More stories

  • in

    Feeding sites promoting wildlife-related tourism might highly expose the endangered Yunnan snub-nosed monkey (Rhinopithecus bieti) to parasite transmission

    1.Orams, M. B. Feeding wildlife as a tourism attraction: A review of issues and impacts. Tour. Manag. 23, 281–293 (2002).Article 

    Google Scholar 
    2.Balmford, A. et al. Walk on the wild side: Estimating the global magnitude of visits to protected areas. PLoS Biol. 13, e1002074 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Knight, J. Making wildlife viewable: Habituation and attraction. Soc. Anim. 17, 167–184 (2009).Article 

    Google Scholar 
    4.Carter, N. H. et al. Coupled human and natural systems approach to wildlife research and conservation. Ecol. Soc. 19, 43 (2014).Article 

    Google Scholar 
    5.Balasubramaniam, K. N. et al. Addressing the challenges of research on human–wildlife interactions using the concept of coupled natural & human systems. Biol. Conserv. 257, 109095 (2021).Article 

    Google Scholar 
    6.Knight, J. The ready-to-view wild monkey: The convenience principle in Japanese wildlife tourism. Ann. Tour. Res. 37, 744–762 (2010).Article 

    Google Scholar 
    7.Okello, M. M., Manka, S. G. & D’Amour, D. E. The relative importance of large mammal species for tourism in Amboseli National Park, Kenya. Tour. Manag. 29, 751–760 (2008).Article 

    Google Scholar 
    8.Penteriani, V. et al. Consequences of brown bear viewing tourism: A review. Biol. Conserv. 206, 169–180 (2017).Article 

    Google Scholar 
    9.Ewen, J. G., Walker, L., Canessa, S. & Groombridge, J. J. Improving supplementary feeding in species conservation. Conserv. Biol. 29, 341–349 (2015).PubMed 
    Article 

    Google Scholar 
    10.Jones, C. G. et al. The restoration of the Mauritius Kestrel Falco punctatus population. Ibis 137, S173–S180 (1995).Article 

    Google Scholar 
    11.Murray, M. H., Becker, D. J., Hall, R. J. & Hernandez, S. M. Wildlife health and supplemental feeding: A review and management recommendations. Biol. Conserv. 204, 163–174 (2016).Article 

    Google Scholar 
    12.Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martínez-Abraín, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).PubMed 
    Article 

    Google Scholar 
    13.Civitello, D. J., Allman, B. E., Morozumi, C. & Rohr, J. R. Assessing the direct and indirect effects of food provisioning and nutrient enrichment on wildlife infectious disease dynamics. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170101 (2018).Article 

    Google Scholar 
    14.Lappan, S., Malaivijitnond, S., Radhakrishna, S., Riley, E. P. & Ruppert, N. The human–primate interface in the new normal: Challenges and opportunities for primatologists in the COVID-19 era and beyond. Am. J. Primatol. 82, e23176 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Dunay, E., Apakupakul, K., Leard, S., Palmer, J. L. & Deem, S. L. Pathogen transmission from humans to great apes is a growing threat to primate conservation. EcoHealth 15, 148–162 (2018).PubMed 
    Article 

    Google Scholar 
    17.Fuentes, A., Shaw, E. & Cortes, J. Qualitative assessment of macaque tourist sites in Padangtegal, Bali, Indonesia, and the Upper Rock Nature Reserve, Gibraltar. Int. J. Primatol. 28, 1143–1158 (2007).Article 

    Google Scholar 
    18.Dellatore, D. F., Waitt, C. D. & Foitovà, I. The impact of tourism on the behavior of rehabilitated orangutans (Pongo abelii) in Bukit Lawang, North Sumatra, Indonesia. In Primate Tourism: A Tool for Conservation (eds Russon, A. E. & Wallis, J.) 98–120 (Cambridge University Press, 2014).Chapter 

    Google Scholar 
    19.Berman, C. M., Matheson, M. D., Ogawa, H. & Ionica, C. S. Tourism, infant mortality and stress indicators among Tibetan macaques at Huangshan, China. In Primate Tourism: A Tool for Conservation (eds Russon, A. E. & Wallis, J.) 21–43 (Cambridge University Press, 2014).Chapter 

    Google Scholar 
    20.Kurita, C. M. Provisioning and tourism infree-ranging Japanese macaques. In Primate Tourism: A Tool for Conservation (eds Russon, A. E. & Wallis, J.) 44–55 (Cambridge University Press, 2014).Chapter 

    Google Scholar 
    21.Long, Y., Bleisch, W. & Richardson, M. Rhinopithecus bieti. The IUCN Red List of Threatened Species 2020: e.T19597A8986243. https://doi.org/10.2305/IUCN.UK.2008.RLTS.T19597A8986243.en. IUCN Red List of Threatened Species https://www.iucnredlist.org/en (2020).22.Li, B., Pan, R. & Oxnard, C. E. Extinction of snub-nosed monkeys in China during the past 400 years. Int. J. Primatol. 23, 1227–1244 (2002).Article 

    Google Scholar 
    23.Wong, M. H. G., Li, R., Xu, M. & Long, Y. An integrative approach to assessing the potential impacts of climate change on the Yunnan snub-nosed monkey. Biol. Conserv. 158, 401–409 (2013).Article 

    Google Scholar 
    24.Li, L., Xue, Y., Wu, G., Li, D. & Giraudoux, P. Potential habitat corridors and restoration areas for the black-and-white snub-nosed monkey Rhinopithecus bieti in Yunnan, China. Oryx 49, 719–726 (2015).Article 

    Google Scholar 
    25.Long, Y., Kirkpatrick, C. R., Zhongtai, & Xiaolin,. Report on the distribution, population, and ecology of the Yunnan snub-nosed monkey (Rhinopithecus bieti). Primates 35, 241–250 (1994).Article 

    Google Scholar 
    26.Afonso, E. et al. Creating small food-habituated groups might alter genetic diversity in the endangered Yunnan snub-nosed monkey. Glob. Ecol. Conserv. 26, e01422 (2021).Article 

    Google Scholar 
    27.Cui, Z., Li, J., Chen, Y. & Zhang, L. Molecular epidemiology, evolution, and phylogeny of Entamoeba spp. Infect. Genet. Evol. 75, 104018 (2019).PubMed 
    Article 

    Google Scholar 
    28.Jacob, A. S., Busby, E. J., Levy, A. D., Komm, N. & Clark, C. G. Expanding the Entamoeba universe: New hosts yield novel ribosomal lineages. J. Eukaryot. Microbiol. 63, 69–78 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Verweij, J. J. et al. Entamoeba histolytica infections in captive primates. Parasitol. Res. 90, 100–103 (2003).PubMed 
    Article 

    Google Scholar 
    30.Tachibana, H. et al. Isolation and characterization of a potentially virulent species Entamoeba nuttalli from captive Japanese macaques. Parasitology 136, 1169–1177 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Levecke, B. et al. Molecular identification of Entamoeba spp. in captive nonhuman primates. J. Clin. Microbiol. 48, 2988–2990 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Levecke, B. et al. Transmission of Entamoeba nuttalli and Trichuris trichiura from nonhuman primates to humans. Emerg. Infect. Dis. 21, 1871–1872 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Rivera, W. L., Yason, J. A. D. L. & Adao, D. E. V. Entamoeba histolytica and E. dispar infections in captive macaques (Macaca fascicularis) in the Philippines. Primates 51, 69 (2009).PubMed 
    Article 

    Google Scholar 
    34.Regan, C. S., Yon, L., Hossain, M. & Elsheikha, H. M. Prevalence of Entamoeba species in captive primates in zoological gardens in the UK. PeerJ 2, e492 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Elsheikha, H. M., Regan, C. S. & Clark, C. G. Novel Entamoeba findings in nonhuman primates. Trends Parasitol. 34, 283–294 (2018).PubMed 
    Article 

    Google Scholar 
    36.Tuda, J. et al. Identification of Entamoeba polecki with unique 18S rRNA gene sequences from celebes crested macaques and pigs in Tangkoko Nature Reserve, North Sulawesi, Indonesia. J. Eukaryot. Microbiol. 63, 572–577 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Nolan, M. J. et al. Molecular characterisation of protist parasites in human-habituated mountain gorillas (Gorilla beringei beringei), humans and livestock, from Bwindi Impenetrable National Park, Uganda. Parasit. Vectors 10, 340 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Ruiz-López, M. J., Monello, R. J., Gompper, M. E. & Eggert, L. S. The effect and relative importance of neutral genetic diversity for predicting parasitism varies across parasite taxa. PLoS ONE 7, e45404 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Acevedo-Whitehouse, K. et al. Contrasting effects of heterozygosity on survival and hookworm resistance in California sea lion pups. Mol. Ecol. 15, 1973–1982 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Grueter, C. C. et al. Ranging of Rhinopithecus bieti in the Samage Forest, China. I. Characteristics of range use. Int. J. Primatol. 29, 1121–1145 (2008).Article 

    Google Scholar 
    41.Li, D. et al. Ranging of Rhinopithecus bieti in the Samage Forest, China. II. Use of land cover types and altitudes. Int. J. Primatol. 29, 1147 (2008).Article 

    Google Scholar 
    42.Xue, Y. et al. Analysis of habitat connectivity of the Yunnan snub-nosed monkeys (Rhinopithecus bieti) using landscape genetics. Shengtai Xuebao Acta Ecol. Sin. 31, 5886–5893 (2011).ADS 

    Google Scholar 
    43.Fu, R., Li, L., Yu, Z., Afonso, E. & Giraudoux, P. Spatial and temporal distribution of Yunnan snub-nosed monkey, Rhinopithecus bieti, indices. Mammalia 83, 103 (2018).Article 

    Google Scholar 
    44.Vlčková, K. et al. Diversity of Entamoeba spp. in African great apes and humans: An insight from Illumina MiSeq high-throughput sequencing. Int. J. Parasitol. 48, 519–530 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    45.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).Article 

    Google Scholar 
    46.Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient manipulation of biological strings. (2017).48.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Wright, E. S., Yilmaz, L. S. & Noguera, D. R. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol. 78, 717–725 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Schliep, K. P. phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Morgan, M. et al. ShortRead: A bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25, 2607–2608 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Galan, M. et al. 16S rRNA Amplicon sequencing for epidemiological surveys of bacteria in wildlife. mSystems 1, e00032 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Smith, D. P. & Peay, K. G. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE 9, e90234 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Stensvold, C. R. et al. Increased sampling reveals novel lineages of Entamoeba: Consequences of genetic diversity and host specificity for taxonomy and molecular detection. Protist 162, 525–541 (2011).PubMed 
    Article 

    Google Scholar 
    56.Burnham, K. P. & Anderson, D. R. Data-based selection of an appropriate biological model: The key to modern data analysis. In Wildlife 2001: Populations (eds McCullough, D. R. & Barrett, R. H.) 16–30 (Springer, 2001). https://doi.org/10.1007/978-94-011-2868-1_3.Chapter 

    Google Scholar 
    57.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. (2019).58.Matsubayashi, M. et al. First detection and molecular identification of Entamoeba bovis from Japanese cattle. Parasitol. Res. 117, 339–342 (2018).PubMed 
    Article 

    Google Scholar 
    59.Balloux, F., Amos, W. & Coulson, T. Does heterozygosity estimate inbreeding in real populations?. Mol. Ecol. 13, 3021–3031 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Szulkin, M., Bierne, N. & David, P. Heterozygosity-fitness correlations: A time for reappraisal. Evolution 64, 1202–1217 (2010).PubMed 

    Google Scholar 
    61.Feng, M. et al. Prevalence and genetic diversity of Entamoeba species infecting macaques in southwest China. Parasitol. Res. 112, 1529–1536 (2013).PubMed 
    Article 

    Google Scholar 
    62.Guan, Y. et al. Comparative analysis of genotypic diversity in Entamoeba nuttalli isolates from Tibetan macaques and rhesus macaques in China. Infect. Genet. Evol. 38, 126–131 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Ponce Gordo, F., Martı́nez Dı́az, R. A. & Herrera, S. Entamoeba struthionis n.sp. (Sarcomastigophora: Endamoebidae) from ostriches (Struthio camelus). Vet. Parasitol. 119, 327–335 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Ai, S. et al. The first survey and molecular identification of Entamoeba spp. in farm animals on Qinghai-Tibetan Plateau of China. Comp. Immunol. Microbiol. Infect. Dis. 75, 101607 (2021).PubMed 
    Article 

    Google Scholar 
    65.Stensvold, C. R., Lebbad, M. & Clark, C. G. Genetic characterisation of uninucleated cyst-producing Entamoeba spp. from ruminants. Int. J. Parasitol. 40, 775–778 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Avian vampire fly (Philornis downsi) mortality differs across Darwin’s finch host species

    1.Hutchinson, G. E. Cold Spring Harbor Symposia on Quantitative Biology. Concluding Remarks 22 415–427 (1957).2.Smith, E. P. Niche breadth, resource availability, and inference. Ecology 63, 1675–1681. https://doi.org/10.2307/1940109 (1982).Article 

    Google Scholar 
    3.Leibold, M. A. The niche concept revisited: Mechanistic models and community context. Ecology 76, 1371–1382. https://doi.org/10.2307/1938141 (1995).Article 

    Google Scholar 
    4.Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206. https://doi.org/10.1146/annurev-ecolsys-110316-023003 (2017).Article 

    Google Scholar 
    5.Jaenike, J. Host specialization in phytophagous insects. Annu. Rev. Ecol. Syst. 21, 243–273. https://doi.org/10.1146/annurev.es.21.110190.001331 (1990).Article 

    Google Scholar 
    6.Thompson, J. N. The Coevolutionary Process (University of Chicago Press, 1994).Book 

    Google Scholar 
    7.Krasnov, B. R., Mouillot, D., Shenbrot, G. I., Khokhlova, I. S. & Poulin, R. Geographical variation in host specificity of fleas (Siphonaptera) parasitic on small mammals: The influence of phylogeny and local environmental conditions. Ecography 27, 787–797. https://doi.org/10.1111/j.0906-7590.2004.04015.x (2004).Article 

    Google Scholar 
    8.Poullain, V., Gandon, S., Brockhurst, M. A., Buckling, A. & Hochberg, M. E. The evolution of specificity in evolving and coevolving antagonistic interactions between bacteria and its phage. Evolution 62, 1–11. https://doi.org/10.1111/j.1558-5646.2007.00260.x (2008).Article 
    PubMed 

    Google Scholar 
    9.Whitlock, M. C. The Red Queen beats the Jack-Of-All-Trades: The limitations on the evolution of phenotypic plasticity and niche breadth. Am. Nat. 148, S65–S77. https://doi.org/10.1086/285902 (1996).Article 

    Google Scholar 
    10.Gandon, S. Local adaptation and the geometry of host–parasite coevolution. Ecol. Lett. 5, 246–256. https://doi.org/10.1046/j.1461-0248.2002.00305.x (2002).Article 

    Google Scholar 
    11.Alizon, S. & Michalakis, Y. Adaptive virulence evolution: The good old fitness-based approach. Trends Ecol. Evol. 30, 248–254. https://doi.org/10.1016/j.tree.2015.02.009 (2015).Article 
    PubMed 

    Google Scholar 
    12.Frank, S. A. & Schmid-Hempel, P. Mechanisms of pathogenesis and the evolution of parasite virulence. J. Evol. Biol. 21, 396–404. https://doi.org/10.1111/j.1420-9101.2007.01480.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Beadell, J. S. et al. Global phylogeographic limits of Hawaii’s avian malaria. Proc. R. Soc. B: Biol. Sci. 273, 2935–2944. https://doi.org/10.1098/rspb.2006.3671 (2006).Article 

    Google Scholar 
    14.Krasnov, B. R. Functional and Evolutionary Ecology of Fleas: A Model for Ecological Parasitology (Cambridge University Press, 2008).Book 

    Google Scholar 
    15.Poulin, R. Evolutionary Ecology of Parasites (Princeton University Press, 2011).Book 

    Google Scholar 
    16.Välimäki, P. et al. Geographical variation in host use of a blood-feeding ectoparasitic fly: Implications for population invasiveness. Oecologia 166, 985–995. https://doi.org/10.1007/s00442-011-1951-y (2011).ADS 
    Article 
    PubMed 

    Google Scholar 
    17.Theodosopoulos, A. N., Hund, A. K. & Taylor, S. A. Parasites and host species barriers in animal hybrid zones. Trends Ecol. Evol. 34, 19–30. https://doi.org/10.1016/j.tree.2018.09.011 (2019).Article 
    PubMed 

    Google Scholar 
    18.Mackenzie, A. A trade-off for host plant utilization in the black bean aphid, Aphis fabae. Evolution 50, 155–162. https://doi.org/10.1111/j.1558-5646.1996.tb04482.x (1996).Article 
    PubMed 

    Google Scholar 
    19.Harrington, L. C., Edman, J. D. & Scott, T. W. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood?. J. Med. Entomol. 38, 411–422. https://doi.org/10.1603/0022-2585-38.3.411 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Dick, C. W. & Patterson, B. D. Against all odds: Explaining high host specificity in dispersal-prone parasites. Int. J. Parasitol. 37, 871–876. https://doi.org/10.1016/j.ijpara.2007.02.004 (2007).Article 
    PubMed 

    Google Scholar 
    21.Torchin, M. E. & Mitchell, C. E. Parasites, pathogens, and invasions by plants and animals. Front. Ecol. Environ. 2, 183–190. https://doi.org/10.1890/1540-9295(2004)002[0183:PPAIBP]2.0.CO;2 (2004).Article 

    Google Scholar 
    22.Clark, N. J. & Clegg, S. M. The influence of vagrant hosts and weather patterns on the colonization and persistence of blood parasites in an island bird. J. Biogeogr. 42, 641–651. https://doi.org/10.1111/jbi.12454 (2015).Article 

    Google Scholar 
    23.Kawecki, T. J. Red Queen meets Santa Rosalia: Arms races and the evolution of host specialization in organisms with parasitic lifestyles. Am. Nat. 152, 635–651. https://doi.org/10.1086/286195 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Egas, M., Dieckmann, U. & Sabelis, M. W. Evolution restricts the coexistence of specialists and generalists: The role of trade-off structure. Am. Nat. 163, 518–531. https://doi.org/10.1086/382599 (2004).Article 
    PubMed 

    Google Scholar 
    25.Poulin, R. & Keeney, D. B. Host specificity under molecular and experimental scrutiny. Trends Parasitol. 24, 24–28. https://doi.org/10.1016/j.pt.2007.10.002 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Lyimo, I. N. & Ferguson, H. M. Ecological and evolutionary determinants of host species choice in mosquito vectors. Trends Parasitol. 25, 189–196. https://doi.org/10.1016/j.pt.2009.01.005 (2009).Article 
    PubMed 

    Google Scholar 
    27.Visher, E. & Boots, M. The problem of mediocre generalists: Population genetics and eco-evolutionary perspectives on host breadth evolution in pathogens. Proc. R. Soc. B: Biol. Sci. 287, 20201230. https://doi.org/10.1098/rspb.2020.1230 (2020).Article 

    Google Scholar 
    28.Sarfati, M. et al. Energy costs of blood digestion in a host-specific haematophagous parasite. J. Exp. Biol. 208, 2489. https://doi.org/10.1242/jeb.01676 (2005).Article 
    PubMed 

    Google Scholar 
    29.Fry, J. D. The evolution of host specialization: Are trade-offs overrated?. Am. Nat. 148, S84–S107. https://doi.org/10.1086/285904 (1996).Article 

    Google Scholar 
    30.Fessl, B. et al. Galápagos landbirds (passerines, cuckoos, and doves): Status, threats, and knowledge gaps. Galápagos Rep. 2016, 149 (2015).
    Google Scholar 
    31.Fessl, B., Heimpel, G. E. & Causton, C. E. Invasion of an avian nest parasite, Philornis downsi, to the Galapagos Islands: colonization history, adaptations to novel ecosystems, and conservation challenges. In Disease Ecology: Galapagos Birds and their Parasites (ed Patricia G. Parker) 213–266 (Springer International Publishing, 2018).32.Frankham, R. Do island populations have less genetic variation than mainland populations?. Heredity 78, 311–327. https://doi.org/10.1038/hdy.1997.46 (1997).Article 
    PubMed 

    Google Scholar 
    33.Reichard, M. et al. The bitterling–mussel coevolutionary relationship in areas of recent and ancient sympatry. Evolution 64, 3047–3056. https://doi.org/10.1111/j.1558-5646.2010.01032.x (2010).Article 
    PubMed 

    Google Scholar 
    34.Wiedenfeld, D. A., Jiménez, G. U., Fessl, B., Kleindorfer, S. & Carlos Valarezo, J. Distribution of the introduced parasitic fly Philornis downsi (Diptera, Muscidae) in the Galápagos Islands. Pacific Conserv. Biol. 13, 14–19. https://doi.org/10.1071/PC070014 (2007).Article 

    Google Scholar 
    35.Fessl, B., Sinclair, B. J. & Kleindorfer, S. The life-cycle of Philornis downsi (Diptera: Muscidae) parasitizing Darwin’s finches and its impacts on nestling survival. Parasitology 133, 739–747. https://doi.org/10.1017/S0031182006001089 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Kleindorfer, S. & Dudaniec, R. Y. Host-parasite ecology, behavior and genetics: A review of the introduced fly parasite Philornis downsi and its Darwin’s finch hosts. BMC Zool. 1, 1. https://doi.org/10.1186/s40850-016-0003-9 (2016).Article 

    Google Scholar 
    37.Galligan, T. H. & Kleindorfer, S. Naris and beak malformation caused by the parasitic fly, Philornis downsi (Diptera: Muscidae), in Darwin’s small ground finch, Geospiza fuliginosa (Passeriformes: Emberizidae). Biol. J. Lin. Soc. 98, 577–585. https://doi.org/10.1111/j.1095-8312.2009.01309.x (2009).Article 

    Google Scholar 
    38.Kleindorfer, S., Custance, G., Peters Katharina, J. & Sulloway Frank, J. Introduced parasite changes host phenotype, mating signal and hybridization risk: Philornis downsi effects on Darwin’s finch song. Proc. R. Soc. B: Biol. Sci. 286, 20190461. https://doi.org/10.1098/rspb.2019.0461 (2019).Article 

    Google Scholar 
    39.Kleindorfer, S., Peters, K. J., Custance, G., Dudaniec, R. Y. & O’Connor, J. A. Changes in Philornis infestation behavior threaten Darwin’s finch survival. Curr. Zool. 60, 542–550. https://doi.org/10.1093/czoolo/60.4.542 (2014).Article 

    Google Scholar 
    40.O’Connor, J. A., Sulloway, F. J., Robertson, J. & Kleindorfer, S. Philornis downsi parasitism is the primary cause of nestling mortality in the critically endangered Darwin’s medium tree finch (Camarhynchus pauper). Biodivers. Conserv. 19, 853–866. https://doi.org/10.1007/s10531-009-9740-1 (2010).Article 

    Google Scholar 
    41.Knutie, S. A. et al. Galápagos mockingbirds tolerate introduced parasites that affect Darwin’s finches. Ecology https://doi.org/10.1890/15-0119 (2016).Article 
    PubMed 

    Google Scholar 
    42.Peters, K. J., Evans, C., Aguirre, J. D. & Kleindorfer, S. Genetic admixture predicts parasite intensity: Evidence for increased hybrid performance in Darwin’s tree finches. R. Soc. Open Sci. 6, 181616. https://doi.org/10.1098/rsos.181616 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Kleindorfer, S. The ecology of clutch size variation in Darwin’s Small Ground Finch Geospiza fuliginosa: Comparison between lowland and highland habitats. Ibis 149, 730–741. https://doi.org/10.1111/j.1474-919X.2007.00694.x (2007).Article 

    Google Scholar 
    44.Fessl, B. & Tebbich, S. Philornis downsi– a recently discovered parasite on the Galápagos archipelago: A threat for Darwin’s finches?. Ibis 144, 445–451. https://doi.org/10.1046/j.1474-919X.2002.00076.x (2002).Article 

    Google Scholar 
    45.Dudaniec, R. Y., Fessl, B. & Kleindorfer, S. Interannual and interspecific variation in intensity of the parasitic fly, Philornis downsi, Darwin’s finches. Biol. Cons. 139, 325–332. https://doi.org/10.1016/j.biocon.2007.07.006 (2007).Article 

    Google Scholar 
    46.Cimadom, A. et al. Invasive parasites, habitat change and heavy rainfall reduce breeding success in Darwin’s Finches. PLoS ONE 9, e107518. https://doi.org/10.1371/journal.pone.0107518 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Cimadom, A. et al. Weed management increases the detrimental effect of an invasive parasite on arboreal Darwin’s finches. Biol. Cons. 233, 93–101. https://doi.org/10.1016/j.biocon.2019.02.025 (2019).Article 

    Google Scholar 
    48.Kleindorfer, S. & Dudaniec, R. Y. Love thy neighbour? Social nesting pattern, host mass and nest size affect ectoparasite intensity in Darwin’s tree finches. Behav. Ecol. Sociobiol. 63, 731–739. https://doi.org/10.1007/s00265-008-0706-1 (2009).Article 

    Google Scholar 
    49.Common, L. K., Dudaniec, R. Y., Colombelli-Négrel, D. & Kleindorfer, S. Taxonomic shifts in Philornis larval behaviour and rapid changes in Philornis downsi Dodge & Aitken (Diptera: Muscidae): An invasive avian parasite on the Galápagos Islands. in Life Cycle and Development of Diptera (ed Muhammad Sarwar) (IntechOpen, 2019).50.McNew, S. M. et al. Annual environmental variation influences host tolerance to parasites. Proc. R. Soc. B: Biol. Sci. 286, 20190049. https://doi.org/10.1098/rspb.2019.0049 (2019).CAS 
    Article 

    Google Scholar 
    51.McNew, S. M. & Clayton, D. H. Alien invasion: Biology of Philornis flies highlighting Philornis downsi, an introduced parasite of Galápagos birds. Annu. Rev. Entomol. 63, 369–387. https://doi.org/10.1146/annurev-ento-020117-043103 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Kleindorfer, S. & Dudaniec, R. Y. Hybridization fluctuates with rainfall in Darwin’s tree finches. Biol. J. Lin. Soc. 130, 79–88. https://doi.org/10.1093/biolinnean/blaa029 (2020).Article 

    Google Scholar 
    53.Peters, K. J., Myers, S. A., Dudaniec, R. Y., O’Connor, J. A. & Kleindorfer, S. Females drive asymmetrical introgression from rare to common species in Darwin’s tree finches. J. Evol. Biol. 30, 1940–1952. https://doi.org/10.1111/jeb.13167 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Kleindorfer, S. et al. Species collapse via hybridization in Darwin’s Tree Finches. Am. Nat. 183, 325–341. https://doi.org/10.1086/674899 (2014).Article 
    PubMed 

    Google Scholar 
    55.Loo, W. T., Dudaniec, R. Y., Kleindorfer, S. & Cavanaugh, C. M. An inter-island comparison of Darwin’s finches reveals the impact of habitat, host phylogeny, and island on the gut microbiome. PLoS ONE 14, e0226432. https://doi.org/10.1371/journal.pone.0226432 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Galapagos Conservancy. Galapagos Vital Signs: A satellite-based environmental monitoring system for the Galapagos Archipelago, https://galapagosvitalsigns.org (2021).57.Couri, M. Considerações sobre as relações ecológicas das larvas de Philornis Meinert, 1890 (Diptera, Muscidae) com aves. Revista Brasileira de Entomologia 29, 17–20. https://doi.org/10.1017/S0031182006001089 (1985).Article 

    Google Scholar 
    58.Skidmore, P. The Biology of the Muscidae of the World Vol. 29 (Springer, 1985).
    Google Scholar 
    59.O’Connor, J. A., Robertson, J. & Kleindorfer, S. Video analysis of host–parasite interactions in nests of Darwin’s finches. Oryx 44, 588–594. https://doi.org/10.1017/S0030605310000086 (2010).Article 

    Google Scholar 
    60.O’Connor, J. A., Robertson, J. & Kleindorfer, S. Darwin’s finch begging intensity does not honestly signal need in parasitised nests. Ethology 120, 228–237. https://doi.org/10.1111/eth.12196 (2014).Article 

    Google Scholar 
    61.Kleindorfer, S. & Sulloway, F. J. Naris deformation in Darwin’s finches: Experimental and historical evidence for a post-1960s arrival of the parasite Philornis downsi. Glob. Ecol. Conserv. 7, 122–131. https://doi.org/10.1016/j.gecco.2016.05.006 (2016).Article 

    Google Scholar 
    62.Lahuatte, P. F., Lincango, M. P., Heimpel, G. E. & Causton, C. E. Rearing larvae of the avian nest parasite, Philornis downsi (Diptera: Muscidae), on chicken blood-based diets. J. Insect Sci. https://doi.org/10.1093/jisesa/iew064 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Kleindorfer, S. Nesting success in Darwin’s small tree finch, Camarhynchus parvulus: Evidence of female preference for older males and more concealed nests. Anim. Behav. 74, 795–804. https://doi.org/10.1016/j.anbehav.2007.01.020 (2007).Article 

    Google Scholar 
    64.Nijhout, H. F. & Callier, V. Developmental mechanisms of body size and wing-body scaling in insects. Annu. Rev. Entomol. 60, 141–156. https://doi.org/10.1146/annurev-ento-010814-020841 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Singh, D. & Bala, M. The effect of starvation on the larval behavior of two forensically important species of blow flies (Diptera: Calliphoridae). For. Sci. Int. 193, 118–121. https://doi.org/10.1016/j.forsciint.2009.09.022 (2009).Article 

    Google Scholar 
    66.Coulson, S. J. & Bale, J. S. Characterisation and limitations of the rapid cold-hardening response in the housefly Musca domestica (Diptera: Muscidae). J. Insect Physiol. 36, 207–211. https://doi.org/10.1016/0022-1910(90)90124-X (1990).Article 

    Google Scholar 
    67.R Core Team. R: A language and environment for statistical computing. R version 4.0.3 (R Foundation for Statistical Computing, Vienna, Austria, 2020).68.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    69.Venables, B. & Ripley, B. Modern Applied Statistics with S-PLUS (Springer Science & Business Media, 2002).70.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage publications, 2011).
    Google Scholar 
    71.Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer, 2008).Book 

    Google Scholar 
    72.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).Book 

    Google Scholar 
    73.Fox, J. Effect displays in R for generalised linear models. J. Stat. Softw. https://doi.org/10.18637/jss.v008.i15 (2003).Article 

    Google Scholar 
    74.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodal Inference: A Practical Information-Theoretic Approach (eds Kenneth P. Burnham & David R. Anderson) 75–117 (Springer New York, 1998).75.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711. https://doi.org/10.1111/j.1420-9101.2010.02210.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Haaland, T. R., Wright, J. & Ratikainen, I. I. Generalists versus specialists in fluctuating environments: A bet-hedging perspective. Oikos 129, 879–890. https://doi.org/10.1111/oik.07109 (2020).Article 

    Google Scholar 
    77.Davies, N. Cuckoos, Cowbirds and Other Cheats (Bloomsbury Publishing, 2010).
    Google Scholar 
    78.Dudaniec, R. Y., Gardner, M. G. & Kleindorfer, S. Offspring genetic structure reveals mating and nest infestation behaviour of an invasive parasitic fly (Philornis downsi) of Galápagos birds. Biol. Invas. 12, 581–592. https://doi.org/10.1007/s10530-009-9464-x (2010).Article 

    Google Scholar 
    79.Fredensborg, B. L. & Poulin, R. Larval helminths in intermediate hosts: Does competition early in life determine the fitness of adult parasites?. Int. J. Parasitol. 35, 1061–1070. https://doi.org/10.1016/j.ijpara.2005.05.005 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    80.Begon, M., Harper, J. L. & Townsend, C. R. Ecology: Individuals, Populations and Communities (Blackwell Scientific Publications, 1986).
    Google Scholar 
    81.Fraik, A. K. et al. Disease swamps molecular signatures of genetic-environmental associations to abiotic factors in Tasmanian devil (Sarcophilus harrisii) populations. Evolution 74, 1392–1408. https://doi.org/10.1111/evo.14023 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Dvorak, M. et al. Conservation status of landbirds on Floreana: The smallest inhabited Galápagos Island. J. Field Ornithol. 88, 132–145. https://doi.org/10.1111/jofo.12197 (2017).Article 

    Google Scholar 
    83.Hedrick, P. W., Kim, T. J. & Parker, K. M. Parasite resistance and genetic variation in the endangered Gila topminnow. Anim. Conserv. 4, 103–109. https://doi.org/10.1017/S1367943001001135 (2001).Article 

    Google Scholar 
    84.Lewontin, R. C. & Birch, L. C. Hybridization as a source of variation for adaptation to new environments. Evolution 20, 315–336. https://doi.org/10.2307/2406633 (1966).CAS 
    Article 
    PubMed 

    Google Scholar 
    85.Wolinska, J., Lively, C. M. & Spaak, P. Parasites in hybridizing communities: The Red Queen again?. Trends Parasitol. 24, 121–126. https://doi.org/10.1016/j.pt.2007.11.010 (2008).Article 
    PubMed 

    Google Scholar 
    86.Floate, K. D. & Whitham, T. G. The, “Hybrid Bridge” Hypothesis: Host shifting via plant hybrid swarms. Am. Nat. 141, 651–662. https://doi.org/10.1086/285497 (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    87.Le Brun, N., Renaud, F., Berrebi, P. & Lambert, A. Hybrid zones and host-parasite relationships: Effect on the evolution of parasitic specificity. Evolution 46, 56–61. https://doi.org/10.1111/j.1558-5646.1992.tb01984.x (1992).Article 
    PubMed 

    Google Scholar 
    88.Fritz, R. S., Moulia, C. & Newcombe, G. Resistance of hybrid plants and animals to herbivores, pathogens, and parasites. Annu. Rev. Ecol. Syst. 30, 565–591. https://doi.org/10.1146/annurev.ecolsys.30.1.565 (1999).Article 

    Google Scholar 
    89.Moulia, C., Brun, N. L., Loubes, C., Marin, R. & Renaud, F. Hybrid vigour against parasites in interspecific crosses between two mice species. Heredity 74, 48–52. https://doi.org/10.1038/hdy.1995.6 (1995).Article 
    PubMed 

    Google Scholar 
    90.Gibson, A. K., Refrégier, G., Hood, M. E. & Giraud, T. Performance of a hybrid fungal pathogen on pure-species and hybrid host plants. Int. J. Plant Sci. 175, 724–730. https://doi.org/10.1086/676621 (2014).Article 

    Google Scholar 
    91.Arnold, M. L. & Martin, N. H. Hybrid fitness across time and habitats. Trends Ecol. Evol. 25, 530–536. https://doi.org/10.1016/j.tree.2010.06.005 (2010).Article 
    PubMed 

    Google Scholar 
    92.Ben-Yosef, M. et al. Host-specific associations affect the microbiome of Philornis downsi, an introduced parasite to the Galápagos Islands. Mol. Ecol. 26, 4644–4656. https://doi.org/10.1111/mec.14219 (2017).Article 
    PubMed 

    Google Scholar 
    93.Loo, W. T., García-Loor, J., Dudaniec, R. Y., Kleindorfer, S. & Cavanaugh, C. M. Host phylogeny, diet, and habitat differentiate the gut microbiomes of Darwin’s finches on Santa Cruz Island. Sci. Rep. 9, 18781. https://doi.org/10.1038/s41598-019-54869-6 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Knutie, S. A. Relationships among introduced parasites, host defenses, and gut microbiota of Galapagos birds. Ecosphere 9, e02286. https://doi.org/10.1002/ecs2.2286 (2018).Article 

    Google Scholar 
    95.Knutie, S. A., Chaves, J. A. & Gotanda, K. M. Human activity can influence the gut microbiota of Darwin’s finches in the Galapagos Islands. Mol. Ecol. 28, 2441–2450. https://doi.org/10.1111/mec.15088 (2019).Article 
    PubMed 

    Google Scholar  More

  • in

    Performance and host association of spotted lanternfly (Lycorma delicatula) among common woody ornamentals

    1.Barringer, L. E., Donovall, L. R., Spichiger, S. E., Lynch, D. & Henry, D. The first New World record of Lycorma delicatula (Insecta: Hemiptera: Fulgoridae). Entomol. News 125, 20–23 (2015).Article 

    Google Scholar 
    2.Dara, S. K., Barringer, L. & Arthurs, S. P. Lycorma delicatula (Hemiptera: Fulgoridae): A new invasive pest in the United States. J. Integr. Pest Manag. 6, 20 (2015).Article 

    Google Scholar 
    3.Jung, J. M., Jung, S., Byeon, D. & Lee, W. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae), by using CLIMEX. J. Asia-Pac. Biodivers. 10, 532–538 (2017).Article 

    Google Scholar 
    4.Lee, D.-H., Park, Y.-L. & Leskey, T. C. A review of biology and management of Lycorma delicatula (Hemiptera: Fulgoridae), an emerging global invasive species. J. Asia-Pac. Entomol. 22, 589–596 (2019).Article 

    Google Scholar 
    5.(NYSIPM) New York State Integrated Pest Management. 2020. Spotted lanternfly. https://nysipm.cornell.edu/environment/invasive-species-exotic-pests/spotted-lanternfly/. Accessed 18 January 2021.6.Park, M., Kim, S. M. & Lee, J. H. Genetic structure of Lycorma delicatula (Hemiptera: Fulgoridae) populations in Korea: implication for invasion processes in heterogeneous landscapes. Bull. Entomol. Res. 103, 414–424 (2013).CAS 
    Article 

    Google Scholar 
    7.Keller, J. A. et al. Dispersal of Lycorma delicatula (Hemiptera: Fulgoridae) nymphs through contiguous, deciduous forest. Environ. Entomol. 49, 1012–1018 (2020).Article 

    Google Scholar 
    8.Smyers, E. C. et al. Spatio-temporal model for predicting spring hatch of the spotted lanternfly (Hemiptera: Fulgoridae). Environ. Entomol. 50, 126–137 (2020).Article 

    Google Scholar 
    9.Wakie, T. T., Neven, L. G., Yee, W. L. & Lu, Z. The establishment risk of Lycorma delicatula (Hemiptera: Fulgoridae) in the United States and globally. J. Econ. Entomol. 113, 306–314 (2019).
    Google Scholar 
    10.Urban, J. M. Perspective: shedding light on spotted lanternfly impacts in the USA. Pest Manag. Sci. 76, 10–17 (2020).CAS 
    Article 

    Google Scholar 
    11.Harper, J. K., Stone, W., Kelsey, T. W. & Kime, L. F. Potential Economic Impact of the Spotted Lanternfly on Agriculture and Forestry in Pennsylvania (The Center for Rural Pennsylvania, 2019).
    Google Scholar 
    12.Song, M. K. Damage by Lycorma delicatula and chemical control in vineyards. M.S. thesis. Chunbuk National University, Korea (2010).13.Tedders, W. L. & Smith, J. S. Shading effect on pecan by sooty mold growth. J. Econ. Entomol. 69, 551–553 (1976).Article 

    Google Scholar 
    14.Lemos-Filho, J. P. D. & Paiva, É. A. S. The effects of sooty mold on photosynthesis and mesophyll structure of mahogany (Swietenia macrophylla King., Meliaceae). Bragantia 65, 11–17 (2006).Article 

    Google Scholar 
    15.Han, J. M. et al. Lycorma delicatula (Hemiptera: Auchenorrhyncha: Fulgoridae: Aphaeninae) finally, but suddenly arrived in Korea. Entomol. Res. 38, 281–286 (2008).Article 

    Google Scholar 
    16.Park, J. D. et al. Biological characteristics of Lycorma delicatula and the control effects of some insecticides. Korean J. Appl. Entomol. 48, 53–57 (2009).Article 

    Google Scholar 
    17.Liu, H. Oviposition substrate selection, egg mass characteristics, host preference, and life history of the spotted lanternfly (Hemiptera: Fulgoridae) in North America. Environ. Entomol. 48, 1452–1468 (2019).Article 

    Google Scholar 
    18.Barringer, L. E. & Ciafré, C. M. Worldwide feeding host plants of spotted lanternfly, with significant additions from North America. Environ. Entomol. 49, 999–1011 (2020).Article 

    Google Scholar 
    19.Uyi, O. et al. Spotted lanternfly (Hemiptera: Fulgoridae) can complete development and reproduce without access to the preferred host, Ailanthus altissima. Environ. Entomol. 49, 1185–1190 (2020).Article 

    Google Scholar 
    20.Murman, K. Distribution, survival, and development of spotted lanternfly on host plants found in north America. Environ. Entomol. 49, 1270–1281 (2020).Article 

    Google Scholar 
    21.Magnusson, A. glmmTMB: Generalized linear mixed models using template model builder. R package v. 0.1.3. https://github.com/glmmTMB (2017).22.R Development Core Team. R: A Language and Environment for Statistical Computing Computer Program, Version 3.6.3 (R Development Core Team, 2020).
    Google Scholar 
    23.Kariyat, R. R. & Portman, S. L. Plant–herbivore interactions: Thinking beyond larval growth and mortality. Am. J. Bot. 103, 1–3 (2016).Article 

    Google Scholar 
    24.Fordyce, J. A. & Shapiro, A. M. Another perspective on the slow-growth/high-mortality hypothesis: chilling effects on swallowtail larvae. Ecology 84, 263–268 (2003).Article 

    Google Scholar 
    25.Uesugi, A. The slow-growth high-mortality hypothesis: direct experimental support in a leaf mining fly. Ecol. Entomol. 40, 221–228 (2015).Article 

    Google Scholar 
    26.Song, S., Kim, S., Kwon, S. W., Lee, S.-I. & Jablonski, P. G. Defense sequestration associated with narrowing of diet and ontogenetic change to aposematic colours in the spotted lanternfly. Sci. Rep. 8, 16831 (2018).ADS 
    Article 

    Google Scholar 
    27.Domingue, M. J. & Baker, T. C. Orientation of flight for physically disturbed spotted lanternflies, Lycorma delicatula, (Hemiptera, Fulgoridae). J. Asia Pac. Entomol. 22, 117–120 (2019).Article 

    Google Scholar 
    28.Lee, J. E. et al. Feeding behavior of Lycorma delicatula (Hemiptera: Fulgoridae) and response on feeding stimulants of some plants. Korean J. Appl. Entomol. 48, 467–477 (2009).Article 

    Google Scholar 
    29.Liu, H. Seasonal development, cumulative growing degree-days, and population density of spotted lanternfly (Hemiptera: Fulgoridae) on selected hosts and substrates. Environ. Entomol. 49, 1171–1184 (2020).Article 

    Google Scholar 
    30.Jaenike, J. On optimal oviposition behavior in phytophagous insects. Theor. Popul. Biol. 14, 350–356 (1978).CAS 
    Article 

    Google Scholar 
    31.Gripenberg, S., Mayhew, P. J., Parnell, M. & Roslin, T. A meta-analysis of preference–performance relationships in phytophagous insects. Ecol. Lett. 13, 383–393 (2010).Article 

    Google Scholar 
    32.Fujiyama, N., Torii, C., Akabane, M. & Katakura, H. Oviposition site selection by herbivorous beetles: a comparison of two thistle feeders: Cassida rubiginosa and Henosepilachnniponica. Entomol. Exp. Appl. 128, 41–48 (2008).Article 

    Google Scholar 
    33.Wolfin, M. S., Myrick, A. J. & Baker, T. C. Flight duration capabilities of dispersing adult spotted lanternflies, Lycorma delicatula. J. Insect Behav. 33, 125–137 (2020).Article 

    Google Scholar 
    34.Faraji, F., Janssen, A. & Sabelis, M. W. Oviposition patterns in a predatory mite reduce the risk of egg predation caused by prey. Ecol. Entomol. 27, 660–664 (2002).Article 

    Google Scholar 
    35.Behmer, S. T. & Joern, A. Coexisting generalist herbivores occupy unique nutritional feeding niches. Proc. Natl. Acad. Sci. USA 105, 1977–1982 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Behmer, S. T. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54, 165–187 (2009).CAS 
    Article 

    Google Scholar  More

  • in

    Fine-scale structures as spots of increased fish concentration in the open ocean

    Acoustic measurementsA set of acoustic echo sounder data was used to analyze fish density. This was collected within the Mycto-3D-MAP program using split-beam echo sounders at 38 and 120 kHz. The Mycto-3D-MAP program included multiple large-scale oceanographic surveys during 2 years and a dedicated cruise in the Kerguelen area. The dataset was collected during 4 large-scale surveys in 2013 and 2014, both in summer (including both northward and southward transects) and in winter, corresponding to 6 acoustic transects of 2860 linear kilometers (see Table 1 for more details). Note that all legs except summer 2014 (MYCTO-3D-Map cruise) were logistic operations, during which environmental in situ data (such as temperature or salinity profiles) could not be collected. The data were then treated with a bi-frequency algorithm, applied to the 38 and 120 kHz frequencies (details of data collection and processing are provided in37). This provides a quantitative estimation of the concentration of gas-bearing organisms, mostly attributed to fish containing a gas-filled swimbladder in the water column38. Most mesopelagic fish present swimbladders and several works pointed out that myctophids are the dominant mesopelagic fish in the region39. Therefore, we considered the acoustic signal as mainly representative of myctophids concentration. Data were organized in acoustic units, averaging acoustic data over 1.1 km along the ship trajectory on average. Myctophid school length is in the order of tens of meters40. For this reason, acoustic units were considered as not autocorrelated. Every acoustic unit is composed of 30 layers, ranging from 10 to 300 meters (30 layers in total).The dataset was used to infer the Acoustic Fish Concentration (AFC) in the water column. We considered as AFC of the point ((x_i), (y_i)) of the ship trajectory the average of the bifrequency acoustic backscattering of 29 out of 30 layers (the first layer, 0-10 m, was excluded due to surface noise) AFC quantity is dimensionless.As the previous measurements were performed through acoustic measurements, a non-invasive technique, fishes were not handled for this study.Table 1 Details of the acoustic transects analyzed.Full size tableRegional data selectionThe geographic area of interest of the present study is the Southern Ocean. To select the ship transects belonging to this region, we used the ecopartition of41. Only points falling in the Antarctic Southern Ocean region were considered. We highlight that this choice is consistent with the ecopartition of42 (group 5), which is specifically designed for myctophids, the reference fish family (Myctophidae) of this study. Furthermore, this choice allowed us to exclude large scale fronts (i.e., fronts that are visible on monthly or yearly averaged maps) which have been the subject of past research works43,44. In this way our analysis is focused specifically on fine-scale fronts.Day-night data separationSeveral species of myctophids present a diel vertical migration. They live at great depths during the day (between 500 and 1000 m), ascending at dusk in the upper euphotic layer, where they spend the night. Since the maximal depth reached by the echo sounder we used is 300 m, in the analysis reported in Figs. 2 and 3 we excluded data collected during the day. However, their analysis is reported in SI.1. A restriction of our acoustic analyses to the ocean upper layer is also consistent with the fact that the fine-scale features we computed are derived in this work by satellite altimetry, thus representative of the upper part of the water column ((sim 50) m). Finally, we note that the choice of considering the echo sounder data in the first 300 m of the water columns is coherent with the fact that LCS may extend almost vertically in depth even at 600 m depth45,46 and with the fact that altimetry-derived velocity fields are consistent with subsurface currents in our region of interest down to 500 m20.Satellite dataVelocity current data and Finite-Size Lyapunov Exponent (FSLE) processing. Velocity currents are obtained from Sea Surface Height (SSH), which is measured by satellite altimetry, through geostrophic approximation. Data, which were downloaded from E.U. Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/), were obtained from DUACS (Data Unification and Altimeter Combination System) delayed-time multi-mission altimeter, and displaced over a regular grid with spatial resolution of (frac{1}{4}times frac{1}{4}^circ) and a temporal resolution of 1 day.Trajectories were computed with a Runge-Kutta scheme of the 4th order with an integration time of 6 hours. Finite-size Lyapunov Exponents (FSLE) were computed following the methods in14, with initial and final separation of (0.04^circ) and (0.4^circ) respectively. This Lagrangian diagnostic is commonly used to identify Lagrangian Coherent Structures. This method determines the location of barriers to transport, and it is usually associated with oceanic fronts9. Details on the Lagrangian techniques applied to altimetry data, including a discussion of its limitation, can be found in10.Temperature field and gradient computation The Sea Surface Temperature (SST) field was produced from the OSTIA global foundation Sea Surface Temperature (product id: SST_GLO_ SST_L4_NRT_OBSERVATIONS_010_001) from both infrared and microwave radiometers, and downloaded from CMEMS website. The data are represented over a regular grid with spatial resolution of (0.05times 0.05^circ) and daily-mean maps. The SST gradient was obtained from:$$begin{aligned} Grad SST=sqrt{g_x^2+g_y^2} end{aligned}$$where (g_x) and (g_y) are the gradients along the west-east and the north-south direction, respectively. To compute (g_x), the following expression was used:$$begin{aligned} g_x=frac{1}{2 dx}cdot (SST_{i+1}-SST_{i-1}) end{aligned}$$where the SST values of the adjacent grid cells (along the west-east direction: cells (i+1) and (i-1)) were employed. dx identifies the kilometric distance between two grid points along the longitude (which varies with latitude). The definition is analog for (g_y), considering this time the north-south direction and (dysimeq 5) km (0.05(^circ)).Chlorophyll field Chlorophyll estimations were obtained from the Global Ocean Color product (OCEANCOLOUR_ GLO_CHL_L4_REP_OBSERVATIONS_009_082-TDS) produced by ACRI-ST. This was downloaded from CMEMS website. Daily observations were used, in order to match the temporal resolution of the acoustic and satellite observations. The spatial resolution of the product is 1/24(^{circ }).Estimation of satellite data along ship trajectory For each point ((x_i), (y_i)) of the ship trajectory, we extracted a local value of FSLE, SST gradient, and chlorophyll concentration. These were obtained by considering the respective average value in a circular around of radius (sigma) of each point ((x_i), (y_i)) . Different (sigma) were tested (ranging from 0.1(^circ) to 0.6(^circ)), and the best results were obtained with (sigma =0.2^circ), reference value reported in the present work. This value is consistent with the resolution of the altimetry data.Statistical processingFront identification FSLE and SST gradient were used as diagnostics to detect frontal features, since they are typically associated with front intensity and Lagrangian Coherent Structures10. Note that the two diagnostics provide similar but not identical information. FSLEs are used to analyze the horizontal transport and to identify material lines along which a confluence of waters with different origins occur. These lines typically display an enhanced SST gradient because water masses of different origin have often contrasted SST signature. However, this is not a necessary condition. FSLE ridges may be invisible in SST maps if transport occurs in a region of homogeneous SST. Conversely, SST gradient unveils structures separating waters of different temperatures, whose contrast is often – but not always – associated with horizontal transport. Therefore, even if they usually detect the same structures, these two metrics are complementary. Frontal features were identified by considering a local FSLE (or SST gradient, respectively) value larger than a given threshold. The threshold values have been chosen heuristically but consistently with the ones found in previous works. For the FSLEs, we used 0.08 days(^{-1}), a threshold value in the range of the ones chosen in18 and47. For the SST gradient, we considered representative of thermal front values greater than 0.009({^circ })C/km, which is about half the value chosen in47. However, in that work, the SST gradient was obtained from the advection of the SST field with satellite-derived currents for the previous 3 days, a procedure which is known to enhance tracer gradients.Bootstrap method The threshold value splits the AFC into two groups: AFC co-located with FSLE or SST gradient values over the threshold are considered as measured in proximity of a front (i.e., statistically associated with a front), while AFC values below the threshold are considered as not associated with a frontal structure. The statistical independence of the two groups was tested using a Mann-Whitney or U test. Finally, bootstrap analysis is applied following the methodologies used in47. This allows estimating the probability that the difference in the mean AFC values, over and under the threshold, is significant, and not the result of statistical fluctuations. Other diagnostics tested are reported in SI.1.Linear quantile regression Linear quantile regression method48 was employed as no significant correlation was found between the explanatory and the response variables. This can be due to the fact that multiple factors (such as prey or predator distributions) influence the fish distribution other than the frontal activity considered. The presence of these other factors can shadow the relationship of the explanatory variables (in this case, the FSLE and the SST gradient) with the mean value of the response variable (the AFC). A common method to address this problem is the use of the quantile regression48,49, that explores the influence of the explanatory variables on other parts of the response variable distribution. Previous studies, adopting this methodology, revealed the limiting role played by the explanatory variables in the processes considered50. The percentiles values used are 75th, 90th, 95th, and 99th. The analysis is performed using the statistical package QUANTREG in R (https://CRAN.R-project.org/package=quantreg, v.5.3848,51), using the default settings.Chlorophyll-rich waters selection The AFC observations were considered in chlorophyll-rich waters if the corresponding chlorophyll concentration was higher than a given threshold. All the other AFC measurements were excluded, and a linear regression performed between the remaining AFC and FSLE (or SST gradient) values. The corresponding thresholds (one for FSLE and one for SST gradient case) were selected though a sensitivity test reported in SI.1. These resulted in 0.22 and 0.17 mg/m(^3) for FSLE and for SST gradient, respectively. These values are consistent among them and, in addition, they are in coherence with previous estimates of chlorophyll concentration used to characterise productive waters in the Southern Ocean (0.26mg/m(^3)52).Gradient climbing modelAn individual-based mechanistic model is built to describe how fish could move along frontal features. We assume that the direction of fish movement along a frontal gradient is influenced by the noise of the prey field (SI. 2). Specifically, we consider a Markovian process along the (one dimensional) cross-front direction. Time is discretized in timesteps of length (varDelta tau). We presuppose that, at each timestep, the fish chooses between swimming in one of the two opposite cross-front directions (“left” and “right”). This decision depends on the comparison between the quantity of a tracer (a cue) present at its actual position and the one perceived at a distance (p_R) from it, where (p_R) is the perceptual range of the fish. We consider the fish immersed in a tracer whose concentration is described by the function T(x).An expression for the average velocity of the fish, (U_F(x)), can now be derived. We assume that the fish is able to observe simultaneously the tracer to its right and its left. Fish sensorial capacities are discussed in SI.2. The tracer observed is affected by noise. Noise distribution is considered uniform, with (-xi _{MAX}{tilde{T}}(x_0-varDelta x)), the fish will move to the right, and, vice versa, to the left. We hypothesize that the observational range is small enough to consider the tracer variation as linear, as illustrated in Fig. S7 (SI. 3). In this way:$$begin{aligned}&{tilde{T}}(x_0+varDelta x)=T(x_0)+ p_R,frac{partial T}{partial x}+xi _1 \&{tilde{T}}(x_0-varDelta x)=T(x_0)- p_R,frac{partial T}{partial x}+xi _2 ;. end{aligned}$$In case of absence of noise, or with (xi _{MAX}p_R,frac{partial T}{partial x}). If (T(x_0+varDelta x) >T(x_0-varDelta x)) (as in Fig. S7), and the fish will swim leftward if$$begin{aligned} xi _1-xi _2 >2p_R,frac{partial T}{partial x}; . end{aligned}$$Since (xi _1) and (xi _2) range both between (-xi _{MAX}) and (xi _{MAX}), we can obtain the probability of leftward moving P(L). This will be the probability that the difference between (xi _1) and (xi _2) is greater than (2p_R,frac{partial T}{partial x})$$begin{aligned} P(L)&=frac{1}{8xi _{MAX}^2} bigg (2 xi _{MAX} – 2 p_R,frac{partial T}{partial x}bigg )^2\&=frac{1}{2} bigg (1-frac{p_R}{xi _{MAX}},frac{partial T}{partial x}bigg )^2 end{aligned}$$.The probability of moving right will be$$begin{aligned} P(R)&=1-P(L) end{aligned}$$and their difference gives the frequency of rightward moving$$begin{aligned} P(R)-P(L)&=1-2P(L)=1-bigg (1-frac{p_R}{xi _{MAX}},frac{partial T}{partial x}bigg )^2\&=frac{p_R}{xi _{MAX}}frac{partial T}{partial x}bigg (2-frac{p_R}{xi _{MAX}}bigg |frac{partial T}{partial x}bigg |bigg ); , end{aligned}$$where the absolute value of (frac{partial T}{partial x}) has been added to preserve the correct climbing direction in case of negative gradient. The above expression leads to:$$begin{aligned} U_F(x)=frac{V p_R}{xi _{MAX}}frac{partial T}{partial x}bigg (2-frac{p_R}{xi _{MAX}}bigg |frac{partial T}{partial x}bigg |bigg );. end{aligned}$$
    (1)
    We then assume that, over a certain value of tracer gradient (frac{partial T}{partial x}_{MAX}), the fish are able to climb the gradient without being affected by the noise. This assumption, from a biological perspective, means that the fish does not live in a completely noisy environment, but that under favorable circumstances it is able to correctly identify the swimming direction that leads to higher prey availability. This means that$$begin{aligned} p_R*frac{partial T}{partial x}_{MAX}=xi _{MAX},. end{aligned}$$
    (2)
    Substituting then (2) into (1) gives:$$begin{aligned} U_F(x)=V frac{frac{partial T}{partial x}}{frac{partial T}{partial x}_{MAX}}bigg (2-frac{big |frac{partial T}{partial x}big |}{frac{partial T}{partial x}_{MAX}}bigg );. end{aligned}$$
    (3)
    Finally, we can include an eventual effect of transport by the ocean currents, considering that the tracer is advected passively by them, simply adding the current speed (U_C) to Expr. (3).The representations provided are individual based, with each individual representing a single fish. However, we note that all the considerations done are also valid if we consider an individual representing a fish school. (U_F) will then simply represent the average velocity of the fish schools. This aspect should be stressed since many fish species live and feed in groups, especially myctophids (see SI.2 for further details).Continuity equation in one dimension The solution of this model will now be discussed. The continuity equation is first considered in one dimension. The starting scenario is simply an initially homogeneous distribution of fish, that are moving in a one dimensional space with a velocity given by (U_{F}(x)).We assume that in the time scales considered (few days to some weeks), the fish biomass is conserved, so for instance fishing mortality or growing rates are neglected. In that case, we can express the evolution of the concentration of the fish (rho) by the continuity equation$$begin{aligned} frac{partial rho }{partial t}+nabla cdot mathbf{j },=,0 end{aligned}$$
    (4)
    in which (mathbf{j }=rho ;U_{F}(x)), so that Eq. (4) becomes$$begin{aligned} frac{partial rho }{partial t}+nabla cdot big (rho ;U_{F}(x)big ),=,0;. end{aligned}$$
    (5)
    In one dimension, the divergence is simply the partial derivate along the x-axis. Eq. (5) becomes$$begin{aligned} frac{partial rho }{partial t}=-frac{partial }{partial x} bigg (rho ;U_{F}bigg ) end{aligned}$$
    (6)
    Now, we decompose the fish concentration (rho) in two parts, a constant one and a variable one (rho ,=,rho _0+{tilde{rho }}). Eq. (6) will then become$$begin{aligned} frac{partial rho }{partial t}=-U_Ffrac{partial {tilde{rho }}}{partial x}-rho frac{partial U_F}{partial x};. end{aligned}$$
    (7)
    Using Expr. (3), Eq. (7) is numerically simulated with the Lax method. In Expr. (3) we impose that (U_F(x)=V) when (U_F(x) >V). This biological assumption means that fish maximal velocity is limited by a physiological constraint rather than by gradient steepness. Details of the physical and biological parameters are provided in SI.6. More

  • in

    A new argument against cooling by convective air eddies formed above sunlit zebra stripes

    Test surfacesWe used smooth and hairy, homogeneous and striped (with different widths of black and white stripes) test surfaces. In order to mimic the curved zebra back, all test surfaces had a convex cylindrical shape (length: 15 cm, radius: 7 cm). In the schlieren measurements (see subsection “Schlieren imaging”), the cylinder’s horizontal long axis was perpendicular (Supplementary Fig. S1A,B) or parallel (Supplementary Fig. S1C) to the collimated horizontal light beam illuminating the target area, while the stripes were perpendicular (Supplementary Fig. S1A) or parallel (Supplementary Fig. S1B) to the cylinder’s long axis. Supplementary Tables S1 and S2 list the patterns, colours and names of the 8 smooth and 10 hairy test surfaces. The smooth surfaces were composed of cardboard squares (15 cm × 15 cm) (Supplementary Fig. S2). The hairy surfaces were composed of cattle, horse and zebra hides glued by dextrin to a cylindrical (length: 15 cm, radius: 7 cm) gypsum base (Supplementary Fig. S3). Surfaces hsc1(7b7w)perp, hsc1(8b7w)par, hsc3(3b2w)perp and hsgc3(3s2L)perp were used to model that the black stripes of zebras could be separately erected, while the white remained flat7. No animals were killed, the horse and cattle hides were provided by Hungarian horse and cattle keepers, while the zebra hide was obtained from a Hungarian zoological garden.Thermography of lamplit test surfacesUsing a thermocamera (VarioCAM, Jenoptik Laser Optik Systeme GmbH, Jena, Germany, nominal precision of ± 1.5 K, with relative pixel-to-pixel precision  1 s. Since in the upper rectangular window of the filtered schlieren images the lifespan t of local minima of I(x) was very short, we performed statistics only for the lower rectangular window.For the statistical analysis of the characteristics of I(x) (Nmin, ΔI, dave) and air stream behaviour (t, dcovered, v, dmax, dse), we applied Principal Component Analysis (PCA) and fitted ellipses to component scores with 95% confidence interval. We applied Wilcoxon rank sum test with Bonferroni correction for the datasets. Because of the large sample size of the dataset Nmin, ΔI, dave—for smooth test surfaces 4475 observations per surface and for hairy test surfaces 5369 observations per surface—, the Wilcoxon rank sum test would result in highly significant differences for almost all comparisons15. Therefore, we used a Monte Carlo approach, where we randomly selected 250 (≈ 5% of the full dataset) samples, ran the Wilcoxon rank sum test with Bonferroni correction, recorded the results, repeated this 499 times (to have 500 runs) and finally the average of the results of the 500 runs was calculated. The data evaluation was made by our custom-written scripts in Python programming language. For statistical analyses we used the R statistical package 3.6.316.Disturbance caused by an artificial wind and a butterflyTo demonstrate the influence of very weak winds on the air streams above lamplit test surfaces, we blew air by a compressor with a press of 1.6 bar from 1.5 m above the following test surfaces: ss1(8b7w), hsz(8b7w)perp, hsh1(8b8w)perp and hhbc. The compressor tube ended in an air-blow gun. Before the measurements, the air pressure was 4 bar in the 3-litre compressor tank, and the regulator was set to 1.6 bar. The compressor was turned off prior to recording a given sequence and during the measurement the air-blow gun was used to generate horizontal “wind” until the pressure decreased to 1 bar (atmospheric pressure). The artificial wind speed created by the compressor was measured (with accuracy  More

  • in

    Metagenomes, metatranscriptomes and microbiomes of naturally decomposing deadwood

    1.Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Rinne-Garmston, K. T. et al. Carbon flux from decomposing wood and its dependency on temperature, wood N2 fixation rate, moisture and fungal composition in a Norway spruce forest. Glob. Chang. Biol. 25, 1852–1867 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Šamonil, P. et al. Convergence, divergence or chaos? Consequences of tree trunk decay for pedogenesis and the soil microbiome in a temperate natural forest. Geoderma 376, 114499 (2020).ADS 
    Article 

    Google Scholar 
    5.Tláskal, V. et al. Complementary roles of wood-inhabiting fungi and bacteria facilitate deadwood decomposition. mSystems 6, e01078–20 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Odriozola, I. et al. Fungal communities are important determinants of bacterial community composition in deadwood. mSystems 6, e01017–20 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Valášková, V., de Boer, W., Gunnewiek, P. J. A. K., Pospíšek, M. & Baldrian, P. Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J. 3, 1218–1221 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    8.Brunner, A. & Kimmins, J. P. Nitrogen fixation in coarse woody debris of Thuja plicata and Tsuga heterophylla forests on northern Vancouver Island. Can. J. For. Res. 33, 1670–1682 (2003).CAS 
    Article 

    Google Scholar 
    9.Rinne, K. T. et al. Accumulation rates and sources of external nitrogen in decaying wood in a Norway spruce dominated forest. Funct. Ecol. 31, 530–541 (2016).Article 

    Google Scholar 
    10.Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).Article 

    Google Scholar 
    11.Tláskal, V. & Baldrian, P. Deadwood-inhabiting bacteria show adaptations to changing carbon and nitrogen availability during decomposition. Front. Microbiol. 12, 685303 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Lemos, L. N., Mendes, L. W., Baldrian, P. & Pylro, V. S. Genome-resolved metagenomics is essential for unlocking the microbial black box of the soil. Trends Microbiol. 29, 279–282 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Větrovský, T. et al. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Sci. Data 7, 228 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Anderson-Teixeira, K. J., Davies, S. J., Bennett, A. C., Muller-landau, H. C. & Wright, S. J. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21, 528–549 (2015).Article 

    Google Scholar 
    16.Baldrian, P. et al. Fungi associated with decomposing deadwood in a natural beech-dominated forest. Fungal Ecol. 23, 109–122 (2016).Article 

    Google Scholar 
    17.Smyth, C. E. et al. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing wood blocks in Canadian forests. Plant Soil 9, 46–62 (2016).
    Google Scholar 
    18.Král, K. et al. Local variability of stand structural features in beech dominated natural forests of Central Europe: Implications for sampling. For. Ecol. Manage. 260, 2196–2203 (2010).Article 

    Google Scholar 
    19.Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Lanzén, A. et al. CREST – Classification resources for environmental sequence tags. PLoS One 7, e49334 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Žifčáková, L., Větrovský, T., Howe, A. & Baldrian, P. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ. Microbiol. 18, 288–301 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    23.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS 
    Article 

    Google Scholar 
    25.Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Lee, M. D. GToTree: A user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Ihrmark, K. et al. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Větrovský, T., Baldrian, P. & Morais, D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34, 2292–2294 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Aronesty, E. Comparison of sequencing utility programs. Open Bioinforma. J. 7, 1–8 (2013).MathSciNet 
    Article 

    Google Scholar 
    38.Nilsson, R. H. et al. An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol. 3, 284–287 (2010).Article 

    Google Scholar 
    39.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classification. Nucleic Acids Res. 47, D259–D264 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Wright, E. S. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 8, 352–359 (2016).Article 

    Google Scholar 
    43.Murali, A., Bhargava, A. & Wright, E. S. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6, 140 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.NCBI BioProject https://identifiers.org/ncbi/bioproject:PRJNA603240 (2020).45. NCBI Sequence Read Archive, https://identifiers.org/ncbi/bioproject:PRJNA672674 (2020).46.Sutela, S., Poimala, A. & Vainio, E. J. Viruses of fungi and oomycetes in the soil environment. FEMS Microbiol. Ecol. 95, fiz119 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Mackelprang, R. et al. Microbial community structure and functional potential in cultivated and native tallgrass prairie soils of the Midwestern United States. Front. Microbiol. 9, 1775 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Hervé, V. et al. Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. PeerJ 8, e8614 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Clissmann, F. et al. First insight into dead wood protistan diversity: a molecular sampling of bright-spored Myxomycetes (Amoebozoa, slime-moulds) in decaying beech logs. FEMS Microbiol. Ecol. 91, fiv050 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    51.Urich, T. et al. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3, e2527 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Geisen, S. et al. Metatranscriptomic census of active protists in soils. ISME J. 9, 2178–2190 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Tláskal, V., Zrůstová, P., Vrška, T. & Baldrian, P. Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiol. Ecol. 93, fix157 (2017).Article 
    CAS 

    Google Scholar 
    54.Moll, J. et al. Bacteria inhabiting deadwood of 13 tree species reveal great heterogeneous distribution between sapwood and heartwood. Environ. Microbiol. 20, 3744–3756 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Christofides, S. R., Hiscox, J., Savoury, M., Boddy, L. & Weightman, A. J. Fungal control of early-stage bacterial community development in decomposing wood. Fungal Ecol. 42, 100868 (2019).Article 

    Google Scholar 
    56.Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Seibold, S. et al. Experimental studies of dead-wood biodiversity — A review identifying global gaps in knowledge. Biol. Conserv. 191, 139–149 (2015).Article 

    Google Scholar  More

  • in

    Opposing shifts in distributions of chlorophyll concentration and composition in grassland under warming

    The CV represents the discrete degree of trait values, that is, the size of the trait space (Fig. 6b; Supplementary Note S1); S and K are generally used to describe the shape of trait distribution (Fig. 6c,d, Supplementary Note S1). Environment filtering can force a trait to deviate from the original distribution, with characteristics of smaller CV and larger S and K values16,17. Partly consistent with our hypothesis, MAT significantly exerted positive effects on the total concentration of CV, S, and K, but weaker negative effects on the three values of Chl a/b (Fig. 6a). That is, the distributions of Chl concentration and composition shifted in opposite directions under global warming: Chl concentration was distributed in a broader but more differential way (Fig. 7a), while Chl a/b was distributed in a narrower but more uniform way (Fig. 7b).Figure 7Theoretical sketches of distribution shifts for (a) chlorophyll concentration and (b) composition (Chl a/b) under global warming. Purple curves denote the current distributions, and pink ones represent the scenario under global warming. Dashed lines denote the normal distribution in the respective scenarios. It is supposed that the distribution of chlorophyll concentration will shift toward higher mean, CV, S and K values, while Chl a/b shifts toward higher mean but lower CV, S and K values under warming. Chl chlorophyll, CV coefficient of variation, S skewness, K kurtosis.Full size imageThe trait distributional shift under warming is possibly caused by the relative role of species turnover and intraspecific variation (due to plasticity and/or heritable differentiation)25. For Chl concentration and composition, very weak phylogenetic signals were found in three plateaus (Supplementary Table S2), indicating the phenotypic plasticity of Chl, which environments have influenced during the long-term evolution. However, plasticity and intraspecific variation are not the focus of the discussion. Because the species compositions were significantly different among the three plateaus: with only a few species overlapping (Supplementary Fig. S3), and the dominant species and co-existing species gradually varied along the 30 sites (Supplementary Table S3). Shifts in Chl distributions under warming may be interpreted mainly by the alternation of species composition.For Chl concentration, a broader trait space (higher CV) and a more skewed distribution (higher S and K) under warming conditions indicate several new species that differ in functions (here refer to rare species with higher Chl concentration) appeared or increased. This contributed to the long tail of the curve and raised the average Chl concentration. At the same time, most of the other species converged at lower Chl concentrations; that is, Chl concentration undergoes more substantial differentiation and functional contrasting species co-exist under warming. The concentration of Chl is representative of plant growth rate and production ability. Its distribution shift may imply a possible trend of polarisation in functions: both acquisitive and conservative species occur simultaneously. This alteration in species composition indicates changing biotic interactions26. The co-existence of functional contrasting species allows individuals to avoid competition and enhance the exploitation of resources and niche27,28, which is of great importance in optimising community functions28,29. In desert and alpine regions, functional contrasting species with large inter-specific trait variations improve community multi-functionality and enable better resistance to climate change17,30.However, despite the shift in species composition, the distribution of Chl a/b only changed slightly compared to the Chl concentration under warming. The ratio of Chl a to Chl b represents the plant allocation to RC and LHC in PS and the efficiency trade-offs between light capture and light conversion6,7. This ratio is characteristic of conservatism which is mainly manifested in the following aspects: (1) Chl a/b is independent of Chl concentration (orthogonal relationship of the two; Supplementary Fig. S2); (2) Chl a/b distributed more converged with higher K and lower CV (Supplementary Table S1); (3) relative fixed allometric relationships were found between Chl a and Chl b (beside TP; Fig. 8). Plants may adjust their RC and LHC allocation to a common ratio of 3:1 despite large variations in light availability or Chl concentration, which has also been confirmed by a study from forests14. Considering that RC is costlier than LHC, plants tend to sustain the Chl a/b as low as possible unless there is a functional imbalance caused by environmental stress such as warming9,31.Figure 8Standardised major axis regression of chlorophyll a to chlorophyll b in three plateaus. Slopes were given and compared among regions; different lowercase words denote significant (p  More

  • in

    Bioacoustic classification of avian calls from raw sound waveforms with an open-source deep learning architecture

    This study uses SincNet according to the instructions provided by the authors for its application in a different dataset32. This section provides an introduction to SincNet and NIPS4Bplus before detailing the experimental procedure.SincNetThe first convolutional layer of a standard CNN trained on the raw waveform learns filters from the data, where each filter has a number of parameters that matches the filter length (Eq. 1).$$yleft[ n right] = xleft[ n right] times fleft[ n right] = mathop sum limits_{i = 0}^{I – 1} xleft[ i right] cdot fleft[ {n – i} right],$$
    (1)

    where (xleft[ n right]) is the chunk of the sound, (fleft[ n right]) is the filter of length (I), and (yleft[ n right]) is the filtered output. All the elements of the filter ((i)) are learnable parameters. SincNet replaces (fleft[ n right]) with another function (g) that only depends on two parameters per filter: the lower and upper frequencies of a rectangular bandpass filter (Eq. 2).$$gleft[ {n,f_{l} ,f_{h} } right] = 2f_{h} sincleft( {2pi f_{h} n} right) – 2f_{l} sincleft( {2pi f_{l} n} right),$$
    (2)

    where (f_{l} text{ and } f_{h}) are the learnable parameters corresponding to the low and high frequencies of the filter and (sincleft( x right) = frac{sinleft( x right)}{x}). The function (g) is smoothed with a Hamming window and the learnable parameters are initialised with given cut-off frequencies in the interval (left[ {0,frac{{f_{s} }}{2}} right]), where (f_{s}) is the sampling frequency.This first layer of SincNet performs the sinc-based convolutions for a set number and length of filters, over chunks of the raw waveform of given window size and overlap. A conventional CNN architecture follows the first layer, that in this study maintains the architecture and uses both standard and enhanced settings. The standard settings used are those of the TIMIT speaker recognition experiment27,32. They include two convolutional layers after the first layer with 60 filters of length 5. All three convolutions use layer normalisation. Next, three fully-connected (leaky ReLU) layers with 2048 neurons each follow, normalised with batch normalisation. To obtain frame-level classification, a final softmax output layer, using LogSoftmax, provides a set of posterior probabilities over the target classes. The classification for each file derives from averaging the frame predictions and voting for the class that maximises the average posterior. Training uses the RMSprop optimiser with the learning rate set to 0.001 and minibatches of size 128. A sample of sinc-based filters generated during this study shows their response both in the time and the frequency domains (Fig. 4).Figure 4Examples of learned SincNet filters. The top row (a–c) shows the filters in the time domain, the bottom row (d–f) shows their respective frequency response.Full size imageThe SincNet repository32 provides an alternative set of settings used in the Librispeech speaker recognition experiment27. Tests of the alternative settings, which include changes in the hidden CNN layers, provided similar results to those of the TIMIT settings and are included as Supplementary Information 1.NIPS4BplusNIPS4Bplus includes two parts: sound files and rich labels. The sound files are the training files of the 2013 NIPS4B challenge for bird song classification23. They are a single channel with a 44.1 kHz sampling rate and 32 bit depth. They comprise field recordings collected from central and southern France and southern Spain15. There are 687 individual files with lengths from 1 to 5 s for a total length of 48 min. The tags in NIPS4Bplus are based on the labels released with the 2013 Bird Challenge but annotated in detail by an experienced bird watcher using dedicated software15. The rich labels include the name of the species, the class of sound, the starting time and the duration of each sound event for each file. The species include 51 birds, 1 amphibian and 9 insects. For birds there can be two types of vocalisations: call and song; and there is also the drumming of a woodpecker. Calls are generally short sounds with simple patterns, while songs are usually longer with greater complexity and can have modular structures or produced by one of the sexes8,13. In the dataset, only bird species have more than one type of sound, with a maximum of two types. The labels in NIPS4Bplus use the same 87 tags present in the 2013 Bird Challenge training dataset with the addition of two other tags: “human” and “unknown” (for human sounds and calls which could not be identified). Tagged sound events in the labels typically correspond to individual syllables although in some occasions the reviewer included multiple syllables into single larger events15. The tags cover only 569 files of the original training set of 687 files. Files without tags include 100 that, for the purpose of the challenge, had no bird sounds but only background noise. Other files were excluded for different reasons such as vocalisations hard to identify or containing no bird or only insect sounds15. The 2013 Bird Challenge also includes a testing dataset with no labels that we did not use15.The total number of individual animal sounds tagged in the NIPS4Bplus labels is 5478. These correspond to 61 species and 87 classes (Fig. 5). The mean length of each tagged sound ranges from ~ 30 ms for Sylcan_call (the call of Sylvia cantillans, subalpine warbler) to more than 4.5 s for Plasab_song (the song of Platycleis sabulosa, sand bush-cricket). The total recording length for a species ranges from 0.7 s for Turphi_call (the call of Turdus philomelos, song thrush) to 51.4 s for Plasab_song. The number of individual files for each call type varies greatly from 9 for Cicatr_song (the call of Cicadatra atra, black cicada) to 282 for Sylcan_call.Figure 5Distribution of sound types by number of calls (number of files) and total length in seconds. Sound types are sorted first by taxonomic group and then by alphabetical order.Full size imageProcessing NIPS4BplusThe recommended pre-processing of human speech files for speaker recognition using SincNet includes the elimination of silent leading and trailing sections and the normalisation of the amplitude27. This study attempts to replicate this by extracting each individual sound as a new file according to the tags provided in the NIPS4Bplus labels. A Python script42 uses the content of the labels to read each wavefile, apply normalisation, select the time of origin and length specified in each individual tag and save it as a new wavefile. The name of the new file includes the original file name and a sequential number suffix according to the order in which tags are listed in the label files (the start time of the sound) to match the corresponding call tags at the time of processing. Each wavefile in the new set fully contains a sound according to the NIPS4Bplus labels. A cropped file may contain sounds from more than one species15, with over 20% of the files in the new set overlapping, at least in part, with sound from another species. The machine learning task does not use files containing background noise or the other parts of the files that are not tagged in the NIPS4Bplus labels. A separate Python script42 generates the lists of files and tags that SincNet requires for processing. The script randomly generates a 75:25 split into lists of train and test files and a Python dictionary key that assigns each file to the corresponding tag according to the file name. The script selects only files confirmed as animal sounds (excluding the tags “unknown” and “human”) and generates three different combinations of tags, as follows: (1) “All classes”: includes all the 87 types of tags originally included in the 2013 Bird Challenge training dataset; (2) “Bird classes”: excludes tags for insects and one amphibian species for a total of 77 classes; and (3) “Bird species”: one class for each bird species independently of the sounds type (call, songs and drumming are merged for each species) for a total of 51 classes. The script also excludes three very short files (length shorter than 10 ms) which could not be processed without code modifications.To facilitate the repeatability of the results, this study attempts to maintain the default parameters of SincNet used in the TIMIT speaker identification task27,32. The number and length of filters in the first sinc-based convolutional layer was set to the same values as the TIMIT experiment (80 filters of length 251 samples) as was the architecture of the CNN. The filters were initialised following the Mel scale cut-off frequencies. We did change the following parameters: (1) reduced the window frame size (cw_len) from 200 to 10 ms to accommodate for the short duration of some of the sounds in the NIPS4Bplus tags (such as some bird vocalisations); (2) reduced the window shift (cw_shift) from 10 to 1 ms in proportion to the reduction in window size (a value a 0.5 could not be given without code modifications); (3) updated the sampling frequency setting (fs) from the TIMIT 16,000 to the 44,100 Hz of the present dataset; and (4) updated the number of output classes (class_lay) to match the number of classes in each training run.To evaluate performance, the training sequence was repeated with the same settings and different random train and test file splits. Five training runs took place for each of the selection of tags: “All classes”, “Bird classes” and “Bird species”.Enhancements and comparisonsChanges in the parameters of SincNet result in different levels of performance. To assess possible improvements and provide baselines to compare against other models we attempted to improve the performance by adjusting a series of parameters, but did not modify the number of layers or make functional changes to the code other than the two outlined below. The parameters tested include: the length of the window frame size, the number and length of the filters in the first layer, number of filters and lengths of the other convolutional and fully connected layers, the length and types of normalisation in the normalisation layers, alternative activation and classification functions, and the inclusion of dropouts (Supplementary Information 1). In addition the SincNet code includes a hard-coded random amplification of each sound sequence; we also tested changing the level and excluding this random amplification through changes in the code. In order to process window frames larger than some of the labelled calls in the NIPS4Bplus dataset, the procedure outlined earlier in which files are cut according to the labels was replaced by a purpose-built process. The original files were not cut, instead a custom python script42 generated train and test file lists that contain the start and length of each labelled call. A modification of the SincNet code42 uses these lists to read the original files and select the labelled call. When the call is shorter than the window frame the code randomly includes the surrounding part of the file to complete the length of the window frame. Grid searches for individual parameters or combinations of similar parameters, over a set number of epochs, selected the best performing values. We also tested the use of the Additive Margin Softmax (AM-softmax) as a cost function37. The best performing models reported in the results use combinations of the best parameter values (Supplementary Information 1). All enhancements and model comparisons use the same dataset selection, that is the same train and test dataset split, of the normalised files for each set of tagged classes.The comparison using waveform + CNN models trained directly on the raw waveform, replaces the initial sinc-based convolution of SincNet with a standard 1d convolutional layer27, thus retaining the same network architecture as SincNet. As with SincNet enhancements, a series of parameter searches provided the best parameter combinations to obtain the best performing models.The pre-trained models used for comparison are DenseNet121, ResNet50 and VGG16 with architectures and weights sourced from the Torchvision library of PyTorch33. We tested three types of spectrograms: Fast Fourier Transform (FFT), Mel spectrum (Mel) and Mel-frequency cepstral coefficient (MFCC) to fine-tune the pre-trained models. FFT calculations used a frame length of 1024 samples, 896 samples overlap and a Hamming window. Mel spectrogram calculations used 128 Mel bands. Once normalised and scaled to 255 pixel intensity three repeats of the same spectrogram represented each of the three input channels of the pre-trained models. The length of sound used to generate the spectrograms was 3 s, and similarly with routines above, for labelled calls shorter than 3 s the spectrogram would randomly include the surrounding sounds. That is, the extract would randomly start in the interval between the end of the labelled call minus 3 s and the start of the call plus 3 s. This wholly includes the labelled call but its position is random within the 3 s sample. A fully connected layer replaced the final classifying layer of the pre-trained models to output the number of labelled classes. In the fine-tuning process the number of trainable layers of the model was not limited to the final fully connected layer, but also included an adjustable number of final layers to improve the results. The learning rate set initially to 0.0001 was halved if the validation loss stopped decreasing for 10 epochs.MetricsMeasures of performance include accuracy, ROC AUC, precision, recall, F1 score, top 3 accuracy and top 5 accuracy. Accuracy, calculated as part of the testing routine, is the ratio between the number of correctly predicted files of the test set and the total number of test files. The calculation of the other metrics uses the Scikit-learn module43 relying on the predicted values provided by the model and performing weighted averages. The ROC AUC calculation uses the mean of the posterior probabilities provided by SincNet for each tagged call. In the pre-trained models the ROC AUC calculations used the probabilities obtained after normalising the output with a softmax function. More