More stories

  • in

    Double jeopardy for fish diversity

    1.Garilli, V. et al. Nat. Clim. Change 5, 678–682 (2015).CAS 
    Article 

    Google Scholar 
    2.Verberk, W. C. E. P. et al. Biol. Rev. 96, 247–268 (2020).Article 

    Google Scholar 
    3.Rhein, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 255–297 (Cambridge Univ. Press, 2013).4.Gardner, J. L. et al. Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    5.Avaria-Llautureo, J. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01123-5 (2021).6.Burns, M. D. & Bloom, D. D. Proc. Biol. Sci. 287, 20192615 (2020).
    Google Scholar 
    7.Cheung, W. W. L. et al. Nat. Clim. Change 3, 254–258 (2013).Article 

    Google Scholar 
    8.Bernardi, G. Mol. Ecol. 22, 5487–5502 (2013).Article 

    Google Scholar 
    9.Lunt, D. et al. Clim. Past 12, 1181–1198 (2016).Article 

    Google Scholar 
    10.Warnock, R. et al. Paleobiology 46, 137–157 (2020).Article 

    Google Scholar 
    11.Zachos, J. et al. Science 292, 686–693 (2001).CAS 
    Article 

    Google Scholar 
    12.Marrama, G. & Carnevale, G. Hist. Biol. 29, 904–917 (2016).Article 

    Google Scholar 
    13.Marrama, G. & Carnevale, G. PalZ 92, 107–120 (2018).Article 

    Google Scholar 
    14.Burke, K. D. et al. Proc. Natl Acad. Sci. USA 115, 13288–13293 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Quantifying the dynamics of rocky intertidal sessile communities along the Pacific coast of Japan: implications for ecological resilience

    1.Holling, C. S. & Meffe, G. K. Command and control and the pathology of natural resource management. Conserv. Biol. 10, 328–337 (1996).Article 

    Google Scholar 
    2.Peterson, G., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).Article 

    Google Scholar 
    3.Gunderson, L. H. Ecological resilience—In theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).Article 

    Google Scholar 
    4.Thrush, S. F. et al. Forecasting the limits of resilience: Integrating empirical research with theory. Proc. R. Soc. B Biol. Sci. 276, 3209–3217 (2009).Article 

    Google Scholar 
    5.Bagchi, S. et al. Quantifying long-term plant community dynamics with movement models: Implications for ecological resilience. Ecol. Appl. 27, 1514–1528 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Tilman, D., Reich, P. B. & Knops, J. M. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Radchuk, V. et al. The dimensionality of stability depends on disturbance type. Ecol. Lett. 22, 674–684 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).ADS 
    Article 

    Google Scholar 
    11.Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Pennekamp, F. et al. Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Kéfi, S. et al. Advancing our understanding of ecological stability. Ecol. Lett. 22, 1349–1356 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Raffaelli, D. & Hawkins, S. J. Intertidal Ecology (Chapman & Hall, 1996).Book 

    Google Scholar 
    15.Tsujino, M. et al. Distance decay of community dynamics in rocky intertidal sessile assemblages evaluated by transition matrix models. Popul. Ecol. 52, 171–180 (2010).Article 

    Google Scholar 
    16.Kanamori, Y., Fukaya, K. & Noda, T. Seasonal changes in community structure along a vertical gradient: Patterns and processes in rocky intertidal sessile assemblages. Popul. Ecol. 59, 301–313 (2017).Article 

    Google Scholar 
    17.Menge, B. A. et al. Benthic–pelagic links and rocky intertidal communities: Bottom-up effects on top-down control?. Proc. Natl. Acad. Sci. 94, 14530–14535 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Sanford, E. Regulation of keystone predation by small changes in ocean temperature. Science 283, 2095–2097 (1999).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Menge, B. A. Top-down and bottom-up community regulation in marine rocky intertidal habitats. J. Exp. Mar. Biol. Ecol. 250, 257–289 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Connolly, S. R., Menge, B. A. & Roughgarden, J. A. Latitudinal gradient in recruitment of intertidal invertebrates in the northeast Pacific Ocean. Ecology 82, 1799–1813 (2001).Article 

    Google Scholar 
    21.Menge, B. A. et al. Coastal oceanography sets the pace of rocky intertidal community dynamics. Proc. Natl. Acad. Sci. 100, 12229–12234 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Nielsen, K. J. & Navarrete, S. A. Mesoscale regulation comes from the bottom-up: Intertidal interactions between consumers and upwelling. Ecol. Lett. 7, 31–41 (2004).Article 

    Google Scholar 
    23.Schoch, G. C. et al. Fifteen degrees of separation: Latitudinal gradients of rocky intertidal biota along the California Current. Limnol. Oceanogr. 51, 2564–2585 (2006).ADS 
    Article 

    Google Scholar 
    24.Vinueza, L. R., Menge, B. A., Ruiz, D. & Palacios, D. M. Oceanographic and climatic variation drive top-down/bottom-up coupling in the Galápagos intertidal meta-ecosystem. Ecol. Monogr. 84, 411–434 (2014).Article 

    Google Scholar 
    25.Menge, B. A., Gouhier, T. C., Hacker, S. D., Chan, F. & Nielsen, K. J. Are meta-ecosystems organized hierarchically? A model and test in rocky intertidal habitats. Ecol. Monogr. 85, 213–233 (2015).Article 

    Google Scholar 
    26.Hacker, S. D., Menge, B. A., Nielsen, K. J., Chan, F. & Gouhier, T. C. Regional processes are stronger determinants of rocky intertidal community dynamics than local biotic interactions. Ecology https://doi.org/10.1002/ecy.2763 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Qiu, B. Kuroshio and Oyashio currents. In Ocean Currents: A Derivative of the Encyclopedia of Ocean Sciences (eds Steele, J. H. et al.) 1413–1425 (Academic Press, 2001).Chapter 

    Google Scholar 
    28.Qiu, B. Large-scale variability in the midlatitude subtropical and subpolar North Pacific Ocean: Observations and causes. J. Phys. Oceanogr. 32, 353–375 (2002).ADS 
    Article 

    Google Scholar 
    29.Sakurai, Y. An overview of the Oyashio ecosystem. Deep Sea Res. Pt. II 54, 2526–2542 (2007).ADS 
    Article 

    Google Scholar 
    30.Yatsu, A. et al. Climate forcing and the Kuroshio/Oyashio ecosystem. ICES J. Mar. Sci. 70, 922–933 (2013).Article 

    Google Scholar 
    31.Kawabe, M. Variations of the Kuroshio in the southern region of Japan: Conditions for large meander of the Kuroshio. J. Oceanogr. 61, 529–537 (2005).Article 

    Google Scholar 
    32.Okunishi, T. et al. Characteristics of oceanographic condition of Tohoku prefecture in 2018. in Bulletin of Liaison Conference of Tohoku Marine Surveys and Technology , Vol. 68, 4–5 (2018) (in Japanese).33.Japan Meteorological Agency. Fluctuations in the Kuroshio Current on a Scale of Months to Decades (Paths). http://www.data.jma.go.jp/gmd/kaiyou/data/shindan/b_2/kuroshio_stream/kuroshio_stream.html (in Japanese, accessed 11 March 2021).34.Taniguchi, K., Sato, M. & Owada, K. On the characteristics of the structural variation in the Eisenia bicyclis population on Joban coast, Japan. Bull Tohoku Natl. Fish. Res. Inst. 48, 49–57 (1986) (in Japanese with English abstract).
    Google Scholar 
    35.Nomura, K., & Hirabayashi, I. Mass mortality of coral communities caused by abnormality low water temperature observed at Kii peninsula west coast for winter season in 2018. Marine Pavilion. Supplement 7 (2018) (in Japanese).36.Yamaguchi, M. Acanthaster planci infestations of reefs and coral assemblages in Japan: A retrospective analysis of control efforts. Coral Reefs 5, 23–30 (1986).ADS 
    Article 

    Google Scholar 
    37.Ohgaki, S. I. et al. Effects of temperature and red tides on sea urchin abundance and species richness over 45 years in southern Japan. Ecol. Indic. 96, 684–693 (2019).Article 

    Google Scholar 
    38.Kawajiri, M., Sasaki, T. & Kageyama, Y. Extensive deterioration of Ecklonia kelp stands and death of the plants, and fluctuations in abundance of the abalone off Toji, southern Izu peninsula. Bull. Shizuoka Pref. Fish. Exp. Stn. 15, 19–30 (1981) (in Japanese).
    Google Scholar 
    39.Takami, H. et al. Overwinter mortality of young-of-the-year Ezo abalone in relation to seawater temperature on the North Pacific coast of Japan. Mar. Ecol. Prog. Ser. 367, 203–212 (2008).ADS 
    Article 

    Google Scholar 
    40.Okuda, T., Noda, T., Yamamoto, T., Ito, N. & Nakaoka, M. Latitudinal gradient of species diversity: Multi-scale variability in rocky intertidal sessile assemblages along the Northwestern Pacific coast. Popul. Ecol. 46, 159–170 (2004).Article 

    Google Scholar 
    41.Nakaoka, M., Ito, N., Yamamoto, T., Okuda, T. & Noda, T. Similarity of rocky intertidal assemblages along the Pacific coast of Japan: Effects of spatial scales and geographic distance. Ecol. Res. 21, 425–435 (2006).Article 

    Google Scholar 
    42.Gotelli, N. J. et al. Community-level regulation of temporal trends in biodiversity. Sci. Adv. 3, e1700315. https://doi.org/10.1126/sciadv.1700315 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Iwasaki, A., Fukaya, K. & Noda, T. Quantitative evaluation of the impact of the Great East Japan Earthquake and tsunami on the rocky intertidal community. In Ecological Impacts of Tsunamis on Coastal Ecosystems (eds Urabe, J. & Nakashizuka, T.) 35–46 (Springer Japan, 2016).Chapter 

    Google Scholar 
    45.Noda, T., Iwasaki, A. & Fukaya, K. Recovery of rocky intertidal zonation: Two years after the 2011 Great East Japan Earthquake. J. Mar. Biol. Assoc. UK 96, 1549–1555 (2016).Article 

    Google Scholar 
    46.Noda, T., Sakaguchi, M., Iwasaki, A. & Fukaya, K. Influence of the 2011 Tohoku Earthquake on population dynamics of a rocky intertidal barnacle: Cause and consequence of alternation in larval recruitment. Coast. Mar. Sci. 40, 35–43 (2017).
    Google Scholar 
    47.Nuvoloni, F. M., Feres, R. J. F. & Gilbert, B. Species turnover through time: Colonization and extinction dynamics across metacommunities. Am. Nat. 187, 786–796 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Clarke, A. Life in cold water: The physiological ecology of polar marine ectotherms. Oceanogr. Mar. Biol. A Rev. 21, 341–453 (1983).
    Google Scholar 
    49.Moss, D. K. et al. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution. Proc. R. Soc. B Biol. Sci. 283, 20161364. https://doi.org/10.1098/rspb.2016.1364 (2016).Article 

    Google Scholar 
    50.Bulleri, F. et al. Temporal stability of European rocky shore assemblages: Variation across a latitudinal gradient and the role of habitat-formers. Oikos 121, 1801–1809 (2012).Article 

    Google Scholar 
    51.Noda, T. Spatial hierarchical approach in community ecology: A way beyond high context-dependency and low predictability in local phenomena. Popul. Ecol. 46, 105–117 (2004).Article 

    Google Scholar 
    52.Sahara, R. et al. Larval dispersal dampens population fluctuation and shapes the interspecific spatial distribution patterns of rocky intertidal gastropods. Ecography 39, 487–495 (2015).Article 

    Google Scholar 
    53.Hanawa, K. & Mitsudera, H. Variation of water system distribution in the Sanriku coastal area. J. Oceanogr. 42, 435–446 (1987).Article 

    Google Scholar 
    54.Ohtani, K. Westward inflow of the coastal Oyashio Water into the Tsugaru Strait. Bull. Fac. Fish Hokkaido Univ. 38, 209–220 (1987) (in Japanese with English abstract).
    Google Scholar 
    55.Takasugi, S. Distribution of Tsugaru Warm Current water in the Iwate coastal area and their influence to sea surface temperature at coastal hydrographic station. Bull. Jpn. Soc. Fish. Oceanogr. 56, 434–448 (1992) (in Japanese with English abstract).
    Google Scholar 
    56.Takasugi, S. & Yasuda, I. Variation of the Oyashio water in the Iwate coastal region and in the vicinity of east coast of Japan. Bull. Jpn. Soc. Fish. Oceanogr. 58, 253–259 (1994) (in Japanese with English abstract).
    Google Scholar 
    57.Conlon, D. M. On the outflow modes of the Tsugaru Warm Current. La Mer. 20, 60–64 (1982).
    Google Scholar 
    58.Isoda, Y. & Suzuki, K. Interannual variations of the Tsugaru gyre. Bull. Fac. Fish. Hokkaido Univ. 55, 71–74 (2004) (in Japanese with English abstract).
    Google Scholar 
    59.Mrowicki, R. J., O’Connor, N. E. & Donohue, I. Temporal variability of a single population can determine the vulnerability of communities to perturbations. J. Ecol. 104, 887–897 (2016).Article 

    Google Scholar 
    60.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018). More

  • in

    Historical warming consistently decreased size, dispersal and speciation rate of fish

    1.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 
    2.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).Article 

    Google Scholar 
    3.Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    4.McCauley, S. J. & Mabry, K. E. Climate change, body size, and phenotype dependent dispersal. Trends Ecol. Evol. 26, 554–555 (2011).Article 

    Google Scholar 
    5.Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).Article 

    Google Scholar 
    6.Amigo, I. The Amazon’s fragile future. Nature 578, 505–507 (2020).CAS 
    Article 

    Google Scholar 
    7.Reddin, C. J., Nätscher, P. S., Kocsis, Á. T., Pörtner, H. O. & Kiessling, W. Marine clade sensitivities to climate change conform across timescales. Nat. Clim. Change 10, 249–253 (2020).Article 

    Google Scholar 
    8.Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).Article 

    Google Scholar 
    9.Skelly, D. K. et al. Evolutionary responses to climate change. Conserv. Biol. 21, 1353–1355 (2007).Article 

    Google Scholar 
    10.Chen, I., Hill, J. K., Ohlemûller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    Article 

    Google Scholar 
    11.Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).Article 

    Google Scholar 
    12.Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3, 254–258 (2013).Article 

    Google Scholar 
    13.Crozier, L. G. & Hutchings, J. A. Plastic and evolutionary responses to climate change in fish. Evol. Appl. 7, 68–87 (2014).Article 

    Google Scholar 
    14.Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).Article 

    Google Scholar 
    15.Pauly, D. & Cheung, W. W. L. Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob. Change Biol. 24, e15–e26 (2018).Article 

    Google Scholar 
    16.Tamario, C., Sunde, J., Petersson, E., Tibblin, P. & Forsman, A. Ecological and evolutionary consequences of environmental change and management actions for migrating fish. Front. Ecol. Evol. 7, 271 (2019).Article 

    Google Scholar 
    17.Ljungström, G., Claireaux, M., Fiksen, Ø. & Jørgensen, C. Body size adaptions under climate change: zooplankton community more important than temperature or food abundance in model of a zooplanktivorous fish. Mar. Ecol. Prog. Ser. 636, 1–18 (2020).Article 
    CAS 

    Google Scholar 
    18.Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl Acad. Sci. USA 106, 12788–12793 (2009).CAS 
    Article 

    Google Scholar 
    19.Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).Article 

    Google Scholar 
    20.Audzijonyte, A. et al. Fish body sizes change with temperature but not all species shrink with warming. Nat. Ecol. Evol. 4, 809–814 (2020).Article 

    Google Scholar 
    21.Rosenzweig, M. L. Loss of speciation rate will impoverish future diversity. Proc. Natl Acad. Sci. USA 98, 5404–5410 (2001).CAS 
    Article 

    Google Scholar 
    22.Burns, M. D. & Bloom, D. D. Migratory lineages rapidly evolve larger body sizes than non-migratory relatives in ray-finned fishes. Proc. Biol. Sci. 287, 20192615 (2020).
    Google Scholar 
    23.Comte, L. & Olden, J. D. Evidence for dispersal syndromes in freshwater fishes. Proc. R. Soc. B 285, 20172214 (2018).Article 

    Google Scholar 
    24.Bohonak, A. J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 74, 21–45 (1999).CAS 
    Article 

    Google Scholar 
    25.Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).CAS 
    Article 

    Google Scholar 
    26.Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 
    Article 

    Google Scholar 
    27.Stevens, V. M. et al. A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol. Lett. 17, 1039–1052 (2014).Article 

    Google Scholar 
    28.Dieckmann, U., O’Hara, B. & Weisser, W. The evolutionary ecology of dispersal. Trends Ecol. Evol. 14, 88–90 (1999).Article 

    Google Scholar 
    29.Kokko, H. & López-Sepulcre, A. From individual dispersal to species ranges: perspectives for a changing world. Science 313, 789–791 (2006).CAS 
    Article 

    Google Scholar 
    30.Lavoué, S., Miya, M., Musikasinthorn, P., Chen, W. J. & Nishida, M. Mitogenomic evidence for an indo-west Pacific origin of the Clupeoidei (Teleostei: Clupeiformes). PLoS ONE 8, e56485 (2013).Article 
    CAS 

    Google Scholar 
    31.Bloom, D. D., Burns, M. D. & Schriever, T. A. Evolution of body size and trophic position in migratory fishes: a phylogenetic comparative analysis of Clupeiformes (anchovies, herring, shad and allies). Biol. J. Linn. Soc. 125, 302–314 (2018).Article 

    Google Scholar 
    32.O’Donovan, C., Meade, A. & Venditti, C. Dinosaurs reveal the geographical signature of an evolutionary radiation. Nat. Ecol. Evol. 2, 452–458 (2018).Article 

    Google Scholar 
    33.Cheng, L. et al. Record-setting ocean warmth continued in 2019. Adv. Atmos. Sci. 37, 137–142 (2020).Article 

    Google Scholar 
    34.Pinek, L., Mansour, I., Lakovic, M., Ryo, M. & Rillig, M. C. Rate of environmental change across scales in ecology. Biol. Rev. 95, 1798–1811 (2020).Article 

    Google Scholar 
    35.Avaria-Llautureo, J., Hernández, C. E., Rodríguez-Serrano, E. & Venditti, C. The decoupled nature of basal metabolic rate and body temperature in endotherm evolution. Nature 572, 651–654 (2019).CAS 
    Article 

    Google Scholar 
    36.Gaston, K. J. Species-range size distributions: products of speciation, extinction and transformation. Philos. Trans. R. Soc. B 353, 219–230 (1998).Article 

    Google Scholar 
    37.Baker, J., Meade, A., Pagel, M. & Venditti, C. Positive phenotypic selection inferred from phylogenies. Biol. J. Linn. Soc. 118, 95–115 (2016).Article 

    Google Scholar 
    38.Angilletta, M. J. & Dunham, A. E. The temperature–size rule in ectotherms: simple evolutionary explanations may not be general. Am. Nat. 162, 332–342 (2003).Article 

    Google Scholar 
    39.Quintero, I. & Wiens, J. J. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol. Lett. 16, 1095–1103 (2013).Article 

    Google Scholar 
    40.Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Jr Fishing down marine food webs. Science 279, 860–863 (1998).CAS 
    Article 

    Google Scholar 
    41.Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).CAS 
    Article 

    Google Scholar 
    42.Whitehead, P. J. P. FAO species catalogue: vol. 7 Clupeoid fishes of the world. FAO Fish. Synop. 7, 303 (1985).
    Google Scholar 
    43.Charnov, E. L. & Berrigan, D. Evolution of life history parameters in animals with indeterminate growth, particularly fish. Evol. Ecol. 5, 63–68 (1991).Article 

    Google Scholar 
    44.Önsoy, B., Tarkan, A. S., Filiz, H. & Bilge, G. Determination of the best length measurement of fish. North. West. J. Zool. 7, 178–180 (2011).
    Google Scholar 
    45.Mohseni, O. & Stefan, H. G. Stream temperature/air temperature relationship: a physical interpretation. J. Hydrol. 218, 128–141 (1999).Article 

    Google Scholar 
    46.Morrill, J. C., Bales, R. C. & Conklin, M. H. Estimating stream temperature from air temperature: implications for future water quality. J. Environ. Eng. 131, 139–146 (2005).CAS 
    Article 

    Google Scholar 
    47.Sharma, S., Jackson, D. A., Minns, C. K. & Shuter, B. J. Will northern fish populations be in hot water because of climate change? Glob. Change Biol. 13, 2052–2064 (2007).Article 

    Google Scholar 
    48.Avaria-Llautureo, J. et al. Data for: Historical Warming Consistently Decreased Size, Dispersal and Speciation Rate of Fish (Dryad, 2021); https://doi.org/10.5061/dryad.cfxpnvx5g49.Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).Article 

    Google Scholar 
    50.Venditti, C., Meade, A. & Pagel, M. Multiple routes to mammalian diversity. Nature 479, 393–396 (2011).CAS 
    Article 

    Google Scholar 
    51.Kocsis, Á. T. & Raja, N. B. chronosphere (Zenodo, 2020); https://doi.org/10.5281/zenodo.353070352.Raftery, A. E. in Markov Chain Monte Carlo in Practice (eds Gilks, W. et al.) 163–187 (Chapman & Hall, 1996).53.Hijmans, R. J. geosphere: spherical trigonometry. R package version 1.5-10 https://CRAN.R-project.org/package=geosphere (2019).54.Harvey, M. G. & Rabosky, D. L. Continuous traits and speciation rates: alternatives to state-dependent diversification models. Methods Ecol. Evol. 9, 984–993 (2018).Article 

    Google Scholar 
    55.Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: what are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821–834 (2019).Article 

    Google Scholar 
    56.Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).CAS 
    Article 

    Google Scholar 
    57.Shafir, A., Azouri, D., Goldberg, E. E. & Mayrose, I. Heterogeneity in the rate of molecular sequence evolution substantially impacts the accuracy of detecting shifts in diversification rates. Evolution 74, 1620–1639 (2020).Article 

    Google Scholar 
    58.Ganzach, Y. Misleading interaction and curvilinear terms. Psychol. Methods 2, 235–247 (1997).Article 

    Google Scholar 
    59.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    60.Lunt, D. J. et al. Palaeogeographic controls on climate and proxy interpretation. Clim. Past 12, 1181–1198 (2016).Article 

    Google Scholar  More

  • in

    COVID vaccine inequity, species swaps — the week in infographics

    NEWS
    06 August 2021

    COVID vaccine inequity, species swaps — the week in infographics

    Nature highlights three key infographics from the week in science and research.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Inequity in vaccine accessRich nations’ plans to administer booster doses of COVID-19 vaccine to people who have been fully vaccinated have drawn criticism from many global health researchers, who highlight the growing disparities between wealth and access to vaccines. A July report from KFF, a health-policy organization based in San Francisco, California, finds that at current vaccination rates, low-income countries won’t achieve substantial levels of protection until at least 2023.

    Sources: KFF/Our World in Data/World Bank

    The changing face of ecosystemsDespite alarming declines in some animal and plant species, total biodiversity in many ecosystems is not decreasing. But that doesn’t mean such ecosystems are static. In fact, the mix of species in local communities is changing rapidly almost everywhere on Earth. As some inhabitants disappear, colonizers move in and add to species richness.

    Source: S. A. Blowes et al. Science 366, 339–345 (2019).

    Genetics behind the menopauseGenetic variants associated with age at onset of menopause have been identified in a large-scale genomic analysis, findings that bring scientists a step closer to predicting and treating early menopause. When the DNA of egg cells in ovaries is damaged in mice, expression of the gene Chek1 promotes DNA repair, whereas expression of Chek2 promotes destruction of the affected cell. The analysis found that variants of the human equivalent of Chek2 and other genes involved in the response to DNA damage are associated with differences in age at natural menopause. It also showed that mice carrying an extra copy of Chek1, or lacking expression of Chek2, had a longer reproductive age span than did typical mice.

    doi: https://doi.org/10.1038/d41586-021-02151-z

    Related Articles

    COVID boosters for wealthy nations spark outrage

    The world’s species are playing musical chairs: how will it end?

    Genomic analysis identifies variants that can predict the timing of menopause

    Read the paper: Genetic insights into biological mechanisms governing human ovarian ageing

    Subjects

    SARS-CoV-2

    Vaccines

    Biodiversity

    Genetics

    Latest on:

    SARS-CoV-2

    Delta threatens rural regions that dodged earlier COVID waves
    News 06 AUG 21

    COVID vaccine boosters: the most important questions
    News Feature 05 AUG 21

    Cash payments in Africa could boost vaccine uptake
    World View 03 AUG 21

    Vaccines

    COVID vaccine boosters: the most important questions
    News Feature 05 AUG 21

    Cash payments in Africa could boost vaccine uptake
    World View 03 AUG 21

    Text-message nudges encourage COVID vaccination
    News & Views 02 AUG 21

    Biodiversity

    The world’s species are playing musical chairs: how will it end?
    News Feature 04 AUG 21

    Biodiversity needs every tool in the box: use OECMs
    Comment 26 JUL 21

    Vulnerable nations lead by example on Sustainable Development Goals research
    Editorial 20 JUL 21

    Jobs

    Chief Editor – Nature Water

    Springer Nature
    London, United Kingdom

    Scientific director

    Federal Institute for Risk Assessment (BfR)
    Berlin, Germany

    PhD Student (m/f/d) in the field of Computer Vision / Data Scientist (m/f/d) in Cancer Research

    St. Anna Children’s Cancer Research Institute (CCRI)
    Vienna, Austria

    PhD Students (m/f/d)

    St. Anna Children’s Cancer Research Institute (CCRI)
    Vienna, Austria

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Biotic threats for 23 major non-native tree species in Europe

    Institute of Silviculture, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter-Jordan Str. 82, 1190, Wien, AustriaElisabeth PötzelsbergerEuropean Forest Institute, Platz der Vereinten Nationen 7, 53113, Bonn, GermanyElisabeth PötzelsbergerForest Entomology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, SwitzerlandMartin M. GossnerETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, SwitzerlandMartin M. GossnerForest Protection, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903, Birmensdorf, SwitzerlandLudwig Beenken & Sophie StrohekerFaculty of Forestry, University of Agriculture, Al. 29 Listopada 46, 31-425, Kraków, PolandAnna Gazda & Srđan KerenForest Research, Forestry Commission, Northern Research Station, Roslin, EH25 9SY, Great BritainMichal PetrNatural Resources Institute Finland, Luke, Latokartanonkaari 9, 00790, Helsinki, FinlandTiina YliojaFEM Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all’Adige, ItalyNicola La PortaThe EFI Project Centre on Mountain Forests MOUNTFOR, Via E. Mach 1, 38010, San Michele all’Adige, ItalyNicola La PortaForest Research Institute, Hellenic Agricultural Organization Demeter, Vassilika, 57006, GreeceDimitrios N. AvtzisWalloon Public service (SPW), 23 av Maréchal Juin, 5030, Gembloux, BelgiumElodie Bay & Marjana WestergrenSlovenian Forestry Institute, Vecna pot 2, 1000, Ljubljana, SloveniaMaarten De Groot & Nikica OgrisInstitute of Forestry and Rural Engineering, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 5, 51006, Tartu, EstoniaRein DrenkhanFaculty of Forestry, “Ștefan cel Mare” University of Suceava, Universității Street 13, 720229, Suceava, RomaniaMihai-Leonard DudumanInstitute for Plant Protection in Horticulture and Forests, Julius Kuehn Institute (Federal Research Centre for Cultivated Plants), Messeweg 11/12, 38104, Braunschweig, GermanyRasmus EnderleDepartment of Entomology, Phytopathologyy and Game fauna, Forest Research Institute – Bulgarian Academy of Sciences, St. Kliment Ohridski 132, 1756, Sofia, BulgariaMargarita GeorgievaDepartment of Fungal Plant Pathology in Forestry, Agriculture and Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Innocamp Steinkjer, skolegata 22, 7713, Steinkjer, NorwayAri M. HietalaInstitute for National and International Plant Health, Julius Kuehn Institute (Federal Research Centre for Cultivated Plants), Messeweg 11/12, 38104, Braunschweig, GermanyBjörn HoppeBiodiversité, Gènes et Communautés (BioGeCo), French National Institute for Agriculture, Food, and Environment (INRAE), University Bordeaux, F-33610, Cestas, FranceHervé JactelDepartment of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Vecna pot 83, 1000, Ljubljana, SloveniaKristjan JarniFaculty of Forestry, University of Banja Luka, Bulevar vojvode Stepe Stepanovica 75A, 51000, Banja Luka, Bosnia and HerzegovinaSrđan KerenForest Research Institute, National Agricultural Research and Innovation Centre, Farkassziget 3, H-4150, Püspökladány, HungaryZsolt KeseruDepartment of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, PL-87-100, Toruń, PolandMarcin Koprowski & Radoslaw PuchalkaCentre for Climate Change Research, Nicolaus Copernicus University, Lwowska 1, PL-87-100, Toruń, PolandMarcin Koprowski & Radoslaw PuchalkaInstitute of Plant Genetics and Biotechnology SAS, Akademicka 2, P. O. Box 39A, SK-950 07, Nitra, SlovakiaAndrej KormuťákUnidade de Xestión Ambiental e Forestal Sostible, Universidade de Santiago de Compostela, Campus de Lugo, 27002, Lugo, SpainMaría Josefa LombarderoLaboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics (NICPB), Akadeemia tee 23, 12618, Tallinn, EstoniaAljona LukjanovaFaculty of Forest Science and Ecology, Agriculture Academy, Vytautas Magnus University, Studentu 11, Akademija, 53361, Kaunas, LithuaniaVitas MarozasMediterranean Facility, European Forest Institute, Sant Pau Art Nouveau Site, Sant Antoni M. Claret 167, 08025, Barcelona, SpainEdurad MauriCentro di Ricerca Foreste e Legno, Council for agricultural research and analysis of the agricultural economy (CREA), Viale Santa Margherita, 80, 52100, Arezzo, ItalyMaria Cristina MonteverdiNorwegian Institute of Bioeconomy Research (NIBIO), P.O. Box 115, NO-1431, Ås, NorwayPer Holm Nygaard“Marin Drăcea” National Research-Development Institute in Forestry, Station Câmpulung Moldovenesc, Calea Bucovinei, 73bis, 725100, Câmpulung Moldovenesc, RomaniaNicolai OleniciEFI Atlantic, European Forest Institute, 69, Route de Arcachon, F-33610, Cestas, FranceChristophe OrazioIEFC Institut Européen de la Forêt Cultivée, 69, Route de Arcachon, F-33610, Cestas, FranceChristophe OrazioDepartment of Forest Protection, Austrian Federal Research Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent-Weg 8, 1131, Vienna, AustriaBernhard PernyCentre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, PortugalGlória PintoCoillte Unit 27, Coillte Forest, Danville Business Park, Kilkenny, R95 YT95, IrelandMichael PowerDepartment of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, DK-1958, Frederiksberg C., GermanyHans Peter RavnUCD Forestry, School of Agriculture and Food Science, University College Dublin, UCD Forestry, School of Agriculture and Food Science, University College Dublin, D04 V1W8, Dublin, IrelandIgnacio SevillanoForest Research, Forestry Commission, Northern Research Station, Roslin, Midlothian, EH25 9SY, Great BritainPaul TaylorInstitute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization “Demeter”-, Terma Alkmanos, 11528, Athens, GreecePanagiotis TsopelasFaculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, 613 00, Brno, Czech RepublicJosef UrbanSiberian Federal University, Svobodnyy Ave, 79, 660041, Krasnoyarsk, RussiaJosef UrbanInstitute of Forestry and Rural Engineering, EstonianUniversity of Life Sciences, Kreutzwaldi 5, 51006, Tartu, EstoniaKaljo VoolmaSouthern Swedish Forest Research Center, PO Box 49, SE-230 53, Alnarp, SwedenJohanna WitzellPolissya Branch, Ukrainian Research Institute of Forestry and Forest Melioration, Neskorenych st. 2, Dovzhik, UkraineOlga ZborovskaInstitute of Lowland Forestry and Environment (ILFE), University of Novi Sad, Antona Cehova 13d, 21 000, Novi Sad, SerbiaMilica ZlatkovicE.P., A.G, M.P., T.Y. and N.L.P. developed the concept and design of the study and organised the data collection, E.P., M.M.G. and L.B. managed the database, homogenised and cleaned the data, E.P. and M.M.G. performed the analysis and all other co-authors collected and synthesised the information for their respective countries. E.P., M.M.G. and L.B. wrote the paper and all other co-authors reviewed the paper. More

  • in

    Rice paddy soils are a quantitatively important carbon store according to a global synthesis

    1.Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 65, 10–21 (1996).Article 
    CAS 

    Google Scholar 
    2.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).CAS 
    Article 

    Google Scholar 
    3.Buringh, P. in The role of terrestrial vegetation in the global carbon cycle: Measurement by remote sensing, 91–109 (Wiley, 1984).4.Hiederer, R. & Köchy, M. Global soil organic carbon estimates and the harmonized world soil database. EUR 79, 25225 (2011).
    Google Scholar 
    5.Smith, P. et al. Global change pressures on soils from land use and management. Glob. Chang. Biol. 22, 1008–1028 (2016).Article 

    Google Scholar 
    6.Schlesinger, W. H. The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing (Wiley, 1984).7.Conant, R. T., Cerri, C. E., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).Article 

    Google Scholar 
    8.Köchy, M., Hiederer, R. & Freibauer, A. Global distribution of soil organic carbon–Part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1, 351–365 (2015).Article 
    CAS 

    Google Scholar 
    9.Nahlik, A. M. & Fennessy, M. S. Carbon storage in US wetlands. Nat. Commun. 7, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    10.Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).CAS 
    Article 

    Google Scholar 
    11.Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528 (2017).CAS 
    Article 

    Google Scholar 
    12.Maclean, J. L., Dawe, D. C., Hardy, B. & Hettel, G. P. Rice Almanac: Source book for the most important economic activity on earth, 3rd edn. (CABI Publishing, 2002).13.Kögel-Knabner, I. et al. Biogeochemistry of paddy soils. Geoderma 157, 1–14 (2010).Article 
    CAS 

    Google Scholar 
    14.Wu, J. Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies. Eur. J. Soil Sci. 62, 29–34 (2011).CAS 
    Article 

    Google Scholar 
    15.Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 7, 63–68 (2017).CAS 
    Article 

    Google Scholar 
    16.FAO (Food and Agriculture Organization of the United Nations). FAOSTAT: FAO Statistical Databases. http://faostat.fao.org/default.aspx (2018).17.Gattinger, A. et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl Acad. Sci. USA 109, 18226–18231 (2012).CAS 
    Article 

    Google Scholar 
    18.Xie, Z. et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob. Chang. Biol. 13, 1989–2007 (2007).Article 

    Google Scholar 
    19.Qin, Z., Huang, Y. & Zhuang, Q. Soil organic carbon sequestration potential of cropland in China. Glob. Biogeochem. Cycles 27, 711–722 (2013).CAS 
    Article 

    Google Scholar 
    20.Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).Article 

    Google Scholar 
    21.Haefele, S. M., Nelson, A. & Hijmans, R. J. Soil quality and constraints in global rice production. Geoderma 235, 250–259 (2014).Article 
    CAS 

    Google Scholar 
    22.Pan, G., Li, L., Wu, L. & Zhang, X. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob. Chang. Biol. 10, 79–92 (2004).Article 

    Google Scholar 
    23.Wei, L. et al. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma 398, 115121 (2021).Article 

    Google Scholar 
    24.Wang, P. et al. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence. Sci. Rep. 5, 15704 (2015).CAS 
    Article 

    Google Scholar 
    25.Li, Y. et al. Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils. Soil Biol. Biochem. 153, 108106 (2021).CAS 
    Article 

    Google Scholar 
    26.Evans, C. D. et al. Acidity controls on dissolved organic carbon mobility in organic soils. Glob. Chang. Biol. 18, 3317–3331 (2012).Article 

    Google Scholar 
    27.Liu, Y. et al. Impact of prolonged rice cultivation on coupling relationship among C, Fe, and Fe-reducing bacteria over a 1000-year paddy soil chronosequence. Biol. Fertil. Soils 55, 589–602 (2019).CAS 
    Article 

    Google Scholar 
    28.Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).Article 

    Google Scholar 
    29.Liu, Y. et al. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation. Biogeosciences 13, 6565–6586 (2016).CAS 
    Article 

    Google Scholar 
    30.Liu, Y. et al. Methanogenic abundance and changes in community structure along a rice soil chronosequence from east China. Eur. J. Soil Sci. 67, 443–455 (2016).CAS 
    Article 

    Google Scholar 
    31.Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 1–10 (2018).CAS 
    Article 

    Google Scholar 
    32.Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land‐use change on soil organic carbon stocks-a meta‐analysis. Glob. Chang. Biol. 17, 1658–1670 (2011).Article 

    Google Scholar 
    33.Piao, S. et al. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013 (2009).CAS 
    Article 

    Google Scholar 
    34.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).CAS 
    Article 

    Google Scholar 
    35.Kirk, G. The Biogeochemistry of Submerged Soils (Wiley, 2004).36.Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J. & Vitousek, P. M. Long‐term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob. Chang. Biol. 18, 2594–2605 (2012).Article 

    Google Scholar 
    37.Scharpenseel, H. W., Pfeiffer, E. M. & Becker-Heidmann, P. in Advances in Soil Science (eds. Carter, MR, Stewart, BA) (Lewis Publishers, 1996).38.Liao, Q. et al. Increase in soil organic carbon stock over the last two decades in China’s Jiangsu Province. Glob. Chang. Biol. 15, 861–875 (2009).Article 

    Google Scholar 
    39.Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    40.Ghimire, R., Lamichhane, S., Acharya, B. S., Bista, P. & Sainju, U. M. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: a review. J. Integr. Agric. 16, 1–15 (2017).Article 

    Google Scholar 
    41.Maillard, É. & Angers, D. A. Animal manure application and soil organic carbon stocks: a meta‐analysis. Glob. Chang. Biol. 20, 666–679 (2014).Article 

    Google Scholar 
    42.Tian, K. et al. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis. Agric. Ecosyst. Environ. 204, 40–50 (2015).CAS 
    Article 

    Google Scholar 
    43.Liu, Y. et al. Initial utilization of rhizodeposits with rice growth in paddy soils: rhizosphere and N fertilization effects. Geoderma 338, 30–39 (2019).CAS 
    Article 

    Google Scholar 
    44.Chen, J. et al. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci. Adv. 4, eaaq1689 (2018).CAS 
    Article 

    Google Scholar 
    45.Zhu, Z. et al. Rice rhizodeposits affect organic matter decomposition in paddy soil: the role of N fertilization and rice growth for enzyme activities, CO2 and CH4 emissions. Soil Biol. Biochem. 116, 369–377 (2018).CAS 
    Article 

    Google Scholar 
    46.Moorhead, D. L. & Sinsabaugh, R. L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 76, 151–174 (2006).Article 

    Google Scholar 
    47.Li, X. et al. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biol. Biochem. 112, 47–55 (2017).CAS 
    Article 

    Google Scholar 
    48.Cui, J. et al. Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biol. Biochem. 142, 107720 (2020).CAS 
    Article 

    Google Scholar 
    49.Geisseler, D., Linquist, B. A. & Lazicki, P. A. Effect of fertilization on soil microorganisms in paddy rice systems—a meta-analysis. Soil Biol. Biochem. 115, 452–460 (2017).CAS 
    Article 

    Google Scholar 
    50.Sun, W. et al. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Glob. Chang. Biol. 26, 3325–3335 (2020).Article 

    Google Scholar 
    51.Wissing, L. et al. Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations. Soil Tillage Res. 126, 60–71 (2013).Article 

    Google Scholar 
    52.Baker, J. M., Ochsner, T. E., Venterea, R. T. & Griffis, T. J. Tillage and soil carbon sequestration—-what do we really know? Agric. Ecosyst. Environ. 118, 1–5 (2007).CAS 
    Article 

    Google Scholar 
    53.Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 60, 158–169 (2009).CAS 
    Article 

    Google Scholar 
    54.Lal, R. Soil carbon sequestration in India. Clim. Change 65, 277–296 (2004).CAS 
    Article 

    Google Scholar 
    55.Liu, Y. et al. Carbon input and allocation by rice into paddy soils: a review. Soil Biol. Biochem. 133, 97–107 (2019).CAS 
    Article 

    Google Scholar 
    56.Zhao, Y. et al. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl Acad. Sci. USA 115, 4045–4050 (2018).CAS 
    Article 

    Google Scholar 
    57.Wei, X., Zhu, Z., Wei, L., Wu, J. & Ge, T. Biogeochemical cycles of key elements in the paddy-rice rhizosphere: microbial mechanisms and coupling processes. Rhizosphere 10, 100145 (2019).Article 

    Google Scholar 
    58.Alexandratos, N. & Bruinsma, J. World agriculture towards 2030/2050: the 2012 revision. https://doi.org/10.22004/ag.econ.288998. (2012).59.Rui, W. & Zhang, W. Effect size and duration of recommended management practices on carbon sequestration in paddy field in Yangtze Delta Plain of China: a meta-analysis. Agric. Ecosyst. Environ. 135, 199–205 (2010).CAS 
    Article 

    Google Scholar 
    60.Song, K. et al. Wetland degradation: its driving forces and environmental impacts in the Sanjiang Plain, China. Environ. Manage. 54, 255–271 (2014).Article 

    Google Scholar 
    61.Dong, J. et al. Northward expansion of paddy rice in northeastern Asia during 2000–2014. Geophys. Res. Lett. 43, 3754–3761 (2016).CAS 
    Article 

    Google Scholar 
    62.Chaturvedi, V. et al. Climate mitigation policy implications for global irrigation water demand. Mitig. Adapt. Strat. Glob. Chang. 20, 389–407 (2015).Article 

    Google Scholar 
    63.Gathorne-Hardy, A. A life cycle assessment (LCA) of greenhouse gas emissions from SRI and flooded rice production in SE India. Taiwan Water Conserv. J. 61, 111–125 (2013).
    Google Scholar 
    64.Linquist, B., Van Groenigen, K. J., Adviento‐Borbe, M. A., Pittelkow, C. & Van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Chang. Biol. 18, 194–209 (2012).Article 

    Google Scholar 
    65.IPCC. in Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. (eds. Field, C. B. et al) (Cambridge University Press, 2014).66.Xie, Z. et al. CO2 mitigation potential in farmland of China by altering current organic matter amendment pattern. Sci. China Earth Sci. 53, 1351–1357 (2010).CAS 
    Article 

    Google Scholar 
    67.Yan, X. et al. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Tillage Res. 130, 42–51 (2013).Article 

    Google Scholar 
    68.Shang, Q. et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice‐cropping systems: a 3‐year field measurement in long‐term fertilizer experiments. Glob. Chang. Biol. 17, 2196–2210 (2011).Article 

    Google Scholar 
    69.Ma, Y. et al. Net global warming potential and greenhouse gas intensity of annual rice–wheat rotations with integrated soil–crop system management. Agric. Ecosyst. Environ. 164, 209–219 (2013).Article 

    Google Scholar 
    70.Xiong, Z. et al. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China. Sci. Rep. 5, 1–9 (2015).CAS 

    Google Scholar 
    71.Jiang, Y. et al. Acclimation of methane emissions from rice paddy fields to straw addition. Sci. Adv. 5, eaau9038 (2019).Article 
    CAS 

    Google Scholar 
    72.Liu, C., Lu, M., Cui, J., Li, B. & Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta‐analysis. Glob. Chang. Biol. 20, 1366–1381 (2014).Article 

    Google Scholar 
    73.Shakoor, A. et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci. Total Environ. 750, 142299 (2021).CAS 
    Article 

    Google Scholar 
    74.Zhao, X. et al. Methane and nitrous oxide emissions under no‐till farming in China: a meta‐analysis. Glob. Chang. Biol. 22, 1372–1384 (2016).Article 

    Google Scholar 
    75.Kim, S. Y., Gutierrez, J. & Kim, P. J. Unexpected stimulation of CH4 emissions under continuous no-tillage system in mono-rice paddy soils during cultivation. Geoderma 267, 34–40 (2016).CAS 
    Article 

    Google Scholar 
    76.Ball, B. C., Scott, A. & Parker, J. P. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Tillage Res. 53, 29–39 (1999).Article 

    Google Scholar 
    77.Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., van Kessel, C. & van Groenigen, K. J. Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crop. Res. 135, 10–21 (2012).Article 

    Google Scholar 
    78.Schlesinger, W. H. Carbon sequestration in soils: some cautions amidst optimism. Agric. Ecosyst. Environ. 82, 121–127 (2000).CAS 
    Article 

    Google Scholar 
    79.Choudhury, A. T. M. A. & Kennedy, I. R. Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Commun. Soil Sci. Plan. 36, 1625–1639 (2005).CAS 
    Article 

    Google Scholar 
    80.Jiang, Y. et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crop. Res. 234, 47–54 (2019).Article 

    Google Scholar 
    81.Suryavanshi, P., Singh, Y. V., Prasanna, R., Bhatia, A. & Shivay, Y. S. Pattern of methane emission and water productivity under different methods of rice crop establishment. Paddy Water Environ. 11, 321–329 (2013).Article 

    Google Scholar 
    82.Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cycles https://doi.org/10.1029/2008GB003299 (2009).83.Jiang, Y. et al. Higher yields and lower methane emissions with new rice cultivars. Glob. Chang. Biol. 23, 4728–4738 (2017).Article 

    Google Scholar 
    84.Li, C. et al. Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Glob. Biogeochem. Cycles https://doi.org/10.1029/2003GB002045 (2004).85.Yin, S. et al. Carbon sequestration and emissions mitigation in paddy fields based on the DNDC model: a review. Artif. Intell. Agric. 4, 140–149 (2020).
    Google Scholar 
    86.FAO, IIASA, ISRIC, ISSCAS, and JRC: Harmonized World Soil Database (version 1.2), Tech. Rep., FAO, Rome, Italy and IIASA, Laxenburg, Austria (2012).87.Allison, L. in Organic carbon. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, (ed. A.g. Norman). (American Society of Agronomy, 1965).88.Fang, C. & Moncrieff, J. B. The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant Soil 268, 243–253 (2005).CAS 
    Article 

    Google Scholar 
    89.Yan, X., Cai, Z., Wang, S. & Smith, P. Direct measurement of soil organic carbon content change in the croplands of China. Glob. Chang. Biol. 17, 1487–1496 (2011).Article 

    Google Scholar 
    90.Rosenberg, M. S., Adams, D. C. & Gurevitch, J. MetaWin 2.0: statistical software for meta-analysis (Sinauer, 2000).91.Yue, Q. et al. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China. Environ. Sci. Technol. 53, 10246–10257 (2019).CAS 
    Article 

    Google Scholar 
    92.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    93.Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta‐analysis of ecological data. Ecology 78, 1277–1283 (1997).Article 

    Google Scholar 
    94.Van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475, 214–216 (2011).Article 
    CAS 

    Google Scholar  More

  • in

    An insight of anopheline larvicidal mechanism of Trichoderma asperellum (TaspSKGN2)

    1.Ghosh, S. K., Podder, D., Panja, S., & Mukherjee, S. In target areas where human mosquito-borne diseases are diagnosed, the inclusion of the pre-adult mosquito aquatic niches parameters will improve the integrated mosquito control program. PLos Neg. Trop. Dis. 14(8), e0008605 (2020).Article 

    Google Scholar 
    2.Becker, B. N. et al. Mosquitoes and Their Control 499 (Springer, 2010).Book 

    Google Scholar 
    3.Hyde, K. D. et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97, 1–136 (2019).Article 

    Google Scholar 
    4.Clark, T. B., Kellen, W. R., Fukuda, T. & Lindegren, J. E. Field and laboratory studies on the pathogenicity of the fungus Beauveria bassiana to three genera of mosquitoes. J. Invertebr. Pathol. 11(1), 1–7 (1968).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Scholte, E. J., Knols, B. G. & Takken, W. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J. Invertebr. Pathol. 91(1), 43–49 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Bukhari, T., Takken, W. & Koenraadt, C. J. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae. Parasit. Vectors 4(1), 23 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Mukherjee, A., Debnath, P., Ghosh, S. K. & Medda, P. K. Biological control of papaya aphid (Aphis gossypii Glover) using entomopathogenic fungi. Vegetos 33, 1–10 (2020).Article 

    Google Scholar 
    8.Fernández-Grandon, G. M., Harte, S. J., Ewany, J., Bray, D. & Stevenson, P. C. Additive effect of botanical insecticide and entomopathogenic fungi on pest mortality and the behavioral response of its natural enemy. Plants 9, 173 (2020).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Sobczak, J. F. et al. Manipulation of wasp (Hymenoptera: Vespidae) behavior by the entomopathogenic fungus Ophiocordyceps humbertii in the Atlantic forest in Ceará, Brazil. Entomol. News 129, 98–104 (2020).Article 

    Google Scholar 
    10.Ghosh, S. K. & Pal, S. Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malathion against the insect pest Leucinodes orbonalis. Environ. Monit. Assess. 188(1), 37 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.Podder, D. & Ghosh, S. K. A new application of Trichoderma asperellum as an anopheline larvicide for eco friendly management in medical science. Sci. Reps. 9(1), 1108 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Jones, E. B. G. Fungal adhesion. Mycol. Res. 98(9), 961–981 (1994).Article 

    Google Scholar 
    13.Shah, P. A. & Pell, J. K. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413–423 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Rudall, K. M. The chitin/protein complexes of insect cuticles. Adv. Insect Physiol. 1, 257–313 (1963).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Shah, F. A., Wang, C. S. & Butt, T. M. Nutrition influences growth and virulence of the insect-pathogenic fungus Metarhizium anisopliae. FEMS Microbiol. Lett. 251(2), 259–266 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Jackson, M. A., Dunlap, C. A. & Jaronski, S. T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. Biocontrol 55(1), 129–145 (2010).Article 

    Google Scholar 
    17.Vega, F.E.; Meyling, N., Luangsa-ard, J.& Blackwell, M. Fungal entomopathogens. In: edit Vega, F. and Kaya, H. A. Insect pathology, 2nd edn , San Diego, CA, Academic Press, pp 171–220 (2012).18.Gaugler, R. Entomopathogenic nematodes in biological control. CRC press (2018).19.McKinnon, A. C. et al. Detection of the entomopathogenic fungus Beauveria bassiana in the rhizosphere of wound-stressed zea mays plants. Front. Microbiol. 9, 1161 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 17(9), 879–920 (2007).Article 

    Google Scholar 
    21.Hamer, J. E., Howard, R. J., Chumley, F. G. & Valent, B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239(4837), 288–290 (1988).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Dhawan, M. & Joshi, N. (Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN. Braz. J. Microbiol. 48(3), 522–529 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Mora, M. A. E., Castilho, A. M. C. & Fraga, M. E. Classification and infection mechanism of entomopathogenic fungi. Arq. Inst. Biol. 84, 0552015 (2017).
    Google Scholar 
    24.Li, J., Tracy, J. W. & Christensen, B. M. Phenol oxidase activity in hemolymph compartments of Aedes aegypti during melanotic encapsulation reactions against microfilariae. Dev. Comp. Immunol. 16(1), 41–48 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hillyer, J. F. & Strand, M. R. Mosquito hemocyte-mediated immune responses. Curr. Opin. Insect Sci. 3, 14–21 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Nanda, K. P. Chronic lead (Pb) exposure results in diminished hemocyte count and increased susceptibility to bacterial infection in Drosophila melanogaster. Chemosphere 236, 124349 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Ghosh, S. K., Chatterjee, T., Chakravarty, A. & Basak, A. K. Sodium and potassium nitrite-induced developmental genotoxicity in Drosophila melanogaster—effects in larval immune and brain stem cells. Interdiscip. Toxicol. 13(4), 101–105 (2020).
    Google Scholar 
    28.Chatterjee, T., Ghosh, S. K., Paik, S., Chakravarty, A. & Basak, A. K. Benzoic acid treated Drosophila melanogaster the genetic disruption of larval brain stem cells and non-neural cells during metamorphosis. Toxicol. Environ. Health Sci. https://doi.org/10.1007/s13530-021-00082-w (2021).Article 

    Google Scholar 
    29.Campos, R. A. Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilisin-like proteases and chitinases. Curr. Microbiol. 50(5), 257–261 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.McFarlane, H. E., Gendre, D. & Western, T. L. Seed coat ruthenium red staining assay. Bio-Protoc. 4, 1096 (2014).Article 

    Google Scholar 
    31.Bhosale, R. R., Osmani, R. A. M. & Moin, A. Natural gums and mucilages: A review on multifaceted excipients in pharmaceutical science and research. Int. J. Res. Phytochem. Pharmacol 6(4), 901–912 (2014).
    Google Scholar 
    32.Shah, F. A., Allen, N., Wright, C. J. & Butt, T. M. Repeated in vitro subculturing alters spore surface properties and virulence of Metarhizium anisopliae. FEMS Microbiol. Lett. 276(1), 60–66 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Hsu, S. C. & Lockwood, J. L. Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Appl. Environ. Microbiol. 29(3), 422–426 (1975).CAS 
    Article 

    Google Scholar 
    34.Parida, D., Jena, S. K. & Rath, C. C. Enzyme activities of bacterial isolates from iron mine areas of Barbil, Keonjhar district, Odisha, India. Int. J. Pure Appl. Biosci. 2(3), 265–271 (2014).
    Google Scholar 
    35.Kasana, R. C., Salwan, R., Dhar, H., Dutt, S. & Gulati, A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr. Microbiol. 57(5), 503–507 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Medina, P. & Baresi, L. Rapid identification of gelatin and casein hydrolysis using TCA. J. Microbiol. Methods 69(2), 391–393 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Al-Nahdi, H. S. Isolation and screening of extracellular proteases produced by new isolated Bacillus sp. J. Appl. Pharm. Sci. 2(9), 71–74 (2012).CAS 

    Google Scholar 
    38.Murthy, N. K. & Bleakley, B. H. Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Int. J. Microbiol. 10(2), 1937–8289 (2012).
    Google Scholar 
    39.Park, S. H., Lee, J. H. & Lee, H. K. Purification and characterization of chitinase from a marine bacterium, Vibrio sp. 98CJ11027. J. Microbiol 38, 224–229 (2000).CAS 

    Google Scholar 
    40.Roberts, W. K. & Selitrennikoff, C. P. Plant and bacterial chitinases differ in antifungal activity. Microbiology 134(1), 169–176 (1986).Article 

    Google Scholar 
    41.Tsuchida, O. et al. An alkaline proteinase of an alkalophilic Bacillus sp. Curr. Microbiol. 14(1), 7–12 (1986).CAS 
    Article 

    Google Scholar 
    42.Crowell, A. M., Wall, M. J. & Doucette, A. A Maximizing recovery of water-soluble proteins through acetone precipitation. Anal. Chim. Acta. 796, 48–54 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.He, F. BCA (Bicinchoninic Acid) protein assay. Bio Protocol 1(5), 44 (2011).Article 

    Google Scholar 
    44.Sierra, L.M., Carmona, E.R., Aguado, L. & Marcos, R. The comet assay in Drosophila: neuroblast and hemocyte cells. In Genotoxicity and DNA Repair. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. 269–82 (2014).45.Xu, T. et al. (2012) HMGB in mollusk Crassostrea ariakensis Gould: structure, pro-inflammatory cytokine function characterization and anti-infection role of its antibody. PLoS ONE 7(11), e50789 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Basak, A. K., Chatterjee, T., Chakravarty, A. & Ghosh, S. K. Silver nanoparticle-induced developmental inhibition of Drosophila melanogaster accompanies disruption of genetic material of larval neural stem cells and non-neuronal cells. Environ. Monit. Assess. 191(8), 497 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar  More

  • in

    Harnessing the power of host–microbe symbioses to address grand challenges

    1.McFall-Ngai, M. et al. Animals in a bacterial world: a new imperative for the life sciences. Proc. Natl Acad. Sci. 110, 3229–3236 (2013).CAS 
    Article 

    Google Scholar 
    2.Pita, L., Rix, L., Slaby, B. M., Franke, A. & Hentschel, U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46 (2018).CAS 
    Article 

    Google Scholar 
    3.Caruso, R., Lo, B. C. & Núñez, G. Host–microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 20, 411–426 (2020).CAS 
    Article 

    Google Scholar 
    4.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).CAS 
    Article 

    Google Scholar 
    5.Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).CAS 
    Article 

    Google Scholar 
    6.Bell, J. J., Bennett, H. M., Rovellini, A. & Webster, N. S. Sponges to be winners under near-future climate scenarios. BioScience 68, 955–968 (2018).Article 

    Google Scholar 
    7.Bosch, T. C. G., Guillemin, K. & McFall-Ngai, M. Evolutionary “experiments” in symbiosis: the study of model animals provides insights into the mechanisms underlying the diversity of host–microbe interactions. Bioessays 41, e1800256 (2019).8.Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00567-y (2021).Article 
    PubMed 

    Google Scholar 
    9.Visick, K. L., Stabb, E. V. & Ruby, E. G. A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00557-0 (2021).Article 
    PubMed 

    Google Scholar 
    10.Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021).Article 

    Google Scholar  More