More stories

  • in

    Rice paddy soils are a quantitatively important carbon store according to a global synthesis

    1.Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 65, 10–21 (1996).Article 
    CAS 

    Google Scholar 
    2.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).CAS 
    Article 

    Google Scholar 
    3.Buringh, P. in The role of terrestrial vegetation in the global carbon cycle: Measurement by remote sensing, 91–109 (Wiley, 1984).4.Hiederer, R. & Köchy, M. Global soil organic carbon estimates and the harmonized world soil database. EUR 79, 25225 (2011).
    Google Scholar 
    5.Smith, P. et al. Global change pressures on soils from land use and management. Glob. Chang. Biol. 22, 1008–1028 (2016).Article 

    Google Scholar 
    6.Schlesinger, W. H. The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing (Wiley, 1984).7.Conant, R. T., Cerri, C. E., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).Article 

    Google Scholar 
    8.Köchy, M., Hiederer, R. & Freibauer, A. Global distribution of soil organic carbon–Part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1, 351–365 (2015).Article 
    CAS 

    Google Scholar 
    9.Nahlik, A. M. & Fennessy, M. S. Carbon storage in US wetlands. Nat. Commun. 7, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    10.Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).CAS 
    Article 

    Google Scholar 
    11.Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528 (2017).CAS 
    Article 

    Google Scholar 
    12.Maclean, J. L., Dawe, D. C., Hardy, B. & Hettel, G. P. Rice Almanac: Source book for the most important economic activity on earth, 3rd edn. (CABI Publishing, 2002).13.Kögel-Knabner, I. et al. Biogeochemistry of paddy soils. Geoderma 157, 1–14 (2010).Article 
    CAS 

    Google Scholar 
    14.Wu, J. Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies. Eur. J. Soil Sci. 62, 29–34 (2011).CAS 
    Article 

    Google Scholar 
    15.Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 7, 63–68 (2017).CAS 
    Article 

    Google Scholar 
    16.FAO (Food and Agriculture Organization of the United Nations). FAOSTAT: FAO Statistical Databases. http://faostat.fao.org/default.aspx (2018).17.Gattinger, A. et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl Acad. Sci. USA 109, 18226–18231 (2012).CAS 
    Article 

    Google Scholar 
    18.Xie, Z. et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob. Chang. Biol. 13, 1989–2007 (2007).Article 

    Google Scholar 
    19.Qin, Z., Huang, Y. & Zhuang, Q. Soil organic carbon sequestration potential of cropland in China. Glob. Biogeochem. Cycles 27, 711–722 (2013).CAS 
    Article 

    Google Scholar 
    20.Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).Article 

    Google Scholar 
    21.Haefele, S. M., Nelson, A. & Hijmans, R. J. Soil quality and constraints in global rice production. Geoderma 235, 250–259 (2014).Article 
    CAS 

    Google Scholar 
    22.Pan, G., Li, L., Wu, L. & Zhang, X. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob. Chang. Biol. 10, 79–92 (2004).Article 

    Google Scholar 
    23.Wei, L. et al. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma 398, 115121 (2021).Article 

    Google Scholar 
    24.Wang, P. et al. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence. Sci. Rep. 5, 15704 (2015).CAS 
    Article 

    Google Scholar 
    25.Li, Y. et al. Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils. Soil Biol. Biochem. 153, 108106 (2021).CAS 
    Article 

    Google Scholar 
    26.Evans, C. D. et al. Acidity controls on dissolved organic carbon mobility in organic soils. Glob. Chang. Biol. 18, 3317–3331 (2012).Article 

    Google Scholar 
    27.Liu, Y. et al. Impact of prolonged rice cultivation on coupling relationship among C, Fe, and Fe-reducing bacteria over a 1000-year paddy soil chronosequence. Biol. Fertil. Soils 55, 589–602 (2019).CAS 
    Article 

    Google Scholar 
    28.Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).Article 

    Google Scholar 
    29.Liu, Y. et al. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation. Biogeosciences 13, 6565–6586 (2016).CAS 
    Article 

    Google Scholar 
    30.Liu, Y. et al. Methanogenic abundance and changes in community structure along a rice soil chronosequence from east China. Eur. J. Soil Sci. 67, 443–455 (2016).CAS 
    Article 

    Google Scholar 
    31.Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 1–10 (2018).CAS 
    Article 

    Google Scholar 
    32.Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land‐use change on soil organic carbon stocks-a meta‐analysis. Glob. Chang. Biol. 17, 1658–1670 (2011).Article 

    Google Scholar 
    33.Piao, S. et al. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013 (2009).CAS 
    Article 

    Google Scholar 
    34.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS 
    Article 

    Google Scholar 
    35.Kirk, G. The Biogeochemistry of Submerged Soils (Wiley, 2004).36.Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J. & Vitousek, P. M. Long‐term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob. Chang. Biol. 18, 2594–2605 (2012).Article 

    Google Scholar 
    37.Scharpenseel, H. W., Pfeiffer, E. M. & Becker-Heidmann, P. in Advances in Soil Science (eds. Carter, MR, Stewart, BA) (Lewis Publishers, 1996).38.Liao, Q. et al. Increase in soil organic carbon stock over the last two decades in China’s Jiangsu Province. Glob. Chang. Biol. 15, 861–875 (2009).Article 

    Google Scholar 
    39.Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    40.Ghimire, R., Lamichhane, S., Acharya, B. S., Bista, P. & Sainju, U. M. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: a review. J. Integr. Agric. 16, 1–15 (2017).Article 

    Google Scholar 
    41.Maillard, É. & Angers, D. A. Animal manure application and soil organic carbon stocks: a meta‐analysis. Glob. Chang. Biol. 20, 666–679 (2014).Article 

    Google Scholar 
    42.Tian, K. et al. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis. Agric. Ecosyst. Environ. 204, 40–50 (2015).CAS 
    Article 

    Google Scholar 
    43.Liu, Y. et al. Initial utilization of rhizodeposits with rice growth in paddy soils: rhizosphere and N fertilization effects. Geoderma 338, 30–39 (2019).CAS 
    Article 

    Google Scholar 
    44.Chen, J. et al. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci. Adv. 4, eaaq1689 (2018).CAS 
    Article 

    Google Scholar 
    45.Zhu, Z. et al. Rice rhizodeposits affect organic matter decomposition in paddy soil: the role of N fertilization and rice growth for enzyme activities, CO2 and CH4 emissions. Soil Biol. Biochem. 116, 369–377 (2018).CAS 
    Article 

    Google Scholar 
    46.Moorhead, D. L. & Sinsabaugh, R. L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 76, 151–174 (2006).Article 

    Google Scholar 
    47.Li, X. et al. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biol. Biochem. 112, 47–55 (2017).CAS 
    Article 

    Google Scholar 
    48.Cui, J. et al. Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biol. Biochem. 142, 107720 (2020).CAS 
    Article 

    Google Scholar 
    49.Geisseler, D., Linquist, B. A. & Lazicki, P. A. Effect of fertilization on soil microorganisms in paddy rice systems—a meta-analysis. Soil Biol. Biochem. 115, 452–460 (2017).CAS 
    Article 

    Google Scholar 
    50.Sun, W. et al. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Glob. Chang. Biol. 26, 3325–3335 (2020).Article 

    Google Scholar 
    51.Wissing, L. et al. Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations. Soil Tillage Res. 126, 60–71 (2013).Article 

    Google Scholar 
    52.Baker, J. M., Ochsner, T. E., Venterea, R. T. & Griffis, T. J. Tillage and soil carbon sequestration—-what do we really know? Agric. Ecosyst. Environ. 118, 1–5 (2007).CAS 
    Article 

    Google Scholar 
    53.Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 60, 158–169 (2009).CAS 
    Article 

    Google Scholar 
    54.Lal, R. Soil carbon sequestration in India. Clim. Change 65, 277–296 (2004).CAS 
    Article 

    Google Scholar 
    55.Liu, Y. et al. Carbon input and allocation by rice into paddy soils: a review. Soil Biol. Biochem. 133, 97–107 (2019).CAS 
    Article 

    Google Scholar 
    56.Zhao, Y. et al. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl Acad. Sci. USA 115, 4045–4050 (2018).CAS 
    Article 

    Google Scholar 
    57.Wei, X., Zhu, Z., Wei, L., Wu, J. & Ge, T. Biogeochemical cycles of key elements in the paddy-rice rhizosphere: microbial mechanisms and coupling processes. Rhizosphere 10, 100145 (2019).Article 

    Google Scholar 
    58.Alexandratos, N. & Bruinsma, J. World agriculture towards 2030/2050: the 2012 revision. https://doi.org/10.22004/ag.econ.288998. (2012).59.Rui, W. & Zhang, W. Effect size and duration of recommended management practices on carbon sequestration in paddy field in Yangtze Delta Plain of China: a meta-analysis. Agric. Ecosyst. Environ. 135, 199–205 (2010).CAS 
    Article 

    Google Scholar 
    60.Song, K. et al. Wetland degradation: its driving forces and environmental impacts in the Sanjiang Plain, China. Environ. Manage. 54, 255–271 (2014).Article 

    Google Scholar 
    61.Dong, J. et al. Northward expansion of paddy rice in northeastern Asia during 2000–2014. Geophys. Res. Lett. 43, 3754–3761 (2016).CAS 
    Article 

    Google Scholar 
    62.Chaturvedi, V. et al. Climate mitigation policy implications for global irrigation water demand. Mitig. Adapt. Strat. Glob. Chang. 20, 389–407 (2015).Article 

    Google Scholar 
    63.Gathorne-Hardy, A. A life cycle assessment (LCA) of greenhouse gas emissions from SRI and flooded rice production in SE India. Taiwan Water Conserv. J. 61, 111–125 (2013).
    Google Scholar 
    64.Linquist, B., Van Groenigen, K. J., Adviento‐Borbe, M. A., Pittelkow, C. & Van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Chang. Biol. 18, 194–209 (2012).Article 

    Google Scholar 
    65.IPCC. in Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. (eds. Field, C. B. et al) (Cambridge University Press, 2014).66.Xie, Z. et al. CO2 mitigation potential in farmland of China by altering current organic matter amendment pattern. Sci. China Earth Sci. 53, 1351–1357 (2010).CAS 
    Article 

    Google Scholar 
    67.Yan, X. et al. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Tillage Res. 130, 42–51 (2013).Article 

    Google Scholar 
    68.Shang, Q. et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice‐cropping systems: a 3‐year field measurement in long‐term fertilizer experiments. Glob. Chang. Biol. 17, 2196–2210 (2011).Article 

    Google Scholar 
    69.Ma, Y. et al. Net global warming potential and greenhouse gas intensity of annual rice–wheat rotations with integrated soil–crop system management. Agric. Ecosyst. Environ. 164, 209–219 (2013).Article 

    Google Scholar 
    70.Xiong, Z. et al. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China. Sci. Rep. 5, 1–9 (2015).CAS 

    Google Scholar 
    71.Jiang, Y. et al. Acclimation of methane emissions from rice paddy fields to straw addition. Sci. Adv. 5, eaau9038 (2019).Article 
    CAS 

    Google Scholar 
    72.Liu, C., Lu, M., Cui, J., Li, B. & Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta‐analysis. Glob. Chang. Biol. 20, 1366–1381 (2014).Article 

    Google Scholar 
    73.Shakoor, A. et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci. Total Environ. 750, 142299 (2021).CAS 
    Article 

    Google Scholar 
    74.Zhao, X. et al. Methane and nitrous oxide emissions under no‐till farming in China: a meta‐analysis. Glob. Chang. Biol. 22, 1372–1384 (2016).Article 

    Google Scholar 
    75.Kim, S. Y., Gutierrez, J. & Kim, P. J. Unexpected stimulation of CH4 emissions under continuous no-tillage system in mono-rice paddy soils during cultivation. Geoderma 267, 34–40 (2016).CAS 
    Article 

    Google Scholar 
    76.Ball, B. C., Scott, A. & Parker, J. P. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Tillage Res. 53, 29–39 (1999).Article 

    Google Scholar 
    77.Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., van Kessel, C. & van Groenigen, K. J. Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crop. Res. 135, 10–21 (2012).Article 

    Google Scholar 
    78.Schlesinger, W. H. Carbon sequestration in soils: some cautions amidst optimism. Agric. Ecosyst. Environ. 82, 121–127 (2000).CAS 
    Article 

    Google Scholar 
    79.Choudhury, A. T. M. A. & Kennedy, I. R. Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Commun. Soil Sci. Plan. 36, 1625–1639 (2005).CAS 
    Article 

    Google Scholar 
    80.Jiang, Y. et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crop. Res. 234, 47–54 (2019).Article 

    Google Scholar 
    81.Suryavanshi, P., Singh, Y. V., Prasanna, R., Bhatia, A. & Shivay, Y. S. Pattern of methane emission and water productivity under different methods of rice crop establishment. Paddy Water Environ. 11, 321–329 (2013).Article 

    Google Scholar 
    82.Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cycles https://doi.org/10.1029/2008GB003299 (2009).83.Jiang, Y. et al. Higher yields and lower methane emissions with new rice cultivars. Glob. Chang. Biol. 23, 4728–4738 (2017).Article 

    Google Scholar 
    84.Li, C. et al. Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Glob. Biogeochem. Cycles https://doi.org/10.1029/2003GB002045 (2004).85.Yin, S. et al. Carbon sequestration and emissions mitigation in paddy fields based on the DNDC model: a review. Artif. Intell. Agric. 4, 140–149 (2020).
    Google Scholar 
    86.FAO, IIASA, ISRIC, ISSCAS, and JRC: Harmonized World Soil Database (version 1.2), Tech. Rep., FAO, Rome, Italy and IIASA, Laxenburg, Austria (2012).87.Allison, L. in Organic carbon. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, (ed. A.g. Norman). (American Society of Agronomy, 1965).88.Fang, C. & Moncrieff, J. B. The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant Soil 268, 243–253 (2005).CAS 
    Article 

    Google Scholar 
    89.Yan, X., Cai, Z., Wang, S. & Smith, P. Direct measurement of soil organic carbon content change in the croplands of China. Glob. Chang. Biol. 17, 1487–1496 (2011).Article 

    Google Scholar 
    90.Rosenberg, M. S., Adams, D. C. & Gurevitch, J. MetaWin 2.0: statistical software for meta-analysis (Sinauer, 2000).91.Yue, Q. et al. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China. Environ. Sci. Technol. 53, 10246–10257 (2019).CAS 
    Article 

    Google Scholar 
    92.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    93.Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta‐analysis of ecological data. Ecology 78, 1277–1283 (1997).Article 

    Google Scholar 
    94.Van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475, 214–216 (2011).Article 
    CAS 

    Google Scholar  More

  • in

    An insight of anopheline larvicidal mechanism of Trichoderma asperellum (TaspSKGN2)

    1.Ghosh, S. K., Podder, D., Panja, S., & Mukherjee, S. In target areas where human mosquito-borne diseases are diagnosed, the inclusion of the pre-adult mosquito aquatic niches parameters will improve the integrated mosquito control program. PLos Neg. Trop. Dis. 14(8), e0008605 (2020).Article 

    Google Scholar 
    2.Becker, B. N. et al. Mosquitoes and Their Control 499 (Springer, 2010).Book 

    Google Scholar 
    3.Hyde, K. D. et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97, 1–136 (2019).Article 

    Google Scholar 
    4.Clark, T. B., Kellen, W. R., Fukuda, T. & Lindegren, J. E. Field and laboratory studies on the pathogenicity of the fungus Beauveria bassiana to three genera of mosquitoes. J. Invertebr. Pathol. 11(1), 1–7 (1968).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Scholte, E. J., Knols, B. G. & Takken, W. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J. Invertebr. Pathol. 91(1), 43–49 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Bukhari, T., Takken, W. & Koenraadt, C. J. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Parasit. Vectors 4(1), 23 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Mukherjee, A., Debnath, P., Ghosh, S. K. & Medda, P. K. Biological control of papaya aphid (Aphis gossypii Glover) using entomopathogenic fungi. Vegetos 33, 1–10 (2020).Article 

    Google Scholar 
    8.Fernández-Grandon, G. M., Harte, S. J., Ewany, J., Bray, D. & Stevenson, P. C. Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy. Plants 9, 173 (2020).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Sobczak, J. F. et al. Manipulation of wasp (Hymenoptera: Vespidae) behavior by the entomopathogenic fungus Ophiocordyceps humbertii in the Atlantic forest in Ceará, Brazil. Entomol. News 129, 98–104 (2020).Article 

    Google Scholar 
    10.Ghosh, S. K. & Pal, S. Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malathion against the insect pest Leucinodes orbonalis. Environ. Monit. Assess. 188(1), 37 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.Podder, D. & Ghosh, S. K. A new application of Trichoderma asperellum as an anopheline larvicide for eco friendly management in medical science. Sci. Reps. 9(1), 1108 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Jones, E. B. G. Fungal adhesion. Mycol. Res. 98(9), 961–981 (1994).Article 

    Google Scholar 
    13.Shah, P. A. & Pell, J. K. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413–423 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Rudall, K. M. The chitin/protein complexes of insect cuticles. Adv. Insect Physiol. 1, 257–313 (1963).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Shah, F. A., Wang, C. S. & Butt, T. M. Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol. Lett. 251(2), 259–266 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Jackson, M. A., Dunlap, C. A. & Jaronski, S. T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. Biocontrol 55(1), 129–145 (2010).Article 

    Google Scholar 
    17.Vega, F.E.; Meyling, N., Luangsa-ard, J.& Blackwell, M. Fungal entomopathogens. In: edit Vega, F. and Kaya, H. A. Insect pathology, 2nd edn , San Diego, CA, Academic Press, pp 171–220 (2012).18.Gaugler, R. Entomopathogenic nematodes in biological control. CRC press (2018).19.McKinnon, A. C. et al. Detection of the entomopathogenic fungus Beauveria bassiana in the rhizosphere of wound-stressed zea mays plants. Front. Microbiol. 9, 1161 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 17(9), 879–920 (2007).Article 

    Google Scholar 
    21.Hamer, J. E., Howard, R. J., Chumley, F. G. & Valent, B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239(4837), 288–290 (1988).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Dhawan, M. & Joshi, N. (Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Braz. J. Microbiol. 48(3), 522–529 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Mora, M. A. E., Castilho, A. M. C. & Fraga, M. E. Classification and infection mechanism of entomopathogenic fungi. Arq. Inst. Biol. 84, 0552015 (2017).
    Google Scholar 
    24.Li, J., Tracy, J. W. & Christensen, B. M. Phenol oxidase activity in hemolymph compartments of Aedes aegypti during melanotic encapsulation reactions against microfilariae. Dev. Comp. Immunol. 16(1), 41–48 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hillyer, J. F. & Strand, M. R. Mosquito hemocyte-mediated immune responses. Curr. Opin. Insect Sci. 3, 14–21 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Nanda, K. P. Chronic lead (Pb) exposure results in diminished hemocyte count and increased susceptibility to bacterial infection in Drosophila melanogaster. Chemosphere 236, 124349 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Ghosh, S. K., Chatterjee, T., Chakravarty, A. & Basak, A. K. Sodium and potassium nitrite-induced developmental genotoxicity in Drosophila melanogaster—effects in larval immune and brain stem cells. Interdiscip. Toxicol. 13(4), 101–105 (2020).
    Google Scholar 
    28.Chatterjee, T., Ghosh, S. K., Paik, S., Chakravarty, A. & Basak, A. K. Benzoic acid treated Drosophila melanogaster the genetic disruption of larval brain stem cells and non-neural cells during metamorphosis. Toxicol. Environ. Health Sci. https://doi.org/10.1007/s13530-021-00082-w (2021).Article 

    Google Scholar 
    29.Campos, R. A. Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr. Microbiol. 50(5), 257–261 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.McFarlane, H. E., Gendre, D. & Western, T. L. Seed coat ruthenium red staining assay. Bio-Protoc. 4, 1096 (2014).Article 

    Google Scholar 
    31.Bhosale, R. R., Osmani, R. A. M. & Moin, A. Natural gums and mucilages: A review on multifaceted excipients in pharmaceutical science and research. Int. J. Res. Phytochem. Pharmacol 6(4), 901–912 (2014).
    Google Scholar 
    32.Shah, F. A., Allen, N., Wright, C. J. & Butt, T. M. Repeated in vitro subculturing alters spore surface properties and virulence of Metarhizium anisopliae. FEMS Microbiol. Lett. 276(1), 60–66 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Hsu, S. C. & Lockwood, J. L. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl. Environ. Microbiol. 29(3), 422–426 (1975).CAS 
    Article 

    Google Scholar 
    34.Parida, D., Jena, S. K. & Rath, C. C. Enzyme activities of bacterial isolates from iron mine areas of Barbil, Keonjhar district, Odisha, India. Int. J. Pure Appl. Biosci. 2(3), 265–271 (2014).
    Google Scholar 
    35.Kasana, R. C., Salwan, R., Dhar, H., Dutt, S. & Gulati, A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 57(5), 503–507 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Medina, P. & Baresi, L. Rapid identification of gelatin and casein hydrolysis using TCA. J. Microbiol. Methods 69(2), 391–393 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Al-Nahdi, H. S. Isolation and screening of extracellular proteases produced by new isolated Bacillus sp. J. Appl. Pharm. Sci. 2(9), 71–74 (2012).CAS 

    Google Scholar 
    38.Murthy, N. K. & Bleakley, B. H. Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Int. J. Microbiol. 10(2), 1937–8289 (2012).
    Google Scholar 
    39.Park, S. H., Lee, J. H. & Lee, H. K. Purification and characterization of chitinase from a marine bacterium, Vibrio sp. 98CJ11027. J. Microbiol 38, 224–229 (2000).CAS 

    Google Scholar 
    40.Roberts, W. K. & Selitrennikoff, C. P. Plant and bacterial chitinases differ in antifungal activity. Microbiology 134(1), 169–176 (1986).Article 

    Google Scholar 
    41.Tsuchida, O. et al. An alkaline proteinase of an alkalophilic Bacillus sp. Curr. Microbiol. 14(1), 7–12 (1986).CAS 
    Article 

    Google Scholar 
    42.Crowell, A. M., Wall, M. J. & Doucette, A. A Maximizing recovery of water-soluble proteins through acetone precipitation. Anal. Chim. Acta. 796, 48–54 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.He, F. BCA (Bicinchoninic Acid) protein assay. Bio Protocol 1(5), 44 (2011).Article 

    Google Scholar 
    44.Sierra, L.M., Carmona, E.R., Aguado, L. & Marcos, R. The comet assay in Drosophila: neuroblast and hemocyte cells. In Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. 269–82 (2014).45.Xu, T. et al. (2012) HMGB in mollusk Crassostrea ariakensis Gould: structure, pro-inflammatory cytokine function characterization and anti-infection role of its antibody. PLoS ONE 7(11), e50789 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Basak, A. K., Chatterjee, T., Chakravarty, A. & Ghosh, S. K. Silver nanoparticle-induced developmental inhibition of Drosophila melanogaster accompanies disruption of genetic material of larval neural stem cells and non-neuronal cells. Environ. Monit. Assess. 191(8), 497 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar  More

  • in

    Landscape heterogeneity buffers biodiversity of simulated meta-food-webs under global change through rescue and drainage effects

    ModelWe model a tri-trophic food chain of one plant, one herbivore and one predator population on one or two habitat patches and complex meta-food-webs consisting of 10 plants and 30 animals in different landscapes containing 50 patches. The feeding dynamics are constant overall patches and are determined by the allometric food-web model by Schneider et al. 201633. We integrate dispersal as species-specific biomass flux between habitat patches according to Ryser et al. 201934. With the use of a dynamic bioenergetic model we formulate feeding and dispersal dynamics in terms of ordinary differential equations. The rate of change in biomass densities of a species are the sum of its biomass loss by metabolism, being preyed upon and emigration and its biomass gain by feeding and immigration. For detailed equations and for model parameters see section Equations and parameters and the supplement (Supplementary Table 1).Local food-web dynamicsFollowing the allometric food-web model by Schneider et al. 201633 each species is fully characterised by its average adult body mass. For the complex food-web log10 body masses were randomly drawn from a uniform distribution from 0 to 3 for plants and from 2 to 6 for animals. For the food chain the plant body mass was set to 102, the herbivore body mass to 104 and the predator body mass to 106. We set mass ratios of the herbivore to the plant and the predator to the herbivore to the optimum of 100, thus the respective resource being a one-hundredth of its consumer’s body mass. This simplifies feeding efficiency rates (see section Equations and parameters; Li,j, Eq. (5)) to 1 in the case of a food chain. Trophic dynamical parameters, such as metabolic rates and feeding rates, scale with body masses of model species. Also, we assume a type-II functional response for the food chain and a slight nonlinearity of the functional response in the food web as this stabilises persistence in more complex systems. Compared to Ryser et al 2019, capture rates were reduced to 5% to achieve viable food chains and food webs to increase the stability in the absence of interference competition.Nutrient modelWe have an underlying nutrient model with one nutrient that is driving the nutrient uptake and therefore the growth rate of the plant population11,33. The nutrient model consists of one nutrient, a nutrient turnover rate of 0.25 and a nutrient supply concentration. The nutrient supply concentration was varied to get eutrophic and oligotrophic patches (see Setup).Spatial dynamicsWe model dispersal between local communities as a dynamic process of emigration and immigration, assuming dispersal to occur at the same timescale as the local population dynamics35. Thus, biomass flows change dynamically between local populations and the dispersal dynamics directly influence local population dynamics and vice versa25.Dispersal rates of animals are modelled with an adaptive emigration rate depending on the net growth rate on the given patch. Dispersal ranges depend on the body masses of our model species with larger species having a higher dispersal range. We model a hostile matrix between habitat patches that does not allow feeding interactions to occur during dispersal. Depending on the scenario, we define a landscape with one, two or 50 patches. In cases with two or 50 patches, their locations are spatially explicit and were chosen in a way that the distances between reflect the dispersal loss of the predator across the matrix hostility gradient.Emigration and immigrationBased on empirical observations36 and previous theoretical frameworks13,22,37, we assume that the maximum dispersal distance of animal species increases with their body mass. For simplicity, we do not let the plants disperse, as they do not move themselves and the dispersal of plant propagules strongly depends on their dispersal strategy. We model emigration rates as a function of each species’ per capita net growth rate, which is summarising local conditions such as resource availability, predation pressure, and inter- and intra-specific competition25 (but see Sensitivity Analyses for dispersal models with constant dispersal or non-body-mass-scaled dispersal ranges). Dispersal losses scale linearly with the distance between two patches and are 100% in scenarios with only one patch or when the distance between the two patches surpasses the dispersal range of an animal. Even though we model dispersal losses according to dispersal distances, this loss term could also represent any other sort of dispersal loss. For numerical reasons, we did not allow dispersal flows smaller than 10−10.Numerical simulationsWe initialised each local population with a biomass density randomly sampled from a uniform probability density within the interval (0,10). Starting from these random initial conditions, we numerically simulated food web and dispersal dynamics over 100,000 time steps by integrating the system of differential equations implemented in C++ using procedures of the SUNDIALS CVODE solver version 2.7.0 (backward differentiation formula with absolute and relative error tolerances of 10−10) and the time series of biomass densities were saved for last 10,000 time steps. For numerical reasons, a local population was considered extinct and was set to 0 once its biomass density dropped below 10−20. Based on the empirically derived metabolic rates, these 100,000 time steps correspond to ~11 years. Our model does, however, not account for time spent for organisms’ other non-trophic activities such as sleeping or mating. Thus, the time scales of the simulation should only be compared with caution to natural time scales of population dynamics. Transient dynamics usually equilibrate within the first few thousand time steps.Equations and parametersOur model formulates the change of biomass densities over time in ordinary differential equations. Given the empirical origin of metabolic rates used in our model, one time step corresponds to an hour and body masses are in mg, areas of patches are not defined. The feeding links (i.e. who eats whom) are constant overall patches and are as well as the feeding dynamics determined by the allometric food-web model by Schneider et al. 201633. We integrate dispersal as species-specific biomass flow between habitat patches. Using ordinary differential equations to describe the feeding and dispersal dynamics, the rate of change in biomass density Bi,z of species i on patch z is given by$$frac{d{B}_{i,z}}{{dt}}[{mg}* {{{{{{{mathrm{Area}}}}}}}}^{-1}* {h}^{-1}]={B}_{i,z}mathop{sum}limits_{j}{e}_{j}{F}_{{ij},z}-mathop{sum}limits_{j}{{B}_{j,z}F}_{{ji},z}-{x}_{i}{B}_{i,z}-{E}_{i,z}+{I}_{i,z}({{{{{rm{for}}}}}}; {{{{{rm{animals}}}}}})$$
    (1)
    $$frac{d{B}_{i,z}}{{dt}}[{mg}* {{{{{{{mathrm{Area}}}}}}}}^{-1}* {h}^{-1}]={r}_{i}{G}_{i}{B}_{i,z}-mathop{sum}limits_{j}{B}_{j,z}{F}_{{ji},z}-{x}_{i}{B}_{i,z}({{{{{rm{for}}}}}}; {{{{{rm{plants}}}}}})$$
    (2)
    with the first three terms describing local trophic dynamics and the last two terms describing emigration, Ei,z (Eq. 9), and immigration, Ii,z (Eq. 11). For simplicity, we do not let plants disperse. Trophic dynamics are driven by following three processes. First, predation or herbivory on species j with assimilation efficiency e (ej = 0.545, if j is a plant, typical for herbivory; ej = 0.906 if j is an animal, typical for carnivory38) and the functional response Fij,z (Eq. 3) for animals, and a nutrient dependent growth (Eq. 7) for plants. Second, losses due to predation or herbivory, respectively. Third, losses by metabolic demands with xi = xAmi−0.305 with scaling constant xA = 0.141 (tenfold laboratory metabolic rate39 at a temperature of 20° Celsius to represent field metabolic rates) for animals and xi = xPmi−0.25 with xP = 0.138 for plants. We used a dynamic nutrient model (Eq. 8) as the energetic basis of our food web. Each species i is fully characterised by its average adult body mass mi. Body masses determine the interaction strengths of feeding links as well as the metabolic demands of species. Data from empirical feeding interactions are used to parametrise the functions that characterise the optimal prey body mass and the location and width of the feeding niche of a predator33. From each mi a unimodal attack kernel, called feeding efficiency Lij is constructed which determines the probability of consumer species i to attack and capture an encountered resource species j. We model Lij as an asymmetrical hump-shaped Ricker’s function (Eq. 5) that is maximised for an energetically optimal resource body mass (optimal consumer-resource body mass ratio Ropt = 100) and has a width of γ. The maximum of the feeding efficiency Lij equals 1. Supplementary table 1 is an overview of the standard parameter set for the equations. See also Schneider et al. 201633 for further information regarding the allometric food-web model.Functional response$${F}_{{ij},z}=frac{{omega }_{i}{b}_{i,j}{R}_{j,z}^{1+q}}{1+{omega }_{i}{sum }_{k}{b}_{{ik}}{h}_{{ik}}{R}_{k,z}^{1+q}}cdot frac{1}{{m}_{i}}$$
    (3)
    Per unit biomass feeding rate of consumer i as function of the biomass density of the resource Rj, with bi,j, resource-specific capture coefficient (Eq. 4); hi,j, resource-specific handling time (Eq. 6); ωi = 1/(number of resource species of i), an inefficiency parameter for generalists assuming that generalist are less adapted in for example search patterns or hunting strategies to a specific prey species; and q, the Hill coefficient for nonlinearities in density dependency (if q = 0 it is a Type-II functional response, if q = 1 it is a Type-III functional response).Capture coefficient$${b}_{{ij}}=f{a}_{k}{m}_{i}^{{beta }_{i}}{m}_{j}^{{beta }_{j}}{L}_{{ij}}$$
    (4)
    Resource-specific capture coefficient of consumer species i on resource species j scaling the feeding kernel Lij by a power function of consumer and resource body mass, assuming that the encounter rate between consumer and resource scales with their respective movement speed. This body mass scaling of encounter rates is assumed to occur before the attempt of a predator to capture its prey is made. We differentiate between carnivorous and herbivorous interactions with each comprising a constant scaling factor for their capture coefficients ak with k ∈ 0, 1 (a0 = 15 for carnivorous species and a1 = 3500 for herbivorous species). For plant resources, ({m}_{j}^{{beta }_{j}}) was replaced with the constant value of 1 (as plants do not move).Feeding efficiency$${L}_{i,j}={left(frac{{m}_{i}}{{m}_{j}{R}_{{{{{{{mathrm{opt}}}}}}}}}{e}^{1-frac{{m}_{i}}{{m}_{j}{R}_{{{{{{{mathrm{opt}}}}}}}}}}right)}^{gamma }$$
    (5)
    The probability of consumer i to attack and capture an encountered resource j (which can be either plant or animal), described by an asymmetrical hump-shaped curve (Ricker’s function), centered around an optimal consumer-resource body mass ratio Ropt = 10033 and with γ that that affects the width of the hump. An increase in γ results in a decrease in the width.Handling time$${h}_{{ij}}={h}_{0}{m}_{i}^{{eta }_{i}}{m}_{j}^{{eta }_{j}}$$
    (6)
    The time consumer i needs to kill, ingest, and digest resource species j, with scaling constant h0 = 0.4 and allometric exponents ηi = −0.48 and ηj = −0.6640.Growth factor for plants$${G}_{i}=frac{N}{{K}_{i}+N}$$
    (7)
    Species-specific growth factor of plants determined dynamically by the nutrient; with Ki, half-saturation densities determining the nutrient uptake efficiency assigned randomly for each plant species i and (uniform distribution within (0.1, 0.2)).Nutrient dynamics$$frac{d{N}_{z}}{{dt}}=Dleft(S-Nright)-mathop{sum}limits_{i,z}{r}_{i}{G}_{i}{P}_{i,z}$$
    (8)
    Rate of change of nutrient concentration N of nutrient on patch z, with global turnover rate D = 0.25, determining the rate at which nutrients are refreshed and the nutrient supply concentration S.Generating landscapesWe generated different fragmented landscapes, represented by random geometric graphs, by randomly drawing the locations of Z patches from a uniform distribution between 0 and 1 for x- and y-coordinates, respectively.DispersalWe model dispersal between local communities as a dynamic process of emigration and immigration, assuming dispersal to occur at the same timescale as the local population dynamics. Thus, biomass flows dynamically between local populations and the dispersal dynamics directly influence local population dynamics and vice versa. We model a hostile matrix between habitat patches that does not allow for feeding interactions to occur during dispersal. The total rate of emigration of animal species i from patch z is$${E}_{i,z}={d}_{i,z}{B}_{i,z}$$
    (9)
    with di,z as the corresponding per capita dispersal rate. We model di,z as$${d}_{i,z}=frac{a}{1+{{{{{{rm{e}}}}}}}^{-b({x}_{i}-{v}_{i,z})}}$$
    (10)
    with a, the maximum dispersal rate, b = 10, a parameter determining the shape of the dispersal rate, xi, the inflection point determined by the metabolic demands per unit biomass of species i, and υi,z, the net growth rate of species i on patch z. The net growth rate consists of the biomass gain by feeding, the biomass loss by being fed upon and the metabolic loss (({v}_{i,z}=frac{{B}_{i,z}mathop{sum}limits_{j}{e}_{j}{F}_{{ij},z}-mathop{sum}limits_{j}{{B}_{j,z}F}_{{ji},z}-{x}_{i}{B}_{i,z}}{{B}_{i,z}})). We chose to model di,z as a function of each species’ net growth rate to account for emigration triggers, such as resource availability, predation pressure, and inter- and intra-specific competition. If for example an animal species’ net growth is positive, there is no need for dispersal and emigration will be low. However, if the local environmental conditions deteriorate, the growing incentives to search for a better habitat increase the fraction of individuals emigrating.ImmigrationThe rate of immigration of biomass density of species i into patch z follows$${I}_{i,z}=mathop{sum}limits_{n,epsilon, {N}_{z}}{E}_{i,n}{max }(1-{delta }_{i,{nz}},0)frac{{max }(1-{delta }_{i,{nz}},0)}{mathop{sum}limits_{m,epsilon, {N}_{n}}{max }(1-{delta }_{i,{nz}},0)}$$
    (11)
    where Nz and Nn are the sets of all patches within the dispersal range of species i on patches z and n, respectively. In this equation, Ei,n is the emigration rate of species i from patch n, ({max }(1-{delta }_{i,{nz}},0)) is the fraction of successfully dispersing biomass, i.e. the fraction of biomass not lost to the matrix, and δi,nz is the distance between patches n and z relative to species i’s maximum dispersal distance δi (see below paragraph Maximum dispersal distance). The term (frac{{max }(1-{delta }_{i,{nz}},0)}{mathop{sum}limits_{m,epsilon, {N}_{n}}{max }(1-{delta }_{i,nz},0)})determines the fraction of biomass of species i emigrating from source patch n towards target patch z. This fraction depends on the relative distance between the patches, δi,nz, and the relative distances to all other potential target patches m of species i on the source patch n, δi,nm. Thus, the flow of biomass is greatest between patches with small distances to account for the logic that the first patch dispersing organism come across is closer. In other words, the further a destination is, the more likely it is to come across another patch before.For numerical reasons, we did not allow for dispersal flows with Ii,z  More

  • in

    Dulled dragonfly displays

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Seasonal and geographic variation in packed cell volume and selected serum chemistry of platypuses

    1.Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108 (1956).Article 

    Google Scholar 
    2.Sand, H., Cederlund, G. & Danell, K. Geographical and latitudinal variation in growth patterns and adult body size of Swedish moose (Alces alces). Oecologia 102, 433–442 (1995).ADS 
    PubMed 
    Article 

    Google Scholar 
    3.Gigliotti, L. C. et al. Latitudinal variation in snowshoe hare (Lepus americanus) body mass: a test of Bergmann’s rule. Can. J. Zool. 98, 88–95 (2020).Article 

    Google Scholar 
    4.Best, T. L. Intraspecific Variation in the Agile Kangaroo Rat (Dipodomys agilis). J. Mammal. 64, 426–436. https://doi.org/10.2307/1380355 (1983).Article 

    Google Scholar 
    5.Terada, C., Tatsuzawa, S. & Saitoh, T. Ecological correlates and determinants in the geographical variation of deer morphology. Oecologia 169, 981–994 (2012).ADS 
    PubMed 
    Article 

    Google Scholar 
    6.Gigliotti, L. C., Diefenbach, D. R. & Sheriff, M. J. Geographic variation in winter adaptations of snowshoe hares (Lepus americanus). Can. J. Zool. 95, 539–545 (2017).Article 

    Google Scholar 
    7.Singaravelan, N. et al. Adaptation of pelage color and pigment variations in Israeli subterranean blind mole rats, Spalax ehrenbergi. PloS ONE 8, 119 (2013).Article 

    Google Scholar 
    8.Price, T., Ndiaye, O., Hammerschmidt, K. & Fischer, J. Limited geographic variation in the acoustic structure of and responses to adult male alarm barks of African green monkeys. Behav. Ecol. Sociobiol. 68, 815–825 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Lagos, L. & Bárcena, F. Spatial variability in wolf diet and prey selection in Galicia (NW Spain). Mammal Res. 63, 125–139. https://doi.org/10.1007/s13364-018-0352-6 (2018).Article 

    Google Scholar 
    10.Ashton, K. G., Tracy, M. C. & Queiroz, A. D. Is Bergmann’s rule valid for mammals?. Am. Nat. 156, 390–415 (2000).PubMed 
    Article 

    Google Scholar 
    11.Watt, C., Mitchell, S. & Salewski, V. Bergmann’s rule; a concept cluster?. Oikos 119, 89–100 (2010).Article 

    Google Scholar 
    12.Yom-Tov, Y. & Geffen, E. Recent spatial and temporal changes in body size of terrestrial vertebrates: probable causes and pitfalls. Biol. Rev. 86, 531–541 (2011).PubMed 
    Article 

    Google Scholar 
    13.Basuony, M., Mohamed, W. & Shalabi, M. Food and feeding ecology of the Egyptian Mongoose, Herpestes ichneumon (Linnaeus, 1758) in Egypt. J. Appl. Sci. Res. 9, 5811–5816 (2013).
    Google Scholar 
    14.McNab, B. K. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164, 13–23 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    15.Wang, M. et al. Ambient temperature correlates with geographic variation in body size of least horseshoe bats. Curr. Zool. 2, 19 (2020).
    Google Scholar 
    16.Taggart, D. A. et al. Environmental factors influencing hairy-nosed wombat abundance in semi-arid rangelands. J. Wildl. Manag. 84, 921–929 (2020).Article 

    Google Scholar 
    17.Brandimarti, M. E. et al. Reference intervals for parameters of health of eastern grey kangaroos Macropus giganteus and management implications across their geographic range. Wildl. Biol. 2020 (2020).18.Fancourt, B. A., Hawkins, C. E. & Nicol, S. C. Mechanisms of climate-change-induced species decline: spatial, temporal and long-term variation in the diet of an endangered marsupial carnivore, the eastern quoll. Wildl. Res. 45, 737–750 (2019).Article 

    Google Scholar 
    19.Phillips, B. L. & Shine, R. Adapting to an invasive species: toxic cane toads induce morphological change in Australian snakes. Proc. Natl. Acad. Sci. 101, 17150–17155 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Both, C. & Visser, M. E. The effect of climate change on the correlation between avian life-history traits. Global Change Biol. 11, 1606–1613 (2005).ADS 
    Article 

    Google Scholar 
    21.Borg, C., Majolo, B., Qarro, M. & Semple, S. A comparison of body size, coat condition and endoparasite diversity of wild Barbary macaques exposed to different levels of tourism. Anthrozoös 27, 49–63 (2014).Article 

    Google Scholar 
    22.Maceda-Veiga, A., Green, A. J. & De Sostoa, A. Scaled body-mass index shows how habitat quality influences the condition of four fish taxa in north-eastern Spain and provides a novel indicator of ecosystem health. Freshwat. Biol. 59, 1145–1160 (2014).Article 

    Google Scholar 
    23.Thatcher, H. R., Downs, C. T. & Koyama, N. F. Using parasitic load to measure the effect of anthropogenic disturbance on vervet monkeys. EcoHealth 15, 676–681 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Boyce, M. S. Population viability analysis. Annu. Rev. Ecol. Syst. 23, 481–497 (1992).Article 

    Google Scholar 
    25.Gaillard, J.-M., Festa-Bianchet, M., Yoccoz, N., Loison, A. & Toigo, C. Temporal variation in fitness components and population dynamics of large herbivores. Annu. Rev. Ecol. Syst. 31, 367–393 (2000).Article 

    Google Scholar 
    26.Reed, D. H., O’Grady, J. J., Brook, B. W., Ballou, J. D. & Frankham, R. Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biol. Conserv. 113, 23–34 (2003).Article 

    Google Scholar 
    27.Stevenson, R. & Woods, W. A. Jr. Condition indices for conservation: new uses for evolving tools. Integr. Comp. Biol. 46, 1169–1190 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Schulte-Hostedde, A. I., Zinner, B., Millar, J. S. & Hickling, G. J. Restitution of mass–size residuals: validating body condition indices. Ecology 86, 155–163 (2005).Article 

    Google Scholar 
    29.Weiss, D. J. & Wardrop, K. J. Schalm’s Veterinary Hematology (Wiley, 2011).
    Google Scholar 
    30.Hanks, J., Fowler, C. & Smith, T. Dynamics of large mammal populations. Dyn. Large Mamm. Popul. 2, 47–73 (1981).
    Google Scholar 
    31.Mapfumo, L., Muchenje, V., Mupangwa, J. F. & Scholtz, M. M. Changes in biochemical proxy indicators for nutritional stress resilience from Boran and Nguni cows reared in dry arid rangeland. Trop. Anim. Health Prod. 49, 1383–1392 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Miller, D. S. et al. Biomedical evaluation of free-ranging ring-tailed lemurs (Lemur catta) in three habitats at the Beza Mahafaly Special Reserve, Madagascar. J. Zoo Wildl. Med. 38, 201–216 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Pérez, J. M. et al. Distinguishing disease effects from environmental effects in a mountain ungulate: seasonal variation in body weight, hematology, and serum chemistry among Iberian ibex (Capra pyrenaica) affected by sarcoptic mange. J. Wildl. Dis. 51, 148–156 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Webster, K. N., Hill, N. J., Burnett, L. & Deane, E. M. Ectoparasite infestation patterns, haematology and serum biochemistry of urban-dwelling common brushtail possums. Wildl. Biol. 20, 206–216 (2014).Article 

    Google Scholar 
    35.Perrault, J. R. & Stacy, N. I. Note on the unique physiologic state of loggerhead sea turtles (Caretta caretta) during nesting season as evidenced by a suite of health variables. Mar. Biol. 165, 71 (2018).Article 

    Google Scholar 
    36.O’Brien, J., Schmitt, T., Nollens, H., Dubach, J. & Robeck, T. Reproductive physiology of the female Magellanic penguin (Spheniscus magellanicus): insights from the study of a zoological colony. Gen. Comp. Endocrinol. 225, 81–94 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Robert, K. A. & Schwanz, L. E. Monitoring the health status of free-ranging tammar wallabies using hematology, serum biochemistry, and parasite loads. J. Wildl. Manag. 77, 1232–1243 (2013).Article 

    Google Scholar 
    38.Portas, T. J. et al. Beyond morbidity and mortality in reintroduction programmes: changing health parameters in reintroduced eastern bettongs Bettongia gaimardi. Oryx 50, 674–683 (2016).Article 

    Google Scholar 
    39.Lücker, A., Secomb, T. W., Weber, B. & Jenny, P. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue. Microcirculation 24, e12337. https://doi.org/10.1111/micc.12337 (2017).CAS 
    Article 

    Google Scholar 
    40.Shield, J. A seasonal change in blood cell volume of the Rottnest Island quokka, Setonix brachyurus. J. Zool. 165, 343–354 (1971).Article 

    Google Scholar 
    41.Sealander, J. A. Seasonal changes in blood values of deer mice and other small mammals. Ecology 12, 107–119 (1962).Article 

    Google Scholar 
    42.Trumble, S. J., Castellini, M. A., Mau, T. L. & Castellini, J. M. Dietary and seasonal influences on blood chemistry and hematology in captive harbor seals. Mar. Mamm. Sci. 22, 104–123 (2006).Article 

    Google Scholar 
    43.Boonstra, R., McColl, C. J. & Karels, T. J. Reproduction at all costs: The adaptive stress response of male Arctic ground squirrels. Ecology 82, 1930–1946. (2001).Article 

    Google Scholar 
    44.Stockham, S. L. & Scott, M. A. Fundamentals of Veterinary Clinical Pathology (Wiley, 2013).
    Google Scholar 
    45.Thrall, M. A., Weiser, G., Allison, R. W. & Campbell, T. W. Veterinary Hematology and Clinical Chemistry (Wiley, 2012).
    Google Scholar 
    46.Gruys, E., Toussaint, M., Niewold, T. & Koopmans, S. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B 6, 1045 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Serrano, E. et al. The use of total serum proteins and triglycerides for monitoring body condition in the Iberian wild goat (Capra pyrenaica). J. Zoo Wildl. Med. 39, 646–649 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Stevens, L. A. & Levey, A. S. Measurement of kidney function. . Med. Clin. 89, 457–473 (2005).
    Google Scholar 
    49.Vanholder, R., Glorieux, G., De Smet, R. & Lameire, N. New insights in uremic toxins. Kidney Int. 63, S6–S10 (2003).Article 

    Google Scholar 
    50.Caldeira, R., Belo, A., Santos, C., Vazques, M. & Portugal, A. The effect of body condition score on blood metabolites and hormonal profiles in ewes. Small Rumin. Res. 68, 233–241 (2007).Article 

    Google Scholar 
    51.Schutte, J. E., Longhurst, J. C., Gaffney, F. A., Bastian, B. C. & Blomqvist, C. G. Total plasma creatinine: an accurate measure of total striated muscle mass. J. Appl. Physiol. 51, 762–766 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Kaneko, J. J., Harvey, J. W. & Bruss, M. L. Clinical Biochemistry of Domestic Animals. (Academic Press, 2008).53.Stirrat, S. C. Body condition and blood chemistry of agile wallabies (Macropus agilis) in the wet–dry tropics. Wildl. Res. 30, 59–67 (2003).CAS 
    Article 

    Google Scholar 
    54.Lassen, E. Perspectives in data interpretation. Vet. Hematol. Clini. Chem. 5, 45–49 (2004).
    Google Scholar 
    55.Maceda-Veiga, A. et al. Inside the Redbox: applications of haematology in wildlife monitoring and ecosystem health assessment. Sci. Total Environ. 514, 322–332 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Brandimarti, M. E., Gray, R., Silva, F. R. & Herbert, C. A. Kangaroos at maximum capacity: health assessment of free-ranging eastern grey kangaroos on a coastal headland. J. Mamm. 2, 96 (2021).
    Google Scholar 
    57.Clark, P. Haematology of Australian Mammals. (CSIRO Publishing, 2004).58.Solberg, H. A guide to IFCC recommendations on reference values. J. Int. Fed. Clin. Chem. 5, 162–165 (1993).CAS 
    PubMed 

    Google Scholar 
    59.Gongora, J. et al. Genetic structure and phylogeography of platypuses revealed by mitochondrial DNA. J. Zool. 286, 110–119 (2012).Article 

    Google Scholar 
    60.Grant, T. & Fanning, D. The Platypus: A Unique Mammal. (University of New South Wales Press, 1995).61.Furlan, E. et al. Is body size variation in the platypus (Ornithorhynchus anatinus) associated with environmental variables?. Aust. J. Zool. 59, 201–215 (2012).Article 

    Google Scholar 
    62.Allen, A. Allens rule. The influence of Physical conditions in the genesis of species. Rad. Rev. 1, 108–140 (1877).
    Google Scholar 
    63.Bergmann, C. Uber die Verhaltnisse der warmeokonomie der Thiere zu uber Grosso. Gottinger Studien 3, 595–708 (1847).
    Google Scholar 
    64.Grant, T., Griffiths, M. & Temple-Smith, P. in Proc. Linn. Soc. N.S.W. 227 (Linnean Society of New South Wales).65.Munks, S., Otley, H., Bethge, P. & Jackson, J. Reproduction, diet and daily energy expenditure of the platypus in a sub-alpine Tasmanian lake. Aust. Mamm. 21, 260–261 (2000).
    Google Scholar 
    66.Temple-Smith, P. & Grant, T. Uncertain breeding: a short history of reproduction in monotremes. Reprod. Fertil. Dev. 13, 487–497 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Chessman, B. C. & Williams, S. A. Biodiversity and conservation of river macroinvertebrates on an expanding urban fringe: western Sydney, New South Wales, Australia. Pac. Conserv. Biol. 5, 36–55 (1999).Article 

    Google Scholar 
    68.Magierowski, R. H., Davies, P. E., Read, S. M. & Horrigan, N. Impacts of land use on the structure of river macroinvertebrate communities across Tasmania, Australia: spatial scales and thresholds. Mar. Freshw. Res. 63, 762–776 (2012).Article 

    Google Scholar 
    69.Verkaik, I., Prat, N., Rieradevall, M., Reich, P. & Lake, P. S. Effects of bushfire on macroinvertebrate communities in south-east Australian streams affected by a megadrought. Mar. Freshw. Res. 65, 359–369 (2014).Article 

    Google Scholar 
    70.Stitz, L., Fabbro, L. & Kinnear, S. Response of macroinvertebrate communities to seasonal hydrologic changes in three sub-tropical Australian streams. Environ. Monit. Assess. 189, 254 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    71.McLachlan-Troup, T., Dickman, C. & Grant, T. Diet and dietary selectivity of the platypus in relation to season, sex and macroinvertebrate assemblages. J. Zool. 280, 237–246 (2010).Article 

    Google Scholar 
    72.Bino, G. et al. The platypus: evolutionary history, biology, and an uncertain future. J. Mamm. 100, 308–327 (2019).Article 

    Google Scholar 
    73.Grant, T. & Temple-Smith, P. Conservation of the platypus, Ornithorhynchus anatinus: threats and challenges. Aquat. Ecosyst. Health Manag. 6, 5–18 (2003).Article 

    Google Scholar 
    74.Gust, N. et al. Distribution, prevalence and persistence of mucormycosis in Tasmanian platypuses (Ornithorhynchus anatinus). Aust. J. Zool. 57, 245–254 (2009).Article 

    Google Scholar 
    75.Klamt, M., Thompson, R. & Davis, J. Early response of the platypus to climate warming. Global Change Biol. 17, 3011–3018 (2011).ADS 
    Article 

    Google Scholar 
    76.Richmond, E. K. et al. A diverse suite of pharmaceuticals contaminates stream and riparian food webs. Nat. Commun. 9, 4491 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Scheelings, T. Morbidity and mortality of monotremes admitted to the Australian Wildlife Health Centre, Healesville Sanctuary, Australia, 2000–2014. Aust. Vet. J. 94, 121–124 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Hawke, T., Bino, G. & Kingsford, R. T. A silent demise: historical insights into population changes of the iconic platypus (Ornithorhynchus anatinus). Global Ecol. Conserv. 20, 720 (2019).
    Google Scholar 
    79.Connolly, J., Obendorf, D. & Whittington, R. Haematological, serum biochemical and serological features of platypuses with and without mycotic granulomatous dermatitis. Aust. Vet. J. 77, 809–813 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Geraghty, D. P., Griffiths, J., Stewart, N., Robertson, I. K. & Gust, N. Hematologic, plasma biochemical, and other indicators of the health of Tasmanian platypuses (Ornithorhynchus anatinus): predictors of mucormycosis. J. Wildl. Dis. 47, 483–493 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Macgregor, J. W. et al. A need for dynamic hematology and serum biochemistry reference tools: Novel use of sine wave functions to produce seasonally varying reference curves in platypuses (Ornithorhynchus anatinus). J. Wildl. Dis. 53, 235–247. https://doi.org/10.7589/2015-12-336 (2017).Article 
    PubMed 

    Google Scholar 
    82.Booth, R. & Connolly, J. in Medicine in Australian Mammals 103–132 (CSIRO Publishing, 2008).83.Whittington, R. & Grant, T. Haematology and blood chemistry of the free-living platypus, Ornithorhynchus anatinus (Shaw) (Monotremata: Ornithorhynchidae). Aust. J. Zool. 31, 475–482 (1983).CAS 
    Article 

    Google Scholar 
    84.Whittington, R. & Grant, T. Haematology and Blood Chemistry of the Conscious Platypus, Ornithorhynchus anatinus (Shaw) (Monotremata: Ornithorhynchidae). Aust. J. Zool. 32, 631–635. https://doi.org/10.1071/ZO9840631 (1984).CAS 
    Article 

    Google Scholar 
    85.Grant, T. & Carrick, F. Some aspects of the ecology of the platypus, Ornithorhynchus anatinus, in the upper Shoalhaven River. New South Wales. Australian Zool. 20, 181–199 (1978).
    Google Scholar 
    86.Bino, G., Kingsford, R. T., Grant, T., Taylor, M. D. & Vogelnest, L. Use of implanted acoustic tags to assess platypus movement behaviour across spatial and temporal scales. Sci. Rep. 8, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    87.Hawke, T., Bino, G. & Kingsford, R. T. Damming insights: impacts and implications of river regulation on platypus populations. Aquatic Conservation in press (2020).88.Gallant, J. & Read, A. A near-global bare-Earth DEM from SRTM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 41, B4 (2016).
    Google Scholar 
    89.Temple-Smith, P. D. M. Seasonal breeding biology of the platypus, Ornithorhynchus anatinus (Shaw, 1799), with special reference to the male. (1973).90.Williams, G., Serena, M. & Grant, T. Age-related change in spurs and spur sheaths of the platypus (Ornithorhynchus anatinus). Australian Mammalogy 35, 107–114 (2013).Article 

    Google Scholar 
    91.Grueber, C., Nakagawa, S., Laws, R. & Jamieson, I. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Burnham, K. P. & Anderson, D. R. Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).MathSciNet 
    Article 

    Google Scholar 
    93.R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing., (R Foundation for Statistical Computing., 2020).94.Wickham, H. ggplot2-Elegant Graphics for Data Analysis (Springer International Publishing, 2016).MATH 

    Google Scholar 
    95.Wood, S. Mixed GAM computation vehicle with GCV/AIC/REML smoothness estimation and GAMMs by REML/PQL. R Package Version, 1.8–23 (2018).96.Wood, S. & Wood, M. S. Package ‘mgcv’. R Package Ver. 1, 29 (2015).
    Google Scholar 
    97.Breheny, P. & Burchett, W. Visualization of regression models using visreg. R J. 9, 56 (2017).Article 

    Google Scholar 
    98.Geffré, A., Concordet, D., Braun, J. P. & Trumel, C. Reference Value Advisor: a new freeware set of macroinstructions to calculate reference intervals with Microsoft Excel. Vet. Clin. Pathol. 40, 107–112 (2011).PubMed 
    Article 

    Google Scholar 
    99.Friedrichs, K. R. et al. ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other related topics. Vet. Clin. Pathol. 41, 441–453 (2012).PubMed 
    Article 

    Google Scholar 
    100.Calver, M. C., Goldman, B., Hutchings, P. A. & Kingsford, R. T. Why discrepancies in searching the conservation biology literature matter. Biol. Conserv. 213, 19–26 (2017).Article 

    Google Scholar 
    101.Pfeffermann, D. The role of sampling weights when modeling survey data. International Statistical Review/Revue Internationale de Statistique, 317–337 (1993).102.Deem, S. L., Karesh, W. B. & Weisman, W. Putting theory into practice: wildlife health in conservation. Conserv. Biol. 15, 1224–1233 (2001).Article 

    Google Scholar 
    103.Isaksson, C. Urbanization, oxidative stress and inflammation: a question of evolving, acclimatizing or coping with urban environmental stress. Funct. Ecol. 29, 913–923 (2015).Article 

    Google Scholar 
    104.Karesh, W. B. & Cook, R. A. Applications of veterinary medicine to in situ conservation efforts. Oryx 29, 244–252 (1995).Article 

    Google Scholar 
    105.Cahill, A. E. et al. Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. J. Biogeogr. 41, 429–442 (2014).Article 

    Google Scholar 
    106.Elmore, R. D. et al. Implications of the thermal environment for terrestrial wildlife management. Wildl. Soc. Bull. 41, 183–193 (2017).Article 

    Google Scholar 
    107.Todgham, A. E. & Stillman, J. H. Physiological responses to shifts in multiple environmental stressors: relevance in a changing world. Integr. Comput. Biol. 53, 539–544 (2013).Article 

    Google Scholar 
    108.Brice, P. H. Thermoregulation in monotremes: riddles in a mosaic. Aust. J. Zool. 57, 255–263 (2009).Article 

    Google Scholar 
    109.Grant, T. Body temperatures of free-ranging platypuses, Ornithorhynchus anatinus (Monotremata), with observations on their use of burrows. Aust. J. Zool. 31, 117–122 (1983).Article 

    Google Scholar 
    110.Grant, T. & Dawson, T. Temperature regulation in the platypus, Ornithorhynchus anatinus: maintenance of body temperature in air and water. Physiol. Zool. 51, 1–6 (1978).Article 

    Google Scholar 
    111.Grant, T. & Dawson, T. J. Temperature regulation in the platypus, Ornithorhynchus anatinus: production and loss of metabolic heat in air and water. Physiol. Zool. 51, 315–332 (1978).Article 

    Google Scholar 
    112.Connolly, J. H., Claridge, T., Cordell, S. M., Nielsen, S. & Dutton, G. J. Distribution and characteristics of the platypus (Ornithorhynchus anatinus) in the Murrumbidgee catchment. Aust. Mamm. 38, 58–67 (2016).Article 

    Google Scholar 
    113.Grant, T. Historical and current distribution of the platypus, Ornithorhynchus anatinus. Australia. In Platypus and echidnas (ed. ML Augee), 232–254 (1992).114.Grant, T., Gehrke, P., Harris, J. & Hartley, S. Distribution of the platypus (Ornithorhynchus anatinus) in NSW: results of the 1994–96 NSW Rivers Survey. Aust. Mamm. 21, 177–184 (2000).Article 

    Google Scholar 
    115.Nazifi, S., Gheisari, H. & Poorabbas, H. The influences of thermal stress on serum biochemical parameters of dromedary camels and their correlation with thyroid activity. Comp. Haematol. Int. 9, 49–54 (1999).Article 

    Google Scholar 
    116.Singh, K. M. et al. Evaluation of Indian sheep breeds of arid zone under heat stress condition. Small Rumin. Res. 141, 113–117 (2016).Article 

    Google Scholar 
    117.Zhang, Y. & Kieffer, J. D. Critical thermal maximum (CTmax) and hematology of shortnose sturgeons (Acipenser brevirostrum) acclimated to three temperatures. Can. J. Zool. 92, 215–221 (2014).CAS 
    Article 

    Google Scholar 
    118.Burgmer, T., Hillebrand, H. & Pfenninger, M. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151, 93–103 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    119.Carr, M., Li, L., Sadeghian, A., Phillips, I. D. & Lindenschmidt, K. E. Modelling the possible impacts of climate change on the thermal regime and macroinvertebrate species of a regulated prairie river. Ecohydrology 12, e2102 (2019).Article 

    Google Scholar 
    120.Daufresne, M., Bady, P. & Fruget, J.-F. Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhône River. Oecologia 151, 544–559 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    121.Durance, I. & Ormerod, S. J. Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biol. 13, 942–957 (2007).ADS 
    Article 

    Google Scholar 
    122.Walsh, C. J. Biological indicators of stream health using macroinvertebrate assemblage composition: a comparison of sensitivity to an urban gradient. Mar. Freshw. Res. 57, 37–47 (2006).Article 

    Google Scholar 
    123.Marchant, R. & Grant, T. The productivity of the macroinvertebrate prey of the platypus in the upper Shoalhaven River, New South Wales. Mar. Freshw. Res. 66, 1128–1137 (2015).Article 

    Google Scholar 
    124.Bino, G., Kingsford, R. T. & Wintle, B. A. A stitch in time–Synergistic impacts to platypus metapopulation extinction risk. Biol. Conserv. 242, 108399 (2020).125.Ambrosio, A. M. et al. Significant hematocrit decrease in healthy horses during clinical anesthesia. Braz. j. vet. Res. Anim. Sci. 49, 139–145 (2012).Article 

    Google Scholar 
    126.Dhumeaux, M. P. et al. Effects of a standardized anesthetic protocol on hematologic variables in healthy cats. J. Feline Med. Surg. 14, 701–705 (2012).PubMed 
    Article 

    Google Scholar 
    127.Marini, R. et al. Effect of isoflurane on hematologic variables in ferrets. Am. J. Vet. Res. 55, 1479–1483 (1994).CAS 
    PubMed 

    Google Scholar 
    128.Bejaei, M. & Cheng, K. Effects of pretransport handling stress on physiological and behavioral response of ostriches. Poult. Sci. 93, 1137–1148 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    129.Delgiudice, G. D., Kunkel, K. E., Mech, L. D. & Seal, U. S. Minimizing capture-related stress on white-tailed deer with a capture collar. J. Wildl. Manag. 11, 299–303 (1990).Article 

    Google Scholar 
    130.Harvey, J. W. Veterinary Hematology-E-Book: A Diagnostic Guide and Color Atlas. (Elsevier Health Sciences, 2011).131.Raskin, R. E. Hematologic disorders 6. Clinical medicine of the dog and cat, Schaer M, editor. Manson Publishing, London, UK, 227–288 (2009).132.Mayer, J. & Donnelly, T. M. Clinical Veterinary Advisor-E-Book: Birds and Exotic Pets. (Elsevier Health Sciences, 2012).133.Bino, G., Grant, T. R. & Kingsford, R. T. Life history and dynamics of a platypus (Ornithorhynchus anatinus) population: four decades of mark-recapture surveys. Sci. Rep. 5, 16073 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    134.Gust, N. & Handasyde, K. Seasonal-variation in the ranging behavior of the platypus (Ornithorhynchus-anatinus) on the Goulburn River, Victoria. Aust. J. Zool. 43, 193–208 (1995).Article 

    Google Scholar 
    135.Handasyde, K., McDonald, I. & Evans, B. Plasma glucocorticoid concentrations in free-ranging platypuses (Ornithorhynchus anatinus): response to capture and patterns in relation to reproduction. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 136, 895–902 (2003).CAS 
    Article 

    Google Scholar 
    136.Wang, J.-C., Gray, N. E., Kuo, T. & Harris, C. A. Regulation of triglyceride metabolism by glucocorticoid receptor. Cell Biosci. 2, 19–19. https://doi.org/10.1186/2045-3701-2-19 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    137.Griffiths, M. Reproduction and embryology. Biol. Monotremes, 209–254 (1978).138.Hawkins, M. & Battaglia, A. Breeding behaviour of the platypus (Ornithorhynchus anatinus) in captivity. Aust. J. Zool. 57, 283–293 (2009).Article 

    Google Scholar 
    139.Thomas, J., Handasyde, K., Parrott, M. & Temple-Smith, P. The platypus nest: burrow structure and nesting behaviour in captivity. Aust. J. Zool. 65, 347–356 (2018).Article 

    Google Scholar 
    140.Holland, N. & Jackson, S. M. Reproductive behaviour and food consumption associated with the captive breeding of platypus (Ornithorhynchus anatinus). J. Zool. 256, 279–288 (2002).Article 

    Google Scholar 
    141.Thomas, J. L., Handasyde, K. A., Temple-Smith, P. & Parrott, M. L. Seasonal changes in food selection and nutrition of captive platypuses (Ornithorhynchus anatinus). Aust. J. Zool. 65, 319–327. https://doi.org/10.1071/ZO18004 (2017).Article 

    Google Scholar 
    142.Kruger, B., Hunter, S. & Serena, M. Husbandry, diet and behaviour of platypus Ornithorhynchus anatinus at Healesville Sanctuary. International Zoo Yearbook 31, 64–71 (1992).Article 

    Google Scholar 
    143.El-Sherif, M. & Assad, F. Changes in some blood constituents of Barki ewes during pregnancy and lactation under semi arid conditions. Small Rumin. Res. 40, 269–277 (2001).PubMed 
    Article 

    Google Scholar 
    144.Hõrak, P., Jenni-Eiermann, S., Ots, I. & Tegelmann, L. Health and reproduction: the sex-specific clinical profile of great tits (Parus major) in relation to breeding. Can. J. Zool. 76, 2235–2244 (1998).Article 

    Google Scholar 
    145.dos Santos Schmidt, E. M. et al. Serum biochemical parameters of female bronze turkeys (Meleagris gallopavo) during egg-laying season. Int J Poult Sci 9, 177–179 (2010).146.Lumeij, J. in Clinical biochemistry of domestic animals 857–883 (Elsevier, 1997).147.Whittington, C. M. & Belov, K. Tracing monotreme venom evolution in the genomics era. Toxins 6, 1260–1273 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    148.Grant, T. & Temple–Smith, P. Field biology of the platypus (Ornithorhynchus anatinus): historical and current perspectives. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 353, 1081–1091 (1998).149.Handasyde, K. & McDonald, I. Reproductive hormones and reproduction in the platypus. Progress Comp. Endocrinol., 184–185 (1993).150.Wikelski, M., Lynn, S., Breuner, J., Wingfield, J. & Kenagy, G. Energy metabolism, testosterone and corticosterone in white-crowned sparrows. J. Comp. Physiol. A. 185, 463–470 (1999).CAS 
    Article 

    Google Scholar 
    151.Thomas, J. L., Parrott, M. L., Handasyde, K. A. & Temple-Smith, P. Female control of reproductive behaviour in the platypus (Ornithorhynchus anatinus), with notes on female competition for mating. Behaviour 155, 27–53 (2018).Article 

    Google Scholar 
    152.Hawke, T. et al. Long term movements and activity patterns of platypus on regulated rivers. Scientific Reports in press (2020).153.Andersen, N. A., Mesch, U., Lovell, D. J. & Nicol, S. C. The effects of sex, season, and hibernation on haematology and blood viscosity of free-ranging echidnas (Tachyglossus aculeatus). Can. J. Zool. 78, 174–181 (2000).Article 

    Google Scholar 
    154.Barnett, J., How, R. & Humphreys, W. Blood parameters in natural populations of Trichosurus species (Marsupialia: Phalangeridae). I. Age, sex and seasonal variation in T. caninus and T. vulpecula. II. Influence of habitat and population strategies of T. caninus and T. vulpecula. Aust. J. Zool. 27, 913–926 (1979).155.Fancourt, B. A. & Nicol, S. C. Hematologic and serum biochemical reference intervals for wild eastern quolls (Dasyurus viverrinus): variation by age, sex, and season. Vet. Clin. Pathol. 48, 114–124 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    156.McKenzie, S., Deane, E. & Burnett, L. Haematology and serum biochemistry of the tammar wallaby, Macropus eugenii. Comp. Clin. Pathol. 11, 229–237 (2002).CAS 
    Article 

    Google Scholar 
    157.Schultz, D. J. et al. Investigations into the health of brush-tailed rock-wallabies (Petrogale penicillata) before and after reintroduction. Aust. Mamm. 33, 235–244 (2011).Article 

    Google Scholar 
    158.Warren, K. S., Holyoake, C. S., Friend, T. J., Yeap, L. & McConnell, M. Hematologic and serum biochemical reference intervals for the bilby (Macrotis lagotis). J. Wildl. Dis. 51, 889–895 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    159.Woolford, L. et al. Serum biochemistry of free-ranging southern hairy-nosed wombats (Lasiorhinus latifrons). J. Zool. Wildl. Med. 50, 937–946 (2020).Article 

    Google Scholar 
    160.Sidman, C. L. et al. Increased expression of major histocompatibility complex antigens on lymphocytes from aged mice. Proc. Natl. Acad. Sci. 84, 7624–7628 (1987).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    161.Gust, N. & Griffiths, J. Platypus mucormycosis and its conservation implications. Australasian Mycol. 28, 1–8 (2009).
    Google Scholar 
    162.MacGregor, J. W. et al. Assessing body condition in the platypus (Ornithorhynchus anatinus): A comparison of new and old methods. Aust. J. Zool. 64, 421–429. https://doi.org/10.1071/ZO16071 (2016).Article 

    Google Scholar 
    163.Peig, J. & Green, A. J. The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct. Ecol. 24, 1323–1332 (2010).Article 

    Google Scholar 
    164.Woinarski, J. C., Burbidge, A. A. & Harrison, P. L. The action plan for Australian mammals 2012. (2014).165.Parer, J. & Metcalfe, J. Respiratory studies of monotremes. I. Blood of the platypus (Ornithorynchus anatinus). Respir. Physiol. 3, 136–142 (1967).CAS 
    PubMed 
    Article 

    Google Scholar 
    166.Isaacks, R., Nicol, S., Sallis, J., Zeidler, R. & Kim, H. D. Erythrocyte phosphates and hemoglobin function in monotremes and some marsupials. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246, R236–R241 (1984).CAS 
    Article 

    Google Scholar  More

  • in

    Climate amenities

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Will yield gains be lost to disease?

    1.Feynman, J. & Ruzmaikin, R. in Climate Change and Agriculture (Ed. Hussain, S.) (IntechOpen, 2018); https://doi.org/10.5772/intechopen.833442.Ferrio, J. P., Voltas, J. & Araus, J. L. in Crop Stress Management and Global Climate Change (eds Araus, J. L. & Slafer, G. A.) 1–14 (CABI Publishing, 2011).3.Chaloner, T. M., Gurr, S. J. & Bebber, P. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01104-8 (2021).Article 

    Google Scholar 
    4.Saunders, D. G. O., Pretorius, Z. A. & Hovmoller, M. S. Commun. Biol. 2, 51 (2019).Article 

    Google Scholar 
    5.Fisher, M. C. et al. mBio 11, e00449-20 (2020).
    Google Scholar 
    6.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Nat. Clim. Change 3, 985–988 (2013).Article 

    Google Scholar 
    7.Turner, R. S. Hist. Stud. Phys. Biol. 35, 341–370 (2005).Article 

    Google Scholar 
    8.Sen, A. in Poverty and Famines: An Essay on Entitlement and Deprivation (Clarendon Press, 1981).9.Gottwald, T., Luo, W., Posny, D., Riley, T. & Louws, F. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180260 (2019).Article 

    Google Scholar 
    10.Fisher, M. C. et al. Nature 484, 186–194 (2012).CAS 
    Article 

    Google Scholar 
    11.Islam, M. T. et al. BMC Biol. 14, 84 (2016).Article 

    Google Scholar 
    12.Gregory, P. J., Johnson, S. N., Newton, A. C. & Ingram, J. S. I. J. Exp. Bot. 60, 2827–2838 (2009).CAS 
    Article 

    Google Scholar 
    13.Lehmann, P. et al. Front. Ecol. Environ. 18, 141–150 (2020).Article 

    Google Scholar 
    14.Plumpton, H. & Wentworth, J. Climate Change and Agriculture (The Parliamentary Office of Science and Technology, 2019).15.Orton, E. S., Lewis, C. M., Davey, P. E., Radhakrishnan, G. V. & Saunders, D. G. O. New Dis. Rep. 40, 11 (2019).Article 

    Google Scholar  More

  • in

    Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils

    1.Spiertz, J. H. J. Nitrogen, sustainable agriculture and food security: a review. Agron. Sustain. Dev. 30, 43–55. https://doi.org/10.1051/agro:2008064 (2010).CAS 
    Article 

    Google Scholar 
    2.Kowalchuk, G. A. & Stephen, J. R. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529. https://doi.org/10.1146/annurev.micro.55.1.485 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Gelfand, I. & Yakir, D. Influence of nitrite accumulation in association with seasonal patterns and mineralization of soil nitrogen in a semi-arid pine forest. Soil Biol. Biochem. 40, 415–424. https://doi.org/10.1016/j.soilbio.2007.09.005 (2008).CAS 
    Article 

    Google Scholar 
    5.Subbarao, G. V. et al. Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Crit. Rev. Plant Sci. 25, 303–335. https://doi.org/10.1080/07352680600794232 (2006).CAS 
    Article 

    Google Scholar 
    6.Shen, T., Stieglmeier, M., Dai, J., Urich, T. & Schleper, C. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol. Lett. 344, 121–129, https://doi.org/10.1111/1574-6968.12164 (2013).7.Prosser, J. I., Head, I. M. & Stein, L. Y. in The Prokaryotes – Alphaproteobacteria and Betaproteobacteria (ed DeLong Rosenberg E., E.F., Lory, S., Stackebrandt, E., Thompson, F.) 901–918 (Springer-Verlag, 2014).8.Hayatsu, M. et al. An acid-tolerant ammonia-oxidizing gamma-proteobacterium from soil. ISME J. 11, 1130–1141. https://doi.org/10.1038/ismej.2016.191 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Alves, R.J.E., Minh, B.Q, Urich, T., von Haeseler, A. & Schleper, C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat. Commun. 9, https://doi.org/10.1038/s41467-018-03861-1 (2018).10.Wang, H. Et al. Distinct distribution of archaea from soil to freshwater to estuary: implications of archaeal composition and function in different environments. Front. Microbiol. 11. https://doi.org/10.3389/fmicb.2020.576661 (2020).11.Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531. https://doi.org/10.1016/j.tim.2012.08.001 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Pester, M. et al. amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ. Microbiol. 14, 525–539. https://doi.org/10.1111/j.1462-2920.2011.02666.x (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Spang, A. et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ. Microbiol. 14, 3122–3145. https://doi.org/10.1111/j.1462-2920.2012.02893.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509. https://doi.org/10.1038/nature16461 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.van Kessel, M. A. et al. Complete nitrification by a single microorganism. Nature 528, 555–559. https://doi.org/10.1038/nature16459 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Junier, P. et al. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl. Microbiol. Biotechnol. 85, 425–440. https://doi.org/10.1007/s00253-009-2228-9 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809. https://doi.org/10.1038/nature04983 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Zhalnina, K. et al. Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front. Microbiol. 4, 104, https://doi.org/10.3389/fmicb.2013.00104 (2013).19.Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508. https://doi.org/10.3389/fmicb.2017.01508 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Palomo, A., Dechesne, A. & Smets, B. F. Genomic profiling of Nitrospira species reveals ecological success of comammox Nitrospira. bioRxiv, 612226, https://doi.org/10.1101/612226 (2019).21.Poghosyan, L. et al. Metagenomic recovery of two distinct comammox Nitrospira from the terrestrial subsurface. Environ. Microbiol. 21, 3627–3637. https://doi.org/10.1111/1462-2920.14691 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Palomo, A. et al. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J. 12, 1779–1793. https://doi.org/10.1038/s41396-018-0083-3 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Strous, M. et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440, 790–794. https://doi.org/10.1038/nature04647 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    24.De Boer, W. & Kowalchuk, G. A. Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol. Biochem. 33, 853–866. https://doi.org/10.1016/s0038-0717(00)00247-9 (2001).Article 

    Google Scholar 
    25.Tourna, M. et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl. Acad. Sci. USA. 108, 8420–8425. https://doi.org/10.1073/pnas.1013488108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Arp, D. J., Chain, P. S. G. & Klotz, M. G. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu. Rev. Microbiol. 61, 503–528 (2007).CAS 
    Article 

    Google Scholar 
    27.Simon, J. & Klotz, M. G. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochim. Biophys. Acta 114–135, 2013. https://doi.org/10.1016/j.bbabio.2012.07.005 (1827).CAS 
    Article 

    Google Scholar 
    28.Walker, C. B. et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl. Acad. Sci. USA 107, 8818–8823. https://doi.org/10.1073/pnas.0913533107 (2010).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Li, C. Y., Hu, H. W., Chen, Q. L., Chen, D. L. & He, J. Z. Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil Biol. Biochem. 138, https://doi.org/10.1016/j.soilbio.2019.107609 (2019).30.Li, C. Y., Hu, H. W., Chen, Q. L., Chen, D. L. & He, J. Z. Niche differentiation of clade A comammox Nitrospira and canonical ammonia oxidizers in selected forest soils. Soil Biol. Biochem. 149, https://doi.org/10.1016/j.soilbio.2020.107925 (2020).31.Daims, H., Lucker, S. & Wagner, M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 24, 699–712. https://doi.org/10.1016/j.tim.2016.05.004 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Castelle, C. J. et al. Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment. Nat. Commun. 4, 2120. https://doi.org/10.1038/ncomms3120 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    33.Sorokin, D. Y. et al. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J. 6, 2245–2256. https://doi.org/10.1038/ismej.2012.70 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Lucker, S. et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc. Natl. Acad. Sci. USA. 107, 13479–13484. https://doi.org/10.1073/pnas.1003860107 (2010).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Mendum, T. A., Sockett, R. E. & Hirsch, P. R. Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia-oxidizing populations of the beta subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer. Appl. Environ. Microbiol. 65, 4155–4162 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Hirsch, P. R. et al. Soil resilience and recovery: rapid community responses to management changes. Plant Soil 412, 283–297. https://doi.org/10.1007/s11104-016-3068-x (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Hirsch, P. R., Mauchline, T. H. & Clark, I. M. Culture-independent molecular techniques for soil microbial ecology. Soil Biol. Biochem. 42, 878–887. https://doi.org/10.1016/j.soilbio.2010.02.019 (2010).CAS 
    Article 

    Google Scholar 
    38.Vetrovsky, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 8, e57923. https://doi.org/10.1371/journal.pone.0057923 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Fu, Q.L., Clark, I.M., Zhu, J., Hu, H.Q. & Hirsch, P.R The short-term effects of nitrification inhibitors on the abundance and expression of ammonia. and nitrite oxidizers in a long-term field experiment comparing land management. Biol Fertil Soils. 54, 163–172. https://doi.org/10.1007/s00374-017-1249-2 (2018).40.Bollmann, A., Schmidt, I., Saunders, A. M. & Nicolaisen, M. H. Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of Nitrosospira briensis. Appl. Environ. Microbiol. 71, 1276–1282. https://doi.org/10.1128/aem.71.3.1276-1282.2005 (2005).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Li, C. Y., Hu, H. W., Chen, Q. L., Chen, D. L. & He, J. Z. Growth of comammox Nitrospira is inhibited by nitrification inhibitors in agricultural soils. J. Soils Sediments 20, 621–628. https://doi.org/10.1007/s11368-019-02442-z (2020).CAS 
    Article 

    Google Scholar 
    42.Koch, H., van Kessel, M. A. H. J. & Lücker, S. Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl. Microbiol. Biotechnol. 103, 177–189. https://doi.org/10.1007/s00253-018-9486-3 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Placella, S. A. & Firestone, M. K. Transcriptional response of nitrifying communities to wetting of dry soil. Appl. Environ. Microbiol. 79, 3294–3302. https://doi.org/10.1128/AEM.00404-13 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Hirsch, P. R. et al. Starving the soil of plant inputs for 50 years reduces abundance but not diversity of soil bacterial communities. Soil Biol. Biochem. 41, 2021–2024. https://doi.org/10.1016/j.soilbio.2009.07.011 (2009).CAS 
    Article 

    Google Scholar 
    45.Clark, I. M., Buchkina, N., Jhurreea, D., Goulding, K. W. & Hirsch, P. R. Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the Broadbalk Wheat Experiment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1235–1244, https://doi.org/10.1098/rstb.2011.0314 (2012).46.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Meth. 12, 59–60 (2015).CAS 
    Article 

    Google Scholar 
    47.Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386. https://doi.org/10.1101/gr.5969107 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More