, 108399 (2020).125.Ambrosio, A. M. et al. Significant hematocrit decrease in healthy horses during clinical anesthesia. Braz. j. vet. Res. Anim. Sci. 49, 139–145 (2012).Article 

    Google Scholar 
    126.Dhumeaux, M. P. et al. Effects of a standardized anesthetic protocol on hematologic variables in healthy cats. J. Feline Med. Surg. 14, 701–705 (2012).PubMed 
    Article 

    Google Scholar 
    127.Marini, R. et al. Effect of isoflurane on hematologic variables in ferrets. Am. J. Vet. Res. 55, 1479–1483 (1994).CAS 
    PubMed 

    Google Scholar 
    128.Bejaei, M. & Cheng, K. Effects of pretransport handling stress on physiological and behavioral response of ostriches. Poult. Sci. 93, 1137–1148 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    129.Delgiudice, G. D., Kunkel, K. E., Mech, L. D. & Seal, U. S. Minimizing capture-related stress on white-tailed deer with a capture collar. J. Wildl. Manag. 11, 299–303 (1990).Article 

    Google Scholar 
    130.Harvey, J. W. Veterinary Hematology-E-Book: A Diagnostic Guide and Color Atlas. (Elsevier Health Sciences, 2011).131.Raskin, R. E. Hematologic disorders 6. Clinical medicine of the dog and cat, Schaer M, editor. Manson Publishing, London, UK, 227–288 (2009).132.Mayer, J. & Donnelly, T. M. Clinical Veterinary Advisor-E-Book: Birds and Exotic Pets. (Elsevier Health Sciences, 2012).133.Bino, G., Grant, T. R. & Kingsford, R. T. Life history and dynamics of a platypus (Ornithorhynchus anatinus) population: four decades of mark-recapture surveys. Sci. Rep. 5, 16073 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    134.Gust, N. & Handasyde, K. Seasonal-variation in the ranging behavior of the platypus (Ornithorhynchus-anatinus) on the Goulburn River, Victoria. Aust. J. Zool. 43, 193–208 (1995).Article 

    Google Scholar 
    135.Handasyde, K., McDonald, I. & Evans, B. Plasma glucocorticoid concentrations in free-ranging platypuses (Ornithorhynchus anatinus): response to capture and patterns in relation to reproduction. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 136, 895–902 (2003).CAS 
    Article 

    Google Scholar 
    136.Wang, J.-C., Gray, N. E., Kuo, T. & Harris, C. A. Regulation of triglyceride metabolism by glucocorticoid receptor. Cell Biosci. 2, 19–19. https://doi.org/10.1186/2045-3701-2-19 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    137.Griffiths, M. Reproduction and embryology. Biol. Monotremes, 209–254 (1978).138.Hawkins, M. & Battaglia, A. Breeding behaviour of the platypus (Ornithorhynchus anatinus) in captivity. Aust. J. Zool. 57, 283–293 (2009).Article 

    Google Scholar 
    139.Thomas, J., Handasyde, K., Parrott, M. & Temple-Smith, P. The platypus nest: burrow structure and nesting behaviour in captivity. Aust. J. Zool. 65, 347–356 (2018).Article 

    Google Scholar 
    140.Holland, N. & Jackson, S. M. Reproductive behaviour and food consumption associated with the captive breeding of platypus (Ornithorhynchus anatinus). J. Zool. 256, 279–288 (2002).Article 

    Google Scholar 
    141.Thomas, J. L., Handasyde, K. A., Temple-Smith, P. & Parrott, M. L. Seasonal changes in food selection and nutrition of captive platypuses (Ornithorhynchus anatinus). Aust. J. Zool. 65, 319–327. https://doi.org/10.1071/ZO18004 (2017).Article 

    Google Scholar 
    142.Kruger, B., Hunter, S. & Serena, M. Husbandry, diet and behaviour of platypus Ornithorhynchus anatinus at Healesville Sanctuary. International Zoo Yearbook 31, 64–71 (1992).Article 

    Google Scholar 
    143.El-Sherif, M. & Assad, F. Changes in some blood constituents of Barki ewes during pregnancy and lactation under semi arid conditions. Small Rumin. Res. 40, 269–277 (2001).PubMed 
    Article 

    Google Scholar 
    144.Hõrak, P., Jenni-Eiermann, S., Ots, I. & Tegelmann, L. Health and reproduction: the sex-specific clinical profile of great tits (Parus major) in relation to breeding. Can. J. Zool. 76, 2235–2244 (1998).Article 

    Google Scholar 
    145.dos Santos Schmidt, E. M. et al. Serum biochemical parameters of female bronze turkeys (Meleagris gallopavo) during egg-laying season. Int J Poult Sci 9, 177–179 (2010).146.Lumeij, J. in Clinical biochemistry of domestic animals 857–883 (Elsevier, 1997).147.Whittington, C. M. & Belov, K. Tracing monotreme venom evolution in the genomics era. Toxins 6, 1260–1273 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    148.Grant, T. & Temple–Smith, P. Field biology of the platypus (Ornithorhynchus anatinus): historical and current perspectives. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 353, 1081–1091 (1998).149.Handasyde, K. & McDonald, I. Reproductive hormones and reproduction in the platypus. Progress Comp. Endocrinol., 184–185 (1993).150.Wikelski, M., Lynn, S., Breuner, J., Wingfield, J. & Kenagy, G. Energy metabolism, testosterone and corticosterone in white-crowned sparrows. J. Comp. Physiol. A. 185, 463–470 (1999).CAS 
    Article 

    Google Scholar 
    151.Thomas, J. L., Parrott, M. L., Handasyde, K. A. & Temple-Smith, P. Female control of reproductive behaviour in the platypus (Ornithorhynchus anatinus), with notes on female competition for mating. Behaviour 155, 27–53 (2018).Article 

    Google Scholar 
    152.Hawke, T. et al. Long term movements and activity patterns of platypus on regulated rivers. Scientific Reports in press (2020).153.Andersen, N. A., Mesch, U., Lovell, D. J. & Nicol, S. C. The effects of sex, season, and hibernation on haematology and blood viscosity of free-ranging echidnas (Tachyglossus aculeatus). Can. J. Zool. 78, 174–181 (2000).Article 

    Google Scholar 
    154.Barnett, J., How, R. & Humphreys, W. Blood parameters in natural populations of Trichosurus species (Marsupialia: Phalangeridae). I. Age, sex and seasonal variation in T. caninus and T. vulpecula. II. Influence of habitat and population strategies of T. caninus and T. vulpecula. Aust. J. Zool. 27, 913–926 (1979).155.Fancourt, B. A. & Nicol, S. C. Hematologic and serum biochemical reference intervals for wild eastern quolls (Dasyurus viverrinus): variation by age, sex, and season. Vet. Clin. Pathol. 48, 114–124 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    156.McKenzie, S., Deane, E. & Burnett, L. Haematology and serum biochemistry of the tammar wallaby, Macropus eugenii. Comp. Clin. Pathol. 11, 229–237 (2002).CAS 
    Article 

    Google Scholar 
    157.Schultz, D. J. et al. Investigations into the health of brush-tailed rock-wallabies (Petrogale penicillata) before and after reintroduction. Aust. Mamm. 33, 235–244 (2011).Article 

    Google Scholar 
    158.Warren, K. S., Holyoake, C. S., Friend, T. J., Yeap, L. & McConnell, M. Hematologic and serum biochemical reference intervals for the bilby (Macrotis lagotis). J. Wildl. Dis. 51, 889–895 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    159.Woolford, L. et al. Serum biochemistry of free-ranging southern hairy-nosed wombats (Lasiorhinus latifrons). J. Zool. Wildl. Med. 50, 937–946 (2020).Article 

    Google Scholar 
    160.Sidman, C. L. et al. Increased expression of major histocompatibility complex antigens on lymphocytes from aged mice. Proc. Natl. Acad. Sci. 84, 7624–7628 (1987).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    161.Gust, N. & Griffiths, J. Platypus mucormycosis and its conservation implications. Australasian Mycol. 28, 1–8 (2009).
    Google Scholar 
    162.MacGregor, J. W. et al. Assessing body condition in the platypus (Ornithorhynchus anatinus): A comparison of new and old methods. Aust. J. Zool. 64, 421–429. https://doi.org/10.1071/ZO16071 (2016).Article 

    Google Scholar 
    163.Peig, J. & Green, A. J. The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct. Ecol. 24, 1323–1332 (2010).Article 

    Google Scholar 
    164.Woinarski, J. C., Burbidge, A. A. & Harrison, P. L. The action plan for Australian mammals 2012. (2014).165.Parer, J. & Metcalfe, J. Respiratory studies of monotremes. I. Blood of the platypus (Ornithorynchus anatinus). Respir. Physiol. 3, 136–142 (1967).CAS 
    PubMed 
    Article 

    Google Scholar 
    166.Isaacks, R., Nicol, S., Sallis, J., Zeidler, R. & Kim, H. D. Erythrocyte phosphates and hemoglobin function in monotremes and some marsupials. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246, R236–R241 (1984).CAS 
    Article 

    Google Scholar  More

  • in

    Climate amenities

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Will yield gains be lost to disease?

    1.Feynman, J. & Ruzmaikin, R. in Climate Change and Agriculture (Ed. Hussain, S.) (IntechOpen, 2018); https://doi.org/10.5772/intechopen.833442.Ferrio, J. P., Voltas, J. & Araus, J. L. in Crop Stress Management and Global Climate Change (eds Araus, J. L. & Slafer, G. A.) 1–14 (CABI Publishing, 2011).3.Chaloner, T. M., Gurr, S. J. & Bebber, P. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01104-8 (2021).Article 

    Google Scholar 
    4.Saunders, D. G. O., Pretorius, Z. A. & Hovmoller, M. S. Commun. Biol. 2, 51 (2019).Article 

    Google Scholar 
    5.Fisher, M. C. et al. mBio 11, e00449-20 (2020).
    Google Scholar 
    6.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Nat. Clim. Change 3, 985–988 (2013).Article 

    Google Scholar 
    7.Turner, R. S. Hist. Stud. Phys. Biol. 35, 341–370 (2005).Article 

    Google Scholar 
    8.Sen, A. in Poverty and Famines: An Essay on Entitlement and Deprivation (Clarendon Press, 1981).9.Gottwald, T., Luo, W., Posny, D., Riley, T. & Louws, F. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180260 (2019).Article 

    Google Scholar 
    10.Fisher, M. C. et al. Nature 484, 186–194 (2012).CAS 
    Article 

    Google Scholar 
    11.Islam, M. T. et al. BMC Biol. 14, 84 (2016).Article 

    Google Scholar 
    12.Gregory, P. J., Johnson, S. N., Newton, A. C. & Ingram, J. S. I. J. Exp. Bot. 60, 2827–2838 (2009).CAS 
    Article 

    Google Scholar 
    13.Lehmann, P. et al. Front. Ecol. Environ. 18, 141–150 (2020).Article 

    Google Scholar 
    14.Plumpton, H. & Wentworth, J. Climate Change and Agriculture (The Parliamentary Office of Science and Technology, 2019).15.Orton, E. S., Lewis, C. M., Davey, P. E., Radhakrishnan, G. V. & Saunders, D. G. O. New Dis. Rep. 40, 11 (2019).Article 

    Google Scholar  More

  • in

    Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils

    1.Spiertz, J. H. J. Nitrogen, sustainable agriculture and food security: a review. Agron. Sustain. Dev. 30, 43–55. https://doi.org/10.1051/agro:2008064 (2010).CAS 
    Article 

    Google Scholar 
    2.Kowalchuk, G. A. & Stephen, J. R. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529. https://doi.org/10.1146/annurev.micro.55.1.485 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Gelfand, I. & Yakir, D. Influence of nitrite accumulation in association with seasonal patterns and mineralization of soil nitrogen in a semi-arid pine forest. Soil Biol. Biochem. 40, 415–424. https://doi.org/10.1016/j.soilbio.2007.09.005 (2008).CAS 
    Article 

    Google Scholar 
    5.Subbarao, G. V. et al. Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Crit. Rev. Plant Sci. 25, 303–335. https://doi.org/10.1080/07352680600794232 (2006).CAS 
    Article 

    Google Scholar 
    6.Shen, T., Stieglmeier, M., Dai, J., Urich, T. & Schleper, C. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol. Lett. 344, 121–129, https://doi.org/10.1111/1574-6968.12164 (2013).7.Prosser, J. I., Head, I. M. & Stein, L. Y. in The Prokaryotes – Alphaproteobacteria and Betaproteobacteria (ed DeLong Rosenberg E., E.F., Lory, S., Stackebrandt, E., Thompson, F.) 901–918 (Springer-Verlag, 2014).8.Hayatsu, M. et al. An acid-tolerant ammonia-oxidizing gamma-proteobacterium from soil. ISME J. 11, 1130–1141. https://doi.org/10.1038/ismej.2016.191 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Alves, R.J.E., Minh, B.Q, Urich, T., von Haeseler, A. & Schleper, C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat. Commun. 9, https://doi.org/10.1038/s41467-018-03861-1 (2018).10.Wang, H. Et al. Distinct distribution of archaea from soil to freshwater to estuary: implications of archaeal composition and function in different environments. Front. Microbiol. 11. https://doi.org/10.3389/fmicb.2020.576661 (2020).11.Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531. https://doi.org/10.1016/j.tim.2012.08.001 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Pester, M. et al. amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ. Microbiol. 14, 525–539. https://doi.org/10.1111/j.1462-2920.2011.02666.x (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Spang, A. et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ. Microbiol. 14, 3122–3145. https://doi.org/10.1111/j.1462-2920.2012.02893.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509. https://doi.org/10.1038/nature16461 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.van Kessel, M. A. et al. Complete nitrification by a single microorganism. Nature 528, 555–559. https://doi.org/10.1038/nature16459 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Junier, P. et al. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl. Microbiol. Biotechnol. 85, 425–440. https://doi.org/10.1007/s00253-009-2228-9 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809. https://doi.org/10.1038/nature04983 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Zhalnina, K. et al. Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front. Microbiol. 4, 104, https://doi.org/10.3389/fmicb.2013.00104 (2013).19.Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508. https://doi.org/10.3389/fmicb.2017.01508 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Palomo, A., Dechesne, A. & Smets, B. F. Genomic profiling of Nitrospira species reveals ecological success of comammox Nitrospira. bioRxiv, 612226, https://doi.org/10.1101/612226 (2019).21.Poghosyan, L. et al. Metagenomic recovery of two distinct comammox Nitrospira from the terrestrial subsurface. Environ. Microbiol. 21, 3627–3637. https://doi.org/10.1111/1462-2920.14691 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Palomo, A. et al. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J. 12, 1779–1793. https://doi.org/10.1038/s41396-018-0083-3 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Strous, M. et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440, 790–794. https://doi.org/10.1038/nature04647 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    24.De Boer, W. & Kowalchuk, G. A. Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol. Biochem. 33, 853–866. https://doi.org/10.1016/s0038-0717(00)00247-9 (2001).Article 

    Google Scholar 
    25.Tourna, M. et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl. Acad. Sci. USA. 108, 8420–8425. https://doi.org/10.1073/pnas.1013488108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Arp, D. J., Chain, P. S. G. & Klotz, M. G. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu. Rev. Microbiol. 61, 503–528 (2007).CAS 
    Article 

    Google Scholar 
    27.Simon, J. & Klotz, M. G. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochim. Biophys. Acta 114–135, 2013. https://doi.org/10.1016/j.bbabio.2012.07.005 (1827).CAS 
    Article 

    Google Scholar 
    28.Walker, C. B. et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl. Acad. Sci. USA 107, 8818–8823. https://doi.org/10.1073/pnas.0913533107 (2010).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Li, C. Y., Hu, H. W., Chen, Q. L., Chen, D. L. & He, J. Z. Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil Biol. Biochem. 138, https://doi.org/10.1016/j.soilbio.2019.107609 (2019).30.Li, C. Y., Hu, H. W., Chen, Q. L., Chen, D. L. & He, J. Z. Niche differentiation of clade A comammox Nitrospira and canonical ammonia oxidizers in selected forest soils. Soil Biol. Biochem. 149, https://doi.org/10.1016/j.soilbio.2020.107925 (2020).31.Daims, H., Lucker, S. & Wagner, M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 24, 699–712. https://doi.org/10.1016/j.tim.2016.05.004 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Castelle, C. J. et al. Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment. Nat. Commun. 4, 2120. https://doi.org/10.1038/ncomms3120 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    33.Sorokin, D. Y. et al. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J. 6, 2245–2256. https://doi.org/10.1038/ismej.2012.70 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Lucker, S. et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc. Natl. Acad. Sci. USA. 107, 13479–13484. https://doi.org/10.1073/pnas.1003860107 (2010).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Mendum, T. A., Sockett, R. E. & Hirsch, P. R. Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia-oxidizing populations of the beta subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer. Appl. Environ. Microbiol. 65, 4155–4162 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Hirsch, P. R. et al. Soil resilience and recovery: rapid community responses to management changes. Plant Soil 412, 283–297. https://doi.org/10.1007/s11104-016-3068-x (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Hirsch, P. R., Mauchline, T. H. & Clark, I. M. Culture-independent molecular techniques for soil microbial ecology. Soil Biol. Biochem. 42, 878–887. https://doi.org/10.1016/j.soilbio.2010.02.019 (2010).CAS 
    Article 

    Google Scholar 
    38.Vetrovsky, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 8, e57923. https://doi.org/10.1371/journal.pone.0057923 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Fu, Q.L., Clark, I.M., Zhu, J., Hu, H.Q. & Hirsch, P.R The short-term effects of nitrification inhibitors on the abundance and expression of ammonia. and nitrite oxidizers in a long-term field experiment comparing land management. Biol Fertil Soils. 54, 163–172. https://doi.org/10.1007/s00374-017-1249-2 (2018).40.Bollmann, A., Schmidt, I., Saunders, A. M. & Nicolaisen, M. H. Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of Nitrosospira briensis. Appl. Environ. Microbiol. 71, 1276–1282. https://doi.org/10.1128/aem.71.3.1276-1282.2005 (2005).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Li, C. Y., Hu, H. W., Chen, Q. L., Chen, D. L. & He, J. Z. Growth of comammox Nitrospira is inhibited by nitrification inhibitors in agricultural soils. J. Soils Sediments 20, 621–628. https://doi.org/10.1007/s11368-019-02442-z (2020).CAS 
    Article 

    Google Scholar 
    42.Koch, H., van Kessel, M. A. H. J. & Lücker, S. Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl. Microbiol. Biotechnol. 103, 177–189. https://doi.org/10.1007/s00253-018-9486-3 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Placella, S. A. & Firestone, M. K. Transcriptional response of nitrifying communities to wetting of dry soil. Appl. Environ. Microbiol. 79, 3294–3302. https://doi.org/10.1128/AEM.00404-13 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Hirsch, P. R. et al. Starving the soil of plant inputs for 50 years reduces abundance but not diversity of soil bacterial communities. Soil Biol. Biochem. 41, 2021–2024. https://doi.org/10.1016/j.soilbio.2009.07.011 (2009).CAS 
    Article 

    Google Scholar 
    45.Clark, I. M., Buchkina, N., Jhurreea, D., Goulding, K. W. & Hirsch, P. R. Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the Broadbalk Wheat Experiment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1235–1244, https://doi.org/10.1098/rstb.2011.0314 (2012).46.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Meth. 12, 59–60 (2015).CAS 
    Article 

    Google Scholar 
    47.Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386. https://doi.org/10.1101/gr.5969107 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The phyllosphere microbiome of host trees contributes more than leaf phytochemicals to variation in the Agrilus planipennis Fairmaire gut microbiome structure

    1.Feldhaar, H. Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol. Entomol. 36, 533–543 (2011).Article 

    Google Scholar 
    2.Popa, V., Deziel, E., Lavallee, R., Bauce, E. & Guertin, C. The complex symbiotic relationships of bark beetles with microorganisms: A potential practical approach for biological control in forestry. Pest Manag. Sci. 68, 963–975. https://doi.org/10.1002/ps.3307 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Qadri, M., Short, S., Gast, K., Hernandez, J. & Wong, A.C.-N. Microbiome innovation in agriculture: Development of microbial based tools for insect pest management. Front. Sustain. Food Syst. 4, 547751. https://doi.org/10.3389/fsufs (2020).Article 

    Google Scholar 
    4.Vasanthakumar, A., Handelsman, J., Schloss, P. D., Bauer, L. S. & Raffa, K. F. Gut microbiota of an invasive subcortical beetle, Agrilus planipennis Fairmaire, across various life stages. Environ. Entomol. 37, 1344–1353 (2008).PubMed 
    Article 

    Google Scholar 
    5.Zhang, Z., Jiao, S., Li, X. & Li, M. Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets. Sci. Rep. 8, 15634. https://doi.org/10.1038/s41598-018-34127-x (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    6.Franzini, P. Z., Ramond, J.-B., Scholtz, C. H., Sole, C. L., Ronca, S. & Cowan, D. A. The gut microbiomes of two Pachysoma MacLeay desert dung beetle species (Coleoptera: Scarabaeidae: Scarabaeinae) feeding on different diets. PLoS ONE 11, e0161118 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Colman, D. R., Toolson, E. C. & Takacs-Vesbach, C. Do diet and taxonomy influence insect gut bacterial communities?. Mol. Ecol. 21, 5124–5137 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Kim, J. M. Choi, M.-Y., Kim, J.-W., Lee, S. A., Ahn, J.-H., Song, J., Kim, S.-H. & Weon, H.-Y. Effects of diet type, developmental stage, and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera). J. Microbiol. 55, 21–30 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Ferguson, L. V.  Dhakal, P., Lebenzon, J. E., Heinrichs, D. E., Bucking, C., & Sinclair B. J. Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Funct. Ecol. 32, 2357–2368 (2018).Article 

    Google Scholar 
    10.Mason, C. J., Hanshew, A. S. & Raffa, K. F. Contributions by host trees and insect activity to bacterial communities in Dendroctonus valens (Coleoptera: Curculionidae) galleries, and their high overlap with other microbial assemblages of bark beetles. Environ. Entomol. 45, 348–356. https://doi.org/10.1093/ee/nvv184 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Mogouong, J., Constant, P., Lavallée, R. & Guertin, C. Gut microbiome of the emerald ash borer, Agrilus planipennis Fairmaire, and its relationship with insect population density. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiaa141 (2020).Article 
    PubMed 

    Google Scholar 
    12.Moran, N. A. & Yun, Y. Experimental replacement of an obligate insect symbiont. Proc. Natl. Acad. Sci. 112, 2093–2096 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    13.Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).Article 

    Google Scholar 
    14.Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).PubMed 
    Article 

    Google Scholar 
    15.Cappaert, D., McCullough, D. G., Poland, T. M. & Siegert, N. W. Emerald ash borer in North America: A research and regulatory challenge. (2005).16.Kovacs, K. F., Haight, R. G., McCullough, D. G., Mercader, R. J., Siegert, N. W. & Liebhold, A. M. Cost of potential emerald ash borer damage in U.S. communities, 2009–2019. Ecol. Econ. 69, 569–578 (2010).Article 

    Google Scholar 
    17.Aukema, J. E., Leung, B., Kovacs, K., Chivers, C., Britton, K. O., Englin, J., Frankel, S. J., Haight, R. G., Holmes, T. P., Liebhold, A. M., McCullough, D. G. & Von Holle, B. Economic impacts of non-native forest insects in the continental United States. PLoS ONE 6, e24587 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    18.Poland, T. M. & McCullough, D. G. Emerald ash borer: Invasion of the urban forest and the threat to North America’s ash resource. J. For. 104, 118–124 (2006).
    Google Scholar 
    19.Herms, D. A. & McCullough, D. G. Emerald ash borer invasion of North America: History, biology, ecology, impacts, and management. Annu. Rev. Entomol. 59, 13–30. https://doi.org/10.1146/annurev-ento-011613-162051 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.McCullough, D. G. Challenges, tactics and integrated management of emerald ash borer in North America. For. Int. J. For. Res. 93, 197–211 (2020).
    Google Scholar 
    21.Gandhi, K. J. & Herms, D. A. North American arthropods at risk due to widespread Fraxinus mortality caused by the alien emerald ash borer. Biol. Invasions 12, 1839–1846 (2010).Article 

    Google Scholar 
    22.Slesak, R. A., Lenhart, C. F., Brooks, K. N., D’Amato, A. W. & Palik, B. J. Water table response to harvesting and simulated emerald ash borer mortality in black ash wetlands in Minnesota, USA. Can. J. For. Res. 44, 961–968 (2014).Article 

    Google Scholar 
    23.Wielkopolan, B. & Obrepalska-Steplowska, A. Three-way interaction among plants, bacteria, and coleopteran insects. Planta 244, 313–332. https://doi.org/10.1007/s00425-016-2543-1 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Howe, G. A. & Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59, 41–66 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Stam, J. M., Kroes, A., Li, Y., Gols, R., van Loon, J. J. A., Poelman, E. H. & Dicke, M. Plant interactions with multiple insect herbivores: from community to genes. Annu. Rev. Plant Biol. 65, 689–713 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Douglas, A. E. Multiorganismal insects: Diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Shikano, I., Rosa, C., Tan, C.-W. & Felton, G. W. Tritrophic interactions: Microbe-mediated plant effects on insect herbivores. Annu. Rev. Phytopathol. 55, 313–331 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Schowalter, T. D. Insect Ecology: An Ecosystem Approach (Academic Press, 2016).
    Google Scholar 
    30.Oliverio, A. M., Gan, H., Wickings, K. & Fierer, N. A DNA metabarcoding approach to characterize soil arthropod communities. Soil Biol. Biochem. 125, 37–43 (2018).CAS 
    Article 

    Google Scholar 
    31.Lennon, J. T., Muscarella, M. E., Placella, S. A. & Lehmkuhl, B. K. How, when, and where relic DNA affects microbial diversity. MBio 9, e00637-e618. https://doi.org/10.1128/mBio.00637-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Humphrey, P. T. & Whiteman, N. K. Insect herbivory reshapes a native leaf microbiome. Nat. Ecol. Evol. 4, 221–229 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Yutthammo, C., Thongthammachat, N., Pinphanichakarn, P. & Luepromchai, E. Diversity and activity of PAH-degrading bacteria in the phyllosphere of ornamental plants. Microb. Ecol. 59, 357–368 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Kadivar, H. & Stapleton, A. E. Ultraviolet radiation alters maize phyllosphere bacterial diversity. Microb. Ecol. 45, 353–361 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Thapa, S. & Prasanna, R. Prospecting the characteristics and significance of the phyllosphere microbiome. Ann. Microbiol. 68, 229–245 (2018).CAS 
    Article 

    Google Scholar 
    36.Kembel, S. W., O’Connor, T. K., Arnold, H. K., Hubbell, S. P., Wright, S. J. & Green, J. L. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc. Natl. Acad. Sci. 111, 13715–13720 (2014).37.Biedermann, P. H. & Vega, F. E. Ecology and evolution of insect–fungus mutualisms. Annu. Rev. Entomol. 65, 431–455 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Fischer, R., Ostafe, R. & Twyman, R. M. In: Yellow Biotechnology II: Insect Biotechnology in Plant Protection and Industry. Ch. Cellulases from insects, 51–64 (Springer, 2013).39.Watanabe, H. & Tokuda, G. Cellulolytic systems in insects. Ann. Rev. Entomol. 55, 609–632 (2010).CAS 
    Article 

    Google Scholar 
    40.Mittapalli, O., Bai, X., Mamidala, P., Rajarapu, S. P., Bonello, P. & Herms, D. A. Tissue-specific transcriptomics of the exotic invasive insect pest emerald ash borer (Agrilus planipennis). PLoS ONE 5, e13708 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    41.Vacheron, J., Péchy-Tarr, M., Brochet, S., Heiman, C. M., Stojiljkovic, M., Maurhofer, M. & Keel, C. T6SS contributes to gut microbiome invasion and killing of an herbivorous pest insect by plant-beneficial Pseudomonas protegens. ISME J. 13, 1318–1329. https://doi.org/10.1038/s41396-019-0353-8 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Smith, C. C., Snowberg, L. K., Caporaso, J. G., Knight, R. & Bolnick, D. I. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. 9, 2515–2526 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.-T., Weigel, D. & Kemen, E. M. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Gupta, A. & Nair, S. Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front. Microbiol. 11, 1357 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.AFSQ. La clé forestière. https://afsq.org/cle-forestiere/accueil.html. Association forestière du Sud du Québec (2018).46.Comeau, A. M., Li, W. K. W., Tremblay, J. -É., Carmack, E. C. & Lovejoy, C. Arctic Ocean Microbial Community Structure before and after the 2007 Record Sea Ice Minimum. PLoS ONE 6, e27492. https://doi.org/10.1371/journal.pone.0027492 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    47.Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863. https://doi.org/10.1371/journal.pone.0040863 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    48.Edgar, R. C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv 081257 (2016).49.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Glassman, S. I. & Martiny, J. B. H. Broadscale ecological patterns are robust to use of exact sequence variants versus operational taxonomic units. mSphere 3, e00148-e118. https://doi.org/10.1128/mSphere.00148-18 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y.,  Brown, C. T.,  Porras-Alfaro, A., Kuske, C. R. & Tiedje J. M. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633-642. https://doi.org/10.1093/nar/gkt1244 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    54.Chen, Y. & Poland, T. M. Interactive influence of leaf age, light intensity, and girdling on green ash foliar chemistry and emerald ash borer development. J. Chem. Ecol. 35, 806–815. https://doi.org/10.1007/s10886-009-9661-1 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Bi, J. L., Toscano, N. C. & Madore, M. A. Effect of urea fertilizer application on soluble protein and free amino acid content of cotton petioles in relation to silverleaf whitefly (Bemisia argentifolii) populations. J. Chem. Ecol. 29, 747–761. https://doi.org/10.1023/a:1022880905834 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Torti, S. D., Dearing, M. D. & Kursar, T. A. Extraction of phenolic compounds from fresh leaves: A comparison of methods. J. Chem. Ecol. 21, 117–125 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Hagerman, A. E. Extraction of tannin from fresh and preserved leaves. J. Chem. Ecol. 14, 453–461 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Beauchemin, N. J., Furnholm,T., Lavenus, J., Svistoonoff, S., Doumas, P., Bogusz, D., Laplaze, L. & Tisa L. S. Casuarina root exudates alter the physiology, surface properties, and plant infectivity of Frankia sp. strain CcI3. Appl. Environ. Microbiol. 78, 575–580 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    59.Garg, B. Plant Analysis: Comprehensive Methods and Protocols (Scientific Publishers, 2012).
    Google Scholar 
    60.Wellburn, R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144, 307–313 (1994).CAS 
    Article 

    Google Scholar 
    61.Marquis, R. J., Newell, E. A. & Villegas, A. C. Non-structural carbohydrate accumulation and use in an understorey rain-forest shrub and relevance for the impact of leaf herbivory. Funct. Ecol. 11, 636–643. https://doi.org/10.1046/j.1365-2435.1997.00139.x (1997).Article 

    Google Scholar 
    62.Garcia, A. M. N., Moumen, A., Ruiz, D. Y. & Alcaide, E. M. Chemical composition and nutrients availability for goats and sheep of two-stage olive cake and olive leaves. Anim. Feed Sci. Technol. 107, 61–74 (2003).Article 
    CAS 

    Google Scholar 
    63.Van Soest, P. V., Robertson, J. & Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597 (1991).PubMed 
    Article 

    Google Scholar 
    64.Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R. & O’Hara, R. B. Package ‘vegan’. R package version 2.5-6 (2019)65.Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2018).MATH 
    Book 

    Google Scholar 
    66.Kembel, S. W., Eisen, J. A., Pollard, K. S. & Green, J. L. The phylogenetic diversity of metagenomes. PLoS ONE 6, e23214 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    67.Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Cons. 61, 1–10 (1992).Article 

    Google Scholar 
    68.Kembel, S. W.,  Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., Blomberg, S. P., & Webb, C. O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).PubMed 
    Article 

    Google Scholar 
    70.Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N, Wagner H. H. Package ‘adespatial’, version 0.3-14. R Package version 2.5.6 (2018).71.De Cáceres, M., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).Article 

    Google Scholar 
    72.De Caceres, M., Jansen, F. & Caceres, D. Package ‘indicspecies’, version 1.7.9. R package version 2.5.6 (2016).73.Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008).PubMed 
    Article 

    Google Scholar  More

  • in

    Ghostly conduits

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Bird–plant dispersal limits

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More