1.Somveille, M., Rodrigues, A. S. L. & Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 24, 664–674 (2015).Article
Google Scholar
2.Van Der Graaf, S., Stahl, J., Klimkowska, A., Bakker, J. P. & Drent, R. H. Surfing on a green wave—How plant growth drives spring migration in the Barnacle Goose Branta leucopsis. Ardea 94, 567–577 (2006).
Google Scholar
3.Shariatinajafabadi, M. et al. Migratory herbivorous waterfowl track satellite-derived green wave index. PLoS ONE 9, 1–11 (2014).Article
CAS
Google Scholar
4.Bennetts, R. E. & Kitchens, W. M. Factors influencing movement probabilities of a nomadic food specialist: Proximate foraging benefits or ultimate gains from exploration?. Oikos 91, 459–467 (2000).Article
Google Scholar
5.Trierweiler, C. et al. A Palaearctic migratory raptor species tracks shifting prey availability within its wintering range in the Sahel. J. Anim. Ecol. 82, 107–120 (2013).PubMed
Article
PubMed Central
Google Scholar
6.Ma, Z., Cai, Y., Li, B. & Chen, J. Managing wetland habitats for waterbirds: An international perspective. Wetlands 30, 15–27 (2010).CAS
Article
Google Scholar
7.Smit, I. P. J. Resources driving landscape-scale distribution patterns of grazers in an African savanna. Ecography (Cop.) 34, 67–74 (2011).Article
Google Scholar
8.Donnelly, J. P. et al. Synchronizing conservation to seasonal wetland hydrology and waterbird migration in semi-arid landscapes. Ecosphere 10, 1–12 (2019).Article
Google Scholar
9.Bennitt, E., Bonyongo, M. C. & Harris, S. Habitat selection by African buffalo (Syncerus caffer) in response to landscape-level fluctuations in water availability on two temporal scales. PLoS ONE 9, 1–14 (2014).Article
Google Scholar
10.Kleyheeg, E. et al. Movement patterns of a keystone waterbird species are highly predictable from landscape configuration. Mov. Ecol. 5, 1–14 (2017).Article
Google Scholar
11.Roshier, D. A., Doerr, V. A. J. & Doerr, E. D. Animal movement in dynamic landscapes: Interaction between behavioural strategies and resource distributions. Oecologia 156, 465–477 (2008).ADS
PubMed
Article
PubMed Central
Google Scholar
12.Henry, D. A. W., Ament, J. M. & Cumming, G. S. Exploring the environmental drivers of waterfowl movement in arid landscapes using first-passage time analysis. Mov. Ecol. 4, 1–18 (2016).Article
Google Scholar
13.Cook, M. I., Call, E. M., Kobza, R., Mac Hill, S. D. & Saunders, C. J. Seasonal movements of crayfish in a fluctuating wetland: Implications for restoring wading bird populations. Freshw. Biol. 59, 1608–1621 (2014).Article
Google Scholar
14.Weimerskirch, H. et al. Lifetime foraging patterns of the wandering albatross: Life on the move!. J. Exp. Mar. Bio. Ecol. 450, 68–78 (2014).Article
Google Scholar
15.Krüger, S., Reid, T. & Amar, A. Differential range use between age classes of southern African bearded vultures Gypaetus barbatus. PLoS ONE 9, e114920 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
16.Wolfson, D. W., Fieberg, J. R. & Andersen, D. E. Juvenile Sandhill Cranes exhibit wider ranging and more exploratory movements than adults during the breeding season. Ibis 162, 556–562 (2019).Article
Google Scholar
17.Péron, C. & Grémillet, D. Tracking through life stages: Adult, immature and juvenile Autumn migration in a long-lived seabird. PLoS ONE 8, e72713 (2013).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
18.Hake, M., Kjellén, N. & Alerstam, T. Age-dependent migration strategy in honey buzzards Pernis apivorus tracked by satellite. Oikos 103, 385–396 (2003).Article
Google Scholar
19.Gschweng, M., Kalko, E. K. V., Querner, U., Fiedler, W. & Berthold, P. All across Africa: Highly individual migration routes of Eleonora’s falcon. Proc. R. Soc. B Biol. Sci. 275, 2887–2896 (2008).Article
Google Scholar
20.Miller, T. A. et al. Limitations and mechanisms influencing the migratory performance of soaring birds. Ibis 158, 116–134 (2016).Article
Google Scholar
21.Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).PubMed
Article
PubMed Central
Google Scholar
22.Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
23.Thorup, K. et al. Resource tracking within and across continents in long-distance bird migrants. Sci. Adv. 3, e1601360 (2017).ADS
PubMed
PubMed Central
Article
Google Scholar
24.Howison, R. A., Piersma, T., Kentie, R., Hooijmeijer, J. C. E. W. & Olff, H. Quantifying landscape-level land-use intensity patterns through radar-based remote sensing. J. Appl. Ecol. 55, 1276–1287 (2018).Article
Google Scholar
25.Wang, X. et al. Stochastic simulations reveal few green wave surfing populations among spring migrating herbivorous waterfowl. Nat. Commun. 10, 2187 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
26.McFeeters, S. K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17, 1425–1432 (1996).ADS
Article
Google Scholar
27.Mcfeeters, S. K. Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sens. 5, 3544–3561 (2013).ADS
Article
Google Scholar
28.Yang, X., Zhao, S., Qin, X., Zhao, N. & Liang, L. Mapping of urban surface water bodies from Sentinel-2 MSI Imagery at 10m resolution via NDWI-based image sharpening. Remote Sens. 9, 1–19 (2017).ADS
Google Scholar
29.Choi, C. Y. et al. Where to draw the line? Using movement data to inform protected area design and conserve mobile species. Biol. Conserv. 234, 64–71 (2019).Article
Google Scholar
30.Guillet, A. Distribution and conservation of the shoebill (Balaeniceps rex) in the southern Sudan. Biol. Conserv. 13, 39–49 (1978).Article
Google Scholar
31.BirdLife International. Species factsheet: Balaeniceps rex. https://www.birdlife.org. Accessed on Apr 14, 2020 (2020).32.Dodman, T. International single species plan for the conservation of the Shoebill Balaeniceps rex. AEWA Technical Series 51 (2013).33.Guillet, A. Aspects of the foraging behaviour of the shoebill. Ostritch J. Afr. Ornithol. 50, 252–255 (1979).Article
Google Scholar
34.Mullers, R. H. E. & Amar, A. Shoebill Balaeniceps rex foraging behaviour in the Bangweulu Wetlands, Zambia. Ostritch J. Afr. Ornithol. 86, 113–118 (2015).Article
Google Scholar
35.Roxburgh, L. & Buchanan, G. M. Revising estimates of the Shoebill (Balaeniceps rex) population size in the Bangweulu Swamp, Zambia, through a combination of aerial surveys and habitat suitability modelling. Ostrich J. Afr. Ornithol. 81, 25–30 (2010).Article
Google Scholar
36.John, J. R. M., Nahonyo, C. L., Lee, W. S. & Msuya, C. A. Observations on nesting of Shoebill Balaeniceps rex and Wattled Crane Bugeranus carunculatus in Malagari wetlands, western Tanzania. Afr. J. Ecol. 51, 184–187 (2013).Article
Google Scholar
37.Mullers, R. H. E. & Amar, A. Parental nesting behavior, chick growth and breeding success of Shoebills (Balaeniceps rex) in the Bangweulu Wetlands, Zambia. Waterbirds 38, 1–9 (2015).Article
Google Scholar
38.Elliott, A., Garcia, E. F. J. & Boesman, P. Shoebill (Balaeniceps rex). in Handbook of the Birds of the World (eds. del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E.) (Lynx Edicions, 2020).39.African Parks. African Parks: Unlocking the value of protected areas. African Parks Annual Report 2018. (2018).40.Möller, W. Beobachtungen zum Nahrungserwerb des Schuhschnabels (Balaeniceps rex). J. Ornithol. 123, 19–28 (1982).Article
Google Scholar
41.Christensen, K. D., Falk, K., Jensen, F. P. & Petersen, B. S. Abdim’s Stork Ciconia abdimii in Niger: Population size, breeding ecology and home range. Ostritch J. Afr. Ornithol. 79, 177–185 (2008).Article
Google Scholar
42.McCann, K. I. & Benn, G. A. Land use patterns within Wattled Crane (Bugeranus carunculatus) home ranges in an agricultural landscape in KwaZulu-Natal, South Africa. Ostritch J. Afr. Ornithol. 77, 186–194 (2006).Article
Google Scholar
43.El-Hacen, E.-H.M., Overdijk, O., Lok, T., Olff, H. & Piersma, T. Home Range, habitat selection, and foraging rhythm in Mauritanian Spoonbills (Platalea leucorodia balsaci): A satellite tracking study. Waterbirds 36, 277–286 (2013).Article
Google Scholar
44.King, D. T. et al. Winter and summer home ranges of American White Pelicans (Pelecanus erythrorhynchos) captured at loafing sites in the Southeastern United States. Waterbirds 39, 287–294 (2016).Article
Google Scholar
45.Shaw, A. K. Drivers of animal migration and implications in changing environments. Evol. Ecol. 30, 991–1007 (2016).Article
Google Scholar
46.Folmer, E. O., Olff, H. & Piersma, T. The spatial distribution of flocking foragers: Disentangling the effects of food availability, interference and conspecific attraction by means of spatial autoregressive modeling. Oikos 121, 551–561 (2012).Article
Google Scholar
47.Folmer, E. O. & Piersma, T. The contributions of resource availability and social forces to foraging distributions: A spatial lag modelling approach. Anim. Behav. 84, 1371–1380 (2012).Article
Google Scholar
48.Mendez, L. & Weimerskirch, H. Ontogeny of foraging behaviour in juvenile red-footed boobies (Sula sula). Sci. Rep. 7, 13886 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
49.Patrick, S. C. & Weimerskirch, H. Consistency pays: Sex differences and fitness consequences of behavioural specialization in a wide-ranging seabird. Biol. Lett. 10, 20140630 (2014).PubMed
PubMed Central
Article
Google Scholar
50.Patrick, S. C. & Weimerskirch, H. Personality, foraging and fitness consequences in a long lived seabird. PLoS ONE 9, e87269 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
51.Doherty, T. S. & Driscoll, D. A. Coupling movement and landscape ecology for animal conservation in production landscapes. Proc. R. Soc. B Biol. Sci. 285, 20172272 (2018).Article
Google Scholar
52.Riotte-lambert, L. & Weimerskirch, H. Do naive juvenile seabirds forage differently from adults?. Proc. R. Soc. B Biol. Sci. 280, 20131434 (2013).Article
Google Scholar
53.Buxton, L., Slater, J. & Brown, L. The breeding behaviour of the shoebill or whale-headed stork Balaeniceps rex in the Bangweulu Swamps, Zambia. Afr. J. Ecol. 16, 201–220 (1978).Article
Google Scholar
54.Roshier, D. A., Robertson, A. I. & Kingsford, R. T. Responses of waterbirds to flooding in an arid region of Australia and implications for conservation. Biol. Conserv. 106, 399–411 (2002).Article
Google Scholar
55.Chevallier, D. et al. Human activity and the drying up of rivers determine abundance and spatial distribution of Black Storks Ciconia nigra on their wintering grounds determine abundance and spatial distribution of Black Storks Ciconia nigra on their wintering grounds. Bird Study 3657, 369–380 (2010).Article
Google Scholar
56.Ng’onga, M., Kalaba, F. K., Mwitwa, J. & Nyimbiri, B. The interactive effects of rainfall, temperature and water level on fish yield in Lake Bangweulu fishery, Zambia. J. Therm. Biol. 84, 45–52 (2019).57.Grissac, S. D., Bartumeus, F., Cox, S. L. & Weimerskirch, H. Early-life foraging: Behavioral responses of newly fledged albatrosses to environmental conditions. Ecol. Evol. 7, 6766–6778 (2017).PubMed
PubMed Central
Article
Google Scholar
58.Bolduc, F. & Afton, A. D. Relationships between wintering waterbirds and invertebrates, sediments and hydrology of coastal marsh ponds. Waterbirds 27, 333–341 (2004).Article
Google Scholar
59.Ratcliffe, C. The fishery of the Lower Shire River area. Malawy Fisheries Bulletin No. 3. Fisheries Department, Malawi (1972).60.Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033 (2006).ADS
Article
Google Scholar
61.Tian, S., Zhang, X., Tian, J. & Sun, Q. Random forest classification of wetland landcovers from multi-sensor data in the arid region of Xinjuang, China. Remote Sens. 8, 1–14 (2016).CAS
Google Scholar
62.Kamweneshe, B. M. Ecology, Conservation and Management of the Black Lechwe (Kobus leche smithemani) in the Bangweulu Basin, Zambia. University of Pretoria (2000).63.BirdLife International. Important Bird Areas Factsheet: Bangweulu Swamps. https://www.birdlife.org. Accessed on Oct 14, 2020 (2020).64.Thurlow, J., Zhu, T. & Diao, X. The impact of climate variability and change on economic growth and poverty in Zambia. International Food Policy Research Institute (2009).65.Evans, D. W. Lake Bangweulu: A study of the complex and fishery. Fisheries Service Reports, Zambia (1978).66.Kolding, J. & van Zwieten, P. A. M. Relative lake level fluctuations and their influence on productivity and resilience in tropical lakes and reservoirs. Fish. Res. 115–116, 99–109 (2012).Article
Google Scholar
67.Howard, G. W. & Aspinwall, D. R. Aerial censuses of Shoebills, Saddlebilled Storks and Wattled Cranes at the Bangweulu Swamps and Kafue Flats, Zambia. Ostrich J. Afr. Ornithol. 55, 207–212 (1984).Article
Google Scholar
68.Microwave Telemetry. Microwave Telemetry Solar Argos/GPS 70g PTT. https://www.microwavetelemetry.com/. Accessed on Oct 14, 2020 (2020).69.Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 516–519 (2006).Article
Google Scholar
70.Hijmans, R. J. geosphere: Spherical trignometry. https://cran.r-project.org/package=geosphere (2019).71.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/ (2019).72.Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. https://cran.r-project.org/package=sp (2005).73.Bivand, R. S., Pebesma, E. J. & Gomez-Rubio, V. Applied Spatial Data Analysis with R. (Springer, 2013).74.E. Vermote. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD09A1.006 (2015).75.Hijmans, R. J. raster: Geographic data analysis and modeling. https://cran.r-project.org/package=raster (2019).76.Bivand, R. S., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘geospatial’ abstraction library. https://cran.r-project.org/package=rgdal (2019).77.Bivand, R. S. & Rundel, C. rgeos: Interface to geometry engine – Open source (GEOS). https://cran.r-project.org/package=rgeos (2019).78.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article
Google Scholar
79.Barton, K. MuMIn: Multi-Model Inference. https://cran.r-project.org/package=MuMIn (2019). More